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Abstrakt 

Light detection and ranging (LiDAR) je metoda určování vzdáleností, která po aplikaci 

filtru povrchu (ground filtering) umožňuje vygenerování digitálního modelu terénu (digital 

terrain model/DTM) ve vysokém rozlišení. Cílem této práce je prozkoumat chování 

následujícíh algoritmů pro filtrování povrchu v různých krajinný pokryv a svazích: 

Multiscale Curvature Classification (MCC), Cloth Simulation Filtering (CSF) a 

Progressive Morphological Filter (PMF). K tomu je použit kód v jazyce R za použití 

knihovny lidR, data jsou získána z mračna bodů Dánska. Jak svažitost tak krajinný pokryv 

měly vliv na přesnost generovaného terénu, a všechny tři algoritmy dávaly ve všech 

kategoriích obstojné výsledky. Zvýšení svažnosti vedlo k nižsí chybovosti a přesnějším 

modelům, a obecně lze říci, že v kategorii ze všech pokryvů terénu nejlépe vycházely 

stromy. Tato práce navrhuje vhodné výchozí hodnoty uživatelům, kteří chtějí 

optimalizovat filtrovaní povrchu v datech získaných metodou LiDAR. 
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Abstract 

Light detection and ranging (LiDAR) is a method and technology for determining 

distances that by applying ground filtering on it, high resolution of digital terrain model 

(DTM) could be generated. The aim of this study was to investigate the behavior of 

Multiscale Curvature Classification (MCC), Cloth Simulation Filtering (CSF) and 

Progressive Morphological Filter (PMF) ground filtering algorithms in different landcover 

and slopes. By lidR package and coding in R, the result obtained from point cloud of 

Denmark, and among them the best parameters for each category of landcover and 

slope. Both slope and landcover had an influence on the results and all the three 

algorithms showed an acceptable performance in all categories. Increasing slope led to 

decreased errors and increased success rates, and in general the Tree Cover category 

had the better result than other landcovers. Overall, this study provides default 

parameters for users who wish to optimize ground filtering algorithms for their LiDAR 

data. 
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1. Introduction  

LiDAR is known as an effective means of acquiring high-resolution elevation data. The 

digital terrain models (DTMs) generated through this technique usually have an obvious 

advantage of high precision, especially for forested areas where can be detected both 

the ground surface and the canopy (Chen et al., 2016).  LiDAR made a revolution in 

topographic terrain capturing, especially in the generation of digital terrain models (DTM) 

(Kraus & Pfeifer, n.d.). 

The nature of LiDAR data offers the potential for extracting surface information for many 

applications (Priestnall et al., n.d.). Laser pulse can reflect from leaves, buildings, ground 

etc. In order to generate DTM, the ground points in the LiDAR data must be distinguished 

from the non-ground points (e.g., trees or buildings). This process is called ground 

filtering. LiDAR intensity data are used to produce the binary classification of ground and 

vegetation with good accuracy (Wang & Glenn, 2009). By using LiDAR point clouds and 

color RGB of the points, classification result for both buildings and vegetation in an urban 

environment (Bandyopadhyay et al., 2013).  

But this thesis focuses on the ground filtering by the geometry and elevation of points 

(xyz).  PMF, CSF and MCC are some different algorithms for this purpose with different 

approaches and methods. All of them have to be parameterized. There are some papers 

that have already worked on this topic. (Moudrý et al., 2020) worked on the 6 different 

algorithms in different slopes in shrub, grassland and forest landcover. (Klápště et al., 

2020) compared the performance of six algorithms for ground filtering of LiDAR and 

photogrammetric point clouds in different landcovers.  

While these algorithms were presented by their authors, the default parameters were 

introduced too. But the problem is that these default parameters are just for some specific 

areas. The question is what if the area has different landcovers than the one introduced 

as default? What if the slope exists in the area?  

In this thesis, by the help of R programming and the lidR package that is open source 

and free to access, I am going to define some default parameters for PMF, CSF and MCC 

ground filtering algorithms in different landcovers and different slopes and find the relation 

of the area characteristics and input parameters. The more specific research questions 

were as follows: 

1. What is the effect of the landcover and slope on the different ground filtering 

algorithms? 

2. How do the parameters of algorithms change among different landcover types 

and degrees of slope? 

3. What are the best parameters settings as input for different algorithms, 

landcover types and slopes? 
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2. Literature review 

2.1. History of remote sensing 

One of the earliest dreams of humankind was observing and watching the Earth from 

above. This dream came to reality gradually, from the balloons, kites, pigeon and gliders. 

In 1858, the first aerial photos were taken from a height of 80 m over Bievre, France, by 

Gaspard Félix Tournachon using cameras mounted on a hot air balloon and the first 

balloon photography used for urban planning were acquired by James Wallace Black in 

1860 over the city of Boston (Chuvieco, n.d.). 

The British used kites to reach to aerial photography from 1880s, and in the early 1900s, 

human used carrier pigeons to carry the lighter cameras. The great San Francisco 

earthquake of 1906 was captured on film using a panoramic camera mounted 600 m 

above San Francisco Bay and supported by a string of kites. 

In 1908, 5 years after the Wright brothers built the world’s first operational aircraft, an 

aircraft was first used as a platform for aerial photography (Dong & Chen, n.d.). In World 

War I and World War II aerial photos played a significant role. During 1920s and 1930s 

aerial photography was used as a source and reference for topography maps. 

 

 

Figure 1. Historical development of remote sensing systems (Chuvieco, n.d.). 

 

The term “remote sensing” was first coined by Evelyn Pruitt of the U.S. Office of Naval 

Research in the 1950s, and the traditional aerial photography gradually evolved into 

remote sensing around 1960 (Dong & Chen, n.d.). Photography was the main sensor at 

that time. Remote sensing means observing Earth from above, in any way and aspect 

and gathering data and information, about the Earth or a particular case study. The 

collected data will be interpreted by human or computer and at last these data from 

remote sensing will be converted to a meaningful maps, graphs or figures for the usage 

of variety of end-users such as, foresters, farmers, fishers, journalists, ecologists, 

geographers etc.  
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Figure 2. Illustration of the main components associated with remote sensing activities 
(Chuvieco, n.d.). 

Although many other definitions of remote sensing exist in literature it is commonly 

accepted that the basis for remote sensing is the electromagnetic spectrum (Dong & 

Chen, n.d.). Typical eye-safe LiDAR have a frequency of 200 THz and a wavelength 

around 1.5 mm. LiDAR is often used as an imaging sensor. It can be for two-dimensional 

(2D) imaging, similar to the eye or 3D imaging, where range is measured in each pixel. 

(McManamon, 2019). 

 

Figure 3. The electromagnetic spectrum. The numbers show wavelengths of spectral 
regions (Dong & Chen, n.d.) 
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2.2. Types of remote sensing 

Remote sensing has two general types. Passive and Active. Passive monitoring uses 

ambient light sources, like the ultraviolet–visible–near-infrared radiation from the sun, 

while for active illumination laser sources are employed (Brydegaard et al., 2016). Active 

remote sensing systems, on the other hand, emit radiation toward the target using their 

own energy source and detect the radiation reflected from that target (Dong & Chen, 

n.d.). The important advantage of active remote sensing is that it is independent from the 

light of the sun and weather conditions will affect it less than passive one.  

 

Figure 4. Passive and active remote sensing (Dong & Chen, n.d.). 

 

To make it a little clearer, imagine a camera, that in the daylight it takes photo of a 

landscape, it uses the beams that coming from sun and reflecting from the objects, it is 

passive. Now imagine, a camera taking a photo during a night, it uses flash to provide 

light beams to reflect again to the camera to take a picture, it is active. The advantage of 

active remote sensing is the ability to obtain measurements anytime, regardless of the 

time of day or season, but on the other hand, these systems require the generation of a 

large amount of energy to adequately illuminate targets.  
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2.3. What is LiDAR? 

Light detection and ranging (LiDAR) mapping is an accepted method of generating 

precise and directly georeferenced spatial information about the shape and surface 

characteristics of the Earth (Schmid et al., 2012). LiDAR is an active sensor system that 

emits pulses to the ground and collects the reflected ones from the surfaces. LiDAR can 

collect very dense and accurate elevation data. The LiDAR system is like Radar but using 

laser light pulses instead or radio waves. LiDAR is typically “flown” or collected from 

airplanes where it can rapidly collect points over large areas and LiDAR is also collected 

from ground-based stationary and mobile platforms (Schmid et al., 2012). 

 

 

Figure 5. Schematic diagram of airborne LiDAR performing line scanning resulting in 
parallel lines of measured points (other scan patterns exist, but this one is fairly 

common) (Schmid et al., 2012). 

 

The general idea of the LiDAR is simple. A pulse travels from Laser to the Earth and 

back, LiDAR will measure the travel time. The speed of pulse is specified. Then it is easy 

to find out the distance of the point on the earth. 

𝑑 =
𝑐𝑡

2
 

While d is distance, t is the measured time and c is the speed of light (300,000 km/sec). 

But the reality is not simple as it seems. Because so many factors should be considered, 

such as, the speed and movement of plane (airborne). Inertial Measuring Units (IMU) or 

Inertial Navigation Systems (INS) have been instrumental in making the exact positioning 

of the plane possible with the help of GPS on the plane, The GPS positions are recorded 

by the plane and at a ground station with a known position. The ground station provides 

a “correction” factor to the GPS position recorded by the plane (Schmid et al., 2012). 
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In general, there are two types of LiDAR, Airborne and Terrestrial. Airborne LiDAR is 

installed on a helicopter or drone for collecting data and emits light towards the ground 

surface and recording the returns after hitting the object. 

Terrestrial LiDAR, unlike Airborne, are installed on moving vehicles or tripods on the earth 

surface for collecting accurate data points. They are frequently used to monitor roads, 

examine infrastructure, or even gather point clouds from both inside and outside of 

buildings. 

 

Figure 6. The concept of Airborne LiDAR (Dong & Chen, n.d.) 

These are briefly the parameters of Airborne Laser Scanning (ALS): 

Repetition rate: This is rate of pulsing, and it’ll be measured in kilohertz (KHz). A sensor 

operating at 200 KHz means the LiDAR will pulse at 200,000 times per second.  

Scan angle: The distance that the scanner travels from one end to the other and it is in 

degrees. 

Flying attitude: the elevation that Airborne flies and directly affects the quality of the point 

(higher elevation, lower dense points). 

Swath: This is the length of the LiDAR system's coverage region. It may change based 

on the flying height and scan angle. 

Airborne LiDAR sensors can record discrete return measurements with numerous 

records for each pulse that is emitted at fixed time intervals such as 1 ns (about 15 cm 

sampling distance). Full-waveform LiDAR is mainly used in forestry applications, whereas 

discrete return LiDAR can be used in many fields. (Dong & Chen, n.d.). 
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Figure 7. Discrete return and full-waveform measurement using airborne LiDAR 
 (Dong & Chen, n.d.). 

 

 

LAS is the format of point cloud produced by LiDAR and LAZ is the compresses format 

of the LAS. These files contain some data for every point: X, Y and Z as the geometry of 

point that is the most important data, and the rest are Intensity, Return number, 

Classification, Scan angle etc. (LAS Specification 1.4-R15 Release Information, 2002). 

 

Table 1. A part of a LAS file and the data that contains. 

 

 

2.4. Ground filtering 

The process of separating non-ground points from terrain measurements is referred to 

as “terrain filtering” or “ground filtering” and is a challenging research task in LiDAR 

mapping applications (K. Zhang & Whitman, 2005). In recent years, several filter 

algorithms have been created for automatically extracting ground points from airborne 
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LiDAR point clouds that morphological, slope-based, and interpolation-based 

approaches being the most widely used (Liu, 2008). 

The interpolation-based filter method, also called linear prediction, was first proposed by 

Kraus and Pfeifer (1998) (Kraus Ł & Pfeifer, 1998). It iteratively approximates the terrain 

surface using weighted linear least squares interpolation. This filter method was originally 

developed for filtering LiDAR data and terrain modelling in forested areas, and later 

extended to use in urban areas. 

The slope-based filter developed by Vosselman (2000) (Vosselman, 2000) assumes that 

the gradient of the natural slope of the terrain is distinctly different from the slope of non-

terrain objects such as buildings and trees. Slope-based filters work well in flat terrain but 

become more inaccurate as the slope of the terrain increases.  

The morphological filter is based on the idea of mathematical morphology, which has 

been used to identify objects in a greyscale image by using morphological (Liu, 2008). 

The elevations of non-ground objects such as trees and buildings are usually higher than 

ground points. If points are converted to a greyscale image in terms of elevation, the non-

ground objects can be identified by the difference of grey tone (K. Zhang et al., 2003). 

Ground filtering is important because it eliminates non-ground objects such as buildings, 

trees, and cars from the point cloud data set and helps in creating accurate digital terrain 

models that is useful in various industries such as civil engineering, urban planning, and 

environmental science. 

 

2.5. DTM (Digital Terrain Model) and DSM (Digital Surface Model) 

The Digital Terrain Model (DTM) was introduced by Charles L. Miller in 1958 and widely 

used in many fields such as cartography, land utilization, urban planning etc. DTM data 

may be produced using a variety of methods, mostly using airborne light detection and 

ranging (LiDAR), interferometric synthetic aperture radar (InSAR), and digital 

photogrammetry based on satellite and aerial photography. 

A digital surface model, or DSM, is a representation of a surface, including both natural 

and artificial structures like trees and buildings. They represent reflected surfaces of all 

features elevated above the bare ground. In short, DSM represents the Earth’s surface 

and all objects on it, but DTMs depict the bare ground without any trees and building on 

it. 
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Figure 8. Difference between DTM and DSM 

 

Several terms have been used since the original word was created by Miller in 1958. 

These include digital elevation model (DEM), digital height model (DHM), digital ground 

model (DGM) and digital terrain elevation model (DTEM). These terms (DTM, DEM, 

DHM, and DTEM) are often assumed to be, but sometimes they refer to different 

products (Li et al., 2005). 
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3. Methodology 

3.1. Study area 

For the case study, I decided to use the Denmark airborne laser scanning data. There 

were several reasons for choosing this data: First, the access1 to airborne laser scanning 

data of Denmark is easy and free. Second, it has the points cloud for the whole country, 

which allows a selection of several areas with various environmental conditions that plays 

an important role for point cloud classification. Third, the quality and classification 

accuracy of the LAS files is good enough and reasonable to have them as reference. 

3.2. General Workflow 

I selected several areas that differed according to the terrain slope and landcover, which 

are important parameters affecting filtering accuracy and parameters setting. Then, I 

filtered the ground points using three different algorithms and compared it to the original 

classification of the point cloud. The last step was to select some of the best results with 

different parameters and settings and compare the filtering performance of the three 

selected algorithms. Below is the overall flowchart of the approach used in this thesis 

(Figure 8).  

 

 

Figure 9. Flowchart of the overall approach 

 

 
1 https://dataforsyningen.dk/ 



11 
 

3.3. Airborne laser scanning reference data 

The point clouds in LAS files have a density of at least 4 points per sq meter. They are 

classified into the ground (as number 2) and some other non-ground points (e.g., Water, 

vegetation, buildings). The map of whole country is divided into 1 km by 1 km tiles, that it 

is the dimension of the LAS files. 

The point clouds have been collected from 2018 in 5 years, to 2022 and classified in 11 

categories and 17 subcategories (as shown in Table 2). Class 2 as Terrain and Ground 

is the most important class I used. The points have some other information like Intensity, 

RGB etc. But as the algorithms that I used in this thesis, just using the geometry of the 

points (XYZ) this information is not necessary. The coordinate system of the points from 

the source is UTM32_EUREF89.  

 

Table 2. The classes of Point Cloud from Danish Elevation Model 
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3.4. Landcover and Slope data 

For this thesis, I used the ESA Worldwide Landcover 2 map. This map is a freely 

accessible global land cover product at 10 m resolution and containing 11 land cover 

classes. This WorldCover map for 2021 was released on 28 October 2022 and resulted 

in a global overall accuracy of 76.7%. 

The discrete classification map provides 11 classes and is defined using the Land Cover 

Classification System (LCCS) developed by the United Nations (UN) Food and 

Agriculture Organization (FAO). The UN-LCCS system was designed as a hierarchical 

classification, which allows adjusting the thematic detail of the legend to the amount of 

information available. 

Below is the description of the three categories I used in this thesis from the Product User 

Manual of WorldCover. 

 

Table 3. Coding of the Map layer and definition of the classes 

 

 

I cropped the GIS (.shp) file of the Worldcover by the Denmark map. Denmark map has 

just 8 categories as can be seen in Figure 10. The colors of the layers are from the 

standard ESA Worldwide Landcover. 

 

 
2 https://esa-worldcover.org/ 
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Figure 10. Landcover of Denmark (from ESA Worldcover) 

 

Figure 11. Slope of Denmark (a) General Slope (b) Average in every 1km by 1km tile 
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Figure 11 shows the map of slope in Denmark. (a) is the general map  of slope generated 

from DTM at resolution of 25 m that downloaded from the same source3,  and the (b) is 

the average slope that calculated by ArcGIS pro from the DTM, based on the tiles of the 

point clouds. (1 km by 1 km tiles). 

 

3.5. Selection of LAS tiles 

It is known that the algorithms behave differently in different situations and different 

characteristics of the landcover, and slope will influence directly the results and choosing 

the proper parameters (Moudrý et al., 2020). Therefore, to choose the point clouds under 

different environmental conditions, I selected three different landcovers that have 

different properties in vegetation structure to investigate the behavior of the algorithms in 

different situations. I used three land cover classes: Tree Cover, Grassland and Cropland. 

The second category was terrain slope. Since the Denmark is almost a flat country and 

there are not so many lands on slopes, I decided to categorize the slope in relatively 

small ranges. I used three categories for slope in this thesis: 0% to 3%, 3% to 6% and 

6% to 10%. 

 

The LAS files from Denmark, are distributed in form of 1km x 1km tiles (see Figure 12). 

From the Figure 12 map(d) I chose the blue tile that it covers mostly with the specifications 

that required. 

 
3 https://dataforsyningen.dk/ 
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Figure 12. Map of Denmark (a). Map (b) shows the ESA landcover of the red rectangle 
in map (a). Map (c) shows the average slope in individual tiles of LAS files. Map (d) is 

the croplands with slope between 0 – 3%. 

With the combination of slope and landcover together, I have 9 categories. I decided to 

choose two tiles for every category (Sample I and Sample II), to make sure about the 

results and to see if the algorithms working somehow similar in both same category tile.  

For making map (c) in Figure 12. I used Zonal Statistics command, and as input for Zone 

Data, I used the 1 km by 1 km tiles of LAS file tiles (just the boundary of LAS files as .shp 

file) and for the Input Value Raster, I put the slope raster that I calculated from the DTM. 

And for the Statistics Type, I used MEAN, because I needed the average of slope in one 

tile, so that further I could choose and categorize them in different slopes. 

ESA Worldcover 

Slope Croplands with slope between 0 – 3% 
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Table 4. Samples of point clouds (LAS) that are used in this thesis. 

Category Cropland 

Slope Slope < 3% 3% < Slope < 6%  6% < Slope < 10% 

Sample Sample I Sample II Sample I Sample II Sample I Sample II 

Tile No.4 6316_485 6340_548 6304_565 6316_563 6313_561 6315_557 

No. of Points 7,128,123 7,970,781 6,748,606 7,174,162 9,202,681 8,612,837 

No. Ground Points 6,991,078 7,253,171 6,436,635 6,815,301 7,195,849 7,417,146 

Percent of Ground 
Points 

98.08 91 95.38 95 78.19 86.12 

Average Percent of 
Ground points 

90.63 

Average No. of Points 
per square meter 

7.13 7.97 6.75 7.17 9.2 8.6 

Category Grassland 

Slope Slope < 3% 3% < Slope < 6%  6% < Slope < 10% 

Sample Sample I Sample II Sample I Sample II Sample I Sample II 

Tile No. 6343_548 6389_581 6307_522 6308_527 6360_588 6377_561 

No. of Points 7,463,955 6,875,758 8,161,414 8,156,491 9,174,177 8,547,748 

No. Ground Points 7,016,277 6,156,494 7,348,671 7,245,149 6,004,680 6,675,736 

Percent of Ground 
Points 

94 89.54 90.05 88.83 65.45 78.1 

Average Percent of 
Ground points 

84.33 

Average No. of Points 
per square meter 

7.46 6.88 8.16 8.16 9.17 8.55 

Category Tree Cover 

Slope Slope < 3% 3% < Slope < 6%  6% < Slope < 10% 

Sample Sample I Sample II Sample I Sample II Sample I Sample II 

Tile No. 6338_533 6382_583 6294_553 6296_554 6340_577 6345_573 

No. of Points 11,418,310 16,151,478 17,702,374 19,298,021 15,704,242 19,068,163 

No. Ground Points 3,728,394 4,665,878 5,027,719 4,078,629 4,335,998 3,809,375 

Percent of Ground 
Points 

32.65 28.89 28.4 21.13 27.61 19.98 

Average Percent of 
Ground points 

26.44 

Average No. of Points 
per square meter 

11.42 16.15 17.7 19.3 15.7 19.07 

 

 
4 It is downloadable from “https://dataforsyningen.dk/” with this number. 
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3.6. Ground Filtering algorithms  

For this thesis I used R for coding and used lidR package. This package has three 

algorithms for classify ground points: PMF5, CSF6 and MCC7.  

3.6.1. Progressive Morphological Filter (PMF) 

 

Progressive Morphological Filter is a method for classifying the ground points by 

gradually increasing the window size of the filter and using elevation difference thresholds 

(K. Zhang et al., 2003). In lidR package, PMF has just initially two parameters to set. 

Window size in filtering ground returns (ws) and Threshold  heights above the 

parameterized ground surface to be considered a ground return (th). Both parameters 

should be positive and could be one number or a sequence. 

There are two ways for setting these parameters. First, setting them manually, second, 

using the util_makeZhangParam() function. This function makes the sequence for ws and 

th parameters based on some initial parameters that has itself  (K. Zhang et al., 2003)  .I 

just tried to change 3 (out of 6) parameters. The parameters that I used in loop for coding 

are:  

dh_0 that is e initial elevation difference threshold,  

dh_max that is maximum elevation difference threshold, 

and s that is slope.  

For b I just used 2 based on the default value mentioned in the paper (K. Zhang et al., 

2003). The second reason was in my primary investigations, it did not have so much 

influence on the results like other parameters. 

For max_ws, that is maximum window size, I used constant 15. This parameter limits the 

sequence of ws to not making window for filtering larger than this.  

exp parameter is for choosing that increasement of the window size is linearly (0 or 

FALSE) or exponential (1 or TRUE) that I constantly chose exponential increasement for 

this thesis.  

 

3.6.2. Cloth Simulation Filtering (CSF) 

 

Cloth Simulation Filtering is an algorithm that works like simulating a piece of cloth draped 

over a reversed point cloud (W. Zhang et al., 2016). In this method the point cloud is 

flipped upside down, and then a cloth is placed on the inverted surface. The interactions 

between the cloth nodes and the inverted surface are used to determine ground points. 

In lidR package, this filtering has 6 parameters to set. 

 

The parameters that I used as constant are, iteration, sloop_smooth and rigidness. I set 

iteration to 500, because after around 100 the average height variation is so low and after 

 
5 Progressive Morphological Filter 
6 Cloth Simulation Filter 
7 Multiscale Curvature Classification 
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150 maximum height variation is around 0.0033 m (W. Zhang et al., 2016). Therefore, 

500 is a trustable value for iteration. sloop_smooth parameter is used when the area is 

so steep, due to the slopes of the case study, I set it as FALSE. rigidness is the rigidness 

of the cloth that the default value is 1 so I kept it. 

The 3 parameters (out of 6) that I used to change their value during the loop in the code 

are: 

 

class_threshold, the distance to the simulated cloth to classify a point cloud into ground 

and non-ground. 

cloth_resolution, the distance between particles in the cloth. This is usually set to the 

average distance of the points in the point cloud. 

And time_step, that it is the time step when simulating the cloth under gravity.  

 

3.6.3. Multiscale Curvature Classification (MCC) 

 

Multiscale Curvature Classification is an automated approach for classifying LiDAR 

returns that incorporates the strengths of curvature filtering, adds a scale component in 

the interpolation phase, and a variable curvature tolerance to account for slope interaction 

with the LiDAR measurements (Evans & Hudak, 2007). 

This algorithm has 2 parameters to set that I changed them during the loop in code: 

Scale parameter as s. The optimal scale parameter is a function of the 

scale of the objects (e.g., trees) on the ground, and the sampling interval (post spacing) 

of the LiDAR data, and Curvature threshold as t.  

3.7. Range of tested parameters of ground filtering algorithms  

The first step was to choose the approximate amount for the parameters. There are some 

helpful papers about it that I will describe in the next parts. I wrote three codes for these 

three different algorithms. The code that I wrote has some loop inside loop that gradually 

increase the parameters  with specific steps.  

Due to the duration of calculations (for example 720 times of running the classification in 

just one file out of 18 for PMF algorithm, it takes about 26 hours) I needed to choose the 

range of the parameters more precisely. Therefore, I ran the algorithms with different 

values on a cropped area (150 m by 150 m) from the specific category for faster results 

to obtain a better value of range and steps. And then with these ranges, I ran the codes 

on the 1 km x 1 km tiles for each category. Tables 5-7 show the different range of the 

parameters I used in PMF, CSF and MCC algorithms. 
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Table 5. Range of input parameters for PMF algorithm 

Category dh_0 dh_max slope 

Tree cover 0.05 – 0.27 0.5 - 4 0.2 – 1.2 

Cropland 0.05 – 0.19 0.5 - 4 0.2 – 1.2 

Grassland 0.05 – 0.19 0.5 - 4 0.2 – 1.2 

 

Table 6. Range of input parameters for CSF algorithm 

Category class_thershold cloth_resolution time_step 

Tree cover 0.4 – 3.1 0.4 – 1.8 0.5 – 1.2 

Cropland 0.1 – 1.9 1 – 8.5 0.6 – 3.8 

Grassland 0.1 – 1.9 1 – 8.5 0.6 – 3.8 

 

Table 7. Range of input parameters for MCC algorithm 

Category s t 

Tree cover 0.1 - 2 0.1 – 1.5 

Cropland 0.1 - 2 0.05 – 0.5 

Grassland 0.1 - 2 0.05 – 0.5 

 

3.8. Validation of filtering algorithms 

The classified point clouds were compared with the original classification of reference 

data to quantify the performance of individual filtering methods. I calculated the Type I 

error (omission error), Type II error (commission error) and Success rate. Type I error, 

representing the percentage of ground points that are incorrectly classified as non-ground 

as: 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝑏

𝑎 + 𝑏
 

Where a is the number of correctly classified ground points and b is the number of ground 

points misclassified as non-ground points. 

Type II error representing non-ground points incorrectly classified as ground points was 

calculated as: 

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝑐

𝑐 + 𝑑
 

Where c represents the number of non-ground points misclassified as ground points and 

d stands for the number of correctly classified non-ground points. 
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Success rate is the ratio between the number of correctly classified points and the total 

number of points. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝑎 + 𝑑

𝑒
 

Where e stands for total number of all points. 

3.9. Coding with R-Studio 

lidR library was used for testing the ground filtering algorithms. RCSF library is essential 

for CSF algorithm and RMCC for MCC algorithm. Below is an example of code for MCC 

algorithm that I used in this thesis. There are two loops inside each other that gradually 

increase the s and t parameters for using as the input for classify_ground() function. And 

after every classification, the Type I and II error and Success rate is calculated and stored 

in a table. 

## loading necessary libraries 

library(lidR) 

library(RCSF) 

library(RMCC) 

 

laz_path     <- "...\\Slope )6 Tree\\6340_577.laz" 

csv_path_MCC <- "...\\Slope )6 Tree\\6340_577(MCC).csv" 

 

# Create table for result 

table <- data.frame() 

 

# loading reference LAS or LAZ file 

las_ref <- readLAS(laz_path, select = “xyz”) 

 

# Classification of points in reference file 

classification_ref <- las_ref$Classification 

 

s <- 0; 

for(k in 1:20){ 

  # step for s parameter 

  s <- s + 0.1; 

  t <- 0; 

  for(j in 1:15){ 

     

    #starting time 

    time1 <- Sys.time() 

     

    #step for t parameter 

    t <- t + 0.1; 

     

    # Ground filtering by specific algorithm 

    las_filtering <- classify_ground(las_ref, mcc(s, t)) 

     

    # Classification of points in filtered file  

    classification_filter <- las_filtering$Classification 
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    a <- 0 

    b <- 0 

    c <- 0 

    d <- 0 

 

   

     for(i in 1:length(classification_ref)){ 

       

      if(classification_filter[i] == 2){ 

        if(classification_ref[i] == 2){ 

          a <- a + 1 

        } 

      } 

       

      if(classification_ref[i] == 2){   

        if(classification_filter[i] != 2){ 

          b <- b + 1 

        }  

      } 

       

      if(classification_ref[i] != 2){ 

        if(classification_filter[i] == 2){ 

          c <- c + 1 

        } 

        if(classification_filter[i] != 2){ 

          d <- d + 1 

        } 

      } 

    } 

     

    type_I_error <- b/(a + b) 

    type_II_error <- c/(c + d) 

    success_rate <- (a + d)/length(classification_ref) 

     

    # ending time 

    time2 <- Sys.time(); 

    # calculating the time of calculation 

    cal_time <- difftime(time2, time1, units = "mins"); 

     

    # put results in an array 

    new_raw <- c(s, t, type_I_error, type_II_error, success_rate, 

cal_time) 

     

    # add new row of results to  result table 

    table <- rbind(table, new_raw)  

  } 

} 

# insert names of the columns 

names(table) = c("s", "t", "Type I error", "Type II error","Success 

rate", "Calculation time (min)") 

# writing the table in a .csv file 

write.csv(table, csv_path_MCC, row.names = FALSE) 
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3.10. Choosing the best parameters. 

The method I used for choosing the best parameters was that, first I sorted the results by 

the Type II error, from smallest amount. And then by scrolling down, I found a point that 

Type II is increasing so much, around that point, I was searching for some highest 

Success Rate and finding the less amount of Type I error. I chose 2 or 3 rows (gray rows). 

After this, I checked these parameters in the other sample and chose the best of them 

among two samples (Gray bold row). 

 

Table 8. Choosing the best parameter in the result. 

Loop 
Class 

threshold 
Cloth 

resolution 
Time 
step 

Rigidness Iterations 
Sloop 

smooth 

Type 
I 

error 

Type 
II 

error 

Success 
rate 

1 1.3 0.4 0.5 1 500 0 99.94 0 71.13 

2 1.3 0.6 0.5 1 500 0 99.94 0 71.13 

3 1.3 0.8 0.5 1 500 0 99.94 0 71.13 

4 1.3 1 0.5 1 500 0 99.94 0 71.13 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

77 0.4 1 0.5 1 500 0 6.42 3.98 95.32 

78 0.4 1.8 0.6 1 500 0 7.15 4.04 95.06 

79 0.4 0.8 0.5 1 500 0 5.28 4.09 95.56 

80 0.4 1.6 0.6 1 500 0 6.63 4.1 95.17 

81 0.4 1.4 0.6 1 500 0 5.99 4.15 95.32 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

638 3.1 0.6 1.2 1 500 0 0 12.23 91.3 

639 3.1 0.4 1.1 1 500 0 0 12.26 91.28 

640 3.1 0.4 1.2 1 500 0 0 12.35 91.21 

 

3.11. Creating DTM 

For visualizing the result with chosen parameters, I tried to make a DTM from classified 

point cloud and compare it with the original DTM from website. For generating DTM from 

point cloud, I used rasterizing command with TIN algorithm. 

DTM <- rasterize_terrain(las_file, algorithm = tin()) 
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4. Results 

4.1. Effects of parameters setting on Type I and Type II error 

In total, 9 classifications were performed (Table 9-11). Different settings produce different 

Type I and Type II errors even within individual algorithms. Here I illustrate the effects of 

parameters setting only for the Tree Cover category, which had the highest effect on the 

results (Figures 13 – 15). 

4.1.1. MCC 

 

The mean Type I error typically decreased with increasing parameter t as well as with 

parameter s but only up to approx. 0.7 when it was constant or slightly increased 

depending on the slope of the terrain. On the other hand, the mean Type II error increased 

with parameter t, while parameter s had a minimal effect. The best balance between the 

Type I and Type II error is for parameter s around 0.8 and for parameter t it depends on 

the terrain slope and ranges between 0.3 to 1.3. Surprisingly, the Type II error tends to 

be higher in flat terrain than on the steeper slopes.  

 

 

Figure 13. Result of MCC algorithm in Tree Cover category for both s and t parameters. 

Lines show the Type I error and dash lines show the Type II error. For example, for t = 

0.2 we have Maximum (red), Average (blue) and Minimum (green) of the errors. It is 

because of that, for t = 0.2, we have different amount of s that leads to different results 

and could be considered in s parameter chart. 
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4.1.2. CSF 

All the 3 parameters that I changed in the loop in coding play a significant role in the 

algorithm. All the parameters are so sensitive to the slope, and as the slope increases, 

the range of Type I error gets higher and higher.  

 

Figure 14. Result of CSF algorithm in Tree Cover category for different parameters 

 

Time Step, less than 0.5 - 0.6 seems to have a vast range of errors. In general, Type II 

error is higher in the flatter area. For the average of Type I and II errors, the balance point 

between them increases for Time Step, meanwhile for Class Threshold and Cloth 

Resolution, this point decreases by the slope. 
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By increasing Class Threshold, the Type I error decreases, but Type II error increases 

and vice versa for the Cloth Resolution. In slope less than 3 (almost flat area) mostly the 

whole range of the Type II error is significantly more than Type I error, but in the fields 

with more slope, there is a goof balance between them. 

4.1.3. PMF 

 

The main parameter and the one has more influence on the result in PMF algorithm is 

the d_h0. As shown in Figure 15 the range of the result (min, max and avg) is not so 

much and it shows that different parameters do not play a significant role in this algorithm.  

The balance point between two errors in d_h0 decreases by increasing the slope. The 

range of the Type II error (space between min and max) is almost zero, and it shows that 

Type II error is just changing by the d_h0 parameter and other parameters has no effect 

on it.  

 

 

 

Figure 15. Result of PMF algorithm in Tree Cover category for d_h0 parameter 

 

4.2. Chosen parameters 

Among so many results, I chose one series of parameters with the best results. The 

chosen parameters and the result of selecting them in all categories are in Tables 9-11.  
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Table 9. Chosen parameters for MCC algorithm. 

Landcover Slope s t Type I error Type II error 
Success 

rate 

Cropland 

< 3% 1 0.1 4.03 3.78 95.99 

3 - 6% 0.6 0.05 7.18 8.56 92.75 

6 - 10% 1 0.1 1.58 1.21 98.47        

Grassland 

< 3% 1 0.1 2.14 1.41 97.90 

3 - 6% 1.6 0.1 4.73 3.18 95.42 

6 - 10% 1 0.2 1.34 2.38 98.43        

Tree Cover 

< 3% 1.5 0.2 6.80 3.32 95.68 

3 - 6% 2 1 2.94 3.00 97.01 

6 - 10% 2 1.2 2.62 1.77 98.06 

 

Table 10. Chosen parameters for CSF algorithm. 

Landcover Slope 
class 

threshold 
cloth 

resolution 
time 
step 

sloop 
smooth 

Rigid 
-

ness 
Iterat 
-ions 

Type I 
error 

Type II 
error 

Success 
rate 

Cropland 

< 3% 0.1 1 1 0 1 500 3.80 6.05 96.00 

3 - 6% 0.1 3 0.6 0 1 500 6.22 20.08 93.09 

6 - 10% 0.1 1.5 3 0 1 500 2.58 2.76 97.40            

Grassland 

< 3% 0.1 1.5 2.6 0 1 500 2.97 2.06 97.08 

3 - 6% 0.1 1.5 1 0 1 500 4.68 4.74 95.31 

6 - 10% 0.3 1.5 1 0 1 500 2.23 2.80 97.65            

Tree 
Cover 

< 3% 0.4 0.8 0.5 0 1 500 5.28 4.09 95.56 

3 - 6% 0.4 1.2 0.6 0 1 500 2.81 2.59 97.36 

6 - 10% 0.4 0.8 1.1 0 1 500 2.74 1.55 98.21 

 

Table 11. Chosen parameters for PMF algorithm. 

Landcover Slope dh_0 dh_max Slope Max 
Window 

Size 

Exp b Type 
I 

error 

Type 
II 

error 

Success 
rate 

Cropland 

< 3% 0.11 0.5 0.2 15 1 2 0.58 5.3 99.32 

3 - 6% 0.09 0.5 0.2 15 1 2 9.16 6.92 90.94 

6 - 10% 0.18 2 0.4 15 1 2 0.3 1.81 99.48 
           

Grassland 

< 3% 0.15 2 0.4 15 1 2 1.13 1.63 98.83 

3 - 6% 0.15 2 0.4 15 1 2 3.12 3.21 96.87 

6 - 10% 0.15 2 1 15 1 2 0.9 1.76 98.91 
           

Tree 
Cover 

< 3% 0.23 2 0.2 15 1 2 1.98 2.41 97.71 

3 - 6% 0.21 2 0.4 15 1 2 1.71 1.54 98.41 

6 - 10% 0.24 2 0.6 15 1 2 0.77 0.92 99.11 
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Figure 16 shows the Type I and II error and success rate of the chosen parameters. In 

Cropland and Grassland categories, the slope 3 – 6 % seems was trickier for all 

algorithms and due to that, they have less success rate than other slopes. By increasing 

the slope, the Type I and Type II error decreases and due to that, success rate increases 

smoothly.  

Highest Type I and II errors are in the Cropland category. The Tree Cover category totally 

has a better result and the highest success rates. In all categories PMF has less Type I 

error than other algorithms and except one category (Cropland, 3 - 6 %) it has the highest 

success rate too.  

 

 

Table 12. Average Result of different algorithms 

 Landcover Algorithm 
Type I 
error 

Avg. 
Type II 
error 

Avg. 
Success 

rate 
Avg. 

Cropland 

MCC 4.26 

3.94 

4.52 

6.27 

95.74 

95.94 CSF 4.20 9.63 95.50 

PMF 3.35 4.68 96.58 
                

Grassland 

MCC 2.74 

2.58 

2.32 

2.58 

97.25 

97.38 CSF 3.29 3.20 96.68 

PMF 1.72 2.20 98.20 
                

Tree 
Cover 

MCC 4.12 

3.07 

2.70 

2.35 

96.92 

97.46 CSF 3.61 2.74 97.05 

PMF 1.49 1.62 98.41 
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Figure 16. The chart of the chosen parameters. 
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Totally in average, the Tree Cover category has better average success rate than other 

categories. Cropland landcover has the highest and Tree cover has the lowest Type II 

error. Grassland has almost equal Type I and II error and Tree cover has a lower Type II 

error than Type I error. 

4.3. Sections 

Figure 17 shows the same section in different algorithms. I tried to find a section with 

some trees that canopy would be visible. 

 

 

Figure 17. Section on Point Cloud in different algorithms (Tree Cover category in slope 
< 3%. The section is 100m in length in the center of the tile.) 

 

In these sections (Figure 17), MCC algorithm defines some ground points as non-ground 

(Type I error). Meanwhile, seems there are some inaccuracies in the source too. PMF 

defines some points that are not ground as ground point (Type II error), they seem that 

they are some bushes or plants. In general (in these sections) CSF shows a better 

performance than others.  
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The interesting thing is that none of the algorithms has the significant error of defining a 

non-ground point as ground point. The highest one is for PMF and it is less than 2 meters. 

4.4. DTM 

I made the DTM for same part of a tile from the classified ground points with different 

algorithms for Tree Cover category and slope < 3%.  

 

Figure 18. DTM of Tree Cover category created from point cloud with different 
algorithms. 
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MCC has so many extra bumps in the result than the source DTM, and PMF and CSF 

define them much better. There are some small details in the source DTM that PMF 

shows it but seems it is more exaggerated. And in general, CSF has a better result with 

no unexpected bumps, but in comparison with PMF it has less details. Surprisingly, All 

the three algorithms define the roads in the tile so clear and well. The interesting thing is 

that there is one winding road (or stream) has appeared in the DTMs that is not visible in 

aerial imagery.  

4.5. Time of calculation 

After I ran the codes, the result for every category (9 categories) was a table. The running 

time of the calculation was about 548 days. Below is a brief table of the average of running 

codes in different algorithms. Due to running codes in different computers, all the 

calculation times converted to a unique computer specification9. 

 

Table 13. Average of Calculation Time for one loop (Minute) 

Landcover CSF MCC PMF 

Cropland 0.092 3.48 3.8 

Grassland 0.112 3.12 3.77 

Tree Cover 0.65 8.45 2.68 

 

I just want to mention here that the huge difference of calculation time in Tree Cover for 

CSF and MCC may be is the number of the points in this category that is almost more 

than two times of other categories. But, in PMF it shows different behavior. In general, 

MCC has the most calculation time than other algorithms. This time of calculation is not 

tangible while using for just one or two calculations, but for calculating so many times in 

loop, it makes a huge difference for approaching the result.  

 

 

 

 

 

 

 

 
8 The process ran on different computers and in parallel.  
9 Core i5 – 3570K CPU @ 3.4GHz, 16 GB Physical Memory (RAM) 
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5. Discussion 

In this thesis, I compared the performance of three algorithms for ground filtering of 

LiDAR. All the three algorithms showed a good and acceptable performance, but for a 

user that do not have experience in parameters setting and their influence, MCC may be 

a good algorithm to start with it due to its low number of input parameters (s and t). I used 

the three free accessible algorithms that were available in R studio in lidR package. The 

biggest obstacle in this study was calculation time that limited me to go further for 

evaluating other algorithms. Both vegetation and slope has influence on the results and 

other papers agree with this too (Klápště et al., 2020). It seems the Grassland and 

Cropland, due to the less height of vegetation is trickier for the algorithms. 

In all categories by increasing the slope, the errors decreases and success rate 

increases, and this result is in contrast with the result with the work of (Moudrý et al., 

2020). But the point is that in the range between 0 to 10% slope that I worked on, in this 

paper has a very limit change in errors, and the critical slope defined 15% in their paper 

that I did not have that in my case study. In general, the success rate is lower in the low 

vegetation landcovers, but the Tree Cover had higher success rate and this conclusion 

complies with paper of (Moudrý et al., 2020). 

The reason that the Tree Cover category has the better result maybe is the density of the 

points that the files in this category have and it is almost more than two times of the other 

categories. The filtering performance decreases as the point density increases (Serifoglu 

et al., 2016). All the DTMs that were made by the filtered point cloud had an acceptable 

quality, but CSF had less errors and bumps and PMF had keep tiny details better.  

 

Further studies that I recommend is as follows: 

• Other algorithms from other software like LAStools and ArcGIS could be 

compared with these ones.  

• In this thesis, for CSF and PMF, I just worked on 3 parameters of them. There is 

a potential of investigating the influence of the other parameters on the algorithms. 

• It is possible that after one ground filtering, doing another (second or maybe the 

third) ground filtering on the ground points. This could be a combination of 

algorithms too. (Like first try with MCC and second one with CSF on the result of 

MCC algorithm). 

• The density of the points is different in different LAS files. Is the density of the 

points having the influence on the algorithms? Which parameters are more 

sensitive to that? Or is there any parameter that behaving dependent of the 

density of the points? 

• I just worked on three landcover categories, there is potential to work on more 

landcovers with different slopes too. 

• The maximum percentage of the slope I used was 10%. It is possible to compare 

the algorithms in steeper areas too to see their performance.  
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6. Conclusion 

The MCC algorithm's parameters, s and t, have a significant impact on the Type I and 

Type II errors. The Type I error typically decreased with increasing parameter t and s but 

only up to approx. 0.7 when it was constant or slightly increased depending on the slope 

of the terrain. On the other hand, the mean Type II error increased with parameter t, while 

parameter s had a minimal effect. The best balance between the two errors was found 

when parameter s was around 0.8, and for parameter t, it depended on the terrain slope 

and ranges between 0.3 to 1.3. 

The CSF algorithm's three parameters: time step, class threshold, and cloth resolution 

are sensitive to slope. The Type II error was higher in flatter areas, and for the average 

of Type I and II errors, the balance point between them increased for Time Step, but for 

Class Threshold and Cloth Resolution, this point decreased by the slope. Increasing 

Class Threshold decreases Type I error but increases Type II error, and vice versa for 

Cloth Resolution. 

The PMF algorithm's parameter d_h0 has a significant impact on the result, while other 

parameters have a minimal effect. The balance point between the two errors in d_h0 

decreases by increasing the slope, and the range of the Type II error is almost zero, 

indicating that Type II error changes only by the d_h0 parameter. 

All these three algorithms for ground filtering, have good performance in defining the 

ground points. Different types of land cover and slope has influence in the result of the 

ground filtering, and due to that the input parameters of the algorithms should change to. 

Increasing slope led to decreased errors and increased success rates, which differed 

from a previous study. Tree Cover had the highest success rate, possibly due to its higher 

point density, which can decrease filtering performance. 
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