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Methodology 
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• Compare the results obtained from different algorithms and evaluate their performance in terms of effi
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• Conduct sensitivity analysis to test the robustness of the results. 

• Discuss the limitations of the proposed approach and the assumptions made in the modeling process. 
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Vacant taxi routing in Markov Decision Process (MDP) 
Abstract 

This research explores approach on how make efficient and profitable taxi routes by 

implementing a method called Markov Decision Processes (MDP) . The work starts with 

reviewing essential knowledge on reinforcement learning and the M D P in order to build a 

strong foundation for the future practical part. The main task is to find out how by using 

the M D P the researcher can improve and get best profitable and efficient taxi routes. This 

involved analyze of a huge amount of taxi data taken from the New York City. As this 

allows to understand the different situations a taxi could encounter (states) and the choices 

a driver could make (actions). 

The research then continues with testing four different computer algorithms like Value 

iteration, Policy iteration, Q-learning and S A R S A . These algorithms represent different 

approaches and strategies that a taxi driver can use to decide where to move from the 

current location. Each of algorithm was implemented and test by using a programming 

language Python. Effectiveness was determined by looking at which destinations would be 

more profitable compare with costs, distance of trips and how much time taxi spent on 

finishing a ride. 

The research can be useful for taxi drivers and taxi companies, public transportation 

organizations etc. It shows new ways to respond to passenger demand, which could help 

drivers earn more profit and spend less time waiting for passengers. This thesis also 

discusses some possible limitations of the approach and suggests ideas for further research 

and improvements. This work can be beneficial as it can help improve taxi services in 

cities by making them more efficient and profitable. 

Keywords: M D P , machine learning, data processing, algorithms, markov decision process, 

dynamic programming, data 
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Trasování prázdného taxi v Markovově rozhodovacím 

procesu (MDP) 

Abstrakt 

Tento výzkum zkoumá přístup, jak vytvořit efektivní a ziskové trasy pro taxíky pomocí 

metody zvané Markovovy rozhodovací procesy (MDP) . Práce začíná přehledem 

základních znalostí o posilovacím učení a M D P , aby byl položen pevný základ pro 

praktickou část. Hlavním úkolem je zjistit jak lze pomocí M D P zlepšit a získat 

nejziskovější a nej efektivnější trasy pro taxíky. To zahrnovalo analýzu obrovského 

množství dat o taxících z New Yorku. To je umožnilo pochopit různé situace, kterým může 

taxík čelit (stavy) a rozhodnutí, která může řidič učinit (akce). 

Výzkum pokračuje testováním čtyř různých počítačových algoritmů jako jsou: Value 

iteration, Policy iteration, Q-learning a taky S A R S A . Tyto algoritmy představují různé 

přístupy a strategie, které může taxikář použít aby se rozhodl, kam se z aktuálního místa 

přesune. Každý z algoritmů byl implementován a testován v programovacím jazyce 

Python. Účinnost byla určena zkoumáním, které cíle by byly ziskovej ší ve srovnání s 

náklady, vzdáleností cest a časem, který taxík strávil dokončením jízdy. 

Výzkum může být užitečný pro řidiče taxíků a taxi společnosti, organizace veřejné 

dopravy atd. Ukazuje nové způsoby, jak reagovat na poptávku cestujících, což by mohlo 

pomoci řidičům vydělávat více peněz a strávit méně času čekáním na pasažéry. Tato práce 

také diskutuje o možných omezeních přístupu a navrhuje nápady pro další výzkum a 

zlepšení. Tato práce může být prospěšná, protože může pomoci zlepšit služby taxíků ve 

městech tím, že je učiní efektivnějšími a ziskovějšími. 

Klíčová slova: mdp, strojové učení, zpracování dat, algoritmy, markovův rozhodovací 

proces, dynamické programování,data 
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1 Introduction 

It is hard not to mention changes that happening in today's world where IT, artificial 

intelligence (AI) and robotics become significant or even crucial in many areas of our 

lives. Starting with such important one as healthcare where artificial intelligence and 

robots can assist doctors in making more accurate diagnoses, managing data of patients or 

performing surgical operations and continuing with manufacturing, finance, agriculture, 

transportation and so on. 

A s doing research about these fields, one area dragged the attention and interest. 

Transportation area is critical for our modern society as it allows us to travel and connect 

with our families and friends, transport and access goods and services, sustain certain jobs 

which benefit economy. It is hard to imagine how we would live without transportation 

industry. 

A s it has been mentioned before, artificial intelligence is heavily involved in the 

transportation area where it plays very important role. Artificial intelligence is crucial 

when we talk about for example autonomous vehicles or optimizing traffic flows in cities. 

A l l of it was interesting but there was desire to understand more of background by which 

artificial intelligence works. This was inspiration to read about Machine Learning ( M L ) , a 

branch of artificial intelligence that studies how machines can learn and absorb knowledge 

from data and make decision based on it. Sure, there are many other subfields which are 

included in A I such as: natural language processing (NLP), computer vision, cognitive 

computing and so on. 

After looking at several topics, it was decided that the master thesis should focus on 

unique and precise topic. For this reason, it has been chosen Markov Decision Process 

(MDP) that is one of main components of Reinforcement learning (RL) which is also 

subfield of M L . Markov Decision Processes (MDPs) offer a strong and powerful 

framework for analysing and optimizing decision-making problems. The optimization of 

vacant taxi route is one of the specific and interesting usages of M D P . It allows to learn the 

best strategies for finding passengers in various locations and at different times of the day. 

We can do it by modelling the taxi driver's decision-making process as M D P and apply 

reinforcement learning algorithms to it. This area is very interesting and exciting. 

In summary I believe that this research can help and bring something valuable to 

more efficient transportation systems that could benefit our society and individuals. 
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Problem statement and research questions 

The taxi industry is an important part of our modern urban transportation system; however 

it faces different types of challenges such as inefficient routing that cause longer travel 

time periods, high fuel usage and costs (it is more crucial taking into consideration recent 

energy crises) and negative passengers experience. Even though Markov Decision Process 

(MDP) can be used to optimize taxi routing, there are not so many research papers that 

have been done on its application to vacant taxi routing. That's why the master thesis aims 

to explore M D P and how it can be used to develop an approach and way for vacant taxi 

route issue and evaluate effectiveness and efficiency through simulation experiments with 

Python environment. 

Overview of the thesis structure 

Thesis is mainly consisting of the two parts. The first part is theoretical one and it focuses 

on introduction to the thesis and theoretical background with related literature review. We 

wi l l try to describe and concentrate on the theory which stands behind Markov Decision 

Processes (MDP) , vacant taxi routing itself, machine learning ( M L ) and reinforcement 

learning (RL). A s main topic is Markov Decision Processes (MDP) we wi l l briefly 

summaries theory for machine learning ( M L ) and reinforcement learning (RL). A s it can 

give better understanding and overall perception. We wi l l describe M D P components (state 

and action spaces, reward and value functions, policies and discount factor) and methods 

of solving M D P (value iteration, policy iteration, Q-learning etc) in more detailed way. We 

wi l l also briefly go through real life examples or projects which have used M D P in vacant 

taxi route problem. Such information wi l l help to compare and provide more insight on the 

topic of my thesis. 

The second part is going to be practical one where we wi l l develop methodology, perform 

experiments in Python environment, make analysis and comparison of outcomes. It w i l l 

also include conclusion and suggestions. In the practical part we wi l l try to justify chosen 

methodology and describe the steps of performing the experiment. We wi l l briefly describe 

data sources and data preprocessing steps, define the M D P model and solutions methods 

available. After performing the computing part, we wi l l try to evaluate and i f possible, 

improve the model. Analytical part wi l l also include an analysis of possible sensitivity of 

the results which could take place during experiment and existing or possible limitations. 
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2 Objectives and Methodology 

These are going to be my research questions: 

H o w exactly can M D P be used to model vacant taxi routing in a dynamic urban 

transportation environment? 

What is needed to be considered during process of formulating the M D P model? 

H o w can we be sure that it captures different types of complexities of the modern 

taxi industry and the urban transportation system? 

H o w can we use my proposed MDP-based approach to use on large-scale 

transportation networks and possible real-world scenarios? 

What can be the limitations of the proposed M D P approach with Python 

implementation? How can be it improved taking into consideration unpredictable factors 

like traffic jams, fluctuations in demand for taxi and road closures? 

Objectives 

For the Vacant taxi route problem in Markov Decision Processes we wi l l have these 3 

main objectives, such as: 

1. Develop Markov Decisions Process (MDP) model for vacant taxi routing problem. 

We wi l l establish and define the space of actions and states, the transition 

probabilities as well as determine reward functions for the Markov Decision 

Process model by using real-world historical data. 

2. Develop and relate each Reinforcement Learning (RL) algorithms that are going to 

be used in the thesis for solving M D P such as: value iteration and policy iteration 

(Model-based R L ) from one side and Q-learning with S A R S A (Model-free R L ) 

from another one. 

3. Assess algorithms by using established performance metrics such as: revenue 

gained, travel and idle time. 

Additionally, we wi l l try to find answers on these additional objectives: 

H o w to evaluate the effectiveness of the proposed MDP-based approach in 

reducing travel and idle time while increasing or keeping the profit on the high level. 

H o w to investigate the factors that should be considered when formulating the 

M D P model to ensure it captures the complexities of the taxi industry and the 

transportation network. 
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H o w to apply the proposed MDP-based approach to handle large-scale 

transportation networks and real-world scenarios. 

H o w to improve the proposed approach to account for unpredictable factors like 

traffic congestion, road closures, and fluctuations in passenger demand. 

H o w to use research in terms of the potential practical applications and implications 

of it; additionally we can try to find potential future research directions and areas for 

further improvement. 

B y achieving these goals, we aim to develop more effective strategies for taxi drivers 

(agents) in managing the demand for taxi services. This should lead to increased profits for 

drivers and a reduction in time and distance traveled without passengers. The plan to 

process a large dataset through each algorithm to determine the optimal decisions for an 

agent at the taxi's current and all possible locations. Each method has its own advantages 

and disadvantages, and we wi l l compare them to identify any similarities or patterns. 

Methodology 

The introductory section of the thesis w i l l involve an extensive literature review on the 

relevant topics, including Markov decision processes, and wi l l draw from a variety of 

credible sources such as monographs, scientific papers, and websites. Through this 

literature review, the thesis aims to establish a strong foundation for the subsequent 

research and analysis made in the practical section of the thesis, providing valuable 

information and good understanding of the research topic. 

In the parctical part, the following steps wi l l be carried out: 

• We wi l l define the problem which we are trying to solve. The main problem wi l l be 

optimization of vacant taxi routes using M D P . We wi l l identify necessary variables and 

parameters that are going to be implemented and used in the mathematical model as: states, 

actions, rewards, and transition probabilities. This objective wi l l heavliy involve a 

literature review to identify existing models and approaches which are used, as well as a 

clear definition of the scope. 

• Next we wi l l involve setting up the state and action spaces and reward structure for the 

routing problem. We are also going to specify the transition probabilities between states 

based on the selected actions. This objective involves Markov Decision Process (MDP) 

framework to develop a mathematical model of the problem. We wi l l make assumptions 
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about the problem in order to simplify the modeling process and wi l l try to justify these 

assumptions. 

• Then we are going to obtain and format open source data from the different statistics 

offices or companies around the world. Such type of data wi l l include taxi routes (pickup 

and drop off locations), demand patterns(number of passengers), taxi travel time and other 

relevant variables. Then we use descriptive statistics to summarize the data (such as mean, 

median, and standard deviation) In this step we wi l l try to use descriptive statistics to sum 

up the collected data and include measures as: median, mean and standard deviation. This 

information wi l l help me to understand the distribution of the data and provide an overview 

of the data. 

• After we wi l l try to simulate different scenarios to evaluate the performance of the M D P 

algorithms by using Python and Python libraries such as: NumPy, Pandas or Matplotlib. It 

wi l l allow me to evaluate the performance of the M D P algorithms in various contexts. This 

step wi l l provide insight into the algorithms' effectiveness in optimizing taxi routes under 

different condition. Implemention of R L algorithms wi l l also take place in Python 

enivronment. Value Iteration, Policy Iteration, Q-learning and S A R S A algorithms wi l l be 

used and coded. These algorithms wi l l be used to find the optimal policy for vacant taxi 

route problem and taking into account important aspect of the trade-off dilema between 

exploration and exploitation. 

• After getting results we wi l l compare and evaluate their performance in terms of 

efficiency and effectiveness. This step wi l l show the most suitable algorithm for the taxi 

routing problem and also taking into account factors such as convergence speed, 

computational complexity and probably a solution quality. 

• We are going to make a sensitivity analysis to test the robustness of the results by 

changing the key variables, parameters and assumptions. This step wi l l assist me in 

determining the stability of the optimal solutions provided and identifying the potential 

areas for possible possible improvement. 

• A t the final step we wi l l discuss limitations of proposed approaches and some of the 

assumptions that we could made in the modeling process. This might involve discussing 

the generaliztion of the results, possible limitations of the data which we used in analysis, 

or the potential impact of different modeling assumptions on 
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3 Background theories and literature review 

Vacant taxi route problem 

The vacant taxi route problem is a common issue in the transportation area. It appears at 

the time when taxi driver needs to pick up passenger from a specific location however, he 

must travel to that destination empty in order to reach it. It results in spending time, fuel on 

vain and can be cause of environmental and economic waste. The aim of this issue is to get 

the optimal route for the taxi that leads to minimum the general empty travel distance, 

while at the same time to meet expectations of the demand of customers. 

Some approaches have been offered as solution to this problem. Lets briefly list them 

without deep explanation as it would require more resources and pages due to specification 

and complexity of the issue and offered solutions. These are common approaches that can 

be used to solve the vacant taxi route problem: 

a) Mathematical programming models as integer or mixed-integer programming have 

offered the solution for the vacant taxi route problem. It formulates a mathematical 

optimization problem in which the objectives are as follows: to find the optimal 

routes for vacant taxis, to shrink the total travel time and distance. It has the 

solution in terms of optimization solvers (linear programming or branch-and-bound 

algorithms). 

b) Other approach is based on using genetic algorithms or simulated annealing that are 

part of heuristic algorithms. It allows to find close to optimal solution. These 

algorithms rely on a trial-and-error strategy. This strategy implies that the taxi 

driver's actions are valued based on the rewards observed and the policy is 

improved through gained experience. 

However not long ago, Reinforcement Learning (RL) methods have been proposed as a 

solution to the vacant taxi route problem. R L models the problem as a Markov Decision 

Process (MDP) , which is the main focus of this thesis research. In the M D P framework, the 

state of the environment is defined by the taxi driver's current location, the time snapshot, 

and the current level of service demand. The taxi driver's actions are represented by the 

different routes that can be taken to reach the final destination. The transition probabilities 

in the M D P can be based on historical records of travel time and traffic. M D P , R L and 

Machine learning ( M L ) wi l l be described in more details in later chapters of this work. 
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The vacant taxi route problem is a quite important problem in transportation area with 

noticeable impact on economy and environment. Solution of this problem by using M D P 

and R L approaches can lead to more efficient and effective taxi services. It can be 

beneficial for all stake holders as the taxi drivers can learn how to make more money and 

be more optimal in their decisions, it w i l l allow them to minimize the empty travel distance 

and meet the demand. (Zhang, 2017) (Xinlian Y u , 2018) 

Machine learning (ML) overview 

A s it has been mentioned already in the introduction part, Artificial intelligence (AI) is 

very broad term which consists of many subfields which play important role. Machine 

Learning ( M L ) is the crucial one as it allows programs to involve different algorithms and 

statistical models which can improve performance via experience. To put it simply, M L 

trains programs on how to learn based on given data, plan future decisions and recognize 

various patterns. 

Machine learning ( M L ) also can be dived in five main parts: 

1. Unsupervised learning (UL) . It involves input variables which represent features or 

attributes that are used to make predictions. In U L a program is left with input 

variables and no target variables or patterns which it should predict. The program 

tries to figure it out by algorithms and statistical models with some tries. In such 

way the program tries to find hidden patters, groups of data and undiscovered 

structures. U L is used in a detection of anomalies (network traffic, financial 

transactions etc), it also used widely in e-commerce area (recommendation systems 

which offer us different products or services based on the search or browser history 

and purchasing patters). 

2. Supervised learning (SL). It involves labeled datasets which have been provided by 

external supervisor. SL is opposite of Unsupervised learning (UL) where program 

tries to discover on its own. These datasets have predefined input and output 

variables. Output variables represent label or so called target variable which a 

model tries to predict based on the given input variables. SL is used widely 

nowadays, for example we can find it in image and voice recognitions, email spam 

and fraud detections etc. 

3. Reinforcement learning (RL). This type of machine learning is going to be my main 

topic and to be more precise Markov Decision Processes (MDP) that is subfield of 

15 



it. It is completely different from the above types of learning as it focuses on 

different aspects and has different objectives. It can be said that R L is similar in 

some ways to the learning process of humans or animals. It bases on the behavioral 

psychology theory of reward-based learning. R L algorithms are created in a way to 

get optimal behaviors by trial-and-error interactions with an environment. It 

involves getting rewards or punishment. Humans and animals use same trial-error 

approach but it is important to mention that our and animals brains are more 

complex and there are many aspects that are still not understood by science even 

today. (Sutton, 2018) 

4. Deep learning (DL) is based on processing and analyzing large amounts of data that 

pass through neural layers. It allows the machine to learn and recognize various 

patterns in the data. The neural network consists of so-called interconnected nodes 

that process data and then they send it to the next layers and so on. Such approach 

allows for the transformation of data and knowledge in more complex ways. D L 

has revolutionized the machine learning industry and has created more interest in 

its present and future usage. It can solve very complex problems and deal with huge 

amounts of data but it requires more computer power and advanced hardware to 

perform these tasks. ( I B M , n.d.) 

5. Transfer learning (TL) stands for its name as it "transfer" knowledge which has 

been gained from one task to assist other similar one. This brilliant idea of 

balancing knowledge from one area with a huge amount of labelled data to areas 

where there is lack of such labeled data. Such approach can improve task 

performance. T L can be found extensively in a variety of domains, including 

computer vision, natural language processing, and speech recognition. (Brownlee, 

2017) 

Reinforcement learning (RL) overview 

Famous American psychologist B . F . Skinner conducted experiment in the middle of the 

20 t h century in which he studied some animals and their responses on different kind of 

stimulus. He used a device known as a Skinner box or operant conditioning chamber to 

analyze animal behavior in response to various environmental stimuli. He placed the rat 

inside the Skinner box and presented it with a lever that, when pressed, delivered a food 

pellet in one of his most famous experiments. The rat first pressed the lever at random, but 
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after learning to identify the lever with the delivery of the food pellet, it pressed the lever 

more regularly and consistently to obtain the reward. (Saul Mcleod, 2023) 

Below you can find famous Skinner Box. 

SKINNER BOX 

Figure 1 Skinner Box (Saul Mcleod 2023) 

This study created the basis for the theory of operant conditioning. This event emphasized 

the importance of environmental stimuli in shaping behavior. 

Reinforcement learning (RL) was heavily inspired by this approach, where an agent learns 

to take actions based on rewards or punishments in an environment. There is a growing 

body of research exploring the connection between operant conditioning and reinforcement 

learning in both psychology and artificial intelligence. 

R L focuses on training an agent to interact with an environment in order to maximize a 

cumulative reward signal. In R L , the agent learns through trial-and-error interactions, 

similar to how animals learned in Skinner's experiment or how people learn. A s it has been 

already mentioned that R L consists of agent, action, reward and environment but there are 

more components which are needed to be stated. 

These components are: 

1) Agent is an entity that interacts with an environment in order to achieve some 

specific goal. B y interacting with the environment, the agent learns from it based 

on either positive or negative feedbacks ("reward" vs "punishment"). The agent 

uses this information also to decide on future actions and map actions with 
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feedbacks which he can get. This is called policy. The goal of agent is to maximize 

the overall reward during the long-term time period. The agent can be a simple 

software program or more complex robot. 

2) Policy is a decision-making function that connects and maps the agent's current 

state to an action. It is a strategy that suggests actual action based on the current 

state. Policies can be either deterministic or stochastic. The agent should find 

optimal policy which wi l l lead to maximization of the overall long-term reward. 

Deterministic policy is really useful in a predictable environment as it provides the 

same action based on the same state. For example, when a person wants to buy 

snack at the vending machine there are only 2 actions which machine can perform. 

It either gives snack i f enough money has been given or decline transaction i f there 

no or not enough money. 

Stochastic policy is based on the decision-making function that chooses actions in 

relation to a probability distribution function over available actions that are given at 

the present state. It means actually that the same state can lead to different actions 

at different times, based on the probabilities associated with each action. Such type 

of policy is often used in environments with uncertainly for example A I bots in 

computer games. 

3) Environment is the external system in which the agent interacts and from which he 

gets knowledge (feedbacks). Environment consists of the entities that affect the 

agent's state, plus other agents, events and objects. Environment can be in various 

types but most common are deterministic and stochastic. 

Deterministic environment states that result of action is determined entirely by the present 

state and this action. Just to say it simple it means that the result is determined by the 

action and without any randomness. Good example of such policy can be chess where 

rewards and states are determined by a player and there are no random factor that could 

change it (as rules are set up for each move and position of figures). 

Stochastic environment has some level of uncertainly and randomness in terms of the 

reward that the agent can get from the action. It leads to conclusion that even though the 

agent is going to perform same action there is a chance that he wi l l not get same outcome. 

Example of this environment can be computer games (like shooters or R P G s games with 

A I bots) where actions of real player can not be fully predicted. 
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4) State is simply the status of environment at the specific time point. It encompasses 

all information that the agent needs for taking next action. State can be of two 

types. 

Discrete state space has finite or limited number of possible states that are different 

among each other. The agent in such type of discrete state can be in only one of 

possible finite states. Good example can be again chess with limited number of 

state spaces represented by rows and columns of the chess board. 

Continuous state space is opposite to the discrete one as it has infinite number of 

possible states. Continuous state space is more challenging to deal with as it require 

more advanced storing value methods because traditional table method becomes 

useless due to possible infinite number of states. Neural networks or function 

approximators (Gaussian processes, decision trees etc) can be helpful in such 

situation as they can present policy function as a continuous function which can 

map state to action and value. Example of it can be the self-navigating rocket 

Tomahawk. It should take continuously adjust trajectory and other factors (wind, 

distance to the target and so on). 

5) Action is a decision of the agent that is intended to achieve a specific objective. 

Agent choses action based on a set of available actions that are available to the 

agent in the current state and the most important the policy that he learned. 

Action can be divided also in two same categories as the state (discrete and 

continuous actions) 

Discrete action are those type of actions which can be picked up only from definite 

set of actions. Discrete actions can often be found in exercises where the action 

space is small (again chess or simple games like Mario are good examples). 

Continuing with Mario example, Mario (the agent) can choose one of the available 

discrete actions as respond to the present state (go forward or back, jump, crawl or 

shoot fireball) 

Continuous action is opposite to the one above as the agent can take on any value 

which is available in a certain range. 

Action can be whatever decision the agent performs (turn left or write, shoot or 

escape etc) 

6) Reward is a scalar value that shows i f the action of the agent was successful or not. 

It is used to reward or punish the agent's conduct. Reward can be none, positive or 
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negative of course based on the action made by the agent. Positive and negative 

rewards are easy to understand as these rewards that bring the agent closer to the 

goal or opposite. However zero reward does not bring the agent to the goal nor 

affects the environment. Example of such 0 reward can be A I bots in game or 

vacuum cleaner robots that move in an neutral area where they do not perform any 

action or do not come across any objects. 

7) Value function is a prediction of the long-term reward that the agent can expect to 

receive at a specific state or by taking specific action. To say it simply, it is the 

function that estimates possible long-term reward that the agent should receive in 

the specific state or action. 

It is used as indicator of how good or bad is quality of the policy with taking into 

account a possible reward which the agent could receive. 

There are two types of value functions: 

i . State-value function estimates the expected total reward that the agent 

can get from the specific state and the policy. Below is the state-value 

function where: 

The state-value function is denoted as v „(s ) , the policy is denoted as %, 

the state is denoted as s, the expected value of random variable under 

the condition that the agent follows the policy % is denoted as £ „ , the 

variable / denotes any arbitrary time step, the current state is denoted as 

St, y is denoted as the discount-rate parameter, k is denoted as the 

number of actions. (Sutton, 2018) 

vn(s)=En[LVSt = s]=EJIL 

Equation 1 The value function of a state s under a policy p (Sutton, 2018) 

i i . Action-value function estimates the expected outcome that the agent 

can get from taking a particular action at a particular state which is 

followed by a given policy. Below is function that represent action-

value function: 

qIl[s,a) = EjL\St=s ,At = ai=Eni 

Equation 2 The action value function of action a in the state s under the policy ir (Sutton, 2018) 
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Here lets quote directly Richard S. Sutton and Andrew G. Barto in order 

to show what St=s and At=a represent. "If the agent is following policy 

ir at time t, then ix(a\s) is the probability that A=a if S t = s. Likep, tt is 

an ordinary function; the "\" in the middle of ir(a\s) merely reminds 

that it defines a probability distribution over a at A(s) for each s at S. " 

(Sutton, 2018) 

Where A i s action at time t and S tis state at time t, a is action and s is 

state. 

Both the state-value and the action-value functions are used in the evaluation of 

policies and making decisions. The state-value function is useful for forecasting the 

possible future reward which an agent can get from a given state. The action-value 

function is good for choosing the best action that the agent can take in a given state. 

We came across the discount factor while taking a look at both state and action value 

functions. For this reason it is important to describe it as well. The discount factor is a 

parameter that determines the importance of future rewards relative to immediate 

rewards, y is denoted as the discount rate. It has value between 0 or 1. When the 

discount factor approaches 0 the agent become greedier and takes immediate reward 

and opposite when it approaches 1. In such case the agent takes into consideration the 

long-term reward. 

To sum it up the discount factor is an important indicator because it defines how much 

importance is given by the agent to future rewards. The balance between short-term 

and long-term rewards can be achieved by selecting the correct value for the discount 

factor. 

(Sutton, 2018) (Moore, 1996) (Karunakaran, 2021) 

8) Model is some sort of abstract of the environment in which agent is operating. The 

agent can use this model to plan or predict the possible future state and reward 

while taking into consideration the current state and action. There are two types of 

models that are used in the Reinforcement learning (RL): 

i . Reward model tries to estimate the reward related to the state and 

action. The reward model is denoted as a function R(s,a), where s is the 

current state and a is the action taken. It means expected reward that the 
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agent can get for taking the action a at the state s. Reward model is set 

up by the person, who create environment. He or she assigns values 

whether they should positive, neutral or negative. Reward model that is 

correctly set up, can be very important as it influence the agent's 

performance and can result in either achieving the goal and the success 

or failure. 

i i . Transition model tries to predict the probability of a next state of the 

environment, based on the state and action that have been made by the 

agent. 

It is also defined by the designer and it is crucial to correctly set up the 

transition model, as it connects the present state and action to the next 

ones. 

Transition model can be divided into two types deterministic and 

stochastic: 

• Stochastic model refers to a situation, where the result of an action is not certain 

and can be probabilistic. A t the moment when the agent performs a specific action 

at a given state we can find there a possibility that it can lead to different 

subsequent states, with varying probabilities. It means that the agent's behavior can 

be influenced by a degree of unpredictability or uncertainly in the environment. 

Stochastic models can be very helpful and preferred, where there is uncertainty in 

the environment, or for example the agent has incomplete knowledge of the 

environment. The transition model is required for dynamic programming 

approaches, such as value or policy iteration. When it is required to calculate 

optimum policies for the agent, these approaches rely on a comprehensive grasp of 

the transition model. The model can be represented as a matrix, where each element 

corresponds to the probability of transitioning from one state to another, when a 

specific action is taken. 

• Deterministic model can have the outcome of an action completely predicted. This 

means that i f the agent performs a specific action at a certain state, it w i l l always 

lead to the same state or the respond from the environment. Because of that it is 

easier to calculate optimal policy and check the agent's results. Example can be 

again the chess board where each step have determined rules. It can be used in 
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some cases but it is important to mention that this approach is limited as our world 

is more complex. 

(Hui, 2018) (Sutton, 2018) 

Exploration vs exploitation dilemma in Reinforcement learning (RL) 

There is one challenge which exists in R L and does not appear in other types of machine 

learnings. It is called exploration-exploitation dilemma where the agent tries to find 

balance between getting new information regarding environment (exploration) and actions 

that might lead to higher immediate reward (exploitation). 

In exploitation, the agent wi l l try choosing actions that it thinks are going to bring the 

highest expected reward based on gained knowledge. Exploitation is more about using the 

agent's present knowledge of the environment that maximizes immediate rewards. 

However, in exploration the agent chooses actions that might not have the highest expected 

reward at the current moment. But such actions can provide new information about the 

environment which in return might lead the agent to better decisions next time. Exploration 

is about obtaining information that allows improving perception of the environment and 

allows discovering more advanced long-term strategies. There are several strategies which 

address this dilemma: 

1) Epsilon-greedy strategy is a quite simple but at the same time effective exploration-

exploitation trade-off technique. In this method, the agent chooses actions that lead 

to the highest estimated value (exploitation) with probability 1 - 8 and selects a 

random action (exploration) with probability 8. 

Below are steps of how to set up this strategy: 

i . Setup value of the probability of exploration (s) between 0 and 1. 

i i . Generate a random number again between 0 and 1 at each point of time. 

i i i . In case the random number is less than 8, choose a random action 

(which means exploration). 

iv. In case the random number is greater than or equal to s, choose the 

action with the greatest estimated value (which means exploitation). 

v. Update the estimates of value which are based on the observed rewards. 

v i . Then repeat steps 2 till 5 until the process of learning is complete. 
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Using graphs in such case can show which strategy is optimal for the agent as we 

can plot cumulative reward over time (where X-axis: Time steps and Y-axis: 

Cumulative reward) and average reward per time step (where X-axis: Time steps 

and Y-axis: Average reward). B y using both graphs, we can compare the 

performance of the epsilon-greedy strategy with different values of 8. The agent 

during exploring more environment (which means larger e) can probably have 

lower rewards but as the agent learns better actions, the rewards wi l l increase. 

Opposite can be done as well where with lower exploration (smaller e), the agent 

can gradually converge to a suboptimal solution and ignore better actions. (A. C. K . 

C. Chan, 2017 ) 

2) The Upper Confidence Bound ( U C B ) strategy takes into consideration level of 

uncertainly in the estimated values of actions. The agent picks up actions which are 

based on upper confidence bounds on their estimated values. The algorithm 

proceeds as follows: 

i . Initialize the action-value estimates (q) and the count of how often each 

action has been selected (N). For preventing division by zero, q values are 

commonly initialized to zero at the same time N values are assigned a small 

positive number. 

i i . Calculate the U C B value for each action a by using below formula: 

Where q(a) denotes the current estimated value of action a, N(a) means the 

number of times that action a has been selected, / represents the total 

number of actions taken so far, c is a positive exploration parameter that 

determines the degree of exploration (the higher values wi l l encourage the 

more exploration) and In is the natural logarithm of t. 

i i i . Choose the action a with the highest UCB(a) value 

iv. Perform action a and then check the reward gained and the next state. 

v. Refresh the estimated value of the selected action a then increase the 

number of times action a has been chosen: 

Equation 3 The Upper Confidence Bound (UCB) 
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N[a) = N[a) + l 

Equation 4 The number of times action a has been selected 

q[a)=q[a) + 
1 

*[r-Q[a)) 
N(a) 

Equation 5 The estimated value of the chosen action a 

v i . Then repeat processes 2 till 5 until the stop criteria wi l l be met. It can be 

some performance level or some number of iterations. 

Based on (Sutton, 2018) we can slightly rewrite our formula: 

The value being maximized in this context represents an upper bound on the 

potential true value of action a. 

The U C B strategy effectively assists the agent in balancing exploration and 

exploitation. B y slightly adjusting the exploration parameter c it is possible to 

affect the level of exploration. Higher values encourage more exploration, while 

lower values favor exploitation. The U C B strategy enables actions with higher 

uncertainly (meaning fewer selections) to be explored more, which increases the 

chances of discovering better actions over time. It can be applied to different real-

life problems for example: (e-commerce, resource allocation etc) (Sutton, 2018) 

(Peter Auer, 2002) 

3) Decaying exploration rate can help to balance exploration-exploitation dilemma by 

gradually decreasing the level of exploration over time. This method can be very 

useful in scenarios where the knowledge of the agent w i l l be improved due to it 

interactions with the environment. Vacant taxi route problem is one of those 

scenarios. 

Equation 6 The UCB formula adjusted (Sutton, 2018) 
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A t the start point the agent usually has very limited knowledge about the 

environment. This implies that the exploration is crucial for gathering needed 

information. While the agent gets more knowledge, he wi l l most probably relay 

more on the exploitation. In such way, the optimal decision strategy is created 

based on the acquired knowledge. Decaying exploration rates help to get the 

tradeoff balance by reducing the level of exploration as the agent learns more about 

the environment. 

Below are logical steps for implementing this strategy: 

I. Implementation stage in which the decay exploration rates can be 

implemented within previously mentioned strategies. Such as the epsilon 

greedy strategy where the agent decreases the epsilon value or reducing the 

exploration parameter c in the Upper Confidence Bound ( U C B ) 

Let me take as an example the epsilon-greedy strategy. The agent chooses the 

action with the highest estimated value (exploitation) with a probability of (1 - e) 

and then picks up a random action (exploration) with a probability of e. After some 

time 8 wi l l be reduced this at the same time wi l l allow the agent to explore less and 

exploit gained information. 

Below is the chart example of how it might look. 

It is visible that after some steps the agent's epsilon e w i l l be decreased to the point 

when the agent wi l l exploit the gained knowledge. 
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Figure 2 The Epsilon greedy method with reducing the exploration rate e (Iman Saj edian, 2019) 

II. Setting up the decay schedule that is the actual rate of decreasing the 

exploration. There are several decay strategies which worth to mention: 

a) Linear decay method in which the exploration rate e w i l l be 

decreased linearly over some period. This is very easy to implement 

approach but it is for sure not the most accurate one as the decrease 

in exploration is fixed without taking into consideration the learning 

success of the agent. 

The formula for the decreasing exploration rate e: 

Equation 7 Linearly decreasing exploration rate 

Where £ 0 stands for the initial exploration rate, t is time step and a is 

decreasing rate, 

b) Inverse square root decay 

This type of decay method decreases the exploration rate e in very slow way 

over the period. This method is good in cases when the agent needs more 

time to fully explore the environment before starting the exploitation. 

Formula for it is down below: 
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Equation 8 Inverse square root decay 

Where £ 0 is an initial exploration rate and / is time step and a means 

decreasing rate. 

c) Exponential decay is method where the rate decreases exponentially 

over period of time (as states its name: exponential). Exponential 

decay method is very quick and in some sort of way more flexible 

than two previous ones. It is useful for fast kick start when rapid 

reduction occurs in the early stages of exploration during the 

learning process. However, it w i l l decrease slower once the agent 

gains more experience. Below is the formula: 

£ ( t ) = £ 0 * ( l - o r ) £ 

Equation 9 Exponential decay formula 

( S A L L O U M , towardsdatascience.com, 2019) (Sutton, 2018) (Weng, 2020) (Kramer, 2010) 

III. Application to the vacant taxi route problem can be done by using the 

decaying exploration rate where the agent can find out different routes and 

absorb important data about the environment in the first stages of learning. 

The agent wi l l gradually become more skillful and knowledgeable then the 

agent can increasingly use(exploit) gained information in order to perform 

better and optimize selecting process of routes. 

IV. Evaluation of decaying exploration rates in the vacant taxi route problem 

can be done through comparison of the agent's performance by using 

different decay schedules and exploration strategies available. A n average 

reward per time step or the total cumulative reward can be used in order to 

evaluate the effectiveness of the decaying exploration rates the exploration-

exploitation dilemma. 

( S A L L O U M , towardsdatascience.com, 2019) (Sutton, 2018) (Weng, 2020) 

(Kramer, 2010) (The Linkedln Team, 2023) 
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4) Posterior sampling or it also can be called Thompson sampling. Posterior 

sampling is based on the idea of using Bayesian updating so that it 

maintains a posterior distribution over the expected reward of each: action 

and the time step of this action. Then its samples from these distributions to 

choose the action. Thompson sampling balances the exploration-

exploitation dilemma by considering both the mean and the uncertainly of 

the action-value estimates. In order to use Thompson sampling we need to 

initialize the prior distribution for every pair of action (a) and state (s), (s,a) 

with estimated values. The most popular selection of distributions is 

Gaussian or Beta (it can be some other as well). After previous step we need 

to sample the action-value function q(s,a) (for each available action at the 

present state s). Then we need to choose the highest sample value of the 

action-value function q(s,a) and execute this action with the highest value. 

After the execution we need to record the reward and the next state s*; then 

we need to update the posterior distribution function parameters of chosen 

the action, current and next states and the reward. We are going to continue 

until the best optimal policy wi l l be generated and the learning process w i l l 

eventually stop. (Sutton, 2018) (Lihong L i , 2011) (Russo D . J., 2018) 

The exploration-exploitation dilemma is very important in Reinforcement learning (RL) as 

it is basis for finding the optimal policy for the agent. When the agent follows one specific 

way (the exploitation or the exploration) it can lead to lower reward (in case the agent 

chooses only exploitation) as the agent wi l l not use opportunities provided by the 

environment at the current moment or not maximally effective performance (if the agent 

chooses only exploitation). 

To solve this dilemma, the above strategies have been introduced. Each strategy may 

provide different outcome, it can be due to many factors depending on type of problem it is 

trying to solve. In my case the problem is finding the vacant taxi route. The performance of 

each strategy (under such condition) w i l l depend on various factors such as: an initial state 

of the agent, a customer demand, a traffic condition and following parameters that have 

been chosen in particular strategy. It is possible and highly suggestible to use more than 

one or ideally all strategies that can be formulated as Markov Decision Processes (MDP) in 

the vacant taxi route problem. Some strategies might be more effective in quickly adapting 
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to changing passenger demands, while others might be more robust in the presence of 

uncertainty or noise in the environment. In this paper we wi l l try to use all of these 

strategies in order to find out the most suitable for the vacant taxi route problem. 

Markov Decision Processes (MDP) 

Markov Decision Process (MDP) is a mathematical framework that has been named after 

Russian mathematician Andrey Andreyevich Markov (1856 - 1922). He worked on the 

probability theory and developed Markov chains. 

Markov chains are a mathematical concept that describes a 

sequence of events whose probability is controlled only by the 

state of the previous event. It means that the probability of 

transitioning to a new state is purely determined by the present 

state and can't be affected by any previous states. Markov 

chains are used in a vast range of applications in disciplines 

(like economics, computer science etc.) (Robertson, 2006) 

M D P is the extension of Markov Chains and was developed in 

Figure 3 Andrey Andreyevich the middle of the 20 t h century by famous American 

mathematician and computer scientist Richard Bellman (1920-

1984). M D P is the mathematical framework for decision-making problems that is used by 

R L algorithms to find optimal policy. M D P is used to model decision-making problems 

which results are partly random and under a control of a decision-maker and describe an 

environment in Reinforcement learning. Reinforcement Learning (RL) is a bigger concept 

that includes Markov Decision Processes (MDP) 

The problem in M D P is formulated as a set of states, actions, state transition probabilities 

and rewards. The environment (sometimes can be called system) must be in a particular 

state at any given time and the agent is able to choose an action to take from action space. 

The agent chose action with regards to the present state and the policy. Taking a new 

action triggers the system transitions of a new state then the agent receives a reward. The 

goal of the agent is to maximize the expected overall reward over time. Below chart that 

has been taken from the book of Sutton, A . B . "Reinforcement learning: An introduction 

(2nd ed.)" clearly shows logic of M D P (where A t i s action at time t and St is state at time t 

and Rt is reward at time t) 
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Figure 4 The agent-environment interaction in a Markov decision process (Sutton, 2018) 

It is important to mention that there are different types of Markov Decision Processes 

(MDP) that can be found in the literature. Understanding these variants w i l l help to select 

the most appropriate one for the vacant taxi route problem: 

1) Finite-horizon M D P is limited to some number of time steps which are named 

horizons. In this case the agent main goal is to maximize the overall cumulative 

reward during this horizon. Such type of M D P is useful for issue with a final 

endpoint. Finite-horizon M D P s are particularly useful for problems with a definite 

endpoint. 

Good example can be a simple inventory management problem where a store 

owner must decide how many items to order for a three-day period. The store 

owner aims to maximize profit while minimizing costs associated with overstock 

and stockouts. The state space is the current inventory level, the action space 

consists of a quantity of items to order and the reward function calculates a profit 

based on sales, inventory holding costs plus stockout penalties. In this M D P , the 

decision-making process is limited to a 3-day period. Where each day, the store 

owner decides how many items to order then at the end of the day, the inventory 

warehouse is updated based on sales and deliveries. The objective is to maximize 

the total profit over this three-day horizon, taking into consideration the costs and 

penalties associated with inventory management. B y formulating the problem as a 

finite-horizon M D P , the owner of the store can identify the optimal ordering policy 

for each day that maximize the overall profit for the given horizon. 

2) Episodic M D P divides the decision-making process into so called episodes where 

each of which has its separate terminal state. Once the agent reaches the terminal 

state, the episode ends then the next episode wi l l begin. The agent is going to learn 
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continuously across multiple episodes which wi l l allow to refine its policy over 

time. 

Good example can be a financial investment problem where an investor tries to find 

a way to allocate funds among different assets over 1 year period. The goal of the 

investor is to maximize the return on investment while at the same time minimizing 

the risks related to fluctuations in asset prices. This problem can be modeled as the 

episodic M D P . The state space of this M D P consists of the current portfolio 

allocation, the historical prices of the assets plus any relevant economic indicators. 

The action space consists of buying/selling different assets as well as sustaining the 

current portfolio allocation. The reward function include the returns generated from 

the portfolio that adjusted for the risk that can be associated with the chosen asset 

allocation. In this episodic M D P , each episode begins at the start of the investment 

period and ends at the end of the year period. The objective of the agent is to 

maximize the total risk-adjusted return on investment during this episode. 

3) Infinite-horizon M D P is opposite of the horizon M D P as it does not have a fixed 

endpoint. The agent operates indefinitely and the objective is to maximize the 

overall cumulative discounted reward over an infinite number of steps. The 

discount factor (y) has a value between 0 and 1, in such way we are ensured that the 

sum of rewards remains finite despite the infinite time horizon (placing the discount 

factor in such interval allows prioritizing immediate rewards over distant ones) 

A real-life example of the infinite-horizon M D P can be a power grid management 

problem. Where operators must decide how to allocate resources to meet the 

demand for electricity. The state space includes the current power generation 

levels, the power grid infrastructure and the electricity demand. The action space 

consists of adjusting power generation levels and investing in the new 

infrastructure or repairing the existing one. The reward function reflects the profit 

made from selling electricity and minus the costs of generating power, maintaining 

infrastructure and possible penalties for power outages. 

The utility company must continuously make decisions to ensure reliable and 

efficient power supply over an indefinite time period. B y finding the optimal 

policy, the company can effectively balance short-term profits with long-term 

investments which wi l l result in a sustainable and profitable power grid 

management strategy. (Sutton, 2018) (Rieder, 2011) (Russo P. D.) 
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In the case of the vacant taxi route problem that is my topic of the research. The problem 

can be modeled as the episodic M D P with each episode being a vacant-to-occupied 

transition for the taxi. The terminal states can be defined as instances when passengers are 

picked up and the learning process continues with the taxi becoming vacant again after 

dropping off passengers. However, the infinite-horizon M D P can also be appropriate for 

modeling the vacant taxi route problem because the process of finding passengers is or can 

be continuous. It does not have a specific termination point. 

B y carefully going through these types of M D P , it can be determined that the most 

appropriate formulation for the vacant taxi route problem should be either the infinite-

horizon or the episodic M D P . Because both formulations grasp the continuous nature of 

the problem and allow the agent to learn and optimize its decision-making process. 

Reinforcement learning (RL) frameworks 

In order to solve the decision-making problem in R L , it is very crucial to setup the 

elements of R L that have been described before (such as the agent, the actions and so on) 

in a step by step and systematic way. Otherwise, neglecting some of its components might 

lead to totally wrong output and model. R L has some other frameworks beside M D P , 

which helps to deal with it. For the sake of understanding how vast R L is and which type 

of the decision-making problems it can solve, it is a good idea to describe them shortly: 

1) Mult i -Armed Bandit ( M A B ) represents a simplified but challenging problem in R L . 

In M A N , the agent interacts with multiple "arms" (actions) where each arm is 

associated with an unknown probability distribution of rewards. The main objective 

of the agent is to maximize the cumulative reward by sequentially selecting arms 

over a limited number of time steps. The main challenge of M A B is to keep balance 

between the exploration and the exploitation. Algorithms (such as Epsilon-Greedy, 

the Upper Confidence Bound ( U C B ) or Thompson sampling) that have been 

mentioned previously can help to solve M A B . M A B is used in webpages 

optimization, medical filed (it can help to find best drugs and treatment approach). 

(Sutton, 2018) 

2) Contextual Bandits is more extended version of M A B . It introduces a new element 

called contextual information (it is often referred as features). The features can 

assist the agent to make better decisions as it changes the agent's goal. N o w the 
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goal is to obtain a policy that maps the features to the actions and maximize the 

cumulative reward. (Surmenok, 2017) 

3) Inverse Reinforcement Learning (IRL) makes the agent to study an unknown 

reward function. This function is connected to an expert (can be external action 

maker for example a human being) action and behavior. The goal is to infer the 

expert's underlying reward structure and use it to make decisions in the same 

environment. Good example can be an autonomous car where it learns and 

observes a human driver and his or her driving decisions. Then agent tries to 

understand and conclude the implicit reward function that is important in the safe 

and efficient driving. (Alexander, 2018) 

4) Partially Observable Markov Decision Process ( P O M D P ) is the extended version of 

M D P . It introduces a new element called a belief state. The belief state is simply a 

probability distribution over the possible states of the environment that considers 

previous experience (it happens because based on P O M D P is partially observable). 

The goal is slightly altered compare with original M D P , here the goal of the agent 

is to find the optimal policy that connects the belief system of the agent and the 

actions that lead to the maximum reward. Such approach can be challenging and 

require sufficient accuracy. (Michael Hahsler, 2021) 

5) Semi-Markov Decision Process (SMDP) involves discrete and continuous states 

with actions. S M D P is another extension and generalization of the Markov 

Decision Process (MDP) . Compare with classical M D P , S M D P has one major 

difference and it is time that spent at each state. It can vary and depend on the 

actions taken by the agent. It implies that the environment can be in one particular 

state for an unknown period of time. Transitioning to a new state depends now on 

probabilistic rules. S M D P approach is useful in building complex systems in which 

actions can cause continuous effects (of course with amount of time to take effect). 

The objective of the agent in S M D P is to get policy that is going to maximize the 

expected overall reward and the policy connects the present state and the time that 

has passed since the last action and to the action that leads to maximum reward. 

(Baykal-G'ursoy, 2007) 

Please note that this might be not full list as there are few more approaches which can be 

added to the above list based on different experts. 
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Reinforcement learning (RL) algorithms that solve Markov Decision 

Processes (MDP) 

So based on the previous information regarding setting Markov Decision Processes (MDP) 

framework it is very important to setup the most important part of solving M D P which is 

algorithm. R L algorithms allow to update the action-value or the state-value functions one 

the agent start interacting with the environment. There are many R L algorithms which can 

be used to solve M D P related tasks, however in this research we wi l l take into 

consideration only four of them. The rest might be mentioned during comparison or in the 

conclusion part of the thesis. However, before talking about the algorithms that can solve 

M D P , it is important to mention some of background in order to understand the field more 

deeply. 

Reinforcement learning (RL) can be split into two main categories such as: Model-based 

and Model-free. Model-based Reinforcement Learning ( M B R L ) utilizes a model of the 

environment to make and plan decisions. The agent aims to learn a model of the 

environment's dynamics that is also known as the transition model (described before). It 

predicts the next state under the current state and action. Such model can be either 

deterministic or stochastic, it wi l l depend on the nature of the environment. The agent w i l l 

eventually learn the reward model that in return is going to estimate the immediate reward 

for the state-action pair. Dynamic Programming (DP) algorithms such as Value iteration 

and Policy iteration can help to solve M B R L problems (such as the vacant taxi route 

problem in my case) Let me describe these algorithms which are going to be used in the 

practical part. 

1) Value iteration algorithm continuously updates value functions until it 

approaches the optimal value function. Once we get the optimal value function, 

we can derive the optimal policy by selecting the action that maximizes the 

value at the each given state. Value iteration algorithm works by iteratively 

updating the value function for every state in Markov Decision Processes until 

it converges to the optimal value function. The value function means the 

expected total discounted reward that can be gained by following a present 

policy from given state. 
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To sum it up, Value iteration algorithm is a dynamic programming (DP) 

algorithm that iteratively calculates the optimal value function for every state in 

Markov Decision Processes (MDP) until convergence. After that it extracts the 

optimal policy based on the optimal value function. It initializes the value 

function then iteratively update the value function by using famous Bellman 

equation 'and after that extracts the optimal policy from the optimal value 

function. In case of Value iteration algorithm, the optimal policy means the best 

action that can be taken by the agent in each state that maximizes the expected 

total discounted reward. 

2) Policy iteration algorithm 

Policy iteration is also Dynamic programming (DP) algorithm that is used to 

solve the M D P problems by repeatedly improving the policy until it becomes 

the best optimal policy. This optimal policy is again the one that is going to 

maximize the expected total discounted reward for all possible states. Policy 

iteration mixes both policy evaluation and improvement steps, such mix allows 

to iteratively find the best optimal policy. However, this policy iteration is a bit 

more complex than previous one due to more iteration of the policy evaluation 

step. Policy iteration tends to be more complex than value iteration. 

3) Q-learning Algorithm belongs to model-free reinforcement learning and it is 

also an off-policy algorithm which means that the agent learns the optimal 

policy by estimating the optimal Q-values (it can do so even when the current 

policy is not the optimal one). That's why Q-learning is also called off-policy 

algorithm. 

Here is it important to define the meaning of Q-value (it can also be called the 

action-value) Q-value is the expected cumulative reward that the agent can get 

by performing specific action at the current state and by following a certain 

policy afterwards. To say it simply, the Q-value is a pair of action and state 

(s,a) and is defined as the expected sum of discounted rewards that can be 

1 Bellman equation is the mathematical relationship used in reinforcement learning. It describes how the 

agent should update its estimate of the value of a particular state. It also takes into account the expected 

future rewards of being in that particular state and taking action from that state. The agent can learn to 

estimate the value of each state and use this information to guide its decision-making. 

By iteratively using the Bellman equation, the agent can understand how to estimate the value of each state 

and use this information to guide its decisions. 
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gained by taking action a in state s and by following the optimal policy 

afterwards, (oreilly.com, n.d.) 

Q[s,a) = EJTpL 

Equation 10 State-action value function (Q value function) (oreilly.com, n.d.) 

where s is the present state of the environment, a is the action taken by the 

agent in that state, rt+1+k is the reward gained by the agent at time step t+1, 

j is the discount factor, E[] means the expected value of all possible results of 

taking action a in state s and following some special policy afterwards. 

The Q-value is being implemented in many reinforcement learning algorithms 

such as in my case Q-learning and S A R S A . It estimates the value of taking a 

certain action in specific state. The agent wi l l use Q-value to update policy after 

that it selects the action with the highest Q-value at the present state. 

Later on Q-value can be saved in a lookup table or can be presented as a 

function approximation (oreilly.com, n.d.) 

4) S A R S A ((State-Action-Reward-State-Action) is like Q-learning estimates the 

optimal Q-value for each and every pair action and state. Which represents the 

expected discounted cumulative reward that the agent can get by perfoming a 

specific action from a specific state and conducting a particular policy after it. It 

is important to mention that S A R S A is the on-policy algorithm which means 

that it updates the Q-values table based on the current policy that the is 

following, (geeksforgeeks.org, 2021) 

Below matrix (Figure 5 Reinforcement learning overview) can show how Reinforcement 

learning can be split in two main parts where: blue color represents Model-free type of R L 

and green Model-based one. While model-based can also be split in to two parts such as 

dynamic programming with Markov Decision Processes (MDP) and its algorihms and non

linear dynamics with optimal control algorithm. In the same time model-free in gradient 

free we can find algorithms which have been specifed above (Q-learning and S A R S A ) . It 

is also good to mention the unique characteristics of each algorithms and their suitability 

for the master thesis topic. 
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Markov Decision Processes 
Dynamic programming: 

Policy iteration 

Gradient free 
Off-policy: Q-learning 

On-policy: S A R S A 

value iteration Reinforcement 
learning 

Non-linear dynamics 
Optimal control 

G r a d i e n t b a s e d 

Policy gradient optimization 

Figure 5 Reinforcement learning overview 

3.1.1 Unique characteristics of reinforcement learning algorithm 

Value iteration algorithm: The unique characteristic of this algorithm is that it focuse on 

iteratively updating the value function till the moment when it converges to the optimal 

value function. Value iteration can be well-suited for the vacant taxi route problem i f the 

state space is not too large (this what also might be tested and confrimed during the 

running expirement) and the taxi can estimate the optimal value function in order to find 

the best routes to customers. It is also important to mention that the problem would require 

knowledge of the M D P ' s transition probabilities and reward functions. (Sutton, 2018) 

Policy iteration algorithm: This algorithm can be split into two-step process: policy 

evaluation and policy improvement. Again this algorithm can be appropriate choice for the 

vacant taxi route problem. This method as well as previous one requires full knowledge of 

the M D P ' s transition probabilities and reward functions. (Sutton, 2018) 

The key requirement for applying M D P based algorithms (Policy iteration and value 

iteration) is to have a well-defined state space, action space, transition probabilities, and 

reward function as these components w i l l define the problem accurately which is improtant 

in solving M D P related problem. In case of the vacant taxi route problem, 

The overall success of algorithms would depend on the quality of the data used to estimate 

the transition probabilities plus reward function (also taking into account possible 

complexity of the state and action space). However when the problem is well-defined we 
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can say that the algorithm should be able to learn an optimal policy(which wi l l maximize 

the cumulative reward) 

Q-Learning Algorithm: Q-Learning is can learn the optimal policy even i f the current 

policy is suboptimal, additionally it does not require full knowledge of transition 

probabilities or reward functions (by being part of an off-policy and model-free 

reinforcement learning algorithm). Such unique characteristics distinguish Q-Learning as 

suitable choice for the vacant taxi route problem. It also can handle large state spaces and 

continuous states with function approximation techniques, which makes suitable and 

scalable for complex type of problems. 

SARSA Algorithm: S A R S A , like Q-Learning, is a model-free reinforcement learning 

algorithm. However, it is an on-policy algorithm, meaning it learns the value of the current 

policy, which allows for better control over exploration and exploitation. This 

characteristic makes S A R S A a suitable choice for the vacant taxi route problem when the 

environment is uncertain or incomplete information is available, and the learning process 

aims to balance exploration and exploitation effectively. L ike Q-Learning, S A R S A can 

handle large state spaces and continuous states with function approximation techniques. 

In summary, the choice of algorithm for the vacant taxi route problem depends on the size 

of the state space, the availability of information about the M D P , and the desired balance 

between exploration and exploitation. Model-based methods like Value Iteration and 

Policy Iteration may be more suitable for smaller state spaces and when full knowledge of 

the M D P is available, while model-free methods like Q-Learning and S A R S A can handle 

larger state spaces and uncertain environments. 
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4 Practical Part 

Data source overview 

The data source plan is to utilize for addressing the empty taxi route issue in M D P is the 

New York City Taxi and Limousine Commission (TLC) trip record data. This extensive 

dataset encompasses information on taxi journeys in New York City from 2009 until the 

present (although 2023 data is currently unavailable at the current moment), featuring 

details such as pick-up and drop-off date with time, locations and other trip-related aspects. 

The T L C trip record data is a vast and intricate dataset, comprising millions of rows of 

data. It includes a variety of crucial variables for later simulation use, such as pick-up and 

drop-off locations and times, fares, tips or additional ride specifics. The data can be 

accessible in several formats, like C S V and Parquet, which provide versatility in analysis 

and processing. The primary purpose of the T L C in collecting this data is to regulate New 

York City's taxi and for-hire vehicle sector, ensuring passenger safety and tracking 

industry trends. The data is publicly available for research and analytical purposes and is 

employed by various groups of stakeholders, including policymakers, researchers and taxi 

and for-hire vehicle operators. The T L C trip record data, spanning from 2009 to the 

present, is regularly updated with new information. Consequently, researchers and analysts 

can leverage this data to observe trends over time and create long-term solutions to 

problems such as the empty taxi route issue in M D P . However, it is crucial to acknowledge 

that the data is highly complex and may necessitate substantial processing and cleaning 

before it can be effectively utilized. 

Data analysis 

Data was taken from the official website of the City of New-York (nyc.gov ( N Y C Taxi & 

Limousine Commission, 2023)) On the website, we can find yellow and green taxi trip 

records are split by months and years and converted to P A R Q U E T 2 data format. Each 

record contains data on pick-up and drop-off date and time, pick-up and drop-off locations 

2 PARQUET is a data file format that is open source and optimized for storing and retrieving data in a 

column-oriented manner. It utilizes advanced compression and encoding techniques to efficiently manage 

large volumes of complex data. This results in improved performance and faster processing of data. 

(databricks.com, nd.) 
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IDs, ride distances, fares, rate types, payment methods, and passenger numbers. The 

datasets were gathered and supplied to the N Y C Taxi and Limousine Commission (TLC) 

by authorized technology providers under the Taxicab & Livery Passenger Enhancement 

Programs (TPEP/LPEP) . The T L C did not create the trip data and makes no claims 

regarding its accuracy. 

In the same section we can find For-Hire Vehicle (FHV) trip records which consist of data 

containing the dispatching base license number, pick-up date and time and taxi zone 

location IDs (shape file can be found on the same page). These records originate from the 

F H V trip record submissions made by the bases. It is important to keep in mind that the 

T L C publishes base trip data as provided by the bases and it actually cannot guarantee or 

check their accuracy and completeness. For this reason, gathered data might not provide 

the total volume of trips dispatched by all TLC-licensed bases. The T L C conducts regular 

reviews of the records and enforces actions when necessary to ensure as far as possible that 

the information is complete and accurate. ( N Y C Taxi & Limousine Commission, 2023) 

Since the vacant taxi route requires a good quality and nearly complete dataset for better 

modeling and simulation, the F H V records wi l l not be used as they might not include 

portions of data. Another reason for excluding the F H V records is the absence of fares in 

the dataset, which would make it problematic to find the average fare and make 

calculations of cumulative reward more complicated. 

It is also important to mention main differences between green and yellow taxis. 

Ye l low taxis are licensed by the T L C and can pick up passengers in the entire city 

(Manhattan and in the outer zones). This taxi type requires to use metered fares which fall 

under regulations of the T L C . These taxis also follow specific routes and regulations set by 

the T L C . Ye l low taxis became symbol of New York city as they have a distinctive yellow 

color and roof lights that show availability. 

Green taxis (or Boro Taxis) are controlled by the T L C as well but in the same time they are 

only allowed to pick up passengers in the outer boroughs (Bronx, Brooklyn, Queens, 

Staten Island) and in certain designated areas of Manhattan (north of West 110th Street and 

east of 96th Street). Green taxis have a different color and design (green color with a Boro 

Taxi mark) compared to yellow taxis, and they use metered fares as well. However, their 

fare rates are way lower than those of yellow taxis and there are some differences in the 

way they can pick up passengers. These taxis area able to pick up passengers only on 

streets in special areas outside of Manhattan. For this reason it w i l l also not be included in 
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this dataset of experiment as it does not cover the whole New York city area and has lower 

fare rates compared to yellow taxis. 

I. Data dictionary 

Prior to analyzing and processing the raw data, it is important to consult the data dictionary 

provided by the N Y C website to determine which columns wi l l be used or removed. 

Below table represents Data Dictionary for Ye l low Taxi trip records (nyc.gov, 2922) 

Field Name Description 

VendorlD A code indicating the TPEP provider that provided the record. 

1= Creative Mobile Technologies, L L C ; 2= VeriFone Inc. 
tpeppickupdatetime The date and time when the meter was engaged. 

tpepdropoffdatetime The date and time when the meter was disengaged. 

Passengercount The number of passengers in the vehicle. 

This is a driver-entered value. 
Tripdistance The elapsed trip distance in miles reported by the taximeter. 

PULocationID T L C Taxi Zone in which the taximeter was engaged 

DOLocationID T L C Taxi Zone in which the taximeter was disengaged 

RateCodelD The final rate code in effect at the end of the trip. 

1= Standard 

rate 2=JFK 

3=New a rk 

4=Nassau or 
Westchester 
5=Negotiated fare 
6=Group ride 

Storeandfwd flag This flag indicates whether the trip record was held in 

vehicle memory before sending to the vendor, aka "store 

and forward," because the vehicle did not have a 

connection to the server. 

Y = store and forward trip 

N= not a store and forward trip 
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Paymenttype A numeric code signifying how the passenger paid for the trip. 
1= Credit card 

2= Cash 

3= No charge 

4= Dispute 
5= Unknown 
6= Voided trip 

Fareamount The time-and-distance fare calculated by the meter. 

Extra Miscellaneous extras and surcharges. Currently, this only 
includes 
the $0.50 and $1 rush hour and overnight charges. 

M T A tax $0.50 M T A tax that is automatically triggered based on the 
metered 
rate in use. 

Improvementsurcharge $0.30 improvement surcharge assessed trips at the flag drop. The 
improvement surcharge began being levied in 2015. 

Tipamount Tip amount - This field is automatically populated for credit card 
tips. Cash tips are not included. 

Tollsamount Total amount of all tolls paid in trip. 

Totalamount The total amount charged to passengers. Does not include cash 
tips. 

CongestionSurcharge Total amount collected in trip for N Y S congestion surcharge. 

Airportfee $1.25 for pick up only at LaGuardia and John F. Kennedy 
Airports 

Table 1 Data Dictionary - Yellow Taxi Trip Records (nyc.gov, 2922) 

For M D P in vacant taxi route, all columns are going to be required except only 3 such as: 

RateCodelD, S t o r e a n d f w d f l a g , Improvementsurcharge are not really needed for the 

vacant taxi route in M D P . 

II. Data processing 

N o w let's take a look at how many data records we have there and do further analysis, as 

there might be inconsistent data that needs to be deleted. Because there are 12 separate 

P A R Q U E T data format files, it w i l l be needed to merge them all into one big dataframe. 

For this purpose we are going to use my personal laptop Del l Latitude 7490 - Intel(R) 

Core(TM) i5-7300U C P U @ 2.60GHz 2.71 G H z and with 16.00 G B R A M . In order to 

run the code we used Visual Studio Code (which is a free and open-source code editor 

developed by Microsoft) and imported Pandas, Pyarrow libraries and other libraries. Below 

Python code is responsible for merging all P A R Q U E T data files into one in order to see 

how many line records have been made. 
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i m p o r t os 

i m p o r t pandas a s pd 

i m p o r t p y a r r o w . p a r q u e t a s pq 

# S e t i n g p a t h t o t h e d i r e c t o r y c o n t a i n i n g P a r q u e t f i l e s f o r y e l o w t a x i 

d i r p a t h = " y e l l o w " 

# g e t i n g a l i s t o f f i l e names i n t h e d i r e c t o r y 

f i l e n a m e s = o s . l i s t d i r ( d i r p a t h ) 

# c r e a t i n g an empty l i s t t o h o l d d a t a f r a m e s 

d f s = [ ] 

# l o o p i n g t h r o u g h e a c h f i l e i n t h e d i r e c t o r y and r e a d i t i n t o Pandas 

D a t a f r a m e 

f o r f i l e n a m e i n f i l e n a m e s : 

f i l e p a t h = o s . p a t h . j o i n ( d i r _ p a t h , f i l e n a m e ) 

d f = p d . r e a d _ p a r q u e t ( f i l e p a t h j e n g i n e = ' p y a r r o w ' ) 

d f s . a p p e n d ( d f ) 

# m e r g i n g a l l d a t a f r a m e s i n t o a s i n g l e d a t a f r a m e 

m e r g e d d f = p d . c o n c a t ( d f s ) 

# d i s p l a y i n g a l l comuns i n d a t a f r a m e 

p d . s e t _ o p t i o n ( ' d i s p l a y . m a x c o l u m n s ' , None) 

# d i s p l a y c l e a n e d d a t a f r a m e 

p r i n t ( m e r g e d d f ) 

Code lPython code for PARQUET datafiles merge and display 

It provided the result of 39,656,098 rows and 19 columns. Based on the above data 

dictionary we do not need all 19 columns, additionaly it is going to be necessary to get rid 

of some inconsistent and biased data. Some lines of code wi l l be created in order to delete 

rows with inconsistent data such as: 

• Number of passengers per ride higher or equal 4 (and lower than 1) according to 

the Driver Rule 54-15(g) Chapter 54 - Drivers of Taxicabs and Street Hail Liveries 

of the N Y C 

„The maximum amount of passengers allowed in a yellow taxicab by law is four (4) in a 

four (4) passenger taxicab or five (5) passengers in a five (5) passenger taxicab, except 

that an additional passenger must be accepted if such passenger is under the age of seven 

(7) and is held on the lap of an adult passenger seated in the rear." 

(rule_book_current_chapter_54.pdf, 2016) 

• Trip distance which is higher than 100 miles (aprox. 161 km and lower than 0 km). 

This number is based on the capacity of the full tank of Ford Crown Victoria. This 
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is the most popular car used by the yellow taxi in the New York city. 

(tankonempty.com, n.d.) 

• Amount of fare paid which is going to be higher than 1,000 U S D and again lower 

than 0. 

• VendorlD wi l l equal 1 or 2 based on the data dictonary (1= Creative Mobi le 

Technologies, L L C ; 2= VeriFone Inc.) 

• Pickup datetime and dropoff datetime, Congestion surcharge, Airport fee, M T A 

tax, Tip amount and Extra not equal N a N 

• RatecodelD equal of these values: 

(1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare or 

6=Group ride) 

It is important to mention that eventhough this column is going to be deleted, still 

we need to be sure that trip records are withing those RatecodelDs. 

• Payment type wi l l equal only 1 = Cash or 2 = Credit. A s we are intrested only in 

trips which had some reward at the end. 

• Store and forward flag equal either Y = store and forward trip or N = not a store and 

forward trip. A s well as in prepvous RatecodelD, it w i l l be required to ensure that 

trips with flags Y or N are presented. 

• Drop-off and pickup locations do not equal nothing. It is very important filter as it 

unselects those rows that might cause problem for Rewards(R) and States(S) and 

matricies. 

Descriptive statistics analysis wi l l be added for below columns: 

• PULocationID and DOLocationID - To find the most and the least frequent pickup 

and dropoff locations based on the LocationlDs, DOLocationlDs and maps 

provided by the N Y C website. 

• Median, mean and standard deviation of fare and trip distance 

• Most common passengers count and peak and off-peak pickup hours. 

• Locations with the highest and the lowest average fares. 

To peform all stated above, this code is going to be used: . A s it is very long code with 

many lines, it w i l l be saved in the Appendix chapter. 

After running the code, we get results where: 

1) Number of rows decreased to 35,382,775 (the code deleted 4,273,323 rows with 

biased data) and columns were decreased to 16. 
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2) Fare Median: 10.0 U S D . The half of fares in this dataset are less than or equal to 10 

U S D and in the same time the other half is greater than or equal to 10 U S D . This is 

a measure of central tendency that is not so strong affected by extreme values than 

the mean (average). 

Fare Mean: 14.570745718502842 U S D . It is a measure of central tendency that 

provides an insight on what can be typical fare amount for a taxi trip in my dataset. 

But in the same time, it's important to write that the mean can be strongly 

influenced by extreme values. Thats why it's important to take into account other 

measures such as the median and the standard deviation. 

Fare Standard Deviation: 13.269421581000914 U S D . This measure indicates the 

dispersion of fare values from the mean. A high standard deviation means that the 

fare values are more spread out, while a low standard deviation implies that the fare 

values are closely clustered around the mean. In other words, the high standard 

deviation indicates a wide range of fares, whereas the low standard deviation 

suggests a narrow range of fare amounts. In this dataset, the standard deviation is 

13.3 U S D , which is lower than the average, indicating that fares can significantly 

deviate from the average fare amount. 

3) Peak pickup hour: 18:00 

Off-peak pickup hour: 04:00 

4) Most common passenger count: 1.0 

5) Distance Median: 1.9 miles. The half of the trip distance miles in this dataset are 

less than or equal to 1.9 miles (around 3km) and in the same time the other half is 

greater than or equal to 1.9 miles. This is a measure of central tendency that is not 

so strong affected by extreme values than the mean (average). 

Distance Mean: 3.5172710735661736 miles (around 5.6 km) 

Distance Standard Deviation: 4.469920397754627 miles. In this dataset, the 

standard deviation is 4.47 miles (around 7.3 km), which is higher than the mean, 

indicating that trip distances are more spread out. 

6) Popular pickup location: Zone 132 - J F K Airport based on the T L C Taxi zones, 

zone 132 idicates that most popular borough is Queens, which is the borough of the 

New York City. JFK(John F. Kennedy International Airport) is in the top 10 of the 

largest and the busiest airports in the U S . (Fubra Limited, n.d.) 
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Unpopular pickup location: Zone 84 - Eltingville/Annadale/Prince's Bay based on 

the T L C Taxi zones, zone 84 idicates that least popular pickup borough is Staten 

Island. This is the least populated part of the New York City, (nyc.gov, 2018) 

7) Popular dropoff location: Zone 236 - Upper East Side North Based on the T L C 

Taxi zones, zone 236 idicates that most popular dropoff borough is Manhattan. This 

is also the most populated and famous part of the New-York City. 

Unpopular dropoff location: Zone 99 - Freshkills Park based on the T L C Taxi 

zones, zone 99 idicates that least popular dropoff borough is again Staten Island, 

the least populated part of New York City, (nyc.gov, 2018) 

8) Drop off and pickup locations with the highest average fare: (215 - South Jamaica -

Queens and 135 - K e w Gardens Hi l l s - Queens) This indicates the pair of pickup 

and dropoff locations with the higest average fare. 

Drop off and pickup locations with the lowest average fare: (9 - Auburndal -

Queens and 98 - Fresh Meadows - Queens) This indicates the pair of pickup and 

dropoff locations with the lowest average fare. 

Problem definition 

After cleaning and processing data, we can finally start with formulating the vacant taxi 

problem in M D P . For this purpose, it is required firstly to define the goal of the agent. The 

main objective that the agent (the taxi driver in our case) wants to determine the optimal 

route that maximizes profits and at the same reducing the overall operational costs for 

company (This objective aligns with the M D P formulation of the agent's main goal, as 

discussed in the previous chapter about Markov Decision Processes (MDP)) 

Markov Decision Process (MDP) components 

N o w lets define the components of Markov Decisions Processes (MDP) : 

• States-(S): Depending on the city area, it w i l l be divided into discrete zones. These 

zones wi l l represent states in the M D P model. We can use drop-off and pickup 

locations directly as states, such method can increase precision of routing decisions 

(due to granularity of the model). However, it can also significantly increase the 

complexity of the M D P model and the overall computation time. For large 
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datasets, the geographical coordinates or K-means clustering algorithm can be used 

that allow to create zones based on pickup and drop-off locations. It w i l l be decided 

based on the size of the dataset and its complexity. If there is already setup location 

IDs or some kind of mapping in a dataset, we wi l l be able to use such opportunity 

as it assists us in avoiding algorithms mentioned above. 

• Actions-(A): It represents set of all possible moves or decisions the agent can make 

in each state. The action set (A) wi l l be a collection of all possible movements 

among zones or staying within certain ones. To define the actions, we wi l l need at 

first to determine the adjacency relationships between the zones. This can be done 

by using a graph representation where zones are nodes and edges represent 

connections between neighbouring zones. For each zone, the set of possible actions 

would include moving to one of the neighbouring zones connected by an edge or 

staying in the current one. 

• State transitions (P) are probabilities of transitioning from one state to another 

given a specific action. To estimate these probabilities (P) for M D P model by using 

the reassigned location IDs, it wi l l be required to analyze the taxi trip data to 

determine the likelihood of transitioning from one zone to another, given a specific 

action. The transition probabilities can be influenced by various factors such as 

time of day, day of the week, traffic patterns and other external factors. 

• Rewards-(R) represents immediate reward which should be received by the agent 

for taking the specific action at the present state. Logically speaking for our agent, 

the goal can be formulated as minimizing the distance or time that the agent spends 

without the customer or the highest output the agent might get. In such way, the 

rewards could be designed to encourage reaching high-demand zones quicker or 

getting to drop-off locations with highest. 

• Discount factor-(y): A s it has been mentioned already, the discount factor is a value 

(between 0 or 1) and it defines the relative importance of future rewards in 

comparison to the immediate reward. If value goes closer to 1 the agent care more 

about future rewards instead of immediate ones. 

3 " K-means clustering is a simple unsupervised learning algorithm that is used to solve clustering problems. 

It follows a simple procedure of classifying a given data set into a number of clusters, defined by the letter 

"k," which is fixed beforehand. The clusters are then positioned as points and all observations or data points 

are associated with the nearest cluster, computed, adjusted and then the process starts over using the new 

adjustments until a desired result is reached.."This definiton was taken from techopedia.com (Rouse, 2016) 
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I. States(S) 

In case of the obtained dataset, we have two ways to express states: 

1) PULocat ionlD ( T L C Taxi Zone in which the taximeter was engaged) and 

DOLocationID ( T L C Taxi Zone in which the taximeter was engaged) can be 

used as a state in the M D P model. These locations wi l l represent the discrete 

states in the model. There is no need to perform further clustering or zone 

creation since we have the state definitions. These zones can be used as 

alternative to latitude and longitude coordinates for routing problems. 

2) We can use geospatial data that is also available from the N Y C OpenData 

website. GeoJSON file format can be used for defining states. Each zone in the 

GeoJSON file can be considered a state in the M D P . We can extract these zones 

and assign them unique identifiers. The GeoJSON file has several columns such 

as: loca t ionid , zone, borough, and geometry. Each row represents a different 

taxi zone in New York City. To define zones for a Markov Decision Process 

(MDP) , the loca t ion id can be used as a unique identifier for each zone. 

(City of New York, 2023) 

In general, both approaches have their pros and cons, however choice between them 

depends on the specific requirements and the computational power of a machine. B y using 

pickup and drop-off IDs, the state definition can be simplified, but it might lead to a high-

dimensional state space. While using GeoJSON data can offer more flexibility and 

additional geographical information however it requires preprocessing and may result in a 

more manageable state space. 

A s we have large dataset and for this reason it is better to use the original parquet file, as 

location ids can be more or less by count than in GeoJSON file. Below code wi l l take all 

unique 'PULocationlD'(pickup) and 'DOLocationlD'(dropoff) location ids, then calculate 

and print them out. 'formatted_yellow_taxi_22.parquet' is the merged parquet file which 

contains data for all 12 months of 2022 year. It was done based on the previous Code 

lPython code for P A R Q U E T datafiles merge and display 

import pandas as pd #import pandas l i b r a r y 
#define path t o parquet f i l e and read i t 
f i l e _ p a t h = ' f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' 
t a x i _ d a t a = p d . r e a d _ p a r q u e t ( f i l e _ p a t h ) 
def c a l c u l a t e _ a n d _ p r i n t _ c o u n t s ( t a x i _ d a t a ) : 
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u n i q u e _ p i c k u p _ l o c a t i o n s = t a x i _ d a t a [ ' P U L o c a t i o n I D ' ] . u n i q u e ( ) 
u n i q u e _ d r o p o f f _ l o c a t i o n s = t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) 
# C a l c u l a t e unique number of s t a t e s and a c t i o n s 

num_states = t e n ( u n i q u e _ p i c k u p _ l o c a t i o n s ) # Number of unique 
pickup l o c a t i o n s 

num_actions = t e n ( u n i q u e _ d r o p o f f _ l o c a t i o n s ) # Number of unique 
d r o p - o f f l o c a t i o n s 

# P r i n t the f i n d i n g s 
p r i n t ( f " C o u n t of unique PULocationID ( s t a t e s ) : {num_states}") 
p r i n t ( f " C o u n t of unique DOLocationID ( a c t i o n s ) : {num_actions}") 
r e t u r n num_states, num_actions 

# p r i n t the r e s u l t 
c a l c u l a t e _ a n d _ p r i n t _ c o u n t s ( t a x i _ d a t a ) 
Code 2 States and Actions 

Result of the executed code down below: 

Count of unique PULocationID (states): 261 

Count of unique DOLocationID (actions): 261 

So, for all unique IDs in our dataset we have only 261. This list is slightly less, compared 

with Taxi Zone lookup dictionary, which has been published on the N Y C Open data 

website (City of New York, 2023) This step is important as it allows to filter out rows with 

inconsistencies which may cause troubles in the future when the M D P model is going to be 

built. 

II. Actions(A) 

For 261 States we are going to have 261 Actions, it makes sense because the taxi can move 

to a close by zone or to completely different zone within the New-York city. This action 

might be taken as a response to a higher demand or probably better fares in another area. 

The decision could be based on known patterns of demand, time and day or some special 

events which might happen in the New-York city. Based on the states already provided and 

the below for Actions, it has been calculated that total number of states is going to be 261. 

The total number of states are closely connected with the states. In this case i f we take pair 

of pickup and drop-off locations, it w i l l create 261 actions. This model w i l l reflect more 

realistic/precise view as the taxi can move within same borough and it w i l l make easier 

interpretation of policy. 
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III. State transitions (P) 

Empirical data provided by N Y C Taxi website can be used in calculation of probabilities. 

This data wi l l be useful in providing insight into how often taxis move among zones. The 

data has been already cleaned and prepared before so we can go on with creating 

Transition Matrix 4 . 

A t first, it wi l l be required to calculate transition counts and normalize those counts to 

probabilities (we should not forget about importing libraries like numpy and pandas): 

# Load l i b r a r i e s 
import pandas as pd 
import numpy as np 
# Load the Parquet f i l e 
t a x i _ d a t a = 
p d . r e a d _ p a r q u e t ( ' y e l l o w / f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' ) 
# E x t r a c t i n g a l l unique l o c a t i o n IDs from the dataframe 
u n i q u e _ l o c a t i o n s = p d . u n i q u e ( t a x i _ d a t a [ [ ' P U L o c a t i o n I D ' , 
' D O L o c a t i o n l D ' ] ] . v a l u e s . r a v e l ( ' K ' ) ) 
# Creates the d i c t i o n a r y w i t h a l l unique l o c a t i o n IDs from the 
dataframe 
l o c a t i o n _ t o _ i n d e x = { l o c _ i d : index f o r index, l o c _ i d i n 
en u m e r a t e ( u n i q u e _ l o c a t i o n s ) } 
Then we can start slowly building the transition matrix. The matrix is going to be 2 

dimensional as agreed previously. After setting up dimensions we can continue with 

counting transitions and grouping. 

# Set up t r a n s i t i o n m a t r i x w i t h 2 dimensions 
num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 
# i n i t i a l i z e s the t r a n s i t i o n m a t r i x w i t h dimensions num_locations 
t r a n s i t i o n _ m a t r i x = n p . z e r o s ( ( n u m _ l o c a t i o n s , n u m _ l o c a t i o n s ) ) 
# Group by PULocationID and DOLocationlD and count t r a n s i t i o n s 
t r a n s i t i o n _ c o u n t s = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 
'DOLoc a t i o n l D ' ] ) . s i z e ( ) . r e s e t _ i n d e x ( n a m e = ' c o u n t ' ) 

Final steps wi l l be populating transition matrix with data arrays, normalizing in order to get 

probabilities, replacing NaNs with uniform distribution and finally validating the matrix 

for stochasticity. NaNs are created by missing outbound transitions that divided by 0. After 

this 1.0 / num_locations value are assigned to these NaNs values. 

# Populate the t r a n s i t i o n m a t r i x 
4 In the context of MDP, Transition Matrix is used to describe the probabilities of moving from one state to 

another on the given action. It is a square matrix where each element stands for probability of transition, 

while row of matrix represents current state and column represents possible next state. Transition matrix gets 

probabilistic nature of state transition. (Wong, 2018) 
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f o r _, row i n t r a n s i t i o n _ c o u n t s . i t e r r o w s ( ) : 
pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
t r a n s i t i o n _ m a t r i x [ p u _ i n d e x , do_index] = row['count'] 

# Normalize the m a t r i x t o get p r o b a b i l i t i e s by c o n v e r t i n g counts i n t o 
p r o b a b i l i t i e s of t r a n s i t i o n i n g from one l o c a t i o n t o another and then 
i n s u r e s t h a t each row and then i n s u r e s t h a t each row sum equals 1 
t r a n s i t i o n _ m a t r i x = np. d i v i d e ( t r a n s i t i o n j n a t r i x , 
t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , keepdims=True), 

o u t = n p . z e r o s _ l i k e ( t r a n s i t i o n _ m a t r i x ) , 
w h e r e = t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , 

keepdims=True) != 0) 

# Replace nans w i t h uniform d i s t r i b u t i o n 
t r a n s i t i o n j n a t r i x = n p . n a n _ t o _ n u m ( t r a n s i t i o n _ m a t r i x , nan=l.Q / 
num_locations) 

# V a l i d a t e the m a t r i x and p r i n t i f i t i s s t o c h a s t i c or not 
i f n p . a l l c l o s e ( t r a n s i t i o n j n a t r i x . s u m ( a x i s = l ) , 1): 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s s t o c h a s t i c " ) 
e l s e : 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s not s t o c h a s t i c " ) 

Finally, the code validates the matrix and prints i f the transition matrix is stochastic or not. 

We need to be sure that all included transition matrices are stochastic. Stochastic transition 

probability matrix indicates that type of matrix where each row sums to 1. It means that for 

each state the probabilities of transitioning to all possible states (by taking certain actions) 

must sum up to 1. (Gupta, 2018) Ful l code is in the Appendix chapter Code 4 Transition 

matrix. 

It is very important to check the quality of state transition matrices. The result of the above 

code is the transition code is stochastic. 

A s all transition matrices in my model are stochastic (sum up to 1 at every row), it is going 

to be easy to move to the next steps. Non-stochasticity can have huge impact on the 

behavior and convergence of the reinforcement learning algorithms (like Value and Policy 

Iterations and model-free algorithms like Q-Learning and S A R S A ) 

Cleaning data from possible empty rows or anomalies partially help to achieve the 

stochasticity however the additional checking was required. Anomalies can be caused by 

underlying issues in the raw data that aren't addressed by applied filters during data 

preparation. Such as: 
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• Socioeconomic factors: Level of poverty, crime rate etc. A l l these factors might 

make some destinations or pickup locations less desirable with time. 

• Geographical factors and unforeseen events: Roads closure, special events, traffic 

light system failures etc These factors might affect the trip distance, costs etc 

• Data collection issues: Errors or limitations during collecting trip data. Here 

it is important to mention one of the data variables in the dictionary 

s t o r e a n d f w d f l a g . It means i f the trip data record was kept in the taxi car 

memory before sending to the vendor, aka "store and forward," due to 

absence of connection between the vehicle and server. Some data records 

might never reached server due to connection or other issues. Or the records 

might reached the server but some of data could be lost during restoring 

connection between the vehicle and the server. 

• COVTD-19 pandemic had significant effect not only on the traffic patterns 

but also on our lives in general. Traffic patterns were changed due to 

lockdowns and other restrictions during the pandemic. Reduced 

transportation services provided by taxi and public transport providers. 

Changes in the travel behavior, prohibitions of mass gathering and complete 

chaning of leisure and daily livestyles. These and many other facts can be 

added to the pandemic effect on the traffic. 

A l l above points can have very signifcant impact on the quality of the raw data and 

these factors are out of someone's control. These built-in limitations should be 

treated accordingly and accepted as uncertainly. For these reason we have 

implemented the normalization process of transitioning so that each row at the end 

gives sum of 1. 

IV. Rewards(R) 

Defining reward structure in M D P is one of crucial parts as it specifies goals of the whole 

M D P . It indicates what the taxi driver must aim at or avoid in the environment. It is the 

core of guiding the agent (the taxi driver) in decision-making processes towards achieving 

the needed outcome. Logically these factors should be included in the matrix: 

• Fare amount/total amount - More amount gained means more profit hence reward. 

• Trip distance - Length of trips might be focused on longer or less distance, 

depending on the business model of course. 
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• Idle time - Decreasing time without any client can be a priority but not often. 

• Expenses like charges etc wi l l result in providing clearer overview on the net 

reward for the agent. 

These data fields wi l l be included as they are related to fare, expenses, distance and time. 

Based on Data dictionary stated in Data Analysis part of this work we wi l l include below 

data fields: 

Field Name Description 

tpeppickupdatetime The date and time when the meter was engaged. 

tpepdropoffdatetime The date and time when the meter was disengaged. 

Tripdistance The elapsed trip distance in miles reported by the taximeter. 

Totalamount The total amount charged to passengers. Does not include cash 
tips. 

Extra Miscellaneous extras and surcharges. Currently, this only 
includes 
the $0.50 and $1 rush hour and overnight charges. 

M T A tax $0.50 M T A tax that is automatically triggered based on the 
metered 
rate in use. 

Tipamount Tip amount - This field is automatically populated for credit card 
tips. Cash tips are not included. 

Tollsamount Total amount of all tolls paid in trip. 

Totalamount The total amount charged to passengers. Does not include cash 
tips. 

CongestionSurcharge Total amount collected in trip for N Y S congestion surcharge. 

Airportfee $1.25 for pick up only at LaGuardia and John F. Kennedy 
Airports 

Now, we need to select a reward approach, which is a bit tricky, as we are faced with a 

trade-off between simplicity and realism, involving the capture and balance of various 

aspects. 

In the case of a simple approach, the reward is directly proportional to the Tota lAmount 

(fare amount + tip). It is a straightforward approach to implement and easy to understand. 

Taxi drivers receive a reward directly linked to their earnings, aligning with their primary 

objective. Additionally, taxi drivers can easily grasp how their actions can impact their 

rewards, leading to more predictable behavior. However, such an approach has its 

limitations. Firstly, it narrows the focus only to the total fare amount, simultaneously 
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ignoring other factors like customer satisfaction, expenese and efficiency. Furthermore, it 

can lead to an imbalance in the decision-making process. 

A more realistic or balanced approach includes multiple factors, ensuring that no single 

factor dominates. The balanced approach is more comprehensive as it allows the capture of 

a broader range of factors that can influence the agent's behavior, such as trip time and 

distance, additional costs and charges etc. It normalizes factors, preventing a single 

objective from overshadowing others, ultimately leading to more balanced decision

making by the taxi drivers. 

In our case, we are going use the more realistic approach. Also, we do not have data that 

might somehow provide information on customer satisfaction (Tipamount has already 

been included in Totalamount, so it does not make sense and tips do not always indicate 

customer satisfaction) In the U S tipping is very common and clients most often provide 

tips automatically. 

Lets go to set the constant (airport fee) and set airport zone location Ids, then again getting 

the unique location ids(from pickup and dropoff) with creating dictionary that maps 

location Ids and the corresponding indices. 

#import l i b r a r i e s 
import numpy as np 
import pandas as pd 
#define the path 
f i l e _ p a t h = ' f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t i 
t a x i _ d a t a = p d . r e a d _ p a r q u e t ( f i l e _ p a t h ) 
def c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) : 

# S e t t i n g c o n s t a n t s f o r a i r p o r t l o c a t i o n s and fee 
JFK_AIRPORT_ID = 132 
LAGUARDIA_AIRPORT_ID = 138 
AIRPORT_FEE =1.25 
# Get a l l unique l o c a t i o n IDs from both PULocationID and 

DOLocationID 
a l l _ l o c a t i o n s = n p . u n i o n l d ( t a x i _ d a t a [ ' PULocationlD'] .unique(), 

t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) ) 
a l l _ l o c a t i o n s . s o r t ( ) # Sort f o r c o n s i s t e n t i n d e x i n g 
# Map l o c a t i o n IDs t o i n d i c e s i n the m a t r i x 

l o c a t i o n _ t o _ i n d e x = { l o c : i d x f o r i d x , l o c i n 
e n u m e r a t e ( a l l _ l o c a t i o n s ) } 
After that we can initialize the reward matrix as the square one (with number of states). 

Calculation of net rewards wi l l be based on the net reward for each taxi trip by subtracting 

expenses such as: 'extra', 'mtatax', and 'congestionsurcharge' charges from the total fare 

amount totalamount. It wi l l gives us what the taxi gets net after getting rid of all required 
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expenses. For those locations that belong to Airport Ids, we are going to adjust for the 

airport fee. The code adjusts the net rewards for each trip that is ending at J F K Airport or 

LaGuardia Airport by subtracting the airport fee. 

# I n i t i a l i z e the reward m a t r i x 
num_states = l e n ( a l l _ l o c a t i o n s ) 
reward_matrix = np.zeros((num_states, num_states)) 
# C a l c u l a t e net rewards 

t a x i _ d a t a [ ' n e t _ r e w a r d ' ] = t a x i _ d a t a [ ' t o t a l _ a m o u n t ' ] 
t a x i _ d a t a [ ' e x t r a ' ] - t a x i _ d a t a [ ' m t a _ t a x ' ] 
t a x i _ d a t a [ ' c o n g e s t i o n _ s u rcharge'] 

# A d j u s t i n g f o r a i r p o r t fee 
t a x i _ d a t a . l o c [ t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . i s i n ( [ J F K _ A I R P O R T _ I D , 

LAGUARDIA AIRPORT I D ] ) , 'net reward'] -= AIRPORT FEE 
Next step is adjusting reward by trip distance, ensures that the distance factor is considered 

when calculating rewards for taxi trips. It provides us more accurate modeling of earnings 

in case where longer trips are rewarded in a appropriate way in comparison to shorter ones. 

We calculate the adjusted reward by multiplying the net reward (calculated previously) and 

' t r i p d i stance'. 

# Ad j u s t the reward by t r i p d i s t a n c e 
t a x i _ d a t a [ ' a d j u s t e d _ r e w a r d ' ] = t a x i _ d a t a [ ' n e t _ r e w a r d ' ] 

t a x i _ d a t a [ ' t r i p d i s t a n c e ' ] 
Later the code aggregates rewards. It is required cause of the purpose to consolidate 

information about the financial results connected with different routes or state transitions. 

It can allow us assess pairs of state vs action and which of them are more profitable than 

others. Aggregating rewards is important in the reinforcement learning, where agents learn 

to make decisions by maximizing cumulative rewards over some period of time time. The 

aggregated rewards help us to determine the desirability of different state-action pairs for 

the agents. The code aggregates the adjusted rewards for each unique state-action pair, 

where a state-action pair is defined by 'PULocationlD' and 'DOLocationID'. 

# Aggregate rewards f o r each s t a t e - a c t i o n p a i r 
aggregated_rewards = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n l D ' , 

'DOLocationID'])['adj u s t e d r e w a r d ' ] . s u m ( ) . r e s e t _ i n d e x ( ) 
The rest part of the code iterates through Aggregated rewards and populates the Reward 

matrix with adjusted rewards for each pair of state and action. Then to be sure that that our 

reward values are within a reasonable range, the matrix is going to be normalized. It wi l l 

be divided by the total number of taxi trips. It should be done in order to prevent very large 

values in the matrix. Then the reward matrix wi l l be printed. 
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r e w a r d j n a t r i x /= t a x i _ d a t a . s h a p e [ 0 ] 
r e t u r n r e w a r d j n a t r i x 

reward_matrix = c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) 
# p r i n t i n g reward m a t r i x 
p r i n t ( r e w a r d j n a t r i x ) 
The full code for the reward matrix can be found here: Code 5 Reward matrix 

V. Discount factor(y) 

The final step wi l l be adding the discount factor. Once it is done, we can construct the 

M D P model. Discount factor is very important, especially in this scenario when future 

rewards need to be weighted differently compared to immediate rewards. The discount 

factor, denoted as y (gamma). It can range from 0 to 1 and serves as balance and brings the 

importance of immediate versus future rewards. 

If the discount factor equals 0, the taxi driver w i l l prioritize immediate rewards over future 

ones. In case the discount factor equals 1, the agent (the taxi driver) wi l l give priority only 

to future rewards and ignore immediate ones. In the real-world situation, the discount 

factor should be included in the M D P model. For this reason, we need update the reward 

matrix so that the discount factor y (gamma) be added. Quite often y (gamma) is set up to 

0.9 ( Q U O R A , n.d.) However in this model, we are going to use 3 values of the discount 

factor. It wi l l be equal 0.1, 0.5 (middle between choosing future or immediate rewards) and 

0.9 as by using different discount factors we can see i f the optimal policy is sensible to the 

discount factor or not. When the discount factor equals 0.1, it means that the agent strongly 

neglects the future rewards. Under this condition the taxi driver (the agent) is very focused 

on getting the immediate reward, it can be useful environments with an high uncertainly as 

the agent's goals are short-term based and always immediate. 

However, when y (gamma) equals 0.5, it can be viewed as so called balanced approach. A s 

the agent is going to value future rewards more careful compared to immediate rewards. 

This condition can be often used in environments where we have a certain mix of short-

term and long-term factors. 

Lastly when gamma equals 0.9 (relatively high), it indicates that the agent strongly 

emphasis the future reward. In such an environment the agent concern with the long-term 

consequences and planning. It is suitable for the environment with stability and the long-

term planning when the agent plans in the long-term perspective. 
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It is enough to set up the gamma in the M D P solver itself. This wi l l be shown later in the 

M D P construction chapter. 

( S A L L O U M , Basics of Reinforcement Learning, the Easy Way, 2018) 

Construction of Markov Decision Process (MDP) for routing taxi 

Before constructing the whole M D P code it wi l l be a good idea to create pseudo code to 

see and understand how M D P components (that have been set up before) are connected 

and used together. It is also important to highlight that mdptoolbox library in Python can 

provide all necessary algorithms for solving M D P . To refresh our memory here is the short 

list of algorithms that this library contains: 

• Value Iteration algorithm wi l l iteratively update the value function until it wi l l 

convergence. Value Iteration computes the optimal value function and then based 

on this value it is going to derive the policy. 

• Policy Iteration algorithm alternates between policy evaluation and policy 

improvement steps. It tries to find the optimal policy by constantly improving the 

present policy until its convergence. 

• Modified Policy Iteration algorithm is subtype of Policy Iteration which combines 

elements of both Value Iteration and Policy Iteration to get faster convergence. 

• Q-Learning algorithm as has been stated in previous chapters, it learns the optimal 

action-value (Q-value) function by exploration and exploitation. It is often used for 

M D P s when we do not know the transition model. 

• Relative Value Iteration algorithm is another subtype of Value iteration algorithm 

which can estimate the state values relative to the best state value. This can be often 

used in situations when the actual state values are not so important. 

• Linear Programming algorithm as stated in its name solves M D P as linear 

programming problems. B y the way this type of algorithm is useful for large-scale 

M D P . 

This library also contains the model-free reinforcement learning algorithms like S A R S A 

(State-Action-Reward-State-Action). (Cordwell, 2015) (sourceforge, 2016) 

This library wi l l help in trying different algorithms which have been stated in the 

beginning of the thesis. 
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Pseudocode of MDP structure in python code 

Below is the pseudocode for the M D P , it should be noted that line 21 (Run Policy Iteration 

to find the optimal policy for the M D P ) does not mean that this pseudocode only for this 

type of algorithm. Other algorithms wi l l be put there as well. 

1 ff Pseudo code f o r solving IOP with P o l i c y I t e r a t i o n f o r d i f f e r e n t discount factors 
2 # Step 1: Load Taxi Data and Calculate Transition P r o b a b i l i t i e s 
3 Load t a x i data 
4 Hap locat i o n IDs to indices 
5 I n i t i a l i z e t r a n s i t i o n matrix 
6 Group and count t r a n s i t i o n s 
7 Populate and normalize the t r a n s i t i o n matrix 

Handle NaNs 
9 # Step 2: Calculate Rewards 

IB Define constants 
11 Hap locat i o n IDs to indices 
12 I n i t i a l i z e reward matrix 
_] Calculate net rewards 
14 Adjust f o r a i r p o r t fee 
15 Adjust rewards by t r i p distance 
16 Aggregate rewards f o r state-action pairs 
17 Normalize the reward matrix 
18 # Step 3: Solve M3P with Different Discount Factors 
19 v For each discount f a c t o r : 

Create an HDP solver with the given discount f a c t o r , t r a n s i t i o n matrix, and reward matrix 
21 Run Po l i c y I t e r a t i o n to f i n d the optimal policy f o r the MDP 

Extract and store the optimal p o l i c y 
2 3 # Step 4: Compare Optimal P o l i c i e s 
2A Compare optimal p o l i c i e s f o r d i f f e r e n t discount factors 
25 # P r i n t the comparison r e s u l t s 
26 P r i n t whether optimal p o l i c i e s f o r d i f f e r e n t discount f a c t o r s are equal or not 

Figure 6 Pseudocode for the MDP solver 

To use mdptoolbox we need to install pymdptoolbox via Command Prompt (pip install 

mdptoolbox). After that we can use mdptoolbox in python. This toolbox has already M D P 

solvers like Policy Iteration, Q-learning and Value Iteration. It can be changed to different 

name of the solver at the end of the code. 

If we look on the overall structure, it w i l l make more sense. Lets review the general 

structure of the M D P model in python: 

•S Import all necessary libraries and load the data 

•S State the transition matrix defined before and check i f it is stochastic 

•S State the reward matrix defined before 

•S Use M D P toolbox to execute the algorithms with different discount factors and the 

above matrices 

•S Print and compare the results 
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I. Value iteration algorithm for MDP 

The final code was created and located in the Appendix of this work Code 6 Value 

Iteration for M D P . However, it is important to mention a couple of details which have been 

added to the transition matrix part. 

Below lines of code were added with the purpose of insuring that the transition matrix is 

going to be 3 dimensional. It is a requirement for mdptoolbox and originates in the nature 

of the M D P itself. The nature of the 3D dimensions can be explained by looking on its 

structure. The first dimension of the 3D matrix equals each possible action while the 

second and the third dimensions are the transition probabilities from each single state to 

every other one under a specific action. In matrix below the first dimension is the same as 

the action due to nature of the environment and the problem. 

# I n i t i a l i z e 3D t r a n s i t i o n m a t r i x 
num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 
t r a n s i t i o n _ m a t r i x _ 3 d = n p . z e r o s ( ( n u m _ l o c a t i o n s , num_locations, 
n u m _ l o c a t i o n s ) ) 

# Populate the 3D t r a n s i t i o n m a t r i x 
f o r i i n rang e ( n u m _ l o c a t i o n s ) : 

t r a n s i t i o n _ m a t r i x _ 3 d [ i , :, :] = t r a n s i t i o n m a t r i x 
In the vacant taxi problem, each location represents a state and driving to another location 

is a different action. It can happen that transition probabilities are the same for different 

actions however this format is required to fit the M D P framework where we have actions 

that are explicitly considered. 

Below are results of the code execution: 

Optimal Policy discount factor 0.9, 0.5 and 0.1 (they are identical): 

(0, 244, 128, 128, 4, 0, 128, 260, 260, 260, 260, 128, 128, 260, 260, 159, 128, 260, 260, 

260, 260, 260, 260, 128, 128, 260, 182, 260, 260, 67, 260, 0, 128, 0, 260, 67, 260, 260, 

260, 128, 128, 128, 128, 211, 128, 136, 100, 128, 260, 128, 260, 128, 260, 53, 260, 225, 

260, 166, 249, 260, 128, 128, 220, 260, 128, 128, 260, 128, 128, 260, 128, 128, 234, 128, 

128, 260, 123, 147, 128, 128, 80, 225, 128, 234, 84, 96, 128, 128, 88, 128, 128, 260, 260, 

260, 128, 260, 128, 260, 260, 128, 260, 128, 259, 128, 128, 260, 41, 136, 128, 128, 128, 0, 

128, 225, 128, 260, 260, 260, 260, 231, 260, 128, 260, 128, 259, 260, 260, 260, 260, 260, 

128, 260, 211, 128, 260, 260, 128, 128, 128, 128, 128, 128, 128, 128, 128, 260, 260, 128, 

128, 260, 260, 260, 260, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 260, 260, 

128, 260, 168, 260, 128, 260, 73, 260, 198, 128, 260, 128, 260, 179, 260, 128, 128, 41, 
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260, 128, 134, 260, 260, 189, 260, 128, 128, 128, 260, 160, 47, 128, 260, 134, 6, 231, 260, 

260, 128, 205, 128, 207, 260, 128, 260, 260, 128, 260, 260, 260, 260, 260, 260, 128, 220, 

128, 128, 128, 128, 128, 128, 128, 128, 128, 260, 128, 128, 128, 128, 260, 260, 260, 260, 

260, 10, 128, 260, 260, 128, 128, 260, 260, 260, 128, 128, 128, 252, 128, 13, 260, 128, 

128, 128, 259, 260) 

Optimal policies for discount factors 0.9 and 0.5 are equal. 

Optimal policies for discount factors 0.9 and 0.1 are equal. 

Optimal policies for discount factors 0.5 and 0.1 are equal. 

A s we can see discount factor did not play a significant role at all. To understand possible 

reasons and get answers we wi l l need to go to the Results and Discussion 

Meanwhile let's make the final code even simpler and save optimal policies for each 

discount factor and 3 algorithms (Value and Policy iterations and Q-learning). It is 

important to mention that mdp solver is not designed for S A R S A algorithm, for this reason 

the final code wi l l be edited again (this w i l l be shown later in the next chapters). 

II. Policy iteration and Q-learning algorithms for MDP 

Below lines of code were added to the main Code 6 Value Iteration for M D P code This 

wi l l help to save time and effort in analysing optimal policies. 

We wi l l need to define 5 functions to run, save, print and compare policies 

Below functions define mdp solver by 4 arguments 2 one which are not going to be 

changed (reward and transition matrices) and save them separately with npy extension. 

Then each policy wi l l be printed separately 

# D e f i n e f u n c t i o n mdp s o l v e r by 4 arguments 
def r u n _ m d p _ s o l v e r ( s o l v e r , t r a n s i t i o n _ m a t r i x , r eward_mat r ix , 
d i s c o u n t _ f a c t o r ) : 

mdp_solver = s o l v e r ( t r a n s i t i o n _ m a t r i x , r eward_mat r ix , 
d i s c o u n t _ f a c t o r ) 

m d p _ s o l v e r . r u n ( ) 
r e t u r n m d p _ s o l v e r . p o l i c y 

# F u n c t i o n t o save the p o l i c i e s 
def s a v e _ p o l i c y ( p o l i c y , f i l ename) : 

n p . s a v e ( f i l e n a m e , p o l i c y ) 
p r i n t ( f " S a v e d p o l i c y t o { f i l e n a m e } . n p y " ) 

# F u n c t i o n t o p r i n t the p o l i c i e s 
def p r i n t _ p o l i c y ( p o l i c y , d e s c r i p t i o n ) : 
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p r i n t ( f " { d e s c r i p t i o n } : { p o l i c y } " ) 
Below function compares the policies by iterating through each unique pair using nested 

loops. It checks i f all corresponding elements are equal by using the all() function. After 

that it stores the results in a dictionary (as True or False). The next function prints out the 

results (whether optimal policies are equal or not) 

# Function t o compare the p o l i c i e s 
def c o m p a r e _ p o l i c i e s ( * p o l i c i e s ) : 

c o m p a r i s o n _ r e s u l t s = {} 
f o r i i n r a n g e ( l e n ( p o l i c i e s ) ) : 

f o r j i n r a n g e ( i + 1, l e n ( p o l i c i e s ) ) : 
c o m p a r i s o n _ r e s u l t s [ ( i , j ) ] = a l l ( p i == p2 f o r p i , p2 i n 

z i p ( p o l i c i e s [ i ] , p o l i c i e s [ j ] ) ) 
r e t u r n c o m p a r i s o n _ r e s u l t s 

# Function t o p r i n t comparison of the p o l i c i e s 
def p r i n t _ c o m p a r i s o n _ r e s u l t s ( c o m p a r i s o n _ r e s u l t s ) : 

f o r ( i , j ) , r e s u l t i n c o m p a r i s o n _ r e s u l t s . i t e m s ( ) : 
i f r e s u l t : 

p r i n t ( f " O p t i m a l p o l i c i e s f o r i n s t a n c e s { i } and {]} are 
equal.") 

e l s e : 
p r i n t ( f " O p t i m a l p o l i c i e s f o r i n s t a n c e s { i } and {]} are 

not equal.") 
This is final Code 7 Final M D P code to run Value, Policy iterations and Q-learning with 

above additions and changes. 

III. SARSA algorithm for MDP 

S A R S A algorithm does not exist in the mdp toolbox library, however there are couple of 

ways how we can build S A R S A for M D P . One of the easiest ways is going to be setup it 

separately in python file and then call it in the final code. A s there are transition and 

reward matrices, we can copy paste them in the final code for S A R S A algorithm and 

define only S A R S A itself. 

This Code 10 S A R S A was designed to calculate optimal policies for multiple gamma and 

alpha (learning rate) values and with steps per episode that equal 1000. 

f o r _ i n range(lQQQ): # L i m i t number of steps per episode 
t i l l 1000 

alphas = [0.1, 0.5, 0.9] # Set up d i f f e r e n t l e a r n i n g r a t e s 
gammas = [0.1, 0.5, 0.9] # Set up d i f f e r e n t d i s c o u n t f a c t o r s 
episodes = 1000 
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It is important to note that neither the reward matrix nor the transition one being used in Q-

learning or S A R S A algorithms directly. These matrices are used more like the state-action 

space setup for further learning process which is going to take place later. 

IV. Visualization 

It w i l l be nice to have some visual understanding of the outcome. Optimal policies can be 

shown in couple of ways such as: 

1) Table - it is an easy and simple way to present optimal policies with smaller 

number of actions and state. Unfortunately, it w i l l not be useful in case of 261 

records. However usage of pivot table is going to be useful as it can show us which 

states are predominant. 

2) Graph or bar chart can be useful in our case as it is very suitable for routes and 

locations. It w i l l draw directed edges from state to state represented by its optimal 

action. This code Code 8 Bar chart for optimal policy wi l l do the representation of 

the bar chart. 

3) Heatmaps can arrange actions and states in a grid-like structure. Each cell in the 

heatmap wi l l mean a state and the colour represents the preferred action. However, 

in our case we have 261 action and 261 states, it wi l l be better i f clustering takes 

place. The clustering helps to present data in more sensible way as for number of 

clusters we can take number of total boroughs in New-York city. Such approach 

simplifies by significantly reducing the number of unique states to a more 

manageable level. It also allows to observe the policy's high-level strategies for 

specific geographic regions. Finally, it simply provides generalization based on the 

common factor which can be applied to each state. Totally there are 6 boroughs in 

the city. This code performs heatmapping with clusters Code 9 Heatmapping with 

clusters 
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5 Results and Discussion 

Possible limitation of the research 

Possible limitations of this research 

There are number of potential limitations which we might come across while preparing the 

master's thesis. These restrictions may include, beside others: 

Lack of data as there not so many data resources or benchmark datasets which can 

be used to validate simulation results. 

Complexity of building M D P as it can require significant calculating resources. 

The simulation environment, the performance metrics may not fully grasp all 

complexities of the real-world taxi industry and transportation system network. 

Some assumptions and simplifications can be made during the process of building 

model. This can lead to decreased or limited applicability or accuracy. 

Approaches may not be easily applicable among other transportation areas. This 

can be due to different road networks, population, some traffic patterns etc. 

Research cannot take into account for some external factors such as: weather, some 

events or political factors that can potentially affect the performance of the taxi routing 

system. 

Discussion of the results of optimal policies 

This Table 7 Policy dictionary has been created to easily navigate among different policies 

and their comparisons. 

5.1.1 Optimal policies for Value iteration 

Let's start with discussion of the results of the previous chapter where the M D P model 

provided identical policies for all 3 discount factors for Value Iteration algorithm. This can 

be explained by several factors: 

• Domination of certain states and actions in couple with the reward structure. The 

reward structure favors certain transition (more rewarding from taxi's perspective) 

and makes them the best choice for the agent regardless of the discount factor. 

• Complexity of the model or the state space that is characterized by a very large 

number of states and actions. Switching to the single policy with different discount 
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factors might indicate that our model is not sensitive to the discount factor. This is 

due to the rewards and the transitions that are modeled and the inherent 

characteristics and patterns of our taxi data. 

• Imbalance between the short- and long-term rewards where the decision-making is 

largely driven by immediate profit. The potential rewards do not play a major role 

in altering the course of action. 

• Special characteristics of the data source can make the optimal policy indifferent to 

the discount factor. Looks like the taxi data has some dominating patterns of certain 

routes, distances and these patterns could dominate the policy outcomes. It wi l l lead 

to similar policies. 

• Finally, the reason can be the rewards and the transition probabilities. This is more 

likely to be caused by the rewards and transitions that exhibit a certain uniformity. 

In our case the variation of rewards is not significant enough to provide different 

policies with given discounting factors. 

5.1.1.1.1 Visualization of Value iteration 

After running the code Code 8 Bar chart for optimal policy and Code 9 Heatmapping with 

clusters in Appendix only for Value iteration algorithm below pictures are available: 

Heatmap with 6 clusters Figure 20 Heatmap with 6 clusters for Value iteration located in 

the Appendix chapter represents the heatmap with 2 diagonals x-axis is labeled as State 

while y-axis is Cluster. Clusters 1 and 0 has patterns, they overpopulated with Actions in 

yellow and greenish colors. Let 's look on the bar chart and the pivot table in order to 

understand which Zone IDs are preferred by the agent (as optimal policy is same for all 

discount factors lets wi l l keep only one chart and heat map for this case). 

Below chart was implemented in excel with file t ax izone lookup .csv (taken from the 

official website of the N Y C (City of N e w York, 2023) B y looking on the chart, it is visible 

that most popular and rewarding borough for the taxi driver is Manhattan and Queens. 

Queens is going to have 124 destinations by the agent by following this optimal policy. 

Manhattan is going to have 109 trips which is little bit less but still in the top. E W R -

Newark Airport and Staten island boroughs are having the least number of destinations 

(equaling 5 each). Brooklyn is almost on the same level as two previous boroughs. Bronx 

is having 11 trips only and holds the 3 r d top destination borough. 
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Count of State 

Count of State by Borough of Action 
140 

124 

Figure 7 Bar chart of Optimal policy for Value Iteration with gamma 0.1,0,50,9 

Within these boroughs exist top favorable locations. In Manhattan borough, LocationID 

261 which stands for World Trade Center is having 97 of 109. Queens borough at the same 

time has LocationID 129 which stands for Jackson Heights that is having 110 out 124 trips. 

Below bar chart from the Code 8 Bar chart for optimal policy can also show the pattern of 

choosing optimal action by the agent. Based on this chart we can say that from most of the 

states (taxi zones), taxi driver w i l l prefer taking those clients whose final destinations are 

either the World Trade Center or Jackson Heights as these ones provide the highest reward. 

Optimal Policy 

Figure 8 Bar Chart for Value iteration optimal policy with discount factor (0,9, 0,5 0,1) from python code 
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5.1.2 Optimal policies for Policy iteration 

After running Code 7 Final M D P code to run Value, Policy iterations and Q-learning we 

can get the overall comparison of optimal policies among each other. 
Optimal policies for instances 0 and 1 are equal. 
Optimal policies for instances 0 and 2 are equal. 
Optimal policies for instances 0 and 3 are equal. 
Optimal policies for instances Q and 4 are equal. 
Optimal policies for instances Q and S are equal. 
Optimal policies for instances 0 and 6 are not equal. 
Optimal policies for instances 0 and 7 are not equal. 
Optimal policies for instances Q and S are not equal. 
Optimal policies for instances 1 and 2 are equal. 
Optimal policies for instances 1 and 3 are equal. 
Optimal policies for instances 1 and 4 are equal. 
Optimal policies for instances 1 and 5 are equal. 
Optimal policies for instances 1 and 6 are not equal. 
Optimal policies for instances 1 and 7 are not equal. 
Optimal policies for instances 1 and 3 are not equal. 
Optimal policies for instances 2 and 3 are equal. 
Optimal policies for instances 2 and 4 are equal. 
Optimal policies for instances 2 and S are equal. 
Optimal policies for instances 2 and 6 are not equal. 
Optimal policies for instances 2 and 7 are not equal. 
Optimal policies for instances 2 and S are not equal. 
Optimal policies for instances 3 and 4 are equal. 
Optimal policies for instances 3 and 5 are equal. 
Optimal policies for instances 3 and 6 are not equal. 
Optimal policies for instances 3 and 7 are not equal. 
Optimal policies for instances 3 and S are not equal. 
Optimal policies for instances 4 and S are equal. 
Optimal policies for instances 4 and 6 are not equal. 
Optimal policies for instances 4 and 7 are not equal. 
Optimal policies for instances 4 and S are not equal. 
Optimal policies for instances S and 6 are not equal. 
Optimal policies for instances 5 and 7 are not equal. 
Optimal policies for instances S and S are not equal. 
Optimal policies for instances 6 and 7 are not equal. 
Optimal policies for instances 6 and S are not equal. 
Optimal policies for instances 7 and 8 are not equal. 

Figure 9 Output of the Code 7 Final MDP code to run Value, Policy iterations and Q-learning 

Based on Table 7 Policy dictionary it is visible that regardless of discount factors 

optimal policies for Value and Policy iterations are identical. This is statement needs to be 

investigated to understand why these policies are identical and what can be the reason for 

it. Due policies being identical let's not provide visualization for Policy iteration optimal 

policies as you can find it in the previous chapter. 

5.1.2.1.1 Reasons for identicality of two polices 

There can be many causes of policies being equal among each other. However, our Q-

learning and S A R S A policies are neither identical between each other nor among the rest. 

This can be explained by the nature of these algorithms. Based on the previous subchapter 

Unique characteristics of reinforcement learning algorithm where we have discussed 

unique features of each algorithm, we have also touched the nature and best scenarios of its 

usage. 
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Regarding Value iteration we have defined that it is more suitable for medium datasets due 

to its structure and computationally intensity. Good knowledge of reward structure and 

transition probabilities is required to build good quality model in both Value and Policy 

iterations. In our case, we tried to use all possible factors which might have significant 

impact in the reward structure. If we look on the reward matrix chapter again 

(Rewards(R)), we wi l l see complexity which have been included in it. We have absorbed 

different expense and charges which might influence the net reward and then adjusted it by 

the trip distance to make it more realistic. 

Data quality plays not the last role in the defining optimal policies in the M D P model. 

Based on the previous chapter Data processing, data set has been cleaned out and the 

difference between original number of records and formatted one equals 4,273,323 rows. 

Eventhough we have tried to use all filters which make sense and would filter biases or 

anomalities in the data set. Still the data recording process is not free from technical issues 

or human factor. Some part of data might be incorrect or missing which can also lead to 

what we have now. It is also important to mention that this data has been recorded in the 

middle of COVI D- 19 pandemic. Certain patterns and external factors could influence the 

optimal policies. 

Another explanation can be the Vacant taxi problem itself. Our state space and actions can 

be simple for such algorithms and for any systematic approaches that want to find the 

optimal policy would give the same result. Such this might happen in environments where 

each state has oblivious optimal action. There is little variance in the value of different 

actions. Simplicity can also mean that the environment's dynamics and reward structure are 

proper and well defined and understood (which mean that the optimal policy is robust). 

The similarity of these policies can also be served as sort of validation for the correctness 

of both algorithms. In case when both methods are implemented correctly and converge to 

the same policy, it might mean more confidence that the solution is correct. When two 

algorithms agree on the policy, we can imply that the solution is stable. The optimal policy 

is indifferent to the specifics of the algorithm. Sometimes such stability is desirable. 

5.1.2.1.2 Possible solutions to diversify optimal policies for Value and Policy iterations 

Discount factor (gamma) is one of the things which freely can be changed. Even though 3 

values for discount factors were taken (0.9 0.5 and 0.1), we still can change the factors 

which tend to 0 or 1. Lets make one discount factor very close to 1 by making it equal to 
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0.999999999999999999999999999 and the other one very close to 0 by making it 

0.0000000000000000000000000001. A s in Python and many other programming 

languages, floating-point numbers always have some finite precision. After changing the 

discount factors (the 0.5 was kept the same as sort of benchmark) we get below output. 

There are 5 couples which are not identical. Based on Table 7 Policy dictionary: 

1. Value iteration optimal policy with discount factor (0.999..) is not equal Policy 

iteration optimal policy with the same discount factor. 

2. Value iteration with 0.5 factor not equal to Policy iteration with 0.999... factor 

3. Value iteration with discount rate 0.0000... 1 is not equal to Policy iteration with 

0.999... 

4. Policy iteration with 0.999... factor is not equal to Policy iteration with 0.5 factor 

and Policy iteration with 0.000... 1 factor. 
Cptimal p o l i c i e s f o r instances 6 and 1 are equal. 
Optimal p o l i c i e s f o r instances 6 and 2 are equal. 
Optimal p o l i c i e s f o r instances 6 and 3 are not equal. 
Optimal p o l i c i e s f o r instances e and 4 are equal. 
Optimal p o l i c i e s f o r instances 6 and 5 are equal. 
Optimal p o l i c i e s f o r instances 1 and 2 are equal. 
Optimal p o l i c i e s f o r instances 1 and 3 are not equal. 
Optimal p o l i c i e s f o r instances 1 and 4 are equal. 
Optimal p o l i c i e s f o r instances 1 and 5 aire equal. 
Optimal p o l i c i e s f o r instances 2 and 3 are not equal. 
Optimal p o l i c i e s f o r instances 2 and 4 are equal. 
Optimal p o l i c i e s f o r instances 2 and 5 are equal. 
Optimal p o l i c i e s f o r instances 3 and 4 are not equal. 
Optimal p o l i c i e s f o r instances 3 and 5 are not equal. 
Optimal p o l i c i e s f o r instances 4 and 5 are equal. 

Figure 10 Output of comparisons of optimal policies for Value and Policy iterations with extremely low and high gamma 

Based on the above comparisons, it is clearly visible that optimal policies for Value 

iterations are identical among each other and only different to the optimal policy of Policy 

iteration with discount factor close to 1. 

Let 's take a quick look at the overview of this optimal policy. The matrix and the pivot 

table below represent this optimal policy. It is visible that almost all action is going to be 

with location ID 1 which is Newark Airport with 246 destinations (it is good to mention 

that due to mapping of States that starts at 0, State 0 wi l l mean LocationID 1). Then 

Queens borough with only 14 actions which wi l l lead to Jackson Heights in most cases. It 

is important to mention that Manhattan now has only one spot where the agent w i l l go and 

it is same the World Trade Center. Such spread is indeed interesting as it indicates that 

with discount rate almost close to 1 the agent w i l l prioritize future rewards only. Based on 

given spread LocationID 1 E W R Newark Airport w i l l provide desired reward from most of 

the states (taxi zones) i f E W R is destination of a client. 
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Boroughs and IDs Count of Zone of Action 

- EWR 246 

• 1 246 
Newark Airport 246 

-i Manhattan 1 

a 261 1 
World Trade Center 1 

-j Queens 14 

a 129 12 
Jackson Heights 12 

a 226 1 
Sunnyside 1 

n260 1 
Woodside 1 

+ (blank) 

Grand Total 261 

Figure 11 Pivot table of optimal policy of Policy iteration with discount rate close to 1 

Optimal policy matrix for Policy iteration with the discount factor 0.9999999...: (0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 260, 0, 0, 0, 0, 0, 225, 0, 0, 0, 128, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 128, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 128, 0, 0, 128, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 259, 0) 

Possible explanation of such behavior can be hidden in the approach of the Policy iteration 

algorithm. In case when we have set the discount factor close to 1, it means that the long-

term rewards are considered almost as significantly as immediate rewards. But there is a 

difference in the way these 2 algorithms work. Value iteration always updates values for 

all states in each iteration by using the Bellman equation. While Policy iteration alternates 

between policy evaluation and policy improvement. Very tiny differences in the 

calculation processes of these algorithms can lead to different policies (especially when we 

have setup the discount factor so high). It is also good to remember that when setting very 

high discount factors, the difference in policies is expected behavior. 

5.1.3 Optimal policies for Q-learning 

Q-learning in contrast has diverse optimal policies for each discount factor. Lets take a 

look on the optimal policy with the discount factor 0.9 

Optimal policy for Q-Learning with discount factor 0.9: (0, 9, 0, 54, 0, 122, 0, 0, 163, 159, 

0, 0, 54, 0, 152, 0, 14, 30, 0, 188, 169, 0, 115, 0, 122, 112, 0, 0, 152, 0, 116, 0, 0, 0, 0, 223, 
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O, 64, 222, O, O, 229, O, O, O, 22, 194, O, O, O, O, O, O, O, 81, 211, O, 146, 94, O, 118, O, 210, 

0, 0, 0, 0, 159, 237, 195, 0, 0, 0, 200, 239, 0, 83, 0, 17, 144, 241, 0, 251, 0, 0, 0, 0, 0, 0, 0, 

11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 54, 0, 0, 0, 0, 120, 0, 149, 0, 20, 216, 0, 153, 0, 

110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 98, 177, 0, 

243, 0, 0, 179, 0, 0, 0, 186, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 239, 

0, 48, 0, 0, 0, 0, 151, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 162, 82, 0, 0, 0, 0, 0, 170, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 51, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 164, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

From the first glance it is visible that we have kind of similar situation like in previous case 

of Policy iteration with discount factor close to 1. However, some diversity also can be 

visible. Figure 21 Heatmap with clusters for Q-learning optimal policy with 0.9 gamma in 

Appendix can give us some insights on it. Each cluster has state highlighted with different 

color. 

When going through the pivot table as in the previous case, the agent w i l l prioritize future 

rewards and for this reason the best choice is moving to State 1 - Newark Airport. 

However, there are also some other boroughs with range of 4 - 19. The highest of which is 

Brooklyn after which goes Manhattan and then Queens. 

Row Labels Count of Action 
+ Bronx 10 
+ Brooklyn 19 
- EWR 196 

-i Newark Airport 196 
1 196 

+ Manhattan 15 
+ Queens 17 
I Staten Island 4 
I (blank) 

Grand Total 261 

Table 2 Pivot for Q-learning optimal policy with discount factor 0.9 

The below bar chart can also highlight those optimal states and actions. A s there are many 

States with ID 0 (which means LocationID is 1 due to numbering of array that starts at 0) 
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Optimal Policy 

ILL 

Figure 12 Bar chart of Optimal policy for Q-learning with discount factor 0.9 

Let's continue with Optimal policy for Q-Learning with discount factor 0.5: 

(121, 7, 29, 0, 84, 0, 0, 79, 256, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 191, 0, 98, 0, 0, 71, 0, 0, 60, 0, 

83, 46, 161, 202, 11, 159, 0, 0, 0, 0, 237, 0, 134, 46, 0, 0, 47, 0, 207, 0, 14, 0, 0, 191, 0, 0, 

0, 0, 0, 0, 23, 0, 0, 0, 93, 0, 0, 181, 160, 67, 149, 0, 169, 0, 0, 0, 195, 0, 0, 55, 0, 0, 158, 91, 

141, 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 36, 0, 17, 0, 0, 0, 0, 0, 0, 0, 224, 0, 0, 0, 161, 0, 0, 

50, 0, 23, 255, 0, 0, 0, 0, 234, 0, 0, 0, 0, 78, 0, 0, 0, 0, 0, 60, 101, 0, 0, 0, 226, 0, 0, 0, 0, 0, 

71, 0, 0, 0, 0, 103, 0, 0, 0, 95, 0, 0, 150, 0, 65, 0, 0, 0, 54, 0, 0, 0, 0, 0, 246, 0, 235, 46, 0, 8, 

156, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 163, 0, 0, 44, 0, 0, 0, 0, 0, 0, 0, 31, 

0, 0, 74, 0, 0, 0, 0, 0, 249, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 67, 0, 0, 0, 38, 0, 74, 0, 0, 

0, 0, 0, 0, 0, 0, 181, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

Again, by looking at the matrix itself we can say that moving to State 1 ( E W R airport) is 

prevailing. Indeed i f compare below pivot table with one above we can that E W R is less by 

only 6. Even though discount factor being equal to 0.5, the agent still prefers moving to 

borough E W R , Newark Airport as in case of the long term strategy. Manhattan got little bit 

better in terms of count of actions but still compare with the main leader this difference is 

very small. Which means taxi with wi l l prefer client who is heading to Newark Airport in 

most of New-York locations. 
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Row Labels Count of Action ID (location ids) 

Bronx 15 

+ Brooklyn 17 

-lEWR 190 

Newark Airport 190 
+ Manhattan 20 

+ Queens 17 

. Staten Island 2 

, (blank) 

Grand Total 261 

Table 3 Pivot table for optimal policy of Q-learning with discount rate 0.5 

Bar chart of optimal policy of Q-learning looks slightly different in comparison to the 

Figure 12 Bar chart of Optimal policy for Q-learning with discount factor 0.9 The overall 

pattern move to the right hand side which can be explained by increased Actions in 

Manhattan borough and some decreased of Newark Airport's count. 

Optimal Policy 

Figure 13 Bar chart of Optimal policy for Q-learning with discount factor 0.5 

If we compare the Figure 18 Q learning heatmap of optimal policies with discount factor 

0.5 in the Appendix we can see that it has some spread among clusters, especially clusters 

1,2, 3 and 4. 
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Once analysis and visualisation of the optimal policy with 0.1 gamma for Q-learning wi l l 

be done, it is going to be possible compare all of them based on the total count of Actions 

per borough. Such overview can show us the influence of the discount factor. The last 

optimal policy for Q-Learning with discount factor 0.1: (0, 122, 48, 0, 96, 95, 6, 216, 115, 

0, 0, 0, 0, 0, 0, 241, 0, 128, 62, 0, 25, 0, 0, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 252, 0, 0, 161, 0, 0, 0, 

0, 254, 47, 195, 0, 199, 0, 0, 0, 0, 0, 129, 91, 109, 0, 0, 173, 0, 41, 97, 0, 256, 0, 0, 0, 220, 

0, 0, 0, 0, 214, 124, 0, 0, 181, 62, 0, 171, 0, 0, 123, 0, 0, 0, 0, 0, 0, 0, 38, 0, 0, 0, 87, 0, 0, 0, 

0, 0, 0, 8, 0, 70, 0, 0, 0, 19, 0, 152, 67, 0, 0, 72, 0, 186, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 177, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 172, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 226, 188, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 151) 

Again we can see the same pattern of moving to the State 0 - LocationID 1, Newark 

Airport. Lets examine the bar chart to see i f some movements towards certain states can be 

detected. It is visible that many of green bars move to the left side which can only mean 

that with the gamma being equal to 0.1 the agent prefers even more immediate rewarding 

Actions. In this case it is moving to Newar Airport. 

Optimal Policy 

Figure 14Figure 15 Bar chart of Optimal policy for Q-learning with discount factor 0.1 

B y double checking with the below pivot table, it is clear that the agent is preferring to 

move to State 0 - LocationID 1 Newark Airport in terms of greedy policy. It is the highest 

number of Action taken to move to Newark airport. 
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Table 4 Pivot table for Q-learning optimal policies with discount rate 0.1 

Row Labels Count of Action ID (location ids) 
+ Bronx 8 
+ Brooklyn 15 
- EWR 210 

Newark Airport 210 

+ Manhattan 9 
+ Queens 15 
+ Staten Island 4 
_ (blank) 

(blank) 
Grand Total 261 

Borough of Action -

Comparison of Q-learning policies by counts of actions 

15 17 19 

Discount factor 

0 
Bronx Brooklyn EWR Manhattan Queens Staten Island 

• 0.1 8 15 210 9 15 4 

• 0.5 15 17 190 20 17 2 

• 0.9 10 19 196 15 17 4 

Figure 15 Comparison of Q-learning optimal policies with 3 discount factors 

N o w by using boroughs of the New-York city we can cluster results in easy and 

convenient way. It also allows to see dynamics of each discount factor for each policy. 

Above bar chart summarizes the total amount of specific action at specific boroughs. We 

could use taxi zones instead on x-axis but such chart w i l l be too long and unreadable. It is 

clear that the optimal policy with the discount factor 0.1 strongly focuses on E W R borough 
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and Newark Airport particularly. The agent that seeks for immediate reward wi l l choose 

those clients who need travel to the airport. However, when discount factor is increased 

and set up to 0.5 the overall picture is slightly changed. A s this 0.5 gamma stands for more 

balanced approach between short- and long-term rewards, we can also observe it on the 

chart. For borough Brooklyn, Staten Island and Queens 0.5 gamma holds middle position 

and being sort of balance between two other policies. It is good remember that the agent 

often ends up choosing favourite actions with the highest rewards. Such approach can lead 

to developing a sort of favourable strategy once it gets more confident in its decisions. 

Once Q-learning updates its knowledge base we can be sure that it is always going to find 

the best strategy and stick to its favourable decisions. The gamma y also play important 

role in Q-learning but i f y belongs to reasonable and sensible range, the agent w i l l create its 

own final uniform strategy. Better not to forget the fact that for environments with high 

level of predictability, Q-learning wi l l most likely come up with similar strategies. 

Finally, when there are not so many options or complexities, Q-learning algorithm can 

instantly define and stick to the best course of actions. This algorithm go thoroughly to 

check out and understand the possible options.(Kerner, 2023) 

5.1.4 Optimal policies for SARSA 

In case of S A R S A algorithm, diversity and space for manipulation are bigger. Based on 

previous chapter Unique characteristics of reinforcement learning algorithm, S A R S A 

beside the discount factor (gamma) also has the learning rate (alpha). The learning rate 

determines how much the Q-value is updated regards to new data. High alpha makes larger 

updates which at the same time require the process of learning to be more volatile. High 

learning rate also stands for exploration which leads to more frequent updating of Q-

values. While the low alpha leads to smaller updates of Q-values but at same time it is 

good for a stable learning process. Lower a prefers exploitation than exploration (in case of 

high alpha). Balance between exploration and exploitation is crucial in complex 

environments. As the agent must try new actions in order to discover better strategies and 

at the same time not go away too much from known rewarding structure. Additionally, the 

interactions between alpha and gamma can be setup in favourable way (the high gamma 

compensates for the low alpha by emphasizing the long-term rewards of exploration). 

Due to high number of mixture of policies with different alpha and gamma it has been 

decided that S A R S A is going to be shown in one pivot and bar chart to grasp all 
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information it can provide. Lets take the discount factor equal 0.9, 0.5, 0.1 and setup same 

values for our learning rate (alpha) B y running Code 10 S A R S A and resaving files in csv 

format for better representation we get below pivot table with total count of Actions for 

each borough and each policy. 

Table 5 Pivot summary of SARSA optimal policies 

Count of Action ID (location ids) Column Labels -
Policies Bronx Brooklyn EWR Manhattan Queens Staten Island Grand Total 
policy_alpha_0.1_gamma_0.1 39 46 10 84 69 13 261 
policy_alpha_0.1_gamma_0.5 41 60 6 79 58 17 261 
policy_alpha_0.1_gamma_0.9 43 57 10 77 57 17 261 

policy_alpha_0.5_gamma_0.1 46 43 10 86 65 11 261 
policy_alpha_0.5_gamma_0.5 33 57 8 82 68 13 261 
policy_alpha_0.5_gamma_0.9 41 47 10 76 65 22 261 
policy_alpha_0.9_gamma_0.1 40 59 10 73 62 17 261 
policy_alpha_0.9_gamma_0.5 40 51 8 83 66 13 261 

policy_alpha_0.9_gamma_0.9 39 50 8 84 61 19 261 
Grand Total 362 470 80 724 571 142 2349 

Based on the above pivot table each row corresponds to a different policy with labeled 

name under Policies. Each policy is mixture of different alpha and gamma. While each 

column represents previously described 

Data cells are Action counts in particular borough under special policy. These counts 

reflect the frequency of certain routes and decisions recommended by the policy for each 

single location. There is also a grand total per each policy that in sum gives 261 and Grand 

total for all policies which equals 2349 (all possible actions x all possible states) 

The bottom row totals are counts of actions for each borough across all policies. It provides 

good insight into which boroughs see more overall activity according to S A R S A . 

Based on the given results we can say that the leader in terms of counts is Manhattan 

borough with 724 counts of actions, next Queens with 571 counts, then Brooklyn with 470, 

Bronx 362 counts, Staten Island with 142 counts and Newark Airport with 80 only. Then 

based on boroughs the LocationlDs are varying, for example for Manhattan m 

The action counts for E W R are way lower than those for other boroughs and compared 

with previous algorithms. It can imply that trips to the airport are less frequent or less 

prioritized within the S A R S A framework. 

The policy variations do not dramatically change during overall distribution of actions. It 

can imply that that the optimal policy is quite robust. This also can mean that data set is 

limited in terms space of actions and states, so that different S A R S A parameter settings do 

not lead to drastically different strategies. 

The spread is relatively balanced, and action counts across policies for most boroughs, 

with no visible extreme variations. Such balance can mean that the S A R S A algorithm is 
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relatively stable across learning and discount settings. So, to speak the distribution of 

actions across boroughs is also stable and gradually spread. Figure 19 Bar chart of all 

S A R S A optimal policies in Appendix clearly and self-explanatory represents different 

policies, actions counts and boroughs. We have analyzed the extensive dataset by using 

different approaches with special attention to the adjustment of the learning rate (alpha) 

and discount factor (gamma). These parameters have steered the derived policies across 

New York boroughs with a certain focus on Manhattan. Our analysis indicates that the 

strategy provided by S A R S A remains consistent despite different values of alpha and 

gamma. 

Adjusted reward matrix 

Lets implement small change in the reward matrix to see i f it is going change the previous 

patterns and prove models being sensible to different input. 

The formula for the adjusted reward was changed to fit more that kind of policy of 

company where it focuses not only on the profitability but also efficiency (in terms of time 

spent by the taxi). In adjusted reward, the netreward by each tripdistance to get a 

measure that takes into account profitability of the trip, travel distance and time. Division 

by the tripduration normalizes the reward by the time taken. Hene the logic is following, 

the longer the trip takes, the smaller the adjusted reward is going to be. Below parts of 

code were added to the Reward matrix, the rest is same. Here is the full reward matrix code 

Code 11 Adjusted reward matrix with trip duration 

# C a l c u l a t e t r i p d u r a t i o n i n seconds 
t a x i _ d a t a [ ' t r i p _ d u r a t i o n ' ] = ( t a x i _ d a t a [ ' d r o p o f f _ d a t e t i m e ' ] 

t a x i _ d a t a [ ' p i c k u p _ d a t e t i m e ' ] ) . d t . t o t a l _ s e c o n d s ( ) 

# Adding very s m a l l number t o a v o i d d i v i s i o n by zero 
e p s i l o n = l e - 6 

t a x i _ d a t a [ ' a d j u s t e d _ r e w a r d ' ] = t a x i _ d a t a [ ' n e t _ r e w a r d ' ] * 
t a x i _ d a t a [ ' t r i p _ d i s t a n c e ' ] / ( t a x i _ d a t a [ ' t r i p _ d u r a t i o n ' ] + e p s i l o n ) 

To sum it up, the new formula is trying to estimate the efficiency of a trip from an 

economic standpoint. A high adjusted reward means a trip the taxi earned more money for 

each unit of time and each mile driven. This is going to be used as prioritization tool for 

trips in a decision-making process. 
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Optimal policies for the adjusted reward matrix 

After implementing adjustments and running the final code, the results are as following. 

Optimal policies for all three discount factors for Value and Policy iterations are identical. 

Optimal policy for Policy and Value iteration with discount factor 0.9, 0.5 and 0.1: (259, 

225, 2, 3, 4, 5, 6, 260, 81, 225, 260, 225, 259, 13,28, 67, 260, 31, 32, 33, 34, 36, 36, 260, 

260, 39, 40, 41, 159, 211, 128, 109, 46, 47, 48, 49, 50, 24, 52, 259, 54, 55, 71, 72, 73, 259, 

259, 76, 259, 78, 79, 80, 81, 128, 234, 84, 85, 86, 87, 88, 67, 90, 91, 92, 93, 94, 259, 96, 

260, 260, 112, 113, 114, 115, 260, 259, 260, 119, 260, 121, 122, 259, 259, 125, 126, 259, 

260, 129, 231, 92, 132, 259, 134, 135, 1, 260, 260, 151, 260, 128, 154, 81, 128, 157, 259, 

159, 160, 161, 162, 163, 260, 165, 195, 167, 168, 169, 170, 260, 73, 1786, 187, 260, 189, 

260, 128, 128, 193, 194, 195, 196, 197, 198, 199, 200, 73, 259, 260, 204, 205, 206, 207, 

208, 0, 40, , 0, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 260, 236, 260, 238, 239, 

240, 241, 242, 243, 244, 245, 260, 260, ) 

Lets run the bar chart and compare 2 optimal policies. 

Count of Action ID (location ids) 

140 

120 

= 100 

Count of Actions by Borough of Action 

so 

j | 
\ m \ 
\ m \ 

: l . 1 ; ü i i i i • _ 

Discount factor • 

• adjusted reward matrix 

• original reward matrix 

Brooklyn Manhattan Queens 
State ii 
s I a r d 

• adjusted reward matrix 31 46 2 93 76 13 

• original reward matrix 11 7 5 109 124 5 

Borough of Action ' 

Figure 16 Adjusted matrix comparison 

The above visual summary clearly shows changed optimal policy when we have adjusted 

the reward matrix. Especially it is visible in boroughs like Bronx, Brooklyn, and Queens 

(Manhattan data was changed slightly). N o w the agent significantly changed mind about 

these boroughs and changed priorities. Even though Manhattan is still at the top of the list 

and it is not surprisingly (due to being cultural and financial center of the New-York plus 

popular tourist destination). Such change can be explained by the additional factor that 

M D P model takes into account (the trip duration). Apparently, Bronx and Brooklyn trips 

wi l l be better destinations in terms of money earned, time and destination spent than 
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Queens borough, which makes our taxi driver to choose clients heading those boroughs. If 

we take a look on Figure 22 Bar chart of optimal policy for Policy and Value iterations 

with all discount factors and with adjusted reward matrix in Appendix, we wi l l find 

difference in pattern too. 

Adjusted Q-learning 

N o w let's compare Q-learning policies for the adjusted reward matrix. After execution of 

code, the below results are given. It is visible that each of optimal policy for Q-learning is 

different. Visually Action 0 - Moving to E R W airport is still preferable in all 3 policies. 

Optimal policy for Q-Learning with discount factor 3.9: (259, 127, 146, 93, 3, 233, 33, 67, 113, 145, 35, 3, 26, 263, 14 
8, 76, 122, 199, 129, 259, 153, 135, 29, 197, 0, 8, 56., 133, 3, 3, 3, 53, 3, 49, 8, 4, 234., 8, 8, 3, 3, 235, 3, 3, 39, 
123, 34, 156, 3, 3, 252, 133, 252, 3, 3, 3, 249, 3, 3, 25BJ 8, 117, 8, 258, 197, 8, 3, 3, 65, 63, 8, 8, 8, 8, 113., 9, 9, 
3, 3, 3, 3, 9, 9, 229, 9, 9, 8, 9, 3, 154, 3, 3, 123, 3, 37, 9, 9, 9, 9, 9, 3, 226, 8, 6, 8, 8, 8, 9, 9, 195, 171, 231, 
3, 3, 9, 8, 9, 9, 188, 8, 8, 8, 8, 8, 281., 8J 8J 8J 8J 77J 8, 8, 8, 8, 9, 8, 3, 2, 3, 8, 8., 8., 8., 53J 8J 8J 8J 8J 3, 11 
, 3, 134, 8, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8., 8., 8., 8., 8., 8, 3, 3) 
Saved policy to o p t i m a l p o l i c y q l d f 3.5. npy 
Optimal policy for Q-Learning with discount factor 3.5: (113, 129, 256, 3, 4, 3, 226, 247, 3, 134, 3, 132, 197, 3, 39, 3 
, 36, 122, 173, 84, 3, 114, 3, 27, 61, 251, 218, 3, 3, 4, 8, 8, 65, 9, 31, 9, 195, 3, 225, 31, 3, 118, 57, 8, 3, 3, 3, 3 
155, 32, 8, 9, 9, 3, 3, 3, 3, 3, 139, 8., 8., 8, 8, 8J 8J 94J 218, 8, 9, 9, 8, 3, 3, 3, 8, 8, 8, 8., 3, 3, 23, 43, 3, 3, 3 
231, 3, 133, 9, 9, 3, 3, 3, 113, 3, 3, 3, 8., 8., 0, 3, 3, 3, 3, 8, 9, 9, 9, 9, 8, 122., 8, 3, 133, 3, 68, 3, 171, 3, 139, 
, 8, 9, 296, 9, 56, 9, 9, 9, 8, 8, 8, 129, 193, 299, 3, 92, 233, 9, 9, 239, 9, 9, 9, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 
, 8, 8, 8, 8, 9, 9, 0, 0, 0, 0) 
Saved policy to o p t i m a l p o l i c y q l d f 3.1.npy 
Optimal policy for Q-Learning with discount factor 3.1: (3, 9, 9, 9, 99, 138, 9, 3, 3, 263, 41, 139, 144, 97, 3, 73, 128 
8J 215, 9, 9, 6, 3, 3, 3, 259, 238, 3, 243., 8J 52, 3, 3, 3, 242, 9, 3, 39, 3, 3, 236, 125., 98., 8., 8J 223J 123, 8, 9, 173 
, 3, 85, 9, 9, 9, 9, 3, 3, 3, 136j 6j 8j 8j 3, 3, 3, 3, 8, 8, 8, 9, 9, 9, 9, 5, 0, 0j 6j 6j 8j 62j 6, 6, 6, 8, 9, 9, 9, 
, 8, 8, 8, 8, 3, 3, 3, 155, 8, 8, 8, 257, 165, 8, 8, 188, 8, 8, 8, 9, 124, 8, 35, 8, 8, 8, 8, 3, 3, 3, 3, 3, 198, 8, 115 
3, 135, 3, 169, 3, 239, 3, 3, 8, 8, 8, 8, 8, 3, 3, 3, 3, 8, 8, 9, 3, 3, 3, 156, 3, 259, 3, 3, 8, 8, 8, 8, 8, 3, 3, 3, 3 
6, 133, 6, 6, 9, 9, 3, 3, 3) 

Figure 17 Optimal policies of Q-learning with adjusted reward matrix 

B y analyzing total count of actions based on boroughs from Figure 23 Comparison chart of 

Original and Adjusted Q-learning optimal policies the following can be concluded: 

1) E W R shows difference in the count of actions between the original and adjusted Q-

learning models at lower discount factors. It might suggest that the adjusted reward 

matrix has a significant impact on the optimal policy leading de-emphasizing the 

importance of E W R zone ( by taking into account additional factor in the reward 

matrix) 

2) Manhattan has the count of actions that is relatively high across both models. 

However, there is a variation with different discount factors. The adjusted model 

does not consistently increase or decrease the total count which might mean that 
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indicating the effect of the reward adjustment may be complex and dependent on 

the discount factor. 

3) In Bronx, Brooklyn, Queens and Staten Island, the adjusted Q-learning policies 

tend to show different patterns with each discount factors when compared to the 

original Q-learning model. It indicates that the adjustments in the reward matrix 

can be tailored to capture specific features relevant to these boroughs. 

4) The sensitivity of the adjusted Q-learning policies (with gamma) in Queens has the 

count of actions increasing significantly with the discount factor in the adjusted 

model. It can mean a strategic shift in the long-term valuation of future rewards. 

5) The performance of the adjusted model seems to be more balanced across boroughs 

in comparison with the original one. E W R and Manhattan have lower counts in 

some cases we have other boroughs increased. It might be desirable i f the goal is to 

distribute service more evenly across the state. 

Adjusted SARSA 

Again, for comparison of different optimal policies with various alpha and gamma, the 

pivot table was chosen. Below is the pivot comparison table with adjusted optimal polices. 

A s we can see the distribution of actions across the boroughs has been shifted. 

1) There is a slight increase in the number of actions in Bronx in the adjusted policy 

(from 360 to 362). It means that a major shift did not take place 

2) For Brooklyn, the unadjusted policy shows a significant increase in actions (from 

470 to 562). This could indicate that the adjusted policy is prioritizing actions in 

Brooklyn. 

3) The count for E W R area decreased from 80 to 71 in the adjusted policy. This can 

suggest that the adjustments to the reward matrix have made actions associated 

with E W R less efficient and rewarding. 

4) There is significant decrease in actions in Manhattan in the adjusted policy (from 

724 to 591). This shift could indicate that the adjusted policy is placing a lower 

emphasis on Manhattan. It can happen due to higher rewards being assigned to 

other boroughs. 

5) The count in Queens has increased only slightly from 571 to 599. O f course, it is 

not significant as the changes in Brooklyn or Manhattan however it still implies a 
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slight prioritizing on Queens in the adjusted policy. Same can be said about Staten 

Island increase (from 142 to 166) in the adjusted policy 

To sum it up, the adjusted policy seems to de-prioritize Manhattan and E W R while other 

boroughs counts have been increased. It happens due to a reevaluation of the rewards 

associated with each action based on additional factors such as efficiency. The model can 

be changed to align with business objectives and to mirror real-world constraints and other 

conditions. 

In general above changes in optimal policies indicate that our M D P models are sensitive to 

input data and it is important to setup or adjust (in advance) existing settings based on 

needs and objectives. 

Table 6 Pivot summary of SARSA optimal policies with adjusted reward matrix 

Count of Action ID (location ids) Column Labels > 

Row Labels Bronx Brooklyn EWR Manhattan Queens Staten Island Grand Total 
adjust SARSA policy alpha 0.1 gamma 0.1 39 57 6 61 75 23 261 

adjust SARSA policy alpha 0.1 gamma 0.5 45 68 5 59 62 22 261 

adjust SARSA policy alpha 0.1 gamma 0.9 45 68 9 49 68 22 261 

adjust SARSA policy alpha 0.5 gamma 0.1 39 63 11 68 62 18 261 

adjust SARSA policy alpha 0.5 gamma 0.5 38 52 6 82 65 18 261 

adjust SARSA policy alpha 0.5 gamma 0.9 40 57 6 64 70 24 261 

adjust SARSA policy alpha 0.9 gamma 0.1 42 62 11 55 77 14 261 

adjust SARSA policy alpha 0.9 gamma 0.5 24 74 9 84 55 15 261 

adjust SARSA policy alpha 0.9 gamma 0.9 48 61 8 69 65 10 261 

Grand Total 360 562 71 591 599 166 2349 

Possible improvements and future applications 

Due to complexity and at the same time the large data set some lines of the code and model 

structure can be adjusted and improved by using more advanced algorithms, libraries and 

environments. The data from the N Y C open data website w i l l perfectly fit the current 

setups. It is possible in future use different years and see trends over certain periods or use 

data from the green taxi. However, it is important to mention that better transition matrix 

for Policy and Value iteration must be based on number of actual states and actions derived 

from raw data. In such way the researcher w i l l be sure that he or she has included all 

possible states and avoid none-stochasticity issue. It is very important to address the 

challenges encountered with the stochastic nature of matrices derived from raw data. 

Researchers need to ensure that accurate data representation in stochastic models is 

particularly vital when dealing with complex and quite often unpredictable urban data sets 

(also taking into considerations some external factors that are out of researchers control). 

Up till now researchers preprocessing steps of data has become especially important. These 

steps include data cleaning, normalization and transformation, they are pivotal in 
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stabilizing the stochastic behavior of the matrices and improving the reliability of the 

models. Some parts of code should be adjusted to fit intention of researcher like processing 

and merging data. It is not required to use only parquet format files however this type of 

format contains more suppressed data than any other data types. 

M D P models can be used for determining optimal policies for similar route problems by 

taking into consideration the data structure and size. It w i l l be useful in determining 

efficient policies based on different reward factors or transition probabilities. 

Testing the models with different data inputs wi l l allow researchers to gain more 

knowledge about performance of each model under different conditions. Testing is also a 

good approach in a process of identifying potential weaknesses or limitations of each 

model. This approach is instrumental in refining the models to better suit real-world 

applications, such as urban traffic management and public transportation planning. 

It is worth mentioning that incorporation of more advanced statistical and probabilistic 

methods can lead to better handling the stochastic nature of the data. Bayesian inference or 

Monte Carlo simulations can offer such deeper insights and more reliable outcomes. These 

approaches allow to grasp more knowledge of more complex urban environments like the 

one in the New-York city. 

Application of this work can be used in the transportation area, for example the optimized 

models can enhance urban traffic flows, reduce congestion and improve efficiency. It can 

also be used to assist with the design of more efficient public transportation systems and 

routes, which are based on detailed analysis of passenger flows and different demand 

patterns. Additionally, these approaches can bring positive impact in environmental studies 

by providing insights on sustainable urban policies. 

Regarding future research there is a vast space of opportunities which can be explored and 

combined with current work. Integrating different and more complex machine learning 

algorithms with the current models can dramatically improve prediction accuracy in 

dynamic urban environments. The potential heading of the research can be adding more 

data from other data source providers or even different cities. B y enriching models with 

real-time data potential researchers could make it more responsive and adaptive to changes 

in the urban landscape. It wi l l open new frontiers in urban transport management and 

planning. 
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Conclusion 

To summarize the whole thesis, we have explored new ways of how to optimize taxis 

movements around the New York city that is one the biggest megapolises in the world. We 

used a method called the Markov Decision Process (MDP) to understand the choices that 

taxi drivers make daily at their jobs. This involved processing and going through large 

amount of data from N Y C ' s public records. 

We found that the strategies that have been developed for the taxi drivers were quite 

consistent in their outcomes. This means that our approaches could reliably create effective 

routes for the taxi drivers in the urban areas. It was also noticed that small changes in the 

reward structure that taxi drivers get in our models, had great influence on their decisions. 

It highlights the importance of carefully considering various economic and operational 

factors when building these models. 

Several different computer algorithms were used such as Value Iteration, Policy Iteration, 

Q-Learning and S A R S A that helped to develop our strategies. Each of these methods had a 

unique way of guiding the taxis from each pickup location to its destination, it showed us 

the difference between short-term and long-term planning for taxi routes. 

Visual tools like heatmaps, pivot tables and bar charts made our findings easier to 

understand and visualize. These visual images helped us in guiding and locating where 

taxis were most often needed in the city and how various strategies would work under 

different conditions. 

Except academic research, the thesis can provide a practical guide for city planners, taxi 

companies and public transport administration. These strategies can help make taxi 

services more efficient and improve the overall flow of traffic in cities. Which in the same 

time wi l l eventually lead to a more sustainable and efficient urban transportation system. 

For sure more research and development w i l l be required to build sophisticated model, but 

the core base has been created. 

There is still room for more research to be done. With advanced machine learning 

techniques and real-time data future researchers can make these models even more 

accurate and relevant for always changing city environment. This study can be expanded 

by including other cities or different types of data which could offer a broader 

understanding of urban transportation systems. 
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In summary, the research shows the power of using data to improve how urban 

transportation can be managed. It highlights the importance of balancing operational 

efficiency and financial incentives. The gained knowledge and insights could be very 

useful for future urban planning or smart city projects. 
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Appendix 

import pyarrow as pa #import pyarrow l i b r a r y 
import pyarrow.parquet as pq 
import pandas as pd #import pandas l i b r a r y 
import os 

# S p e c i f y the f u l l path t o the d i r e c t o r y c o n t a i n i n g the Parquet f i l e s 
i n p u t _ d i r = r"C:\Users\Nurbulat\Desktop\MDP\yellow" 

# C r e a t i n g l i s t of a l l parquet f i l e s i n the d i r e c t o r y 
p a r q u e t _ f i l e s = [ o s . p a t h . j o i n ( i n p u t _ d i r , f ) f o r f i n 
o s . l i s t d i r ( i n p u t _ d i r ) i f f . e n d s w i t h ( ' . p a r q u e t ' ) ] 

f o r f i l e i n p a r q u e t _ f i l e s : 
df = p q . r e a d _ t a b l e ( f i l e ) . t o _ p a n d a s ( ) 

# p r o c e s s i n g data l o o p w i t h dropping rows 
dfs = [] # l i s t i n g t o s t o r e cleaned DataFrames 
f o r f i l e i n p a r q u e t _ f i l e s : 

df = p q . r e a d _ t a b l e ( f i l e ) . t o _ p a n d a s ( ) 
# c a p t u r i n g the o r i g i n a l row count 

o r i g i n a l _ r o w _ c o u n t = l e n ( d f ) 
# A d d i t i o n a l data c l e a n i n g and f i l t e r i n g s p e c i f i e d i n the Data 

P r o c e s s i n g chapter 
df = d f [ ( d f [ ' P U L o c a t i o n l D ' ] != "") & 

(df['DOLocationlD'] != "") & 
( d f [ ' t p e p _ p i c k u p _ d a t e t i m e ' ] . n o t n a ( ) ) & 
( d f [ ' t p e p _ d r o p o f f _ d a t e t i m e ' ] . n o t n a ( ) ) & 
( ( d f ['Vendor-ID'] == 1) | (df ['VendorlD'] == 2)) & 

( ( d f [ ' R a t e c o d e l D ' ] == 1) | ( d f [ ' R a t e c o d e l D ' ] == 2) | 
( d f [ ' R a t e c o d e l D ' ] ==3) | ( d f [ ' R a t e c o d e l D ' ] ==4) | ( d f [ ' R a t e c o d e l D ' ] 
== 5) | ( d f [ ' R a t e c o d e l D ' ] ==6)) & 

( ( d f [ ' s t o r e _ a n d _ f w d _ f l a g ' ] == "Y") | 
( d f [ ' s t o r e _ a n d _ f w d _ f l a g ' ] == "N")) & 

( d f [ ' p a s s e n g e r _ c o u n t ' ] >= 1) & 
( d f [ ' p a s s e n g e r _ c o u n t ' ] <= 4) & 
(df['fare_amount'] > 0) & 
(df['fare_amount'] < 1000) & 
( d f [ ' t r i p _ d i s t a n c e ' ] > 0) & 
( d f [ ' t r i p _ d i s t a n c e ' ] < 100) & 
( d f [ ' t o t a l _ a m o u n t ' ] > 0) & 
((df['payment_type'] == 1) | (df['payment_type'] ==2)) & 
( d f [ ' c o n g e s t i o n _ s u r c h a r g e ' ] . n o t n a ( ) ) & 
( d f [ ' a i r p o r t _ f e e ' ] . n o t n a ( ) ) & 
( d f [ ' m t a _ t a x ' ] . n o t n a ( ) ) & 
( d f [ ' t i p a m o u n t ' ] . n o t n a ( ) ) & 
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( d f [ ' e x t r a ' ] . n o t n a ( ) ) ] 

# drop unnecessary columns 
df = df . d r o p ( [ ' R a t e c o d e l D ' , ' s t o r e _ a n d _ f w d _ f l a g ' , 

'improvement_surcharge'], a x i s = l ) 

# F i l t e r out rows w i t h no t r a n s i t i o n IDs 
unique_pu = s e t ( d f [ ' P U L o c a t i o n I D ' ] . u n i q u e ( ) ) 
unique_do = s e t ( d f [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) ) 
n o _ t r a n s i t i o n _ p u _ i d s = unique_pu - unique_do 
n o _ t r a n s i t i o n _ d o _ i d s = unique_do - unique_pu 
df = d f [ ~ d f [ ' P U L o c a t i o n I D ' ] . i s i n ( n o _ t r a n s i t i o n _ p u _ i d s ) ] 
df = d f [ ~ d f [ ' D O L o c a t i o n I D ' ] . i s i n ( n o _ t r a n s i t i o n _ d o _ i d s ) ] 

# C a p t u r i n g the f i l t e r e d row count 
f i l t e r e d _ r o w _ c o u n t = l e n ( d f ) 
# p r i n t i n g the o r i g i n a l row cound and the f i l t e r e d 
p r i n t ( f " F i l e : { f i l e } " ) 
p r i n t ( f " O r i g i n a l Row Count: { o r i g i n a l _ r o w _ c o u n t } " ) 
p r i n t ( f " F i l t e r e d Row Count: { f i l t e r e d _ r o w _ c o u n t } " ) 

# E x t r a c t o n l y the fil e n a m e and add 'cleaned_' t o i t 
c l e a n e d _ f i l e n a m e = 'cleaned_' + os. p a t h . b a s e n a m e ( f i l e ) 
c l e a n e d _ f i l e _ p a t h = o s . p a t h . j o i n ( i n p u t _ d i r , c l e a n e d _ f i l e n a m e ) 
p q . w r i t e _ t a b l e ( p a . T a b l e . f rom_pandas(df), c l e a n e d _ f i l e _ p a t h ) 
dfs.append(df) 

# concatenate a l l cleaned dataframes 
c l e a n _ d f = p d . c o n c a t ( d f s , ignore_index=True) 

# s e t t i n g d i s p l a y o p t i o n s t o show a l l columns 
pd.set_option('display.max_columns', None) 

# D i s p l a y cleaned dataframe w i t h a l l columns 
p r i n t ( c l e a n _ d f ) 

# s t o r i n g cleaned dataframe t o a new parque f i l e 
p q . w r i t e _ t a b l e ( p a . T a b l e . f rom_pandas(clean_df), 
o s . p a t h . j o i n ( i n p u t _ d i r , ' f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' ) ) 

# c a l c u l a t e median, mean, and standard d e v i a t i o n of fare_amount 
column 
fare_median = clean_df['fare_amount'].median() 
fare_mean = clean_df['fare_amount'].mean() 
f a r e _ s t d = c l e a n _ d f [ ' f a r e _ a m o u n t ' ] . s t d ( ) 

# an a l y z e a d d i t i o n a l columns 
# an a l y z e most common and l e a s t common pickup hours 
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pickup_counts = 
c l e a n _ d f . g r o u p b y ( c l e a n _ d f [ ' t p e p _ p i c k u p _ d a t e t i m e ' ] . d t . h o u r ) 
[ ' t p e p _ p i c k u p _ d a t e t i m e ' ] . c o u n t ( ) 
max_pickup_hour = pickup_counts.idxmax() 
min_pickup_hour = p i c k u p _ c o u n t s . i d x m i n ( ) 

# an a l y z e the most and the l e a s t common passengers count 
passenger_counts = c l e a n _ d f [ ' p a s s e n g e r _ c o u n t ' ] . v a l u e _ c o u n t s ( ) 
most_common_passenger_count = passenger_counts.idxmax() 
rare_passenger_count = passenger_counts.idxmin() 

# an a l y z e the most popular and the l e a s t popular pickup and d r o p o f f 
l o c a t i o n s 
pickup_counts = c l e a n _ d f [ ' P U L o c a t i o n I D ' ] . v a l u e _ c o u n t s ( ) 
p o p u l a r _ p i c k u p _ l o c a t i o n s = pickup_counts.idxmax() 
u n p o p u l a r _ p i c k u p _ l o c a t i o n s = p i c k u p _ c o u n t s . i d x m i n ( ) 
d r o p o f f _ c o u n t s = c l e a n _ d f [ ' D O L o c a t i o n I D ' ] . v a l u e _ c o u n t s ( ) 
p o p u l a r _ d r o p o f f _ l o c a t i o n s = dro p o f f _ c o u n t s . i d x m a x ( ) 
u n p o p u l a r _ d r o p o f f _ l o c a t i o n s = d r o p o f f _ c o u n t s . i d x m i n ( ) 

# c a l c u l a t e median, mean, and standard d e v i a t i o n of t r i p _ d i s t a n c e 
column 
distance_median = c l e a n _ d f [ ' t r i p _ d i s t a n c e ' ] . m e d i a n ( ) 
distance_mean = c l e a n _ d f [ ' t r i p _ d i s t a n c e ' ] . m e a n ( ) 
d i s t a n c e _ s t d = c l e a n _ d f [ ' t r i p _ d i s t a n c e ' ] . s t d ( ) 

f a r e _ b y _ l o c a t i o n = cl e a n _ d f . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 'DOLocationID']) 
['fare_amount'].mean() 
m a x _ f a r e _ l o c a t i o n = f a r e _ b y _ l o c a t i o n . i d x m a x ( ) 
m i n _ f a r e _ l o c a t i o n = f a r e _ b y _ l o c a t i o n . i d x m i n ( ) 

# d i s p l a y the cleaned DataFrame w i t h a l l columns 
pd.set_option('display.max_columns', None) 
p r i n t ( c l e a n _ d f ) 

# d i s p l a y the median, mean, and standard d e v i a t i o n of fare_amount 
p r i n t ( ' F a r e Median:', fare_median) 
p r i n t ( ' F a r e Mean:', fare_mean) 
p r i n t ( ' F a r e Standard D e v i a t i o n : ' , f a r e _ s t d ) 

# d i s p l a y the a n a l y s i s of a d d i t i o n a l columns 
p r i n t ( ' P e a k pickup hour:', max_pickup_hour) 
p r i n t ( ' O f f - p e a k pickup hour:', min_pickup_hour) 
p r i n t ( ' M o s t common passenger count:', most_common_passenger_count) 
p r i n t ( ' M o s t rare passenger count:', rare_passenger_count) 
p r i n t ( ' D i s t a n c e Median:', distance_median) 
p r i n t ( ' D i s t a n c e Mean:', distance_mean) 
p r i n t ( ' P o p u l a r pickup l o c a t i o n s : ' , p o p u l a r _ p i c k u p _ l o c a t i o n s ) 
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p r i n t ( ' U n p o p u l a r pickup l o c a t i o n s : ' , u n p o p u l a r _ p i c k u p _ l o c a t i o n s ) 
p r i n t ( ' P o p u l a r d r o p o f f l o c a t i o n s : ' , p o p u l a r _ d r o p o f f _ l o c a t i o n s ) 
p r i n t ( ' U n p o p u l a r d r o p o f f l o c a t i o n s : ' , u n p o p u l a r _ d r o p o f f _ l o c a t i o n s ) 
p r i n t ( ' D i s t a n c e Standard D e v i a t i o n : ' , d i s t a n c e _ s t d ) 
p r i n t ( ' L o c a t i o n w i t h h i g h e s t average f a r e : ' , m a x _ f a r e _ l o c a t i o n ) 
p r i n t ( ' L o c a t i o n w i t h lowest average f a r e : ' , m i n f a r e l o c a t i o n ) 
Code 3 Clean and prepare data, calculate and analyze columns with statisti 

# Load l i b r a r i e s 
import pandas as pd 
import numpy as np 

# Load the Parquet f i l e 
t a x i _ d a t a = 
p d . r e a d _ p a r q u e t ( ' y e l l o w / f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' ) 

# E x t r a c t i n g a l l unique l o c a t i o n IDs from the dataframe 
u n i q u e _ l o c a t i o n s = p d . u n i q u e ( t a x i _ d a t a [ [ ' P U L o c a t i o n I D ' , 
' D O L o c a t i o n I D ' ] ] . v a l u e s . r a v e l ( ' K ' ) ) 

# Creates the d i c t i o n a r y w i t h a l l unique l o c a t i o n IDs from the 
dataframe 
l o c a t i o n _ t o _ i n d e x = { l o c _ i d : index f o r index, l o c _ i d i n 
e n u m e r a t e ( u n i q u e _ l o c a t i o n s ) } 

# Set up t r a n s i t i o n m a t r i x w i t h 2 dimensions 
num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 

# i n i t i a l i z e s the t r a n s i t i o n m a t r i x w i t h dimensions num_locations 
t r a n s i t i o n _ m a t r i x = n p . z e r o s ( ( n u m _ l o c a t i o n s , n u m _ l o c a t i o n s ) ) 

# Group by PULocationID and DOLocationID and count t r a n s i t i o n s 
t r a n s i t i o n _ c o u n t s = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 
'DOLocationID']).size().reset_index(name='count') 

# Populate the t r a n s i t i o n m a t r i x 
f o r _, row i n t r a n s i t i o n _ c o u n t s . i t e r rows(): 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] # r e t r i v e s each 
Pickup and d r o p o f f l o c a t i o n i d s i n d e c i e s 

do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
t r a n s i t i o n _ m a t r i x [ p u _ i n d e x , do_index] = row['count'] 

# Normalize the m a t r i x t o get p r o b a b i l i t i e s by c o n v e r t i n g counts i n t o 
p r o b a b i l i t i e s of t r a n s i t i o n i n g from one l o c a t i o n t o another and then 
i n s u r e s t h a t each row sum equals 1 
t r a n s i t i o n j n a t r i x = n p . d i v i d e ( t r a n s i t i o n j n a t r i x , 
t r a n s i t i o n j n a t r i x . s u m ( a x i s = l , keepdims=True), 

o u t = n p . z e r o s _ l i k e ( t r a n s i t i o n m a t r i x ) , 
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where=t r a n s i t i o n _ m a t r i x . sum(axis= 1, 
keepdims=True) != 0) 

# Replace nans w i t h uniform d i s t r i b u t i o n . 
t r a n s i t i o n _ m a t r i x = n p . n a n _ t o _ n u m ( t r a n s i t i o n _ m a t r i x , nan=l.0 / 
num_locations) 

# V a l i d a t e the m a t r i x and p r i n t i f i t i s s t o c h a s t i c or not 
i f n p . a l l c l o s e ( t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l ) , 1): 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s s t o c h a s t i c " ) 
e l s e : 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s not s t o c h a s t i c " ) 

Code 4 Transition matrix 

#import l i b r a r i e s 
import numpy as np 
import pandas as pd 

#define the path 
f i l e _ p a t h = ' f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' 
t a x i _ d a t a = p d . r e a d _ p a r q u e t ( f i l e _ p a t h ) 

def c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) : 
# S e t t i n g c o n s t a n t s f o r a i r p o r t l o c a t i o n s and fee 
JFK_AIRPORT_ID = 132 
LAGUARDIA_AIRPORT_ID = 138 
AIRPORT_FEE =1.25 

# Get a l l unique l o c a t i o n IDs from both PULocationID and 
DOLocationID 

a l l _ l o c a t i o n s = n p . u n i o n l d ( t a x i _ d a t a [ ' P U L o c a t i o n I D ' ] . u n i q u e ( ) , 
t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) ) 

a l l _ l o c a t i o n s . s o r t ( ) # Sort f o r c o n s i s t e n t i n d e x i n g 

# Map l o c a t i o n IDs t o i n d i c e s i n the m a t r i x 
l o c a t i o n _ t o _ i n d e x = { l o c : i d x f o r i d x , l o c i n 

e n u m e r a t e ( a l l _ l o c a t i o n s ) } 

# I n i t i a l i z e the reward m a t r i x 
num_states = l e n ( a l l _ l o c a t i o n s ) 
reward_matrix = np.zeros((num_states, num_states)) 

# C a l c u l a t e net rewards 
t a x i _ d a t a [ ' n e t _ r e w a rd'] 

t a x i _ d a t a [ ' e x t r a ' ] 
t a x i _ d a t a [ ' c o n g e s t i o n _ s u rcharge'] 

t a x i _ d a t a [ ' t o t a l _ a m o u n t 
t a x i data['mta t a x ' ] 

97 



# A d j u s t i n g f o r a i r p o r t fee 
t a x i _ d a t a . l o c [ t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . i s i n ( [ J F K _ A I R P O R T _ I D , 

LAGUARDIA_AIRPORT_ID]), 'net_reward'] -= AIRPORT_FEE 

# Ad j u s t the reward by t r i p d i s t a n c e 
t a x i _ d a t a [ ' a d j u s t e d _ r e w a r d ' ] = t a x i _ d a t a [ ' n e t _ r e w a r d ' ] * 

t a x i _ d a t a [ ' t r i p _ d i s t a n c e ' ] 

# Aggregate rewards f o r each s t a t e - a c t i o n p a i r 
aggregated_rewards = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 

'DOLocationID'])['adj u s t e d _ r e w a r d ' ] . s u m ( ) . r e s e t _ i n d e x ( ) 

# Populate the reward m a t r i x 
f o r _, row i n a g g r e g a t e d _ r e w a r d s . i t e r r o w s ( ) : 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
reward_matrix[pu_index, do_index] = row['adjusted_reward'] 

# Normalize the reward m a t r i x t o a v o i d extremely l a r g e v a l u e s 
reward_matrix /= t a x i _ d a t a . s h a p e [ 0 ] 

r e t u r n reward_matrix 

reward_matrix = c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) 

# p r i n t i n g reward m a t r i x 
p r i n t ( r e w a r d m a t r i x ) 
Code 5 Reward matrix 

import pandas as pd #import l i b r a r i e s 
import numpy as np 
import mdptoolbox 

# Loading t a x i data 
f i l e _ p a t h = ' f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' 
t a x i _ d a t a = p d . r e a d _ p a r q u e t ( f i l e _ p a t h ) 

# S t a t e t r a n s i t i o n m a t r i x p a r t : 

# E x t r a c t i n g a l l unique l o c a t i o n IDs from the dataframe 
u n i q u e _ l o c a t i o n s = p d . u n i q u e ( t a x i _ d a t a [ [ ' P U L o c a t i o n I D ' , 
' D O L o c a t i o n I D ' ] ] . v a l u e s . r a v e l ( ' K ' ) ) 

# Creates the d i c t i o n a r y w i t h a l l unique l o c a t i o n IDs from the 
dataframe 
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l o c a t i o n _ t o _ i n d e x = { l o c _ i d : index f o r index, l o c _ i d i n 
en u m e r a t e ( u n i q u e _ l o c a t i o n s ) } 

# Set up t r a n s i t i o n m a t r i x w i t h 2 dimensions 
num_locations = i e n ( u n i q u e _ l o c a t i o n s ) 

# Group by PULocationID and DOLocationID and count t r a n s i t i o n s 
t r a n s i t i o n _ m a t r i x = n p . z e r o s ( ( n u m _ l o c a t i o n s , n u m _ l o c a t i o n s ) ) 

# Group by PULocationID and DOLocationID and count t r a n s i t i o n s 
t r a n s i t i o n _ c o u n t s = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 
'DOLocationID']).size().reset_index(name='count') 

# Populate the t r a n s i t i o n m a t r i x 
f o r _, row i n t r a n s i t i o n _ c o u n t s . i t e r rows(): 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
t r a n s i t i o n _ m a t r i x [ p u _ i n d e x , do_index] = row['count'] 

# Normalize the m a t r i x t o get p r o b a b i l i t i e s 
t r a n s i t i o n _ m a t r i x = n p . d i v i d e ( t r a n s i t i o n j n a t r i x , 
t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , keepdims=True), 

o u t = n p . z e r o s _ l i k e ( t r a n s i t i o n j n a t r i x ) , 
w h e r e = t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , 

keepdims=True) != 0) 

# Replace NaNs w i t h a uniform d i s t r i b u t i o n (or s e l f - l o o p ) 
t r a n s i t i o n j n a t r i x = np. n a n _ t o _ n u m ( t r a n s i t i o n _ m a t r i x , nan=l.Q / 
num_locations) 

# V a l i d a t e the m a t r i x 
i f n p . a l l c l o s e ( t r a n s i t i o n j n a t r i x . s u m ( a x i s = l ) , 1): 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s s t o c h a s t i c " ) 
e l s e : 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s not s t o c h a s t i c " ) 

# I n i t i a l i z e a 3D t r a n s i t i o n m a t r i x 
num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 
t r a n s i t i o n _ m a t r i x _ 3 d = n p . z e r o s ( ( n u m _ l o c a t i o n s , num_locations, 
n u m _ l o c a t i o n s ) ) 

# Populate the 3D t r a n s i t i o n m a t r i x 
f o r i i n rang e ( n u m _ l o c a t i o n s ) : 

t r a n s i t i o n _ m a t r i x _ 3 d [ i , :, :] = t r a n s i t i o n j n a t r i x 

def c a l c u l a t e _ r e w a r d s j o p t i m i z e d ( t a x i j d a t a ) : 
# Constants f o r a i r p o r t l o c a t i o n s and fee 
JFK AIRPORT ID = 132 
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LAGUARDIA_AIRPORT_ID = 138 
AIRPORT_FEE =1.25 

# Get a l l unique l o c a t i o n IDs from both PULocationID and 
DOLocationID 

a l l _ l o c a t i o n s = n p . u n i o n l d ( t a x i _ d a t a [ ' P U L o c a t i o n I D ' ] . u n i q u e ( ) , 
t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) ) 

a l l _ l o c a t i o n s . s o r t ( ) # Sort f o r c o n s i s t e n t i n d e x i n g 

# Map l o c a t i o n IDs t o i n d i c e s i n the m a t r i x 
l o c a t i o n _ t o _ i n d e x = { l o c : i d x f o r i d x , l o c i n 

e n u m e r a t e ( a l l _ l o c a t i o n s ) } 

# I n i t i a l i z e the reward m a t r i x 
num_states = l e n ( a l l _ l o c a t i o n s ) 
reward_matrix = np.zeros((num_states, num_states)) 

# C a l c u l a t e net rewards 
t a x i _ d a t a [ ' n e t _ r e w a rd'] 

t a x i _ d a t a [ ' e x t r a ' ] 
t a x i _ d a t a [ ' c o n g e s t i o n _ s u rcharge'] 

t a x i _ d a t a [ ' t o t a l _ a m o u n t 
t a x i data['mta t a x ' ] 

# A d j u s t f o r a i r p o r t fee 
t a x i _ d a t a . l o c [ t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . i s i n ( [ J F K _ A I R P O R T _ I D , 

LAGUARDIA AIRPORT I D ] ) , 'net reward'] -= AIRPORT FEE 

# Ad j u s t reward by t r i p d i s t a n c e 
t a x i _ d a t a [ ' a d j usted_reward'] 

t a x i _ d a t a [ ' t r i p _ d i s t a n c e ' ] 
t a x i d a t a [ ' n e t reward'] 

# Aggregate rewards f o r each s t a t e - a c t i o n p a i r 
aggregated_rewards = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 

' DOLocationID'])['adj u s t e d _ r e w a r d ' ] . s u m ( ) . r e s e t _ i n d e x ( ) 

# Populate the reward m a t r i x 
f o r _, row i n a g g r e g a t e d _ r e w a r d s . i t e r r o w s ( ) : 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
reward_matrix[pu_index, do_index] = row['adjusted_reward'] 

# Normalize the reward m a t r i x t o a v o i d extremely l a r g e v a l u e s 
reward_matrix /= t a x i _ d a t a . s h a p e [ 0 ] 

r e t u r n reward m a t r i x 

reward_matrix = c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) 
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# S e t t i n g up and s o l v i n g the MDP w i t h d i s c o u n t f a c t o r 0.9 by u s i n g 
mdptoolbox 
d i s c o u n t _ f a c t o r = 0.9 
mdp_solver = m d p t o o l b o x . m d p . P o l i c y l t e r a t i o n ( t r a n s i t i o n _ m a t r i x _ 3 d , 
reward_matrix, d i s c o u n t _ f a c t o r ) 
mdp_solver.run() 

# S e t t i n g up and s o l v i n g the MDP w i t h d i s c o u n t f a c t o r 0.5 by u s i n g 
mdptoolbox 
d i s c o u n t _ f a c t o r = 0.5 
mdp_solver2 = m d p t o o l b o x . m d p . P o l i c y l t e r a t i o n ( t r a n s i t i o n _ m a t r i x _ 3 d , 
reward_matrix, d i s c o u n t _ f a c t o r ) 
mdp_solver2.run() 

# S e t t i n g up and s o l v i n g the MDP w i t h d i s c o u n t f a c t o r 0.1 by u s i n g 
mdptoolbox 
d i s c o u n t _ f a c t o r = 0 . 1 
mdp_solver3 = m d p t o o l b o x . m d p . P o l i c y l t e r a t i o n ( t r a n s i t i o n _ m a t r i x _ 3 d , 
reward_matrix, d i s c o u n t _ f a c t o r ) 
mdp_solver3.run() 

# E x t r a c t i n g and d i s p l a i n g o p t i m a l p o l i c y w i t h d i s c o u n t f a c t o r 0.9 
o p t i m a l _ p o l i c y = m d p _ s o l v e r . p o l i c y 
p r i n t ( " O p t i m a l P o l i c y d i s c o u n t f a c t o r 0.9:", o p t i m a l _ p o l i c y ) 

# E x t r a c t i n g and d i s p l a i n g o p t i m a l p o l i c y w i t h d i s c o u n t f a c t o r 0.5 
o p t i m a l _ p o l i c y 2 = m d p _ s o l v e r 2 . p o l i c y 
p r i n t ( " O p t i m a l P o l i c y d i s c o u n t f a c t o r 0.5:", o p t i m a l _ p o l i c y 2 ) 

# E x t r a c t i n g and d i s p l a i n g o p t i m a l p o l i c y w i t h d i s c o u n t f a c t o r 0.1 
o p t i m a l _ p o l i c y 3 = m d p _ s o l v e r 3 . p o l i c y 
p r i n t ( " O p t i m a l P o l i c y d i s c o u n t f a c t o r 0.1:", o p t i m a l _ p o l i c y 3 ) 

# Check i f p o l i c i e s are equal 
p o l i c i e s _ e q u a l _ 0 _ 9 _ 0 _ 5 = a l l ( p o l i c y l == p o l i c y 2 f o r p o l i c y l , p o l i c y 2 
i n z i p ( m d p _ s o l v e r . p o l i c y , m d p _ s o l v e r 2 . p o l i c y ) ) 
p o l i c i e s _ e q u a l _ 0 _ 9 _ 0 _ l = a l l ( p o l i c y l == p o l i c y 2 f o r p o l i c y l , p o l i c y 2 
i n z i p ( m d p _ s o l v e r . p o l i c y , m d p _ s o l v e r 3 . p o l i c y ) ) 
p o l i c i e s _ e q u a l _ 0 _ 5 _ 0 _ l = a l l ( p o l i c y l == p o l i c y 2 f o r p o l i c y l , p o l i c y 2 
i n z i p ( m d p _ s o l v e r 2 . p o l i c y , m d p _ s o l v e r 3 . p o l i c y ) ) 

# P r i n t the comparison of r e s u l t s (the o p t i m a l p o l i c i e s ) 
i f p o l i c i e s _ e q u a l _ 0 _ 9 _ 0 _ 5 : 

p r i n t ( " O p t i m a l p o l i c i e s f o r d i s c o u n t f a c t o r s 0.9 and 0.5 are 
equal.") 
e l s e : 

p r i n t ( " O p t i m a l p o l i c i e s f o r d i s c o u n t f a c t o r s 0.9 and 0.5 are not 
equal.") 
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i f p o l i c i e s _equal_0 _9_0_1: 
p r i n t ( "Optimal p o l i c i e s f o r d i s c o u n t f a c t o r s 0.9 and 0.1 are 

equal.") 
e l s e : 

p r i n t ( " Optimal p o l i c i e s f o r d i s c o u n t f a c t o r s 0. 9 and 0.1 are not 
equal.") 

i f p o l i c i e s _equal_0 _5_0_1: 
p r i n t ( "Optimal p o l i c i e s f o r d i s c o u n t f a c t o r s 0.5 and 0.1 are 

equal.") 
e l s e : 

p r i n t ( " Optimal p o l i c i e s f o r d i s c o u n t f a c t o r s 0. 5 and 0.1 are not 
equal.") 
Code 6 Value Iteration for MDP 

#import l i b r a r i e s 
import pandas as pd 
import numpy as np 
import mdptoolbox 

# De f i n e f u n c t i o n mdp s o l v e r by 4 arguments 
def r u n _ m d p _ s o l v e r ( s o l v e r , t r a n s i t i o n _ m a t r i x , reward_mat r i x , 
d i s c o u n t _ f a c t o r ) : 

mdp_solver = s o l v e r ( t r a n s i t i o n _ m a t r i x , reward_matrix, 
d i s c o u n t _ f a c t o r ) 

mdp_solver.run() 
r e t u r n m d p _ s o l v e r . p o l i c y 

# Function t o save the p o l i c i e s 
def s a v e _ p o l i c y ( p o l i c y , f i l e n a m e ) : 

np.save(filename, p o l i c y ) 
p r i n t ( f " S a v e d p o l i c y t o {filename}.npy") 

# Function t o p r i n t the p o l i c i e s 
def p r i n t _ p o l i c y ( p o l i c y , d e s c r i p t i o n ) : 

p r i n t ( f " { d e s c r i p t i o n } : { p o l i c y } " ) 

# Function t o compare the p o l i c i e s 
def c o m p a r e _ p o l i c i e s ( * p o l i c i e s ) : 

c o m p a r i s o n _ r e s u l t s = {} 
f o r i i n r a n g e ( l e n ( p o l i c i e s ) ) : 

f o r j i n r a n g e ( i + 1, l e n ( p o l i c i e s ) ) : 
c o m p a r i s o n _ r e s u l t s [ ( i , j ) ] = a l l ( p i == p2 f o r p i , p2 i n 

z i p ( p o l i c i e s [ i ] , p o l i c i e s [ j ] ) ) 
r e t u r n c o m p a r i s o n _ r e s u l t s 

# Function t o p r i n t comparison of the p o l i c i e s 
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def p r i n t _ c o m p a r i s o n _ r e s u l t s ( c o m p a r i s o n _ r e s u l t s ) : 
f o r ( i , j ) , r e s u l t i n c o m p a r i s o n _ r e s u l t s . i t e m s ( ) : 

i f r e s u l t : 
p r i n t ( f " O p t i m a l p o l i c i e s f o r i n s t a n c e s { i } and { j } are 

equal.") 
e l s e : 

p r i n t ( f " O p t i m a l p o l i c i e s f o r i n s t a n c e s { i } and { j } are 
not equal.") 

# Loading t a x i data 
f i l e _ p a t h = ' y e l l o w / f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' 
t a x i _ d a t a = p d . r e a d _ p a r q u e t ( f i l e _ p a t h ) 

# S t a t e t r a n s i t i o n m a t r i x p a r t : 

# E x t r a c t i n g a l l unique l o c a t i o n IDs from the dataframe 
u n i q u e _ l o c a t i o n s = p d . u n i q u e ( t a x i _ d a t a [ [ ' P U L o c a t i o n I D ' , 
' D O L o c a t i o n l D ' ] ] . v a l u e s . r a v e l ( ' K ' ) ) 

# Creates the d i c t i o n a r y w i t h a l l unique l o c a t i o n IDs from the 
dataframe 
l o c a t i o n _ t o _ i n d e x = { l o c _ i d : index f o r index, l o c _ i d i n 
e n u m e r a t e ( u n i q u e _ l o c a t i o n s ) } 

# Set up t r a n s i t i o n m a t r i x w i t h 2 dimensions 
num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 

# i n i t i a l i z e s the t r a n s i t i o n m a t r i x w i t h dimensions num_locations 
t r a n s i t i o n _ m a t r i x = n p . z e r o s ( ( n u m _ l o c a t i o n s , n u m _ l o c a t i o n s ) ) 

# Group by PULocationID and DOLocationlD and count t r a n s i t i o n s 
t r a n s i t i o n _ c o u n t s = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 
' D O L o c a t i o n l D ' ] ) . s i z e ( ) . r e s e t _ i n d e x ( n a m e = ' c o u n t ' ) 

# Populate the t r a n s i t i o n m a t r i x 
f o r _, row i n t r a n s i t i o n _ c o u n t s . i t e r rows(): 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n l D ' ] ] 
t r a n s i t i o n _ m a t r i x [ p u _ i n d e x , do_index] = row['count'] 

# Normalize the m a t r i x t o get p r o b a b i l i t i e s 
t r a n s i t i o n _ m a t r i x = n p . d i v i d e ( t r a n s i t i o n _ m a t r i x , 
t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , keepdims=True), 

o u t = n p . z e r o s _ l i k e ( t r a n s i t i o n _ m a t r i x ) , 
w h e r e = t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , 

keepdims=True) != 0) 

# Replace NaNs w i t h a uniform d i s t r i b u t i o n (or s e l f - l o o p ) 
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t r a n s i t i o n j n a t r i x 
num_locations) 

np. n a n _ t o _ n u m ( t r a n s i t i o n _ m a t r i x , nan=1.0 / 

# V a l i d a t e the m a t r i x and p r i n t i f i t i s s t o c h a s t i c or not 
i f n p . a l l c l o s e ( t r a n s i t i o n j n a t r i x . s u m ( a x i s = l ) , 1): 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s s t o c h a s t i c " ) 
e l s e : 

p r i n t ( " T h e t r a n s i t i o n m a t r i x i s not s t o c h a s t i c " ) 

# I n i t i a l i z e 3D t r a n s i t i o n m a t r i x 
num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 
t r a n s i t i o n j n a t r i x _ 3 d = n p . z e r o s ( ( n u m _ l o c a t i o n s , 
num l o c a t i o n s ) ) 

num_locations, 

# Populate the 3D t r a n s i t i o n m a t r i x 
f o r i i n ran g e ( n u m _ l o c a t i o n s ) : 

t r a n s i t i o n j n a t r i x _ 3 d [ i , :, :] = t r a n s i t i o n j n a t r i x 

# Reward m a t r i x p a r t : 

def c a l c u l a t e _ r e w a r d s j o p t i m i z e d ( t a x i j d a t a ) : 
# S e t t i n g c o n s t a n t s f o r a i r p o r t l o c a t i o n s and fee 
JFK_AIRPORT_ID = 132 
LAGUARDIA_AIRPORT_ID = 138 
AIRPORT_FEE =1.25 

# Get a l l unique l o c a t i o n IDs from both PULocationID and 
DOLocationID 

a l l _ l o c a t i o n s = n p . u n i o n l d ( t a x i j d a t a [ ' P U L o c a t i o n I D ' ] .unique(), 
t a x i j d a t a [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) ) 

a l l _ l o c a t i o n s . s o r t ( ) # Sort f o r c o n s i s t e n t i n d e x i n g 

# Map l o c a t i o n IDs t o i n d i c e s i n the m a t r i x 
l o c a t i o n _ t o _ i n d e x = { l o c : i d x f o r i d x , l o c i n 

e n u m e r a t e ( a l l _ l o c a t i o n s ) } 

# I n i t i a l i z e the reward m a t r i x 
n u n j s t a t e s = l e n ( a l l _ l o c a t i o n s ) 
r e w a r d j n a t r i x = n p . z e r o s ( ( n u m j s t a t e s , n u m j s t a t e s ) ) 

# C a l c u l a t e net rewards 
t a x i j d a t a [ ' n e t _ r e w a rd'] 

t a x i j d a t a [ ' e x t r a ' ] 
t a x i j d a t a [ ' c o n g e s t i o n _ s u r c h a r g e ' ] 

t a x i j d a t a [ ' t o t a l jamount 
t a x i data['mta t a x ' ] 

# A d j u s t f o r a i r p o r t fee 
t a x i j d a t a . l o c [ t a x i j d a t a [ ' D O L o c a t i o n I D ' ] . i s i n ( [ J F K _ A I R P O R T _ I D , 

LAGUARDIA AIRPORT I D ] ) , 'net reward'] -= AIRPORT FEE 
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# A d j u s t reward by t r i p d i s t a n c e 
t a x i _ d a t a [ ' a d j u s t e d _ r e w a r d ' ] = t a x i _ d a t a [ ' n e t _ r e w a r d ' ] * 

t a x i _ d a t a [ ' t r i p _ d i s t a n c e ' ] 

# Aggregate rewards f o r each s t a t e - a c t i o n p a i r 
aggregated_rewards = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 

'DOLocationID'])['adj u s t e d _ r e w a r d ' ] . s u m ( ) . r e s e t _ i n d e x ( ) 

# Populate the reward m a t r i x 
f o r _, row i n a g g r e g a t e d _ r e w a r d s . i t e r r o w s ( ) : 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
reward_matrix[pu_index, do_index] = row['adjusted_reward'] 

# Normalize the reward m a t r i x t o a v o i d extremely l a r g e v a l u e s 
reward_matrix /= t a x i _ d a t a . s h a p e [ 0 ] 

r e t u r n reward_matrix 

reward_matrix = c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) 

# Set up d i s c o u n t f a c t o r s 
d i s c o u n t _ f a c t o r s = [0.9, 0.5, 0.1] 
# Run Value i t e r a t i o n w i t h d i f f e r e n t d i s c o u n t f a c t o r s 
p o l i c i e s _ v i = [] 
f o r i , df i n e n u m e r a t e ( d i s c o u n t _ f a c t o r s ) : 

p o l i c y = run_mdp_solver(mdptoolbox.mdp.Valuelteration, 
t r a n s i t i o n _ m a t r i x _ 3 d , reward_matrix, d f ) 

p o l i c i e s _ v i . a p p e n d ( p o l i c y ) 
s a v e _ p o l i c y ( p o l i c y , f " o p t i m a l _ p o l i c y _ v i _ d f _ { d f } " ) 
p r i n t _ p o l i c y ( p o l i c y , f ' O p t i m a l p o l i c y f o r Value i t e r a t i o n w i t h 

d i s c o u n t f a c t o r { d f } " ) 

# Run P o l i c y i t e r a t i o n w i t h d i f f e r e n t d i s c o u n t f a c t o r s 
p o l i c i e s _ p i = [] 
f o r i , df i n e n u m e r a t e ( d i s c o u n t _ f a c t o r s ) : 

p o l i c y = r u n _mdp_solver(mdptoolbox.mdp.PolicyIteration, 
t r a n s i t i o n _ m a t r i x _ 3 d , reward_matrix, d f ) 

p o l i c i e s _ p i . a p p e n d ( p o l i c y ) 
s a v e _ p o l i c y ( p o l i c y , f " o p t i m a l _ p o l i c y _ p i _ d f _ { d f } " ) 
p r i n t _ p o l i c y ( p o l i c y , f ' O p t i m a l p o l i c y f o r P o l i c y i t e r a t i o n w i t h 

d i s c o u n t f a c t o r { d f } " ) 

# Run 0-Learning w i t h d i f f e r e n t d i s c o u n t f a c t o r s 
p o l i c i e s _ q l = [] 
f o r i , df i n e n u m e r a t e ( d i s c o u n t f a c t o r s ) : 
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p o l i c y = run_mdp_solver(mdptoolbox.mdp.QLearning, 
t r a n s i t i o n _ m a t r i x _ 3 d , reward_matrix, d f ) 

p o l i c i e s _ q l . a p p e n d ( p o l i c y ) 
s a v e _ p o l i c y ( p o l i c y , f " o p t i m a l _ p o l i c y _ q l _ d f _ { d f } " ) 

p r i n t _ p o l i c y ( p o l i c y , f ' O p t i m a l p o l i c y f o r Q-Learning w i t h 
d i s c o u n t f a c t o r { d f } " ) 

# Compare a l l p o l i c i e s 
c o m p a r i s o n _ r e s u l t s = c o m p a r e _ p o l i c i e s ( * p o l i c i e s _ v i , * p o l i c i e s _ p i , 
* p o l i c i e s _ q l ) 
p r i n t _ c o m p a r i s o n _ r e s u l t s ( c o m p a r i s o n _ r e s u l t s ) 
Code 7 Final MDP code to run Value, Policy iterations and Q-learning 

1 import numpy as rip 
2 import m a t p l o t l i b . p y p l o t as p i t 
3 

4 
d e f l o a d _ o p t i m a l _ p o l i c y ( f i l e p a t h ) : 

6 # Load the o p t i m a l p o l i c y from t he f i l e 
r e t u r n n p . l o a d { f i l e _ p a t h ) 

8 
9 # D e f i n e a f u n c t i o n c r e a t e _ b a r _ c h a r t t h a t t a k e s o p t i m a l _ p o l i c y and num_states as parameters 

10 # T h i s f u n c t i o n w i l l be used t o c r e a t e a bar c h a r t t o v i s u a l i z e t h e o p t i m a l p o l i c y 
11 def c r e a t e _ b a r _ c h a r t ( o p t i m a l _ p o l i c y . , n u m s t a t e s ) : 

p i t . f i g u r e ( f i g s i z e = ( 1 5 , 8 ) ) 
p i t . b a r ( r a n g e ( n u m s t a t e s ) , o p t i m a l p o l i c y , color="green") 

14 p i t . x l a b e l ( ' S t a t e s " ) # Set t h e l a b e l f o r the x - a x i s as S t a t e s 
15 p i t . y l a b e l ( ' O p t i m a l A c t i o n s " ) # Set l a b e l f o r y - a x i s as Op t i m a l A c t i o n s 

p i t . t i t l e ( " O p t i m a l P o l i c y " ) # Set t i t l e o f p l o t as Op t i m a l P o l i c y 
17 p l t . s h o w ( ) 
18 
19 def main{): 

f i l e _ p a t h = " o p t i m a l p o l i c y v i d f 6.l.npy' # Path t o saved o p t i m a l p o l i c y f i l e 
o p t i m a l _ p o l i c y = l o a d _ o p t i m a l _ p o l i c y ( f i l e _ p a t h ) 

22 
num_states = l e n ( o p t i m a l _ p o l i c y ) # c a l c u l a t e number o f s t a t e s 
c r e a t e _ b a r _ c h a r t ( o p t i m a l _ p o l i c y j num_states) 

25 
26 i f name == " main ": 
27 main[Q] 

Code 8 Bar chart for optimal policy 

from s k l e a r n . c l u s t e r import KMeans 
import numpy as np 
import seaborn as sns 
import m a t p l o t l i b . p y p l o t as p i t 
import pandas as pd 

# l o a d i n g o p t i m a l p o l i c y 
o p t i m a l _ p o l i c y = n p . l o a d ( ' o p t i m a l _ p o l i c y _ p i _ d f _ 0 . l . n p y ' ) 

# reshaping our p o l i c y f o r c l u s t e r i n g 
p o l i c y f o r c l u s t e r i n g = o p t i m a l p o l i c y . r e s h a p e ( - 1 , 1) 
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# s t a r t c l u s t e r i n g 
num_clusters = 6 #based on number of boroughs c l u s t e r s w i l l be 6 
kmeans = KMeans(n_clusters=num_clusters, 
r a n d o m _ s t a t e = l ) . f i t ( p o l i c y _ f o r _ c l u s t e r i n g ) 

# Get c l u s t e r l a b e l s f o r each s t a t e 
c l u s t e r _ l a b e l s = kmeans.labels_ 

# Create dataframe f o r q u i c k m a n i p u l a t i o n 
c l u s t e r e d _ d a t a = pd.DataFrame({'State': 
n p . a r a n g e ( l e n ( o p t i m a l _ p o l i c y ) ) , ' P o l i c y ' : o p t i m a l _ p o l i c y , ' C l u s t e r ' : 
c l u s t e r _ l a b e l s } ) 
c l u s t e r e d _ d a t a . s o r t _ v a l u e s ( b y = ' C l u s t e r ' , inplace=True) 

# Create 2dimensions a r r a y f o r the heatmap 
heatmap_data = n p . z e r o s ( ( n u m _ c l u s t e r s , l e n ( o p t i m a l _ p o l i c y ) ) ) 

# I t e r a t i o n over c l u s t e r s 
f o r c l u s t e r i n ran g e ( n u m _ c l u s t e r s ) : 

# G e t t i n g s t a t e s which belong t o c u r r e n t c l u s t e r 
s t a t e s _ i n _ c l u s t e r = c l u s t e r e d _ d a t a [ c l u s t e r e d _ d a t a [ ' C l u s t e r ' ] == 

c l u s t e r ] [ ' S t a t e ' ] 
# I t e r a t i o n over s t a t e s 
f o r s t a t e i n s t a t e s _ i n _ c l u s t e r : 

h e a t m a p _ d a t a [ c l u s t e r , s t a t e ] = c l u s t e r e d _ d a t a . l o c [ s t a t e , 
' P o l i c y ' ] 

# P l o t t i n g the heatmap 
p i t . f i g u r e ( f i g s i z e = ( 1 5 , 10)) 
sns.heatmap(heatmap_data, c m a p = " v i r i d i s " ) 
p i t . t i t l e ( " H e a t m a p of Optimal P o l i c i e s w i t h C l u s t e r i n g " ) 
p i t . x l a b e l ( " S t a t e " ) 
p i t . y l a b e l ( " C l u s t e r " ) 
p i t . show() 
Code 9 Heatmapping with clusters 

import pandas as pd 
import numpy as np 
import m a t p l o t l i b . p y p l o t as p i t 
from m p l _ t o o l k i t s . m p l o t 3 d import Axes3D 

def l o a d _ t a x i _ d a t a ( f i l e _ p a t h ) : 
t r y : 

r e t u r n p d . r e a d _ p a r q u e t ( f i l e _ p a t h ) 
except Exception as e: 

p r i n t ( f " E r r o r l o a d i n g the f i l e : {e}") 
re t u r n None 
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# T r a n s i t i o n M a t r i x 
def i n i t i a l i z e _ m a t r i c e s ( t a x i _ d a t a ) : 

u n i q u e _ l o c a t i o n s = p d . u n i q u e ( t a x i _ d a t a [ [ ' P U L o c a t i o n I D ' , 
' D O L o c a t i o n l D ' ] ] . v a l u e s . r a v e l ( ' K ' ) ) 

l o c a t i o n _ t o _ i n d e x = { l o c _ i d : index f o r index, l o c _ i d i n 
en u m e r a t e ( u n i q u e _ l o c a t i o n s ) } 

num_locations = l e n ( u n i q u e _ l o c a t i o n s ) 
t r a n s i t i o n _ m a t r i x = n p . z e r o s ( ( n u m _ l o c a t i o n s , num_locations)) 

t r a n s i t i o n _ c o u n t s = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 
'DOLocationlD']).size().reset_index(name='count') 

f o r _, row i n t r a n s i t i o n _ c o u n t s . i t e r r o w s ( ) : 
pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n l D ' ] ] 
t r a n s i t i o n _ m a t r i x [ p u _ i n d e x , do_index] = row['count'] 

t r a n s i t i o n _ m a t r i x = n p . d i v i d e ( t r a n s i t i o n _ m a t r i x , 
t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , keepdims=True), 

o u t = n p . z e r o s _ l i k e ( t r a n s i t i o n _ m a t r i x ) , 
where=t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l , 

keepdims=True) != 0) 
t r a n s i t i o n _ m a t r i x = n p . n a n _ t o _ n u m ( t r a n s i t i o n _ m a t r i x , nan=1.0 / 

num_locations) 

i f n p . a l l c l o s e ( t r a n s i t i o n _ m a t r i x . s u m ( a x i s = l ) , 1): 
p r i n t ( " T h e t r a n s i t i o n m a t r i x i s s t o c h a s t i c " ) 

e l s e : 
p r i n t ( " T h e t r a n s i t i o n m a t r i x i s not s t o c h a s t i c " ) 

# Reward M a t r i x Code 
reward_matrix = c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) 

r e t u r n t r a n s i t i o n _ m a t r i x , reward_matrix 

def c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) : 
JFK_AIRPORT_ID = 132 
LAGUARDIA_AIRPORT_ID = 138 
AIRPORT_FEE =1.25 

a l l _ l o c a t i o n s = n p . u n i o n l d ( t a x i _ d a t a [ ' P U L o c a t i o n I D ' ] . u n i q u e ( ) , 
t a x i _ d a t a [ ' D O L o c a t i o n l D ' ] . u n i q u e ( ) ) 

a l l _ l o c a t i o n s . s o r t ( ) 

l o c a t i o n _ t o _ i n d e x = { l o c : i d x f o r i d x , l o c i n 
e n u m e r a t e ( a l l _ l o c a t i o n s ) } 
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num_stat.es = ten ( a l l _ l o c a t i o n s ) 
reward_matrix = np.zeros((num_states, num_states)) 

t a x i _ d a t a [ ' n e t _ r e w a r d ' ] = t a x i _ d a t a [ ' t o t a l _ a m o u n t ' ] 
t a x i _ d a t a [ ' e x t r a ' ] - t a x i _ d a t a [ ' m t a _ t a x ' ] 
t a x i _ d a t a [ ' c o n g e s t i o n _ s u rcharge'] 

t a x i _ d a t a . l o c [ t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . i s i n ( [ J F K _ A I R P O R T _ I D , 
LAGUARDIA_AIRPORT_ID]), 'net_reward'] -= AIRPORT_FEE 

t a x i _ d a t a [ ' a d j u s t e d _ r e w a r d ' ] = t a x i _ d a t a [ ' n e t _ r e w a r d ' ] * 
t a x i _ d a t a [ ' t r i p _ d i s t a n c e ' ] 

aggregated_rewards = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 
'DOLocationID'])['adj u s t e d _ r e w a r d ' ] . s u m ( ) . r e s e t _ i n d e x ( ) 

f o r _, row i n a g g r e g a t e d _ r e w a r d s . i t e r r o w s ( ) : 
pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
reward_matrix[pu_index, do_index] = row['adjusted_reward'] 

reward_matrix /= t a x i _ d a t a . s h a p e [ 0 ] 

r e t u r n reward m a t r i x 

# Setup Q-table w i t h zeros i t maps s t a t e - a c t i o n p a i r s t o v a l u e s 
def s a r s a _ a l g o r i t h m ( t r a n s i t i o n _ m a t r i x , reward_matrix, num_states, 
num_actions, episodes, alpha, gamma): 

Q = np.zeros((num_states, num_actions)) 

f o r episode i n r a n g e ( e p i s o d e s ) : 
# I n i t i a l i z e s t a t e randomly f o r each new episode 
s t a t e = np.random.randint(0, num_states) 

# Choose a c t i o n from s t a t e u s i n g p o l i c y from Q 
a c t i o n = np.random.randint(0, num_actions) # Example: random 

a c t i o n 

t i l l 1000 
f o r _ i n range(1000): # L i m i t number of steps per episode 

) 
# Take a c t i o n then observe new s t a t e and reward 
new_state = n p . a r g m a x ( t r a n s i t i o n _ m a t r i x [ s t a t e , a c t i o n ] ) 
reward = reward m a t r i x [ s t a t e , a c t i o n ] 

# Choose new a c t i o n from new s t a t e by u s i n g p o l i c y 
d e r i v e d from Q 

new_action = np.random.randint(0, num_actions) # 
Example: random a c t i o n 
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# Updating Q-value f o r c u r r e n t s t a t e and a c t i o n p a i r 
u s i n g SARSA update r u l e - p a i r (new_state, new_action). 

Q f s t a t e , a c t i o n ] = Q f s t a t e , a c t i o n ] + alpha * (reward + 
gamma * Q[new_state, new_action] - Q [ s t a t e , a c t i o n ] ) 

# Moving t o new s t a t e and a c t i o n f o r next i t e r a t i o n 
s t a t e , a c t i o n = new_state, new_action 

r e t u r n Q 

# E x t r a c t o p t i m a l p o l i c y from Q-table 
def e x t r a c t _ p o l i c y ( Q ) : 

#for each s t a t e choose a c t i o n w i t h h i g h e s t Q-value 
re t u r n np.argmax(Q, a x i s = l ) 

# P l o t the e x t r a c t e d p o l i c y as a f u n c t i o n of s t a t e s , 
def p l o t _ p o l i c y ( p o l i c y , a lpha, gamma): 

p i t . f i g u r e ( f i g s i z e = ( 1 2 , 6)) 
p i t . p l o t ( p o l i c y , marker='o') 
p i t . t i t l e ( f ' P o l i c y f o r alpha={alpha}, gamma={gamma}') 
p i t . x l a b e l ( ' S t a t e s ' ) 
p i t . y l a b e l ( ' C h o s e n A c t i o n ' ) 
p i t . g r i d ( T r u e ) 
p i t .show() 

def main(): 
f i l e _ p a t h = ' y e l l o w / f o r m a t t e d _ y e l l o w _ t a x i _ 2 2 . p a r q u e t ' 
t a x i _ d a t a = l o a d _ t a x i _ d a t a ( f i l e _ p a t h ) 

i f t a x i _ d a t a i s not None: 
# P l o t the e x t r a c t e d p o l i c y as a f u n c t i o n of s t a t e s . 

t r a n s i t i o n _ m a t r i x , reward_matrix = 
i n i t i a l i z e _ m a t r i c e s ( t a x i _ d a t a ) 

alphas = [0.1, 0.5, 0.9] # Set up d i f f e r e n t l e a r n i n g r a t e s 
gammas = [0.1, 0.5, 0.9] # Set up d i f f e r e n t d i s c o u n t f a c t o r s 
episodes = 1000 

# Run SARSA a l g o r i t h m w i t h a c t u a l alpha and gamma val u e s 
f o r alpha i n al p h a s : 

f o r gamma i n gammas: 
Q = s a r s a _ a l g o r i t h m ( t r a n s i t i o n _ m a t r i x , reward_matrix, 

l e n ( t r a n s i t i o n _ m a t r i x ) , t r a n s i t i o n j n a t r i x . s h a p e [ 1 ] , e pisodes, alpha, 
gamma) 

p o l i c y = e x t r a c t _ p o l i c y ( Q ) 
p l o t _ p o l i c y ( p o l i c y , a l p h a , gamma) 

# Save p o l i c i e s t o the main path 
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p o l i c y _ f i l e _ n a m e 
f Mpolicy_alpha_{alpha}_gamma_{gamma}.npy" 

n p . s a v e ( p o l i c y _ f i l e _ n a m e , p o l i c y ) 
p r i n t ( f " P o l i c y saved as { p o l i c y _ f i l e _ n a m e } " ) 

i f name == " main ": 
main () 

Code 10 SARSA 

Table 7 Policy dictionary 

Abbreviations Policy name 

Policy 0 
Value iteration with 

0.9 

Policy 1 
Value iteration with 

0.5 

Policy 2 
Value iteration with 

0.1 

Policy 3 
Policy iteration with 

0.9 

Policy 4 
Policy iteration with 

0.5 

Policy 5 
Policy iteration with 

0.1 
Policy 6 Q-learning with 0.9 
Policy 7 Q-learning with 0.5 
Policy 8 Q-learning with 0.1 

Heatmap of Optimal Policies with Clustering 
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Figure 18 Q learning heatmap of optimal policies with discount factor 0.5 

Count of Action ID (location ids) 

Count of Action ID (location ids) by Borough of State 

51 50 

io 6 1010 8 1010 s 

l l l l l l l l l 
Bronx Brooklyn EWR Manhattan Queens Staten Island 

• pQlicy_alpha_Q.l_gamma_0.1 39 46 10 84 69 13 

• policy_alpha_0.1_gamma_0.5 41 60 6 79 58 17 

• pQlicy_alpha_Q.l_gamma_0.9 43 57 10 77 57 17 

policy_alpha_0.5_gamma_0.1 46 43 10 86 65 11 

• poiicy_alpha_0,5_gamma_0.5 33 57 8 82 68 13 

• policy_alphaj).5_gamma_0.9 41 47 10 76 65 22 

• poiicy_alpha_0.9_gamma_0.1 

• policy_alpha_0.9_gamma_0.5 

• poiicy_alpha_0.9_gamma_0.9 

40 59 10 73 62 17 • poiicy_alpha_0.9_gamma_0.1 

• policy_alpha_0.9_gamma_0.5 

• poiicy_alpha_0.9_gamma_0.9 

40 51 8 83 66 13 

• poiicy_alpha_0.9_gamma_0.1 

• policy_alpha_0.9_gamma_0.5 

• poiicy_alpha_0.9_gamma_0.9 39 50 8 84 61 19 

Discount factor * 

I policy_aipha_0.1_gamma_0.1 

• policy_alpha_0.1_gamma_0.5 

• policy_alpha_0.1_gamma_0.9 

pojicv_a[pha_0.5_gamma_0.1 

• policy_alpha_0.5_gamma_0.5 

• policy_a!pha_0.5_gamma_0.9 

• polJcy_alpha_0.9_gamma_0.1 

• policy_alpha_0.9_gamma_0.5 

• policy_alpha_0.9_gamma_0.9 

Figure 19 Bar chart of all SARSA optimal policies 
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Heatmap of Optimal Policies with Clustering 
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def c a l c u l a t e _ r e w a r d s _ o p t i m i z e d ( t a x i _ d a t a ) : 
# Constants f o r a i r p o r t l o c a t i o n s and fee 
JFK_AIRPORT_ID = 132 
LAGUARDIA_AIRPORT_ID = 138 
AIRPORT_FEE =1.25 

# Convert timestamps t o datetime i f not a l r e a d y 
t a x i _ d a t a [ ' p i c k u p _ d a t e t i m e ' ] = 

p d . t o _ d a t e t i m e ( t a x i _ d a t a [ ' t p e p _ p i c k u p _ d a t e t i m e ' ] ) 
t a x i _ d a t a [ ' d r o p o f f _ d a t e t i m e ' ] = 

p d . t o _ d a t e t i m e ( t a x i _ d a t a [ ' t p e p _ d r o p o f f _ d a t e t i m e ' ] ) 

# C a l c u l a t e t r i p d u r a t i o n i n seconds 
t a x i _ d a t a [ ' t r i p _ d u r a t i o n ' ] = ( t a x i _ d a t a [ ' d r o p o f f _ d a t e t i m e ' ] 

t a x i _ d a t a [ ' p i c k u p _ d a t e t i m e ' ] ) . d t . t o t a l _ s e c o n d s ( ) 

# Unique l o c a t i o n IDs from both PULocationID and DOLocationID 
a l l _ l o c a t i o n s = n p . u n i o n l d ( t a x i _ d a t a [ ' P U L o c a t i o n I D ' ] . u n i q u e ( ) , 

t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . u n i q u e ( ) ) 
a l l _ l o c a t i o n s . s o r t ( ) # Sort f o r c o n s i s t e n t i n d e x i n g 

# Map l o c a t i o n IDs t o i n d i c e s i n the m a t r i x 
l o c a t i o n _ t o _ i n d e x = { l o c : i d x f o r i d x , l o c i n 

e n u m e r a t e ( a l l _ l o c a t i o n s ) } 
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# I n i t i a l i z e the reward m a t r i x 
num_states = l e n ( a l l _ l o c a t i o n s ) 
r e w a r d j n a t r i x = np.zeros((num_states, num_states)) 

# C a l c u l a t e net rewards i n c l u d i n g the t r i p d u r a t i o n 
t a x i _ d a t a [ ' n e t _ r e w a r d ' ] = t a x i _ d a t a [ ' t o t a l _ a m o u n t ' ] 

t a x i _ d a t a [ ' e x t r a ' ] - t a x i _ d a t a [ ' m t a _ t a x ' ] 
t a x i _ d a t a [ ' c o n g e s t i o n _ s u rcharge'] 

# A d j u s t f o r a i r p o r t fee 
t a x i _ d a t a . l o c [ t a x i _ d a t a [ ' D O L o c a t i o n I D ' ] . i s i n ( [ J F K _ A I R P O R T _ I D , 

LAGUARDIA_AIRPORT_ID]), 'net_reward'] -= AIRPORT_FEE 

# Small number t o a v o i d d i v i s i o n by zero 
e p s i l o n = l e - 6 

t a x i _ d a t a [ ' a d j u s t e d _ r e w a r d ' ] = t a x i _ d a t a [ ' n e t _ r e w a r d ' ] * 
t a x i _ d a t a [ ' t r i p _ d i s t a n c e ' ] / ( t a x i _ d a t a [ ' t r i p _ d u r a t i o n ' ] + e p s i l o n ) 

# Aggregate rewards f o r each s t a t e - a c t i o n p a i r 
aggregated_rewards = t a x i _ d a t a . g r o u p b y ( [ ' P U L o c a t i o n I D ' , 

'DOLocationID'])['adj u s t e d _ r e w a r d ' ] . s u m ( ) . r e s e t _ i n d e x ( ) 

# Populate the reward m a t r i x 
f o r _, row i n a g g r e g a t e d _ r e w a r d s . i t e r r o w s ( ) : 

pu_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' P U L o c a t i o n I D ' ] ] 
do_index = l o c a t i o n _ t o _ i n d e x [ r o w [ ' D O L o c a t i o n I D ' ] ] 
reward_matrix[pu_index, do_index] = row['adjusted_reward'] 

# Normalize the reward m a t r i x 
r e w a r d j n a t r i x /= t a x i _ d a t a . s h a p e [ 0 ] 

a s s e r t n p . a l l ( n p . i s f i n i t e ( r e w a r d j n a t r i x ) ) , "Reward m a t r i x 
c o n t a i n s n o n - f i n i t e v a l u e s " 

r e t u r n reward m a t r i x 
Code 11 Adjusted reward matrix with trip duration 
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Optimal Policy 

Figure 22 Bar chart of optimal policy for Policy and Value iterations with all discount factors and with adjusted reward 

matrix 

Count of Action ID (location ids) 

Sum of A c t i o n ID ( locat ion ids) by Borough of State 

Borough of Action 

Bronx Brooklyn EWB Manhattan Queens Staten Island 

• adjusted q-learning gamma 0.1 11 S 197 20 18 7 

• adjusted q-learning gamma 0.5 7 20 192 20 15 7 

• adjusted q-learning gamma 0.9 15 19 170 21 29 7 
1 Original Q learning with 0.1 8 15 210 9 15 4 

• Original Q learning with 0.S 15 17 190 20 17 2 

• Original Q learning with 0.9 10 19 196 15 4 

Discount factor 

• adjusted q-leai 

• adjusted q-learni 

• adjusted q-learni 

Original Q learning with 0.1 

• Original Qlearning with 0.5 

• Original Qlearning with 0.9 

ng gamma 0.1 

ng gamma 0.5 

ng gamma 0.9 

Figure 23 Comparison chart of Original and Adjusted Q-learning optimal policies 
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