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Abstrakt 

Light detection and ranging (LiDAR) je metoda určování vzdáleností, která po aplikaci 
filtru povrchu (ground filtering) umožňuje vygenerování digitálního modelu terénu (digital 
terrain model/DTM) ve vysokém rozlišení. Cílem této práce je prozkoumat chování 
následujícíh algoritmů pro filtrování povrchu v různých krajinný pokryv a svazích: 
Multiscale Curvature Classification (MCC), Cloth Simulation Filtering (CSF) a 
Progressive Morphological Filter (PMF). K tomu je použit kód v jazyce R za použití 
knihovny NdR, data jsou získána z mračna bodů Dánska. Jak svažitost tak krajinný pokryv 
měly vliv na přesnost generovaného terénu, a všechny tři algoritmy dávaly ve všech 
kategoriích obstojné výsledky. Zvýšení svažnosti vedlo k nižší chybovosti a přesnějším 
modelům, a obecně lze říci, že v kategorii ze všech pokryvů terénu nejlépe vycházely 
stromy. Tato práce navrhuje vhodné výchozí hodnoty uživatelům, kteří chtějí 
optimalizovat filtrovaní povrchu v datech získaných metodou LiDAR. 

Klíčová slova 

LiDAR, NdR, Filtrování povrchu, Klasifikace, Digitální Model Terénu 

Abstract 

Light detection and ranging (LiDAR) is a method and technology for determining 
distances that by applying ground filtering on it, high resolution of digital terrain model 
(DTM) could be generated. The aim of this study was to investigate the behavior of 
Multiscale Curvature Classification (MCC), Cloth Simulation Filtering (CSF) and 
Progressive Morphological Filter (PMF) ground filtering algorithms in different landcover 
and slopes. By NdR package and coding in R, the result obtained from point cloud of 
Denmark, and among them the best parameters for each category of landcover and 
slope. Both slope and landcover had an influence on the results and all the three 
algorithms showed an acceptable performance in all categories. Increasing slope led to 
decreased errors and increased success rates, and in general the Tree Cover category 
had the better result than other landcovers. Overall, this study provides default 
parameters for users who wish to optimize ground filtering algorithms for their LiDAR 
data. 

Keywords 
LiDAR, NdR, Ground filtering, Classification, Digital Terrain Model 
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1. Introduction 

LiDAR is known as an effective means of acquiring high-resolution elevation data. The 
digital terrain models (DTMs) generated through this technique usually have an obvious 
advantage of high precision, especially for forested areas where can be detected both 
the ground surface and the canopy (Chen et al., 2016). LiDAR made a revolution in 
topographic terrain capturing, especially in the generation of digital terrain models (DTM) 
(Kraus & Pfeifer, n.d.). 

The nature of LiDAR data offers the potential for extracting surface information for many 
applications (Priestnall et al., n.d.). Laser pulse can reflect from leaves, buildings, ground 
etc. In order to generate DTM, the ground points in the LiDAR data must be distinguished 
from the non-ground points (e.g., trees or buildings). This process is called ground 
filtering. LiDAR intensity data are used to produce the binary classification of ground and 
vegetation with good accuracy (Wang & Glenn, 2009). By using LiDAR point clouds and 
color RGB of the points, classification result for both buildings and vegetation in an urban 
environment (Bandyopadhyay et al., 2013). 

But this thesis focuses on the ground filtering by the geometry and elevation of points 
(xyz). PMF, C S F and MCC are some different algorithms for this purpose with different 
approaches and methods. All of them have to be parameterized. There are some papers 
that have already worked on this topic. (Moudry et al., 2020) worked on the 6 different 
algorithms in different slopes in shrub, grassland and forest landcover. (Klapste et al., 
2020) compared the performance of six algorithms for ground filtering of LiDAR and 
photogrammetric point clouds in different landcovers. 

While these algorithms were presented by their authors, the default parameters were 
introduced too. But the problem is that these default parameters are just for some specific 
areas. The question is what if the area has different landcovers than the one introduced 
as default? What if the slope exists in the area? 

In this thesis, by the help of R programming and the NdR package that is open source 
and free to access, I am going to define some default parameters for PMF, C S F and M C C 
ground filtering algorithms in different landcovers and different slopes and find the relation 
of the area characteristics and input parameters. The more specific research questions 
were as follows: 

1. What is the effect of the landcover and slope on the different ground filtering 
algorithms? 

2. How do the parameters of algorithms change among different landcover types 
and degrees of slope? 

3. What are the best parameters settings as input for different algorithms, 
landcover types and slopes? 
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2. Literature review 

2.1. History of remote sensing 

One of the earliest dreams of humankind was observing and watching the Earth from 
above. This dream came to reality gradually, from the balloons, kites, pigeon and gliders. 
In 1858, the first aerial photos were taken from a height of 80 m over Bievre, France, by 
Gaspard Felix Tournachon using cameras mounted on a hot air balloon and the first 
balloon photography used for urban planning were acquired by James Wallace Black in 
1860 over the city of Boston (Chuvieco, n.d.). 

The British used kites to reach to aerial photography from 1880s, and in the early 1900s, 
human used carrier pigeons to carry the lighter cameras. The great San Francisco 
earthquake of 1906 was captured on film using a panoramic camera mounted 600 m 
above San Francisco Bay and supported by a string of kites. 

In 1908, 5 years after the Wright brothers built the world's first operational aircraft, an 
aircraft was first used as a platform for aerial photography (Dong & Chen, n.d.). In World 
War I and World War II aerial photos played a significant role. During 1920s and 1930s 
aerial photography was used as a source and reference for topography maps. 

Meteorological 

Figure 1. Historical development of remote sensing systems (Chuvieco, n.d.). 

The term "remote sensing" was first coined by Evelyn Pruitt of the U.S. Office of Naval 
Research in the 1950s, and the traditional aerial photography gradually evolved into 
remote sensing around 1960 (Dong & Chen, n.d.). Photography was the main sensor at 
that time. Remote sensing means observing Earth from above, in any way and aspect 
and gathering data and information, about the Earth or a particular case study. The 
collected data will be interpreted by human or computer and at last these data from 
remote sensing will be converted to a meaningful maps, graphs or figures for the usage 
of variety of end-users such as, foresters, farmers, fishers, journalists, ecologists, 
geographers etc. 
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Figure 2. Illustration of the main components associated with remote sensing activities 
(Chuvieco, n.d.). 

Although many other definitions of remote sensing exist in literature it is commonly 
accepted that the basis for remote sensing is the electromagnetic spectrum (Dong & 
Chen, n.d.). Typical eye-safe LiDAR have a frequency of 200 THz and a wavelength 
around 1.5 mm. LiDAR is often used as an imaging sensor. It can be for two-dimensional 
(2D) imaging, similar to the eye or 3D imaging, where range is measured in each pixel. 
(McManamon, 2019). 
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Figure 3. The electromagnetic spectrum. The numbers show wavelengths of spectral 
regions (Dong & Chen, n.d.) 
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2.2. Types of remote sensing 

Remote sensing has two general types. Passive and Active. Passive monitoring uses 
ambient light sources, like the ultraviolet-visible-near-infrared radiation from the sun, 
while for active illumination laser sources are employed (Brydegaard et al., 2016). Active 
remote sensing systems, on the other hand, emit radiation toward the target using their 
own energy source and detect the radiation reflected from that target (Dong & Chen, 
n.d.). The important advantage of active remote sensing is that it is independent from the 
light of the sun and weather conditions will affect it less than passive one. 

Figure 4. Passive and active remote sensing (Dong & Chen, n.d.). 

To make it a little clearer, imagine a camera, that in the daylight it takes photo of a 
landscape, it uses the beams that coming from sun and reflecting from the objects, it is 
passive. Now imagine, a camera taking a photo during a night, it uses flash to provide 
light beams to reflect again to the camera to take a picture, it is active. The advantage of 
active remote sensing is the ability to obtain measurements anytime, regardless of the 
time of day or season, but on the other hand, these systems require the generation of a 
large amount of energy to adequately illuminate targets. 
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2.3. What is LiDAR? 

Light detection and ranging (LiDAR) mapping is an accepted method of generating 
precise and directly georeferenced spatial information about the shape and surface 
characteristics of the Earth (Schmid et al., 2012). LiDAR is an active sensor system that 
emits pulses to the ground and collects the reflected ones from the surfaces. LiDAR can 
collect very dense and accurate elevation data. The LiDAR system is like Radar but using 
laser light pulses instead or radio waves. LiDAR is typically "flown" or collected from 
airplanes where it can rapidly collect points over large areas and LiDAR is also collected 
from ground-based stationary and mobile platforms (Schmid et al., 2012). 

Figure 5. Schematic diagram of airborne LiDAR performing line scanning resulting in 
parallel lines of measured points (other scan patterns exist, but this one is fairly 

common) (Schmid etal., 2012). 

The general idea of the LiDAR is simple. A pulse travels from Laser to the Earth and 
back, LiDAR will measure the travel time. The speed of pulse is specified. Then it is easy 
to find out the distance of the point on the earth. 

ct 
d = i 

While d is distance, t is the measured time and c is the speed of light (300,000 km/sec). 

But the reality is not simple as it seems. Because so many factors should be considered, 
such as, the speed and movement of plane (airborne). Inertial Measuring Units (IMU) or 
Inertial Navigation Systems (INS) have been instrumental in making the exact positioning 
of the plane possible with the help of G P S on the plane, The G P S positions are recorded 
by the plane and at a ground station with a known position. The ground station provides 
a "correction" factor to the G P S position recorded by the plane (Schmid et al., 2012). 
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In general, there are two types of LiDAR, Airborne and Terrestrial. Airborne LiDAR is 
installed on a helicopter or drone for collecting data and emits light towards the ground 
surface and recording the returns after hitting the object. 

Terrestrial LiDAR, unlike Airborne, are installed on moving vehicles or tripods on the earth 
surface for collecting accurate data points. They are frequently used to monitor roads, 
examine infrastructure, or even gather point clouds from both inside and outside of 
buildings. 

Figure 6. The concept of Airborne LiDAR (Dong & Chen, n.d.) 

These are briefly the parameters of Airborne Laser Scanning (ALS): 

Repetition rate: This is rate of pulsing, and it'll be measured in kilohertz (KHz). A sensor 
operating at 200 KHz means the LiDAR will pulse at 200,000 times per second. 

Scan angle: The distance that the scanner travels from one end to the other and it is in 
degrees. 

Flying attitude: the elevation that Airborne flies and directly affects the quality of the point 
(higher elevation, lower dense points). 

Swath: This is the length of the LiDAR system's coverage region. It may change based 
on the flying height and scan angle. 

Airborne LiDAR sensors can record discrete return measurements with numerous 
records for each pulse that is emitted at fixed time intervals such as 1 ns (about 15 cm 
sampling distance). Full-waveform LiDAR is mainly used in forestry applications, whereas 
discrete return LiDAR can be used in many fields. (Dong & Chen, n.d.). 
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Figure 7. Discrete return and full-waveform measurement using airborne LiDAR 
(Dong & Chen, n.d.). 

LAS is the format of point cloud produced by LiDAR and LAZ is the compresses format 
of the LAS. These files contain some data for every point: X, Y and Z as the geometry of 
point that is the most important data, and the rest are Intensity, Return number, 
Classification, Scan angle etc. (LAS Specification 1.4-R15 Release Information, 2002). 

Table 1. A part of a LAS file and the data that contains. 

X Y Z GPS time Intensity 
Return 

Number 

No. 
Of 

Returns 

Scan 
Direction 

Flag 

Edge 
Of 

Fligfitline 

Classi 
fication 

Overlap 
flag 

Scan 
Angle 

Point 
Source 

ID 
Red Green Blue 

485575.89 6316496 77 12.17 110370182.7 52 1 1 0 0 2 FALSE -16.99 25385 37120 35072 28672 

485575.89 6316496 27 12.12 110370182.7 52 1 1 0 0 2 FALSE -16.99 25385 37120 35072 28928 

485575.89 6316495.83 12.13 110370182.7 46 1 1 0 0 2 FALSE -16.99 25385 37376 35328 28928 
485575.89 6316495.4 12.12 110370182.7 46 1 1 0 0 2 FALSE -16.99 25385 37120 35072 28672 

485575.89 6316494 95 12.07 110370182.7 49 1 1 0 0 2 FALSE -16.99 25385 36864 34816 28672 

485575.9 6316494.46 12.06 110370182.7 43 1 1 0 0 2 FALSE -16.99 25385 36864 34816 28672 
485575.9 631649398 12.03 110370182.7 48 1 1 0 0 2 FALSE -16.99 25385 37120 35072 28672 

485575.9 6316493 54 12.01 110370182.7 49 1 1 0 0 2 FALSE -16.99 25385 37120 35072 28928 

485575.9 6316493.06 11.99 110370182.7 45 1 1 0 0 2 FALSE -16.99 25385 37120 35072 28928 

2.4. Ground filtering 

The process of separating non-ground points from terrain measurements is referred to 
as "terrain filtering" or "ground filtering" and is a challenging research task in LiDAR 
mapping applications (K. Zhang & Whitman, 2005). In recent years, several filter 
algorithms have been created for automatically extracting ground points from airborne 
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LiDAR point clouds that morphological, slope-based, and interpolation-based 
approaches being the most widely used (Liu, 2008). 

The interpolation-basedfilter method, also called linear prediction, was first proposed by 
Kraus and Pfeifer (1998) (Kraus L & Pfeifer, 1998). It iteratively approximates the terrain 
surface using weighted linear least squares interpolation. This filter method was originally 
developed for filtering LiDAR data and terrain modelling in forested areas, and later 
extended to use in urban areas. 

The slope-based filter developed by Vosselman (2000) (Vosselman, 2000) assumes that 
the gradient of the natural slope of the terrain is distinctly different from the slope of non-
terrain objects such as buildings and trees. Slope-based filters work well in flat terrain but 
become more inaccurate as the slope of the terrain increases. 

The morphological filter is based on the idea of mathematical morphology, which has 
been used to identify objects in a greyscale image by using morphological (Liu, 2008). 
The elevations of non-ground objects such as trees and buildings are usually higher than 
ground points. If points are converted to a greyscale image in terms of elevation, the non-
ground objects can be identified by the difference of grey tone (K. Zhang et al., 2003). 

Ground filtering is important because it eliminates non-ground objects such as buildings, 
trees, and cars from the point cloud data set and helps in creating accurate digital terrain 
models that is useful in various industries such as civil engineering, urban planning, and 
environmental science. 

2.5. DTM (Digital Terrain Model) and DSM (Digital Surface Model) 

The Digital Terrain Model (DTM) was introduced by Charles L. Miller in 1958 and widely 
used in many fields such as cartography, land utilization, urban planning etc. DTM data 
may be produced using a variety of methods, mostly using airborne light detection and 
ranging (LiDAR), interferometric synthetic aperture radar (InSAR), and digital 
photogrammetry based on satellite and aerial photography. 

A digital surface model, or DSM, is a representation of a surface, including both natural 
and artificial structures like trees and buildings. They represent reflected surfaces of all 
features elevated above the bare ground. In short, DSM represents the Earth's surface 
and all objects on it, but DTMs depict the bare ground without any trees and building on 
it. 
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Figure 8. Difference between DTM and DSM 

Several terms have been used since the original word was created by Miller in 1958. 
These include digital elevation model (DEM), digital height model (DHM), digital ground 
model (DGM) and digital terrain elevation model (DTEM). These terms (DTM, DEM, 
DHM, and DTEM) are often assumed to be, but sometimes they refer to different 
products (Li et al.,2005). 
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3. Methodology 

3.1. Study area 

For the case study, I decided to use the Denmark airborne laser scanning data. There 
were several reasons for choosing this data: First, the access 1 to airborne laser scanning 
data of Denmark is easy and free. Second, it has the points cloud for the whole country, 
which allows a selection of several areas with various environmental conditions that plays 
an important role for point cloud classification. Third, the quality and classification 
accuracy of the LAS files is good enough and reasonable to have them as reference. 

3.2. General Workflow 

I selected several areas that differed according to the terrain slope and landcover, which 
are important parameters affecting filtering accuracy and parameters setting. Then, I 
filtered the ground points using three different algorithms and compared it to the original 
classification of the point cloud. The last step was to select some of the best results with 
different parameters and settings and compare the filtering performance of the three 
selected algorithms. Below is the overall flowchart of the approach used in this thesis 
(Figure 8). 

Slope Map 

Choos ing proper 
L A S files 

Choos ing proper 
L A S files 

Classi fy ground 
points with different 

algorithms and 
settings. 

i 
Compare with original LAS files 

i 
C h o o s e some of best settings with best results. 

Figure 9. Flowchart of the overall approach 

1 https://dataforsyningen.dk/ 
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3.3. Airborne laser scanning reference data 

The point clouds in LAS files have a density of at least 4 points per sq meter. They are 
classified into the ground (as number 2) and some other non-ground points (e.g., Water, 
vegetation, buildings). The map of whole country is divided into 1 km by 1 km tiles, that it 
is the dimension of the LAS files. 

The point clouds have been collected from 2018 in 5 years, to 2022 and classified in 11 
categories and 17 subcategories (as shown in Table 2). Class 2 as Terrain and Ground 
is the most important class I used. The points have some other information like Intensity, 
RGB etc. But as the algorithms that I used in this thesis, just using the geometry of the 
points (XYZ) this information is not necessary. The coordinate system of the points from 
the source is UTM32 EUREF89. 

Table 2. The classes of Point Cloud from Danish Elevation Model 

Class Description 

0 Created, never classified 

1 Surface. Processed bul unclassified 

2 Terrain. Bare earth ground 

3 Low vegetation. 0 - 0,3 m 

4 Medium vegetation. 0,3 - 2 m 

5 High vegetation. >2 m 

6 Buildings, structures. Buildings, houses, silos etc 

7 Outliers. Spurious high/low point returns and noise (unusable) 

8 Model key points 

9 Water. Surface water 

10 Ignored points (breakline proximity) 

14 Wire - Conductor (Phase) 

17 Bridge deck. 

18 High noise 

19 Terrain in buildings 

20 Low vegetation in buildings 

32 Objects manually excluded from surface points 

11 



3.4. Landcover and Slope data 

For this thesis, I used the ESA Worldwide Landcover 2 map. This map is a freely 
accessible global land cover product at 10 m resolution and containing 11 land cover 
classes. This WorldCover map for 2021 was released on 28 October 2022 and resulted 
in a global overall accuracy of 76.7%. 

The discrete classification map provides 11 classes and is defined using the Land Cover 
Classification System (LCCS) developed by the United Nations (UN) Food and 
Agriculture Organization (FAO). The UN-LCCS system was designed as a hierarchical 
classification, which allows adjusting the thematic detail of the legend to the amount of 
information available. 

Below is the description of the three categories I used in this thesis from the Product User 
Manual of WorldCover. 

Table 3. Coding of the Map layer and definition of the classes 

M a p L a n d c o v e r LCCS code Color cade 

(RGB) 

0,100,0 

Color cade 

(RGB) 

0,100,0 10 Tree cover A12A3 / /A11A1 
A24A3C1(C2)-
R1(R2] 

This class includes any geographic area dominated by trees with a 
cover of 10% or more. Other land cover classes (shrubs and/or herbs 
in the understorey, built-up, permanent water bodies,...) can be 
present below the canopy, even with a density higher than trees. 
Areas planted with trees for afforestation purposes and plantations 
(e.g. oil palm, olive trees) are included in this class. This class also 
includes tree covered areas seasonally or permanently flooded with 
fresh water except for mangroves. 

Color cade 

(RGB) 

0,100,0 

20 Shrubland A12A4 //A11A2 This class includes any geographic area dominated by natural shrubs 
having a cover of 10% or more. Shrubs are defined as woody 
perennial plants with persistent and woody stems and without any 
defined main stem being less than 5 m tall. Trees can be present in 
scattered form if their cover is less than 10%. Herbaceous plants can 
also be present at any density. The shrub foliage can be either 
evergreen or deciduous. 

255,187, 34 

40 Cropland A11A3(A4)(A5) / / 
A23 

Land covered with annual cropland that is sowed/planted and 
harvestable at least once within the 12 months after the 
sowing/planting date The annual cropland produces an herbaceous 
cover and is sometimes combined with some tree or woody 
vegetation. Note that perennial woody crops will be classified as the 
appropriate tree cover or shrub land cover type. Greenhouses are 
considered as built-up. 

240, 150, 255 

I cropped the GIS (.shp) file of the Worldcover by the Denmark map. Denmark map has 
just 8 categories as can be seen in Figure 10. The colors of the layers are from the 
standard ESA Worldwide Landcover. 

2 https://esa-worldcover.org/ 
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ESA Worldcover 
Denmark Landcover 

Figure 10. Landcover of Denmark (from ESA Worldcover) 

Slope Map 
Denmark 

Figure 11. Slope of Denmark (a) General Slope (b) Average in every 1km by 1km tile 
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Figure 11 shows the map of slope in Denmark, (a) is the general map of slope generated 
from DTM at resolution of 25 m that downloaded from the same source 3, and the (b) is 
the average slope that calculated by ArcGIS pro from the DTM, based on the tiles of the 
point clouds. (1 km by 1 km tiles). 

3.5. Selection of LAS tiles 

It is known that the algorithms behave differently in different situations and different 
characteristics of the landcover, and slope will influence directly the results and choosing 
the proper parameters (Moudry et al., 2020). Therefore, to choose the point clouds under 
different environmental conditions, I selected three different landcovers that have 
different properties in vegetation structure to investigate the behavior of the algorithms in 
different situations. I used three land cover classes: Tree Cover, Grassland and Cropland. 
The second category was terrain slope. Since the Denmark is almost a flat country and 
there are not so many lands on slopes, I decided to categorize the slope in relatively 
small ranges. I used three categories for slope in this thesis: 0% to 3%, 3% to 6% and 
6% to 10%. 

The LAS files from Denmark, are distributed in form of 1km x 1km tiles (see Figure 12). 
From the Figure 12 map(d) I chose the blue tile that it covers mostly with the specifications 
that required. 

3 https://dataforsyningen.dk/ 
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Figure 12. Map of Denmark (a). Map (b) shows the ESA landcover of the red rectangle 
in map (a). Map (c) shows the average slope in individual tiles of LAS files. Map (d) is 

the croplands with slope between 0 - 3%. 

With the combination of slope and landcover together, I have 9 categories. I decided to 
choose two tiles for every category (Sample I and Sample II), to make sure about the 
results and to see if the algorithms working somehow similar in both same category tile. 

For making map (c) in Figure 12.1 used Zonal Statistics command, and as input for Zone 
Data, I used the 1 km by 1 km tiles of LAS file tiles (just the boundary of LAS files as .shp 
file) and for the Input Value Raster, I put the slope raster that I calculated from the DTM. 
And for the Statistics Type, I used MEAN, because I needed the average of slope in one 
tile, so that further I could choose and categorize them in different slopes. 
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Table 4. Samples of point clouds (LAS) that are used in this thesis. 

Category Cropland 

Slope < 3% 3% < Slope < 6% 6% < Slope < 10% Slope 

Cropland 

Slope < 3% 3% < Slope < 6% 6% < Slope < 10% 

Sample Sample I Sample II Sample I Sample II Sample I Sample II 

Tile No. 4 6316_485 6340_548 6304_565 6316_563 6313_561 6315_557 

No. of Points 7,128,123 7,970,781 6,748,606 7,174,162 9,202,681 8,612,837 

No. Ground Points 6,991,078 7,253,171 6,436,635 6,815,301 7,195,849 7,417,146 
Percent of Ground 
Points 98.08 91 95.38 95 78.19 86.12 

Average Percent of 
Ground points 90.63 

Average No. of Points 
per square meter 7.13 7.97 6.75 7.17 9.2 8.6 

Category Grassland 

Slope < 3% 3% < Slope < 6% 6% < Slope < 10% Slope 

Grassland 

Slope < 3% 3% < Slope < 6% 6% < Slope < 10% 

Sample Sample I Sample II Sample I Sample II Sample 1 Sample II 

Tile No. 6343_548 6389_581 6307_522 6308_527 6360_588 6377_561 

No. of Points 7,463,955 6,875,758 8,161,414 8,156,491 9,174,177 8,547,748 

No. Ground Points 7,016,277 6,156,494 7,348,671 7,245,149 6,004,680 6,675,736 
Percent of Ground 
Points 94 89.54 90.05 88.83 65.45 78.1 

Average Percent of 
Ground points 84.33 

Average No. of Points 
per square meter 7.46 6.88 8.16 8.16 9.17 8.55 

Category Tree Cover 

Slope < 3% 3% < Slope < 6% 6% < Slope < 10% Slope 

Tree Cover 

Slope < 3% 3% < Slope < 6% 6% < Slope < 10% 

Sample Sample I Sample II Sample I Sample II Sample I Sample II 

Tile No. 6338_533 6382_583 6294_553 6296_554 6340_577 6345_573 

No. of Points 11,418,310 16,151,478 17,702,374 19,298,021 15,704,242 19,068,163 

No. Ground Points 3,728,394 4,665,878 5,027,719 4,078,629 4,335,998 3,809,375 
Percent of Ground 
Points 32.65 28.89 28.4 21.13 27.61 19.98 

Average Percent of 
Ground points 26.44 

Average No. of Points 
per square meter 11.42 16.15 17.7 19.3 15.7 19.07 

4 It is downloadable from "https://dataforsyningen.dk/" with this number. 
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3.6. Ground Filtering algorithms 

For this thesis I used R for coding and used lidR package. This package has three 
algorithms for classify ground points: PMF 5 , C S F 6 and M C C 7 . 

3.6.1. Progressive Morphological Filter (PMF) 

Progressive Morphological Filter is a method for classifying the ground points by 
gradually increasing the window size of the filter and using elevation difference thresholds 
(K. Zhang et al., 2003). In lidR package, PMF has just initially two parameters to set. 
Window size in filtering ground returns (ws) and Threshold heights above the 
parameterized ground surface to be considered a ground return (th). Both parameters 
should be positive and could be one number or a sequence. 

There are two ways for setting these parameters. First, setting them manually, second, 
using the util_makeZhangParam() function. This function makes the sequence for ws and 
th parameters based on some initial parameters that has itself (K. Zhang et al., 2003) .I 
just tried to change 3 (out of 6) parameters. The parameters that I used in loop for coding 
are: 

dh_0\ha\ is e initial elevation difference threshold, 
dh_max that is maximum elevation difference threshold, 
and s that is slope. 

For b I just used 2 based on the default value mentioned in the paper (K. Zhang et al., 
2003). The second reason was in my primary investigations, it did not have so much 
influence on the results like other parameters. 

For max_ws, that is maximum window size, I used constant 15. This parameter limits the 
sequence of ws to not making window for filtering larger than this. 

exp parameter is for choosing that increasement of the window size is linearly (0 or 
FALSE) or exponential (1 or TRUE) that I constantly chose exponential increasement for 
this thesis. 

3.6.2. Cloth Simulation Filtering (CSF) 

Cloth Simulation Filtering is an algorithm that works like simulating a piece of cloth draped 
over a reversed point cloud (W. Zhang et al., 2016). In this method the point cloud is 
flipped upside down, and then a cloth is placed on the inverted surface. The interactions 
between the cloth nodes and the inverted surface are used to determine ground points. 
In lidR package, this filtering has 6 parameters to set. 

The parameters that I used as constant are, iteration, sloop_smooth and rigidness. I set 
iteration to 500, because after around 100 the average height variation is so low and after 

5 Progressive Morphological Filter 
6 Cloth Simulation Filter 
7 Multiscale Curvature Classification 
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150 maximum height variation is around 0.0033 m (W. Zhang et al., 2016). Therefore, 
500 is a trustable value for iteration. sloop_smooth parameter is used when the area is 
so steep, due to the slopes of the case study, I set it as FALSE, rigidness is the rigidness 
of the cloth that the default value is 1 so I kept it. 

The 3 parameters (out of 6) that I used to change their value during the loop in the code 
are: 

class_threshold, the distance to the simulated cloth to classify a point cloud into ground 
and non-ground. 

cloth_resolution, the distance between particles in the cloth. This is usually set to the 
average distance of the points in the point cloud. 

And time_step, that it is the time step when simulating the cloth under gravity. 

3.6.3. Multiscale Curvature Classification (MCC) 

Multiscale Curvature Classification is an automated approach for classifying LiDAR 
returns that incorporates the strengths of curvature filtering, adds a scale component in 
the interpolation phase, and a variable curvature tolerance to account for slope interaction 
with the LiDAR measurements (Evans & Hudak, 2007). 

This algorithm has 2 parameters to set that I changed them during the loop in code: 
Scale parameter as s. The optimal scale parameter is a function of the 
scale of the objects (e.g., trees) on the ground, and the sampling interval (post spacing) 
of the LiDAR data, and Curvature threshold as t. 

3.7. Range of tested parameters of ground filtering algorithms 

The first step was to choose the approximate amount for the parameters. There are some 
helpful papers about it that I will describe in the next parts. I wrote three codes for these 
three different algorithms. The code that I wrote has some loop inside loop that gradually 
increase the parameters with specific steps. 

Due to the duration of calculations (for example 720 times of running the classification in 
just one file out of 18 for PMF algorithm, it takes about 26 hours) I needed to choose the 
range of the parameters more precisely. Therefore, I ran the algorithms with different 
values on a cropped area (150 m by 150 m) from the specific category for faster results 
to obtain a better value of range and steps. And then with these ranges, I ran the codes 
on the 1 km x 1 km tiles for each category. Tables 5-7 show the different range of the 
parameters I used in PMF, C S F and MCC algorithms. 
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Table 5. Range of input parameters for PMF algorithm 

Category dh_0 dh_max slope 

Tree cover 0 .05-0 .27 0 .5 -4 0 . 2 - 1 . 2 
Cropland 0 .05-0 .19 0 .5 -4 0 . 2 - 1 . 2 
Grassland 0 .05-0 .19 0 .5 -4 0 . 2 - 1 . 2 

Table 6. Range of input parameters for CSF algorithm 

Category class_thershold cloth_resolution time_step 

Tree cover 0 .4-3.1 0 . 4 - 1 . 8 0 . 5 - 1 . 2 

Cropland 0.1 - 1 . 9 1 - 8 . 5 0 . 6 - 3 . 8 

Grassland 0.1 - 1 . 9 1 - 8 . 5 0 . 6 - 3 . 8 

Table 7. Range of input parameters for MCC algorithm 

Category s t 

Tree cover 0.1 - 2 0.1 - 1 . 5 

Cropland 0.1 - 2 0 .05 -0 .5 

Grassland 0.1 - 2 0 .05 -0 .5 

3.8. Validation of filtering algorithms 

The classified point clouds were compared with the original classification of reference 
data to quantify the performance of individual filtering methods. I calculated the Type I 
error (omission error), Type II error (commission error) and Success rate. Type I error, 
representing the percentage of ground points that are incorrectly classified as non-ground 
as: 

b 
Type I error = a + b 

Where a is the number of correctly classified ground points and b is the number of ground 
points misclassified as non-ground points. 

Type II error representing non-ground points incorrectly classified as ground points was 
calculated as: 

c 
Type II error = c + d 

Where c represents the number of non-ground points misclassified as ground points and 
d stands for the number of correctly classified non-ground points. 
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Success rate is the ratio between the number of correctly classified points and the total 
number of points. 

a + d 
Success rate = 

e 

Where e stands for total number of all points. 

3.9. Coding with R-Studio 

NdR library was used for testing the ground filtering algorithms. R C S F library is essential 
for C S F algorithm and RMCC for M C C algorithm. Below is an example of code for MCC 
algorithm that I used in this thesis. There are two loops inside each other that gradually 
increase the s and t parameters for using as the input for classify_ground() function. And 
after every classification, the Type I and II error and Success rate is calculated and stored 
in a table. 

## l o a d i n g n e c e s s a r y l i b r a r i e s 
l i b r a r y ( l i d R ) 
l i b r a r y ( R C S F ) 
l i b r a r y ( R M C C ) 

l a z _ p a t h <- "...\\Slope )6 Tree\\6340_577.laz" 
csv_path_MCC <- "...\\Slope )6 Tree\\6340_577(MCC).csv" 

# Cr e a t e t a b l e f o r r e s u l t 
t a b l e <- data.frame() 

# l o a d i n g r e f e r e n c e LAS or LAZ f i l e 
l a s r e f <- r e a d L A S ( l a z p a t h , s e l e c t = "xyz") 

# C l a s s i f i c a t i o n of p o i n t s i n r e f e r e n c e f i l e 
c l a s s i f i c a t i o n r e f <- l a s r e f $ C l a s s i f i c a t i o n 

s <- ; 
f o r ( k i n 1:20){ 
# ste p f o r s parameter 
s <- s + 0.1; 
t <- 0; 
f o r ( j i n 1: 15) { 

# s t a r t i n g time 
t i m e l <- Sys.time() 

#step f o r t parameter 
t <- t + 0.1; 

# Ground f i l t e r i n g by s p e c i f i c a l g o r i t h m 
l a s f i l t e r i n g <- c l a s s i f y g r o u n d ( l a s r e f , mcc(s, t ) ) 

# C l a s s i f i c a t i o n of p o i n t s i n f i l t e r e d f i l e 
c l a s s i f i c a t i o n f i l t e r <- l a s f i l t e r i n g $ C l a s s i f i c a t i o n 
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a <-
b <-
c <-
d <-

f o r ( i i n 1 : l e n g t h ( c l a s s i f i c a t i o n r e f ) ) { 

i f ( c l a s s i f i c a t i o n f i l t e r [ i ] == 2){ 
i f ( c l a s s i f i c a t i o n r e f [ i ] == 2){ 

a <- a + 1 
} 

} 

i f ( c l a s s i f i c a t i o n r e f [ i ] == 2){ 
i f ( c l a s s i f i c a t i o n f i l t e r [ i ] != 2){ 

b <- b + 1 
} 

} 

i f ( c l a s s i f i c a t i o n r e f [ i ] != 2){ 
i f ( c l a s s i f i c a t i o n f i l t e r [ i ] == 2){ 

c <- c + 1 
> 

i f ( c l a s s i f i c a t i o n f i l t e r [ i ] != 2){ 
d <- d + 1 

} 
} 

} 

type I e r r o r <- b/(a + b) 
type I I e r r o r <- c / ( c + d) 
success r a t e <- (a + d ) / l e n g t h ( c l a s s i f i c a t i o n r e f ) 

# ending time 
time2 <- S y s . t i m e ( ) ; 
# c a l c u l a t i n g the time of c a l c u l a t i o n 
c a l time <- d i f f t i m e ( t i m e 2 , t i m e l , u n i t s = "mins"); 

# put r e s u l t s i n an a r r a y 
new raw <- c ( s , t , type I e r r o r , type I I e r r o r , success r a t e , 

c a l time) 

# add new row of r e s u l t s t o r e s u l t t a b l e 
t a b l e <- r b i n d ( t a b l e , new raw) 

} 
} 
# i n s e r t names of the columns 
names(table) = c ( " s " , " t " , "Type I e r r o r " , "Type I I e r r o r " , " S u c c e s s 
r a t e " , " C a l c u l a t i o n time (min)") 
# w r i t i n g the t a b l e i n a .csv f i l e 
w r i t e . c s v ( t a b l e , c s v path MCC, row.names = FALSE) 
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3.10. Choosing the best parameters. 

The method I used for choosing the best parameters was that, first I sorted the results by 
the Type II error, from smallest amount. And then by scrolling down, I found a point that 
Type II is increasing so much, around that point, I was searching for some highest 
Success Rate and finding the less amount of Type I error. I chose 2 or 3 rows (gray rows). 
After this, I checked these parameters in the other sample and chose the best of them 
among two samples (Gray bold row). 

Table 8. Choosing the best parameter in the result. 

Loop Class 
threshold 

Cloth 
resolution 

Time 
step Rigidness Iterations Sloop 

smooth 

Type 
1 

error 

Type 
II 

error 

Success 
rate 

1 1.3 0.4 0.5 1 500 0 99.94 0 71.13 

2 1.3 0.6 0.5 1 500 0 99.94 0 71.13 

3 1.3 0.8 0.5 1 500 0 99.94 0 71.13 

4 1.3 1 0.5 1 500 0 99.94 0 71.13 

77 0.4 1 0.5 1 500 0 6.42 3.98 95.32 

78 0.4 1.8 0.6 1 500 0 7.15 4.04 95.06 

79 0.4 0.8 0.5 1 500 0 5.28 4.09 95.56 

80 0.4 1.6 0.6 1 500 0 6.63 4.1 95.17 

81 0.4 1.4 0.6 1 500 0 5.99 4.15 95.32 

638 3.1 0.6 1.2 1 500 0 0 12.23 91.3 

639 3.1 0.4 1.1 1 500 0 0 12.26 91.28 

640 3.1 0.4 1.2 1 500 0 0 12.35 91.21 

3.11. Creating DTM 

For visualizing the result with chosen parameters, I tried to make a DTM from classified 
point cloud and compare it with the original DTM from website. For generating DTM from 
point cloud, I used rasterizing command with TIN algorithm. 

DTM <- rasterize_terrain(las_file, algorithm = tinQ) 
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4. Results 

4.1. Effects of parameters setting on Type I and Type II error 

In total, 9 classifications were performed (Table 9-11). Different settings produce different 
Type I and Type II errors even within individual algorithms. Here I illustrate the effects of 
parameters setting only for the Tree Cover category, which had the highest effect on the 
results (Figures 1 3 - 1 5 ) . 

4.1.1. MCC 

The mean Type I error typically decreased with increasing parameter f as well as with 
parameter s but only up to approx. 0.7 when it was constant or slightly increased 
depending on the slope of the terrain. On the other hand, the mean Type II error increased 
with parameter t, while parameter s had a minimal effect. The best balance between the 
Type I and Type II error is for parameter s around 0.8 and for parameter f it depends on 
the terrain slope and ranges between 0.3 to 1.3. Surprisingly, the Type II error tends to 
be higher in flat terrain than on the steeper slopes. 

Tree C o v e r 
S l o p e < 3 % S l o p e 3 - 6% S l o p e 6 - 10% 

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 

M C C - t ( P a r a m e t e r ) 

Type I error Minimum Average Maximum 
Type II error - ~ Minimum Average Maximum 

Figure 13. Result of MCC algorithm in Tree Cover category for both s and t parameters. 
Lines show the Type I error and dash lines show the Type II error. For example, for f = 

0.2 we have Maximum (red), Average (blue) and Minimum (green) of the errors. It is 
because of that, for f = 0.2, we have different amount of s that leads to different results 

and could be considered in s parameter chart. 

23 



4.1.2. CSF 

All the 3 parameters that I changed in the loop in coding play a significant role in the 
algorithm. All the parameters are so sensitive to the slope, and as the slope increases, 
the range of Type I error gets higher and higher. 

T r e e C o v e r 
Slope < 3% Slope 3 - 6% Slope 6 - 1 0 % 

0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6 

C S F - Cloth Resolution (Parameter) 

C S F - Time Step (Parameter) 

Type I error Minimum Average Maximum 
Type II error Minimum Average Maximum 

Figure 14. Result of CSF algorithm in Tree Cover category for different parameters 

Time Step, less than 0.5 - 0.6 seems to have a vast range of errors. In general, Type II 
error is higher in the flatter area. For the average of Type I and II errors, the balance point 
between them increases for Time Step, meanwhile for Class Threshold and Cloth 
Resolution, this point decreases by the slope. 
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By increasing Class Threshold, the Type I error decreases, but Type II error increases 
and vice versa for the Cloth Resolution. In slope less than 3 (almost flat area) mostly the 
whole range of the Type II error is significantly more than Type I error, but in the fields 
with more slope, there is a goof balance between them. 

4.1.3. PMF 

The main parameter and the one has more influence on the result in PMF algorithm is 
the d_hO. As shown in Figure 15 the range of the result (min, max and avg) is not so 
much and it shows that different parameters do not play a significant role in this algorithm. 

The balance point between two errors in d_hO decreases by increasing the slope. The 
range of the Type II error (space between min and max) is almost zero, and it shows that 
Type II error is just changing by the d_hO parameter and other parameters has no effect 
on it. 

Tree C o v e r 
Slope < 3% Slope 3 - 6% Slope 6 - 1 0 % 

0.05 0.09 0.13 0.17 0.21 0.25 0.05 0.09 0.13 0.17 0.21 025 0 05 0.09 0.13 0.17 0.21 0.25 

P M F - d h O ( P a r a m e t e r ) 

Type I error • Minimum Average Maximum 
Type II error - - Minimum Average Maximum 

Figure 15. Result of PMF algorithm in Tree Cover category for d_hO parameter 

4.2. Chosen parameters 

Among so many results, I chose one series of parameters with the best results. The 
chosen parameters and the result of selecting them in all categories are in Tables 9-11. 
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Table 9. Chosen parameters for MCC algorithm. 

Landcover Slope s t Type 1 error Type II error 
Success 

rate 
<3% 1 0.1 4.03 3.78 95.99 

Cropland 3 - 6% 0.6 0.05 7.18 8.56 92.75 
6 - 1 0 % 1 0.1 1.58 1.21 98.47 

<3% 1 0.1 2.14 1.41 97.90 
Grassland 3 - 6% 1.6 0.1 4.73 3.18 95.42 

6 - 1 0 % 1 0.2 1.34 2.38 98.43 

<3% 1.5 0.2 6.80 3.32 95.68 
Tree Cover 3 - 6% 2 1 2.94 3.00 97.01 

6 - 1 0 % 2 1.2 2.62 1.77 98.06 

Table 10. Chosen parameters for CSF algorithm. 

Landcover Slope 
class 

threshold 
cloth 

resolution 
time 
step 

sloop 
smooth 

Rigid 

ness 
Herat 
-ions 

Type I 
error 

Type II 
error 

Success 
rate 

Cropland 
<3% 0.1 1 1 0 7 500 3.80 6.05 96.00 

Cropland 3 - 6% 0.1 3 0.6 0 7 500 6.22 20.08 93.09 Cropland 

6 - 10% 0.1 1.5 3 0 1 500 2.58 2.76 97.40 

Grassland 
<3% 0.1 1.5 2.6 0 7 500 2.97 2.06 97.08 

Grassland 3 - 6% 0.1 1.5 1 0 7 500 4.68 4.74 95.31 Grassland 

6 - 10% 0.3 1.5 1 0 7 500 2.23 2.80 97.65 

Tree 
Cover 

<3% 0.4 0.8 0.5 0 7 500 5.28 4.09 95.56 
Tree 

Cover 3 - 6% 0.4 1.2 0.6 0 7 500 2.81 2.59 97.36 
Tree 

Cover 
6 - 10% 0.4 0.8 1.1 0 7 500 2.74 1.55 98.21 

Table 11. Chosen parameters for PMF algorithm. 

Landcover Slope dh_0 dh max Slope Max 
Window 

Size 

Exp b Type 
1 

error 

Type 
II 

error 

Success 
rate 

Cropland 
<3% 0.11 0.5 0.2 15 1 2 0.58 5.3 99.32 

Cropland 3 - 6% 0.09 0.5 0.2 15 1 2 9.16 6.92 90.94 Cropland 

6 - 1 0 % 0.18 2 0.4 15 1 2 0.3 1.81 99.48 

Grassland 
<3% 0.15 2 0.4 15 1 2 1.13 1.63 98.83 

Grassland 3 - 6% 0.15 2 0.4 15 1 2 3.12 3.21 96.87 Grassland 

6 - 1 0 % 0.15 2 1 15 1 2 0.9 1.76 98.91 

Tree 
Cover 

<3% 0.23 2 0.2 15 / 2 1.98 2.41 97.71 
Tree 

Cover 3 - 6% 0.21 2 0.4 15 1 2 1.71 1.54 98.41 
Tree 

Cover 
6 - 1 0 % 0.24 2 0.6 15 1 2 0.77 0.92 99.11 
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Figure 16 shows the Type I and II error and success rate of the chosen parameters. In 
Cropland and Grassland categories, the slope 3 - 6 % seems was trickier for all 
algorithms and due to that, they have less success rate than other slopes. By increasing 
the slope, the Type I and Type II error decreases and due to that, success rate increases 
smoothly. 

Highest Type I and II errors are in the Cropland category. The Tree Cover category totally 
has a better result and the highest success rates. In all categories PMF has less Type I 
error than other algorithms and except one category (Cropland, 3 - 6 %) it has the highest 
success rate too. 

Table 12. Average Result of different algorithms 

Landcover Algorithm Type I 
error Avg. Type II 

error Avg. Success 
rate Avg. 

Cropland 

M C C 4.26 

3.94 

4.52 

6.27 

95.74 

95.94 Cropland C S F 4.20 3.94 9.63 6.27 95.50 95.94 Cropland 

PMF 3.35 

3.94 

4.68 

6.27 

96.58 

95.94 

Grassland 

M C C 2.74 

2.58 

2.32 

2.58 

97.25 

97.38 Grassland C S F 3.29 2.58 3.20 2.58 96.68 97.38 Grassland 

PMF 1.72 

2.58 

2.20 

2.58 

98.20 

97.38 

Tree 
Cover 

M C C 4.12 

3.07 

2.70 

2.35 

96.92 

97.46 Tree 
Cover C S F 3.61 3.07 2.74 2.35 97.05 97.46 Tree 
Cover 

PMF 1.49 

3.07 

1.62 

2.35 

98.41 

97.46 
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Figure 16. The chart of the chosen parameters. 



Totally in average, the Tree Cover category has better average success rate than other 
categories. Cropland landcover has the highest and Tree cover has the lowest Type II 
error. Grassland has almost equal Type I and II error and Tree cover has a lower Type II 
error than Type I error. 

4.3. Sections 

Figure 17 shows the same section in different algorithms. I tried to find a section with 
some trees that canopy would be visible. 
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Figure 17. Section on Point Cloud in different algorithms (Tree Cover category in slope 
< 3%. The section is 100m in length in the center of the tile.) 

In these sections (Figure 17), M C C algorithm defines some ground points as non-ground 
(Type I error). Meanwhile, seems there are some inaccuracies in the source too. PMF 
defines some points that are not ground as ground point (Type II error), they seem that 
they are some bushes or plants. In general (in these sections) C S F shows a better 
performance than others. 
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The interesting thing is that none of the algorithms has the significant error of defining a 
non-ground point as ground point. The highest one is for PMF and it is less than 2 meters. 

4.4. DTM 

I made the DTM for same part of a tile from the classified ground points with different 
algorithms for Tree Cover category and slope < 3%. 
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Figure 18. DTM of Tree Cover category created from point cloud with different 
algorithms. 
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MCC has so many extra bumps in the result than the source DTM, and PMF and CSF 
define them much better. There are some small details in the source DTM that PMF 
shows it but seems it is more exaggerated. And in general, C S F has a better result with 
no unexpected bumps, but in comparison with PMF it has less details. Surprisingly, All 
the three algorithms define the roads in the tile so clear and well. The interesting thing is 
that there is one winding road (or stream) has appeared in the DTMs that is not visible in 
aerial imagery. 

4.5. Time of calculation 

After I ran the codes, the result for every category (9 categories) was a table. The running 
time of the calculation was about 54 8 days. Below is a brief table of the average of running 
codes in different algorithms. Due to running codes in different computers, all the 
calculation times converted to a unique computer specification9. 

Table 13. Average of Calculation Time for one loop (Minute) 

Landcover C S F M C C PMF 
Cropland 0.092 3.48 3.8 
Grassland 0.112 3.12 3.77 
Tree Cover 0.65 8.45 2.68 

I just want to mention here that the huge difference of calculation time in Tree Cover for 
C S F and M C C may be is the number of the points in this category that is almost more 
than two times of other categories. But, in PMF it shows different behavior. In general, 
MCC has the most calculation time than other algorithms. This time of calculation is not 
tangible while using for just one or two calculations, but for calculating so many times in 
loop, it makes a huge difference for approaching the result. 

8 The process ran on different computers and in parallel. 
9 Core i5 - 3570K CPU @ 3.4GHz, 16 GB Physical Memory (RAM) 
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5. Discussion 

In this thesis, I compared the performance of three algorithms for ground filtering of 
LiDAR. All the three algorithms showed a good and acceptable performance, but for a 
user that do not have experience in parameters setting and their influence, M C C may be 
a good algorithm to start with it due to its low number of input parameters (s and t). I used 
the three free accessible algorithms that were available in R studio in NdR package. The 
biggest obstacle in this study was calculation time that limited me to go further for 
evaluating other algorithms. Both vegetation and slope has influence on the results and 
other papers agree with this too (Klapste et al., 2020). It seems the Grassland and 
Cropland, due to the less height of vegetation is trickier for the algorithms. 

In all categories by increasing the slope, the errors decreases and success rate 
increases, and this result is in contrast with the result with the work of (Moudry et al., 
2020). But the point is that in the range between 0 to 10% slope that I worked on, in this 
paper has a very limit change in errors, and the critical slope defined 15% in their paper 
that I did not have that in my case study. In general, the success rate is lower in the low 
vegetation landcovers, but the Tree Cover had higher success rate and this conclusion 
complies with paper of (Moudry et al., 2020). 

The reason that the Tree Cover category has the better result maybe is the density of the 
points that the files in this category have and it is almost more than two times of the other 
categories. The filtering performance decreases as the point density increases (Serifoglu 
et al., 2016). All the DTMs that were made by the filtered point cloud had an acceptable 
quality, but C S F had less errors and bumps and PMF had keep tiny details better. 

Further studies that I recommend is as follows: 

• Other algorithms from other software like LAStools and ArcGIS could be 
compared with these ones. 

• In this thesis, for C S F and PMF, I just worked on 3 parameters of them. There is 
a potential of investigating the influence of the other parameters on the algorithms. 

• It is possible that after one ground filtering, doing another (second or maybe the 
third) ground filtering on the ground points. This could be a combination of 
algorithms too. (Like first try with MCC and second one with C S F on the result of 
MCC algorithm). 

• The density of the points is different in different LAS files. Is the density of the 
points having the influence on the algorithms? Which parameters are more 
sensitive to that? Or is there any parameter that behaving dependent of the 
density of the points? 

• I just worked on three landcover categories, there is potential to work on more 
landcovers with different slopes too. 

• The maximum percentage of the slope I used was 10%. It is possible to compare 
the algorithms in steeper areas too to see their performance. 
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6. Conclusion 

The MCC algorithm's parameters, s and t, have a significant impact on the Type I and 
Type II errors. The Type I error typically decreased with increasing parameter t and s but 
only up to approx. 0.7 when it was constant or slightly increased depending on the slope 
of the terrain. On the other hand, the mean Type II error increased with parameter t, while 
parameter s had a minimal effect. The best balance between the two errors was found 
when parameter s was around 0.8, and for parameter t, it depended on the terrain slope 
and ranges between 0.3 to 1.3. 

The C S F algorithm's three parameters: time step, class threshold, and cloth resolution 
are sensitive to slope. The Type II error was higher in flatter areas, and for the average 
of Type I and II errors, the balance point between them increased for Time Step, but for 
Class Threshold and Cloth Resolution, this point decreased by the slope. Increasing 
Class Threshold decreases Type I error but increases Type II error, and vice versa for 
Cloth Resolution. 

The PMF algorithm's parameter d_h0 has a significant impact on the result, while other 
parameters have a minimal effect. The balance point between the two errors in d_h0 
decreases by increasing the slope, and the range of the Type II error is almost zero, 
indicating that Type II error changes only by the d_h0 parameter. 

All these three algorithms for ground filtering, have good performance in defining the 
ground points. Different types of land cover and slope has influence in the result of the 
ground filtering, and due to that the input parameters of the algorithms should change to. 
Increasing slope led to decreased errors and increased success rates, which differed 
from a previous study. Tree Cover had the highest success rate, possibly due to its higher 
point density, which can decrease filtering performance. 
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