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Abstract
A significant challenge in sequential decision-making involves dealing with uncertainty,
which arises from inaccurate sensors or only a partial knowledge of the agent’s environ-
ment. This uncertainty is formally described through the framework of partially observ-
able Markov decision processes (POMDPs). Unlike Markov decision processes (MDP),
POMDPs only provide limited information about the exact state through imprecise ob-
servations. Decision-making in such settings requires estimating the current state, and
generally, achieving optimal decisions is not tractable. There are two primary strategies
to address this issue. The first strategy involves formal methods that concentrate on com-
puting belief MDPs or synthesizing finite state controllers, known for their robustness and
verifiability. However, these methods often struggle with scalability and require to know the
underlying model. Conversely, informal methods like reinforcement learning offer scalability
but lack verifiability. This thesis aims to merge these approaches by developing and imple-
menting various techniques for interpreting and integrating the results and communication
strategies between both methods. In this thesis, our experiments show that this symbiosis
can improve both approaches, and we also show that our implementation overcomes other
RL implementations for similar tasks.
Abstrakt
Jednou ze současných výzev při sekvenční rozhodováním je práce s neurčitostí, která je
způsobena nepřesnými senzory či neúplnou informací o prostředích, ve kterých bychom
chtěli dělat rozhodnutí. Tato neurčitost je formálně popsána takzvanými částečně po-
zorovatelnými Markovskými rozhodovacími procesy (POMDP), které oproti Markovským
rozhodovacím procesům (MDP) nahrazují informaci o konkrétním stavu nepřesným po-
zorováním. Pro rozhodování v takových prostředích je nutno nějakým způsobem odhadovat
současný stav a obecně tvorba optimálních politik v takových prostředích není rozhod-
nutelná. K vyrovnání se s touto výzvou existují dva zcela odlišné přístupy, kdy lze k prob-
lému přistupovat úplnými formálními metodami, a to buď s pomocí výpočtu beliefů či
syntézou konečně stavových kontrolérů, nebo metodami založenými na nepřesné aproxi-
maci současného stavu, reprezentované především hlubokým zpětnovazebným učením. Za-
tímco formální přístupy jsou schopné dělat verifikovatelná a robustní rozhodnutí pro malá
prostředí, tak zpětnovazebné učení je schopné škálovat na reálné problémy. Tato práce
se pak soustředí na spojení těchto dvou odlišných přístupů, kdy navrhuje různé metody
jak pro interpretaci výsledku, tak pro vzájemné předávání nápověd. Experimenty v této
práci ukazují, že z této symbiózy mohou těžit oba přístupy, ale také že zvolený přístup ke
trénování agentů už sám o sobě řádově překonává současné systémy pro trénování agentů
na podobných úlohách.
Keywords
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Rozšířený abstrakt
Tato práce se zabývá sekvenčním rozhodováním v úlohách s nejistotou v modelech reprezen-
tovaných částečně pozorovatelnými Markovskými rozhodovacími procesy. Plánování v tako-
vých prostředích je komplikované především v tom ohledu, že znalost agenta o současném
stavu prostředí je limitována jeho senzory, které mu neposkytují vždy přesnou či úplnou
informaci. Z tohoto důvodu vzniklo několik odlišných přístupů k řešení této nejistoty spočí-
vající v rozlišné reprezentaci odhadu současného stavu. Formální přístupy tento odhad řeší
buď s pomocí výpočtu tzv. beliefu, který reprezentuje vektor pravděpodobností výskytu
v některém z možných stavů prostředí, nebo s pomocí paměťových uzlů konečně stavových
kontrolérů. Právě druhý přístup je reprezentován nástrojem nazvaným PAYNT, který tvoří
jeden ze dvou hlavních bloků této práce. Neformální přístupy pak k odhadu současného
stavu prostředí používají jiných prostředků, například zpětnou vazbu rekurentních neu-
ronových sítí či transformerů. Právě první jmenovaný přístup v kombinaci se současnými
algoritmy posilovaného učení, jmenovitě DQN, DDQN a PPO, reprezentuje druhý hlavní
blok této práce.

V této práci jsou popsány limitace současných přístupů a to především z hlediska škálo-
vatelnosti, robustnosti, vysvětlitelnosti, stability či výběru vhodných parametrů. Formálně
založená řešení, mimo jiné PAYNT, trpí právě malou škálovatelností a nutností znát celý
model prostředí. PAYNT a jemu příbuzné nástroje jsou pak obvykle limitovány velikostí
na poměrně malé úlohy obsahující několik desítek tisíc různých pozorování. Na druhou
stranu, posilované učení, byť jej lze škálovat na mnoho různých reálných úloh jako je
řízení aut či automatizovanou průmyslovou výrobu, neumožňuje v současnosti garantovat
požadované vlastnosti a mnohdy trpí silnou nestabilitou učení. Z tohoto důvodu je jedním
ze současných výzkumných směrů snaha eliminovat tyto jeho limitace ať už různými přís-
tupy pro formální verifikaci či bezpečné posilované učení za využití upravených hodnotících
metrik, nebo tvorbou náhradních modelů. Právě náhradní modely jsou dnes reprezentovány
celou řadou přístupů, ať už je to tvorba programatického posilovaného učení, kdy je par-
alelně ke klasickému posilovanému algoritmu učen ještě interpretovatelná politika ve formě
kódu z předem daných primitiv. Druhým přístupem je pak tvorba prototypových sítí, kdy
namísto klasických neuronů jsou využity interpretovatelné prototypy a pro práci s daty
jsou využity speciálně transformační vrstvy. Třetím přístupem, kterým se do nějaké míry
inspiruje i tato práce, je extrakce konečně stavových kontrolérů (FSC) přímo z naučené
politiky.

Navržený přístup v této práci spočívá v kombinaci PAYNTu a posilovaného učení. Je
založený na tom, že agenti trénovaní algoritmy posilovaného učení se naučí řešit zvole-
nou úlohu a následně je takto naučený agent interpretován navrženým algoritmem pro
interpretaci politik založených na neuronových sítích. Navržený proces interpretace fun-
guje na vyhodnocování provedených trajektorií v prostředí, kdy takto interpretovaný agent
poskytuje PAYNTu orákulum ve formě doporučení, jakým způsobem prořezat exponenciální
prostor potenciálních konečně stavových kontrolérů pro jednotlivá pozorování, pro která po-
zorování doporučuje hned ze začátku zvětšit paměť a jakým způsobem by upravoval paměť
v dalších iteracích. V rámci navrženého řešení existuje pak i opačná cesta, a to ve formě
extrakce konkrétních konečně stavových kontrolérů z PAYNTu, které jsou pak využívány
pro vylepšení explorační politiky posilovaného učení. Toto vylepšení může probíhat buď
tím způsobem, že extrahované FSC zvyšuje pravděpodobnosti akcí, které by měl agent
dle FSC hrát, nebo přímo sám takové akce vybírá. Z takto zahraných akcí (trajektorií)
se pak učí algoritmus posilovaného učení, což mu mnohdy umožňuje snadněji najít alespoň
sub-optimální řešení v prostředích s řídkou odměnou.



Součástí navrženého řešení je kompletně vlastní implementace učící smyčky vycházející
z nejnovějších přístupů v rámci posilovaného učení s použitím implementace učících algo-
ritmů z knihovny TensorFlow Agents. Tuto implementaci rozšiřuje nový přístup k práci
s kódováním pozorování založený na valuacích z nástroje Storm, který v této práci im-
plementuje základní simulátor prostředí. Dále je v této práci diskutován problém s dy-
namickým akčním prostorem, kdy je navržen nový přístup pro maskování nelegálních akcí
s pomocí obalování původních politik, které takové filtrování neumožňují. Pro vylepšení
počáteční stability učících algoritmů byla také navržena jednoduchá metoda spočívající
v restartování iniciálního nastavení vah politik reprezentovaných neuronovými sítěmi, kdy
pro počáteční nastavení agenta se využívá nastavení s nejlepším počátečním výkonem.

Experimentální část této práce pak ukazuje potenciální síly i slabiny navrženého řešení.
Ukazuje se, že pokud byl natrénován kvalitní agent, který umí rozumně řešit danou úlohu,
navržená interpretace je schopna předat syntéze konečně stavových kontrolérů v PAYNTu
významnou informaci pro její vylepšení. V některých úlohách tak dochází i ke zved-
nutí výkonu z neschopnosti jakkoli vyřešit danou úlohu na syntézu rozumného kontorléru.
Nicméně, hlavní limitací navrženého řešení je současná úroveň posilovaného učení pro tento
typ úloh, kdy současné přístupy mnohdy nejsou zcela stabilní a mnohé již existující imple-
mentace posilovaného učení mnohdy prohrávají i s vyváženou kostkou. V této práci jsou
původní přístupy významným způsobem překonávány a díky tomu na mnohých úlohách
lze vyextrahovat kvalitní nápovědu. Přesto stále existují limitace, které nebyly překonány,
například v případě modelů s tzv. řídkou odměnou, kdy je problém v daném prostředí
dosáhnout odměny pro motivaci agentů.

Dílčími přínosy této práce jsou pak alespoň částečné prozkoumání a vyhodnocení velmi
široké oblasti posilovaného učení, navržení a implementace mnoha užitečných přístupů pro
jeho vylepšení, interpretaci a následné zpracování získaných dat v rámci PAYNTu a také
bylo implementováno zprostředkování nápověd v rámci posilovaného učení.
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Chapter 1

Introduction

Today, reinforcement learning is widely used in various domains. Its notable characteristic
of learning without requiring an exact model or an existing solution has greatly facilitated
the development of agents in various disciplines. Numerous applications can be found,
including the advancement of sophisticated natural language processing (NLP) tools such
as large language models (LLMs) such as ChatGPT [55, 53], Gemini [31, 28], and GitHub
Copilot [29, 39], as well as professional translation tools [41] or algorithms for social net-
works used in advertising recommendation systems [8]. Reinforcement learning also serves
as one of the main strategies for planning in sequential decision-making scenarios, encom-
passing applications such as autonomous vehicles [68, 9], robot control [19], management
of aircraft equipped with airborne collision avoidance systems [38, 49] (ACAS), or playing
video games [76, 65, 20].

The formal basis for sequential decision making is established by the Markov decision
process [43] (MDP), which outlines states, actions, and the probabilities of transitioning
to future states. The goal in this type of decision making is to determine the best actions
within states according to some reward model, aiming to maximize the rewards received.
Often, the exact state cannot be observed in real-world situations, due to imperfect or
limited sensors, or the inability to maintain all relevant system data. This requires the
use of the partially observable Markov decision process framework [42] (POMDP), which
builds on the basic MDP by incorporating uncertain observations of current states. This
introduces a challenge in estimating the current state, typically by incorporating some form
of memory. However, creating an optimal controller for environments modeled by POMDPs
is generally considered to be intractable [48, 12, 3, 73].

Today, we can employ various approaches for sequential decision-making under uncer-
tainty. There exist model-based approaches, which are based on the computation of belief
MDPs [12], where each state represents a set of probabilities of each state, or on the synthe-
sis of finite-state controllers [3, 48, 1, 2] (FSC), which uses memory nodes to differentiate
suitable actions given some observations. These approaches are usually complete, robust,
and we can verify them, but often lack scalability, and in general need to know the entire
underlying model, or at least its approximation, if we consider the model-based Monte
Carlo tree search [4] (MCTS).

On the other hand, if we do not know the model, we can use some model-free methods
based on the reinforcement learning framework [66, 5, 33, 61]. These methods usually scale
well and can achieve or overcome controllers that could develop humans. However, the main
drawback of modern reinforcement learning approaches is their lack of interpretability and
robustness guarantees. These methods usually rely on deep learning technologies, such as
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the deep neural network (DNN) [30], and it is challenging to understand their inner workings
and ensure their performance and safety [78, 17, 18]. An approach to ensure safety may
be formal verification of models based on neural networks; however, even state-of-the-art
approaches [77, 35, 25] do not scale enough to verify commonly used models.

The drawback of using formal approaches is that they require a complete model and
are not easily scalable [18]. As a result, numerous experiments have been conducted to
develop more scalable but still verifiable solutions. One such approach [18] involves using
RNN-based (recurrent neural network) RL algorithms, where an agent is trained using an
RL algorithm, and then a much smaller FSC (finite state controller) is extracted from
this large and unmanageable policy. In cases where the tool cannot extract an FSC that
satisfies certain formal properties (specified in LTL) within a given condition (size), the
original agent is enhanced with additional data. If the requirements are met, the learned
policy is considered correct and the original agent or the extracted FSC can be used. A
different approach could involve the use of shielding [17] as a strategy. In this technique,
the toolkit utilizes the knowledge of the model to calculate the winning regions for a given
POMDP before executing the RL algorithm. The agent is then restricted to selecting only
actions that lead to these winning regions.

Another possible alternative approach is to address the challenge of eXplainable AI [22,
6] (XAI) by interpreting complex neural network models using explainable models. The
authors in [70] suggest a method called programmatic reinforcement learning (PIRL), which
uses human-readable properties to facilitate learning and generate interpretable policies in
the form of code. In this approach, a pre-trained neural ”oracle“ is employed to guide the
learning process. Another proposal, as mentioned in [54], extends this solution by incor-
porating simultaneous training instead of relying on a pre-trained oracle. Additionally, a
similar approach involves the use of a wrapper that is trained simultaneously, called the
prototype wrapper network [40]. This model mimics the behavior of the network through
state encoders, transformations, and prototypes (complex functions) that humans can un-
derstand.

An alternative approach is PCMRPP [21] (POMDP file Creator for Mobile Robot Path
Planning), which does not focus on modifying the agent, but instead on altering the envi-
ronment through the creation of sparser representations. This involves the use of POMDPs
with sparser matrices or with lower granularity after discretizing the continuous space. As
a result, this approach enables more scalable solutions, since the task becomes easier to
solve.

However, despite the implementation of various strategies to address the challenges of
scalability and verifiability in policy generation for partially observable Markov decision
processes (POMDPs), the results remain inadequate for practical applications such as au-
tonomous driving [9] or aircraft safety [49]. Furthermore, the current surge in artificial
intelligence (AI) has led to efforts to regulate AI1, leading to a greater need for security
assurance.

1.1 Thesis Approach
The fact that we often desire both interpretable and verifiable policies, as well as a more
complex policy providing ability to scale, such as a neural network, poses a challenge. We

1For example, see https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-
intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
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consider the neural network as a black box and aim to facilitate the exchange of information
between these models. Although various methods have been proposed to address this
problem [18, 70, 40, 6, 22], no universally effective approaches have been implemented.

This thesis mainly explores the integration of PAYNT’s formal and precise approach [2,
3, 1, 48] with reinforcement learning, which is inspired by the approaches [17] and [18]. We
propose a novel interpretation approach to obtain hints for the FSC synthesis performed by
PAYNT. The approach is based on the interpretation of the tracing of policies, which are
represented by neural networks using LSTMs for state estimation. In this thesis, we also
designed and developed a toolkit for reinforcement learning based on TensorFlow Agents [67]
and we also improved current reinforcement learning approaches with semantic learning, the
novel method to solve the dynamic action space called policy wrapping, and the availability
to use FSCs for behavior and critic policies. Our experiments show that our approach
overcomes other similar approaches, which work with similar models, primarily because
our novel semantic learning significantly improves the stability and performance of our
agents. Furthermore, our experimental results demonstrate that with adequate training
and interpretation of well-trained policies, it is feasible to generate effective policies for
larger models. Moreover, our findings indicate that PAYNT can improve RL agents by
optimizing the initial search for episodes that lead to goal states in models with sparsely
distributed rewards.

1.2 Thesis Structure
Before we start with the main issues related to this thesis approach, we outline essen-
tial preliminaries to understand the overall concept of decision making under uncertainty,
where we describe various approaches to learning policies, starting from the concept of for-
mal model-based approaches, and ending with complex reinforcement learning algorithms
based on neural networks. Then we describe the main challenges that pose decision-making
in environments with uncertainty and some related approaches on how to face them. In the
following chapter, we outline the main idea and concepts of our approaches, followed by
a chapter describing some important technical details, including the observation encoding,
environment wrapping, dealing with dynamic action space, or our approach for interpre-
tation. Then we outline experiments and benchmarks for our implementation in terms of
comparison with other related approaches.
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Chapter 2

Preliminaries

This chapter introduces the fundamental principles involved in the development of con-
trollers for partially observable Markov decision processes (POMDPs). We begin by de-
tailing the problem, formally presenting the model, and addressing the primary challenge
of making sequential decisions under uncertainty. The subsequent section examines estab-
lished model-based strategies for crafting robust controllers with a known model. Next,
we explore the basic principles of an alternative strategy, reinforcement learning. This is
followed by a brief overview of a crucial component of reinforcement learning algorithms,
namely neural networks, which work as a useful functional approximator. Finally, we
discuss particular reinforcement learning algorithms, specifically for designing controllers
under uncertainty.

2.1 Partially Observable Markov Decision Processes
In this thesis, we focus on solving sequential decision problems [43], where we try to
construct optimal and robust decision systems (controller) on general framework called
a Markov decision process.

Definition 2.1.1 (Markov Decision Process) A Markov Decision Process (MDP) is a
tuple 𝑀 = (𝑆,𝐴, 𝑇,𝑅) consisting of a finite set of states 𝑆, a finite set of actions 𝐴, a
transmission probability function 𝑇 that maps 𝑆×𝐴 to a distribution over 𝑆, and a reward
𝑅 for transitioning from state 𝑠 ∈ 𝑆 to 𝑠′ ∈ 𝑆 by taking some action 𝑎 ∈ 𝐴 [18, 66].

MDPs possess the Markov property, which states that the probability of a transition
depends only on the current state and not on the history of states. This can be formally
expressed as 𝑝(𝑥𝑛|𝑥1, 𝑥2, . . . , 𝑥𝑛−1) = 𝑝(𝑥𝑛|𝑥𝑛−1)[11]. Our goal is then to create some
controllers that, given some state 𝑠 ∈ 𝑆, select optimal action given some specification, for
example, maximize the reward obtained in environment and reach the final state. Another
important concept given the MDP framework is the sink states, which correspond to states,
and the transition property is 𝑃 (𝑠|𝑠, 𝑎) = 1 for all actions 𝑎 ∈ 𝐴.

However, in reality, we usually cannot obtain an exact MDP states, as we have imprecise
sensors, we cannot predict behavior of our opponent and, in general, we cannot observe
whole information from whole environment represented by MDP. For example, we may
have a camera [65], but we can observe only things that are in front of it. This leads us to
the concept of a partially observable Markov decision process [42].
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Definition 2.1.2 (POMDP) A Partially Observable Markov Decision Process (POMDP
is a tupleℳ = (𝑆,𝐴, 𝑇,𝑅, 𝑍,𝑂). It extends the Markov Decision Process 𝑀 = (𝑆,𝐴, 𝑇,𝑅)
with a finite set of observations 𝑍 and an observation function 𝑂(𝑠) = 𝑧, which returns
observations 𝑧 ∈ 𝑍 for each state 𝑠 ∈ 𝑆. If there is only a single state 𝑠 that leads to
observation 𝑧, we call 𝑧 trivial [2, 18, 42].

It has been previously mentioned that MDPs (Markov Decision Processes) possess the
Markov property, indicating that the transition probability 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is independent
of prior states [42]. In the case of a POMDP, this Markovian transition characteristic
persists. However, given that only partial observations 𝑧 are accessible and the precise state
𝑠 remains unknown, our strategies to address POMDPs need to incorporate a mechanism to
approximate the current state 𝑠. Consequently, decision-making in POMDPs is not based
merely on a single observation 𝑧𝑡, but on the sequence of observations 𝑧1:𝑡, which allows us
to deduce the current state to some extent.

However, since the infinite history of observations 𝑧1:𝑡 may be intractable, we may use
various approaches to deal with state uncertainty. These include belief MDPs [12], finite
state controllers [3], alpha vectors [42, 43], or approaches based on deep learning such as
recurrent neural networks [33] or transformers [23]. In the following subsection, we discuss
some examples of POMDPs.

2.1.1 Examples of POMDPs

Even if the general framework of reinforcement learning is Markov decision process (MDP),
in this subsection we show that partially observable Markov decision process (POMDP) are
actually really common situation.

Crying Baby Problem

The Crying Baby Problem is one of the simplest problems described by POMDPs. It
involves two states, three actions, and two observations. The baby is sated or not, but we
cannot observe this directly. Instead, we can only observe whether the baby is crying or
not. We can feed the baby, sing to it, or ignore it. If the baby is not fed, we receive a
high negative reward regardless of the action taken. Feeding and singing result in smaller
negative rewards. The goal is to minimize the time spent in the unsated state [43].

Grid Problems

One type of benchmark problem involves an agent moving in a discrete grid (or maze). It
is typically only able to observe certain information from the environment. For example, in
the Maze task, the agent can only observe the neighboring states (whether there is a wall
or not). In the standard Grid problem, the agent is uniformly placed in some state on the
grid and can only observe whether it is in the goal state or not. The objectives of these
tasks can vary; the agent may only need to reach the goal state, collect rewards placed in
the grid, or avoid certain obstacles, etc. One of the benefits of these problems is that we
can adjust the size of the grid [17, 18].

Video Games

Despite having a complete simulator at our disposal in this case (the video game), we
typically use POMDPs to the incomplete information available about the system. Taking
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Starcraft [71] as an example, our knowledge is limited to the area where we are currently
situated, some details of the map, and the rest of information is hidden either outside the
current frame or by fog of war. Consequently, to make accurate decisions, it is necessary
to remember the enemy’s location or our previous actions, as we cannot gather all the
information in a single frame.

Healthcare

Healthcare is another prevalent field where POMDP is often utilized. Typically, we can
collect certain data, such as body temperature, blood pressure, conduct various tests such
as blood chemistry tests, laparoscopy, and so on. However, the overall condition of the
subject under observation (patient) remains unknown, and we are limited to dealing with
certain latent states (observation). Furthermore, there is usually a delay in the response
to medical treatment from the time it begins to work, requiring us to rely on statistical
assumptions regarding the outcome and possibly conduct additional tests. For example, a
study focused on POMDPs attempted to model and examine decision making in POMDPs
for patients with sepsis [69].

Financial Markets

One of the other areas in which we consider POMDP to model system behavior is the
financial markets, where we usually have some information from stock exchanges, history of
transactions, company, bank or country financial reports, statements in the media or insider
gossip. However, exact state of the market remains unknown, and thus we have to work with
state uncertainty and make predictions given available information and speculations. There
are multiple approaches, how to model markets [14] and make predictions with decisions
and usually work with some history-based approaches based on the POMDP framework.

2.2 Model-Based Approaches for POMDPs
We begin our discussion on decision-making in POMDPs with model-based approaches.
These algorithms utilize established or learned models and confront the primary challenge
in POMDP decision-making: history. We explore three distinct strategies: first, the con-
struction of belief MDPs that compute beliefs to estimate historical data, and second,
finite-state controllers (FSCs) that use a finite-state automata for internal memory repre-
sentation. We also outline one of the most important aspects of this thesis, PAYNT, which
is based on the synthesis of FSCs. Alternatively, we describe the third approach based on
a model-based reinforcement learning strategy that employs an approximate model with
latent states. The following subsections will outline the core principles, benefits, and limi-
tations of these methodologies.

2.2.1 Belief-State MDPs

Since we have manageable solutions for MDPs, one of the decision-making strategies in
POMDPs involves transforming them into MDPs. Nevertheless, given that our information
is based solely on observations, it becomes necessary to formulate belief-state MDPs. These
are identical to MDPs, but each state is associated with a belief 𝑏, symbolizing a vector of
probabilities 𝑏 ∈ 𝑅𝑛 for being in states 𝑠 ∈ 𝑆, where 𝑛 represents the total number of states
in POMDP. To execute this method, a complete model of POMDP is required.
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In order to calculate the probability of the succeeding state 𝑏𝑡+1, it is necessary to
determine the transition function 𝜏(𝑏𝑡+1𝑏𝑡, 𝑎𝑡) = 𝑃 (𝑏𝑡+1𝑏𝑡, 𝑎𝑡), which is in form of:

𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡) =
∑︁
𝑜

𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡, 𝑜𝑡)
∑︁
𝑠𝑡+1

𝑃 (𝑜|𝑠𝑡+1)
∑︁
𝑠

𝑇 (𝑠𝑡+1|𝑠, 𝑎)𝑏(𝑠)

where 𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡, 𝑜𝑡) is Krockner delta function [42]. The Krockner delta function may
be computed exactly if the original state space is discrete. If we want to calculate an
immediate reward for taking action 𝑎 in belief 𝑏, we use formula 𝑅(𝑏, 𝑎) =

∑︀
𝑠𝑅(𝑠, 𝑎)𝑏(𝑠).

The main drawback of using belief-state MDPs is the fact that the set of possible beliefs
𝛽 is infinite even for simple and small POMDPs. For example, as we can see in Figure 2.1,
we obtain an infinite sequence of probabilities of being in the state 𝑠2 or 𝑠3 for the blue
observation if we always take action 𝛼.
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Figure 2.1: Belief state MDP (right) for a given POMDP (left), inspired from [12].

Many advanced methods address the problem of potential state explosion by employing
finite approximations of belief MDPs [36], basic cut-off techniques, or more complex belief
clipping strategies [12] to handle the potential infinite nature of belief MDPs. Moreover,
many reinforcement learning solutions to decision-making algorithms use some algorithms
to compute the approximate belief with neural networks [33, 23]. Some of the other solutions
then use pre-computed belief in hybrid approaches [5], where the input of the neural network
is the current observation and the pre-computed belief.

2.2.2 Finite State Controllers

The second traditional approach to decision making in POMDPs is the usage of finite-state
controllers (FSCs).

Definition 2.2.1 A 𝑘-FSC for a POMDP ℳ is a tuple 𝒜 = (𝑁,𝑛𝐼 , 𝛼, 𝛿), where 𝑁 is a
finite state of 𝑘 memory nodes, 𝑛𝐼 is the initial memory node, 𝛼 is the action mapping
𝑁 ×𝑍 → 𝐷𝑖𝑠𝑡𝑟(𝐴), and 𝛿 is the memory update function 𝑁 ×𝑍×𝐴→ 𝐷𝑖𝑠𝑡𝑟(𝑁) [18, 64].
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FSCs are usually considered compact representations of policies and are generally de-
scribed as Mealy machines [3]. The application of FSCs to POMDP then leads to an
induced Markov chain ℳ𝒜 = (𝑆𝒜, (𝑠0, 𝑛𝐼), 𝑃

𝒜).
Compared to the previous approach, belief-state MDPs, FSC does not lead to infinite

state space, and overall leads to more compact solutions. However, one of the main issues
with FSCs is the necessity of obtaining them. Approaches to inducing FSCs are usually
based on an exponentially large design space that contains all possible 𝑘-FSCs. We can see
some examples from the previously mentioned POMDP in Figure 2.2.

n1

Blue/β

Yellow/α

n1n1

Yellow/α

Blue/β

Blue/α

Yellow/α

Figure 2.2: Example of 1-FSC (left) and 2-FSC (right) for POMDP from Figure 2.1.

The developed toolkits [48, 3] then try to choose a sufficient 𝑘 and prune the design
space to select the most optimal FSC for a given POMDP. Moreover, the pruning of the
design space and the selection of the optimal 𝑘 are the main task of this thesis when we
try to estimate these parameters from the RL oracle. Similar but slightly different is the
approach [18], where they try to compute the optimal FSC from the trained policy based on
neural networks. These toolkits can verify FSCs its application on POMDPs and inducing
MC (Markov chains).

2.2.3 PAYNT

Since we discussed the algorithms for complete solutions of POMDPs, we should describe
the main toolkit used in this thesis, which is based primarily on the second-mentioned
approach, the inductive synthesis of deterministic FSCs.

PAYNT (Probabilistic progrAm sYNThesizer) is a tool for the automated synthesis of
probabilistic programs [2]. The purpose of this toolkit is to synthesize FSC given some
program with holes (sketch) and PCTL specification, which adjust the synthesis goals. It
is based on the principle of oracle-guided reasoning through an exponentially large design
space. The current symbiotic approach combines the search for policies with approximate
solutions to explore beliefs [1]. It works with various input sketches based on PRISM,
Cassandra, JANI, or DRN, combined with the PCTL specification, which describes the goals
for synthesis performed by PAYNT. Its default implementation uses Z3 SAT solver, which
enables to reduce design space by detecting unsatisfiable solutions and enables verification
of required properties.

Currently, PAYNT incorporates a variety of techniques that aim to minimize design
space and accurately estimate the minimal necessary memory requirements [3]. The first
challenge is tackled through several strategies that identify optimal actions for each obser-
vation, employing counter-example inductive methods, deductive abstract refinement, or a
combination of multiple strategies. The second issue is managed through precise memory
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injections, designed to augment memory solely for observations that require additional ca-
pacity, thereby decreasing the size of the resulting FSCs. Both of these issues are addressed
within this thesis.

2.2.4 Approximate Model-Based Approaches

In previous three subsections, we described the formal and robust approaches, which pro-
duce safe and verifiable policies for POMDPs. However, their main limitation is that we
have to give them exact model and, moreover, the size of the model highly affects the per-
formance of outlined approaches. We can increase the performance of these approaches by
using some form of approximation, as we can use the reinforcement learning algorithm to
approximate the model (if the model is unknown) or to approximate the current state by
the so-called latent states.

Within these approaches, we may, for example, include stochastic MuZero [4], which
is based on the estimation of the model by recurrent neural networks or vector-quantized
variational autoencoders combined with Monte Carlo tree search, which uses the learned
approximation to search the model and create an online policy. It solves many issues of
previous algorithms, which are, for example, the inability to plan within stochastic models
by introducing so-called after-states and stochastic search. This algorithm works with ap-
proximating states of the system using the so-called latent states, which are representations
of state estimation given some history of observation 𝑜1:𝑡 formed by deep learning. More-
over, these algorithms must estimate the values of these states and the transition function
𝑇 (𝑠′ | 𝑠, 𝑎), where 𝑠 corresponds to the latent state in this case, and also the after-state
dynamics and predictions.

This approach provides robust state-of-the-art results for many different tasks like
Backgammon, 2048 or Go, but are still limited by the quality of model estimation. However,
the disadvantages of this approach is the high reliability of the quality of the approximated
model, where small differences between reality and approximated model can lead to wrong
results. Moreover, these approaches usually do not provide that high scalability as model-
free algorithms.

2.3 Reinforcement Learning
In this section, we focus on the fundamental concepts of machine learning, with a particular
emphasis on reinforcement learning, which is necessary to better understand the topics
discussed in this thesis.

2.3.1 Machine Learning

Before we begin to discuss reinforcement learning, let us first consider the broader context
of machine learning. It is a type of artificial intelligence that provides computers with the
ability to learn from data without being explicitly programmed. They are able to identify
patterns and trends in the data and use them to make predictions and decisions [30].
Many books, college courses, and articles mention the definition from [51], which says “A
computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.”
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Figure 2.3: Example of image from IAM dataset from https://fki.tic.heia-fr.ch.

Task T refers to the problem that we are trying to solve using a machine learning
algorithm. Generally, these tasks are issues that cannot be resolved with a straightforward
and logical approach by writing some computer code. Examples of activities involving
machine learning include operating a vehicle or robot, facial recognition technology, machine
translations, anomaly detection, or suggestions of content on social networks [30, 66, 11, 8].

In most cases, we do not have an exact algorithm, but we have a great amount of data.
For example, one of the approaches for optical character recognition (OCR) that uses a
complex structure of neural networks known as transformers, TrOCR [47], was pre-trained
on hundreds of millions of unlabeled data. The objective of this approach is to transform
documents from a visual format into a digital form that can be utilized, for instance, in
administrative tasks. An example of input data is shown in Figure 2.3.

An important part of machine learning is the usage of something that tells us how well
our solution (model) works and what results we can expect when it is deployed in the
real world. The task at hand usually determines the metric used. There are a variety of
metrics that can be used, such as cost functions, error functions, precision, and cumulative
reward (return) [66, 30]. For example, when we work with classification tasks, such as
image recognition, we use the cross-entropy error function:

𝐻(𝑋) = −
𝑁∑︁

𝑛=1

{𝑡𝑛 * ln (𝑦𝑛) + (1− 𝑡𝑛) * ln (1− 𝑦𝑛)}

where 𝑡𝑛 is correct class, 𝑦𝑛 is predicted class by the model and N is the number of examples.
Another example of a common error function is the mean square error defined as:

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖

(̂︀𝑦𝑖 − 𝑦𝑖)
2

13

https://fki.tic.heia-fr.ch/databases/iam-handwriting-database


where ̂︀𝑦𝑖 is estimation of value produced by some ML algorithm for some input and 𝑦𝑖 is
the real value. Or in the case of 𝐾-means clustering, we use the distortion measure:

𝐽 =

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑟𝑛𝑘||𝑥𝑛 − 𝜇𝑘||2

where 𝑁 is number of examples, 𝐾 number of clusters, 𝜇𝑘 is cluster vector, 𝑥𝑛 is data
point, 𝑟𝑛𝑘 = 1 if data point belongs to cluster and 𝑟𝑛𝑘 = 0 otherwise [11].

Usually, we use different approaches to measure performance; we can also talk about
different datasets to measure performance, training for model learning, and testing dataset
for real task evaluation. Another approach is to modify the error functions using a fault
tolerance coefficient1 [11]. We will talk more about measuring the performance of mod-
els in the following sections and chapters, as it is a key factor for implementing learning
algorithms.

Different machine learning algorithms acquire experience in different ways. Generally,
there are three main categories: supervised learning, unsupervised learning, and re-
inforcement learning. Supervised learning requires that all data be labeled, whereas
unsupervised learning does not require any labeling and is usually used for exploration of
the provided dataset. Reinforcement learning, on the other hand, obtains data by selecting
actions and interacting with the environment and therefore cannot be included in the cat-
egories mentioned previously [66, 11]. Additionally, there are some combinations of these
approaches, such as semi-supervised or self-supervised learning, that are not the focus of
this thesis.

2.3.2 Reinforcement Learning

Reinforcement learning represents a branch of machine learning in which an agent learns
through feedback from an environment. This framework employs a trial-and-error strategy,
trying various actions and noting the results or rewards [66], in order to maximize these
rewards. Similarly to learning processes in living organisms, beneficial actions yield rewards
(survival), and detrimental actions result in penalties (death). A significant benefit of
reinforcement learning over supervised learning is its ability to surpass the potential teacher
and devise superior solutions.

In case of reinforcement learning, our goal is to create a decision-making process, policy,
which maximizes following optimization criterion:

max
𝜋∈Π

E𝜋(𝑅) = max
𝜋∈Π

E𝜋(
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡) (2.1)

Here, R is the expected cumulative future discounted reward (return), 𝛾 ∈ [0, 1] is the dis-
count factor, 𝑟𝑡 is the reward at the time step 𝑡 based on the selection of the action of the
policy 𝜋, Π is the set of all possible policies, and 𝐸𝜋(·) is the expectation with respect to
policy 𝜋 [66]. There also exist some modified optimization criterion, where we try to min-
imize taking dangerous action even with consideration of decreasing overall reward. Some
approaches are mentioned in [27]. The general framework with which reinforcement learning
works is the Markov decision process (MDP), where the MDP represents the environment
the agent explores.

1For example we can penalize less machine doctor if he cures healthy person and penalize more for not
curing ill person.
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In reinforcement learning, we typically discuss the value and q-value functions, which
calculate the (Q) values for each state of the environment. These values represent the
expected cumulative reward from each state; in the case of a value, we calculate the following
𝑉 𝜋(𝑠) as:

𝑉 𝜋(𝑠𝑡) =

𝑇∑︁
𝑡′=𝑡

E𝜋[𝛾
𝑡′−𝑡𝑟(𝑠𝑡′ , 𝑎𝑡′) | 𝑠𝑡]

where 𝜋 is the policy we follow, 𝑠𝑡 state in time 𝑡, 𝑇 number of last time (may be ∞), 𝛾
discount factor, 𝑟 reward function and 𝑎 action selected by policy 𝜋. This means that we
want to predict the value of state 𝑠 according to some policy 𝜋. The Q value is similar,
but in this case we talk about 𝑄𝜋(𝑠, 𝑎). We try to find the value of the pair of states 𝑠 and
action 𝑎 in this case. Ideally, we want to find the optimal 𝑉 *(𝑠) or 𝑄*(𝑠, 𝑎) according to
the optimal policy 𝜋* [43, 66, 42].

2.3.3 Discount Factor

One of the important parameters of any reinforcement learning algorithm is the discount
factor, which adjusts how far we want to consider future rewards. As we can see in the
previous subsection, we multiply each reward by the powered discount by the number of time
steps. This changes how much each future reward value affects in some state (observation)
and decreases the overall variance during learning, as it reduces the impact of outliers.
When we use lower values of discount, we force algorithm to be more local – we compute
value of each state only from close states. For value 0, we consider only the reward from
a single transition, as the other rewards are nullified. Higher discount values (closer to 1)
then prioritize long-term future rewards, and if we use discount 1, we consider rewards for
each state even from infinity steps later [43, 66].

Moreover, we may use the discount for endless environments (with infinite episodes) to
limit the distance we consider for future rewards [66]. For example, PAYNT [2, 3] uses the
discount factor to adjust a threshold for the relevance of future rewards to evaluate FSCs.

2.3.4 Exploration versus Exploitation

A major challenge in reinforcement learning is the tension between two goals: exploration
and exploitation. Exploration involves exploring the environment as much as possible,
while exploitation involves taking the most successful actions in a given state, which can
lead to overlooking potential better actions that the agent has not yet tried. If we focus on
exploitation, the most direct approach is to quickly find a satisfactory solution. However,
this may mean missing out on better options [66].

For example, an autonomous driving agent could go straight ahead, as it is closer to
the destination, but if it turns right, it could find a highway where it could drive much
faster and reach the destination earlier. Excessive exploration can cause an agent to make
illogical decisions and to spend less time on potentially rewarding ones [66]. Exploitation is
usually geared towards achieving quick gains, whereas exploration is more concerned with
long-term improvements.

One of the common approaches for dealing with exploration and exploitation trade-off
is the 𝜖-greedy [43, 66] strategy, which adjusts the policy 𝜋 to select the most beneficial
action or a random action with a pre-determined probability. This approach enhances our
capacity to learn during the agent’s lifetime; however, its application in real-life scenarios
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can result in taking really dangerous decisions. For example, think of an autonomous car
that decides to take a really risky action in a certain situation.

In practice, we usually differentiate between two policies, the behavioral (collector)
and the target. The behavioral one is focused on the exploration of the environment and
usually selects action with some mechanism for generating stochastic decisions. In case
of off-policy algorithms, these two policies are different [33, 32, 52] (e.g., with different
weights), while in the case of on-policy algorithms, these policies are the same [61, 43].

2.4 Neural Networks
Neural networks are one of the most popular state-of-the-art machine learning frameworks
that represent highly non-linear parametric functions. The universal approximation theo-
rem states that, with enough neurons and some non-linear “squashing” function, they can
approximate any function [30]. This is important, as in reinforcement learning, we usually
try to optimize some value or policy, which may not be for large environments tractable,
and we may use neural networks for function approximation.

Generally, a neural network is a differentiable function 𝑓𝜃(X) = Y that maps an input
X (scalar, vector, matrix, sequence, etc.) to an output Y. This function is characterized
by a large 𝜃, which represents the parameters of the neural network: Modern networks
usually have millions or billions of parameters. Neural networks are used to process high-
resolution images, videos, voice recordings, magnetic resonance images, long texts, etc.,
often resulting in very large datasets D. The main purpose of these networks is to identify
patterns in these large datasets. We can train them to do this by optimizing parameters 𝜃
with following formula:

argmin
𝜃

∑︁
(x,y)∈D

𝑙(𝑓𝜃(x),y)

where 𝑙 is some differentiable loss function [43].
Neural networks are not just a random collection of neurons that take input data and

produce output; they are usually a carefully designed sequence of layers with well-described
learning algorithms. In the following subsections, we will look at three common neural net-
work architectures, explore various neural network learning algorithms, describe important
activation functions, and outline the elementary principle of backpropagation algorithm.

2.4.1 Feedforward Neural Networks

The architecture of feedforward neural networks (FFNN) is one of the fundamental struc-
tures of neural networks. These networks transmit their input through multiple sequentially
ordered layers that are completely connected. The propagation through the fully connected
layers is determined by the equation:

yn = 𝑓(W * yn−1 + b)

where yn is output of layer 𝑛, 𝑓 is an activation function, W is weight matrix between two
layers – each neuron of previous layer has connection with weight to every neuron in the
following layer, and b is bias vector which adds weighted bias to each neuron2 [11, 15, 30].

2Sometimes we consider extended weight matrix 𝑊 with weight of bias and extended output of previous
layer with constant value 1
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Fully connected layers are usually used as part of more complex networks. Usually we
find them as the last layers after some convolutional or recurrent layers, where they count
some classification or regression from extracted features by previous layers. We train these
networks with a backpropagation algorithm.

2.4.2 Convolutional Neural Networks

A major issue with feedforward neural networks is the large number of parameters (weights)
required even for small inputs. For example, when processing a low resolution image3 from
the MNIST dataset with a single small layer of 20 neurons, the number of weights between
two layers is 𝑚𝑛 * (𝑚𝑛−1 + 1), which in this case is 20 * (784 + 1) = 15700 weights and
biases4. Furthermore, feedforward neural networks are limited to the position of inputs
specified in the training data set, whereas in real-world applications, the observed pattern
can be shifted, rotated, or changed position [11, 43, 30].

Convolutional neural networks (CNNs), in the modern form introduced by Yann Le
Cunn [45], address the mentioned issues by utilizing the operation of convolution. This
operation is formally defined as:

(𝑓 * 𝑔)[𝑛] =
∞∑︁

𝑘=−∞
𝑓 [𝑘] · 𝑔[𝑛− 𝑘]

where 𝑓 is typically an input image, 𝑔 is a convolution kernel, and n is the position in the
resulting space. This definition is for the 1D input and the 1D kernel, but in CNNs, we
usually work with the 2D input and 2D kernels, which are usually much smaller than the
input image (usually 3× 3 or 5× 5).

Architecture of Typical CNN

In Figure 2.4, we can observe the structure of typical convolutional neural networks. The
process begins with an input image that is processed through convolution, which utilizes
multiple convolutional kernels to transform smaller parts of the image into feature maps.
Generally, we combine convolution with some activation function, such as ReLU. Subse-
quently, subsampling is used to reduce the size of the feature maps. Pooling functions such
as average pooling or max pooling are usually used, where feature maps are divided into
small segments (e.g., 2 × 2) and each segment is converted into a single value (average or
maximum of the segment). Older architectures only use different stride values, which alters
the movement of the convolutional kernel across the input image to make the following
feature maps smaller5.

Generally, we use more layers with convolutional kernels and layers with pooling func-
tions, which generate feature maps from low-level features to feature maps with complex
shapes and information. These operations are typically followed by the flatten function,
which converts the 3D set of feature maps to a 1D vector, which we can use in one or
more subsequent fully connected layers, producing output for classification, regression, or
whatever task was [30, 11, 43].

3MNIST images have resolution 28× 28 = 784 pixels.
4Neural networks typically use floating point numbers (floats or doubles) as weights. If one considers the

size of a single small layer when dealing with modern 4K images, it is easy to imagine how large it can be.
5Modern architectures still use various values of stride combined with padding (adding zeroes around

input image) and pooling functions.
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Figure 2.4: Architecture of a typical convolutional neural network. Image adopted from
https://en.wikipedia.org/wiki/Convolutional_neural_network.

For training convolutional neural networks, we employ a backpropagation algorithm
similar to that used for FFNNs, with slight modifications due to shared weights [11]. CNNs
are widely used for tasks such as image or video processing. They can also be incorporated
into more complex models, for instance, for feature extraction in language processing (fol-
lowed by Hidden Markov Chains) or for processing the environment to create more useful
approximations for reinforcement learning agents [66, 43, 30].

2.4.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) can address a challenge that neither feedforward nor
convolutional neural networks (CNNs) can easily manage: processing sequences of input
and output of varying lengths. Think of an audio recording of a school lecture, a large
language model (LLM), or a sequence of actions taken by an agent in an environment;
these data can have different lengths, but we still want to process them with the same
single model. We can solve this “puzzle” using recurrent neural networks (or layers).

The main idea is that the layer of the vanilla recurrent neural network works with hidden
states, which we can use as outputs, or we can use them for computation of the following
hidden state in combination with the following input from the input sequence. Formally:

h𝑡 = 𝑓(W𝑖𝑛 * xt +Wℎ𝑖𝑑 * h𝑡−1)

where h is output of state 𝑡 (time of sequence T), W𝑖𝑛 weight matrix for input values, Wℎ𝑖𝑑

weight matrix for previous hidden state and xt is input of state 𝑡 (input in time 𝑡). When
we want to train these models, we use the so-called unfolding process [30, 43]. Visualization
of this process is as we can see in Figure 2.5.

As we mentioned earlier, RNNs are usually used in areas where there is no fixed input
length. We can find them in applications of natural speech processing,

LSTM

Although recurrent neural networks have certain advantages over feedforward neural net-
works and convolutional neural networks, a major issue arises when the input length is
too long. The chain rule is used in the gradient computation process, which allows the
derivation of more complex functions by multiplying the derivatives of the inner and outer
functions. For example, if an agent has taken 10,000 actions and we want to use the se-
quence as training data, the gradient calculation would look like ∆𝑤 = 𝛿*ℎ1*ℎ2*. . .*ℎ10000,
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Figure 2.5: Example of unfolding process for vanilla recurrent neural network from
https://en.wikipedia.org/wiki/Recurrent_neural_network.

where 𝛿 is the derivation of the network and ℎ𝑖 is a propagated value of recurrence. If the
values of h are less than 1, the derivative will be close to 0 (no learning). If the values are
greater than 1, the derivative will approach the upper limit of the floating point number
(infinity) [43, 63].

Solutions to these problems are provided by long-short-term memory (LSTM) neural
networks and their variations, such as gated recurrent unit (GRU) and bidirectional long-
short-term memory (BLSTM). These networks are designed to avoid the effects of vanishing
and exploding gradients using a combination of sigmoids, tanhs, and side channels [30]. As
illustrated in Figure 2.6, the hidden state of the RNNs is not used as a direct input to
subsequent layers. Instead, long-term memory (top) and short-term memory (bottom) are
used.

Long-term memory helps us recall and control events from the distant past, whereas
short-term memory has an immediate effect on the following layer (which is equivalent to
the hidden state value). We can see that the value in long-term memory is regulated by
multiplying it with the output of the sigmoid function (the output is in the range (0, 1)) and
by combining it with short-term memory combined with the input at time 𝑡 transformed
by tanh (direction of change, range (−1, 1)) and sigmoid (size of change)6 [30, 59].

Figure 2.6: Example of LSTM adopted from https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

6Excellent explanation of LSTM networks created by Josh Starmer: https://statquest.org/long-short-
term-memory-lstm-clearly-explained/.
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2.4.4 Activation Functions

Aside to architectures of each layer of neural networks, there are types of activation function,
which affect the overall behavior of the network and allow us to learn any function 𝑓 given
the universal approximation theorem [30]. Neural networks can utilize a variety of activation
functions, which are usually selected depending on the task or layer of the network and are
always differentiable [15, 30]. The most common activation functions are:

• ReLU: ReLU is often used in image processing (e.g. CNNs) and has a simple deriva-
tive that is less prone to the vanishing gradient problem. Its formula is 𝑅𝑒𝐿𝑈(𝑥) =
𝑚𝑎𝑥{0, 𝑥}, and its modified version, the leaky ReLU, has a non-zero output for neg-
ative values.

• Sigmoid and tanh: Sigmoid (or logistic function, 𝜎) and tanh (hyperbolic tangens)
are used in LSTM or GRU recurrent neural networks, or in binary classification net-
works. These functions are usually connected to the problem of vanishing gradients.
Their formulas are 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1

1+𝑒−𝑥 and 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , and their outputs are
in the intervals (0, 1) and (−1, 1), respectively, causing a general decreasing gradient
through layers.

• SoftMax: SoftMax is the activation function that is usually used in the last layer of
neural networks for the classification of 𝑘 classes, where it determines the probability
of each class. Its formula is 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(x)𝑖 =

𝑒𝑥𝑖∑︀𝑘
𝑗 𝑒𝑥𝑗

.

• Linear: Simple function that can adjust our result in some layers. However, if we
only use linear functions in neural networks, we do not meet the requirements of the
universal approximation theorem, meaning our network cannot approximate general
nonlinear functions. The formula for a linear function is 𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑥.

2.4.5 Backpropagation Algorithm

Numerous learning algorithms exist for training purposes, including evolutionary algo-
rithms, yet the backpropagation algorithm is the favored choice utilized because it is sim-
ple and we can adjust it to obtain convergence, and it is used by most neural network
frameworks, including TensorFlow Agents [67]. The main idea behind the backpropagation
algorithm is to use the chain rule for derivation and use smart bracketing to compute the
derivation for complex functions. This algorithm calculates the gradient for the neural net-
work which is subsequently employed by a learning algorithm such as stochastic gradient
descent. It operates under the assumption that the network is entirely differentiable, allow-
ing us to compute the gradient for each weight. The process of gradient descent typically
involves a loop, where we initially calculate the update (gradient) using the backpropaga-
tion algorithm. The size of this update is typically modified by a learning rate parameter or
a more complex optimizer like Adam, after which the update is subtracted from the current
weights [11, 30].

The standard algorithm is used for both feedforward and convolutional neural networks,
which operate with a fixed input size. In contrast, when calculating the gradient in recurrent
neural networks with variable input length, we utilize an extension of the original algorithm
known as backpropagation through time (BPTT). This method performs the unroll process
for the recurrent neural network before executing the algorithm, and then computes the
gradient in the standard way [43, 30].
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2.5 Reinforcement Learning Algorithms
In this section, we outline the taxonomy and main approaches for reinforcement learning
algorithms, first based on the estimation of the value function and second on the policy
gradient methods. Then we describe an important concept of actor-critic algorithms, which
combines both approaches. Then we make the step towards sequential decision making for
POMDPs with reinforcement learning algorithms and, finally, introduce the state-of-the-art
algorithm for reinforcement learning, which are used in this thesis.

2.5.1 Taxonomy of Reinforcement Learning Algorithms

Algorithms are initially distinguished based on whether they calculate the policy from a
value function, typically 𝑄(𝑠, 𝑎), or directly as 𝜋(𝑠). Or in the case of POMDPs, we note
the functions as 𝑄(𝑜, 𝑎, ℎ) and 𝜋(𝑜, ℎ), where 𝑜 represents observation and ℎ (recurrent)
feedback. The first principle mentioned, value-based or critic algorithms, generally have a
slower convergence rate and are more efficient in smaller environments where they tend to
have better sampling efficiency. They are primarily employed for discrete action spaces, as
they generate the policy by enumerating the value function for all actions and choosing the
most optimal one. In contrast, policy-based algorithms usually converge more quickly, as
they do not need to estimate the value function for the entire environment and simply learn
policies from successful trajectories [66, 43]. The final option is the actor-critic principle,
a combination of both methods, which typically takes the benefits of both. However, the
implementation of these algorithms can vary, with some focusing more on policy (gradient)
optimization, such as PPO [61] (proximity policy optimization), and others primarily on
Q-value estimation, such as SAC [20] (soft actor-critic). We provide a brief summary in
Table 2.1.

Type Policy-based Value-based Actor-critic
Algorithm Goal 𝜋(𝑠) 𝑄(𝑠, 𝑎) 𝜋 and 𝑄

Implementations REINFORCE Q-learning SAC, TD3
TRPO, DDPG Sarsa, DQN PPO, A2C

Stochastic Yes No Optional
Convergence Fast Slow Fast

Primary Action Space Continuous Discrete Both

Table 2.1: Policy-based vs value-based algorithms. We consider environments represented
by POMDP, thus we also consider history ℎ. Based on various sources, primary [43, 66].

The second division we mention here are the so-called on-policy and off-policy al-
gorithms. The difference here is the usage of behavioral (collect) policy, where we may
use single policy for exploration and for evaluation (on-policy), or implement two different
policies (off-policy). While on-policy is more stable, converges faster, is simpler in terms
of storing only single policy and it does not require lot data, it also sometimes suffers from
getting stuck in local optima and explores less the overall environment. On the other hand,
off-policy learning is usually less prone to get stuck in local optima, but it usually leads to
less stable learning. In Table 2.2 we again present a brief summary of both approaches.

The final distinction we make is between model-based and model-free approaches. The
key distinction lies in the fact that, in model-free algorithms, we formulate a policy or
value estimate and make immediate decisions, whereas in model-based algorithms, we build
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Type On-policy Off-policy
Stability Stable Unstable

Past Data Unavailable Available
Stuck in local optima Often Rare

Behavioral Policy Target Different
Implementations PPO, Sarsa, TRPO TD3, Q-learning, DQN, SAC

Table 2.2: Comparison of on-policy and off-policy learning. Based on various sources,
primary [20, 61, 43, 66, 26].

our own representation (model) of the environment and then make choices using a search
algorithm such as Monte Carlo tree search. When the first approach makes decisions fast
and is more dependent on the first learning part, the second approach postpones decision
making until evaluation. Model-free solutions are usable for a larger variety of tasks, while
model-based algorithms are limited by the complexity of the models. However, model-based
approaches usually have more stable and safe policies, but it is dependant on the quality
of trained model. In this thesis, we do not use any model-based algorithms, because, as
we describe later in Chapter 6, the approaches to training policies over POMDPs have
many issues and adding one layer, the model-based approach, to them would lead to more
problems and instability.

2.5.2 Value Based Learning

The first approach for value-based learning is dynamic programming, which is in general a
framework for solving hard problems by splitting solved tasks into smaller sub-problems,
where we take advantage of the use of memory. It is used in many domains to optimize
existing algorithms, where we usually memorize some results so we do not compute them
multiple times. When using dynamic programming to solve reinforcement learning tasks,
we estimate the V or Q functions, which are improved with each iteration of the algorithm.
This approach is also associated with the Bellman equation:

𝑉 ′(𝑠) = max
𝑎

⎛⎝∑︁
𝑠′,𝑟

𝑃 (𝑠′, 𝑟 | 𝑠, 𝑎)
(︀
𝑟 + 𝛾𝑉 ′(𝑠′)

)︀⎞⎠ (2.2)

where 𝑉 ′ is an estimation of the value function, 𝑟 is the reward for transition (𝑠, 𝑎, 𝑠′),
𝑠′ is a reachable state from state 𝑠, and 𝑃 is the transition probability from state 𝑠 with
action 𝑎 to state 𝑠′ with reward 𝑟. Similarly, we can also consider the Bellman equation for
Q-values:

𝑄′(𝑠, 𝑎) =
∑︁
𝑠′,𝑟

𝑃 (𝑠′, 𝑟 | 𝑠, 𝑎)
(︂
𝑟 + 𝛾max

𝑎′
𝑄′(𝑠′, 𝑎′)

)︂
Our goal is then make the most optimal estimation 𝑉 * or 𝑄* of value or Q-value, respec-
tively [66]. To achieve it, we may use various multiple algorithms, such as policy or value
iteration, where we usually initialize the original arbitrary estimation of the value 𝑉 ′(𝑠)
and 𝜋(𝑠) for all states 𝑠 ∈ 𝑆 and then loop through evaluating the value estimation in the
model given some policy, until convergence.

One of the benefits of this approach is that we have an estimation of the value function
throughout the entire process, and we can decide when to stop the algorithm. The downside
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is that we need to know the entire environment, which can be intractable for large MDPs.
The dynamic policy then defines an optimal policy after some learning iterations as the
selection of the greatest enhancement of a value function in a given state 𝑠.

Dynamic programming is utilized for the precise computation of the value function when
the model is fully known. However, in situations where the computation is not feasible due
to the large scale of the model or when the entire model is not known, we resort to the Monte
Carlo algorithm, which instead of computing estimation for whole model each step uses
sampling. These algorithms are based on sampling whole episodes from the environment
and then using them to estimate the values or Q-values. The main advantage is that we do
not have to compute the estimations for the whole model and with some weighted sampling
or similar approaches, we can usually find a relatively fast functional policy. The main
drawback is that the convergence is not guaranteed and that if we find a cycle, we may
loop in a single episode for the infinite time, as the algorithm works with full episodes for
value estimation. In general, these algorithms suffer from high variance of results as the
optimization methods suffers from the quality of sampled data.

When both previous approaches have significant drawbacks, we usually use some com-
bination, where we sample a few steps, like in Monte Carlo algorithms, and then use the
value estimation for the last state, like in dynamic programming. In general, we consider
these approaches under the general name of temporal difference learning [66] (TD learn-
ing). There exist multiple approaches [43], such as Q-learning, where the update function
is computed as:

𝑄(𝑠, 𝑎)← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎))

Sarsa7:
𝑄(𝑠, 𝑎)← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎))

or eligibility traces:
𝑄(𝑠, 𝑎)← 𝑄(𝑠, 𝑎) + 𝛼𝛿𝑁(𝑠, 𝑎)

where 𝛼 is learning rate, 𝛿 is Sarsa temporal difference update 𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎),
and 𝑁(𝑠, 𝑎) is count of visits of tuple (𝑠, 𝑎) decayed with 𝑁(𝑠, 𝑎) ← 𝛾𝜆𝑁(𝑠, 𝑎). All three
approaches are based on the use of sampled data to update value functions and are usually
improved with the use of an algorithm called 𝑛-bootstrapping, where we replace the reward
𝑟 with a sequence of rewards given some actions and 𝑄(𝑠′, 𝑎′) changes in the estimation
of values at the end of the trace with length 𝑛. Overall, the temporal difference learning
algorithms benefit from both approaches, as we do not have to compute data for the whole
model and we also do not have to finish whole episodes. These algorithms gave birth to
some more recent algorithms such as DQN [52] or TD3 [26].

2.5.3 Policy-Based Algorithms

Quite different approach for obtaining policies given reinforcement learning framework, are
policy-based (or policy gradient) methods, which tries to estimate optimal policy 𝜋 directly
instead of computing the value estimation. We usually use the notion with 𝜃 representing
the parameters of the policy, when the action selection is described as 𝜋(𝑎 | 𝑠,𝜃). The
update of the policy parameters is then obtained as 𝜃𝑡+1 ← 𝜃𝑡+𝛼∇̂𝐽(𝜃𝑡), where 𝐽 represents
the loss function, and 𝛼 represents the learning rate.

7The name is derived from input tuple (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′).
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One of the simple approaches for policy gradient methods is the REINFORCE [66]
algorithm, which is based on Monte Carlo sampling trajectories from the environment and
computing using parameter update noted as:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼
∑︁
𝑎

̂︀𝑞(𝑆𝑡, 𝑎,𝑤)∇𝜋(𝑎 | 𝑆𝑡,𝜃𝑡)

where ̂︀𝑞 represents some value estimation given current policy 𝜋 and 𝑆𝑡 represents states in
trajectories. These algorithms are usually more suitable for tasks with continuous action
space and can provide effective learning for complex policies. However, these algorithms
suffer from stability problems, are sensitive to hyperparameter selection, and are usually
sensitive to the low amount and variance of the data [43, 66, 61].

2.5.4 Actor, Critic and Actor-Critic Agents

We usually use neural networks, more discussed in Section 2.4, in the form of an actor,
or critic, where the actor corresponds to policy-based methods (which perform 𝜋(𝑠𝑡, ℎ𝑡))
and the critic corresponds to value-based methods (computes 𝑄(𝑠𝑡, 𝑎𝑡, ℎ𝑡)). The actor is
usually implemented for a continuous action space, as we can implement a neural network
that performs a regression from input to some actions such as speed or braking in the case
of cars [20, 76]. In contrast, the critic is primarily used for discrete action space, as we can
simply select the best action by enumerating all possible actions. For example, we can use
critic to select the most optimal gear level. However, this differentiation is not fatal, and
we can, with some engineering, use both approaches for both action spaces [43].

Actor

Critic TD Error

Learning

Learning

Action

Q(o, a)

Environment

Observation

Reward

Actor-Critic Agent

Figure 2.7: Visualization of the actor-critic agent communicating with the environment.

In actor-critic algorithms, we typically employ a combination of both methods, utilizing
the actor for action generation and the critic for learning the model and actor. In general,
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in this strategy, the reward from the environment is distributed only to the critic compo-
nent. The visualization of the actor-critic agent can be seen in Figure 2.7. This strategy
solves numerous problems of both actor and critic approaches and is typically more stable,
accelerates learning, enhances exploration, and overall provides numerous implementation
alternatives, such as SAC [20], PPO [61], or TD3 [26].

2.5.5 Reinforcement Learning for POMDPs

One of the emerging areas in the implementation of POMDP policies involves the applica-
tion of deep reinforcement learning techniques using algorithms such as DQN [32], PPO [61],
SAC [20], among others. Although many of these algorithms have been well-crafted and
validated for MDPs, their standard versions often fail to address the state estimation chal-
lenges posed by POMDPs. Consequently, although these algorithms find utility in various
domains like Atari Games, a common benchmark for reinforcement learning algorithms,
they are not suitable for environments that require consideration of past observations, such
as previous frames. Therefore, subsequent approaches introduce enhancements that facil-
itate the calculation of policy 𝜋(𝑜𝑡) or values 𝑄(𝑜𝑡, 𝑎𝑡) with respect to a given history ℎ𝑡.
In a formal sense, this is expressed as 𝜋(𝑜𝑡, ℎ𝑡) or 𝑄(𝑜𝑡, 𝑎𝑡, ℎ𝑡) [43]. Our goal is to estimate
the state, as we can see in Figure 2.8.

POMDP

Agent

Imprecise
Observation Actions

State Estimation (Memory)

Figure 2.8: General scheme of reinforcement learning for POMDPs. Red lines highlights,
what is extra to the MDP-based reinforcement learning.

In deep reinforcement learning, we can consider multiple different approaches to achieve
computing policies according to some history. The naive approach may be creating a larger
input layer, where we can place current and previous observations to queue. However, this
approach suffers from fixed memory size and is not suitable as a general solution for the
POMDP framework.

Today, we can find two orthogonal approaches: in the first one, we adjust the archi-
tecture of the network to use some layers, which supports consideration of previous ob-
servations (computing belief). The most common solutions are based on recurrent neural
networks such as LSTM or GRU [33, 5, 17], or solutions based on attention [23] mechanism
as transformers. These approaches are based on previously mentioned algorithms, where
each actor (or critic; the neural network) uses both feedforward or convolutional layers and
as well some recurrent or transformer layers. Current reinforcement learning frameworks
such as TensorFlow Agents [67] then support the ability of each algorithm implemented
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to transfer the current policy state of each iteration, which usually represents feedback in
recurrent neural networks8.

The second approach for the reinforcement learning algorithm is based on a hybrid
solution, where we keep our original reinforcement learning algorithm and combine it with
some external tool, which computes beliefs outside of the algorithm. For example, the
approach [17] lets Storm [36, 56] to compute belief support9, which is sufficient statistic
for POMDP reinforcement learning algorithms [43, 5]. We may also use belief MDPs from
Subsection 2.2.1 or simply use another algorithm outside of the neural network to compute
beliefs [10].

In contrast to recurrent neural networks (or transformers), which are usually not stable
and require a lot of data to function properly, the belief approach usually brings more
stability and faster convergence to an optimal solution [5]. However, the main issue of
the latter approach is the need to usually know the whole original model, which is more
computationally demanding and may be intractable for common models. We can see a
simplified illustration of both approaches in Figure 2.9 In this thesis, we focus on the first
approach, as it is more suitable for our interpretation purposes.

POMDP 
Environment

Simulator 

Agent with Feedback

Hidden State

Observation

Action

POMDP 
Environment

Simulator

POMDPState Estimator

Observation

Agent

Action

Belief (support)

Model

Figure 2.9: Comparison of approach based on agents with feedback (e.g. RNNs; on the
left) and belief based approach (right).

2.5.6 DQN and DDQN

One of the pioneering deep reinforcement learning algorithms used for various tasks is Deep
Q-Networks [52] (DQN) and its enhancement, Double Deep Q-Networks [32] (DDQN). Both
algorithms are model-free and are based on existing Q-learning methods that incorporate
deep neural networks and innovative replay buffers. Training of neural networks in these
algorithms is guided by a specific loss function defined as:

𝐿𝑖(𝜃𝑖) = E(𝑠,𝑎,𝑟,𝑠′) 𝑈(𝐷)

[︃(︂
𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′; 𝜃−𝑖 )−𝑄(𝑠, 𝑎; 𝜃𝑖)

)︂2
]︃

Here, 𝜃 denotes the parameters of the deep neural network, 𝑠 and 𝑠′ represent the current
and subsequent states, 𝑟 is the reward, and 𝑄 is the Q-function. The term 𝑈(𝐷) refers to

8In the case of usage of layers without feedback, the handed policy state is empty.
9Vector of states, in which the agent may be present at the time 𝑡.
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the dataset used for sampling, which is derived from a replay buffer containing experiences
in the form of (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). It is useful as it stores not only the most recent experiences,
but with some limitations stores even the old ones, thus when the algorithm learns to
explore new states, it still has the ability to remember the old trajectories and compute the
optimal strategy 𝑄*.

The double DQN [32] (DDQN) algorithm is very similar to DQN, but adds one more
neural network10. This algorithm focuses on the fact that the original DQN algorithm tends
to overestimate action values given some condition, and is based on previously existing
approach for Double Q-Learning, which is a similar method, but only for tabular settings.
The deep version consists of two neural networks with the same architecture but used for
different purposes, one for action selection and one for action evaluation. This leads to an
improved formula:

𝐿𝑖(𝜃𝑖) = E(𝑠,𝑎,𝑟,𝑠′)∼𝑈(𝐷)

[︃(︂
𝑟 + 𝛾𝑄(𝑠′, argmax

𝑎′
𝑄(𝑠′, 𝑎′; 𝜃𝑖); 𝜃

−
𝑖 )−𝑄(𝑠, 𝑎; 𝜃𝑖)

)︂2
]︃

where the symbols have the same meaning as in the case of DQN and 𝜃𝑖 and 𝜃−𝑖 are
parameters of two different networks.

DRQN – Solution for POMDPs

Shortly after the introduction of the initial DQN algorithm, a revised iteration was cre-
ated to address memory-related issues in partially observable Markov decision processes
(POMDP). This improved algorithm, called Deep Recurrent Q Networks [33] (DRQN),
bears a strong resemblance to the original DQN, but integrates recurrent units (LSTM)
to aid in memory sequence learning, as shown in Figure 2.10. The formulation of the loss
function remains unchanged.

2.5.7 Proximal Policy Optimization

One of the most important algorithms for modern reinforcement learning in many state-
of-the-art tasks is Proximal Policy Optimization [61] (PPO) developed by OpenAI. This
algorithm is also model-free, but opposite to DQN, is on-policy. This means that we do
not use two different policies for exploitation and exploration, but we use only a single
behavioral policy.

Proximity policy optimization relies on policy gradient methods, which determine how
the network parameters should be adjusted by computing the gradient of the loss function
formula [75, 61]:

𝐿(𝜃) = Ê𝑡[log 𝜋𝜃(𝑎𝑡𝑠𝑡)𝐴𝑡]

where 𝑡 represents time 𝑡, 𝜋𝜃 denotes the policy derived from parameters 𝜃, 𝑎 stands for ac-
tion, 𝑠 refers to state (observation), and 𝐴𝑡 is the estimated advantage function at timestep
𝑡. The advantage function is typically computed as 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)−𝑉 (𝑠, 𝑎) and is some-
times viewed as an alternative version of the Q value with reduced variance [75]. However,
this function can vary depending on the specific tasks, and for instance, the process of
learning for recurrent neural networks involves an enhanced version of this calculation [61].
The authors of [61] criticize this gradient optimization approach as being simplistic and

10It may look like creating an actor-critic algorithm, but that is not the case, because both networks are
critics!
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Figure 2.10: General structure of Deep Recurrent Q-Networks. The yellow part indicates
the new layer over the original DQN solution.

prone to generating overly large updates that can have a destructive effect on the existing
policy.

The authors of PPO developed various versions of the surrogate objectives by adopting a
clipped objective inspired by the trusted region policy optimization [60] (TRPO) 𝐿𝐶𝐿𝐼𝑃

𝑡 or
the adaptive Kullback-Leibler penalty coefficient 𝐿𝐾𝐿𝑃𝐸𝑁

𝑡 . They then selected one of these
objective functions and combined it with squared error loss 𝐿𝑆𝑄

𝑡 , entropy bonus 𝑆[𝜋𝜃](𝑠𝑡)
to create a new loss function:

𝐿𝑡(𝜃) = Ê[𝐿𝐶𝐿𝐼𝑃 or 𝐾𝐿𝑃𝐸𝑁 − 𝑐1𝐿
𝑆𝑄
𝑡 + 𝑐2𝑆[𝜋𝜃](𝑠𝑡)]

where 𝑐1 and 𝑐2 represent coefficients. This leads to the creation of a family of more stable
learning algorithms, which are used in many modern solutions based on reinforcement
learning.
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Chapter 3

Challenges

In a previous chapter, we presented the fundamental concepts for addressing sequential de-
cision making under uncertainty within the POMDP framework. Although these concepts
primarily represent theoretical foundations, the approaches discussed generally exhibit nu-
merous limitations and unresolved challenges. This section will focus on detailing these
challenges, examining their impact on model-based and reinforcement learning algorithms,
and exploring how various methods deal with these problems.

3.1 Explainability
One of the main goals of this thesis is to create communication between PAYNT and
reinforcement learning represented by some agents consisting of deep neural networks. For
this purpose, we have to introduce the topic of explainable AI [22, 40], which is a long and
complex process for the implementation and deployment process of using machine learning
approaches in real-world tasks. For example, in Figure 3.1 we can see some visualization of
the deployment process with respect to explainability.

Figure 3.1: Process of implementation and deployment of explainable machine learning
solution for real-world tasks. Taken from [22].
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In this section, we introduce some underlying concepts of this area, describe some current
approaches on how to reach its goals. In addition, we describe our motivation for the
explainability of reinforcement learning. The last subsection outlines a possible approach,
which is not discussed in this thesis but could provide a deeper understanding of trained
agents, and thus provide the best explainability of trained policies.

3.1.1 Goal

In discussions about interpretation, explainable AI [22] or formal verification [46], we gener-
ally refer to a learned solution that is based on a machine learning framework, often neural
networks, with the aim of gaining a deeper understanding of our creation. There could be
numerous inquiries, but the common theme is the transition from a black-box solution to
a white-box solution, as illustrated in Figure 3.2. For instance, we might wish to formally
verify the learned method according to a certain specification, or we might seek a solution
that requires less performance, or even more, and we might aim to develop an interpreta-
tion that humans can explain and understand. White-box solutions include decision trees,
linear models, symbolic neural networks, etc. In this thesis, we focus on extracting hints
from the trained agent to use them for better PAYNT learning.

Black Box
(Neural Network)

Interpretable
White Box

Interpretation
Process

Figure 3.2: Simplified Interpretation Process

3.1.2 Current Approaches

Given a framework of reinforcement learning, there exist multiple approaches which make
efforts to derive interpretable policies from trained RL policy. For example, we can consider
the programmatic approach [54, 70, 62], or prototype wrapping [40].

The first mentioned, the programmatic approach, depends on the creation of programs
which represent policies. It means that instead of creating a large neural network black
box, we use some classical programming constructions like if, while, for etc. For example,
the study [62] mentions that output policy of programmatic reinforcement learning is a
sequence of loops:

Do:
P

Until(e)

which means that we run local program P until reaching edge e. The local program is then
represented as a set of instructions in the form of:

From s ->
Target s1, Preference: v1
Else Target s2, Preference : v2
...
Else Target sk, Preference : vk
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where si represents segment i and vk represent vertices.
The construction of described programs is based on the recursive traversing tree of the

so-called winning regions, which represents the division of the state space to regions with
the same preferred actions and which guarantees the achievement of the goal state [62].
However, there exist multiple approaches and definitions of programs for programmatic
learning, for example [70] describes an approach with different program structure based on
interpreting the behavior of neural network policy.

An alternative method outlined in [18] employs a cyclical process to train neural agents
and derive FSCs1, which are then validated and utilized to improve neural network training
or to verify the safety properties of neural networks by verifying FSC. The extraction of
policy from neural network is based on sequential increase in the size of the FSC combined
with measurement of the entropy. If adding memory nodes to FSC does not lead to a
significant improvement (change in entropy), the process ends, and the training process
continues. The extraction itself is based on clustering the continuous hidden states of
recurrent neural networks to the 𝑁 memory nodes of FSC.

The final method discussed [40] is prototype-based deep reinforcement learning. Here,
the authors introduce prototype wrapping networks with a structure akin to neural net-
works, where each “neuron” is represented as a human-readable prototype. The authors
incorporate transformation layers to generate input for these prototypes. This method
yields robust and scalable policies that enable comprehension of the fundamental compo-
nents and the use of verification techniques to ensure the robustness of these policies.

As the articles [40, 22] mention, there exist two different insights into interpretation and
explainability, post hoc and pre hoc. The first one is based on the fact that we obtained
some unexplored solution, and now we want to analyze it and obtain some surrogate solution
or at least more information about its behavior. The second is based on the assumption
that we can interfere during learning and create a surrogate solution parallel to the original
one. That is a similar idea which we implement in this thesis.

3.1.3 Difference in Belief Implementation of RL and FSC

Under optimal conditions, we would employ PAYNT to ask straightforward queries to
trained agents, such as “which action should be chosen now?”, but both approaches uti-
lize distinct implementations for handling state uncertainty. This disparity is highlighted
in Figure 3.3, where we can see that while the inference process shares similarities, the
implementation of the algorithm feedback differs. When dealing with a neural network,
we utilize feedback in the form of previous hidden states from recurrent neural networks
(LSTM), typically represented by a vector of arbitrary floating numbers. These numbers
are the result of the gradient descent training of the employed network and generally ap-
pear random. In contrast, for FSC, the policy feedback is represented by an update to the
memory node, which is essentially a single integer that points to the subsequent state that
will determine the next action to be selected.

Given the distinct nature of the two feedback implementations and the unique ways in
which they are worked with, there are currently no known methods for a viable conversion
between the two. However, an advantage of PAYNT is its ability to interpret hints in
various forms. One such form is a hint regarding relevant actions in response to a certain
observation. In Figure 3.3, we could ask which actions an RL agent can choose in response

1This method resembles ours but relies on a distinct formal foundation and directly derives FSC policies
from neural networks rather than integrating them with PAYNT.
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Figure 3.3: Comparison of belief implementation in reinforcement learning based on recur-
rent neural networks and in FSC.

to a particular observation and any feedback. If this hint is acquired, PAYNT does not need
to explore FSCs that involve actions not included in the set derived from RL2 in response
to a certain observation during the synthesis of FSCs.

The second behavior that both approaches include is the variability of actions given
some observation. Given various feedbacks, we can obtain different outputs, but both
approaches reason for a given observation only about some subset of playable actions. Thus,
the information we would like to extract and propagate is information about variability of
actions given some observation, because PAYNT synthesize policies given some memory
for each observation. However, an important note is that raising the memory size for an
observation is usually a very expensive operation, as we have to explore during synthesis
exponentially larger design space.

For the extraction of information that we have mentioned, there is no universally avail-
able solution that we could use. Thus, in Section 5.4, we describe the interpretation issues
and present a novel approach in which we have obtained the requested hints from RNN.

3.1.4 Explaining LSTMs

An alternate method discussed in [6] could be the application of an extension to the al-
gorithm known as Layer-Wise Relevance Propagation (LRP), which aims to explain the
decision-making process of LSTM. This approach is based on the modification of LSTMs
and the enforcing of uniform credit propagation, which is a feature of LSTMs, when the
network propagates long-term information without scaling it. The output of this algorithm
is a set of scores for each input variable when each score corresponds to the relevance of the
given input to the outcome decision. In the context of our thesis, it would mean detection
of some previous observation which led to decision that our network made. This could be
used for deeper hints for PAYNT, because it could solve the issue with conversion between
FSC and LSTM feedback mentioned in Subsection 3.1.3.

3.2 Stability and Parameter Selection
One of the main issues of the reinforcement learning algorithm is stability. Although model-
based approaches such as FSC can just simply use elitism to recall the best solution yet, we
observed many problems with stability during our experiments, more described in Chap-
ter 6. For example, we ran three different algorithms on the task rocks with parameters
𝑁 = 16 and our results were very unstable, as can be seen in Figure 3.4. We can see
that between a few hundred iterations, we obtained a significantly different agent, which

2Or other oracle.
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performed the task perfectly (achieved the goal in 100% episodes) or did not achieve the
goal at all. It is caused by many factors, for example, by the nature of neural networks,
which can be sensitive to high gradient values [61], the tendency to overestimate Q values
by DQN [52, 33], by exploring the environment and observing new states, or by the nature
of RNNs (LSTMs), which are generally not stable and need a lot of careful tuning [30].

Figure 3.4: Example of learning on task rocks with parameter 𝑁 = 16

The issue of stability is addressed by many approaches. One of the usual approaches is
designing a whole new algorithm, which introduces new techniques to address instability,
for example, the algorithm PPO [61] reduces instability by cutting gradients with some
threshold, the algorithm SAC [20] introduces entropy, and TD3 [26] uses two different
networks to stabilize the algorithm. Some approaches are more stable by their nature, as,
for example, MuZero [4], which performs tree search in the model and can select actions
with the most stable result. However, it also introduces the trade-off between scalability
and robustness. Another approach can be the usage of on-policy or off-policy algorithms,
where on-policy algorithms are usually more stable. An alternative approach may be the
usage of shielding [17], which limits the set of playable actions in each observation only to
the safe one. Or we can also use some kind of imitation learning, where we try to learn a
strategy similar to another safe one and then improve the agent. However, many approaches
lead to lower scalability or a higher tendency to get stuck in local optima, as we explore
less aggressive.

Another important joint part of the issue with stability is the selection of parameters.
In our case, it includes selection of learning rate, neural network hyper-parameters, reward
model, regularization, clipping, size of replay buffer, trajectory length, maximum episode
length, activation functions, loss functions, and many other parameters. Unlike other ma-
chine learning, evolutionary algorithms [13], or formal model-based algorithms [2, 12], re-
inforcement learning usually has a significantly higher number of parameters, where there
is usually no general agreement on the recommended selection of values.

One of the parameters in which the literature and current approaches differ is in the
selection of discount parameters. In practice, we use discount to enable learning for models
with infinite horizon, where it allows us to compare two different solutions, as we cannot
reach the reward with value∞. In addition, we use a discount factor to enforce the location
of the rewards. For example, as we can see in a trajectory in Figure 3.5, we can have a
trajectory with thousands of states obtained by performing 999 actions and obtaining 999
rewards. If we do not use the discount (or set it at 1), every reward obtained for each
pair (𝑠𝑡, 𝑎𝑡) will have the same impact on the value estimation in the state 𝑠1. If we use a
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discount factor with a lower value, for example, 0.5, our value estimation will focus more
on closer states, as the reward from the latter actions has a lesser and less impact.

s1

s2 s3

s1000a1, r1

a2, r2

a3:999, r3:999

Figure 3.5: Example of trajectory.

As we can find in the literature [66, 43, 42], the values of the recommended discount
factor vary for each task, but we usually find values between 0.2 and 0.8. However, in prac-
tice, current approaches [17, 5] or even the default implementation of agents in TensorFlow
Agents [67] use values close to 1 (usually 0.99). In our experiments, we found that discount
factor selection can significantly change the learning outcome in both ways; sometimes
higher values can help propagate goal values faster to the trained agent. Sometimes, lower
values help to recognize better safe and dangerous states, as the states (observations) closer
to traps are impacted more by the negative reward, and further states do not receive that
high negative response. In this thesis, we usually prefer lower values, as our experiments
have shown a more positive impact of lower values than higher values.

3.3 Scalability
Although reinforcement learning faces stability issues, model-based methods, such as belief
MDPs or FSCs, struggle with scalability in real-world applications. Information from their
benchmarks indicates that they typically handle grid tasks up to a size of 20 × 20, where
a noticeable drop in performance often occurs [1, 17, 12]. Additionally, the introduction
of a basic reward for treasure collection on the map causes the state space of (PO)MDPs
to double, necessitating models for states both with and without the reward. In contrast,
reinforcement learning methods are generally unaffected by changes in state space, as they
operate with a predefined neural network size that is adaptable to various complex tasks.
If the network is too small, it can be scaled up by adding layers or enlarging existing ones,
enhancing computational power, and retraining. For complete formal model-based strate-
gies, calculating the optimal policy becomes exponentially more challenging, and significant
scaling is often unachievable even with increased parallelism or more efficient computation.
Thus, a robust heuristic is required. In this context, our aim is to employ a reinforcement
learning-based heuristic to explore the design space of PAYNT.

3.4 Robustness
Numerous strategies are available to achieve robustness with solutions that utilize neural
networks. For example, one strategy involves extracting FSCs from recurrent neural net-
works that represent policy and building FSCs directly [18] from them. Another strategy
relies on the formal verification of neural networks [46, 35, 78, 25], enabling the verification
of neural networks against specific criteria such as local robustness or sensitivity to the bias
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field. Or, there exists an approach, which computes the so-called shields [17], which limits
the policy to take only safe actions during learning (and even after).

However, the greater the robustness of a method, the lower its scalability. In our
experiments, we show that, for example, shielding is not suitable for large tasks at all and
is less scalable than the formal-based methods represented by PAYNT [2]. In this thesis, we
would like to represent a robust and verified FSC-represented controller created by PAYNT
based on hints from trained agents from the reinforcement learning approach.

3.5 Sparse Reward
Another challenge we have faced within this thesis is the so-called sparse reward models,
where we do not often obtain positive rewards and we usually get only some small penalty
for making steps when moving in the environment. For example, in the case of task refuel
(more described in Chapter 6), we have to visit three filling stations, in each select action to
refuel fuel, and without observing exact position, traverse the whole grid to the goal state.
If we consume all the fuel, we lose. In case of reinforcement learning, we have to randomly
sample trajectory, which satisfy all these sub-tasks and reach the goal, without obtaining
reward in the middle of the route. If we use a naive approach, we change the reward
function and add some small reward for visiting stations and refueling fuel. However, this
approach, usually called reward shaping [57], can also lead to getting stuck in local optima,
where we cycle to refuel and do not leave the station at all.

Reward shaping is generally a challenging field, crucial for developing intricate reward
functions that avoid entrapment in local optima and do not restrict the development of
superior policies compared to existing ones. In the process of reward shaping, the intro-
duction of certain solution details might hinder the discovery of the true optimal solution,
thereby diminishing the primary benefit of reinforcement learning over supervised learning.
However, various approaches are available to develop reward shaping. For example, the
method described in [7] suggests a potential-based reward shaping, which involves calculat-
ing the potential differences between states, analogous to electrical voltage. Alternatively,
the strategy in [50] proposes self-supervised online reward shaping, designed to automate
the process without compromising the discovery of the optimal solution based on the input
model.

During our experiments, we found that the similar issue with sparse reward models was
with reinforcement learning and also with model-based approaches, but the model-based
approaches usually find at least partial solution, where they can finish the whole task at
least with low probability, which can be improved by reinforcement learning. This fact led
us to use PAYNT FSCs to improve the exploration strategy of our RL approach.
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Chapter 4

Proposed Approach

In this chapter, we will outline the design of our toolkit, including the reinforcement learning
part, the interpretation part, and the PAYNT interpretation usage part. In the following
sections, we start with a description of the overall schema and then describe individual
components of the solution. The technical details of the proposed approach are described
in Chapter 5.

4.1 Overall Schema
This diploma thesis examines the combination of PAYNT and reinforcement learning al-
gorithms to create precise controllers for Partially Observable Markov Decision Processes.
PAYNT is capable of autonomously generating a robust controller based on FSC (Finite
State Controller), but can also request guidance from other approaches like Storm [56], or
in our case from a reinforcement learning algorithm acting as an oracle. This information
can be used by PAYNT to reduce the exponentially large design space of irrelevant options
and synthesize optimal FSCs faster.

POMDP,
Specification

PAYNT RL Algorithm

Learning

Learned Agent
(Neural Network)

Advices

Learning

Robust Controller
(FSC)

Advices

Figure 4.1: Overview schema of this thesis approach. It outlines the communication between
PAYNT and RL agents.
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Despite the ability of reinforcement learning algorithms to operate in a variety of large-
scale environments, their functionality is limited to optimizing a loss function and their
performance can only be assessed through environmental simulation. This makes it diffi-
cult to determine the point at which a robust agent has been effectively trained. In contrast,
PAYNT has the ability to generate the policies represented by FSCs, which can be formally
verified based on a given specification, and thus can enhance the RL approach with the
desired safety assurances. Moreover, it can provide the RL approach with additional in-
formation about the model, aiding in the identification of goal states and the avoidance of
dangerous ones. However, it is not as scalable as the RL approach; therefore, it can use the
help of a trained agent in the form of advice.

The simplified general schema, as illustrated in Figure 4.1, shows that our toolkit is
based on the synthesis of two independent policies: FSC (safe) and neural network (scal-
able). Our aim is to fuse these to develop more scalable FSCs and possibly safer RL agents
(neural networks).

4.2 Reinforcement Learning Design
One of the main parts of this thesis was the development of a functional reinforcement
learning pipeline for training agents. We can see the general schema in Figure 4.2, where
we can see how we worked with input in the form of the POMDP, how we processed
observation, rewards and actions in the overall training process, and the simplified outline
of the communication between PAYNT and our reinforcement learning approach. Moreover,
we can see four policies that may be created during our training process:

• Target policy – main policy trained by learning algorithm, usually selects actions
greedily, tries to maximize cumulative reward.

• Collect policy – the policy for exploration in the environment. Usually, a stochastic
version of the agent policy. In case of off-policy (DQN, DRQN) different from target
policy, in case of on-policy learning the same but with some exploration element like
stochastic selection of action instead of greedy.

• FSC collector policy – policy based on suboptimal FSC synthesized by PAYNT and
wrapped by the TensorFlow Agents [67] interface. Used to collect trajectories from
the environment similarly to collect policy.

• FSC policy advice – policy based on suboptimal FSC synthesized by PAYNT (similar
to collector policy) used for increasing probability of selecting particular actions within
stochastic PPO agent.

In the following subsections, we describe some technical details of the left part of the
schema in Figure 4.2.

4.2.1 Environment Wrapper and Agents

One of the important parts of this thesis was the integration of multiple tools to one com-
pact toolkit, where we designed and implemented some parts from scratch: the environment
wrapper, which is described in more detail in Section 5.1 and implements the interface be-
tween the simulator (model), which is represented by Storm SparsePOMDP and Simulator
objects. Furthermore, we implemented the masking process from scratch, which allows us to
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(Engine)
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(Neural Network)
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Interpretation Results

FSC Collector Policy
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Figure 4.2: Schema of the designed reinforcement learning approach, which consists of
environment wrapper that runs the Storm simulator, replay buffer with driver for collecting
trajectories (episodes), the agent itself and part for communication with PAYNT.

use algorithms implemented from TensorFlow Agents [67] with dynamic action space (more
described in Section 5.3. This framework implements multiple reinforcement learning algo-
rithms such as DQN, DDQN, PPO, TD3, SAC, and more. We take library implementation
of the learning algorithms and use our custom neural networks as function approximators.

Furthermore, we explore various agent specifications based on different observation en-
codings, which are overlooked parts of reinforcement learning for the specific task we are
working with. We explore possible encoding options for Storm implementation in Sec-
tion 5.2.

4.2.2 Replay Buffer and Collector Drivers

When working with the reinforcement learning algorithm, we have to somehow create com-
munication between the environment (simulator) and the learning algorithm (agent). For
example, a naive approach may be based on direct communication between the agent and
the environment, as shown in Figure 4.3. However, this approach has some significant
drawbacks and is usually used only during evaluation, not during training. The main one
is that the agent is strictly limited to the knowledge it has during the training, and if it
learns some suboptimal policy, it may forget even previously found better traces leading to
its desired goal. This approach is usually recommended when we work with some adjusted
on-policy actor-critic algorithm, which includes a critic for model learning and an actor for
action selection.

Another option is that we use some collect (behavioral) policy, let it take actions in the
environment, collect all its experiences, and then give it to some learning algorithm which
tries to find optimal estimation of rewards in the environment. The advantage of this
approach is that we do not forget any previously obtained experiences and are not limited
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Simulator Agent

Actions

Observations, Rewards

Figure 4.3: Naive approach of communication between agent and the environment.

by the policy we are currently learning. However, this approach lacks communication
between the environment and the agent and is also limited to the quality of the exploration
strategy.

The main approach with which we have worked within this thesis is an approach that
uses replay buffers [74], which store previous experiences obtained during learning in limited
buffers. This buffer is then used to randomly generate a dataset consisting of reconstructed
sampled trajectories1, which are taken as input to learning algorithms. In this thesis, we
used the implementation of TensorFlow Agents [67], where the buffer is represented by the
object of class TFUniformReplayBuffer.

Then, when we have the replay buffer, we usually also need a device that fills it with
trajectories. For this reason, we use policy drivers that are also implemented in TensorFlow
Agents [67]. Its purpose and functionality are clear: take a policy, run it in an environment,
and add observed data to replay buffers. We can see an example of the pseudocode of the
simplified driver algorithm in Algorithm 1. However, real implementation has some quality-
of-life improvements, like starting from the last state of the environment simulator, dealing
with obtaining last state during environment exploration, etc.

Algorithm 1: Simple Policy Driver
Input: Simulator sim, Policy 𝜋, Int steps, ReplayBufferObserver observer,
state ← sim.reset()
policy_state ← 𝜋.initial_state
for 𝑖← 1 to steps do

action, policy_state ← 𝜋(state, policy_state)
next_state, reward ← sim.step(action)
observer.add_trajectory(state, action, reward, next_state)
state ← next_state

end

As we can see in Figure 4.2, we can use various input policies for our Collector Policy
Driver. We can use our trained collector policy, which is the intended purpose of the
drivers, but we can also use some external policies, such as the PAYNT FSC policy, or
we may also input random policies, which may be useful during the first iterations of our
learning algorithm. In our implementation, we use the driver implementation as an object
of class DynamicStepDriver from TensorFlow Agents [67].

1The reconstructed trajectories are represented by batches of multiple following observation, action and
reward tuples (𝑜1, 𝑎1, 𝑟1, 𝑜2, 𝑎2, 𝑟2 . . . 𝑜𝑛, 𝑎𝑛, 𝑟𝑛), as we want to learn policies using RNNs.
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Advanced Approaches for Replay Buffers

In this thesis, we use the uniform replay buffer implemented in TensorFlow Agents. How-
ever, there are some approaches that are based on advanced work with replay buffers. One
of the considerable approaches is prioritized replay buffers, which focus on prioritized sam-
pling from replay buffers [58]. This is based on increasing the probabilities of sampling
trajectories that contain more promising information based on temporal difference (TD
error about the environment and that can lead to more efficient agent learning. It also
solves the issue that some experiences in the replay buffer may not be sampled at all before
leaving the buffer.

Another approach based on advanced work with replay buffers is the so-called Search on
the Replay Buffer [24] (SoRB), which uses trained agent for value estimation combined with
initialized replay buffer to induce robust policies. It is based on the principle of localizing
waypoints in the replay buffer and subsequent running of ShortestPath algorithm for finding
shortest path between these waypoints to achieve the goal.

4.2.3 Weight Restarting

One of the major issues with learning algorithms is the problem of starting. We cannot
see it in Figure 4.2, but deep learning-based reinforcement learning starts with randomly
initialized neural agents when we use their initially random policies to sample trajectories
from the environment. For some models, we found that sometimes we initialize the agents
in the way that its initial policy can find a goal and learn the required policy really fast.
In contrast, sometimes the initial policy is stuck in some neighborhood of the initial state
and does not explore much.

Because of this, we added the option to initialize the policy multiple times and select
the best policy in terms of achieving the objectives. This simple approach has shown that
for some models it can significantly boost the start of the learning algorithm and improve
the overall learned policy. However, for some environments such as refuel-20, it does not
help at all, as the policy to reach the goal state is practically impossible to achieve with
random policy.

4.2.4 Algorithms Optimization

A critical aspect of employing reinforcement learning algorithms is their demand for high
performance, particularly in terms of rapid update computation and fast environment ex-
ploration. An identified problem when using the method described in [17] is the absence of
compiled TensorFlow graph functions in their implementation, instead of relying on a stan-
dard Python function. It was observed that employing compiled versions of the functions
train or policy.action, along with the TensorFlow Agents’ compilation features (denoted
by tf.function and common.function), could enhance the speed of our algorithms by more
than tenfold. We also use fast CPU multiprocessing for training, inference, and sampling
from replay buffers. However, the main bottleneck of this approach is the Storm simulator,
as it does not, to the best of our knowledge, include parallel implementation. One of the
possible solutions may be to run multiple parallel environments, but this implementation
is not included in our approach.
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4.3 Communication Between PAYNT and RL toolkit
In Figure 4.1 we show that we mainly try to learn two policies: formal and robust FSC,
and scaling and approximating neural network. If we want to use them both to create more
advanced policies, we first have to solve the communication between them. In this section,
we describe some obstacles that we have not mentioned in the section focused on the whole
interpretation problem in Section 5.4. Then we describe how we can distribute information
between both of them, and in the next sections we describe how to use the sent information.

4.3.1 Conversion of the Action Mapping

One of the issues of the stochastic nature of the Storm Toolkit, which is the engine for both
our approaches, is the issue that if we run both approaches twice on the same model, we
obtain a different numbering for each action. For example, consider that we have a model
with four fixed actions: North, South, West and East. The Storm does not provide this set
of actions directly, but, for each observation, provides a range of numbers from 0 to 𝑛, where
𝑛 is the number of legal actions in the current observation. This range is supplemented
with labeling for each of these numbers, and from this labeling, PAYNT and approach we
have originally been based on [17] construct set of all possible actions.

Unfortunately, both approaches use the Storm construction of the Python implemen-
tation of class Set, which is based on hashing, and thus after each run of the program,
we obtain a differently ordered set of possible actions. Because we wanted to train our
agents multiple times after running the code again2, we solved this problem using Python
lists instead of sets. However, we still have to convert the number of actions produced by
the neural network to dynamic action space, which uses Storm, and, moreover, add func-
tionality of the action mapping conversion to PAYNT. We can see the algorithm for the
conversion of actions in Algorithm 2. We emphasize that this algorithm was used many

Algorithm 2: Action Conversion Algorithm
Input: Int action, Dict network_labeling, Dict storm_labeling
Output: Int storm_action
action_label ← find_value_key(action)
storm_action ← storm_labeling[action_label]
return storm_action

times in our approach, as we had to communicate with Storm simulator during learning,
adopt advice from FSCs when combining RL approach with advice from PAYNT, giving
advice from RL to PAYNT, etc.

A similar issue comes with the observations, where each observation mapping changes
with different properties specification or size of the model. However, this problem has been
overcome by always using the same model with the same specification and properties when
running PAYNT, training RL agents, and interpreting.

2RL agents use as output layer fixed number of output neurons, which corresponds to each action from
the set of all actions. Changing their order would mean that each neuron would have different semantics
after running the code again.
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4.3.2 Format of Communication

For improving learning, we need to distribute two separate information to PAYNT: in-
formation on action pruning and information on memory usage for each observation. In
general, we send four separate objects:

• Observation to action list dictionary. Used for pruning actions for each included
observation. It does not have to include all the possible observations.

• Initial memory guess. Dictionary containing pairs of observations with memory size.
It has to include the whole set of possible observations.

• Labeling of network action keywords. Used as input for the action conversion Algo-
rithm 2.

• Ordered list of observation numbers by variance of actions for each observation. Used
for memory updates in PAYNT, it does not have to include the whole set of observa-
tions.

If we want to communicate in the opposite direction, we would like to send information
about the construction of an FSC for the RL approach. For this purpose, we use an
implemented class in PAYNT called FSC, which includes all important information about
the action function, the memory update function, the labeling of action and observation,
etc. This class can be used as is, or we can export it to JSON and construct an FSC within
the RL approach.

4.3.3 File Communication

In this approach, PAYNT does not communicate directly with the RL algorithm. Instead,
we train the agent using our selected algorithm, network, and learning arguments until
we are satisfied with the results of the algorithm. We may run it with a different model,
change the learning rate during the learning iterations, etc. Then we export the results of
our interpretation to Python Pickle format, which we may load with PAYNT and use for
synthesis.

We also applied the same method in reverse, enabling us to export the resulting FSC to
JSON and subsequently utilize it within the RL algorithm. This strategy proves beneficial
when our intention is to independently experiment with both methods. The main drawback
is that we have to do all the processes by hand or by using an external Bash script.

4.3.4 Integration of RL to PAYNT

The second option to handle is the integration of RL with PAYNT, where PAYNT calls
all procedures automatically and does not rely on the export of Pickle or JSON files. The
main drawback is that the reinforcement learning algorithms are usually not very stable
and that we may obtain significantly different results for each run. However, this approach
is the primary option when we perform experiments with the loop of neural network and
FSC.

4.4 Usage of RL Oracle in PAYNT
In the application of reinforcement learning as a predictive model for the generation of FSC
in PAYNT, our objective is to use two different pieces of information. We need to determine
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which actions should be taken primarily into account for each observation and the amount
of memory that should be assigned to each observation. These strategies are based on
PAYNT’s method of policy learning, which operates within the exponentially expanding
design space of all 𝑘-FSCs, where it endeavors to discard irrelevant solutions and choose
the most efficient policy.

4.4.1 Reduction of the Design Space

One of the most important parts of the synthesis of FSC is the reduction of the design
space, since the original design space is exponentially large. PAYNT implements various
approaches on how to deal with the reduction of the design space for a more directed policy
search, including the Symbiotic [1] approach based on cooperation of the belief-based Storm
and the policy-search-based PAYNT. In this thesis, we experiment with a similar approach,
where we reduce the design space by the advice of the RL oracle.

When considering the design space, PAYNT considers three different terms: family,
main family, and subfamilies. The family includes all possible k-FSCs given a different
memory for each observation. This means that for each observation, we have to consider all
playable actions. For example, consider three different observations with dynamic action
space and assigned memory:

(𝑜1, 𝐴1,𝑚1) = (1, {1, 2, 3, 4}, 2) (4.1)
(𝑜2, 𝐴2,𝑚2) = (2, {1, 2, 3, 4, 5}, 3) (4.2)
(𝑜3, 𝐴3,𝑚3) = (3, {1, 2, 3}, 1) (4.3)

if we had for each observation assigned only a single memory cell, the total number of
possible FSCs would be 4 · 5 · 3 = 60. If we also consider the memory assigned, the number
of possible FSCs would be 42 · 53 · 31 = 6000. As we can see, the size of the family grows
exponentially.

The second term, main family, takes into account only a trimmed-down version of the
design space, where we reduce the number of actions that can be considered. For example,
imagine that the oracle informed us that the only logical action for observation observation
3 is the action 𝑤𝑒𝑠𝑡, which is symbolized by the number 2. This would imply that our main
family’s size was cut by a factor of three: to 20 when memory is not taken into account and
to 2000 when memory is considered. The last term, subfamilies, is the opposite of the main
family. This design space considers only the FSCs which have been thrown away in the
main family by considered restrictions. In this case, it would be FSCs, where we consider
actions 1 and 3 for observation 3.

While operating within the given constraints, we have two potential strategies for policy
search: we can first prioritize k-FSCs from the main family and then, if required, explore the
subfamilies. This does not mean that we have shrunk the design space; we simply altered
the exploration schedule within it. The alternative strategy is to ignore subfamilies and
focus solely on the main family. Each strategy has its own set of benefits and limitations.
The first strategy allows for a more efficient traversal of the design space but restricts the
possibility of exploring the entire space. However, the latter strategy allows for a potential
exploration of the entire design space (given the significantly smaller size of the main family),
but it risks discarding viable solutions that the original oracle may have missed. In this
thesis, we experiment with both approaches.
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4.4.2 Selection of the Initial Memory

Another option to improve the search for policies within PAYNT is “jumping” to achieve
an optimal observation memory distribution. This means that we tell PAYNT how many
memory nodes it should consider for each observation. If we consider our example from the
previous subsection of observation, action, and memory tuples, it means that we know the
exact memory values from the start.

In practice, PAYNT starts with a memory set to 1 for each observation, and thus first
explores the design space with memoryless policies. Experiments show that this configura-
tion is actually relatively optimal, as exploration of this set of policies is not overwhelming.
However, for larger models, this solution may lead to not exploring the design space with
higher memory assignments, and there is a space for improving models with information
from the RL agent. In this thesis, we simply use the memory approximation we describe
in Section 5.4.3.

4.4.3 Memory Update Prioritizing

Another option, how can the reinforcement learning approach help PAYNT learning policies,
is the use of information on memory updates for each observation. If we raise the memory
too much, we significantly affect the performance of exploration of design space. If we raise
the memory too slowly, we will explore a design space very similar to the original one, and
thus we will be obligated to increase the memory more times. Existing approaches work on
the principle that when an oracle (for example, Storm [56]) recommends multiple actions
for some observation, it increases memory for exactly these observations. We observed that
the number of observations with recommended actions is usually 1

10 of all observations.
For this reason, within our approach, we sort our hints by the variance of recommended
actions for each observation and increase the memory for the first 1

10 observations with the
highest variance. However, this approach was selected only on the basis of a small empirical
experience, and further research may be beneficial.

4.5 Usage of FSCs in RL Approach
In this thesis, we investigate two strategies to improve the learning processes of RL agents
using PAYNT. The initial strategy, depicted in Figure 4.2, involves the use of an FSC as a
collector policy. The second strategy uses an FSC policy to modify the action probabilities
of the PPO policy3, with the aim of subtly favoring actions that achieve the objective. This
method is detailed in Algorithm 3, which illustrates the initial setup of the loop with initial
agent training and the first pruning of the design space, followed by a loop with synthesized
FSCs and insights from trained agents. Throughout the training phase, we accumulate
experience in our replay buffer and maintain its contents between training sessions.

Before we describe both approaches, we should note that the FSC and TF Agent al-
gorithms usually work with different forms of feedback (more details are described in Sec-
tion 3.1) and we have to address this issue when running these different policies.

3This applies solely to the PPO policy, as it is the only stochastic policy.
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Algorithm 3: Reinforcement Learning with FSC
Input: Int 𝑝𝑟𝑒_𝑖𝑡𝑒𝑟, Int 𝑓𝑠𝑐_𝑡𝑖𝑚𝑒, Int 𝑓𝑠𝑐_𝑖𝑡𝑒𝑟, Int 𝑡𝑟𝑎𝑖𝑛_𝑖𝑡𝑒𝑟
ℎ𝑖𝑛𝑡𝑠← 𝑅𝐿_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑝𝑟𝑒_𝑖𝑡𝑒𝑟);
𝑝𝑟𝑢𝑛𝑒_𝑑𝑒𝑠𝑖𝑔𝑛_𝑠𝑝𝑎𝑐𝑒(ℎ𝑖𝑛𝑡𝑠);
𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡← 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠_𝑝ℎ𝑎𝑠𝑒(𝑓𝑠𝑐_𝑡𝑖𝑚𝑒);
𝐹𝑆𝐶 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡_𝐹𝑆𝐶(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡);
while True do

𝑅𝐿_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑓𝑠𝑐_𝑖𝑡𝑒𝑟, 𝐹𝑆𝐶);
ℎ𝑖𝑛𝑡𝑠← 𝑅𝐿_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑡𝑟𝑎𝑖𝑛_𝑖𝑡𝑒𝑟);
𝑒𝑛ℎ𝑎𝑛𝑐𝑒_𝑚𝑒𝑚𝑜𝑟𝑦(ℎ𝑖𝑛𝑡𝑠);
𝑝𝑟𝑢𝑛𝑒_𝑑𝑒𝑠𝑖𝑔𝑛_𝑠𝑝𝑎𝑐𝑒(ℎ𝑖𝑛𝑡𝑠);
𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡← 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠_𝑝ℎ𝑎𝑠𝑒(𝑓𝑠𝑐_𝑡𝑖𝑚𝑒);
𝐹𝑆𝐶 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡_𝐹𝑆𝐶(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡);

end

4.5.1 FSC as Hard Collector Policy

The mentioned approach has some significant drawbacks. The main one is that, as we play
with some deterministic policy with a sharp “probabilities” set to 1 for the selected action
and 0. In case of the DQN and DDQN, it does not imply problems, as these policies are
based on greedy selection of action with the highest estimated return. However, in case of
stochastic PPO, it causes an explosion of the loss function, as it also needs probabilities
(logits) of categorical distribution, from which a selected action was sampled. For correction
of this issue, we have to imitate the distribution from PPO and combine it with the sampling
actions from the FSC. This approach shows that after couple of learning iterations, PPO
can learn the policy represented by PPO.

The main motivation for this approach is the issue of locating goal states in models
with sparse reward. For example, in the case of refuel-20, to achieve the goal, we have to
randomly select at least 43 consequent actions4, which, at least according to our experi-
ments, is not realistic at all. The main goal of the usage of FSC is selection of initial collect
(behavioral) policy to find these goals, filling the replay buffer with these trajectories, and
then training it with, at least, some suboptimal possible solution.

As noted in the opening of this section, it is important to recognize that RL and FSCs
possess distinct hidden states (memory nodes versus recurrent feedback). Consequently, to
replicate the PPO policy while implementing the FSC policy, we must incorporate hidden
memory into the policy that encapsulates FSC5. This is achieved by introducing a hidden
attribute that stores the prior hidden state in the class designated for the FSC policy.
Although not the perfect approach, it remains the most feasible solution we identified that
avoids intricate engineering. Moreover, in the case of FSCs, we use an episodic driver
instead of a step driver. It means that we run full episodes instead of couple of steps in
environment, as we do not want to mix hidden states of drivers of neural and FSC policy.

4Moving north, east and refueling fuel. Number 43 is the lowest possible number if we expect the best
result for each move

5Implemented by a class derived from TFPolicy in TF Agents [67].
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4.5.2 Soft FSC with PPO Policy

The second approach that we designed and implemented is the integration of PPO with
the FSC policy. For our approach, we use our policy wrapper described in Subsection 5.3.3
where we extract logits generated by PPO to construct a categorical distribution. To
integrate our FSC hints to PPO, we slightly modify the constructed distribution, where
we raise logits with the preferred action by a small constant. Formally, we simply change
logits as:

𝑙𝑜𝑔𝑖𝑡
′
𝑖 =

{︂
𝑙𝑜𝑔𝑖𝑡𝑖 + 𝛾𝑏𝑜𝑜𝑠𝑡 if 𝑝 == 𝑖
𝑙𝑜𝑔𝑖𝑡𝑖 otherwise

where 𝑝 is the index of the preferred action, 𝑏𝑜𝑜𝑠𝑡 is some constant, and 𝛾 is its multiplier,
which changes over time. In this case, 𝑏𝑜𝑜𝑠𝑡 is assigned a value of 1, while 𝛾 starts at 2.0 and
is halved when PAYNT failed to improve FSC, as we do not want to propagate the same
FSC to our solution multiple times. This forces PPO collector policy to play primarily the
actions from FSC within the first iterations of RL with PAYNT loop, and then continue
with its own action selection. However, the approach for changed logit computation should
be investigated more, and some improvements may be beneficial.

Similarly to the previous approach, we have to remember the previous hidden state of
FSC aside from the hidden state of the recurrent neural network. The solution is the same,
as we just add an object attribute to remember FSC state.
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Chapter 5

Technical Details

In this chapter, we explore the primary theoretical and practical ideas encountered dur-
ing the research for this thesis. We go into the fundamental principles underlying the
functionality of the algorithms employed and the way in which we depict the tasks under
consideration. In addition, we outline the key obstacles encountered, such as dealing with
a dynamic action space and representations of observations.

5.1 Environment
In one of the previous sections, we explored some significant reinforcement learning al-
gorithms that would be of little value without a suitable environment to train our agents
on [43, 66]. As this thesis focuses on the integration of PAYNT [2, 3, 48] with reinforcement
learning, it is essential to select environments that are compatible with both systems. Given
that the current implementation of PAYNT is designed for a formal environment with a
fully known model, adjustments must be made to the reinforcement learning simulator to
align with the environments supported by PAYNT.

5.1.1 Template and Properties

Before we discuss other POMDP topics such as representation, environments, simulators,
wrappers, or agent interpretation, we should describe the first building block of our tasks.
These are PRISM [44] templates and PCTL properties, which we use as a shared specifi-
cation for both reinforcement learning and PAYNT.

PRISM is a framework designed to create templates that include descriptions of states,
transition probabilities, reward mechanisms, labels, observables, observation probabilities,
and equations that explain the current or previous states of (PO)MDPs. These characteris-
tics are captured by specific models that depict aspects of the behavior of POMDP. It also
features a section on holes that represent areas of incomplete information within a system.
In reinforcement learning, a crucial element is the description of environmental rewards,
which might be represented as follows:

rewards "penalty"
[up] true : penalty;
[down] true : penalty;
[left] true : penalty;
[right] true : penalty;
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[wait] true : penalty;
endrewards

where we can see part of PRISM template, which describes reward function for each action
(eg. up or wait). This means that our agent obtains some reward with the reward penalty
for taking any action. In our approach, we usually suppose that the model contains only a
single reward model and we give our agent the negative values. If there are more reward
models, we will use only the last one.

The second mentioned part, the PCTL specification, describes our goal for learning
policies in the environment. In this thesis, we usually work with one of the two types of
PCTL properties:

• Popt = [cond] – there we want to optimize probability of fulfilling some condition,
where opt is min or max and cond is some LTL formula. For example, property for
some grid model Pmax = ["notbad" U "goal"] describes maximizing probability of
being in notbad states until reaching goal.

• R{var}opt = [cond] – reward criterion, where we want to optimize opt (min or max)
some reward for a given variable var given some condition cond. For example,
property R{"steps"}min=? [F "goal"] corresponds to minimizing the steps before
reaching the goal. This specification was usually more complex to fulfill, as we have
to find a solution that optimizes the previous condition with probability 1.0.

Sometimes, we find models described not only in PRISM, but also in Jani, Cassandra, or
DRN, which are compatible with Stormpy [36] and PAYNT, which have different structures,
but also describe POMDPs.

5.1.2 Storm

In this thesis, we need to use a toolkit for parsing the mentioned templates and specifications
and for representation of the POMDP simulator. In our case, this is performed by the Storm
toolkit.

Storm is a modular verification toolkit for probabilistic model checking based for various
Markov models (MDP, POMDP, DTMC, CTMC etc.), Petri nets, or Markov automatas. It
supports various verification specifications, including those for multiobjective verification,
conditional probabilities and rewards, or for long-term rewards [37]. One of the impor-
tant features of this toolkit is the presence of the Python API, which the authors call
Stormpy [56].

Moreover, the Storm toolkit may be used for many other functions. For example,
the authors of [17] used Storm for the calculation of belief support to provide its toolkit
capability to use it for state estimation. Other approaches, such as, for example, [5] are
using belief MDPs for learning policies, and we may obtain them from Storm. However, in
this thesis, we primarily use Storm for its ability to process POMDPs and the creation of
simulators over them. In the following subsections, we describe how we work with models
and how we use POMDP simulators.

5.1.3 Stormpy Model and Simulator

When dealing with POMDPs using formal methods, we usually rely on a model that includes
states, observations, and transition probabilities. However, in the context of reinforcement
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learning, the focus shifts towards executing our model. Fortunately, Stormpy provides
functionalities for constructing a simulator based on our sparse POMDP model, which is
created by Stormpy from the PRISM template and the PCTL property. This simulator
enables us to reset the environment and then navigate through it by selecting actions using
the step() method. In addition, it allows us to access current observations, provide labels
for these observations, and receive rewards. In essence, Stormpy’s simulator encompasses
all the necessary components for us to develop a simulator for our reinforcement learning
agent.

5.1.4 TensorFlow Wrapper

In previous section, we described the overall framework for framework simulation. However,
for compatibility with agents implemented from the TF Agents [67] library, we have to
use some wrapper. In our case, the authors of TF Agents developed the wrapper class
TFPyEnvironment, which takes as a parameter during the initialization object of class
PyEnvironment with overwritten methods to perform the step in the environment (step),
environment restart, and all important TF Agents specifications such as observation, action,
or reward specification. Thus, for the creation of a proper environment, we can use our
Stormpy simulator from the previous subsection and wrap it with the mentioned objects.
However, there are some issues that we have to solve first.

The primary concern revolves around the reward structure. Although the PRISM [44]
framework incorporates rewards (or penalties) for actions within specific contexts, the main
focus is guided by the properties chosen. These properties typically articulate objectives
such as maximizing the likelihood of reaching a goal while avoiding obstacles or minimizing
the number of steps taken in the environment. Although such properties are valuable
for formal approaches like PAYNT, they do not meet the requirements of reinforcement
learning, which requires a precise reward system to motivate the agent to progress toward
achieving the goal [43, 66]. In our approach, we use virtual goal values to motivate the
agent to finish the task and anti-goal values for other sink states like traps.

Other problems we have to solve when wrapping simulator by our TensorFlow wrapper
are technical details when to restart the environment, because while formal methods uses
some threshold for relevancy of following steps, we have to stop and restart the environment
sometimes. This is, in our case, solved by restarting the environment from the inside after
reaching some constant number of steps, or it can be solved by detecting loops.

An additional important aspect to consider is ensuring full compatibility with the
Stormpy environment in terms of maintaining consistent observation and action definitions.
Although the observation remains unchanged after initialization using the same template
and properties files, the configuration of the action space differs significantly from standard
reinforcement learning algorithms. In the Stormpy simulator, each observation presents a
distinct set of feasible actions, represented by a sequence of numbers ranging from 0 to
𝑛, where 𝑛 corresponds to the available actions in that specific observation. Resolving
this disparity requires addressing the mapping between our agent’s action space and that
of Stormpy, as well as implementing measures to prevent the agent from selecting invalid
actions, a topic that is further elaborated in Section 5.3 and in Subsection 4.3.1.

5.1.5 Reward Shaping

As we described in Section 3.5, many of the tasks presented have only a sparse reward. It
means that we obtain reward only after finishing some long period of steps, which leads
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to some goal or checkpoint. This causes issues for problematic start of learning and issues
with stability, as reaching the goal with random strategy is usually difficult. In this thesis,
we try to develop some simple variations of reward shaping, which we based on the different
forms. The first is to add a small reward for reaching the checkpoint in the form of a fuel
station to refuel tasks for the first time. The second form was calculated by computing the
length between the desired goal and the last step of the episode1. The distance from the
goal state is computed in grid tasks as:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖, 𝑦𝑖) =
√︁

(𝑥𝑖 − 𝑥𝑓 )2 + (𝑦𝑖 − 𝑦𝑓 )2

where (𝑥𝑖, 𝑦𝑖) is the last position of agent and (𝑥𝑓 , 𝑦𝑓 ) is the position of the goal state. The
reward if we did not achieve the goal or trap state is then computed as:

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑜𝑠), 𝑔𝑜𝑎𝑙_𝑣𝑎𝑙𝑢𝑒) =
𝑔𝑜𝑎𝑙_𝑣𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑜𝑠)

where 𝑔𝑜𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 is some constant value for achieving goal state.
We conducted a couple of experiments with this implementation for tasks evade and

refuel-20, but the results were not satisfactory enough and usually only led to getting stuck
in some local optima. We suppose that this approach may lead to a significant improvement
of trained policies, but it would need some difficult engineering and multiple experiments,
which is not the main point of this thesis.

5.2 Observation Representation
One challenge with existing approaches to the tasks addressed in this thesis is the way
observations are processed for the RL algorithm. Although many current approaches [61,
32, 55, 20] deal with observations (or states) in high-dimensional spaces, these tasks typically
involve simple environmental information such as X and Y coordinates, fuel levels, or trap
locations. The issue arises when one attempts to apply deep learning algorithms with
feature extraction to learn policies in environments with only a few features per task.
Furthermore, established solutions such as [17, 18] often simplify the problem by obtaining
not just a single observation from the environment for their POMDP solution, but also a
belief distribution over possible states at each time step, which is considered a sufficient
statistic [43], instead of incorporating memory or recurrence in LSTM.

Consequently, these solutions typically do not use recurrent neural networks and are
typically trained in simpler tasks. During the course of this research, three distinct forms
of observations from the Stormpy environment were identified. The first approach, which
was proposed as an alternative to the belief distribution in [17], involves the use of a
single numeric observation from the environment simulator. However, this method poses
challenges, since the number of potential observations is often lower than the number of
weights in the neural networks employed by the agents. Furthermore, these observations
lack consistent semantic relationships when they are close in proximity. For instance, given
observations 2 and 3, and 2 and 5000, it is difficult to determine which pair is more similar
or dissimilar semantically due to Stormpy’s unique numbering of observations.

The second approach, which represents an enhancement of the initial numeric observa-
tion method, is one-hot encoding [11, 30], where a single observation is transformed into

1We set the limit of steps in episode to some constant for each task, because some trajectories may lead
to infinite cycle.
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a vector. This vector comprises 𝑛 − 1 zeros, where 𝑛 represents the number of possible
observation options, with a single one indicating the position of the observed number. For
example, if there are 5 possible observations and observation number 2 is observed, the re-
sulting vector would be (0, 0, 1, 0, 0). This approach is useful because it erases the problems
with similarity and dissimilarity of observations, which have a close number of observations.

5.2.1 Stormpy Valuations

However, Stormpy usually provides for each environment model a few observable variables,
which, to our knowledge, have not yet been used by any implemented solution. For example,
if we work with the evade model described in PRISM [44], we can find in the template file
lines:

observables
start, dx, dy, turn
endobservables

which tell us, that we can observe some variables start, dx, dy and turn. We found that we
can extract valuations of these observations from our Stormpy model simulator and use it
for training our RL agents, which provides more stable learning. Moreover, it enables us to
learn the actual semantics of each observation, which may also lead to better generalization
for unseen observations.

5.3 Dynamic Action Space
One of the main obstacles facing reinforcement learning in the tasks examined in this
thesis was the dynamic nature of the action space 𝐴(𝑠). The challenge arises from the
way Stormpy [56, 37] handles the action space of POMDPs compared to the conventional
approach of reinforcement learning algorithms. For example, in simpler critic-based rein-
forcement learning algorithms such as DQN, our model estimates the Q values, denoted by
a function 𝑄𝜋(𝑜, 𝑎) with parameters 𝑜 representing current observation2, and 𝑎 represent-
ing an action such as moving north in grid-based tasks. This function calculates the total
reward expected when following a specific policy 𝜋. Typically, this function is implemented
using a neural network with a fixed number of neurons, resulting in a fixed number of
outputs, each corresponding to an action in a finite discrete space.

However, this approach differs from the approach employed by Stormpy. Stormpy typ-
ically involves a predefined set of action labels such as north, south, placement, refuel, etc.
However, in each state (observation), only a limited set of permissible (playable) actions are
available. For example, in Figure 5.1, there is an agent that aims to reach the green state.
When using DQN or another RL algorithm, the agent initially considers all feasible actions
across the entire grid (move up, down, left, right, stand up), and during the learning process
it can choose any of these actions. However, as depicted in the left subplot, the only viable
actions are go right or go down (2 out of 5), while in the right subplot, the agent can only
stand up – this defines how Stormpy defines the action space.

We explored two possible solutions to solve the dynamic action space problem – from the
side of the environment (wrapper) and from the side of the agent, as we can see in Figure 5.2.
However, the ideal path does not exist because it may lead to lower sampling efficiency or
to problematic compatibility of the RL algorithm and the environment representation.

2And memory, in the case of RNNs such as LSTM.
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Figure 5.1: Agent in some grid model task. In the right picture agent fell down and have
to stand up.

POMDP Environment
Simulator with Filter RL Agent

Observations + Reward

Selected Action

POMDP Environment
Simulator

RL Agent
with filtering

Observations + Reward + Legal Actions

Selected Legal Action

Figure 5.2: Two possible paths to solve problem with dynamic action space. Yellow color
tells, who takes main responsibility.
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5.3.1 Masking

One strategy to restrict the action space involves employing a technique known as masking,
or in the context of TensorFlow agents [67], utilizing observation and action constraint
splitters. Referring to Figure 5.2 in the preceding subsection, this corresponds to the
bottom option. This method involves artificially adjusting the outputs of the implemented
policies by setting the outputs (logits) of prohibited actions to a value close to negative
infinity. Consequently, this ensures that the agents select actions (via a deterministic or
stochastic method) with zero probability of selecting an illegal action.

This approach involves dividing the observation structure into two distinct parts, the
observation section and the mask section. As illustrated in Figure 5.3, the modified time
steps containing an extended observation with both observation and mask components
are sent to the agents. Adapting this method to a custom environment requires minor
adjustments in computing the mask, updating the observation specifications, and returning
the modified time steps. This strategy significantly improves sampling efficiency by ensuring
that no samples contain invalid actions. Furthermore, our algorithm eliminates the need
to learn a substantial portion of the model specification, since action filtering is handled
separately.

Environment
Simulator Agent

TimeStep

Selected Action

Observation and
Action Constraint

Splitter

Observation

Time Step

Observation

Reward

Discount, Step Type

Mask: [True, True, False...]

Observation: [2.0, 1.2, -1.0 ...]

Figure 5.3: Implementation of action masking.

However, this method has several notable disadvantages. The primary issue is that
it could hinder the model’s ability to generalize since we manually restrict the output of
the function approximator. Consequently, the algorithm may not learn, for example, that
moving upward is not viable in the top section of the grid, information that could be valuable
for similar observations. Additionally, a major drawback is the limited compatibility of
masking implementation in contemporary RL frameworks. For example, as illustrated in
Table 5.1, only the simplest algorithms (critic-based) support this feature. Although the
PPO algorithm offers greater stability and other attractive attributes, its lack of masking
implementation prevents its direct use with action masking.

Some of the approaches overcome the compatibility issue by reimplementing the al-
gorithms from scratch [17], but with some notable limitations, such as the absence of
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Algorithm Masking Primary Action Space
DQN Yes Discrete
DDQN Yes Discrete
PPO No Both
SAC No Continuous
DDPG No Continuous
TD3 No Continuous

Table 5.1: Compatibility of observation and action constraint splitter for algorithms imple-
mented in TensorFlow Agents [67].

compatibility with RNNs (replaced by the use of belief support instead of direct observa-
tions). Moreover, own implementation of learning algorithms can lead to bugs combined
with problematic compatibility with complex computation-optimization methods, and we
found that their implementation runs below expectations.

5.3.2 Environment Action Filtering

The second approach to addressing illegal actions involves action filtering, which is consid-
ered somewhat simplistic. This approach allows the agent to choose any action it desires
and then filter out actions within the environment (wrapper). If an illegal action is taken,
the agent can either stay in place (resulting in a negative reward) or choose a random,
permissible action.

However, in the tasks examined in this thesis, where only a limited set of actions can be
taken based on the observations (e.g., 1 out of 7), this significantly reduces the effectiveness
of the algorithm in terms of sampling, causing it to become stuck and wait until a different
action is selected during training. Opting for a random action in such cases can prevent
this deadlock, but the challenge remains that the agent is unaware of whether the action it
took was blocked or randomized. This method is advantageous for its compatibility with
various discrete algorithms in TF Agents (like PPO), yet no notable enhancements have
been identified compared to simpler learning algorithms that incorporate masking.

Prioritised Action Randomizing

Small improvement over basic action filtering may be the use of stochastic algorithms.
In this approach, we take an algorithm that may select actions with some probabilities
(such as PPO) and, in addition to action, send this distribution (or output logits) to the
environment. The environment then uses the action, if it was legal, or selects a random
action according to the distribution given by formula:

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑜𝑛, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) =

{︂
𝑎𝑐𝑡𝑖𝑜𝑛 for legal action
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.𝑠𝑎𝑚𝑝𝑙𝑒() for illegal action

If the formula samples another illegal action, we may simply repeat it until we get some
result, or use greedy option, when we select the most probable legal action.

This approach improves learning in terms of exploring more valuable observations
(states) but still does not improve the learning issues with the knowledge of the real action
outcome, as there is no feedback information about sampled action.
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5.3.3 Policy Wrapping

The novel option that we have designed and implemented is to wrap the policy. This
approach consists of wrapping the original policy, which must be stochastic3, in the policy
wrapper, which serves as an interface between the simulator and the original policy. This
allows us to use original policy without masking (like PPO) to work with dynamic action
space without the drawback of not knowing which actions were really selected (unlike in
the previous Subsection 5.3.2). We can see the general idea in Figure 5.4.

We can implement wrapper filtering in multiple ways. For example, we can sample an
action multiple times and refuse it until we get a legal action, take the legal action with the
highest probability, or create an improved categorical [11] distribution from the output of
the original policy. The last approach is similar to the approach used in the implementation
of masking in TensorFlow Agents [67].

As we have multiple options, we select the latter two. We select the action with the
highest probability when evaluating the policy because the other approaches can draw
“dangerous” actions when evaluating. For collector policy, we sample from the improved
categorical distribution for the exploration policy, as it explores not only the best current
paths.

Simulator

Policy Wrapper

Agent without
Masking (PPO)

Observation, Mask

Mask Based Filter

Observation

Action

Legal Action

Figure 5.4: General idea of policy wrapping.

5.4 Interpretation
In this section, we describe our approach on how to interpret trained RL agents to informa-
tion usable by PAYNT. We first start with a general idea of what we want to implement.
Then we describe the proposed naive model-free approach, which has some limitations and
in the final version is not used, but its idea best describes our goal. In the last subsection,
we describe our simple novel approach, which effectively obtains the interpretation result
for PAYNT by evaluating trajectories in the environment.

5.4.1 RNN Feedback Approximation

In our task to derive all possible actions from a given current observation and any previous
history, our aim is to feed our RL agent with all possible hidden states in combination
with the given observation. A naive method that could be employed involves the uniform

3It has to pick different actions when called multiple times.
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sampling of hidden states h from the set Ho = {h ∈ R𝑛 | 𝑙𝑖 < ℎ𝑖 < 𝑢𝑖, for 𝑖 = 1, 2, . . . , 𝑛},
where 𝑛 represents the dimension of a single hidden state, and 𝑙𝑖 and 𝑢𝑖 denote the lower
and upper bounds of the component ℎ𝑖 of the hidden state, respectively. Using this method
implies that we are capable of calculating the upper and lower bounds for each component
of the hidden state vector4. Furthermore, it is essential to ensure that even when the
boundaries are accurate, the individual components are independent and can be derived
through uniform sampling from the mentioned set.

If we satisfy these conditions, we could compute action given some history ℎ, observation
𝑜 and neural network 𝑓 as:

𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑜, ℎ)

and if we would like to compute all possible actions for a given observation, we could simply
use:

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =

Ho⋃︁
ℎ

𝑓(𝑜, ℎ)

As noted previously, this method raises numerous problems, such as determining the
boundaries, the manner in which we should sample to investigate the limitless realm of
potential histories, and primarily the question of whether this method aligns with the
functionality of RNNs. Moreover, we should count with the possibility that sampling one
extreme value can break the entire selection process, and we can possibly simply reconstruct
the entire original set of actions 𝐴 for each observation 𝑜, which would not help PAYNT
prune the design space.

5.4.2 Model-Free Approximation

The first method that we propose and test is a model-free algorithm that generates history
samples from agents by constructing imaginary trajectories. In this approach, we work with
the function 𝑓 representing the neural network (policy 𝜋), which has input in the form of a
pair 𝑜𝑡, ℎ𝑡−1 returns the pair (𝑎𝑡, ℎ𝑡), where 𝑜𝑡 is observation, 𝑎𝑡 is action, and ℎ𝑡 is action
in time 𝑡. The algorithm is based on two independent steps, where the first one estimates
distribution of possible histories for each observation, and the second one then generates
samples from distribution and combine it with observations. We outline the distribution
estimation step in Algorithm 4, where we can see that we estimate the boundaries for the
uniform distribution5.

Algorithm 4: Distribution Bounds Estimation
Input: Policy 𝜋, Int granularity, Int number_of_observations
Output: Dict min_limits, Dict max_limits
min_limits, max_limits ← initialize_limits()
for 𝑖← 1 to number_of_observations do

mins, maxs ← emulate_trajectories_to_observation(𝜋, i, granularity)
min_limits[i] ← minimum(min_limits[i], mins)
max_limits[i] ← maximum(max_limits[i], maxs)

Return min_limits, max_limits

4In the case where we employ multiple layers of LSTM, our hidden states take the form of a matrix.
5Better approach would estimate distribution
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The subsequent phase involves traversing the set of potential observations along with
sampling from a uniform distribution determined by the boundaries described above. This
method is detailed in Algorithm 5, in which we determine the distribution boundaries,
followed by sampling a collection of possible histories. Using this history, we obtain the
action and update our statistics. These updated statistics are then used to generate hints
for PAYNT.

Algorithm 5: Model-Free Interpret
Input: Policy 𝜋, Int distribution_granularity, Int granularity, Int observations
Output: ResultStruct observation_action_stats
observation_action_stats ← ResultStruct()
min_limits, max_limits ← distribution_bounds_estimation(𝜋,
distribution_granularity, observations)

for 𝑜𝑏𝑠← 1 to observations do
for 𝑖← 1 to granularity do

hidden_state ← sample(min_limits[obs], max_limits[obs])
action ← 𝜋(obs, hidden_state)
observation_action_stats.update(obs, action)

Return observation_action_stats

However, this approach is very naive and during our experiments we found that it usu-
ally tends to generate actions for observations that are visited very rare or never, it is
performance-demanding for higher sampling strength, and it does not provide real distri-
butions as we use imaginary trajectories and with poorly trained agents leads to estimate
all possible actions for each observation. Moreover, we faced various implementation issues,
as recurrent neural networks usually do not have the same shape of history for different
agents. For these and many other reasons, such as the problem of constructing real trajec-
tories by computing reachability6, we focus on another approach, which in theory uses the
same principle but is more efficient and works with a real model.

5.4.3 Tracing Interpret

The main issue with model-free interpretation of RL agents is that we have to construct
reasonable histories to obtain an accurate interpretation. We could also use various different
approaches, but we were inspired in the article [40], in which they discuss that the usual
approaches for explainable AI are based on post hoc analysis, where we take a trained agent
and try to interpret it. In contrast, they boast approaches based on pre hoc analysis, where
they construct during prototype-based agents during learning of neural network. However,
our approach is still primarily post hoc (even if it can be used as pre hoc), but it takes
slight inspiration from the mentioned approach.

In this approach, we do not construct imaginary trajectories, but instead run the agent
in the environment and observe its behavior. We outline the method in Algorithm 6,
where we can see that we work with our policy 𝜋 in the form of a neural network, the
number of evaluation episodes, and the POMDP simulator. The principle is based on
standard evaluation of policies, but in this approach, we extend the evaluation with counting

6In our experiments, we started with shared observation history for all observations and thus eliminated
this issue by other trade-off.
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stats during learning to our dictionary of dictionaries, represented by ResultStruct in the
algorithm. This dictionary contains as keys numbers of observations and each element of
dictionary is represented by another dictionary, which contains keys in the form of action
numbers and values in the form of the number of occurrence of each action. We outline this
structure in Figure 5.5, where the colors represent the observation and the letters represent
actions.

Algorithm 6: Tracing Interpret
Input: Policy 𝜋, Int episodes, Simulator simulator, Bool refusing, Label goal
Output: ResultStruct observation_action_stats
observation_action_stats ← ResultStruct()
for 𝑖← 1 to episodes do

hidden_state ← 𝜋.initial_state()
state ← simulator.restart()
aux_stats ← ResultStruct()
while not state.is_last() do

action, hidden_state ← 𝜋(state, hidden_state)
next_state ← simulator.step(action)
aux_stats.update_stats(state, action)
state ← next_state

if not refusing or state.label = goal then
observation_action_stats.merge_stats(aux_stats)

return observation_action_stats

The output of Algorithm 6 then goes through another processing, where we construct
objects that we distribute in Subsection 4.3.2. This process includes construction of a
dictionary of observations and actions, where we simply take all actions belonging to each
observation in the mentioned structure. The second part consists of filtering actions from
each observation given a mean and variance of the distribution of actions. The resulting
set then corresponds to the following:

A𝑜,𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = {𝑎 ∈ A𝑜,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 | occurrence(𝑎) ≥ 𝑚𝑒𝑎𝑛− 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ·𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟}

where 𝐴 is set of actions, occurrence computes number of usage of action 𝑎 given observation
𝑜 and original structure, 𝑚𝑒𝑎𝑛 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 corresponds to statistics of the action sub-
dictionaries and 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 is variable argument for tuning the strength of pruning. From
this reduce action, we compute the initial memory size for each memory node in FSC. In
addition to this process, we recall variances and compute a prioritizer, which is an ordered
set of observations given the variance. The observation with the highest variance should
increase the memory first, etc.
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Figure 5.5: Visualisation of example of output structure from Algorithm 6.

59



Chapter 6

Experiments

In this chapter, we outline multiple experiments that answer various experimental questions.
We separately evaluate two main categories: quality of our agents, and performance of
combination of PAYNT with hints from reinforcement learning. In Section 6.2, we outline
five different research questions related to our proposed approach and evaluate them.

6.1 Experimental Setting and Benchmark Selection
Before we proceed to the experiments themselves, we first describe our experimental setting
and briefly introduce our experimental goals and benchmarks that we have been using.

The experiments were carried out locally on a computer with an AMD Ryzen 5 5600
processor, 16 GB of RAM, and a GPU 3070. Within our experiments, we try to explore
how our novel encoding method combined with our implemented reinforcement learning
approach improves the overall performance in terms of stability and the best attainable
performance. We explore how our agents using the DQN, DDQN, and PPO algorithms can
solve various benchmarks, and then we explore how these agents can improve the synthesis
of PAYNT. First, we explore a combination of PAYNT and a pre-trained agent, and then
we perform experiments of loop training of agents and synthesis performed by PAYNT.

Benchmark models were obtained from the repositories of the PAYNT [2] and shield-
ing [17] projects. These models are tailored for tasks such as maze navigation, rock collection
on maps, or network packet management. Generally, controllers for these models strive to
minimize the rewards collected in the environment1 or enhance the likelihood of reaching
the final state when the achievement of the goal state is not guaranteed. These models
were specifically chosen and adjusted to present a challenge to PAYNT in terms of size
and complexity, allowing reinforcement learning to exhibit superior scalability compared
to PAYNT, when PAYNT cannot explore the design space of 𝑘-FSCs with 𝑘 > 1. We
present a summary of these models in Table 6.1, with additional details in Appendix A
in for models primarily in Table A.6. The most challenging models are distinguished by
a significant imbalance between the number of observations and states, particularly in the
cases of refuel and grid-large, where the information about the current state is extremely
limited.

Articles from PAYNT [1, 3] also discuss alternative models, typically based on the
Cassandra language, which is different from our models’ PRISM language. Due to specific
implementation aspects, these models are only operable within the PAYNT with RL loop,

1This implies reducing the steps required to achieve the objective.
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Model Name Constant Setting # of Obs # of Act # of States # of Trans
evade N=7, R=2 4172 7 8108 57570
evade N=5, R=23 981 7 1961 12905

grid-large N=30, NDIV=5 37 4 900 7075
intercept N=7, R=1 2002 6 4705 18049
intercept N=7, R=2 2598 6 4705 18049
intercept N=15, R=1 17346 6 100801 399617

mba none 8 5 10 68
mba-small none 8 5 10 68
network K=20, T=8 2205 5 17253 93128
refuel N=10 84 6 892 5367
refuel N=20 174 6 6834 47915

rocks-16 N=16 2761 10 11017 68116

Table 6.1: Summary of used benchmark models. Constant setting refers to situation, when
we adjust parameters of used PRISM model to change the size of grid etc. # of Obs refers
to number of all possible observations of used POMDP, # of Act to number of maximum
possible actions of a given POMDP (models in general work with dynamic action space),
# of States describes the number of states of underlying MDP and # of Trans refers to
number of transitions of the underlying MDP. The constant N usually refers to size of 2-
dimensional grid, R to radius for scanning and in case of network, the K refers to number
of time periods and T to number of slots for packets. Additional details are described in
Table A.6.

as PAYNT is capable of converting the Cassandra model into the Stormpy model format.
Moreover, these models do not contain a straightforward observable variable, and the reward
model also differs. Thus, these models are available to experiment with, but because of these
limitations, we do not consider them in this chapter.

Remark 6.1.1 (Stochastic PPO Evaluation) There are two options, how to evaluate
PPO agents: greedy and stochastic. We used stochastic evaluation for the PPO algorithm in
rocks model. However, within other models, the stochastic evaluation of the PPO algorithm
leads to higher penalties and lower probability of reaching the goal state. We explain it with
the nature of the task rocks, where we have to collect multiple rocks from the environment
and when the greedy evaluation of PPO misses some of them, it cannot return, whereas the
other tasks have a significantly different goal condition. Thus, in the following subsections,
we work primarily with greedy evaluation of PPO policy. Training with stochastic and greedy
evaluation remains the same, as the behavioral policy is always stochastic.

6.2 Research Questions and Answers
In this section, we try to answer these five different research questions:

• Q1: Comparison of Encoding Methods: We proposed a novel encoding technique
based on Stormpy valuations, aimed at enabling our reinforcement learning agents
to acquire semantic knowledge of the environment. We are interested in determin-
ing whether this new method enhances the agents’ overall effectiveness compared to
traditional techniques that utilize integer observations or one-hot encoding.

61



• Q2: Comparison with Other Implementation: We have created a custom toolkit for
reinforcement learning and are interested in evaluating its performance against other
existing implementations that target similar models.

• Q3: Training of RL on Various Benchmarks: We selected various models and we
would like to find whether our approach is successful in training reasonable policies
given some number of iterations. There are two important metrics of our training,
the stability of learning, and the overall performance of trained agents.

• Q4: PAYNT with RL Oracle: We trained multiple agents for given models and we
would like to know whether these agents can help with our designed hint system to
improve PAYNT performance.

• Q5: Closed Loop with RL and PAYNT: Another approach for the distribution of
hints is to run RL and PAYNT in closed loop, where both RL and PAYNT give hints
to each other as described in Algorithm 3.

These questions cover the main areas which we described in this thesis and we try to answer
them properly. However, in addition, we performed some experiments to adjust the learning
parameters combined with information from the literature, but these are not included in
this thesis.

Q1: Comparison of Encoding Methods

In Section 5.2, we describe three different methods to encode observations. The initial
method utilizes a single integer for encoding, while the second employs one-hot encoding
of that integer. Additionally, we observed that Storm usually assigns valuations to each
observation, which indicate certain observation characteristics. This subsection presents
an analysis of the intercept task, conducted with parameters 𝑁 = 7 and 𝑅𝐴𝐷𝐼𝑈𝑆 = 2
in 15 runs given 1000 iterations of the PPO algorithm, applying these various encoding
techniques. We chose this task because we found that we can train satisfying policies with
our RL approach and the training is usually more stable compared to other models.

In Figure 6.1 we can see, how often our approaches achieved goal if we subtracted prob-
ability of reaching traps2. The figure shows that our proposed method based on Stormpy
valuation dominates both approaches, as it can learn a reasonable policy in a short period
of time, while both other approaches struggle to learn at least a bit reasonable policies,
which could overcome balanced dice. For example, the authors of [17] also struggle with
integer encoding and usually cannot overcome random policy with their learning algorithms
without a time-consuming shielding process.

Figure 6.1 also shows that policies based on one-hot and integer encoding also struggle
to minimize the number of steps in the environment (the maximum number of steps is 100)
and usually beat the random policy only by a few steps. In contrast, valuation encoding
significantly decreases the number of steps in the environment during the entire training
period, and if we train policies with this encoding more time, we can improve the policy
even more.

Summary: We also compared the encoding methods with other models and the results
were usually the same – Stormpy valuations significantly improve the training convergence of
the learning algorithms. It leads to faster learning and also usually to more stable learning.

2In this case, it is label exits.
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Figure 6.1: Comparison of multiple training runs with different encoding methods given
probability of reaching goal state and cumulative reward given average of 20 episodes each
1000 iterations on intercept model. The plots are created from 15 separate training runs
with each encoding method. The lines represents medians and shadow areas interquartile
ranges. Black line shows approximated performance of random policy, which is usually
better than usage of single Integer encoding.

However, some models, mainly in Cassandra, do not include observation valuations, and
also some models contain only a few observable valuations (e.g. obstacle). Overall, we try
to use valuations as much as possible, but some models do not contain them. In these cases,
we recommend using one-hot encoding, which usually has slightly more reasonable results
than the integer encoding method.

Q2: Our RL Compared to Related RL Approaches

Since we have developed our own implementation of the reinforcement toolkit for selected
models represented by the Storm simulator, we should compare it with other implemen-
tation. However, the main issue with comparison is that there are not many approaches
that solve similar problems. Many existing approaches are tested on benchmarks based
on OpenAI Gym, DeepMind puzzles, or some physics simulators3, which are significantly
different from our Stormpy simulator, as it usually depends on frames consisting of var-
ious multi-dimensional values, while Stormpy provides only single integers, or valuations,
as we mentioned in previous subsection. Given this situation, there exist only few similar
approaches to compare with, and one of them is the approach for shielded reinforcement
learning [17], where they solve similar tasks with reinforcement learning. This article de-
scribes state-of-the-art (2023) implementation for training robust and safe controllers for
POMDPs. However, in our context, it is worth mentioning that their approach is primar-
ily focused on their shielding method, and many of their algorithms (PPO, DQN, DDQN,
TD3, and REINFORCE) are trained primarily for memory-less policies, as they do not use
recurrent layers. Instead, they use for their algorithms as inputs integer observations, or
primarily, belief support computed from Stormpy4.

3Some of the popular benchmarks are summarized in https://neptune.ai/blog/best-benchmarks-for-
reinforcement-learning.

4Belief support is vector of states with non-zero probability given current time step.
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(c) Our rocks-16 with goal reaching probabili-
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Figure 6.2: Comparison between training on our larger model rocks-16 and adopted exper-
iment on smaller rocks-4 with RL algorithm SAC using LSTMs. The solid and dashed lines
in (b) represents option with and without shielding. Subfigures (a) and (b) used cumulative
reward evaluations given the used reward, while the Subfigure (c) used evaluation based
on the probabilities of reaching the goal. Our implementation in all cases dominates the
random policy, while the implementation of [17] is usually worse than the random policy in
a much smaller model.
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In our case, we try to compare our implementation with their implementation of soft
actor-critic (SAC), as it is the only algorithm where they used LSTM layers for memory
estimation, and thus it is only agent that can estimate belief purely by RL. However, direct
comparison is not possible, as they usually use slightly different models with their own dense
reward models developed to improve learning stabilization. That significantly changes the
evaluation output5, and it also rules out the possibility to use their models with our training
and our models in their training, because they use a dedicated reward model in their code,
while we use the reward models from the provided model specification.
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Figure 6.3: Comparison between our training and training with RL algorithm SAC using
LSTMs from [17]. The solid and dashed lines in (b) represents option with and without
shielding. Subfigures (a) and (b) used cumulative reward evaluations given the used reward,
while the Subfigure (c) used evaluation based on the probabilities of reaching the goal. Our
DQN and DDQN provides more unstable results compared to the adopted figure, while
PPO dominates all other results except for shielded training with belief support, which has
comparable performance.

In their evaluations, they usually compare their agents with random policies, which
select the actions in each observation using balanced dice. This allows us to relatively

5For clarity, within evaluations, we compute average episode reward from reward model formally described
in each model without any additional rewards for agents motivation. We also performed a few experiments
with reward shaping to create a dense reward, but our experiments led to getting stuck in local optima.
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compare the learning curves of our algorithms and theirs without knowing the
exact reward values. For this reason, we added a random policy evaluation in the
previous question in Figure 6.1 to show how we perform in the case of using valuations
instead of integer encoding. In Figure 6.2 we show how our RL algorithms trained on
rocks-16 compared to their training with the smaller model rocks-4. The comparison shows
that the quality of our learning is significantly better as our learning produces a relatively
stable learning curve that improves over time, while the approach [17] does not learn at all,
even with shielding usage.

We also found that we can adjust our model intercept to obtain a similar model of
intercept as they used in their experiments, only with different reward model. We show
a comparison of our training with their training in Figure 6.3, where we can see that our
implementation of DQN and DDQN agents struggles with this task and is generally very
unstable. However, our PPO agent outperforms all other possible agents except for their
implementation of shielded policy with state estimation in form of Stormpy belief support,
which produces similar results6.

A major limitation of the shielding method [17] is its time-intensive shield computation
process. Before developing our own implementation, we conducted several experiments
using both PAYNT and the shielding method with their models. Not only did PAYNT
achieve superior results for certain models, but it also managed to develop a viable policy
for the scenario of evade with the grid size 𝑁 = 7 and radius 𝑅 = 2 faster than the shielding
method could generate shields and initiate training. Although an exact time complexity
was not determined, the shield calculation for environments characterized by a grid size of
𝑁 ×𝑁 where 𝑁 > 10 proved infeasible.

Summary: The answer to our question about the performance of our RL agents com-
pared to other existing RL approaches is that we created a better implementation in terms
of stability, time complexity, and overall performance. However, there are still limitations,
and the comparison is limited for technical reasons.

Q3: Training of RL Agents on Selected Benchmarks

In this subsection, we try to answer the question of whether we can train reasonable policies
for various models. We would like to use these policies to generate hints for PAYNT, so we
expect that the learning produces reasonable policies that can solve tasks given metrics of
maximizing reward and maximizing probability of reaching the goal. In addition, we would
like to obtain stable learning curves that improve over time.

We work with two different evaluations of policies. One is based on an evaluation
of probabilities for reaching a goal, while the other is based on an evaluation of average
cumulative reward. This corresponds, with some differences, to two main specifications,
which we use for PAYNT7. This separation of two different evaluations more describes the
overall behavior of our agents, as in some cases we reach a goal with probability 1.0 and
we want to optimize the number of steps to reach. In some other cases, we can optimize
the number of steps well for some episodes and at the same time reach the goal only with
a low probability.

6If we reach goal with probability 1.0, we can add to our average cumulative reward value 1000, because
the reward for reaching goal is in their case just 1000.

7The distinction lies in our probability estimation method, which is 𝑃 (𝑔𝑜𝑎𝑙)−𝑃 (𝑡𝑟𝑎𝑝). This approach was
selected because the outcome remains unknown if an episode exceeds a certain time limit, and subtracting
these probabilities can improve our understanding of the agents’ behavior.
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Figure 6.4: Figures of probability of reaching final state for various models. In case of
network, the agents achieve the goal with probability 1.0 all the time, while in the case of
refuel-20, they cannot achieve the goal at all and only loop in the environment or go to the
trap.
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Figure 6.4, shows the progress of the training with different learning algorithms in terms
of probabilities of reaching the goal state. Reasonable convergence curves were achieved
for certain algorithms and models, such as PPO and the models intercept, evade with a
large radius, and for every algorithm applied to the model network. However, as we can
see in the case of evade or grid large, the stability of learning algorithms varies from really
good results to very poor results between couple of iterations. In case of refuel, our sole
algorithms never reach the goal state, and it is the most challenging environment we have
faced.
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Figure 6.5: Figures of cumulative reward for various models. For some models and algo-
rithms, we can see a stable learning curve, while for the others, the learning is unstable. In
case of refuel-20, the agent cannot achieve the goal and decides between going through the
environment until the max steps, or it runs out of fuel.

Alternatively, our primary objective is to reduce the number of steps or negative rewards
received from the environment. As illustrated in Figure 6.5, PPO usually outperforms other

68



algorithms by learning effective policies. However, being a policy algorithm, it is prone to
encountering local optima, as seen with the more challenging scenarios such as grid large
or the variant of evade with a larger environment.

Summary: Broadly speaking, we managed to develop reasonably effective policies for
certain environments, though the training process often faces challenges with instability
and occasionally fails to produce even moderately suboptimal outcomes for models with
sparse rewards.

Q4: PAYNT with RL Oracle

During our reinforcement learning experiments, we obtained a variety of results for each
model. We employ various algorithms and interpretation configurations and occasionally
execute the learning algorithm multiple times. The objective of this subsection focuses on
achieving the maximum enhancement in the optimal value derived from PAYNT, following
hints from the pre-trained RL oracle (agent). Table 6.2 compiles all the optimal results
of our experiments, conducted with a timeout of 600 seconds, beyond which substantial
improvements were generally not noted. In general, we obtained better or similar results
with the RL oracle if the agent was well trained, with the exception of the task rocks. In this
case, we trained a significantly better agent, but the agent did not improve the synthesis at
all. We should also note that the models are that large that PAYNT cannot usually explore
the whole 1-FSC design space even after a higher time limit.

Model PAYNT k-FSC *Max RL PAYNT + RL k-FSC Goal
evade 0.932 1-FSC 1.0 0.964 1-FSC Pmax

evade-5-23 17 1-FSC 53.6 17 1-FSC Rmin
grid-large nan 1-FSC 160.0 118.734 3-FSC Rmin

intercept n=7, r=2 0.999 1-FSC 1.0 0.979 1-FSC Pmax
intercept n=15, r=1 0.0 1-FSC 0.65 0.836 2-FSC Pmax

network-3-8-20 11.066 1-FSC 9.7 10.694 4-FSC Rmin
refuel-20 0.004 1-FSC 0.0 0.214 1-FSC Pmax

mba 6.265 3-FSC 22.975 6.265 3-FSC Rmin
mba-small 4.598 3-FSC 92.75 4.598 3-FSC Rmin
rocks-16 46.0 1-FSC 37.0 46.0 1-FSC Rmin

Table 6.2: Summary of experiments with hints from pre-trained oracles obtained by various
approaches. The states and actions represent the size of the constructed quotient MDP,
Pmax indicates probability reaching final state and Rmin minimization of cumulative re-
ward. PAYNT was used with option –fsc-synthesis, which may be outperformed by other
options. In case of grid-large, sole PAYNT could not find any controller, that achieves the
goal state with probability of 1. *Maximum performance of RL algorithm is obtained from
evaluation of 20 episodes each 100 iterations of training.

We can see that in some tasks we obtained some small improvements, for example in
case of evade and network-3-8-20. Within two tasks, grid-large and refuel-20, we obtained
a more significant improvement, but in the first case it was caused primarily by aggres-
sive memory increase and in case of refuel-20, the RL agent cannot achieve the goal but
gets stuck in local optima of the refuel station. We suppose that PAYNT can use this
information to achieve the first gas station and derive the rest of the task. In addition,
we conducted experiments on a significantly expanded version of the intercept task. Here,
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PAYNT failed to identify viable solutions, achieving an optimal probability of 0.0. In this
scenario, our reinforcement learning algorithm served as a catalyst, initiating the search
for viable solutions and resulting in a significant improvement of the optimal value. This
is one of the ideal cases for improving the RL oracle. However, the main issue with larger
models is that the PAYNT has a problem with construction of the model if we increase the
size significantly and cannot start to use our hints to prune the design space. In contrast,
our RL implementation usually has similar performance for various sizes of grid in terms
of computation time given with the same type of model.

Ablation Study of RL Oracle

The primary concern of the previous table is the synthesis of optimal results derived from
extensive experiments, which utilize diverse configurations for interpretation and RL hints
to PAYNT. Table 6.3 illustrates our engagement with several different approaches. We
employ three different algorithms for agent training: DQN, DDQN, and PPO. Occasionally,
we obtained the best results with the DQN and DDQN algorithms based on critics, capable
of developing more aggressive and less stable exploration strategies. Consequently, DQN
was identified as the most effective method for the grid-large scenario, as the PPO algorithm
failed to achieve the goal state and got stuck in local optima, whereas DQN succeeded in
quickly identifying and retaining a viable policy.

Model Algorithm Refusing Initial RL Mem. Pruning Agent
evade DQN True False False Last

evade-5-23 DQN, DDQN False False False Last
grid-large DQN False True Both Best

intercept n=7, r=2 PPO False False False Last
intercept n=15, r=1 PPO Any True False Any

network-3-8-20 PPO False True True Last
refuel-20 DDQN False False False Best

mba PPO True False False Best
mba-small PPO True False False Last

rocks All Both Both False Any

Table 6.3: List of used hints for each tasks to obtain the best results. It describes best com-
bination of benchmarked model, training RL algorithm, interpretation option for refusing
wrong episodes, setting initial memory defined by RL oracle, PAYNT action pruning/pri-
oritizing and the time of selection of agent – the best trained agent or the agent after whole
training period.

The second option, refusing, modifies the interpretation process as described in Algo-
rithm 6, where setting refusing to True excludes episodes that do not reach the goal state.
Initial memory sets the starting memory for the PAYNT from RL advice, while pruning
determines whether to reduce (prune) the design space or prioritize some observation-action
pairs. The final parameter, agent, specifies whether to use the agent from the last training
cycle or the agent that performed the best during the evaluations.

In general, we found that different tasks prefer different configuration. Only parameter
that was the most preferable was pruning set to off, as our algorithms usually prune the
design space that much, that we disable the ability to learn at least sub-optimal solutions.
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Only in the case of network model, we found that pruning can achieve slightly better results,
as our policy provided multiple actions for different observations.

Question Summary

Summary: We found that we can significantly improve the resulting PAYNT-synthesized
policy if we trained a proper agent and PAYNT could start solving the task. However,
there are still some limitations with memory estimation, where only in a few cases did
memory initialization with hints improve the overall synthesis. In general, our RL approach
can improve the synthesis of FSCs but still has some limitations, mostly in the ability to
train reasonable policies for complex models, for example, for refuel. Moreover, there exist
multiple options on how to interpret the agents and provide hints and there is not any
dominant one.

Q5: Closed Loop with RL and PAYNT

An alternative method for the distribution of the hints involves integrating the RL oracle
into the FSC synthesis process, as shown in Figure 4.1. This section details the outcomes of
training the PPO reinforcement learning algorithm in conjunction with PAYNT synthesized
FSCs, employing two distinct strategies. For the hard FSC approach, the agent is trained
over 100 episodes using only data derived from FSC sampling. In the soft FSC approach,
the trajectory sampling from the environment is utilized as outlined in Subsection 4.5.2.
The training cycle is described in Algorithm 3.

Within our experiments, summarized in Table 6.4, we found that this symbiosis of
both approaches can, with some drawbacks, reduce the limitations of both approaches.
For example, in the case of refuel-20, it was the first time that we reached the goal state
with our RL algorithms. However, training suffers from great instability and sometimes
we experience significantly different results. For example, in the case of refuel-20, we can
obtain much better results with more trained agents and interpretation results. Moreover,
we can use only a single agent trained during these experiments, and it usually suffers from
the worse synthesized first FSC from the first advice. For this reason, we adjusted the refuel
to smaller grid, where our learning is more stable. In this task, we found that the agent can
overcome PAYNT-synthesized FSCs after 6 or 7 loop cycles and then significantly improve
the PAYNT procedure.

Model Pure PAYNT Pure RL Hard FSC Soft FSC Goal
refuel-10 0.0774 0.0 0.3512 0.3374 Pmax
refuel-20 0.00083 0.0 0.0101 0.0158 Pmax

network-3-8-20 11.129 9.7 13.2471 14.6835 Rmin
rocks-16 46.0 37.0 47.0 46.0 Rmin

evade 0.932 1.0 0.921 0.932 Pmax
intercept n=15, r=1 0.0 0.65 0.537 0.427 Pmin

Table 6.4: Results of FSC cycling with PPO algorithm, when hard FSC samples data
from the environment itself, while soft FSC combines the sampling policy with PPO logits.
Original PAYNT results are produced with option fsc-synthesis. Different options can have
better results. Pure RL results represents best obtained result during training of multiple
RL agents for mentioned model outside of the loop from Section 6.2.
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One of the largest advantages over the previous mentioned approach without the loop
is that we use only a single implementation without refusing episodes, and we use only the
last trained agent. Another advantage is that with time limitation of synthesis of FSC,
we can continuously increase memory for observations, where it is needed. However, this
approach has many drawbacks. The most significant one is the tendency to overfit the
RL agent to the policy represented by FSC. We tried to reduce this issue with our soft
FSC implementation, but it has slightly similar issues. This led to worse results with the
task network, where the RL algorithm started to converge to the optimal solution, but the
synthesis slowed the training, as the algorithm was fitted to data from an equally good
FSC solution. The last but not least issue of this approach is general instability of training
algorithms, which leads to significantly different results if the experiments are rerun with
the same parameters. However, we found that the training instability is reduced compared
to the independent training of RL and PAYNT.

Another difference between the previous approach and the PAYNT-RL loop is that
in the first case the RL agent learned to avoid wrong sink states, while in the second
approach, PAYNT without adjusted specification does not care about other states than the
goal one. That opens a wide area of potential research for adjusting the specifications of
both approaches, where we could change the specification of PAYNT to provide more safe
policies and then focus on different, the main one.

Summary: In general, this approach shows a lot of potential, but still needs some fur-
ther research. Both PAYNT and RL can help each other, but in general, the improvements
are worse than in the case of RL hints outside the loop since we cannot train in a shorter
period of time better RL policies.

6.3 Summary
In this chapter, we discuss various research questions. The first focused on the comparison
of three distinct encoding methods for reinforcement learning, where we show that our
novel valuation encoding based on data provided by Storm dominates both other standard
approaches in terms of stability, performance, and the ability to learn semantics. Moreover,
if we compare our results with the baseline RL results obtained in [17] with LSTM networks,
we found that we can solve significantly larger tasks without the need for outer help, such
as shielding or belief support instead of integer inputs.

We also describe our experiments with training various reinforcement learning algo-
rithms on multiple tasks, followed by experiments with combinations of various interpreta-
tion outputs and PAYNT. We found that we can improve finite-state controller synthesis
with well-trained agents, but the general issue is the instability of training process and
limited abilities of learning quality policies by state-of-the-art approaches. We also found
that our interpretation method usually leads to similar results as provided by the agents
themselves, if we use it as advice to PAYNT.

The last research question focused on the combination of reinforcement learning and
PAYNT in loop. We found that we can improve the learning of our agents in environments
with sparse reward, as the FSC usually finds at least some solution. Moreover, the learning
procedure is usually much more stable than in the case of independent training of both
approaches. However, the main disadvantage of this approach is the usual stabilization
of learning of both approaches, as the reinforcement learning usually adapts to the policy
provided by the FSC from PAYNT and PAYNT usually adapts to the policy provided by
reinforcement learning.
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Chapter 7

Conclusion

In this thesis, we develop and implement a novel approach for merging two different solu-
tions for making sequential decisions under uncertainty under the framework of a partially
observable Markov decision process (POMDP). The first, a complete model-based system,
is represented by PAYNT, while the second, an approximate and model-free system, is
represented by the reinforcement learning framework. We outline the primary challenges
associated with both approaches, review some methods to face these challenges, and discuss
how our strategy addresses them. Furthermore, after identifying substantial shortcomings
in the current state-of-the-art methods represented by [17], we created a new reinforcement
learning solution from the ground up, utilizing the TensorFlow Agents [67] framework.

In addition, we introduced a novel method for encoding observations using data from
the Stormpy [56] simulator, a novel strategy for policy wrapping to manage dynamic ac-
tion spaces, and a straightforward weight-resetting algorithm to improve the early stages
of learning in reinforcement learning algorithms. We also designed a novel method for
interpreting policies based on recurrent neural networks by analyzing trajectories within
the environment. Furthermore, we introduced advanced hard and soft FSC techniques to
improve reinforcement learning with PAYNT hints, aiming for improved outcomes in tasks
with sparse reward. The principal contribution of this thesis is a toolkit that enables the
training of policies using reinforcement learning algorithms like DQN, DDQN, and PPO,
their interpretation to create hints, the provision of hints to PAYNT, the extraction of finite-
state controllers (FSCs) and their integration into reinforcement learning. Our toolkit can
perform this sequence in a single run or in a complex training loop.

7.1 Future Research
In this thesis, the main bottleneck of our presented approach is the limitation of rein-
forcement learning in terms of stability, problematic behavior in sparse reward models,
difficult parameter configuration and non-existing scalable explainability. Even with our
improvements and overcoming current state-of-the-art approaches, we sometimes could not
overcome the results provided by the formal-based PAYNT.

One of the important paths that further work should explore is the selection of learning
parameters. In this thesis, we selected learning arguments inspired by the existing litera-
ture [5, 17, 18, 43] and some parameters were adjusted by multiple experiments. However,
the number of arguments of our training algorithm, interpretation, environment, PAYNT-
RL loop etc. come up to a higher order of tens. Further research could perform more
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experiments manually or develop some automated algorithm for argument selection based
on, for example, evolutionary algorithms. This could possibly improve stability or decrease
problems with sparse reward settings.

In this thesis, we achieved the main improvement in reinforcement learning with novel
observation encoding using Stormpy values. However, some models do not contain many
(or any) observable valuations and some models contain only a few valuations that do not
tell anything about the environment. Further research could focus on approaches, how to
increase the ability of agents to create reasonable encoding for each observation. Moreover,
further research could use information about state valuations and use it to add semantic
meta-information about the environment, because, for example, in the case of task refuel-20,
the agent does not have the information that it operates on the grid.

Another possible approach is the adjustment of the selected reinforcement learning
algorithms. In this thesis, we worked with implementations of DQN, DDQN and PPO
from TensorFlow Agents [67], but in some cases, we use them differently to achieve better
results. For example, we found that using replay buffers with PPO is more beneficial than
using it in the original sense with on-policy learning based only on current experience.
Moreover, there exist many other algorithms, such as TD3, SAC, DDPG etc., which may
provide, combined with our novel methods, somewhat better training results. Another
option, which we briefly introduced and experimented with, is reward shaping, which is one
of the disciplines that leads to creating state-of-the-art solutions based on reinforcement
learning.

The last option, which we would like to outline, is the usage of formal methods for ex-
plaining recurrent policies. In this thesis, we briefly introduce the existing approach for the
explainability of slightly modified LSTM based on Layer-Wise Relevance Propagation [6],
which could be used for exact mapping between LSTM-based policy and the synthesis of
finite-state controllers performed by PAYNT. Moreover, there exist various approaches for
formal verification of neural networks, such as Crown [72, 77, 78], VeriNet [34, 35] or MN-
BaB [25], that could support verification of recurrent neural networks in the near future.
These approaches could be used, with some reasonable specification, to interpret exactly
the neural network-based policies.
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Appendix A

Experimental Setting

In this appendix, we describe our experimental setting. We describe what we can set for our
agents, the environment, the models we used, and some arguments for our interpretation
algorithms. We also outline some typical values, which may vary a bit given various tasks.
However, some of the implementation related arguments, like the path to saving files or
names for models, are not included.

A.1 Agents Arguments
As we mentioned in Chapter 3, one of the most important issues in reinforcement learning
algorithms is the number of parameters that are used in training with particular algorithms.
In this section, we summarize all parameters that we had to select combined with our
commonly used values1.

One part of agent parameter settings is common for all learning algorithms; we summa-
rize them in Table A.1. The Table A.2, Table A.3 and Table A.4 then describe the selection
of arguments for each algorithm used.

Variable Typical Value Description
Learning rate 1.6𝑒− 5 Learning rate of RL algorithms

Batch Size 32 Number of trajectories for a training iteration
Number of steps 25 Length of trajectories for training
Buffer Length 10000 Length of the replay buffer

Number of Runs 5000 Number of iterations of training
Weight Restarts 0-10 Number of restarts of NN (more in 4.2.3)
FSC Collector False Sets the behavior policy to FSC for a few episodes

Optimizer Adam Optimizer of learning algorithms

Table A.1: Common agents arguments.

A.2 Environment Setting
Given each experiment, we can set various variables in the environment. The most signifi-
cant one is number of steps in the environment and virtual goal (and anti-goal) values, as

1May differ in particular experiments).
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Variable Value Description
𝜖-greedy 0.14 Configuration of 𝜖-greedy policy

ffnn layers (100, 100) Sizes of fully connected layers
lstm layers (100, ) Sizes of LSTM layers

td error squared loss Loss function for temporal difference learning

Table A.2: Arguments of DQN Agent

Variable Value Description
𝜖-greedy 0.1 Configuration of 𝜖-greedy policy

ffnn layers (50, 50) Sizes of fully connected layers
lstm layers (64, ) Sizes of LSTM layers

td error squared loss Loss function for temporal difference learning

Table A.3: Arguments of DDQN Agent

Variable Value Description
Num. epochs 25 Number of epochs for each iteration
greedy eval False Greedy evaluation of policy
on-policy False Turn-off replay buffers

actor layers (50, 50) Sizes of fully connected layers of actor net
actor lstm (50, ) Sizes of LSTM layers of actor net

critic layers (50, 50) Sizes of fully connected layers of critic net
critic lstm (50, ) Sizes of LSTM layers of critic net

Table A.4: Agruments of PPO Agent
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the models does not include rewards for achieving goal and PAYNT is usually driven by
some PCTL specification. We usually select settings that correspond to given set of tasks,
but we usually set the goal value equal to the maximum steps of the environment, because
we want to force RL agents to prefer reaching goal over taking steps in the environment.
We could set larger goal values, but we found that larger values lead to higher gradients
(loss functions), which may lead to breaking the policy. However, more research would be
beneficial.

Variable Typical Value Description
Max Steps 100-400 Max. available steps in the environment

Discount Factor 0.75 Value of discount provided to agents
Encoding Method Valuations Method for encoding observations
Action Filtering False Blocking of illegal actions
Evaluation Goal Max Steps Virtual reward for agent motivation

Evaluation Anti-goal −Evaluation Goal Reward for trap states

Table A.5: Summary of variables in the environment setting.

A.3 PAYNT Setting
The toolkit PAYNT allows multiple different approaches on how to solve given tasks. In
this thesis, we usually compare our approaches with the selected argument fsc-synthesis,
which, given some time2, constructs some controller (if possible) that solves the given tem-
plate and specification. However, we should mention that PAYNT is still under develop-
ment, and contains multiple different and potentially better settings, which can outperform
the settings we have been using. For running PAYNT with the RL oracle, we use options
fsc-synthesis and storm-pomdp with modified implementation – some parts of Storm
hints are used, and some are replaced and ignored.

A.4 Used Models
In Table A.6, we summarize all the models used in this thesis and information about its
main configurable constants, number of observable variables usable for the encoding of the
valuation, more described in 5.2, and the type of reward model described in the model.
Moreover, we also mention the format of the input file.

A.5 Interpretation Arguments
In Table A.7, we summarize all the arguments used in the implemented interpretation
algorithm.

A.6 PAYNT-RL Loop Arguments
In Table A.8, we summarize all the arguments used in the loop approach implemented.

2Usually in order of minutes.
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Model Name Settings # of Observables Reward Model Format
evade N, RADIUS 8 steps PRISM

intercept N, RADIUS 8 steps PRISM
grid-large none 3 steps PRISM

mba none 6 steps PRISM
network K, T, channels 6 dropped packets PRISM
obstacle N 3 steps PRISM
refuel N, CAPACITY 8 cost PRISM
rocks N, rocks (2-3) 8 cost (rocks) PRISM

Table A.6: Summary of additional details for used models in the experiments. Reward
model always describes penalties.

Variable Typical Value Description
Granularity 50 # of episodes for interpretation

Refusing True, False Refusing trajectories not leading to the goal
Memory Variance 0.5 Parameter for reduction of memory estimation

Prune Actions False Prune unusual actions in observations

Table A.7: Summary of arguments used in tracing interpret.

Variable Typical Value Description
Pre-loop iterations 500 Iterations of learning algorithm before the loop

Loop iterations 300 Iterations of learning algorithm in the loop
FSC iterations 100 Iterations of learning algorithm with FSC hints
Synthesis time 60 Number of seconds for FSC synthesis by PAYNT

Soft FSCs False/True Soft or hard action selection by FSC in RL
Soft multiplier 2/0.5 Update of the strength of soft FSC hints

Table A.8: Summary of arguments used in loop between RL and PAYNT
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