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Abstract  
  

The ability to classify traffic signs quickly and effectively is great importance for autonomous 

cars or as a driver’s assistance in some difficult circumstances. many techniques in machine 

learning were used like Support Vector Machine and Random Forest, on the other hand deep 

learning techniques reached state of art performance in many image classifications tasks. 

Convolutional neural networks have proven to be highly capable in many areas of deep 

learning, particularly in the field of image classification. As this work provides an overview of 

the most important architectures and techniques, what are the areas other than image 

classification, and which open-source programs are most used with these architectures. 

The ability of CNN to treat with real experiments is discussed. and real tests to check the 

performance of the proposed model is implemented by using an external camera as a test tool 

with modifying parameters of CNN model to achieve the highest possible accuracy value for 

prediction process with lowest possible training time.  
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1. Introduction 
The concept of intelligent machines began to appear in the early twentieth century, and the first 

person to use the word robot to describe these new concepts was the Czech writer (Karel Čapek) 

in 1920. 

And this concept began to crystallize in the fifties of the twentieth century, and the question 

was: Why cannot machines use the available information and look at the causes of things 

happening as humans do to solve their daily problems and make decisions, and this was what 

was included in the research paper of (Alan Turing) in 1950. 

The field of artificial intelligence has gone through many successes and setbacks, as computers 

were not as efficient as we know them today and there was a need to prove the importance of 

this field to convince the financiers. 

With the continued attempts, artificial intelligence aroused in the 90’s of the twentieth century. 

Perhaps the most prominent successes were the defeat of the world champion in chess by the 

computer program Deep Blue designed by IBM. Successes continue to follow at various levels 

to this day and artificial intelligence is used in all fields of science [3]. 

Ongoing research and the demands of emerging life have resulted in the emergence of more in-

depth concepts such as machine learning and deep learning. Computer vision was one of the 

important areas to delve into, until we got to the convolutional neural networks which achieved 

impressive results, where the development of computing capabilities and the availability of large 

amounts of data were a major role in its development.  
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2. Objectives and methodology  

2.1 Objectives  

I will give an overview of the areas in which convolutional networks have been 

successfully used, then I will choose a specific problem for which there is publicly 

available data and proposes a method for its solution. then I will implement this method 

and verify it on data using the Tensorflow and Keras libraries. 

2.2 methodology 

I will describe the current state of research in the field of convolutional neural networks. I 

will give an overview of the areas in which convolutional networks have been used 

successfully and describe some typical applications. also, I will describe open-source 

software designed for their implementation, especially the frameworks Tensorflow and 

Keras. I will use (GTSRB) dataset and implement classification by convolutional neural 

network using Tensorflow and Keras and then verify the results using a laptop camera. 
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3. Literature review 
  

3.1  Artificial Intelligence  

The applications of artificial intelligence are many, and they are present in many different 

sectors and industries.  In health care, playing chess and self-driving cars. Each of these apps 

should take into account whatever action it takes, as this will affect the end result.  It is also used 

in applications related to the financial industry and banking where it may reveal unusual use of 

payment cards. 

Perhaps there are several definitions of artificial intelligence, there may be several definitions 

of artificial intelligence, as this relates to the field in which AI is perceived and some have 

argued that artificial intelligence should be defined in terms of its goals, as Russell and Norvig 

mentioned in their texts [5] 

where the definition was divided into four quarters. 

• Systems that think like humans 

• Systems that behave like humans 

• Systems that think rationally 

• Systems that act rationally 

 

There are three terms that overlap with each other, and artificial intelligence forms the general 

framework for them Figure 1. [6]. 

 

Figure 1. AI, ML and deep learning, source [6] 
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3.1.1 Biological side 

The living things that surround us and their ways of life and their adaptation to their 

environmental surroundings have always been a source of inspiration for many scientists. 

Perhaps the most notable simulation of these living creatures was aircraft design. In the field of 

computing the nervous system had a great impact. As the attempts to produce systems and 

programs that possess the same features began more than 70 years ago. 

Work began on developing these systems to simulate the analytical ability of living systems, 

and of course the quest to add the feature of learning from errors and benefiting from the 

mistakes of others, and this is what leads us to the term machine learning.   

3.1.2 Source of inspiration for neural networks 

To understand an artificial neuron, we will look at a biological neuron. In general, a biological 

neuron consists of a cell body, from which many dendrites emerge, in addition to a main axon, 

which divides near its end into branches that have synapses at the end. 

Synapses, in turn, connect to dendrites coming from other cells or directly to the body of other 

neurons. These nerve cells communicate by means of electrical signals called neurotransmitters  

[1, 2], this brings us to one of the earliest and simplest models of artificial neural networks 

which is Perceptron  

 

Figure 2. Biological neurons with detail of synapse, source [1] 

3.1.3 The Perceptron 

It was invented by Frank Rosenblatt in 1957, It is one of the simplest architectures of an artificial 

neural network and an essential entry point to understanding these networks. It mainly depends 

on the so-called (LTU) linear threshold unit, each input (x) has a weight (w) that increases or 

decreases the importance or impact of this input, and then the inputs and weights are calculated 

according to the following equation: 𝑍 =  𝑊1𝑋1 + 𝑊2𝑋2 + ⋯ + 𝑊𝑛𝑋𝑛   
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then the step function is applied, and we have bias neuron (𝑥0) which outputs always (1) value.   

 

Figure 3. The Perceptron, source [9] 

The most used step function is Heaviside step function (i) and sometimes the Sign function (ii) 

heaviside (z) = {
0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

        (i)                           sgn (z) = {

−1 𝑖𝑓 𝑧 < 0
0   𝑖𝑓 𝑧 = 0
1  𝑖𝑓 𝑧 > 0

         (ii) 

This perceptron can be used for a very simple linear binary classification, i.e. it gives either 

positive or negative class like what logistic regression does. 

But this perceptron stands incapable of solving simple problems like XOR, this problem can be 

solved by multi-layer perceptron where we have one or more non-linear layers called the hidden 

layers, where all the neurons in a layer are connected to every neuron in the previous layer, it is 

called denes layer. [4] , unlike single Perceptron, multi-layer Perceptron has Capability to learn 

non-linear models Figure 4. 

 

Figure 4. multi-layer Perceptron, source [4] 
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[x] represents input features. 

[𝑎1, 𝑎2,…, 𝑎𝑘] represents the values from the previous layer with a weighted linear summation 

In the output layer we have non-linear activation function such as the hyperbolic tan function.[4]   

3.2 Machine learning   

Machine Learning is field of study that gives computers the ability to learn without being 

explicitly programmed, Arthur Samuel [1959] 

With the rapid development in the field of computing  we can find that  machine learning is very 

useful in following cases: 

• Problems requiring a lot of hand tuning as a simple algorithm can do the job perfectly.[2] 

• Sometimes there are problems that cannot be solved by traditional methods 

• When there is need to process large amounts of data in less time 

 where we can train the algorithm using specific data and find the relationship between input 

and output, and upon completion of this process, the algorithm is able to guess the results when 

using new data. There are several concepts to explain types of machine learnings, Perhaps the 

most common classifications are related to human supervision 

There are four main categories  

1. Supervised, which will be used in practical part. 

In supervised learning we feed the training data to the algorithm includes the desired solution 

which called labels like in spam filter in e-mail systems. The main algorithms used in supervised 

learning are: 

• K -nearest Neighbors. 

• Linear regression.  

• Logistic regression.  

• Support vector machine.  

• Decision trees and random forests.  

• Neural networks (it could be unsupervised or semi supervised in some applications). 

 

2. Unsupervised  

3. Semi supervised   

4. Reinforcement learning  

3.3 Deep learning  

Deep learning is a subfield of machine learning and both are within the field of AI, and deep 

learning theory was first developed in the 1980s 
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Deep learning is a method of machine learning that teaches computers to do what is normal for 

humans. for example, Deep learning is the fundamental technology behind self-driving cars, 

enabling them to recognize traffic signs and traffic lights, or distinguish pedestrians from 

roadside poles and other elements. And perform classification tasks directly from images, text, 

or audio. Deep learning models can achieve advanced accuracy, and sometimes exceed human 

performance. This would not have been possible without the great development in computing 

and storage technologies because it requires large amounts of labeled data and great computing 

power. In addition to high-performance GPUs, when all combined with cloud computing, this 

reduces the training time for a deep learning network from weeks to hours or less. [7] 

The term "deep" refers to the number of hidden layers in a neural network where deep networks 

can contain more than a hundred layers, to be distinguished from traditional neural networks 

(shallow networks) which consist of only 1 or 2 hidden layers at most, Figure 5.[8] 

 

Figure 5. shallow and deep networks, source [8] 

 

3.3.1 Reasons to use deep learning  

For a while the ideas of deep learning (deep neural networks) have been around. But it began to 

develop rapidly because of: 

1- Availability and large size of data: As a result of the massive proliferation of digital 

devices in all areas of life and the expansion of the Internet, this generates huge amounts 

of data that are supplied or fed to learning algorithms.   

2- Computational scale : if we collect a lot of data, we can figure out that the performance 

of traditional learning algorithms, such as logistic regression will “flattens out,” and the 

algorithm stops improving even if you fed it with more data ,on the other hand If we 

feed the same data to a small, then medium, and then large(in term of number of hidden 

units/layers/parameters) neural network, we will notice that the performance improves 

as the size of the neural network increases, figure.6 
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Figure 6. impact of size of neural network on performance, source [10] 

Artificial neural networks are the backbone of deep learning and are ideal for dealing with 

complex problems such as classifying very large numbers of images and speech recognition. 

In this work I will speak about famous architecture of DNN which is CNN, this architecture 

managed to achieve superhuman performance on some complex visual tasks 

3.4 Convolutional neural network 

3.4.1 CNN vs ANN  

The major difference between a traditional Artificial Neural Network (ANN) and CNN is that 

only the last layer of a CNN is fully connected whereas in ANN, each neuron is connected to 

every other neuron [55].  

ANNs are not suitable for handling images, although this works fine for small images, but it 

will not be suitable to deal with large images because of the large number of parameters 

generated. For example, if we have 200 × 200 image, which means we have 40000 pixel and if 

the first layer has only 500 neurons, this means a total of 10000000 connection and we are still 

in the first layer. On the other hand, CNN can deal with this using partially connected layers 

and weight sharing. 

3.4.2 Main concepts used in CNN architectures 

convolution layers: The most important building block of a CNN where the neurons in the 

convolution layers are not connected to every single pixel in the previous layer but only to pixels 

in their receptive fields which defined by filter size figure [2] 
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Figure 7. CNN layers with rectangular local receptive fields, source [2] 

Pooling layer: The function of this layer is subsampling to prevent the risk of overfitting and 

the connection with previous layer like convolution layer, and we must define the size, stride, 

and the padding of receptive field in the previous layer, and all it does is aggregate the inputs 

using an aggregation function such as the max or mean. most common type of pooling layer is 

max pooling layer.[2] 

 

Figure 8. Max pooling layer (2 × 2 pooling kernel, stride 2, no padding), source [2] 

 

Fully connected layer: all the neurons in a layer are connected to every neuron in the 

previous layer, also called denes layer. 

Filters (convolution kernels): The filter is used to extract information from the previous 

layer, and it is often square dimensions like (3 × 3) 

Padding: It is the process of adding a frame of pixels to an image, there are many types of 

padding: 

• same padding or zero padding: we add new zero pixels and the output has the same 

shape of input  

• constant padding: we add constant value (non-zero), output has the same shape of input 

Stride: The number of pixels the filter shifts through in a single step 

Activation functions:  

• ReLU: Rectified Linear Unit function 
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• Sigmoid  

• Tanh: hyperbolic tangent function 

 

Figure 9. Nonlinear activation functions, source [2] 

3.4.3 Stages of development of Convolutional Neural Networks 

It began to be used since the eighties of the last century, but it began to develop rapidly after the 

tremendous technical development in the 2000s. 

Between 2010 and 2017, a big competition appeared in all universities in the world. the 

competition used ImageNet data repository to improve the algorithms of CNN. Since then, 

literature has worked both in designing more accurate networks as well as in designing more 

efficient networks from a computational-cost point of view. 

The competition called "The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)". 

This had a huge impact on CNN's development 

I will mention the stages of development of CNN in the chronological order in which they 

appeared and especially the ones that are most used and that have achieved state of art. 

 

3.4.3.1 LeNet-5  

LeNet-5 is the ancestor of convolutional neural networks and one of the most fundamental deep 

learning models that is primarily used to classify handwritten digits (it used MNIST dataset) 

and one of the earliest neural networks that use the convolution operation. Combining back-

propagation algorithms with CNN It became at that time the most advanced in classifying 

images using deep learning. 

The LeNet-5 network was shown to incur an error rate less than 1% on test data which are very 

close to state of art.  

The layers of the LeNet-5 architecture as shown in Figure 10. [11]: 
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Figure 10. LeNet-5 architecture, source [11] 

 

It consists of seven layers without input layer: 3 convolutional layers (C1,C3,C5) and two 

subsampling layers (C2,C4) , fully connected layer (F6) and the output layer [12] 

C1: First convolution layer: (num_kernels=6, kernel_size=5×5, padding=0, stride=1) 

S2: First subsampling Layer (kernel_size=2×2, padding=0, stride=2) 

C3: Second Convolution Layer (num_kernels=16, kernel_size=5×5, padding=0, stride=1) 

S4: Second subsampling layer (kernel_size=2×2, padding=0, stride=2) 

F5: Fully Connected Layer (out_features=120) 

F6: Fully Connected Layer (out_features=84) 

F7: Fully Connected Layer (out_features=10)   

To clarify more  

1- The input is a single-channel image, (28*28*1) or (32*32*1) pixel . 

2- The output of convolutional layers and fully connected layers pass through tanh 

activation function. 

3- The output of subsampling (pooling) layers passes through Sigmoid activation function.  

4- the SoftMax activation function is applied on output layer and it’s contains the 

predictions of the network 

5- we have total of 60,850 trainable parameters and 340,918 connections overall. 

6- Classify images in 1 of 10 classes, every class represents one value from 0 to 9 

We can realize that the high and the width goes down while the number of channels (number of 

connections) goes up as we go deep in the network  
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Limitation of leNet-5 

1- this network works only with one channel images (gray scale image) which limited its 

applications. 

2- modern approach is to implement a max-pooling operation instead of average pooling 

operation. 

3- this network has only 60 thousand parameters while nowadays we use from 10 to 100 

million parameter. 

4- Modern architectures use  ReLu activation instead of tanh and sigmoid which used in 

LeNet-5, as ReLu usually leads to higher classification accuracies 

 

3.4.3.2 AlexNet 

In 2012 Alexnet architecture which was primarily designed by Alex Krizhevsky won the 

competition of ILSVRV, we can say it is a Classic type of Convolutional Neural Network, 

Figure 11. 

 

 

Figure 11. AlexNet architecture, source [14] 

 

AlexNet architecture has a lot of similarity to LeNet-5, but much bigger.  

This architecture has 8 layers without input layer , the first five layers are convolutional layers 

and the remaining 3 are fully connected layers.  

Input layer fed with (227*227*3) image 

First convolution layer: (num_filters=96, filter_size=11*11*3, stride = 4), Then applying 

overlapping Max-pooling and response normalization 

Second convolution layer: (num_filters=256, filter_size=5*5*48), Then applying overlapping 

Max-pooling and response normalization 
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Third convolution layer: (num_filters=384, filter_size=3*3*256) 

fourth convolution layer: (num_filters=384, filter_size=3*3*192) 

fifth convolution layer: (num_filters=256, filter_size=3*3*192) 

the last three fully connected layers have 4096 neurons each 

note that the third, fourth and the fifth convolution layers are connected to each other without 

any Max-pooling or normalization 

The ReLU is applied to the output of every convolutional and connected layer. 

The output is fed to a 1000-way SoftMax which produce a distribution over the 1000 class label. 

 

Overfitting problem: 

To reduce overfitting which is caused by large number of inputs (60 M), so the (Data 

Augmentation) and (Dropout) was used. 

• Data Augmentation: increases the size of the training set by generating many realistic 

variants of each training instance. The is done by randomly changing the lighting 

conditions or shifting or rotating the image to different degrees, noting that applying 

augmentation to some images completely change their meaning. 

• Dropout: it consists of setting to zero the output of each hidden neuron with probability 

0.5. The neurons which are “dropped out” in this way do not contribute to the forward 

pass and do not participate in backpropagation [14] 

•  

 Advanced of AlexNet  

1- It has 60 million parameters, as it used ImageNet dataset, so we can see the big size of 

data helped the algorithm to reach a remarkable performance. 

2- This architecture made much better than LeNet-5 because of using ReLU activation 

function and the increase in depth of the network  

3- In 2012 GPUs were still slower in comparing with nowadays, so the training done by 

using 2 GPU and some layers were split across these tow GPU, but it was the first GPU 

based CNN model 

Limitations: 

1- It’s not deep enough, so it struggles to learn features from image set. 

2- It takes more time to reach higher accuracy comparing to later models. 
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3.4.3.3 VGG-16 

In 2014 Karen Simonyan and Andrew Zisserman [15] published their paper (very deep 

convolutional networks for large-scale image recognition), the architecture was known as VGG-

16, Figure 12. This model achieved 92.7% top-5 test accuracy in ImageNet, which is a dataset 

of over 14 million images belonging to 1000 classes. 

This model is one of the most popular models in the research community due to its simple 

approach and because pre-trained weights are freely available, making it easier to fine-tune this 

powerful model to new tasks. 

Instead of having so many hyper parameters, they used much simpler network and they focused 

on having conv layers with 3*3 filters and layers always use SAME padding, this means the 

output layer will have the same spatial dimension of input layer.  

All Max-pooling layers is 2*2 with stride of 2 [15]  

It uses ReLU activation function on all stages and SoftMax activation on output  

VGG16 was trained for weeks and was using NVIDIA Titan Black GPU’s. [16] 

 

 

Figure 12. VGG-16 architecture, source [16] 
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Limitations  

this model has so many weight parameters, about 138 million parameters (more than 500 MB 

of weight size), this means a long training time and expensive cost of computation and will face 

difficulties when it is deployed on low resource systems. 

3.4.3.4 Inception-v1 

2014 winner model of Image classification competition (ILSVRC), they chose GoogLeNet as 

their team-name [17]. It uses 12× fewer parameters than the architecture of AlexNet [14], but it 

is more accurate. 

It is 27 layers deep. This model includes two techniques from [18]: 

1- Fully connected layers are replaced with global average pooling. 

2- It uses 1×1 convolution, which can help to reduce model size which in turn can also 

somehow help to reduce the overfitting problem. 

Since pooling was essential to reach top results, the suggestion was to add a parallel pooling 

path at each stage, this gives additional beneficial effect, Figure 13.  [17] 

 

Figure 13. inception module, source [17] 

 

Problem: 

In this module (Figure 13), there was one big problem, that will be a significant and inevitable 

increase in transition from one stage to another due to the merging of the outputs of 

convolutional layers with the output of the pooling layer, Which leads to the computational 

problems within a few stages (high computational cost) 
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Solution: 

[17] The solution was by applying dimension reductions and projections and, 1×1 convolution 

is used to compute reductions before the expensive 3×3 and 5×5 convolutions. Also, they 

included the use of rectified linear activation and the result as in Figure 13.  

 

Figure 14. Inception module with dimensionality reduction, source [17] 

Inception module is an image model block whose aim is to approximate an optimal local sparse 

structure. Simply put, it allows us to use several types of filter sizes in a single image block, 

rather than being limited to a single filter size. 

This module repeated many times through network and the research continued to reach other 

architectures like in Inception-v2 and v3 and v4  

3.4.3.5 Inception-v2 & v3 

It was necessary to find solutions to reduce the complexity of the structure and increase the 

accuracy  and the idea was that performance is better when the dimensions of the inputs are not 

significantly altered by the convolutional networks  which in turn leads to loss of information 

known as a “representational bottleneck” 

Improvements in v2 

1- replace 5×5 convolution by two 3×3 convolution operations which leads to increase in 

architecture performance 

2- replace convolutions of filter size (n × n) by a combination of 1×n and n×1 convolutions 

(3×3 became (1×3) followed by (3×1) which is 33% cheaper in terms of computational 

complexity in comparison with 3×3. 
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3- The filter banks in the module were expanded (made wider instead of deeper) to remove 

the representational bottleneck.   [19][20] 

Improvements in v3 

The architecture almost the same in V2 with some changes  

1- Use of RMSprop optimizer to decrease the step for large gradients to avoid exploding, 

and to increase the step for small gradients to avoid vanishing.[21] 

2- Batch Normalization in the Auxiliary Classifiers.[22] 

3- Use of 7×7 factorized Convolution. Figure 15. 

4- Label Smoothing Regularization to prevent overfitting  

 

Figure 15. 7×7 factorized Convolution, source [31] 

3.4.3.6 ResNet 

In this architecture the authors introduced residual learning framework to train the networks in 

easy way that are deeper than those used previously [23]. It brought a massive improvement in 

accuracy and a major speed improvement. 

 

Figure 16. Residual learning, source [23] 



18 
 

Residual learning was inspired by lateral inhibition in the human brain. It means that the neurons 

in the brain can control whether their neighboring neurons was triggered or not, that’s mean 

carry one activation from a layer and feed it to a layer much deeper (not directly next one as 

used to be). 

 

3.4.3.7 Xception  

Inception modules have been replaced with depthwise separable convolutions. 

Xception modified the original inception block by making it wider and replacing the different 

spatial dimensions (1x1, 5x5, 3x3) with a single dimension (3x3) followed by a 1x1 convolution 

to regulate computational complexity. 

Xception architecture shows a slight advantage over Inception V3 on the ImageNet dataset 

(which Inception V3 was designed for) and Show clear superiority over Inception V3 on a larger 

image classification dataset comprising 350 million images and 17,000 classes.  

Keeping the same number of parameters as in Inception V3 shows that efficient use of model 

parameters was the main reason to increase performance [24] 

Depthwise separable convolution:  

the channel wise and spatial-wise computation is done within one step in standard convolution 

performs, on the other hand, the computation splits into two steps in Depthwise Separable 

Convolution: Depthwise convolution applies a single convolutional filter per each input channel 

and pointwise convolution is used to create a linear combination of the output of the depthwise 

convolution. comparison is shown in Figure 17. 

 

 

Figure 17. Standard convolution and Depthwise convolution, source [25] 

 

Depthwise separable convolution have fewer parameters than standard convolution that makes 

it less prone to overfitting. Fewer parameters, means less operations to compute, and thus are 

cheaper and faster 
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3.4.3.8 Inception v4 and Inception-ResNet  

These tow architectures were presented in the same paper in 2016 [26] , the author noticed that 

some of the modules were more complicated than necessary, despite of It was built on the same 

concept of previous versions, but it has more simplified architecture and more inception 

modules than Inception-v3. The overall schema of the inception-v4 network Figure 18.  

We can see the new block in the architecture which is the Stem, and its contents are as in the 

figure 19. 

On the other hand, the inception-Resnet-v2 has almost the same computational cost and it was 

being trained much faster but reached a bit worse final accuracy than Inception-v3. 

 

 
Figure 18. Inception v4, source [26] 

 
Figure 19, Stem, source [26] 

 

3.4.3.9 ResNeXt 

The ResNeXt architecture is an evolution of the deep residual network which replaces the 

standard residual block with one that benefit from the "split-transform-merge" strategy used in 

the Inception models. Simply, rather than performing convolutions over the full input feature 
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map, the block's input is projected into a series of lower (channel) dimensional representations 

of which we separately apply a few convolutional filters before merging the results. [27] 

 

Figure 20. Block of ResNeXt, source [27] 

3.4.3.10 SENet 

It can be considered an extension of inception network or ResNet, It introduced a building block 

called Squeeze-and-Excitation block (SE Block) that adaptively recalibrates channel-wise 

feature responses by explicitly modelling interdependencies between channels, these blocks  

bring significant improvements in performance for existing state-of-the-art CNNs at slight 

additional computational cost [28], in another way, the new block analyses the output of the unit 

which it attached to , focusing especially on the depth dimension and it learns which features 

are usually most active together and then use this info to recalibrate the feature maps, as in 

Figure 21. 

 

Figure 21, Squeeze-and-Excitation block, source [2] 
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The result on ImageNet dataset was improved by 25%, it won the competition with an amazing 

2.25% top-5 error rate 

When generating the output features map, the network usually weights each of its channels 

equally. SENet aim to change this by incorporating a content-aware mechanism that adjusts the 

weighting of each channel. This may be as simple as adding a single parameter to each channel 

and assigning a linear scalar to how significant each one is. 

Squeezing the features maps to a single numeric value, on the other hand, gives them a global 

understanding of each channel. This yields an n-dimensional vector, where n is the number of 

convolutional channels. It is then fed into a two-layer neural network, which produces a vector 

of the same size. On the original function maps, these n values can now be used as weights. 

3.4.3.11 NASNet 

The authors studied a method to learn the model architectures directly on the dataset of interest. 

As this approach is expensive when the dataset is large, they suggest searching for an 

architectural building block on a small dataset and then transfer the block to a larger dataset [29] 

The basic idea was to find the best combination of filter sizes, output channels, strides, number 

of layers, and other parameters in the specified search space. The accuracy of the searched 

architecture on the given dataset was the reward for each search operation in this Reinforcement 

Learning environment. 

In the ImageNet competition, NASNet received a state-of-the-art result. The computing power 

needed for NASNet, on the other hand, was so high that only a few companies were able to use 

the same technique. 

3.4.3.12 GhostNet 

The author [53]  proposes a novel Ghost module to generate more feature maps from cheap 

operations, so this module can be used on devices with limited memory and limited 

computational power like embedded devices. This module can be used as a plug-and-play 

component to upgrade existing convolutional neural networks. 

3.4.4 Comparison between state of arts of CNN architectures  
Most deep neural networks (DNNs) suggested in the state-of-the-art for image recognition are 

examined in detail by researchers [30]. Recognition accuracy, model complexity, computational 

complexity. In Figure 22. we can see that ball chart reporting the Top-1 accuracy vs. 

computational complexity. Top-1 using only the center crop versus floating-point operations 

(FLOPs) required for a single forward pass are reported. The size of each ball corresponds to 

the model complexity.  
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Figure 22. Top-1 accuracy vs. computational complexity, source [30] 

 

3.4.5 An overview of the areas in which CNN is used  

In addition to image classification CNN has succeeded in various tasks related to machine 

learning. Here are the most famous areas in which it has achieved great success. 

3.4.5.1 NLP (natural language processing) 

DNNs have revolutionized the field of NLP, and the two main types of DNN architectures are 

CNN and Recurrent Neural Network (RNN), which they are handle different NLP tasks. CNN 

is supposed to be good at extracting position in variant features and RNN at modeling units in 

sequence. There is great competition between the two algorithms to prove the advantage of one 

of them. 

In paper [41] the authors found that RNNs perform well and robust in a broad range of tasks 

except when the task is essentially a key phrase recognition task as in some sentiment detection 

and question-answer matching settings. In addition, hidden size and batch size can make DNN 

performance vary dramatically. This suggests that optimization of these two parameters is 

crucial to good performance of both CNNs and RNNs. 
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There are many tasks NLP can perform, such Text classification, and Speech recognition. In 

[43] the CNN shows advantages over DNN like Noise robustness, Distant speech recognition, 

Low-footprint models, and Channel-mismatched training-test conditions  

3.4.5.2 computer vision  

As in all systems that seek to simulate and implement the tasks that a person performs, computer 

vision works to carry out the tasks of the human eye and perform image analysis in a manner 

like the brain, and one of the most important of these applications is face recognition.                                                      

CNN ability to display images as data, make it a popular solution in different computer vision 

tasks. 

Face recognition 

The difficulty lies in recognizing faces because of changing facial features, whether it is due to 

an emotional state, or because of a reaction to the weather and temperature, or because of 

changes that occur due to lighting or change in the face pose.  

The studies on LFW database showed that performance improves steadily from about 60% to 

above 90%, while using deep learning improves performance by up to 99.80% in just three years 

[32]  

there are three main steps needed, Figure 23. 

1- Face detector is used to localize faces in images or videos.  

2- The faces are aligned.  

3- The FR module is implemented 

 

 

Figure 23. three steps of face recognition, source [32] 
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In [33] the paper shows that a deep CNN, without any embellishments but with appropriate 

training, can achieve results comparable to the state of the art 

We can see that FR used in wide area like  

• identify people on social media platforms 

• find missing persons 

• unlock phones 

and many other applications  

Vehicle detection 

Vehicle detection and tracking applications play an important role in monitoring highway traffic 

and helping to regulate traffic. Road vehicle detection is used to monitor vehicle speed, traffic 

accidents, traffic jams, traffic analysis, and vehicle classification, and can be implemented in 

different environments. 

Autonomous driving 

We already have Advanced Driving Assistance System (ADAS),  which provides the driver with 

the latest available surrounding information from sonar, radar and cameras deployed along the 

road and it is noticeable that these technologies are used for long-range detection, here comes 

the role of CNN in near and medium-range detection such as pedestrians, road signs and nearby 

cars. 

For autonomous driving, there must be a comprehensive understanding of the surrounding 

environment and road conditions, an understanding of the signs on the roads, the location of 

obstacles, and possibly sudden accidents and others, and the ability to deal with them. 

Autonomous driving consists of three main tasks [44]: 

• Perception: understanding of the environment. 

• Planning: the process of making decisions to achieve the vehicle's goals. 

• Control: the vehicle's ability to execute the planned actions. 

CNN-based object detection and semantic segmentation are useful for these tasks. 

In [45] author proposed an end-to-end learning method for autonomous driving, which input 

dash-board camera images into a CNN and outputs steering angle directory. The advantage of 

the system configuration is simplified because CNN learns automatically and consistently 

without explicit understanding of the surrounding environment and motion planning [44]. 
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Pose estimation 

Understanding the human pose is one of the difficult challenges in computer vision. The reason 

for this is the high dimensions of the input data as well as the large number of poses the body 

can take. 

DeepPose [38] is the first application of CNNs to human pose estimation problems. the task is 

formulated as a regression problem to body joint coordinates. DeepPose captures the full context 

of each body joint by taking the whole image as the input [37] 

[42] State-of-the-art performance for human pose estimation has been achieved using Deep 

Convolutional Neural Networks. These networks use two approaches: 

• Regressing heat maps of each body part 

• Learning deep-structured output 

 

Room classification 

The ability to classify rooms in a home is one of the many desirable features of social robots. In 

the paper (40), the researchers address the problem of classifying internal chambers across 

several convolutional neural network (CNN) architectures, such as VGG16, VGG19, and 

Inception V3. The main goal is to learn about the five interior classes (bathroom, bedroom, 

dining room, kitchen, and living room). 

Object recognition 

Object detection problem is more complicated than classification, regarding classification can 

also recognize objects but has trouble locating it, also classification does not work when there 

are multiple objects in one image. 

there are many concepts under this term: 

• Object detection: classify multiple objects in an image and place bounding boxes 

around them. 

• Object localization: detect the presence of objects in an image and indicate their 

location with a bounding box. 

• Image Classification: Predict the class or type of one or multiple objects in an image. 

• Semantic segmentation: classify each pixel according to the class of the object that 

belongs to. 
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Figure 24, Object recognition concepts, source [2] 

                                                                           

For many years the common approach was to take trained CNN network and then slide it across 

image, this technique was slightly simple, because it will detect the same object multiple times. 

One of top-performing deep learning models is R-CNN which was introduced in in the 2014 

paper by Ross Girshick [35], this model consists of 3 modules: 

• Region Proposal: propose bounding boxes which are most likely to contain an object. 

• Feature Extractor. 

• Classifier. 

But R-CNN had a problem that can’t be implemented in real time and it takes some time, that 

leads us to the Fast R-CNN which was significantly faster. 

Finally, we have YOLO (You Only Look Once), Unlike previous algorithms  which is region-

based algorithms, in YOLO the bounding boxes and class probabilities for these boxes are 

predicted by a single convolutional network. [36], it achieves high accuracy and it’s running in 

real time and it considers now one of the most efficient object detection algorithms [51] 

Robotic Grasp Detection 

There is a time delay between the robot's response to grasp objects and the human response. 

Humans can know how to grasp new things even if they do not have previous knowledge about 

it. Therefore, the ability of robot to grasp object in real time is a difficult process, and as is the 

case for autonomous driving of vehicles, the task of capture is divided into three stages, 

detection, planning, and execution. In [46] authors used typical 3D vision system or RGB-D 

camera to detect objects and their approach was using ResNet-50 networks running in parallel 

to extract features from RGB-D images. First network task is analyzing the RGB component, 

and second network task is analyzing the depth channel. The outputs of these networks are then 
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merged and fed into another convolutional network that predicts the grasp configuration, the 

complete architecture in Figure 25.  

  

Figure 25, Robotic Grasp Detection network, source [46] 

Learning robot dynamically 

The environment around us is constantly changing and this is a problem for robots to understand 

this change and therefore it is necessary for the robot to learn the changes taking place in the 

surrounding environment dynamically. Authors in [47] used an network based on ResNet-50 

and they found that using a pure CNN based architecture on both CNN and naïve classifier gives 

the best performance, although pure CNN based architecture achieved slightly better 

classification accuracy, but it takes long time for training which makes it useless on a 

dynamically learning robot   
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Radiology 

The medical field has not been forgotten from the advancement in deep learning, particularly 

in  CNN, as in diabetic retinopathy screening, skin lesion classification, and lymph node 

metastasis detection and radiology [48] due to its great ability in image classification, it has 

achieved expert-level performances in various fields. For example, it used for the classification 

of lung nodules whether it was benign or malignant figure 26. [48] 

 

Figure 26. benign or malignant classification, source [48] 

Classification depends mainly on segmentation to differentiate between benign and malignant 

parts. Segmentation can be done by the specialists manually, but it will consume a lot of time. 

Training data for the segmentation system consist of the target organ and the segmentation 

result. 

Covid-19 

Since covid is a respiratory disease, a chest radiograph images are one of the basic keys to 

diagnosing the disease and knowing its effects, by studying the occurring abnormalities. Authors 

in [50] introduced open-source network designs for COVID-19 detection from CXR images 

called COVID-Net and they used 13,975 CXR images. 

The authors view the testing process as a complex manual process that takes a long time and 

has a very variable sensitivity, and the way this test works has not been explained clearly, in 

addition to changing the results according to the sampling method. They introduced alternative 
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method, radiography examination be analyzing CXR images, it can be done quickly and is 

considered to be a good complement to PCR Test  

COVID-Net was pretrained on ImageNet dataset and then trained on the CXR images dataset, 

we can see the architecture in Figure 27.   

 

Figure 27. COVID-Net architecture, source [50] 

 

 

Breast cancer detection in Mammography  

Breast cancer is the second leading cause of cancer deaths among U.S. women and screening 

mammography has been found to reduce mortality. Despite the benefits, screening 

mammography is associated with a high risk of false positives as well as false negatives [52] 

the authors proposed to use convolutional layers as top layers, which preserve spatial 

information. Two blocks of convolutional layers (VGG or Resnet) can be added on top of the 

patch classifier layers, followed by a global average pooling layer and then the image’s 

classification output as in Figure 28. 
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Figure 28, Breast cancer detection in Mammography, source [52] 

The results of this paper shows that CNN is outperforming human specialists in detecting and 

classifying tumors. 

 

3.4.6 Open-source frameworks 

The number of deep learning frameworks is as large as the algorithms used for that, and the goal 

of these frameworks is to create a suitable environment for working through standard 

programming languages, and often more than one framework is combined to reach the desired 

results. Reliability, scalability, and cost give big advantage for open-source software. 

One of the most used frameworks are: Microsoft CNTK, Caffe, Caffe2, Torch, PyTorch, 

MXNet, Chainer and Theano,  all these frameworks are open source, but the most popular 

according to the number of developers who use these frameworks are TensorFlow and the high-

level API library Keras and they are growing very fast [54] 

 

Figure 29. The most popular Deep Learning frameworks and libraries, source [54] 
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TensorFlow 

It is an open-source numerical framework created and developed by Google Brain for large-

scale distributed training and inference and for use both in research, development and 

production systems, it can run on single CPU systems, GPUs, mobile devices and large-scale 

distributed systems of hundreds of nodes, is also supported in Google and Amazon cloud 

environments [54]. 

Strong points 

• By far the most popular DL tool, open-source, fast evolving, supported by a strong 

industrial company (Google). 

• Numerical library for dataflow programming that provides the basis for DL research and 

development. 

• Efficiently works with mathematical expressions involving multi-dimensional arrays. 

• GPU/CPU computing, efficient in multi-GPU settings, mobile computing, high 

scalability of computation across machines and huge data sets. [54] 

Weak points 

• Defines computational flow (graph) statically before a model can run  

• Still lower-level API difficult to use directly for creating DL models. [54] 

 

Keras 

Keras is Python wrapper library that provides bindings to other DL tools such as TensorFlow, 

It was developed with a focus on enabling fast experimentation and is released under the MIT 

license. Work with Python Models are described in Python code, which is compact, easier to 

debug, and allows for ease of extensibility [54] 

Strong points 

• Open-source, fast evolving, with backend tools from strong industrial companies like 

Google and Microsoft 

• User friendliness 

• Clean and convenient way to quickly define DL models on top of backends (e.g. 

TensorFlow, Theano, CNTK). Keras wraps backend libraries, abstracting their 

capabilities and hiding their complexity. 

Weak points  

• Sometimes it is slow on GPU and takes longer time in computation compared with its 

backends 

• Multi-GPU not 100% working 
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Following Table 1. shows comparison between TensorFlow, keras and the third popular 

framework nowadays PyTorch and Caffe2 

 

Framework, 
Library 

Computation 
graph 

Usage  Datasets Popularity Trend 

TensorFlow Static with 
small support 
for dynamic 
graph 

Academic 
Industrial 

Large datasets, high 
performance 

Most popular Using Keras for 
fast prototyping 
and TensorFlow 
for production. 
This trend is 
backed by Google. 

Keras Static Academic 
Industrial 

Smaller datasets Second most 
popular 

PyTorch Dynamic Academic 
Industrial 

Large datasets, high 
performance 

Third most 
popular 

Using PyTorch for 
prototyping and 
Caffe2 for 
production. This 
trend is backed by 
Facebook. 

Caffe2 Static Academic 
Industrial 
Mobile 
solution 

Large datasets Medium-low 
Growing fast 

Table 1. Most Popular Deep learning frameworks 
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4. Practical part  
It is known that CNN help in running neural networks directly on images and are more 

efficient and accurate than many of the deep neural networks architectures. In this task, we 

will use tensorflow-keras package to build CNN model. 

First, I will Import the libraries which I will use it in the task: 

 

4.1 Explore the train images 
The German traffic signs detection dataset will be used in this task to recognize the traffic 

signs by external camera connected with the trained model. 

The dataset consists of 39209 images as a train data and 12630 images as test data with 43 

different classes. Also, there is a file attached to the data (Meta)file contains 43 different 

images (100,100,3) are shown in Figure to make the last test before implementing and testing 

the model by the external camera. 
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Figure 30. 43 different images represent 43 class 

The images are distributed unevenly between those classes and hence the model may predict 

some classes more accurately than other classes. For that we used a data augmentation by 

populate the dataset with various image modifying techniques such as rotation, color distortion 

or blurring the image.to achieve the greatest equality between the data classes. 

To open the files and join paths of dataset’s folders, we will use os and glob packages: 
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4.2 Data Pre-Processing 
One of the limitations of the CNN model is that they cannot be trained on a different 

dimension of images. So, it is mandatory to have same dimension images in the dataset. 

Let's at the beginning check the dimension of all the images (Train, Test) of the dataset so that 

we can process the images into having similar dimensions: 
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It is clear, that we have a different dimension in our both categories the train and the test 

images so they cannot be passed directly to the ConvNet model. Instead, we should resize all 

the images to (32,32,3). 

Choosing the dimensions of the images should consider two important things: 

• The number of parameters that will be processed in the network. 

• the have chosen dimension should keep the image data mostly accurate. 

I decided to start with (32,32,3) and check the accuracy of the model if it will be sufficient to 

predict new images. 

Note: W combined many steps in one function (preprocessing Fun). 

Preprocessing Function do many steps together: 

1. resize the images into (32,32,3) by using OpenCV package. 

cv2 is a package of OpenCV. resize method transforms the image into the given dimension. 

OpenCV provides 5 types of interpolation techniques based on the method they use to evaluate 

the pixel values of the resulting image. The techniques are INTER_AREA, 

INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_LANCZOS4. We will be 

using INTER_AREA interpolation technique it’s more preferred for image decimation but for 

extrapolation technique it’s similar as INTER_NEAREST. 
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2. Convert the images to grayscale. 

3. Standardize the lighting in an image. 

4. normalize the images to new range between 0-1 (This helps the model converge faster). 

 

The lists which contained the images, and the labels must be converted to arrays to be able to 

insert into keras. 

 

The shape of the images after going out of Preprocessing Funnction: 
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4.3 Visualize the dataset  

It is better to see the distribution of the data in the classes in both sets. frequencies of the 

classes are shown in Figure 30. 
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Figure 31, frequencies of classes in both sets 
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Samples of trained images 
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Samples of test images with their labels 

 

 

In the plot above we can see that the dataset does not contain equal number of images for each 

class and hence, the model may be biased in detecting some traffic signs more accurately than 

other. I decided to use the data augmentation with parameters 

• height_shift_range =0.1 (means 10%). 
• zoom_range=0.2 (0.2 MEANS CAN GO FROM 0.8 TO 1.2). 
• shear_range (MAGNITUDE OF SHEAR ANGLE). 
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• rotation_range=10 (DEGREES). 
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4.4 Split the dataset 

Now we need to divide train images into training and validation set. Test set is already 

existing in separate file (12630 images). We shuffled the images with corresponding labels 

before splitting. 

 

Before insert the images inside keras, we should be sure that we have the same shape for 

images and their labels. 
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4.5 Build a CNN model to recognize the traffic signs 
We create a CNN model by ([Conv2D, Conv2D, MaxPooling2D, Normalization], 

[Conv2D,Conv2D,MaxPooling2D,Normalization,Dropout], [Flatten ,Dense, Normalization 

,Dropout]). As shown in the Figure 31. 

 

Figure 32. My CNN model 
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4.6 Model Training  
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Note:  .fit_generator method supports data augmentation. However, if you are using 

tensorflow==2.2.0 or tensorflow-gpu==2.2.0 (or higher), then you must use the .fit method 

(which now supports data augmentation) 

• Batch size = it can take any integer value or NULL and by default, it will be set to 32. 

It specifies no. of samples per gradient. 

• Epochs: an integer and number of epochs we want to train our model for. 

• Steps_per_epoch: it specifies the total number of steps taken from the generator as 

soon as one epoch is finished, and next epoch has started. 

We can calculate the value of steps_per_epoch as the total number of samples in your dataset 

divided by the batch size. 

• callbacks : a list of callback functions applied during the training of our model. 

The fit() method accepts a callback argument, which let us specify a list of objects that Keras 

call during training at the start and end of training, at the start and end of each epoch and even 

before and after processing each batch. 

 For example, the Model Checkpoint callback saves checkpoints of your model at regular 

intervals during training by default at the end of each epoch. Moreover, if you use a validation 

set during training, you can set save_best_only=True when creating the Model Checkpoint. 

In this case, it will only save your model when its performance on the validation set is the best 

so far. This way, you do not need to worry about training for too long and overfitting the 

training set, simply restore the last model saved after training, and this will be the best model 

on the validation set. 

Another way to implement early stopping is to simply use the ‘Early Stopping’ callback.It 

will interrupt training when it measures no progress on the validation set for several epochs 

(defined by the patience argument), and it will optionally rollback to the best model. You can 

combine both callbacks to both save checkpoints of your model (in case your computer 

crashes), and interrupt training early when there is no more progress (to avoid wasting time 

and resources). In this case, the number of epochs can be set to a large value since training will 

stop automatically when there is no more progress. Moreover, there is no need to restore the 

best model saved in this case since the Early Stopping callback will keep track of the best 

weights and restore them for us at the end of training. 
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• The difference between using callbacks and save method is to save the model after 

fitting it. 

Save the model by model.save(), Keras will save both the model’s architecture (including 

every layer’s hyperparameters) and the value of all the model parameters for every layer (e.g., 

connection weights and biases), using the HDF5 format. It also saves the optimizer (including 

its hyperparameters and any state it may have). You will typically have a script that trains a 

model and saves it, and one or more scripts (or web services) that load the model and use it to 

make predictions. Loading the model is just as easy: model = keras.models.load_model() This 

will work when using the Sequential API or the Functional API, but unfortunately not when 

using Model subclassing. However, you can use save_weights() and load_weights() to at least 

save and restore the model parameters (but you will need to save and restore everything else 

yourself). 

But what if training lasts several hours? This is quite common, especially when training on 

large datasets. In this case, you should not only save your model at the end of training, but also 

save checkpoints at regular intervals during training. 

 

Epoch 1/30 

274/274 [==============================] - 95s 344ms/step - loss: 2.7381 - a

ccuracy: 0.3579 - val_loss: 6.8018 - val_accuracy: 0.0493 

Epoch 2/30 

274/274 [==============================] - 95s 347ms/step - loss: 0.6267 - a

ccuracy: 0.8033 - val_loss: 1.8920 - val_accuracy: 0.4866 

Epoch 3/30 

274/274 [==============================] - 95s 346ms/step - loss: 0.3211 - a

ccuracy: 0.9043 - val_loss: 0.1220 - val_accuracy: 0.9593 

Epoch 4/30 

274/274 [==============================] - 95s 346ms/step - loss: 0.1943 - a

ccuracy: 0.9394 - val_loss: 0.0703 - val_accuracy: 0.9799 

Epoch 5/30 

274/274 [==============================] - 98s 358ms/step - loss: 0.1472 - a

ccuracy: 0.9556 - val_loss: 0.0407 - val_accuracy: 0.9862 

Epoch 6/30 

274/274 [==============================] - 95s 345ms/step - loss: 0.1161 - a

ccuracy: 0.9641 - val_loss: 0.0169 - val_accuracy: 0.9952 

Epoch 7/30 

274/274 [==============================] - 94s 342ms/step - loss: 0.1004 - a

ccuracy: 0.9696 - val_loss: 0.0400 - val_accuracy: 0.9875 

Epoch 8/30 

274/274 [==============================] - 94s 342ms/step - loss: 0.0938 - a

ccuracy: 0.9694 - val_loss: 0.0290 - val_accuracy: 0.9901 

Epoch 9/30 

274/274 [==============================] - 94s 343ms/step - loss: 0.0792 - a

ccuracy: 0.9758 - val_loss: 0.0152 - val_accuracy: 0.9949 

Epoch 10/30 
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274/274 [==============================] - 95s 347ms/step - loss: 0.0737 - a

ccuracy: 0.9782 - val_loss: 0.0133 - val_accuracy: 0.9966 

Epoch 11/30 

274/274 [==============================] - 95s 346ms/step - loss: 0.0663 - a

ccuracy: 0.9777 - val_loss: 0.0128 - val_accuracy: 0.9963 

Epoch 12/30 

274/274 [==============================] - 97s 354ms/step - loss: 0.0635 - a

ccuracy: 0.9792 - val_loss: 0.0256 - val_accuracy: 0.9924 

Epoch 13/30 

274/274 [==============================] - 94s 343ms/step - loss: 0.0621 - a

ccuracy: 0.9817 - val_loss: 0.0170 - val_accuracy: 0.9936 

Epoch 14/30 

274/274 [==============================] - 94s 342ms/step - loss: 0.0553 - a

ccuracy: 0.9817 - val_loss: 0.0075 - val_accuracy: 0.9977 

Epoch 15/30 

274/274 [==============================] - 94s 343ms/step - loss: 0.0478 - a

ccuracy: 0.9841 - val_loss: 0.0098 - val_accuracy: 0.9969 

Epoch 16/30 

274/274 [==============================] - 94s 343ms/step - loss: 0.0466 - a

ccuracy: 0.9845 - val_loss: 0.0094 - val_accuracy: 0.9974 

Epoch 17/30 

274/274 [==============================] - 94s 344ms/step - loss: 0.0425 - a

ccuracy: 0.9858 - val_loss: 0.0127 - val_accuracy: 0.9961 

Epoch 18/30 

274/274 [==============================] - 95s 344ms/step - loss: 0.0437 - a

ccuracy: 0.9865 - val_loss: 0.0205 - val_accuracy: 0.9936 

Epoch 19/30 

274/274 [==============================] - 95s 345ms/step - loss: 0.0459 - a

ccuracy: 0.9851 - val_loss: 0.0075 - val_accuracy: 0.9977 

 

 

Plot Loss function. 
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Figure 33. Loss function 

 

Plot Accuracy 
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Figure 34.  Accuracy 

 

We can combine the (loss_val, loss, val_accuracy, accuracy) in one plot: 

 

 

Figure 35. loss_val, loss, val_accuracy, accuracy 
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I consider (Accuracy and val_accuracy) as a fake accuracy, So I must check the test accuracy 

to know if we have an overfitting or not. 

I have 97 % as a test accuracy, which means, I built a good model as CNN. 

 

I checked the accuracy by Keras method and let's now see the accuracy of all predicted test 

images with the true labels by scikit-learn: 

Both the accuracy measures are different:  

1 - sklearn accuracy is pretty straightforward. 

• Predicted_values = [0, 10, 100, 1000] 
• Actual_values = [0, 100, 10, 1000] 
• Y_equals = [1,0,0,1] 

sklearn accuracy = 0.5 which is the confidence. 

2 - On the other hand, keras models’ accuracy calculates the mean of y_equals for binary classes. 

Slightly more different for categorical. 

all the needed information about model evaluation in [56,57]. 

 

Test Accuracy: 0.9755344390869141 
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4.7 Predict a sample of test images 

 

The datasets contain a "Meta" file with 42 different images to make the last test after using the 

model with external camera. 
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Almost the Meta images have a (100,100,3) dimension. 
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Predict a sample of Meta images 

 

4.8 Camera Test  
setting the camera: 

• Camera resolution: 

  
So, we put the PROBABLITY THRESHOLD = 0.75 

 

• Video camera settings: 
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Figure 36. camera test samples 

5. Results and discussion 
A bout 60000 images are resized to (32,32,1) by reduce their dimension in keras to (32,32) 

and convert them to grayscale type (preprocessing function). 

40000 images divided into (training set and validation set) with 0.3 test size. This ratio is not a 

big ratio if we take in consideration the data augmentation technique which we use it to fill the 

lack of images in some classes. The difference of distribution of images in the number of 

classes may cause misleading in the prediction process. Where the model will be biased to 

some classes which has a big number of images. So, using data augmentation will remove this 

problem. However, on another hand, it is known that data augmentation is usually done only 

on training set and not on validation set, so increasing the value of test size ratio will make 

sense.  

I used the Keras Sequential API, I designed a Convolutional Neural Network with two layers 

+ Flatten layer (Figure 2) ([Conv2D, Conv2D, MaxPooling2D, normalizer], [Conv2D, 

Conv2D, MaxPooling2D, normalizer, Dropout], [Flatten, Dense, normalizer, Dropout]). The 

first convolutional (Conv2D) layer, after many experiments, I have chosen to set 2^6 = 64 and 

2^5 = 32 filters respectively for the two firsts conv2D layers and 2^6 =64 and 2^7 = 128 filters 
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respectively for the two last ones. Each filter transforms a part of the image (defined by the 

kernel size) using the kernel filter. The kernel filter matrix is applied on the whole image. 

Filters can be seen as a transformation of the image. 

The second important layer in the first part of my network is "MaxPool2D" layer. This layer 

simply acts as a down sampling filter. It looks at the 2 neighboring pixels and picks the 

maximal values. These are used to reduce computational cost, and to some extent also reduce 

overfitting in somehow. We have to choose the pooling size (i.e., the area size pooled each 

time) more the pooling dimension is high, more the down sampling is important. 

When combining convolutional and pooling layers, CNN are able to combine local features 

and learn more global features of the image. 

Batch Norm is a normalization technique done between the layers of a Neural Network instead 

of in the raw data. It is done along mini batches instead of the full data set. It serves to speed 

up training and use higher learning rates, making learning easier. 

The Dropout technique is a regularization method, Dropout is a technique used to prevent a 

model from overfitting. Dropout works by randomly setting the outgoing edges of hidden units 

(neurons that make up hidden layers) to zero at each update of the training phase. 

 

 

I used a “ReLU” as a rectifier (activation function max (0, x)). It is the most used activation 

function especially in the convolutional neural networks. The rectifier activation function is 

used to add nonlinearity to the network. 

Flattening and fully connected layers: Flattening is converting the data into a 1-dimensional 

array for inputting it to the next layer. We flatten the output of the convolutional layers to 

create a single long feature vector. And it is connected to the final classification model, which 

is called a fully connected layer (we put all the pixel data in one line and make connections 

with the final layer). 

At the end I used the features in two fully-connected (Dense) layers which is just an artificial 

neural networks (ANN) classifier. In the last layer (Dense(len(classes_name), 
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activation="softmax") the network outputs distribution of probability of each class where we 

have 43 different classes. 

Once the layers are added to the model, we need to set up a score function, a loss function and 

optimization algorithm. 

We apply a loss function to measure the performance of model (i.e., how poorly our model 

performs on images with known labels.) It is the error rate between the predicted images and 

the true images. 

The most important part is choosing the optimizer, this function will iteratively improve the 

parameters (filters kernel values, weights and bias of neurons and so on….). 

Adam optimization algorithm is used in this project with default value for 𝑙𝑟= 0.001 and 30 

epochs, Adam is an optimization algorithm that can be used instead of the classical stochastic 

gradient descent procedure to update network weights iterative based in training data. 

Adam realizes the benefits of both AdaGrad and RMSProp. Instead of adapting the parameter 

learning rates based on the average first moment (the mean) as in RMSProp, Adam also makes 

use of the average of the second moments of the gradients (the uncentered variance). 

 Finally, the metric function “accuracy” is used to evaluate the performance. It plays the same 

role of loss function, except that the results from the metric evaluation are not used when 

training the model (However, Only for evaluation.) 
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6. Conclusion 
During this work, we talked about convolutional neural networks and what improvements and 

additions to their architecture have been made. An overview of the areas of their use and their 

most widespread open-source programs were presented. 

In practical part, a classification Convolutional neural network is designed to classify German 

traffic signs dataset. High training and test accuracy by simple CNN is obtained with about 

60,000 images as training, testing and validation sets. Two layers + Flatten layer is used only to 

achieve more than 97 % as a test accuracy with 0.0075 as val_loss. Callbacks features in Keras 

is used also to help in reducing the training process time with "Earlystopping" feature which 

stopped the process after only 19 epochs. The algorithm showed high performance when I 

applied it for unknown images in Meta file which contains a different label images with different 

dimensions.  

The large ability for the algorithm to deal with real experiment with great predictability was 

clear when an external camera is used to prove the efficiency the suggested network in real life. 

The idea is scalable in the future by adding more complicated tasks and goals for example to 

detect objects and recognize faces. 
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