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Introduction 
 
 Plant cuticle is a unique polymer layer which allowed colonization of dry 

land by plants. It creates an effective barrier protecting plants from excessive 

water, ion and nutrient loss and infection by pathogens (Kerstiens, 1996a; 

Riederer and Schreiber, 2001). In simplified words, cuticle forms 'plant skin' and 

in fact, the Latin name 'cuticula' means really 'thin skin'. 

 Cuticular ecophysiological traits, e.g. water permeability, are affected 

both by cuticular chemical composition and its physical properties. Furthermore, 

these traits can also be influenced by surrounding environmental conditions. 

Conversely, environmental conditions are imprinted through CO2 fixation 

mechanisms into isotopic composition of the cuticle as in the chronicle of plant-

environment relationship.   

 

1. Cuticle composition 

 Cuticular membrane is an extracellular product of epidermis formed 

during growth period of different aerial organs of the plant. It is a thin (0.1–10 

μm) continuous membrane consisting of a polymer matrix (cutin) entwined with 

polysaccharides and cuticular waxes (solvent soluble lipids; Schönherr and 

Bukovac, 1973; Nawrath, 2002; Riederer and Schreiber, 2001; Neinhuis et al., 

2001). Insoluble cutin polymer, the major structural cuticle component, is formed 

by cross-linking hydroxylated fatty acids via intermolecular ester bonds leading 

to a three-dimensional structure. Cutin monomers of the C16 and C18 classes are 

synthesized from the acetyl coenzyme A (CoA) esters of palmitic acid and oleic 

acid, respectively, by multiple hydroxylation and epoxidation reactions (Hauke 

and Schreiber, 1998; Nawrath, 2002).  

 Cuticular waxes represent multiphase system, consisting at least of two 

important structural fractions. A crystalline fraction is composed of long aliphatic 

chains (alkanes, alcohols, aldehydes, fatty acids and esters) assembled in a 

reticular lattice, while an amorphous zone forms an interspace between chain 

ends, functional groups, short-chain aliphatic compounds and non-aliphatic 

compounds (Kerstiens, 1996b; Kolattukudy, 1996). Wax precursors, fatty acids 

up to chain length C18, are synthesised in plastids from CoA. Elongation 
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processes are catalysed by fatty acid elongases, a multienzyme complex 

located in endoplasmatic reticulum (Kunst and Samuels, 2003). Final 

differentiated aliphatic chains (alkans, aldehydes, alcohols, acids and esters) are 

transported to plasmatic membrane and extracted across cell wall. Due to their 

lipophilic character, the transfer across plasmatic membrane and cell wall is 

mediated by ABC transporters and LTP proteins (Treviño and O’Connell, 1998; 

Pighin et al., 2004; Samuels et al., 2008).  

 

2. Cuticle properties: water permeability 

 The cuticle forms a contact zone between plant cells and environment 

and its main function is protection against water loss. Cuticle physical properties 

depend on genetic predisposition and environmental conditions (e.g. 

temperature, humidity, irradiance). Under the ambient conditions, the air 

humidity is below 100% and water flows from inner part to outer surface where it 

evaporates. However, when air humidity is close to 100%, the opposite situation 

can also be observed. Cuticular permeability to water is usually characterized by 

the variable permeance (P), which represents the ratio of water flow rate density 

to driving force, i.e. concentration difference (Kerstiens, 1996b; Riederer and 

Schreiber, 2001). Water and other solutes get across cuticles by diffusion, which 

is based on random molecular motions over small molecular distances 

(Schreiber and Schönherr, 2009). Interestingly, cuticular water permeability is 

not correlated to cuticle thickness or to wax coverage (Kerstiens, 1996a; 

Schreiber and Riederer, 1996; Riederer and Schreiber, 2001). This is likely 

because the effectiveness of cuticular barrier is determined not only by the 

amount of waxes, but also by their chemical composition, physical arrangement 

and molecular organization (Schreiber et al., 1996). Membrane permeability in 

general, and specifically cuticle permeability, are affected by partition 

coefficients (i.e. how many penetrating molecules enter cuticle at a given 

external concentration) and component’s mobility (i.e. rate of penetrating 

molecules across the cuticle, Kerstiens, 2006). The increase of partition 

coefficients eventually leads to a relatively high cuticular permeability for 

extremely lipophilic compounds. On the other hand, polar electrolytes and ionic 

species have small partition coefficients leading to extremely low solubility in 
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cutin and cuticular waxes and thus cuticle represents an effective barrier for 

these compounds (Schreiber et al., 1996; Buchholz et al., 1998). Diffusant’s 

mobility depends on tortuosity of the diffusion pathway, i.e. on spatial ordering of 

aliphatic domains and cyclic compounds. The investigation of cuticle of Cirsium 

horridulum showed that hydroxyl groups enhance cuticular hydrophilic character 

and elasticity (Marga et al., 2001). Further, Hauke and Schreiber (1998) 

documented that waxes with chain length larger that C27 have been related to 

lower cuticular transpiration.  

 Plant cuticle controls the movement of water between outer cell wall of 

the epidermis and the atmosphere. The mechanism of water transport across 

cuticle is a simple diffusion process along a gradient of the chemical potential of 

water (Niederl et al., 1998). This model explains cuticular permeability rather for 

lipophilic organic non-electrolytes, but reaches its limits when polar compounds 

are included (Riederer and Schreiber, 2001). Schreiber at al. (2001) published a 

new model of two parallel pathways of water diffusion across the cuticle. One 

pathway proceeds through the lipid fractions of the cuticle and it is easily 

accessible to lipophilic solutes. The second one is made up along hydrated polar 

groups (-OH and -COOH, polysaccharide microfibrils) which form pores and 

allow transit of water-soluble organic compounds and inorganic ions. 

Nevertheless, until now, it is not clear how these polar pathways develop and 

where they are localized (Schreiber, 2005). Earlier data suggested that the high 

density of polar pathways may be localized above anticlinal cell walls of 

epidermal cells, above guard cells and in the vicinity of cuticular ledges of 

stomata (Beyer et al., 2005; Schlegel et al., 2005). On the other hand, aqueous 

pores were also observed in astomatous cuticles of Pyrus communis and 

Populus canescens (Schönherr, 2000; 2002). However, rate constants of the 

same penetrating compounds were higher for stomatous cuticles than for 

astomatous ones (cf. Schönherr, 2006). 

 

2.1 Effect of temperature  

 Temperature is a predominant physical factor influencing permeance of 

the barrier. Leaf surface temperature primarily depends on air temperature and 

wind velocity, irradiation and transpiration rate. With increasing temperature, 
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diffusion coefficients increase (size selectivity decreased), while partition 

coefficients between membrane and adjacent phases decrease (Baur and 

Schönherr, 1995; Baur et al., 1997; Buchholz et al., 1998; Schönherr et al., 

2001). Since temperature has stronger effect on diffusion than on partitioning, 

the water permeance increases with temperature (Riederer and Schreiber, 

2001). Nevertheless, permeance of water across cuticle increases nonlinearly 

with rising temperature; the slopes are becoming steeper at temperatures higher 

than 35°C (Schreiber, 2001). It seems that at temperature above 30–40°C 

increased volume expansion of cutin polymer causes defects in transport limiting 

barrier for water (Schreiber and Schönherr, 1990), while no change was 

observed in cuticular permeability for lipophilic substances. 

 

2.2 Effect of humidity  

 Cuticular water permeability significantly increases with increasing air 

humidity (Slavík, 1973; Hoad et al., 1997; Pospíšilová et al., 1999; Schreiber et 

al., 2001; Karbulková et al., 2008 - study II). This is caused by non-esterified, 

free carboxyl groups present in cutin polymer matrix and other water sorbing 

polar groups, which in turn increase the water permeability of polar domains of 

the cuticle (Schönherr, 2000). The total water diffusion is arranged in two parallel 

pathways: the humidity-sensitive polar path and more frequently used humidity-

independent, non-polar path formed by the lipophilic wax components. 

Therefore, the humidity effect on permeability is small. Whereas increasing 

humidity causes only 2–3 times higher permeability across polar pores, after 

increasing of temperature (above 30°C) or plasticizer application cuticular 

permeability can increase by factors between 10 and 1000 (Schreiber et al., 

2001). The humidity effect on cuticular water permeability is small also in 

comparison to that on polar polymer film. It also indicates that polar pathway 

across plant cuticle forms only minor part of overall permeability (Riederer and 

Schreiber, 2001; Schönherr, 2000).  

 

2.3 Methods of cuticular permeability measurement  

 Present knowledge of the cuticular permeability is based especially on 

measurements with astomatous leaf surface or astomatous cuticular 
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membranes. Water and other solutes pass through cuticle by diffusion. The flow 

of molecules across cuticle (F) is expressed as amount of penetrating compound 

per time. If the flow is divided by area of the transport, the flux (J) is obtained 

(Schreiber and Schönherr, 2009). Then, cuticular permeability can be 

characterized by the permeance (P) calculated as a ratio of J and difference of 

penetrating compound concentration in donor and receiver, i.e. concentration 

gradient. 

 Classic gravimetric methods on intact leaves are based on 

measurements of transpiration curves, i.e. sequent weighing of excised, 

originally fully saturated, leaves (Slavík, 1958a; 1958b; 1965). Gasometric 

methods are based on measurements of water vapor concentration in the air 

flowing around measured leaves (Slavík, 1965). Disadvantage of theses 

methods is usually overestimation of the results due to imperfect stomatal 

closure (Hoad et al., 1996; Burghardt and Riederer, 2003; Beyer et al., 2005). 

 Thirty years ago, laboratory of prof. Schönherr started with 

measurements of enzymaticaly isolated cuticular membranes. The high 

accuracy of such measurements, as compared to measurements of intact 

leaves, is the main advantage of using isolated membranes. It is possible to use 

several detection methods for measuring compound flow across membrane: 

gravimetry (Schreiber and Riederer, 1996), spectrophotometry (Schreiber et al., 

1995) or labeling (Schreiber et al., 2001). But still, these methods allow 

measuring of astomatous cuticular membranes only. 

 Recently, we published a newly developed approach which allows to 

distinguish the flow of water across stomatal pores ('stomatal transpiration') from 

the flow across cuticular solid phase ('cuticular transpiration') in the stomatous 

cuticle (Šantrůček et al., 2004 - study I). The principle of this method is based on 

a fact that water vapor diffusivity in gas phase can be manipulated by using inert 

gasses with various molecular mass (e.g. helium, nitrogen, xenon) while 

diffusivity of water vapour in the solid phase is not affected.  

 By applying this method, it is possible to measure and compare cuticular 

water permeabilities from stomatous and astomatous leaf sides. Nonetheless, 

this method is applicable only to isolated cuticular membranes. An alternative 

techniques, suitable for intact leaves, used chlorophyll fluorescence imaging 
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(Šantrůček et al., 2000) or absorption of radio-labeled compounds (14C 2,4-

dichlorophenoxyacetic acid, pentachlorphenol) through stomatous leaf side 

(Schreiber and Schönherr, 1992; Schreiber, 1994).  

  

3. Plant cuticle as a leaf chronicle 

 Onthogeny of cuticular membrane starts at very early stage of leaf life. 

Cuticular waxes, especially in mature leaves, are formed mainly from newly 

assimilated carbon. Similarly to leaf tissue, wax synthesis and its 13C signal is 

affected by environmental conditions (Conte et al., 2003). The waxes are formed 

exclusively in epidermal cells (Kunst and Samuels, 2003; Shepherd and 

Griffiths, 2006). Their precursors are synthesized from photosynthates 

assimilated in chloroplasts of cells located presumably in the close vicinity of 

epidermal cells. Hence, the isotopic composition of abaxial and adaxial waxes 

reflects the 13C/12C ratio of CO2 in the nearest chloroplasts (provided the 

constant fractionation during carboxylation and wax biosynthesis).  

 Water shortage causes stomatal closure and consequently decreases 

the CO2 concentration in the leaf (ci). Since the ratio between internal and 

ambient CO2 concentration (ci/ca) reflects the balance between net 

photosynthesis and stomatal conductance, it affects discrimination (∆) against 

carbon isotope 13C in plants. Therefore, waxes might be used for more accurate 

estimates of seasonal changes of stomatal aperture, especially in locations were 

the seasonality is driven by rainfall pattern.   

 

Aims of the thesis 
 A central aim of this thesis was studying plant regulation of cuticular 

transpiration water loss. I focused first on changes in cuticular water permeability 

and second, on changes in cuticular chemical composition under simulated 

drought stress. Finally, the obtained findings were capitalized on in a case study 

of altitudinal distribution of congeneric treeline species. 

 This thesis consists of four original papers: 

 

I. A new technique for measurement of water permeability of stomatous cuticular 

membranes isolated from Hedera helix leaves.  
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II. Differences between water permeability of astomatous and stomatous 

cuticular membranes: Effects of air humidity in two species of contrasting 

drought resistance strategy.  

III. Plant response to drought stress simulated by ABA application: changes in 

chemical composition of cuticular waxes.  

IV. Morphological and ecophysiological traits shaping altitudinal distribution of 

three Polylepis treeline species in the dry tropical Andes. 

 

 The first, mainly methodological, study presents newly developed 

method which allows to separate water vapor flux across the cuticle between 

stomata and cuticular solid phase. It is for the first time when a comparison of 

water permeability of astomatous cuticle with permeability of solid cuticle from 

stomatous leaf side was performed. 

 The second study evolves measurements of water permeability of 

stomatous and astomatous cuticles. The main focus insists on effect of short-

term and long-term (growth) relative humidity on cuticular water permeability of 

stomatous and astomatous cuticular membranes in two different plant species. 

More specifically, plants with different drought resistance strategy were 

compared to elucidate their differences also in water permeability under different 

humidity conditions.  

 The third study includes research of abscisic acid (ABA) effect on 

chemical composition of cuticular waxes. The main question was, whether a 

plant can regulate abundance of particular components or carbon chain length to 

improve water loss protection under simulated drought conditions. 

 The last study presents results of ecophysiological measurements on 

treeline Polylepis species. Here, the measured leaf traits have been related to 

water and/or temperature limitation and species altitudinal distribution. To 

assess long-term (seasonal) stomatal functioning, the isotopic composition of 

abaxial cuticular waxes was used. 
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An updated version of chamber for measurements of water vapor diffusion 

across cuticular membranes in different gases. The donor compartment is filled 

with 3H2O water and receiver is a vial with rolled filter paper saturated with non-

radiolabeled water. 
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A new technique for measurement of water permeability of 
stomatous cuticular membranes isolated from Hedera helix 

leaves 
 
 

 

 

 

Jiří Šantrůček, Eva Šimáňová, Jana Karbulková, Marie Šimková and Lukas 

Schreiber 

Journal of Experimental Botany 55, 1411-1422, 2004 

 
 
Abstract 
 Transpiration of cuticular membranes isolated from the lower stomatous 

surface of Hedera helix (ivy) leaves was measured using a novel approach 

which allowed a distinction to be made between gas phase diffusion (through 

stomatal pores) and solid phase diffusion (transport through the polymer matrix 

membrane and cuticular waxes) of water molecules. This approach is based on 

the principle that the diffusivity of water vapour in the gas-phase can be 

manipulated by using different gases (helium, nitrogen, or carbon dioxide) while 

diffusivity of water in the solid phase is not affected. This approach allowed the 

flow of water across stomatal pores ('stomatal transpiration') to be calculated 

separately from the flow across the cuticle ('cuticular transpiration') on the 

stomatous leaf surface. As expected, water flux across the cuticle isolated from 

the astomatous leaf surface was not affected by the gas composition since there 

are no gas-filled pores. Resistance to flux of water through the solid cuticle on 

the stomatous leaf surface was about 11 times lower than cuticular resistance 

on the astomatous leaf surface, indicating pronounced differences in barrier 

properties between cuticles isolated from both leaf surfaces. In order to check 

whether this difference in resistance was due to different barrier properties of 

cuticular waxes on both leaf sides, mobility of 14C-labelled 2,4-dichlorophenoxy-
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butyric acid (14C-2,4-DB) in reconstituted cuticular wax isolated from both leaf 

surfaces was measured separately. However, mobility of 14C-2,4-DB in 

reconstituted wax isolated from the lower leaf surface was 2.6 times lower 

compared with the upper leaf side. The significantly higher permeability of the 

ivy cuticle on the lower stomatous leaf surface compared with the astomatous 

surface might result from lateral heterogeneity in permeability of the cuticle 

covering normal epidermal cells compared with the cuticle covering the stomatal 

cell surface. 
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Nová technika měření propustnosti pro vodu u průduchových 
kutikulárních membrán izolovaných z listů břečťanu Hedera 

helix 
 

 

 

 

 

Jiří Šantrůček, Eva Šimáňová, Jana Karbulková, Marie Šimková a Lukas 

Schreiber 

Journal of Experimental Botany 55, 1411-1422, 2004 

 

 

Shrnutí 
 Pro měření toku vodní páry přes kutikulární membránu izolovanou ze 

spodní (průduchové) strany listu břečťanu (Hedera helix) byla použita nově 

vyvinutá metoda umožňující rozdělení celkového toku vodní páry přes kutikulu 

na průduchovou a kutikulární transpiraci. Metoda je založena na rozdílné difusi 

vody v plynné fázi a přes membránu. Zatímco rychlost difuse v plynné fázi závisí 

na použitém plynném mediu (helium, dusík, CO2), difuse přes pevnou fázi 

(membránu) není změnou media ovlivněna. Z našich výsledků je patrné, že 

pevná fáze spodní průduchové kutikuly je 11x propustnější pro vodu než 

neprůduchová kutikula. Ovšem testovaná mobilita 14C-značené 2,4-

dichlorophenoxy-máselné kyseliny v rekrystalizovaných voscích izolovaných z 

obou stran listu ukazuje nižší propustnost u vosků ze spodní stany listu. Tento 

rozdíl je pravděpodobně dán rozdílnými vlastnostmi kutikuly pokrývající normální 

epidermální buňky a kutikuly pokrývající svěrací buňky. 
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SEM micrographs of stomatal pores in cuticular membrane isolated from the 

abaxial surface of (a) Hedera helix and (b) Zamioculcas zamiifolia leaf. The pore 

viewed from the physiologically outer side of the cuticle. 

B 
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Differences between water permeability of astomatous and 
stomatous cuticular membranes: Effects of air humidity in two 

species of contrasting drought resistance strategy 
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Abstract 
 Cuticular water permeabilities of adaxial and abaxial leaf surfaces and 

their dependence on relative air humidity (RH) applied in long-term and short-

term regimes have been analyzed for Hedera helix, native in a temperate 

climate, and Zamioculcas zamiifolia, native in subtropical regions.  Water 

permeability of cuticular membranes (CM) isolated from the adaxial 

(astomatous) and abaxial (stomatous) leaf sides was measured using a method 

which allowed separating water diffusion through the remnants of the original 

stomatal pores from water diffusion through the solid cuticle.  The long term 

effects of low (20–40%) or high (60–80%) RH applied during plant growth and 

leaf ontogeny ('growth RH') and the short-term effects of applying 2% or 100% 

RH while measuring permeability ('measurement RH') were investigated.  With 

both species water permeability of the solid stomatous CM was significantly 

higher than permeability of the astomatous CM.  Adaxial cuticles of plants grown 

in humid air were more permeable to water than those from dry air.  The adaxial 

CM of the drought tolerant H. helix was more permeable and more sensitive to 

growth RH than the adaxial CM of Z. zamiifolia, a species avoiding water stress.  

However, permeability of the solid abaxial CM was similar in both species and 

independent of growth RH.  The lack of a humidity response in the abaxial CM is 
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attributed to a higher degree of cuticular hydration resulting from stomatal 

transpiration.  The ecophysiological significance of higher permeability of the 

solid stomatous CM compared to the astomatous CM is discussed. 
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Rozdílná propustnost abaxiální a adaxiální listové kutikuly: 
Vliv vlhkosti na propustnost u dvou druhů s kontrastní 

strategií v hospodaření s vodou 
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Shrnutí 
 Rozdíly v propustnosti rostlinné kutikuly pro vodu byly zjištěny mezi 

neprůduchovou částí spodní průduchové kutikuly a svrchní neprůduchovou 

kutikulou u břečťanu (Hedera helix) a zamioculcas (Zamioculcas zamiifolia) za 

všech měřených podmínek (krátkodobé a dlouhodobé působení vysoké a nízké 

relativní vlhkosti). Rozdílný vliv relativní vlhkosti na propustnost neprůduchové 

kutikuly obou druhů indikuje jejich rozdílné mechanismy v hospodaření vodou. 

Dlouhodobé působení vysoké relativní vlhkosti se projevilo vyšší propustností 

neprůduchové kutikuly, zejména u břačťanu. Naopak propustnost průduchové 

kutikuly se v různých vlhkostních podmínkách měnila minimálně. To může být 

spojeno s vyšší vlhkostí hraniční vrstvy způsobenou průduchovou transpirací. 

Řádové rozdíly mezi propustností neprůduchové kutikuly mezi druhy 

koresponduje s jejich rozdílnou životní historií a adaptací na subtropické a 

temperátní klima; zároveň indikuje rozdílné mechanismy vyrovnávání se s 

vodním stresem - toleranci u Hedera helix a avoidanci u Zamioculcas zamiifolia. 
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SEM micrograph of epicuticular waxes on the cuticular membrane surface 

isolated from Zamioculcas zamiifolia leaf.  
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Plant response to drought stress simulated by ABA 
application: changes in chemical composition of cuticular 

waxes 
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and Jiří Šantrůček 
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Abstract 
 Plant cuticles form the interface between epidermal plant cells and the 

atmosphere. The cuticle creates an effective barrier against water loss, bacterial 

and fungal infection and also protects plant tissue from UV radiation. It is 

composed of the cutin matrix and embedded soluble lipids also called waxes. 

Chemical composition of cuticular waxes and physiological properties of cuticles 

are affected by internal regulatory mechanisms and environmental conditions 

(e.g. drought, light, humidity). Here, we tested the effect of drought stress 

simulation by the exogenous application of abscisic acid (ABA) on cuticular wax 

amount and composition. ABA-treated plants and control plants differed in total 

aboveground biomass, leaf area, stomatal density and aperture, and carbon 

isotope composition. They did not differ in total wax amount per area but there 

were peculiar differences in the abundance of particular components. ABA-

treated plants contained significantly higher proportions of aliphatic components 

characterized by chain length larger than C26, compared to control plants. This 

trend was consistent both between and within different functional groups of wax 

components. This can lead to a higher hydrophobicity of the cuticular 

transpiration barrier and thus decrease cuticular water loss in ABA-treated 

plants. At both ABA-treated and control plants alcohols with chain length C24 and 

C26 were predominant. Such a shift towards wax compounds having a higher 
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average chain length under drought conditions can be interpreted as an adaptive 

response of plants towards drought stress.   
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 Změny v chemickém složení kutikulárních vosků v reakci na 
stres suchem simulovaný aplikací ABA  

 
 

 

 

 

 

Jana Macková, Martina Vašková, Petr Macek, Marie Hronková, Lukas Schreiber 

a Jiří Šantrůček 

(Rukopis podaný do Environmental and Experimental Botany) 

 

 

Shrnutí 
 Rostlinná kutikula tvoří rozhraní mezi rostlinou a atmosférou. Její hlavní 

funkcí je ochrana proti ztrátě vody. Její chemické složení a vlastnosti závisí 

často na podmínkách prostředí (světlo, sucho apod.). Zde jsme testovali, zda 

sucho simulované aplikací kyseliny abscisové (ABA) ovlivní množství a složení 

kutikulárních vosků. Z výsledků vyplývá, že rostliny ošetřené ABA se lišily od 

kontrolních v růstových parametrech (množství nadzemní biomasy, listová 

plocha, izotopové složení listů, velikost a četnost průduchů), ale nelišily se v 

množství kutikulárních vosků na jednotku plochy. Avšak, rostliny s ABA 

obsahovaly více alifatických složek s uhlíkovým řetezcem delším než C26. 

Kumulace dlouhořetězcových alifatických látek může vést k vyšší hydrofobicitě 

kutikuly a tím snižovat kutikulární propustnost pro vodu. 

 

 



26 

 
 
 
 
 
 
 
 
 
 
 
 

 
Flowering Polylepis rugulosa from the west slope of Cordillera Occidental, 

3720 m asl, January 2007  
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Morphological and ecophysiological traits shaping altitudinal 
distribution of three Polylepis treeline species in the dry 

tropical Andes 
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Abstract 
Numerous species of the genus Polylepis form the highest treeline in the 

world, with striking dissimilarities in their upper altitudinal limits.  The commonly 

accepted hypothesis is that growth at a treeline is limited by temperature.  Here, 

using in situ records of various morphological and ecophysiological traits, we 

aimed to identify other factors influencing altitudinal distribution of three 

congeneric species from the dry tropical Andes: Polylepis rugulosa, Polylepis 

tarapacana and Polylepis tomentella.  While P. tarapacana and P. tomentella 

reach their altitudinal limit at around 5000 m asl, P. rugulosa does not thrive 

above 4300 m, but precipitation is markedly lower in its distribution area.  The 

three species responded to altitude by a change of morphological (e.g. 

decreased tree height and leaf size) and ecophysiological (e.g. decrease of 

transpiration rate, nutrient concentration or enrichment in the 13C isotope) traits, 

and this response was generally more pronounced in P. rugulosa.  In 

comparison with P. tarapacana and P. tomentella, P. rugulosa displayed higher 

transpiration rates.  Waxes from the abaxial (stomatous) leaf side of P. rugulosa 

were most strongly enriched in 13C.  Furthermore, leaves of all species studied 

here had exceptionally low N and P concentrations.  Trade-offs linked to 

changes in leaf area (e.g. bigger leaves, higher photosynthetic capacity but 
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elevated transpiration) seem to drive differentiation and adaptations to altitude 

among these three congeneric species.  We hypothesize that, while the upper 

distribution limit of P. tarapacana and P. tomentella is largely driven by low 

temperature, water is an important additional factor controlling the altitudinal 

distribution of P. rugulosa.  Our results suggest that water stress needs to be 

taken into account among the factors shaping the altitudinal distribution of 

tropical treeline species. 
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Vliv morfologických a ekofyziologických vlastností tří blízce 
příbuzných druhů rodu Polylepis na výškovou distribuci 

hranice lesa v oblasti suchých tropických And 
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Shrnutí 
 Srovnáním ekofyziologických a morfologických vlastností tří příbuzných 

druhů rodu Polylepis tvořících hranici lesa jsme se pokusili vysvětlit jejich různé 

výškové rozšíření (horní limit od 4300 do >5000 m.n.m.). Hranice lesa je obecně 

ovlivněna teplotou. Pomocí gazometrických charakteristik a izotopového složení 

kutikulárních vosků jsme se pokusili identifikovat alternativní faktory. Zatímco 

výškový limit u P. tarapacana a P. tomentella je ovlivněn především teplotou, 

dostupnost vody hraje klíčovou roli ve výškové distribuci P. rugulosa. Stress 

nedostatkem vody by měl být brán v potaz jako faktor ovlivňující hranici lesa v 

tropických horách. 
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Summary and perspectives 
 

 Plant cuticle represents the exciting world of first several micrometers 

separating plant from the atmosphere. If we start from the beginning, the oldest 

cuticular remnants bear date to late Silurian period. Analyses of cuticular 

remnants offers useful tool to study ecophysiological adaptations of first vascular 

plants. From stable isotope studies it is possible to make paleoclimate 

reconstructions or estimate water availability during plant life (Xie et al., 2004; 

Polissar et al., 2009; cf. study IV). Interestingly, the stomatal pores evolved 

simultaneously with cuticle; this supports hypothesis, that genes involved in wax 

biosynthesis share high homological structure with stomatal distribution genes 

(cf. Bird and Gray, 2003). The major role of cuticle is the same since its origin in 

prehistoric plants: water loss protection. Since transpiration fluxes are controlled 

by both stomata and cuticle, only the optimized coordination of both parts can 

lead to an effective protection.  

 Cuticular water permeability was in interest of many researchers in the 

last sixty years. Numerous studies investigated mechanisms of water diffusion 

across the cuticle (e.g. Becker et al., 1986; Riederer and Schreiber, 1995; 

Schreiber et al., 2001). Different permeability as an ecophysiological adaptation 

to various origins was surveyed by Schreiber and Riederer (1996). 

Nevertheless, a question remained, whether upper and lower side of 

hypostomatous leaves contribute to water permeability equally. Available 

methods did not allow to separate stomatal residual water loss from the cuticular 

one, so far. A novel method presented in study I brought a useful tool for 

separation of water flux diffusing across stomata from cuticular-solid-phase flux. 

For the first time, it is now possible to directly compare permeability of 

astomatous cuticular membrane with permeability of solid stomatous cuticle in 

the same leaf. On the example of Hedera helix, we documented that astomatous 

(adaxial) cuticle was less permeable than stomatous (abaxial) one (study I). On 

the other hand, we found discrepancy in diffusion of 14C labeled 2,4-DB in 

reconstructed waxes isolated from both leaf sides. We suggested that lateral 

heterogeneity of cuticular conductance, e.g. differences in transport properties of 
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epidermal, subsidiary and guard cell cuticle played significant role in this case 

(study I). 

 One of the main environmental factors affecting water permeability is 

relative humidity. Short-term humidity effect (minutes, hours) enhances water 

permeability 2–3 times (Schreiber et al., 2001; study II). It seems that this 

response is based on physical processes and its proportion is affected by varied 

content of polar functional groups and polysaccharide microfibrils (Van Hove and 

Adema, 1996; Schönherr, 2006). On the contrary, long-term humidity effect 

(months, years) on cuticular water permeability is rather species-specific. 

According to our study of two evergreen species with contrasting origin, Hedera 

helix and Zamioculcas zamiifolia, it seems that permeability response is 

connected to drought resistance strategy and/or species practice to cope with 

long-term (periodical) humidity changes (study II). It is also interesting that 

humidity effect was more pronounced at adaxial (astomatous) cuticles than at 

abaxial (stomatous) cuticles (study II). It is probably due to higher degree of 

cuticular hydratation resulting from stomatal transpiration. 

 Environmental factors related to air humidity, e.g. drought stress, affect 

also cuticular thickness, total wax amount and chemical composition (Jenks et 

al., 2001; Shepherd and Griffiths, 2006, Bringe et al., 2006; Koch et al, 2006). 

Nevertheless, at in vitro cultivations, usually characterized by high air humidity 

and lower light intensity, the situation is strikingly different. Less developed 

cuticle was commonly documented (e.g. Pospíšilová et al., 1999). This leads to 

an insufficient cuticular water loss protection contributing to wilting after fast 

plant transfer to the field. However, when acclimatization with gradual lowering 

air humidity is included, the cuticle thickness and wax content can change during 

several days after transplantation from in vitro to the field conditions. 
Acclimatization can be accelerated by hardening of plants by decreasing the 

transpiration rate by antitranspirants, e.g. abscisic acid (ABA; Pospíšilová, 1996; 

Pospíšilová et al., 1998). Similarly, we documented, that drought stress 

simulated by ABA application can affect percent abundance of wax component 

substance classes and the abundance of the components with different carbon 

chain lengths (study III). Since increasing amount of wax chain length larger that 

C27 correlates to decreasing cuticular transpiration (Hauke and Schreiber, 1998), 
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the quantitative changes in wax composition indicate that simulated water stress 

may reduce cuticular permeability to water. On molecular level, CER6 gene 

seems to be plausible candidate regulating wax production under ABA treatment 

(Hooker et al., 2002). In our study III, ABA affected not only total aboveground 

biomass, leaf carbon isotope composition and wax chemical composition but 

also stomatal density and size. Negatively correlated stomatal density and 

stomatal size seems to improve water use efficiency, because the smaller 

stomata are, the faster they respond (Franks and Beerling, 2009). Effective 

stomatal regulation contributes to better leaf water economy.  

 Drought stress results not only in different abundance of chemical 

compounds but also in their carbon isotope composition. On leaf level, drought 

causes stomatal closure and consequently reduction of leaf internal CO2 

concentration. Plant discrimination to 13C is proportional to ratio of CO2 

concentration inside and outside the leaf (ci/ca; Farquhar and Richards, 1984). It 

means that drought affected plants are more enriched in 13C than well watered 

plants (cf. study III, study IV). Furthermore, the same principle is valid on 

chemical compound level. Wax precursors are largely made de novo from newly 

and localy assimilated carbon. Therefore, their isotopic composition corresponds 

to (i) composition of assimilated CO2 and, (ii) to local ci/ca, reflecting stomatal 

aperture. Since wax turnover is shorter than leaf lifetime, but still long enough to 

cover variability between seasons, waxes might be used for more accurate 

estimate of seasonal changes of stomatal aperture in some species (study IV). 

 Presented results show cuticle as a heterogeneous system reflecting 

plant requests for water loss protection from several points of view. Although 

these studies certainly contributed to understanding of cuticular role in plant 

water management, they also opened a range of new questions for future 

research.  

 Studies of environmental impacts on chemical composition and 

regulation of wax biosynthesis on molecular level seems one promising field. 

The use of different wax mutants allows following the particular steps in wax 

biosynthesis under different treatments. In our case, the combination of control, 

ABA sensitive and ABA non-responsive plants allows us to separate ABA effect 

on gene expression.  
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 Since water diffusion across cuticular membrane uses both lipophilic 

and hydrophilic pathways, it is necessary to know aqueous (polar) pore structure 

and its transport properties which have not been studied directly yet. Aqueous 

pores are formed by permanent dipoles such as hydroxyl, amino, and carboxyl 

groups. These aqueous are formed only in the presence of water and have been 

localized using ionic fluorescent dyes, silver nitrate, and mercuric chloride 

(Weichert et al., 2004; Schlegel et al., 2005; Schreiber et al., 2006; Schönherr, 

2006). The presence of aqueous pores is crucial for ecophysiological role of 

plant cuticle in water loss protection. The pores can shrink or disappear under 

very low air humidity, which results in decrease of water permeability. Further, 

the aqueous pores facilitate non destructive penetration of large ionic molecules 

to leaves, stems, and flowers (Schönherr, 2006). Therefore, it is important to 

know whether and to what extent are the hydrophilic paths characteristic for the 

cuticles of all plant (Schreiber, 2005). 

 Among the other interesting field of research are functional properties of 

guard cell cuticle. It seems that possible existence of guard cell-specificity of 

cuticular transport properties may play an important physiological role in short-

term control of leaf water loss. This might be important for stomatal sensitivity to 

CO2 via humidity-sensing stomata (Kerstiens, 1996a; 1996b; Talbott et al., 

2003). 

 Stable isotope techniques are widely used methods allowing research in 

many scientific fields. In combination with other techniques, e.g. nuclear 

magnetic resonance, they offer more sensitive tool in biochemistry, 

geochemistry and also in plant physiology. Furhtermore, the use of compound-

specific analysis allows following a specific molecule or component in plant 

material analysis (cf. Chikaraishi and Naraoka, 2003; Smith and Freeman, 

2006). In wax studies it provides comparison of wax components associated 

with different biosynthetic pathways, i.e. acetogenic, mevalonic-acid and non-

mevalonic-acid pathways (Chikaraishi et al., 2004). 

 Cuticular research, as was documented here, represents still a very 

exciting and moving scientific field with numerous potential practical and 

theoretical outcomes. 
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