
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

CZECH-ENGLISH TRANSLATION

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. JIŘÍ PETRŽELKA
AUTHOR

BRNO 2010

VYSOKÉ UCENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

CZECH-ENGLISH TRANSLATION
PŘEKLAD Z ČEŠTINY DO ANGLIČTINY

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRACE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Be. JIRI PETRŽELKA

doc. RNDr. PAVEL SMRŽ, Ph.D.

BRNO 2010

Master Thesis Specification/7266/2009/xpetrz10

Brno University of Technology - Faculty of Information Technology

Department of Computer Graphics and Multimedia Academic year 2009/2010

Master Thesis Specification
For: P e t r ž e l k a J i ř í , Be.
Branch of study: Intelligent Systems
Title: Czech-Eng l i sh Trans lat ion
Category: Artificial Intelligence
Instructions for project work:

1. Get acquainted with the existing statistical machine translation methods and the existing NLP
tools for Czech and English.

2. Prepare parallel corpus for the standard evaluation of the developed system.
3. Design and implement a system able to translate free text in Czech into English, based on the

collected parallel data.
4. Evaluate the realized system by means of standard metrics and compare it to alternative

solutions.
Basic references:

• Manning, C. D., Schütze, H., Foundations of Statistical Natural Language Processing, MIT Press,
1999, ISBN 0-262-13360-1.

The Term Project discussion items:
• funkční prototyp řešení

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/
The Master Thesis must define its purpose, describe a current state of the art, introduce the theoretical and

technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

Supervisor: S m r ž P a v e l , doc. RNDr. , Ph.D. , DCGM FIT BUT
Beginning of work: September 21, 2009
Date of delivery: May 26, 2010 . . . ,

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
, Fakulta informačních technologií

Ustav počítačové grafiky a multimédií
612 06 Brnti, Božetěchova 2

Jan Černocký
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
This Master's thesis describes the principles of statistical machine translation and demonstrates
how to assemble the Moses statistical machine translation system. In the preparation step, a
research on freely available bilingual Czech-English corpora is done. An empirical analysis of
time requirements of multithreaded word alignment tools demonstrates that MGIZA++ can
achieve a five-fold speed-up, while PGIZA++ can reach an eight-fold speed-up (compared to
GIZA++).

Three scenarios of morphological pre-processing of Czech training data are tested, using simple
unfactored models. While pure lemmatization can aggravate the BLEU, more sophisticated
approaches usually raise BLEU. The positive effect of morphological pre-processing diminishes
as corpus size rises. The relation between other corpora characteristics (size, genre, extra data)
and the resulting BLEU are empirically gauged. A final system is trained on the CzEng 0.9 corpus
and evaluated on the testing set from WMT 2010 workshop.

Tato diplomová práce popisuje principy statistického strojového překladu a demonstruje, jak
sestavit systém pro statistický strojový překlad Moses. V přípravné fázi jsou prozkoumány volně
dostupné bilingvní česko-anglické korpusy. Empirická analýza časové náročnosti vícevláknových
nástrojů pro zarovnání slov demonstruje, že MGIZA++ může dosáhnout až pětinásobného zrychlení,
zatímco PGIZA++ až osminásobného zrychlení (v porovnánís GIZA++).

Jsou otestovány tři způsoby morfologického pre-processingu českých trénovacích dat za použití
jednoduchých nefaktorových modelů. Zatímco jednoduchá lemmatizace může snížit BLEU,
sofistikovanější přístupy většinou BLEU zvyšují. Positivní efekty morfologického pre-processingu se
vytrácejí s růstem velikosti korpusu. Vztah mezi dalšími charakteristikami korpusu (velikost, žánr,
další data) a výsledným BLEU je empiricky měřen. Koncový systém je natrénován na korpusu
CzEng 0.9 a vyhodnocen na testovacím vzorku z workshopu WMT2010.

Keywords
statistical machine translation, natural language processing, translation model, language model,
decoder, word alignment, GIZA++, MGIZA++, PGIZA++, SRILM, hunalign, plain2snt, snt2cooc,
mkcls, BLEU, bilingual corpus, Kačenka, Acquis Communautaire, CzEng OpenSubtitles, hidden
Markov model, HMM, viterbi, IBM model, Qin Gao, ÚFAL, IFAL, EuroMatrix, Moses, Czech
morphology, lemmatization, Prague Dependency Treebank, PDT, Libma, BLEU, WMT

statistický strojový překlad, zpracování přirozeného jazyka, překladový model, jazykový model,
dekodér, zarovnání slov, GIZA++, MGIZA++, PGIZA++, SRILM, hunalign, plain2snt, snt2cooc, mkcls,
BLEU, bilingvní korpus, Kačenka, Acquis Communautaire, CzEng, OpenSubtitles, skrytý Markovův
model, HMM, viterbi, IBM model, Qin Gao, ÚFAL, EuroMatrix, Moses, česká morfologie,
lemmatizace. Pražský závislostní korpus, PDT, Libma, BLEU, WMT

i

Citation
Petrželka, J. Czech-English Translation. Master's Thesis. Brno, Brno University of Technology,
2010.

Declaration
The work described in this report is the result of my own investigations. All sections of the text
and results that have been obtained from other work are fully referenced.

Signed:
26 May 2010

© Jifi Petrzelka, 2010.

This work has been produced at the Brno University of Technology, Faculty of Information
Technologies. The work is subject to the Copyright Act and as such shall not used in any way
without the author's prior consent, with the exception of certain cases, as defined by law.

ii

Acknowledgements and dedications
I would like to thank all those who supported me in the course of work on this thesis, which
primarily includes my family.

I also thank my supervisor Pavel Smrz for expert consultation on the topic discussed in this
work.

iii

iv

Table of contents

1 Theoretical approaches to machine translation 3
1.1 Classical MT 3
1.2 Statistical MT 4

1.2.1 Language model 5
1.2.2 Translation model 5
1.2.3 Decoder 7
1.2.4 Evaluation 8
1.2.5 Morphology 9

2 Building a statistical machine translation system 13
2.1 Getting a parallel corpus 13

2.1.1 Kacenka2 13
2.1.2 Acquis Communautaire 14
2.1.3 OpenSubtities 14
2.1.4 CzEng0.7 14
2.1.5 CzEng0.9 14
2.1.6 WMT10 15
2.1.7 Other corpora 15
2.1.8 Unused corpora 16

2.2 Analysis of time requirements of word alignment tools 16
2.2.1 MGIZA++ 17
2.2.2 PGIZA++ 23
2.2.3 Should we use MGIZA++ or PGIZA++? 26

2.3 Assembling a machine translation system 28
2.3.1 Architecture of the Moses translation system 28
2.3.2 Methodology of training and testing with the Moses system 29

3 Analysis of the created SMT system 35

v

3.1 Analysis of individual factors 35

3.1.1 Size of the corpus 35

3.1.2 Additional training data 37

3.1.3 Morphological pre-processing 39

3.1.4 Combination of individual factors 44
3.1.5 Final notes 46

3.2 Training for WMT 10 46
3.2.1 Final notes 48

Appendix A - Scripts created 60
1 Corpora preparation 60
2 GIZA++ training 60
3 Moses training 60

Appendix B - Working directories 61
Appendix C - Corpora statistics 61

vi

Preface

Machine translation (MT) aims at substituting a human translator by a computer. In broader
perspective, machine translation is a specific application of a scientific discipline called natural
language processing (NLP). NLP is a computer science field. Apart from computer science,
language processing derives insights from fields such as electrical engineering, linguistics and
psychology (Jurafsky etal. , 2009:9).

So far, quality translations from one language to another have not been common, except for the
most restricted domains, such as weather reports (Manning, 1999:463). In most cases, it is
necessary for the human translator to post-edit the output of MT. According to certain
experiments (Plitt, 2010), this can considerably increase translators' productivity.

In the European Union, there is a growing need for high quality machine translation systems
because the number of language combinations used in the EU rises with the entry of every new
country. To address this issue, the EuroMatrix Project (2010a) and the The EuroMatrixPlus
Project (EuroMatrixPlus Consortium, 2010) have been founded.

The objective of the master's thesis is to design, implement and evaluate a statistical machine
translation system.

In chapter 1, we start by introducing some theoretical aspects of the machine translation. We
do not intend to give a comprehensive account of all the mathematical aspects of machine
translation. The objective here is to give the reader a basic idea of the process of building the
entire machine translation system.

Following the theoretical introduction, chapter 2 provides a step-by-step guide on the process
of building a statistical machine translation (SMT) system. First, we research available Czech-
English corpora and prepare them for use in our system. Next, we empirically analyze the
benefits of multithreading when doing word alignment with the MGIZA++ and PGIZA++
alignment tools. Based on our observations, we create a SMT system based on the Moses SMT
system. We then draw up a methodology to empirically assess the system's performance under
several scenarios.

In chapter 3, we carry out the previously proposed experiments. We attempt to establish a
relation between various corpora characteristics and the resulting BLEU score. We investigate
how the size and genre of the corpus influence the BLEU. Next, we attempt to raise the BLEU by
introducing additional information into the system. We include a dictionary into the training

1

data and we use an extra corpus to train the language model. Subsequently, we analyze the
system's performance under three different schemes of morphological pre-processing. Finally
we train the system on the CzEng 0.9 corpus and evaluate it on the testing data from the WMT
10 workshop.

This Master's thesis draws on the Term project. The core of the first chapter (sections 1.1, and
1.2.1 to 1.2.4) from the Term project has been used and supplemented with additional
information on morphology (section 1.2.5). In chapter 2, information on corpora (section 2.1)
has been updated and extended. Section 2.2 has been borrowed from the term project almost
without change. The following sections (starting with section 2.3) and the entire chapter 3 are
novel additions first appearing in this thesis.

2

1 Theoretical approaches to machine
translation

We can conceptually divide the strategies for MT into two categories: classical MT and
statistical MT. Practical applications nowadays combine these two approaches so think of the
concepts introduced in this chapter as ideas that can be incorporated to various extents in MT
systems.

1.1 Classical MT
The most trivial idea of how we could translate a text from one language to another would
probably be: Take the words from the source text, one by one, and by means of a dictionary,
substitute them with corresponding words from the target language. This approach is called
direct translation. Before substituting the words we usually need to do some morphological
analysis on the source text

Although direct translation is usually not feasible for distant language pairs, it can be used for
close language pairs, such as Czech-Polish or Czech-Lithuanian where the syntactic
constructions of both languages are almost identical. This approach has been used in the Česílko
system (Cufin etal. , 2007).

A more sophisticated approach is to analyze the source language text syntactic structures. Once
we have got a parse tree of the source text, we transform the tree so that it conforms to syntactic
structures of the target language1. We can also make use of semantic information. These two
approaches are generally called transfer approaches. In practise, this architecture has been
used in the Dependency-based Machine Translation system developed at ÚFAL (Cufin et al.,
2007).

To see the context of the options discussed so far, please refer to Figure 1.1, depicting the
Vauquois triangle, which shows the individual levels at which the language can be analyzed. So
far, we have described all the "floors" except for the one at the top.

1 This is done using contrastive knowledge - e.g. knowing that adjectives in the source language come
before nouns but in the target language, they come after nouns etc.

3

Source Language Text Target Language Text

Figure 1.1 Vauquois triangle

At the top of the Vauquois triangle, there is the interlingua approach. In this case, we analyze
the source language text and save it into an abstract representation called interlingua. Then we
can generate the target text directly from the interlingua. The advantage of this approach is that
we can use the interlingua representation to generate the target text in any language. However,
there are other problems to tackle2.

1.2 Statistical MT
Statistical MT differs from the classic architectures in that it concentrates on the result, not the
process of translating. What we want is a translation that reads fluently and is faithful in respect
to the original sentence. Jurafsky et al. (2009:875) exemplifies this by the Hebrew adonai roi
["The lord is my shepherd.") that cannot be literally translated into a language that has no sheep.
We can either say something like "the Lord will look after me" or "the Lord is for me like somebody
who looks after animals with cotton-like hair". The first translation is clear in the target language
but is only partially faithful to the original. The second translation, on the other hand, is faithful
to the original but reads awkwardly in the target language. The task of a human translator is to
compromise between fluency and faithfulness and this is exactly what statistical MT systems
attempt to do as well.

We can formalize the idea as follows (T denoting target, S denoting source):

best translation T = argmaxT(faithfulness(T,S)fluency(T))
(1.1)

We choose such a target language sentence that has the maximum product of faithfulness and
fluency.

2 For example, if the interlingua distinguishes between elder brother and younger brother (which is
necessary for Japanese and Chinese) then it will have to compute a lot of unnecessary disambiguation
when translating between English and Czech where there is only one concept for a brother.

4

To further formalize the idea, let us assume we translate a foreign language sentence
F = f\,J2, •••>fm t ° English. We are looking for the best English sentenced = e1,e2, ...el whose
probability P(E\F) is the highest Using the Bayes' rule we can rewrite this as follows:

E = argmaxEP(E\F)

P(F\E)P(E)
= argmaxE

= argmaxEP(F\E)P(E)
(1.2)

The denominator P (F) can be ignored because it is a constant The resulting equation consists of
two components - a translation model P(F\E) and a language model P(E). The last thing we
need is a decoder which wil l be given F and it should produce E.

1.2.1 Language model
We need a description of the rules that govern the language we want to translate to. This
description is called a language model (LM) and in statistical MT language models are based on
iV-grams. What are they?

Suppose you have to guess the next word in the sentence Have a nice ... You would agree that
these three words wil l probably be followed by day or weekend but it is much less likely they will
be followed by at or nice.

The idea of iV-grams is exactly the same. More formally, given a sequence of words of length N-l,
the model tries to predict what the Nth word will be. A 2-gram model is commonly called a
bigram model, a 3-gram model is called a trigram model, a 4-gram is called a quadrigram (or
tetragram) model etc. When we just say iV-gram we either mean a word sequence of length N or
a language model based on iV-grams.

To create a language model we need a monolingual corpus of the target language and a toolkit
for building a language model, for example the SRILM toolkit (SRI International, 2009).

1.2.2 Translation model
The translation model tells us the probability that a given English sequence of words E generates
a foreign sequence of words F. In the case these sequences have a length of 1, we work with
individual words (this is called word-based statistical MT) but in this thesis, we concentrate on
entire chunks of words, called phrases (this is called phrase-based statistical MT).

How do we go about building a translation model?

First, we group the English sentence into phrases e{,e^, ...e}. Next, we need to translate these
phrases one by one into foreign phrases fi and then to reorder the foreign phrases.

5

How do we enumerate the probability P(F\E)7 It wil l rely on two factors - the translation
probability (how likely is the given translation?) and distortion probability (how likely is a
given reordering of phrases?). We will denote the probability of an English phrase being
translated to a foreign phrase as 0(/J

Next, we denote the distortion probability as d. The distortion probability means the probability
of two consecutive English phrases being separated in the translation into a foreign language by
a span of words of a particular length. Formally, d(at — denotes the distortion probability
where at is the start position of the foreign phrase generated by the z'th English phrase e~i, and

is the end position of a foreign phrase generated by the (z'-l)th English phrase e]3j~. We can
compute a simple distortion probability using the following formula: d(at — b^) = a ' a ' _ & ' - 1 _ 1 ' .
In this way, we penalize the probability of a translation where the phrases lie far apart.

The final translation model for phrase-based MT is:

P(F\E) = Y\<p(fi\ěi)d(ai-bi_1)
i=l

(1.3)

Now what we need is a list of English and foreign phrases and a probability they match together
(the so called phrase-translation table). To create such a table manually would be too time
consuming. Therefore we try to automate the process. First, we need parallel corpus on input
Then, for each sentence pair, we do a word alignment (we figure out which word in the English
sentence corresponds to which word in the foreign sentence). Having the word alignment, we
can extract phrases and produce the phrase alignment and the phrase-translation table.

1.2.2.1 Word alignment
What we want to achieve is a mapping between words in a source language sentence and words
in a target language sentence, for example:

John reads a book Jan si cte knihu
John

Jan si cte knihu reads
a

book

Figure 1.2 Example of a simple word alignment

Notice that we allow here that one English word is mapped to any number of Czech words and a
Czech word can be mapped to any number of English words.

There exist several algorithms for word alignment. They differ in the level of sophistication. The
most popular are the IBM models 1, 3, 4, 5 and the HMM model (HMM being a better alternative
to the IBM model 2). However, these models align the words under the assumption that the

6

mappings can only be one-to-many (one word from the source language aligns to one or more
words in the target language).

We should note that we usually add a fictitious NULL word in the source sentence which can
map to a word in the target sentence that has no real equivalent in the source sentence.

When training the model, we need a parallel corpus. A parallel corpus is a text that is available in
two languages. More formally, we need a corpus consisting of S sentence
pairs {(i^,£" s)|s = 1 ...S). We use this corpus as input to a tool that can align words. A standard
for word alignment is currently the GIZA++ tool (Och, 2001) which is based on the IBM and
HMM models mentioned above.

How do we tackle the problem with the restricting one-to-many assumption? We simply do the
word alignment in both directions (English —> Czech, Czech —> English) and then do an
intersection (or other sensible operation) of the two matrices.

Once we have the word alignment matrix, we compute the phrase-translation table.

1.2.3 Decoder
The decoder first takes the original sentence and divides it into phrases. (If we were doing a
word-based MT it would be words, not phrases.) There are usually many ways how to divide a
sentence into phrases. They are called translation options (Figure 1.3 illustrates this).

John reads a book
Jan čte nějakou kniha

si čte knihu
si čte knihy
čte knihu

Figure 1.3 Translation options

Now the decoder starts generating the output sentence from left to right in the form of
hypotheses (Figure 1.4), starting with an initial hypothesis. Then it expands it so that the phrase
John is translated as Jan. We use an asterisk to denote that the first word has already been
translated. Also, we record the probability of this translation (0.487). We can then decide to
expand the tree further, which can yield Jan si čte with the probability 0.176.

Decoders are usually based on a best-first search algorithm (Jurafsky et al., 2009:890). This is an
informed search that expands a node n based on the evaluation function/fnj.

The evaluation function in our case for partially translated phrases S = (F, E) is based on the
following formula:

cost(E,F) = Y\4>{fi.ěi)d(fli-bi-1W)
ieS

(1.4)

7

It is a product of the translation, distortion, and language model probabilities for all phrases that
have been translated so far. This cost is usually called the current cost. It is usually combined
with the estimated future cost because otherwise the algorithm would tend to select such
translations that have a few high probability words at the beginning at the expense of
translations with higher overall probability (Jurafsky etal. , 2009:892).

Practical decoders like Moses (Euromatrix Project, 2008a) must prune the search space because
the number of hypotheses would grow exponentially, so for example Moses uses a beam search
algorithm rather than best-first search.

e: kniha
f. *

p: 0.089

Figure 1.4 Generation of hypotheses

1.2.4 Evaluation
We need to measure the quality of the output produced by the MT system. There are generally
two ways to do this - either a human evaluator can read the output sentences one by one and
judge its fidelity and fluency, or we can evaluate the output using an automated program.

1.2.4.1 Human evaluation
Human evaluation can proceed in several different ways. The first way is to present the
evaluator the output sentences and ask him to grade it on a scale, such us fluency or fidelity.
Another way is to hide some words in the output sentence and ask the evaluator to fill in the
missing word. In this case we measure the time it takes for the evaluator to fill in the word. This
method is called a cloze task. Finally, we can give the evaluator the output sentences and ask
them to post-edit the output so that it reads fluently. In this case we measure the edit cost,
which can be the number of words needed to be replaced or the total edit time.

1.2.4.2 Automatic evaluation
Human evaluation can be costly and time consuming. Therefore we need an automated means of
evaluating the output of the MT. The fundamental idea is to measure how similar the MT output
is to a human translation. We can then easily run the evaluation on similar versions of a MT
system and find out which one is better.

8

There are a number of heuristic methods which do this, such as BLEU, NIST, TER, Precision
and Recall, and Meteor (Jurafsky et al., 2009:895). One of the most popular metrics nowadays
is the BLEU (Bilingual Evaluation Understudy).

The BLEU takes a MT output sentence and computes the weighted average of the number of N-
grams overlapping with the corresponding human translation:

Tce{Candidates } Tn-gram EC Count(n-gram)
Ec'E{Candidates }T.n-gram'eC' Count(n-gram')

(1.5)

BLEU uses unigrams, bigrams, trigrams and quadrigrams and combines these precisions by
taking their geometric mean (Jurafsky etal. , 2009:897).

BLEU is generally a good choice when evaluating several versions of the same MT architecture.
However, it performs poorly when cross evaluating different architectures. It also focuses too
much on local information and may therefore rank higher than a human evaluator would.

1.2.5 Morphology
A specific issue we wil l address in this thesis is morphology. The motivation follows from the
fact that Czech is a morphologically rich language while English is not3.

Morphology studies the way words are built from smaller units called morphemes. For
example, the word cars consists of two morphemes - car and s. Morphemes can be divided into
two classes - stems and affixes (stem being car in the previous example; -s being an affix). We
can further subdivide affixes into prefixes, suffixes, infixes and circumflexes. Prefixes precede
the stem, suffixes follow the stem, circumflexes do both, and infixes are inserted inside the stem
(Jurafsky etal. , 2009:47).

Morphemes can be combined to create new words. This can happen through inflection,
derivation, compounding and cliticization. Inflection is the combination of a word stem with a
morpheme usually resulting in a word of the same class. The new word usually adds some
syntactic information, for example the word cars is created by inflection from the word car. The
-s suffix tells us it is plural. Derivation is a combination of a word stem and a morpheme,
resulting in a word from a different class. For instance, the noun binahzation is derived from the
adjective binary. Compounding is a combination of multiple word stems together (e.g.
doghouse). Cliticization is a combination of a word stem with a clitic (e.g. I've - the -Ve part is a
clitic).

In this work we are going to address the inflectional morphology. One Czech word can occur in a
corpus in many forms (for example, the English word bowl corresponds to the Czech forms
miska, misky, misce, misku, misko, miskou). Unless we provide some additional information to the

3 More specifically, we speak about inflectional morphology here.

9

system, the individual Czech word forms are treated separately, which can lead to data
sparseness on the side of the Czech corpus.

Still another problem are ambiguous words, which are written identically but have different
meaning. For instance, the word form mnou is both a pronoun in instrumental case meaning
with me and a plural verb in the third person meaning they rub.

One way to work with Czech inflectional morphology is to ignore ambiguity and data
sparseness and give the system a very large corpus so that the probabilistic rules of the
translation and language model infer these rules like any other rules.

Another approach is to use factored models. Instead of training only on the word factor (which
we discussed earlier), we train on additional factors, e.g. on the word lemmas, word class, part-
of-speech etc. Figure 1.5 illustrates this. Now, instead of the word mnou, the input corpus could,
in a simple case, contain mnou\jd\pronoun. The model will be trained on the lemma and word
class as well and during decoding a combination of these three factors will be evaluated.

A more simplistic approach is to use a model which is not factored. Goldwater et al. (2005)
suggests several ways how to improve system performance. Apart from simple lemmatization or
truncation of the Czech corpus they propose adding pseudo words to the Czech corpus that
imitate the way English inflectional morphology works.

Input Output
word Q Q word

lemma Q Q lemma

pa/l-of-speech Q — Q part-of-speech

morphology Q Q morphology

word class Q Q word class

Figure 1.5 Vector of factors (Koehn, 2010)

1.2.5.1 Morphological annotation
A corpus can be annotated either manually or automatically. Manual annotation is time
consuming and for large corpora not practical. Usually, the annotation is done automatically by a
tool. The disadvantage of using an automatic annotator is that it may fail to analyze the word
correctly.

There exist several tools that can analyze the input corpus and annotate each word with
additional morphological information. In this thesis, we wil l be working with the Prague

10

Dependency Treebank 2.0 (Hana et al., 2005), more specifically with its m-layer, and with the
Libma library4 from Stanislav Černý.

To illustrate the output of the Prague Dependency Treebank, look at the morphological analysis
of the word hraniční:

hraniční AAIS4 1A
s t a n d a r d a d j e c t i v e , m a s c u l i n e i n a n i m a t e , s i n g u l a r , a c c u s a t i v e , p o s i t i v e .

There are 15 positions with clearly defined semantics. For example, the first position (A)
indicates the word is an adjective.

The output of the Libma for the word hraniční is similar:

hraniční k2eAgNnSc5dl
a d j e c t i v e , a f f i r m a t i v e , n e u t r a l , s i n g u l a r , v o c a t i v e , p o s i t i v e .

The first two positions (k2) indicate that it is an adjective and so on.

Even this simple demonstration showed that automatic annotation may not be able to determine
some characteristics unambiguously. We don't know if the word is in accusative or vocative and
without context, we cannot even find out. The tool for automatic annotation may or may not take
into account the neighbourhood of the word and disambiguate more or less correctly.

4 Obtained from minerval:/mnt/minerval/nlp/local/share/Ma/libma and documented at
https://merlin.fit.vutbr.cz/nlp-
wiki/index.php/Morfologický_slovník_a_morfologický_analyzátor_pro_češtinu

11

https://merlin.fit.vutbr.cz/nlp-

12

2 Building a Statistical machine
translation system

2.1 Getting a parallel corpus
As indicated in chapter 1, statistical machine translation is based on unsupervised learning
algorithms that need a large number of bilingual texts on input. Such a text is called a corpus
(plural corpora). There are several possible sources of parallel Czech-English texts.

In this work, we wil l primarily work with these parallel Czech-English corpora: Kacenka 2
(Slancarova, 2003), Acquis Communautaire (European Commission, 2009), OpenSubtitles
(Tiedermann, 2007), CzEng 0.7 (Bojar et al., 2007), CzEng 0.9 (Bojar et al., 2009a) and WMT10
(described later).

2.1.1 Kacenka 2
The Kacenka 2 corpus has been created at the Faculty of Arts, Masaryk University and contains
16 bilingual Czech-English fiction books. Unfortunately, the available source5 contains only
paragraph-aligned plain texts so a preparation had to be done before we could use this corpus.

2.1.1.1 Preparation of the Kacenka 2 corpus6

First, all corpus plaintext files have been uniformly converted to utf-8. Next a kacenka.py script
has been created and run on all these files. The script proceeds as follows: First it splits each
book into separate English and Czech files. Then it erases all non-textual elements (such as <i>),
leaving only the <p> element (which assists the hunalign, described below). Then it separates
the paragraphs to sentences, writing each sentence on one line. Next, it cleans the file by erasing
all quotation marks and omitting all sentences that are shorter than 2 or longer than 40 words.
Subsequently, it tokenizes the files and runs the hunalign programme (Hunglish Project, 2009)
to sentence-align the files. We use a bilingual Czech-English dictionary to help hunalign align the
sentences. Then, we split the hunalign output into separate English and Czech files. Finally, we
merge the outputs for each book and obtain two final sentence-aligned files: kacenka.en and
kacenka.cs.

5 Obtained from
minerval:/mnt/minerval/nlp/corpora/parallel/KACHNA2_hotove_texty/HOTOVE&ALIGNED/.
6 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/kacenka_preprocessing/

13

Apart from the hunalign tool, the kacenka.py script makes use of the clean_txt.py script 7 , the
merge.py script 8 and the tokenizer.perl script 9.

The original corpus contains 3 122 305 words. After preparation it contains 1 523 903 Czech
tokens and 1 697 637English tokens (tokens being notably dots, commas and, of course, regular
words). It contains 118 285 sentence pairs.

2.1.2 Acquis Communautaire
The Acquis Communautaire (AC) corpus comprises of legislative texts of the European Union
from the 1950s to now.

The corpus 1 0 contains 234 320 sentence pairs, which is approximately double the size of
Kačenka 2. However, the AC corpus' average sentence length is much greater than that of
Kačenka. The number of Czech and English tokens in the AC is 5 804 785 and 6 752 251,
respectively.

2.1.3 Open Subtitles
The Open Subtitles corpus consists of subtitles from movies. The corpus 1 1 contains 377 623
sentence pairs but only 2 458 480 Czech and 3 086 874 English tokens. This is caused by the
fact that the sentences are very short on average.

2.1.4 CzEng0.7
This is the second largest corpus we wil l use. It has been compiled the ÚFAL (2007) and contains
texts from multiple domains. Its sources are: Acquis Communautaire, Readers' Digest, Project
Syndicate, KDE, GNOME, Kačenka, Navajo User Translations, E-Books, European Constitution
and Samples from European Journal (Bojar, 2007).

We wil l use its pre-processed version 1 2 . The corpus consists of 1 096 940 sentence pairs
(15 292 m C z e c h and 17 868 659 English tokens).

2.1.5 CzEng0.9
CzEng 0.9 is a new release of the CzEng corpus from ÚFAL. Similar to the CzEng 0.7, this corpus
contains texts from various domains (movie subtitles, EU legislation, technical documentation,
fiction, parallel web pages, news, project Navajo). However, its size about seven times bigger - it
contains 8 029 801 sentence pairs. The authors of this corpus say that their intent was to
compose a large corpus, not a balanced corpus (Bojar et al., 2009b). They say that according to
their findings, "larger datasets usually improve the quality of MT, even if the additional data are
out of the translated domain" (Bojar et al., 2009b).

7 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/clean_txt/
8 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/others/
9 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/others/
1 0 Obtained from minerval:/mnt/minerval/nlp/corpora/parallel/Acquis_Communautaire/xschmi01/
1 1 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/corpora/opus/
1 2 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/corpora/czeng/

14

subtitles 44%

10 % techdoc

4 % other
6 % paraweb

13% fiction 18% fiction

(a) Sentences (b) Tokens

Figure 2.1 Proportions of texts in the CzEng 0.9 corpus (Bojar et al., 2009b)

2.1.5.1 Preparation of CzEng 0.9 corpus13

The CzEng 0.9 corpus is freely available for non-commercial purposes (Bojar et al., 2009b).
There are three versions of the corpus - apart from the plaintext version there are two more
versions that contain additional morphological and syntactic information. In this thesis we work
only with the plaintext version.

Apart from extracting and merging all the parts of the CzEng 0.9 it is to note that we also did a
specific cleaning to remove apostrophes and quotation marks from the corpus. The official
statistics and our statistics of the corpus therefore slightly differ in the number of tokens.

This is our working name for the training, development and test sets from the Translation task
of the Fifth Workshop on statistical Machine Translation (European Commission, 2010a). The
training data are a combination of about 45 million words from the Europarl corpus and about
2 million words from the News Commentary corpus (European Commission, 2010b).

In addition to the corpora presented so far, we wil l occasionally make use of other corpora. This
section gives a brief summary.

First, there is the Books 2 corpus 1 4 , composed by Radek Barton (2010) from FIT, Brno
University of Technology. This corpus has similar characteristics as the Kacenka corpus because
it is composed exclusively by fiction books. The only difference is its size - it contains about
8 times more sentences than the Kacenka corpus.

Apart from ordinary corpora, we will also make use of Czech-English dictionaries 1 5 later. We will
work with them in the very same way as with corpora. The Lite Diet corpus is a dictionary
listing almost exclusively word-to-word records. The Full Diet corpus is a dictionary containing
multiword phrases as well.

1 3 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/czeng_preprocessing/
1 4 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/corpora/books2/ and presented at
https://merlin.fit.vutbr.cz/nlp-wiki/index.php/Paranel_CorpusJoint-Multigram_Training_2
1 5 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/hunalign/dict/

2.1.6 WMT10

2.1.7 Other corpora

15

https://merlin.fit.vutbr.cz/nlp-wiki/index.php/Paranel_CorpusJoint-Multigram_Training_2

2.1.8 Unused corpora1 6

Apart from the above mentioned corpora, there are other sources on the Minerval server.

The ČNPK (Czech-German parallel corpus, Peloušková, 2007). This corpus is useless for building
the translation model since we concentrate on Czech-English translation.

Similarly, the PECT directory cannot be utilized for building a translation model because, in fact,
this directory contains a monolingual corpus consisting of extracts from the Lidové Noviny
newspapers. Despite being a good source for building a language model if translating from
English to Czech, it would be first necessary to pre-process the data.

The terminologie directory contains technical texts, mostly in the PDF format These texts could
possibly be used for building a translation model but the data would need to be pre-processed
first This task, however, would exceed the time quota allocated for this master thesis. The clean
up would not be trivial because the corpus also contains words from other languages than Czech
and English (e.g. French). The terminology directory has therefore not been used.

2.2 Analysis of time requirements of word
alignment tools

For word alignment, we wil l be using the MGIZA++ and PGIZA++ tools (Gao, 2009). They are
based on the standard GIZA++ (Och, 2001). Both MGIZA++ and PGIZA++ have been developed
with the idea in mind that the most of the alignment process can run in parallel. More
specifically, the IBM and HMM alignment models used by these tools are an implementation of
the EM algorithm (Dempster et al., 1977; In: Gao et al., 2008), which means that the algorithm
runs for a number of iterations. In each iteration, the best word alignment for each sentence pair
is first computed. Once all the alignments are known, the algorithm normalizes the counts and
proceeds to next iteration. The important thing is that the word alignment, being the most time-
consuming step, can run in parallel.

The MGIZA++ exploits this parallelism by using multithreading on a multiprocessor system. It
spawns several processes which do the alignment in parallel, using a common address space and
a mutual locking mechanism. The disadvantage of the MGIZA++ is its lack of scalability (the top
being the maximum number of CPUs available).

The PGIZA++, on the other hand, runs on a cluster of autonomous computers. The corpus is split
to parts and each node works on its part of the corpus. The machines communicate via the SSH
remote procedure call. The advantage of PGIZA++ is its scalability, while its disadvantage is the
need to transfer big amounts of data using the I/O.

Found at minerval:/mnt/minerval/nlp/corpora/parallel/

16

2.2.1 MGIZA++
First, we had to compile the MGIZA++ application 1 7 .

The MGIZA++ is run in the same way as the standard GIZA++, except that it supports the NCPUS
argument which allows us to define the number of threads which wil l be used for training. If the
NCPUS equals 1 then the MGIZA++ works like the standard GIZA++. Another thing we have to do
after the training is to run a script to merge the aligned parts from individual threads together.

2.2.1.1 Training with MGIZA++
Before the actual training process can be started, we have to run three tools: plain2snt, snt2cooc,
and mkcls.

The plain2snt tool takes the corpus file on input and produces two files - one with a vcb
extension, which contains all the words from the corpus together with a unique number, and
another file with a snt extension, which contains the original corpus with all the words replaced
by their numerical indices specified in the vcb file. This is done to speed up the subsequent
GIZA++ run (so that it can work with numbers, not with strings).

The snt2cooc tool creates a co-occurrence file.

The mkcls tool creates word classes. Running this tool took from several minutes (Kacenka
corpus) to about an hour (CzEng 0.7 corpus).

Now we can run the MGIZA++ tool. There are a number of parameters we can set at the GIZA
start-up; a comprehensive list is available at (Gao, 2009b). We decided to leave the implicit
parameters. Al l we want now is to see the potential speed-up when aligning various corpora
using various numbers of threads. The motivation now is to find out how much time we can
spare when using MGIZA++ over standard GIZA++. Based on this knowledge, we wil l later be
able to quickly train various corpora with various ways of pre-processing and analyze the
quality of the translation with BLEU.

The MGIZA++ with its implicit parameters trains five iterations of IBM model 1, five iterations of
the HMM, five iterations of the IBM model 3, and five iterations of the IBM model 4 (the last two
being denoted as the Viterbi model).

After the MGIZA++ run is completed, a script (merge_alignmentpy) must be run to merge the
alignments from individual threads. The script can be obtained from (Gao, 2009).

The entire training process has been automated with the traingiza.py script (see Appendix A -
Scripts created).

1 7 After several unsuccessful attempts we learnt that MGIZA++ cannot be compiled with GCC 4.3 or greater
(Google Code, 2009). Therefore, the Makefiles had to be rewritten to use the GCC 4.1 compiler. After this
step, the program could be successfully compiled.

17

Unless otherwise stated, the testing has been carried out on the athena3.fitvutbr.cz server.
Currently, this server contains 8 CPUs, each having the speed of 2.6 GHz.

2.2.1.2 MGIZA++ on the Kacenka 2 corpus
First, we wanted to see what the potential speed-up can be when word-aligning a small corpus.
We ran MGIZA++ for the Kacenka 2 corpus for 1, 2, 8 threads. Figure 2.2 illustrates the results.

1 2 3 4 5 6 7 8
Number of threads

Figure 2.2 MGIZA++ run for the Kacenka 2 corpus on Athena3 1 8

Model/threads 1 2 3 4 5 6 7 8
Model 1 56 35 26 22 20 19 17 18

HMM 384 218 186 180 235 245 261 265
Viterbi 1185 627 453 377 355 350 341 323

Total [s] 1625 880 665 579 610 614 619 606
Total [min] 27 15 11 10 10 10 10 10

Speed-up 100% 54% 41% 36% 38% 38% 38% 37%

Table 2.1 MGIZA++ run for the Kacenka 2 corpus on Athena3

As you can see, using up to 4 threads to parallelize the process yields almost a speed-up of 1:3.
However, adding more threads is counterproductive. The reason for this is probably the mutual
locking mechanism used to synchronize the threads (Gao et al., 2008).

The numbers suggest, however, that using more than 4 threads leads to a slight speed-up in the
Viterbi training. Could this speed-up outweigh the increasing cost of the HMM training if we
trained on a larger corpus?

1 8 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/kacenka_ncpus [1-8]/

18

http://athena3.fitvutbr.cz

2.2.1.3 MGIZA++ on the CzEng 0.7 corpus
To find out if more that 4 threads are of any use when training on a large corpus, we repeated
the training from previous section - this time, using the CzEng 0.7 corpus (see Figure 2.3). The
testing for 7 CPUs has been omitted (it would probably bring no new information).

45000 r=

40000 X ^ ^ M o d e l 1 ^ ^ H M M Viterbi ^ ^ T o t a l [s]

35000

¥ 30000 K \

| 25000 ^ \ _

I 20000

15000 ^ " ^ ^ ^ ^

10000 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ A ^ — _ ^ ^

5000 '] ^ = ^ ^ ^ ^ ^ ^ ^ = , , r r ^ ^ ^ ^ * ^ M ^ ^ % =

* * * A A • A
1 2 3 4 5 6 7 8

Number of threads

Figure 2.3 MGIZA++ run for CzEng 0.7 on Athena3 1 9

Model/threads 1 2 3 4 5 6 7 8
Model 1 1011 635 449 379 305 281 260

HMM 7452 4039 3079 2860 2939 3040 3460
Viterbi 30880 16344 8076 6557 5590 5337 5084

Total [s] 39343 21018 11604 9796 8834 8658 8804
Total [min] 656 350 193 163 147 144 147

Speed-up 100% 53% 29% 25% 22% 22% 22%

Table 2.2 MGIZA++ run for CzEng 0.7 on Athena3

As you can see, the overall speed slightly increases even for NCPUS>4, even though we spare
only about 15 minutes. There is, however, another important think to notice. With Kacenka 2 we
didn't get above a speed-up of 1:3, whereas here, we almost get a speed-up of 1:5 for 5 CPUs.

2.2.1.4 MGIZA++ on the Acquis Communautaire corpus
The results for the Acquis Communautaire corpus are similar to the CzEng 0.7 corpus (see
Figure 2.4). Some of the NCPUS counts have not been tested because it would probably yield no
new information.

1 9 The work can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/mgiza_tests/czeng_ncpus[l-8]/

19

1 2 3 4 5 6 7 8
Number of threads

Figure 2.4 MGIZA++ run for the AC corpus on Athena3 2 0

Model/threads 1 2 3 4 5 6 7 8
Model 1 585 366 260 215 166 123

HMM 8705 3659 2648 2180 2089 1868
Viterbi 18883 9194 6244 4842 3731 3496

Total [s] 28173 13219 9152 7237 5986 5487
Total [min] 470 220 153 121 100 91

Speed-up 100% 47% 32% 26% 21% 19%

Table 2.3 MGIZA++ run for the AC corpus on Athena3

One thing to notice here is that the speed-up for 8 threads is a little greater than by the
CzEng 0.7. We suppose this to be due to the fact that the AC corpus average sentence is longer
than that of the CzEng 0.7 corpus.

At this point, we wanted to see the results for AC when run on another server. We used the
Athenal server. The total running time was 432 and 115 minutes for 1 and 4 threads,
respectively. The difference is minor, reflecting solely that the Athenal has slightly more
powerful CPUs (each having 2.8 GHz, while Athena3's CPUs each have 2.6 GHz).

2.2.1.5 MGIZA++ on the OpenSubtitles corpus
The OpenSubtitles corpus demonstrates a similar behaviour as Kacenka in that the increasing
the number of threads becomes counterproductive at a specific point (here for more than 5
threads).

2 0 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/acquis_ncpus [1-8]/

20

1600
1400 - ^ m u u c i X • n l V " V I —viteiui — ^ i u u i i L : >]

1200 |
r^J 1000) f c ^ ^ f r ^
^ 800 * .
E * - —g - — t

600 E ^ ^ ^ ^ S ^ ^ ^ B ^ ^ = ^
•e I •

400
200

1 2 3 4 5 6 7 8
Number of threads

Figure 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena3 2 1

Model/threads 1 2 3 4 5 6 7 8
Model 1 67 56 45 44 36 37 30 27

HMM 282 222 199 181 188 172 243 212
Viterbi 1004 714 593 515 370 416 412 401

Total [s] 1353 992 837 740 594 625 685 640
Total [min] 23 17 14 12 10 10 11 11

Speed-up 100% 73% 62% 55% 44% 46% 51% 47%
Table 2.4 MGIZA++ run for the OpenSubtitles corpus on Athena3

To compare the results, we ran the alignment once again on the Athenal server. The results are
depicted in Figure 2.6.

2 1 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/subtitles_ncpus [1-8]/

21

1600

1400

1200 I ^ ^ ^ w —Model 1 ^ ^ H M M ^ ^ V i t e r b i ^ ^ T o t a l [s]

S, i o oo ^ ^ ^ ^

E 800 ^ ^ ^ ^ = ^ — -
| 600 t—^—^l* j

400

0 1 =

1 2 3 Number of nodes 4

Figure 2.6 MGIZA++ run for the OpenSubtitles corpus on A t h e n a l 2 2

Model/threads 1 2 3 4
Model 1 69 50 41 38

HMM 290 180 148 145
Viterbi 1081 613 455 386

Total [s] 1440 843 644 569
Total [min] 24 14 11 9

Speed-up 100% 59% 45% 40%

Table 2.5 MGIZA++ run for the OpenSubtitles corpus on Athenal

The speed-up for 4 CPUs at Athenal is greater than the speed-up for any number of CPUs at the
Athena3 server. Looking just the speed-up in percentage, we could think that Athenal is
considerably quicker compared to Athena3. However, the OpenSubtitles is a small corpus and
the whole alignment process takes just minutes so it almost does not matter if we choose
Athenal or Athena3 to align this corpus. The lesson here could rather be that the simpler and
shorter the sentences in the corpus are, the less time wil l the threads spend by computing the
individual word alignments and the more often they wil l access the memory to pop another
sentence, potentially blocking other processes wanting more sentences as well.

2.2.1.6 MGIZA++ final notes
During training the MGIZA++ outputs information on standard output and on standard error
output By analyzing the error output, we found that there are usually sentences whose ratio of
its source length and its target length exceeds the allowed ratio (the so called fertility limit,
implicit value being 9). For Kacenka 2, this happened 126 times (about 0.1 % of all sentences).
For the Acquis Communautaire corpus, this problem did not occur. For the CzEng 0.7 corpus,
this problem occurred 19572 times (about 1.7 % of all sentences). For the OpenSubtitles corpus,
this happened 11634 times (about 3 % of all sentences).

2 2 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/subtitles_ncpus [1 -4]_athenal /

22

It seems that the ratio of sentences which exceeded the fertility limit indicates the alignment
quality of the source corpora. By looking into the OpenSubtitles corpus at the specific lines
where the fertility limit has been exceeded, we found that these sentences are completely
misaligned.

2.2.2 PGIZA++
Similar to MGIZA++, PGIZA++ has to be compiled with a GCC of lesser version than 4.3. We
compiled it with GCC 4.1.

The PGIZA++ runs on several machines. One machine acts as a master. This machine connects to
the other machines via the SSH and coordinates the work of other machines. The master
continually checks the work being done by other machines by looking into specific directories
where the other machines put their results. These directories have to be shared by all the
workstations (using NFS or AFS).

The parallelizing is based on idea that we split the corpus into n parts [n being the number of
nodes in the machine pool ready to run PGIZA++) and do the alignment step in each iteration in
parallel. Once all nodes are done with their alignment part, the master takes their work and
normalizes the results. This sequence of alignment and normalization is repeated for each
iteration.

The advantage of PGIZA++ is its scalability (we can use any number of nodes). However, the I/O
can become the bottleneck when the number of child processes is large and also, when the
alignment time is much lower than the normalization time (Gao et al., 2008).

2.2.2.1 Training with PGIZA++
The training is run by the train_ega.sh script (available at Gao, 2009). This script first runs the
snt2plain, plain2snt, and mkcls tools, after which the training itself is launched.

We tested the PGIZA++ performance on these servers: athena[l|2|3], minerval , pcnlp[3|4|5|6].
The athena[l|2] server each offers 4x2.8 GHz, the athena3 has 8 CPUs, each having 2.6 GHz. The
minerval server has 4x2.33 GHz. The pcnlp[3|4|5|6] server each has 2x2.66 GHz.

Table 2.6 gives an overview of the nodes used for the testing.

Nodes Master Other nodes
2 Athena2 Pcnlp4
4 Athena2 Pcnlp4 Pcnlp5 Pcnlp6
6 Athena2 Athenal Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6
8 Athena2 Athenal Athena3 Minerval Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6

Table 2.6 Computers used for testing PGIZA++

23

2.2.2.2 PGIZA++ on the Kacenka 2 corpus
Kacenka 2 is a very small corpus and after reading the preliminary notes on PGIZA++ it should
be clear that this corpus is not suitable for PGIZA++. To prove this, we ran the alignment (see
Figure 2.7).

2 4 6 Number of nodes 8

Figure 2.7 PGIZA++ run for the Kacenka 2 corpus 2 3

Model/nodes 2 4 6 8
Model 1 343 339 366 369

HMM 434 319 303 296
Viterbi 651 485 579 493

Total [s] 1428 1143 1248 1158
Total [min] 24 19 21 19

Speed-up 88% 70% 77% 71%

Table 2.7 PGIZA++ run for the Kacenka 2 corpus

You can check for yourself that the speed is worse compared to MGIZA++. What is more, using
more than 4 nodes takes more time than using just 2 or 4 nodes.

2.2.2.3 PGIZA++ on the CzEng 0.7 corpus
We attempted to train the CzEng 0.7 corpus on PGIZA++, first with 4 nodes and then with 6
nodes but each time the training failed because one machine failed. When we switched the
machines then another machine failed so the problem is not the server selected. Looking into the
log files we found the following error:

I n s o u r c e p o r t i o n o f t h e t r a i n i n g c o r p u s , o n l y 1 u n i q u e t o k e n s a p p e a r e d
I n t a r g e t p o r t i o n o f t h e t r a i n i n g c o r p u s , o n l y 165370 u n i q u e t o k e n s a p p e a r e d

2 3 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/pgiza_tests/kacenka_nodes [2141618]/

24

It seems that there is a problem with reading the data. To further investigate on the cause of this
error, we repeated the test for the Books 2 corpus. We ran the test on 4 nodes but again, the
same error caused a premature termination of the training process. The server and the iteration
number differed from the server and iteration number where the error occurred for CzEng 0.7.

To find the cause for this error, we would have to examine thoroughly how the bash scripts used
for the training process work. Unfortunately, due to time constraints, we had to leave this
problem unresolved.

2.2.2.4 PGIZA++ on the Acquis Communautaire corpus
Does the PGIZA++ bring a speed-up when given the AC on input? We ran PGIZA++ for 2, 4, 6, and
8 nodes and found that ityields better results than the MGIZA++ indeed (see Figure 2.8).

10000 i

8000

¥6000
yi ^^^^^
I 4 0 0 0 — A .
DC

2000 ^ ^ ^ ^ ^

o T =

2 4 6 Number of nodes &

Figure 2.8 PGIZA++ run for the AC corpus 2 4

Model/threads 2 4 6 8
Model 1 929 798 772 797

HMM 3088 1689 1288 1092
Viterbi 5183 2716 1967 1620

Total [s] 9200 5203 4027 3509
Total [min] 153 87 67 58

Speed-up 33% 18% 14% 12%

Table 2.8 PGIZA++ run for the AC corpus

This is the first time (and, alas, the last time too) we see the PGIZA++ outperform the MGIZA++.
We can tentatively imply that if we have a corpus of the size of AC or greater we should start
considering to choose PGIZA++ over MGIZA++. Of course, we would have to support this

2 4 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/pgiza_tests/acquis_nodes [2141618]/

25

conjecture by other tests because it may be the high average sentence length rather than the
overall size of the AC corpus that gives the PGIZA++ advantage over the MGIZA++.

2.2.2.5 PGIZA++ on the OpenSubtitles corpus
To make the testing complete, we also ran PGIZA++ on the OpenSubtitles corpus (see Figure
2.9). The results are not dissimilar to the Kacenka's results. What is worth noting is that the
speed-up in percentages is exactly the same compared to PGIZA++ run on Kacenka. The Viterbi
alignment, for some reason, takes consistently more time on 6 nodes rather than on 4 or 8 nodes
for small corpora.

1400

Number of nodes ^

Figure 2.9 PGIZA++ run for the OpenSubtitles corpus 2 5

Model/nodes 2 4 6 8
Model 1 291 221 229 236

HMM 292 267 272 255
Viterbi 608 464 541 475

Total [s] 1191 952 1042 966
Total [min] 20 16 17 16

Speed-up 88% 70% 77% 71%

Table 2.9 PGIZA++ run for the OpenSubtitles corpus

2.2.3 Should we use MGIZA++ or PGIZA++?
To sum the above sections up, it is highly advisable to use MGIZA++ on a small corpus like
Kacenka or OpenSubtitles (Figure 2.10 and Figure 2.11). On the other hand, when training on a
larger corpus like Acquis Communautaire, the PGIZA++ seems a better choice (Figure 2.12).

When using MGIZA++, we found that in most cases it does not really matter if we choose
Athena3 with its 8 CPUs or Athenal with its 4 CPUs. The training time difference between
Athena3 (8 CPUs) and Athenal (4 CPUs) is maximally tens of minutes for the corpora tested.

2 5 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/pgiza_tests/subtitles_nodes [2141618]/

26

2000

Number of nodes

Figure 2.10 MGIZA++/PGIZA++ comparison for the Kačenka corpus

0 I 1 1 1 1

1 2 4 6 Number of nodes8

Figure 2.11 MGIZA++/PGIZA++ comparison for the OpenSubtitles corpus

Number of nodes

Figure 2.12 MGIZA++/PGIZA++ comparison for the AC corpus

2.3 Assembling a machine translation system
In chapter 1 we outlined the core parts that a statistical machine translation system consists of -
parallel corpora, language model, translation model, decoder and evaluator. So far, we have
thoroughly analyzed how to create word alignment using the GIZA++ tool. We have also seen
that GIZA++ requires other programmes to pre-process the data, such as mkcls, developed by
Franz Josef Och. If we investigate further we learn that Och implemented extensions for GIZA++,
enhancing the capabilities of the older GIZA, which in turn was developed in 1999 by a team at
Johns-Hopkins University (Och, 2001). Later, Qin Gao took the GIZA++ and added support for
multithreading.

The idea we are trying to convey is that different parts of a machine translation system are being
developed by different groups of people and that it is quite common to enhance the capabilities
of existing programmes, rather than implement them anew from scratch.

A similar approach is usually taken when building the entire machine translation system -
existing blocks are utilized and integrated. Popular machine translation systems, such as Moses
(Euromatrix Project, 2008a), Joshua (Callison-Burch, 2009) or Cunei (Phillips etal. , 2009) follow
such a modular architecture.

In this thesis, we decided to base our following work on the Moses translation system. We did
this because the system is open source, well documented and there is a lot of active development
going on. Moreover, Philipp Koehn, under whose guidance the project is being developed, claims
thatthe system is "the de facto benchmark for research in the field" (2010).

2.3.1 Architecture of the Moses translation system
The first thing to notice is that the term Moses is used both for the entire statistical machine
translation system as well as for the decoder, which is only a part of the system. In the following
text, we wil l either say Moses system or Moses decoder to make the distinction clear.

To start with, inspect Figure 2.13 to see the top-level architecture of the Moses system. Note that
boxes with red border indicate thatthe part has not been developed yet (as of May 2010).

As you can see, the input to the system can either be a plain text, XML, a confusion network or a
lattice. We will be using the first option because our corpora are in plain text 2 6 . Another thing to
mention here is that we wil l be doing phrase-based translation that is not factored. That means
that we wil l provide no analytical or morphological information (factor) in the input corpus
except for the literal words.

Next in the diagram we can see the translation model. As we already mentioned in section
1.2.2, the main part of the translation model is the phrase-translation table. Moses creates this
table from the output of GIZA++. It is quite common that the phrase-translation table is very
large (up to several tens of gigabytes) to fit into memory, in which case we may need to load the

2 6 The remaining input options are used for hierarchical syntax-based tree models and/or for models that
integrate machine translation with other upstream speech processing tools, such as speech recognizers.

28

table from disk. We wil l be loading the phrase-translation table both from memory and from
hard disk, based on its size.

CaniusL-Dn
Network

In
Memory

Stack
Beam

I>CCQdillR

On
over.

Corpus

Cute
Pruning

Chart
Paise-

DccodLri£

Depth-
First

Decoding

randIA]

Search
Graph

Forced
Decoding

Moses
Faühack

Input

Translation
Model

Decoding
Algorithm

Lan^ua^e
Model

Output

Figure 2.13 Modular architecture of the Moses system (Koehn, 2010)

For the decoding, we wil l be using the main version of the Moses decoder which is based on
stack beam decoding 2 7 .

The language model can be based on several third party toolkits - SRILM, irstLM and randLM.
In this thesis we work exclusively with the SRILM toolkit

The output of the system is usually the translated plain text. However, if we want to peak into
the internal workings of the decoder, we may choose the N-Best or Search Graph options. In the
first case we learn what other hypotheses (output sentences) were evaluated (but eventually
received lower score that the winning hypothesis). In the latter case, we get a dump of the
search graph.

2.3.2 Methodology of training and testing with the Moses
system

In this section we dig deeper into the Moses system. We introduce the moses.py 2 8 script that we
created for training and evaluating various versions of the system.

The moses.py script has been created with the objective to compare performance of various
modifications of the Moses system. We wil l run the system many times, each time modifying one

2 7 Cube pruning is another search algorithm that is "faster than the traditional search at comparable levels
of search error" (Euromatrix Project, 2010b). Chart Parse-Decoding is used for tree-based decoding.
2 8 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/

29

input variable (independent variable), and then evaluate the performance measured in BLEU
(dependent variable). We want to answer these questions:

a) How does the size of the training corpus influence the quality of the translation?
b) Wil l the quality of the translation increase if we incorporate a bilingual dictionary into

the training data?
c) How wil l the incorporation of an extra monolingual corpus into the language model

affect translation quality?
d) What effects will have a morphological pre-processing of the Czech part of the corpus?

2.3.2.1 Preparing the corpora
The corpora we wil l use 2 9 have first to be split up into three parts - the training, development
and test sets. The division follows the ratio 90:5:5. We split the corpus based on the count of the
sentences. In case we combine two corpora to train either the translation or language model, the
training data is a concatenation of the training sets of both corpora, while the development and
test sets are taken only from one of the corpora (the one we are interested to analyze primarily).

Before we start training, we first tokenize, filter, clean, pre-process and lowercase the input
corpus 3 0 . By filtering we mean discarding sentences that are longer than 40 words 3 1 . By cleaning
we mean running a script 3 2 that erases quotation marks and apostrophes that indicate direct
speech (clitics remain unaffected). By pre-processing we mean converting the words in the input
corpus into their lemmas or other ways of adding or replacing words in the corpus with the
intent to convey some extra morphological information (see section 2.3.2.2 for more details).
Please note that we still work with unfactored systems. Finally, lowercasing the input corpus is
required.

2.3.2.2 Morphological pre-processing
As already mentioned in section 1.2.5.1, we wil l be using both the Prague Dependency Treebank
(PDT) as well as the Libma library to pre-process the Czech part of the corpus. We base our
work on the findings of Goldwater et al. (2005). We wil l test three scenarios:

a) We wil l replace all words with their lemmas.
b) We wil l do the same as in point a) but we also add some extra pseudo words into the

corpus.
c) We will do the same as in point b) but only for words that appear sparsely in the input

corpus. Words that occur often in the corpus will be completely unaffected.

In the first scenario, we lemmatize all words. This wil l clearly discard some information but at
the same time, it should ameliorate the effects of data sparseness. To give an example, the
sentence "Jen ať tam jde děda." ("Let the old man go.") wil l be converted to "Jen ať tam jít děda."

2 9 Stored jointly in the minerval:/mnt/minerval/nlp/projects/mt/corpora/ directory.
3 0 This step corresponds to step 1 in the moses.py script.
3 1 More specifically, only training data used for building the translation model are filtered. This is because
GIZA++ run takes a long time on unfiltered data. Also note that development and test data are not filtered.
3 2 Located at minerval:/mnt/minerval/nlp/projects/mt/tools/myown/corpora preparation/myclean.py

30

In the second scenario, apart from lemmatization we do two more modifications: In case it is a
noun, we indicate whether it is singular or plural number (e.g., house wil l correspond to dům+S,
while houses wil l correspond to dům+P). In case the word is a verb, we indicate the person and
tense. For instance, the sentence "Jen ať tam jde děda. " w i l l be converted to "Jen ať tarn PER_3
jít+TEN_P děda." We indicate that the verb jit (go) is in the present tense (TEN_P) and in the
third person (PER_3). Also note that the person indication is a separate word so as to imitate the
pronoun (he, she, it) that is often omitted in the Czech language. In contrast, the tense indication
(TEN_P) is concatenated with the base form jit (go) so as to imitate the (quite simple) inflectional
morphology of English verbs (go vs. goes).

In the third scenario, we apply the modifications described in the second scenario but this time
only for words that occur in the corpus with a frequency lower than a defined threshold. We will
work with the threshold of 5 0. It follows that before the actual pre-processing the corpus must
be analyzed, frequent words extracted and stored somewhere 3 3 . Later, we wil l have to cross
check each word, determine if it is a frequent word or a sparse word and either carry out
scenario 2 or leave the original word form unaltered.

Automatic morphological annotation is not as unproblematic as it may seem. We already
touched upon the problem of ambiguity of word forms and different quality of automatic
annotators in section 1.2.5.1. The Libma library, for example, does not analyze the
neighbourhood of the word because you can give it only one word form on input, not the whole
sentence. If there are more lemmas or more options of part-of-speech tags for a given lemma, it
wil l return all of them. The PDT, on the other hand, takes whole sentences on input and it does
analyze the neighbourhood of the word. In case there are more lemmas corresponding to a word
form, it wil l probably return the correct one as the first lemma and also inform you about the
alternative lemmas.

How should we go about when more than one lemma is found? After some preliminary testing
(on the same corpora which we will be using for main testing) we discovered that it is better to
do the lemmatization only in case an unambiguous lemma is found by the morphological
analyzer. If there are several matches of the same lemma but multiple parts of speech
returned 3 4 , we wil l do the morphological pre-processing with the first part of speech returned.

2.3.2.3 Building the language and translation model35

The language model wil l be created with the SRILM toolkit 3 6 from a tokenized and lowercased
training set of the given corpus or combination of more corpora. We wil l create n-grams up to
order 5. We wil l use interpolation and Kneser-Ney discounting.

The training of the translation model takes place in several steps 3 7. First of all, we pre-process
the corpus with the plain2snt and mkcls tools 3 8 . Then we run MGIZA++ to get word alignments3 9.

3 3 This is done by the frequent_words.py script.
3 4 Refer to 1.2.5.1 where we did not know for sure if the word form is in accusative or vocative.
3 5 These steps correspond to steps 2 and 3 in the created moses.py script.
3 6 More specifically, we will use the ngram-count executable.

31

Based on our analysis of MGIZA++, we decided to run MGIZA++ in 4 threads. Moreover, we need
to run MGIZA++ twice (both in the Czech-English and English-Czech direction; refer to 1.2.2.1).
In order to spare time, we wil l run both directions in parallel. In this way, there wil l be up to 8
threads running at a moment, computing word alignments.

Once the MGIZA++ runs finish, we compute a final word alignment taking into account the two
alignments from both runs of MGIZA++. There are several options how to combine the two
alignments. We will use the default heuristic called grow-diag-final40. It starts with the
intersection of the two alignments and then adds additional alignment points (Koehn, 2010).
Figure 2.14 shows an example of the alignment

0-0 1-1 2-2 3-3 3-4 4-4 5-5 6-6 6-7 7-8
tři p r s t e n y pro krále elfů pod nebem ,

t h r e e r i n g s f o r the e l v e n - k i n g s under t h e sky ,

Figure 2.14 Example of word alignment

Having the word alignment of the entire corpus, the Moses system uses it to extract a lexical
translation table 4 1 . An extract from an example translation table is shown in Figure 2.15.

k i n g král 0.5250000
the král 0.1750000
o f král 0.0500000

n a r g o t h r o n d král 0.0250000
e l v e n - k i n g král 0.0250000
e l f - k i n g s král 0.0250000

Figure 2.15 Example of a translation table

Next, all phrases are extracted and dumped into a fi le 4 2 (see extract of this file in Figure 2.16).

krále elfů ||| t h e e l v e n - k i n g s ||| 0-0 0-1 1-1
krále elfů pod ||| t h e e l v e n - k i n g s under ||| 0-0 0-1 1-1 2-2
pro krále elfů ||| f o r t h e e l v e n - k i n g s ||| 0-0 1-1 1-2 2-2

pro krále elfů pod ||| f o r t h e e l v e n - k i n g s under ||| 0-0 1-1 1-2 2-2 3-3

Figure 2.16 Example of extracted phrases

3 7 The entire training is done by the train-factored-phrase-model.perl script, which is part of the Moses
translation system.
3 8 Already explained in section 2.2.1.1.
3 9 Please note that we will not be using PGIZA++. Although PGIZA++ proved to perform better on larger
corpora than MGIZA++ (see section 2.2.2.4), the Moses system provides considerably easier integration
with MGIZA++. Moreover, MGIZA++ has lower synchronization overhead than PGIZA++.
4 0 The output of this step can be found in the aligned.grow-diag-final-and files located at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_*/model/ directories.
4 1 These files are named lex.e2f and lex.f2e and are in the model directories as well.
4 2 More specifically, there are three files under the implicit settings - extractgz, extract.inv.gz, and
extracto.gz. The first two are the base and inverse version of what is shown in Figure 2.16, while the third
is created when a lexicalized reordering model is trained.

32

http://extract.inv.gz

In the next step, all phrases are scored (see Figure 2.17). There are five scores in the file: phrase
translation probability cp(f\e), lexical weighting lex(f\e), phrase translation probability^
lexical weighting lex(e\f) and phrase penally.

králové 1 1 1 k i n g s 1 1 1 0 416667 0 228571 1 0 727273 2 718
králů 1 1 1 k i n g s 1 1 1 0 166667 0 228571 0 666667 0 470588 2 718
králi 1 1 1 k i n g s 1 1 1 0 0833333 0 0571429 0 333333 0 153846 2 718

Figure 2.17 Example of a scored phrase table

The last step is to build the reordering model. We will use the msd-bidirectional-fe option to
build the reordering model. This reordering is an addition to the standard reordering model
which gives cost linear to the reordering distance (recall the distortion probability from section
1.2.2).

Finally, Moses 4 3 stores the information about the models created so far into the moses.ini file. It
contains information on where the models are stored and their parameters. Later, this file is
used by the decoder when doing the actual translation.

2.3.2.4 Tuning and testing44

If we look into the abovementioned moses.ini file we wil l see that it contains default weights that
the decoder uses when evaluating the most probable translation of a given sentence. Figure 2.18
displays an extract from a simple moses.ini file.

d i s t o r t i o n (r e o r d e r i n g) w e i g h t
[weight-d]
1

language model w e i g h t s
[w e i g h t - 1]
1

t r a n s l a t i o n model w e i g h t s
[w e i g h t - t]
1

word p e n a l t y
[weight-w]
-1

Figure 2.18 Extract from a simple moses.ini file 4 5

For each sentence, the decoder has to evaluate the probability:

4 3 Specifically, the train-factored-phrase-model.perl script.
4 4 Tuning and testing corresponds to steps 4,5,6,7 in the moses.py script.
4 5 The distortion and translation weights are actually vectors (implicitly of orders 7 and 5, respectively)
but our intent is here to keep the example simple. However, if you inspected the weights thoroughly, you
would learn that 5 translation weights correspond to the five weights for each phrase listed in figure 2.15.

33

p(e\f) = 0 (/ | e) w e ' 5 / l t * X LMwei3htLM x D(e,f)wei3hta x W{e)wei9htw

(2.1)

Now if you recall equations 1.2 and 1.3, you will see that there is almost nothing new in equation
2.1. We just added a fourth member W(e) which is the word penally that ensures that the
translations do not get too long or too short Then we raised each member of the product to a
weight which we found in the moses.ini configuration file.

It should now be clear what the purpose of tuning is. We give the decoder a set of previously
unseen sentence pairs (the development set) and it iteratively adjusts the weights in the
moses.ini file so that the resulting BLEU score of the development set is maximal. Whether it will
eventually improve the BLEU score of the testing set, that remains a question.

Next, we run the decoder on the test set On input, the decoder requires the moses.ini
configuration file and the text to be translated. The decoder then loads the language model,
phrase table and reordering table into memory and starts translating. Often, however, the
models are too big to fit into memory so it is usual to filter the models first 4 6 . Filtering means
that the model wil l be reduced to contain only phrases that occur in the test s e t 4 7

2.3.2.5 Evaluation48

The evaluation was performed with the multi-bleu.perl script on the output of the decoder and
the reference translation. Both these texts are still lowercased at the moment of evaluation.

4 6 Using the filter-model-given-input.pl script, which is part of the Moses system package.
4 7 During our following experiments, the filtering alone was not sufficient - the decoder still needed more
than 4 GB memory and once this memory threshold was exceeded, it received SIGABRT and the
translating could not start. This happened despite the fact that the Athena 3 server hosts 64 GB memory.
After an investigation we attempted to compile the 64 bit version of the Moses decoder but the
compilation failed. Finally, we found out that the filtered model can be binarized with the script filter-and-
binarize-model-given-input.pl. After this step, the decoder worked within the limits of the 4 GB memory
for all our experiments.
4 8 Evaluation is performed in step 9 of the moses.py script.

34

http://filter-model-given-input.pl
http://binarize-model-given-input.pl

3 Analysis of the created SMT system

In this final chapter we wil l first analyze how various corpora characteristics and the degree of
morphological pre-processing influence the resulting BLEU. Each time, we start with a base
system and change one variable to see the effects on BLEU. Once we gain some insight, we
proceed to train a final system which is inspired by the Translation Task from WMT 10
(European Commission, 2010a).

3.1 Analysis of individual factors
3.1.1 Size of the corpus
In this section, we wil l analyze the relation between corpus size and the resulting BLEU score.
First, we wil l work with the Kacenka corpus. We start with evaluating the base BLEU for the
Kacenka corpus, which is the BLEU we get when we train both the language and translation
model from the training data of the corpus. We do no morphological pre-processing and no
tuning 4 9 .

Next we successively truncate the training set to the first 10 %, 20 %, 30 %, 90 % sentences
and repeat the steps executed for the base BLEU (both language and translation model wil l be
trained on only a part of the training data). The testing set will be identical for all 10
measurements (it wil l not be truncated). The development set wil l not be used at all.

Figure 3.1 shows the results. We can see that the relation is roughly linear, with a slight skew
from the trend in the area around 50 %.

Now we repeat this experiment for the Acquis corpus. Recall that Acquis has about twice as
many sentences as Kacenka and the average sentence is also twice as long compared to Kacenka.
However, many of the sentences in Acquis wil l be filtered out in the first step. Table 3.1 and
Table 3.2 display the different characteristics of both corpora.

4 9 The work can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_base/

35

% used BLEU Sentences Unique Unique EN
CS tokens tokens

10% 9,20 10290 24632 10660
20% 10,73 20644 38330 15024
30% 11,99 30919 48641 18161
40% 12,88 41141 57004 20622
50% 12,93 51422 65759 23990
60% 13,74 61559 74613 27295
70% 14,81 71798 82442 30248
80% 15,52 82136 88426 32411
90% 16,54 92550 93728 34267

100% 17,71 102944 97714 35603
Table 3.1 Relat ion between corpus size and B L E U (K a c e n k a) 5 0

19,00 - i

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent of Kacenka corpus used

Figure 3.1 Relat ion between the size of the Kacenka corpus and the result ing B L E U 5 1

% used BLEU Sentences Unique
CS tokens

Unique EN
tokens

10% 34,62 14816 13011 7402
20% 37,44 30619 20832 11381
30% 39,39 45975 26974 14306
40% 41,73 61233 31195 16168
50% 43,90 76192 35307 18318
60% 45,00 90815 39223 20306
70% 46,17 105985 42178 21694
80% 47,14 120769 45325 23290
90% 48,09 136082 48101 24844

100% 48,89 150770 50312 25893
Table 3.2 Relat ion between corpus size and B L E U (A c q u i s) 5 2

5 0 These numbers come from the training sets after filtering, cleaning and tokenization.
5 1 The relevant work can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_part_xx where xx is 10, 20,
30, 40, 50, 60, 70, 80, and 90.

36

50,00

32,00 -
30,00 H 1 1 1 1 1 1 1 1 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent of corpus used

Figure 3.2 Relation between the size of the Acquis corpus and the resulting B L E U 5 3

Figure 3.2 shows the results for the Acquis corpus. We can see that the relation is linear as well
but the slope is sharper, especially in the first 50 %. The resulting BLEU is considerably higher
than the BLEU for Kacenka. This agrees with a simple intuition that fiction uses much richer
language and the translation is more difficult. The numbers of token types confirm this. The
Kacenka corpus has almost 100000 unique Czech tokens, while Acquis has only about 50000.

3.1.2 Additional training data
In this section, we first investigate if the incorporation of a bilingual Czech-English dictionary
into the training data improves the BLEU. We do this both for the Lite Diet corpus and Full Diet
corpora. The training data is simply a concatenation of both the Kacenka's training set and the
respective dictionary. Figure 3.3 shows the results.

As you can see, including a simple dictionary resulted in BLEU increase of 0.3 %. It may be that
the testing set contains previously unseen words (the language of fiction is rich).

Again, we wil l run this test for the Acquis corpus as well (see Figure 3.4). Surprisingly, the effects
are quite different - Acquis benefitted from Full Diet containing additional technical phrases,
while the effects of Lite Diet are close to none.

5 2 These numbers come from the training sets after filtering, cleaning and tokenization.
5 3 The relevant work can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_acquis_part_xx where xx is 10,20,
30, 40, 50, 60, 70, 80, and 90.

37

Kačenka Kačenka + Lite Kačenka + Full
Diet Diet

Figure 3.3 Adding a dictionary into the training data of the Kacenka corpus 5 4

LU

49,15
49,10
49,05
49,00
48,95
48,90
48,85
48,80
48,75

49.13

48,89 48,90 I • II I II II I I I I I
^ ^ ^ ^ ^ ^ ^ ^ ^ ^

Acquis Acquis + Lite Acquis + Full
Diet Diet

Figure 3.4 Adding a dictionary into the training data of the Acquis corpus 5 5

Now we focus on the training data for the language model. We start with the base scenario in
which the language model is trained on the Kacenka training set Next, we train the language
model on different corpora - first, the Books 2 corpus and then the CzEng 0.7 corpus. In these
two scenarios, the Kacenka corpus is not used to build the language model at all. Next, we repeat
the same two scenarios but this time, we add the Kacenka corpus so that we wil l train on
Kacenka + Books 2 and then on Kacenka + CzEng 0.7. The results are shown in Figure 3.5.

5 4 The working directories are to be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_dict_[lite|full]/
5 5 The work can be found at
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_acquis_dict_[lite | full]/

38

Kačenka Books 2 only CzEng0.7 Kačenka + Kačenka+
only only Books 2 CzEng0.7

Figure 3.5 Training language model on various corpora combinations 5 6

We can clearly see that eliminating the Kacenka corpus from the language model training data is
counterproductive. However, we can see that working with smaller Books 2 corpus still yields
better results than the CzEng 0.7 corpus. The genre of the corpus is more important than its size.

The last two columns convey a similar message: it is better to combine Kacenka with a fiction
corpus, not the multi-domain CzEng 0.7 (the BLEU in this last case still drops slightly).

3.1.3 Morphological pre-processing
As already indicated in section 2.3.2.2, we wil l test three scenarios of morphological pre
processing each time using both the Libma l ibrary 5 7 and the Prague Dependency Treebank 5 8 .

Both Libma and PDT are exploited through a Python interface5 9. The interface for Libma is more
sophisticated and allows us to set up several parameters. We wil l set the case sensitivity to 0 and
lemmatization level 6 0 to 111. These quite restrictive settings should have the effect that we do

5 6 The work for the five scenarios can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/ in the following directories:
work_kacenka_base, work_kacenka_lm_books2, work_kacenka_lm_czengl,
work_kacenka_lm_books2_kacenka, and work_kacenka_lm_czengl_kacenka
5 7 The pre-processing is done by two our scripts - morphology_ma.py and morphology_ma_env.py
5 8 The pre-processing is done by the morphology_pdt.py script.
5 9 Libma through minerval:/mnt/minerval/nlp/projects/mt/tools/ma/libma/pylibma/. PDT through
minerval:/mnt/minerval/nip/local/lib/python2.5/site-packages/.
6 0 The SetLemmatizationfJ method.

39

not unnecessarily discard much information 6 1 . The PDT Python interface does not allow us to set
any level of lemmatization 6 2 .

Let's see the results (Figure 3.6).

Figure 3.6 Morphological pre-processing of the Kacenka corpus 6 3

The results of the first two scenarios are rather disappointing - the BLEU drops for both Libma
and PDT. However, the third scenario does improve the BLEU, in the best case from 17.71 to
18.22. We can also see that the Libma library performs better in all three scenarios. But why? Let
us see the extent to which the morphological pre-processing reduces the number of unique
tokens in the Czech portion of the corpus (Figure 3.7).

6 1 For example, nedobrý (not good) will not be stripped to dobrý (good). Nejkrásnější (most beautiful) will
not be stripped to krásný (beautiful). Generally, negation, superlatives, and other prefixes won't get lost.
6 2 In retrospect, we discovered that the PDT's positional tags 10 (grade) and 11 (negation) could possibly
be used in an analogous way to the Libma's SetLemmatizationfJ method. However, further tests would
have to be run to confirm whether PDT's performance would exceed Libma's performance if these tags
were exploited.
6 3 The relevant working directories can be found at
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_kacenka_[libma|pdt] [11213]/

40

c
CD
O

CD
M

U
CD
3
O"
'c
3

CD

120000

100000
97714

J*
J?

62410 63572
50353 54636 56048

• M i l l
3

V5?

c2-
«5°

Figure 3.7 Number of unique Czech tokens in the training set of Kacenka
after morphological pre-processing

We can see that the Libma library is more conservative when doing lemmatization. In the pre-
processed corpus, there are several thousand lemmas more for each scenario compared to the
PDT pre-processing. It may be that the PDT drops too much information when doing the
lemmatization.

We wil l run the morphological pre-processing for the Acquis corpus as well to see if there is a
difference. Figure 3.8 shows the resulting BLEU under individual scenarios. Figure 3.9 displays
the degree of unique tokens reduction.

49,60
49,40
49,20

3 49,00
^ 48,80
m 48,60

48,40
48,20
48,00

49,36

Figure 3.8 Morphological pre-processing of the Acquis corpus 6 4

6 4 The relevant working directories can be found at
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_acquis_ [libma | pdt] [11213]/

41

c
CD

u
tu
3

'c
3

CD

E
3

31016 3 4 5 9 7 ^ 3251* 34*64^
i i u i b 2 8 4 2 0

I I I I I I
\

^° ^° ^
0 0 c<> c.O

\ \ \

q<y <^ <̂<y

'b

Figure 3.9 Number of unique Czech tokens in the training set of Acquis
after morphological pre-processing

From the results we can see that they are not dissimilar from the Kacenka's results. The only
thing to observe is that PDT performed better for the third scenario. Al l in all, the best BLEU
increase is about 0.5 % for both Kacenka and Acquis.

Now the question is whether morphological pre-processing would have greater impact if we had
fewer training data (smaller corpus). We repeated all the six scenarios for both Kacenka and
Acquis but this time taking only 10 % and 50 % of the respective corpus. Let's see the results
(Figure 3.10 and Figure 3.11).

$0 x<?

4?

°? \ t *
P xo ;sO -so

<F <?
\ \ \

<$y <$y <fy

1100%
I 50%
10%

Figure 3.10 Morphological pre-processing of parts of the Kacenka corpus 6 5

6 5 The relevant working directories can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_part_[10|50]_[libma|pdt][
1|2|3]/

42

60,00

Figure 3.11 Morphological pre-processing of parts of the Acquis corpus 6 6

Looking at the graphs, the correlation between corpus size and the effectiveness of
morphological pre-processing may not be obvious at first glance. Let's look at the corresponding
tables (Table 3.3 and Table 3.4).

Scenario /
corpus part

100% 50% 10%

Sentences 102944 51422 10290
No pre-processing 17,71 12,93 9,20

Libma scenario 1 16,80 12,36 9,14
Libma scenario 2 17,44 13,30 9,70
Libma scenario 3 18,22 13,42 9,79

PDT scenario 1 16,10 12,13 9,25
PDT scenario 2 17,20 13,05 9,67
PDT scenario 3 18,09 13,57 10,01

Max increase
(% BLEU)

0,51 0,64 0,81

Table 3.3 Morphological pre-processing of parts of the Kacenka corpus

6 6 The relevant working directories can be found at
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_acquis_part_[l 015 0]_[libma| pdt] [11
213]/

43

Scenario /
corpus part

100% 50% 10%

Sentences 150770 76192 14816
No pre-processing 48,89 43,90 34,62

Libma scenario 1 48,86 44,02 35,04
Libma scenario 2 48,99 44,38 35,30
Libma scenario 3 49,27 44,60 35,22

PDT scenario 1 48,58 43,75 34,89
PDT scenario 2 48,90 44,16 35,52
PDT scenario 3 49,36 44,38 35,42

Max increase
(% BLEU) 0,47 0,70 0,90

Table 3.4 Morphological pre-processing of parts of the Acquis corpus

Indeed, we can see that corpus size is in indirect proportion to the significance of morphological
pre-processing. Moreover, we see that Acquis benefits a bit more from the pre-processing (if we
subtract the effects of the fact that Acquis has more sentences).

3.1.4 Combination of individual factors
Now that we have researched several factors that increase the BLEU score, we proceed to build a
system that combines the best factors together. We will take the Kacenka corpus along with a
dictionary, pre-process it with Libma according to scenario 3 and use it to train the translation
model. Then we take the combination of Kacenka + Books 2 corpora to train the language model.
Let's see the final BLEU in Figure 3.12.

Figure 3.12 Final system combination 6 7

We raised the BLEU from 17.71 (base system) to 19.56 (system combination).

6 7 The relevant working directory for the combination system can be found at
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_best/

44

Let's now see the most important thing - the actual translations! After all, BLEU is only an
automatic tool to give as an idea of the system performance. But do the sentences read fluently
and are they of any use at all? See Table 3.5.

Input Czech sentence Output English sentence Reference English sentence
1 Na to bych moc nespoléhal. He was not relying on it. Shouldn't build on it if 1 were

you.
2 Pablo nás tu nechal hnít v

nečinnosti.
Pablo left us rot in idleness. Pablo has rotted us here with

inaction.
3 Přišel Anselmo se sekyrou. Anselmo came the ax. Anselmo came up with the ax.
4 Neměl se však k odchodu,

zřejmě aby si mohl prohlédnout
Dixonovu podlitinu na oku.

But he had to leave, apparently
to inspect the Dixonovu
haematoma in his eye.

He lingered, no doubt to
examine Dixon's black eye.

5 Chceš ještě nějaký větve? You want some branch? Do you wish more branches?
6 Pravil Dixon odmítavě. Dixon said disapprovingly. Thanks, Dixon said dismissively.
7 Zeptal se. He asked. He asked.
8 Mně se zdá ten kulomet dobře

schovaný.
It seems that gun well hidden. To me it seems well hidden.

9 Vyjeli na dlouhý úsek rovné
silnice, svažující se uprostřed do
mělkého dolíku, takže každý
metr byl dokonale přehledný.

He rode straight on a long
stretch of the road, sloping
cloud-roof in a shallow
depression, so that every stere
was perfectly clear.

They entered a long stretch of
straight road, with a slight dip in
the middle so that every yard of
its empty surface was visible.

10 Větve už ne, řekl Robert Jordán. And no more, Robert Jordan
said.

Not branches, Robert Jordan
said.

Table 3.5 Example translations from best system combination (Kačenka) 6 8

At first glance you see that the system really works and most of the sentences do read fluently
and give (some) sense. However, a close inspection reveals that in some cases the meaning
changes, even if the mistake is minor.

Take the first sentence right away. The meaning shifts quite considerably. The original is about
person A giving advice to person B, reflecting the situation of person B. The translation shifts the
meaning so that a reader could, without a context, assume that person B has already acquiesced
in the attitude of person A or that person B never actually relied on it. Now consider for example
an automatic web translation. If the reader had no knowledge of the original language and did
not see the original sentence, he could infer incorrect conclusions about the interaction between
person A and person B.

The second sentence, on the other hand, is an almost perfect translation (it only omitted here,
which could probably be inferred from the context). The third sentence is grammatically

6 8 The sentences come from the test set of Kacenka. The recasing and detokenization have been done
automatically with the recase.perl and detokenizer.perl scripts. The recaser has been trained with the
train-recaser.perl script. All the listed scripts are part of the Moses system package. Finally, the recasing
and detokenization has been manually corrected. This was done to improve readability. After all, the
original Kacenka corpus is lowercased so the recaser could not be properly trained. The actual words have
naturally been left intact.

45

incorrect but we could suppose the reader could easily infer the with conjunction. The fourth
sentence is similar to the first sentence. It completely negates the first proposition.

The following sentences resemble the cases already discussed.

3.1.5 Final notes
Despite all the imperfections of the final system we do think that the system could possibly be
used as an aid for a professional translator to make his/her work more productive. However, in
case of an automatic translation (like web translation) we should be aware that it can lead to
quite severe meaning shifts.

Reflecting the final translations, the next iteration of our system's improvement should
definitively start with morphological analysis of the negation in Czech verbs and an isolation of
the ne (not) token out of the verb. Maybe the system would then correctly translate sentences 1
and 4.

You may ask: Why didn't we carry out tuning on the final system? This is because we attempted
the tuning both with the mert-moses.pl and the mert-moses-new.pl scripts but the BLEU actually
dropped for the test set in both cases (from 17.71 to 16.97 and 17.06, respectively). We could
not find a clue as to why this happens so we did not tune the data.

Furthermore, it may be objected that we insufficiently played with various settings of the tools
used for training (thresholds for GIZA++, n-gram order of SRILM, decoder weights from
moses.ini etc.). That is true. Nevertheless, we had to choose certain limits and trade-offs when
deciding upon the contents of this thesis and given the fact that most of the tools are not
analyzed down to the implementation level in the theoretical part of the work, this task would
eventually require much more space and time in order to be carried out properly.

The final question is: Can the morphological pre-processing possible compensate for an
inadequately small training corpus? From our experiments it follows that such a simple pre
processing which we have done is quite ineffective. We get better results simply by feeding the
language or translation model with a bit more parallel data (be it Books 2 or another fiction
corpus).

3.2 Training for WMT 10
In the final part of this thesis, we attempt the Translation task from the ACL 2010 Joint Fifth
Workshop on Statistical Machine Translation (European Commission, 2010a) and compare the
results to the best system from Euromatrix Viewing Matrix (Euromatrix Project, 2010c).

We start with the training portion of the CzEng 0.9 corpus, train the models and test the system
on the test data from WMT 10 workshop. Next, we repeat the scenario but this time, we
concatenate the CzEng 0.9 corpus training data with the training data from WMT 10 (we denote
this corpus as WMT 10). Thirdly, we add morphological pre-processing to the second scenario.

46

http://mert-moses.pl
http://mert-moses-new.pl

We use the Libma library (third scenario - lemmatization, adding pseudo words; leaving
frequent word forms intact). We must be careful when determining which words are to be
marked as frequent. We decided to extract frequent words only from a combination of the
training and developing set of the WMT 10 corpus.

Figure 3.13 shows the results. The last column corresponds to the best system from the
Euromatrix Viewing matrix for WMT 10 based on the Moses system (named CU Moses CS->EN
WMT10). Now actually, the very best system based on BLEU is the Google CS->EN system with
BLEU 23.4 but here we primarily want to do the comparison of the systems based on Moses 6 9 .

CzEng0.9 CzEng0.9+ CzEng0.9+ Bojar reference
WMT10 WMT10+Libma WMT10

3

Figure 3.13 Individual scenarios of the WMT 10 Translation Task and their B L E U 7 0

As you can see, our system loses 0.21 % BLEU to the Moses CS->EN WMT10 system.

Finally, we wil l look the Example translations (Table 3.6).

Input Czech sentence Output English sentence Reference English sentence
1 Barack Obama dostane jako

čtvrtý americký prezident
Nobelovu cenu míru

Barack Obama gets as the
American President the Nobel
Peace Prize

Barack Obama becomes the
fourth American president to
receive the Nobel Peace Prize

2 Americký prezident Barack
Obama přiletí do norského Osla
na 26 hodin, aby si zde jako
čtvrtý americký prezident v
historii převzal Nobelovu cenu
míru.

President Barack Obama will
arrive in Oslo, Norway on 26
hours to get here as the
American president in history
took the Nobel Peace Prize.

The American president Barack
Obama will fly into Oslo, Norway
for 26 hours to receive the Nobel
Peace Prize, the fourth American
president in history to do so.

3 Diplom, medaili a šek na 1,4
milionů dolarů dostane mimo

The diploma, medals and a check
for $1.4 million gets in efforts to

He will receive a diploma, medal
and cheque for 1.4 million

6 9 Another imperfection to note is that our system has been evaluated with the multi-bleu.perl script while
the WMT10 systems are evaluated with the mteval-vl lb .pl script. However, both these scripts compute a
standard BLEU score on lowercased data.
7 0 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/ in the
following directories: work_czeng2_base, work_czeng2_news_base, and work_czeng2_news_libma3.

47

http://mteval-vllb.pl

jiné za výjimečné úsilí o posílení
světové diplomacie a spolupráce
mezi národy.

strengthen the world diplomacy
and cooperation among nations.

dollars for his exceptional efforts
to improve global diplomacy and
encourage international
cooperation, amongst other
things.

4 Šéf Bílého domu přiletí do
norské metropole ráno i s
manželkou Michelle a bude mít
napilno.

The chief of the White House to
Norwegian metropolis morning
with his wife, Michelle, and will
have been busy.

The head of the White House
will be flying into the Norwegian
city in the morning with his wife
Michelle and will have a busy
schedule.

5 Nejprve zavítá do Nobelova
institutu, kde se vůbec poprvé
setká s pěti členy výboru, který
ho v říjnu vybrali ze 172 lidí a 33
organizací.

First come to the Institute,
where the first meets with five
members of the Committee, in
October the 172 people and 33
organisations.

First, he will visit the Nobel
Institute, where he will have his
first meeting with the five
committee members who
selected him from 172 people
and 33 organisations.

Table 3.6 Example translations of our system (WMT 10)

As you can see, the translation completely misses the fourth numeral in the first and second
sentence. Another problem may be an unclear specification of subject (due to the pronoun pro-
drop nature of Czech). However, we could assume that the reader would in some cases be able to
infer the subject from context

3.2.1 Final notes
Despite the abovementioned imperfections, the output sentences are quite readable and faithful
to the original. We suppose this is mainly due to the considerable size of the CzEng 0.9 corpus.
We saw that our morphological pre-processing had only minor effects on the BLEU.

We did not outperform the reference system from EuroMatrix Viewing Matrix. However, we did
come quite close and we gained valuable working experience with state-of-the-art statistical
machine translation.

48

Conclusion

This Master's thesis elaborated both on theory and practical issues concerning building a
statistical machine translation system. The cornerstone and the main deliverable of the thesis is
its empirical part. Firstly we thoroughly analyzed the time requirements of multithreaded
modifications of GIZA++ word alignment tools. Secondly we empirically analyzed several factors
that influence the quality of the translations of the SMT system.

We showed that by using MGIZA++ we can reduce the time needed to perform word alignment
down to about 20 % (depending on the corpus characteristics; compared to standard GIZA++).
Furthermore, we found out that running PGIZA++ on a cluster may exceed the performance of
MGIZA++ but only if the corpus is large. We also learnt that using PGIZA++ is more complicated
than using MGIZA++.

As to the quality of the translations, we determined that the relation between corpus size and
the resulting BLEU is roughly linear. We found out that incorporating extra bilingual data from
the same domain into the language model improved BLEU quite considerably. We showed that
including a bilingual dictionary or doing a morphological pre-processing on the Czech input can
slightly increase BLEU. We also saw that the effects of morphological pre-processing are in
indirect proportion to corpus size, and that the simplest pre-processing (pure lemmatization)
can in fact decrease BLEU.

Finally, we demonstrated that our system's performance is comparable to the performance of
best systems in the Euromatrix Viewing Matrix.

After inspecting the final translations, we suggested that a possible future improvement of the
system should focus on a more sophisticated morphological pre-processing of Czech verbs. The
rationale for this is to eliminate certain mistakes that could lead to misinterpretation of the
translated sentences.

There are also other possible ways of improving the system. We could play with various
parameters of the tools (GIZA, SRILM, Moses decoder). We could also completely abandon Moses
and use for example Cunei or Joshua.

In the course of working on the project, several new things happened. At end of 2009, Qin Gao
announced that the development of PGIZA++ had been discontinued and that his efforts

49

concentrate on MGIZA++, which is now integrated with Chaksi and can be run on Hadoop
Clusters (Gao, 2009).

Another update comes from the Moses system. One of the additions listed for year 2010 is the so
called Experimental management system whose purpose is actually quite similar to what this
thesis dealt with: It should help you doing experiments with Moses and compare its
performance under different scenarios.

To sum it up, we saw that machine translation is no science fiction. Computers are able to do
translation and can help people gain access to information which they would otherwise not
understand. The SMT can also improve the productivity of professional translators.
Nevertheless, we must be aware of the limitations of machine translation and especially, of
seemingly insignificant meaning shifts that can, in fact, have severe consequences. Despite all the
improvements and active research in the field of natural language processing the author believes
that professional human translators and interpreters can never be fully substituted by a
computer.

50

References

[i] Bartoň, R. 2009. Parallel CorpusJoint-Multigram Training 2 [online]. Last revision
24 February 2010 [cited: 18 May 2010]. Available at <https://merlin.fitvutbr.cz/nlp-
wiki/index.php/Parallel_Corpus_Joint-Multigram_Training_2>.

[2] Bojar, 0., et al. 2007. CzEng 0.7 (Czech-English Parallel Corpus, version 0.7) [online]. Last
revision 2008 [cited: 18 May 2010]. Available at <http://ufal.mff.cuni.cz/czeng/czeng07/>.

[3] Bojar, 0., et al. 2009a. CzEng 0.9 (Czech-English Parallel Corpus, version 0.9) [online]. Last
revision 2009 [cited: 18 May 2010]. Available at <http://ufal.mff.cuni.cz/czeng/czeng09/>.

[4] Bojar, O., Žabokrtský Z. 2009b. CzEng 0.9: Large Parallel Treebank with Rich Annotation.
Prague Bulletin of Mathematical Linguistics, 92.

[5] Callison-Burch, C. 2009. HOW-TO GUIDE: Installing and running the Joshua Decoder [online].
Last revision 12 June 2009 [cited: 18 May 2010]. Available at
<http://cs.jhu.edu/~ccb/joshua/>.

[6] Cufín, J., Bojar, 0. 2007. Machine Translation Projects at ÚFAL [online]. Last revision 22 May
2007 [cited: 18 May 2010]. Available at <http://ufal.mff.cuni.cz/~curin/mt/>.

[7] Euromatrix Project 2008a. Moses - Background [online]. Last revision 21 December 2008
[cited: 18 May 2010]. Available at <http://www.statmt.org/moses/?n=Moses.Background>.

[8] Euromatrix Project 2008b. Parallel Corpora Available On-Line [online]. Last revision
5 August 2008 [cited: 18 May 2010]. Available at
<http://www.statmtorg/moses/?n=Moses.LinksToCorpora>.

[9] EuroMatrix Project 2010a. The EuroMatrix Project (Sept. 2006 - Febr. 2009) [online]. Last
revision 2010 [cited: 18 May 2010]. Available at <http://www.euromatrix.net/>.

[io] Euromatrix Project 2010b. Advanced Features of the Decoder. Cube pruning [online]. Last
revision 4 May 2010 [cited: 18 May 2010]. Available at
<http://www.statmtorg/moses/?n=Moses.AdvancedFeatures#ntocl3>.

[Ii] Euromatrix Project 2010c. System Output List [online]. Last revision 2010 [cited: 19 May
2010]. Available at <http://matrix.statmtorg/matrix/systems_list/1621>.

51

http://merlin.fitvutbr.cz/nlp-wiki/index.php/Parallel_Corpus_Joint-Multigram_Training_2
http://merlin.fitvutbr.cz/nlp-wiki/index.php/Parallel_Corpus_Joint-Multigram_Training_2
http://ufal.mff.cuni.cz/czeng/czeng07/
http://ufal.mff.cuni.cz/czeng/czeng09/
http://cs.jhu.edu/~ccb/joshua/
http://ufal.mff.cuni.cz/~curin/mt/
http://www.statmt.org/moses/?n=Moses.Background
http://www.statmtorg/moses/?n=Moses.LinksToCorpora
http://www.euromatrix.net/
http://www.statmtorg/moses/?n=Moses.AdvancedFeatures%23ntocl3
http://matrix.statmtorg/matrix/systems_list/1621

[12] EuroMatrixPlus Consortium. 2010a. The EuroMathxPlus Project [online]. Last revision 2010
[cited: 18 May 2010]. Available at <http://www.euromatrixplus.net/>.

[13] European Commission. 2009. The JRC-Acquis Multilingual Parallel Corpus [online]. Last
revision 11 June 2009 [cited: 18 May 2010]. Available at <http://langtech.jrc.it/JRC-
Acquis.html>.

[14] European Commission. 2010a. ACL 2010 Joint Fifth Workshop on Statistical Machine
Translation and Metrics Matr. [online]. Last revision 2010 [cited: 18 May 2010]. Available at
<http://www.statmtorg/wmtlO/index.html>.

[is] European Commission. 2010b. Shared Task: Machine Translation for European Languages
[online]. Last revision 2010 [cited: 18 May 2010]. Available at
<http://www.statmtorg/wmtlO/translation-task.html>.

[16] Gao, Q., Vogel, S. 2008. Parallel Implementations of Word Alignment Tool [online]. Last
revision June 2008 [cited: 18 May 2010]. Available at
<http://www.aclweb.Org/anthology/W/W08/W08-0509.pdf>.

[17] Gao, Q. 2009. Welcome to my home page [online]. Last revision 2010 [cited: 18 May 2010].
Available at <http://www.cs.cmu.edu/~qing/>.

[18] Gao, Q. 2009b. MGIZA++ Configuration [online]. Last revision 11 December 2009 [cited:
18 May 2010]. Available at <http://geek.kyloo.net/software/doku.php/mgiza:configure>.

[19] Goldwater, S., McClosky, D. 2005. Improving Statistical MT through Morphological Analysis.
Proceedings of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing. Vancouver, 2005.

[20] Google Code. 2009. GIZA++ statistical translation models toolkit. Issue 7: Cannot compile with
gcc 4.3 or greater [online]. Last revision 4 February 2009 [cited: 18 May 2010]. Available at
<http://code.google.com/p/giza-pp/issues/detail?id=7>.

[2i] Hana, J., Zeman, D. 2005. Manual for Morphological Annotation [online]. Last revision
19 May 2005 [cited: 18 May 2010]. Available at
<http://ufal.mff.cuni.ez/pdt2.0/doc/manuals/en/m-layer/pdf/m-man-en.pdf>.

[22] Hunglish Project. 2009. Hunalign - sentence aligner [online]. Last revision
21 September 2009 [cited: 18 May 2010]. Available at
<http://mokk.bme.hu/resources/hunalign>.

[23] Jurafsky, D., Martin, J. H. 2009. Speech and language processing. New Jersey: Prentice Hall,
2009. 1024p. ISBN 978-0-13-187321-6.

[24] Koehn, P. 2010. Moses. Statistical Machine Translation System. User Manual and Code Guide
[online]. Last revision: 18 May 2010 [cited: 18 May 2010]. Available at
<http://www.statmtorg/moses/manual/manual.pdf>.

52

http://www.euromatrixplus.net/
http://langtech.jrc.it/JRC-Acquis.html
http://langtech.jrc.it/JRC-Acquis.html
http://www.statmtorg/wmtlO/index.html
http://www.statmtorg/wmtlO/translation-task.html
http://www.aclweb.Org/anthology/W/W08/W08-0509.pdf
http://www.cs.cmu.edu/~qing/
http://geek.kyloo.net/software/doku.php/mgiza:configure
http://code.google.com/p/giza-pp/issues/detail?id=7
http://ufal.mff.cuni.ez/pdt2.0/doc/manuals/en/m-layer/pdf/m-man-en.pdf
http://mokk.bme.hu/resources/hunalign
http://www.statmtorg/moses/manual/manual.pdf

[25] Manning, C. D., Schütze, H. 1999. Foundations of statistical natural language processing.
Cambridge, Massachusetts: The MIT Press, 1999. 620 p. ISBN 978-0262133609.

[26] Och, F. J. 2001. GIZA++: Training of statistical translation models [online]. Last revision
30 January 2001 [cited: 18 May 2010]. Available at<http://vvww.fjoch.com/GIZA++.html>.

[27] Peloušková, H., Káňa, T. 2007. Tvorba, funkce a využitíČesko-německého paralelního korpusu
[online]. Last revision 21 October 2007 [cited: 18 May 2010]. Available at
<http://is.muni. cz/publikace/publikace_simple.pl?lang=en;id=726491>.

[28] Phillips, A. B., Brown, R. D. 2009. Cunei Machine Translation Platform: System Description.
3rd Workshop on Example-Based Machine Translation. Dublin, Ireland, 2009.

[29] Plitt, M., Masselot, F. 2010. A productivity Test of Statistical Translation Post-Editing in a
Typical Localisation Context. Prague Bulletin of Mathematical Linguistics, 93.

[30] SRI International. 2009. SRILM - The SRI Language Modeling Toolkit [online]. Last revision
9 November 2009 [cited: 18 May 2010]. Available at <http://www-
speech.sri.com/projects/srilm/>.

[3i] Šlancarová, D. 2003. The KAČENKA 2 project [online]. Last revision 2003 [cited: 18 May
2010]. Available at <http://www.phil.muni.cz/angl/kacenka2/>.

[32] Tiedermann, J. 2007. OpenSubtitles [online]. Last revision 2007 [cited: 18 May 2010].
Available at <http://urd.let.rug.nl/tiedeman/OPUS/OpenSubtitles.php>.

[33] ÚFAL. 2007. Institute of Formal and Applied Linguistics [online]. Last revision 2007 [cited:
18 May 2010]. Available at <http://ufal.mff.cuni.cz/>.

53

http://vvww.fjoch.com/GIZA++.html
http://is.muni.%20cz/publikace/publikace_simple.pl?lang=en;id=726491
http://www-?speech.sri.com/projects/srilm/
http://www-?speech.sri.com/projects/srilm/
http://www.phil.muni.cz/angl/kacenka2/
http://urd.let.rug.nl/tiedeman/OPUS/OpenSubtitles.php
http://ufal.mff.cuni.cz/

54

Subject index

ACL 2010 Joint Fifth Workshop on
Statistical Machine Translation, 46

Acquis Communautaire (corpus), 14
alignment

sentence alignment see hunalign
word alignment, 6

annotation
morphological annotation, 10

B ayes' rule, 5
BLEU, 9
Books 2 (corpus), 15
corpus, 13
CzEng (corpus)

CzEng0.7, 14
CzEng 0.9, 14

data sparseness, 10
decoder, 7, 34
evaluation, 8

automatic evaluation, 8
human evaluation, 8

Full Diet, 15
GIZA++, 16
hunalign, 13
interlingua, 4
Kacenka (corpus), 13
language model, see model
Libma library, 11
Lite Diet, 15
machine translation

classical MT, 3
statistical MT, 4

machine translation system, 2 8
MGIZA++, 17
mkcls, 17
model

factored model, 10
language model, 5, 31
translation model, 5,31

morphological annotation, see annotation
morphology, 9

inflectional morphology, 9
morphological pre-processing 30

Moses (SMT system), 28
n-grams, 5
Open Subtitles (corpus), 14
parallel corpus, see corpus
PGIZA++, 23
phrase-translation table, 6
plain2snt, 17
Prague Dependency Treebank, 11
probability

distortion probability, 6
translation probability, 6

snt2cooc, 17
translation

direct translation, 3
transfer translation, 3

translation model, see model
tuning 33
Vauquois triangle, 4
word alignment see alignment

55

56

List of figures

Figure 1.1 Vauquois triangle 4
Figure 1.2 Example of a simple word alignment 6
Figure 1.3 Translation options 7
Figure 1.4 Generation of hypotheses 8
Figure 1.5 Vector of factors (Koehn, 2010) 10
Figure 2.1 Proportions of texts in the CzEng 0.9 corpus (Bojar et al., 2009b) 15
Figure 2.2 MGIZA++ run for the Kacenka 2 corpus on Athena3 18
Figure 2.3 MGIZA++ run for CzEng 0.7 on Athena3 19
Figure 2.4 MGIZA++ run for the AC corpus on Athena3 20
Figure 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena3 21
Figure 2.6 MGIZA++ run for the OpenSubtitles corpus on Athenal 22
Figure 2.7 PGIZA++ run for the Kacenka 2 corpus 24
Figure 2.8 PGIZA++ run for the AC corpus 25
Figure 2.9 PGIZA++ run for the OpenSubtitles corpus 26
Figure 2.10 MGIZA++/PGIZA++ comparison for the Kacenka corpus 27
Figure 2.11 MGIZA++/PGIZA++ comparison for the OpenSubtitles corpus 27
Figure 2.12 MGIZA++/PGIZA++ comparison for the AC corpus 27
Figure 2.13 Modular architecture of the Moses system (Koehn, 2010) 29
Figure 2.14 Example of word alignment 32
Figure 2.15 Example of a translation table 32
Figure 2.16 Example of extracted phrases 32
Figure 2.17 Example of a scored phrase table 33
Figure 2.18 Extract from a simple moses.ini file 33
Figure 3.1 Relation between the size of the Kacenka corpus and the resulting BLEU 36
Figure 3.2 Relation between the size of the Acquis corpus and the resulting BLEU 37
Figure 3.3 Adding a dictionary into the training data of the Kacenka corpus 38
Figure 3.4 Adding a dictionary into the training data of the Acquis corpus 38
Figure 3.5 Training language model on various corpora combinations 39
Figure 3.6 Morphological pre-processing of the Kacenka corpus 40
Figure 3.7 Number of unique Czech tokens in the training set of Kacenka after morphological
pre-processing 41
Figure 3.8 Morphological pre-processing of the Acquis corpus 41
Figure 3.9 Number of unique Czech tokens in the training set of Acquis after morphological pre
processing 42

57

Figure 3.10 Morphological pre-processing of parts of the Kacenka corpus 42
Figure 3.11 Morphological pre-processing of parts of the Acquis corpus 43
Figure 3.12 Final system combination 44
Figure 3.13 Individual scenarios of the WMT 10 Translation Task and their BLEU 47

58

List of tables

Table 2.1 MGIZA++ run for the Kacenka 2 corpus on Athena3 18
Table 2.2 MGIZA++ run for CzEng 0.7 on Athena3 19
Table 2.3 MGIZA++ run for the AC corpus on Athena3 20
Table 2.4 MGIZA++ run for the OpenSubtitles corpus on Athena3 21
Table 2.5 MGIZA++ run for the OpenSubtitles corpus on Athenal 22
Table 2.6 Computers used for testing PGIZA++ 23
Table 2.7 PGIZA++ run for the Kacenka 2 corpus 24
Table 2.8 PGIZA++ run for the AC corpus 25
Table 2.9 PGIZA++ run for the OpenSubtitles corpus 26
Table 3.1 Relation between corpus size and BLEU (Kacenka) 36
Table 3.2 Relation between corpus size and BLEU (Acquis) 36
Table 3.3 Morphological pre-processing of parts of the Kacenka corpus 43
Table 3.4 Morphological pre-processing of parts of the Acquis corpus 44
Table 3.5 Example translations from best system combination (Kacenka) 45
Table 3.6 Example translations of our system (WMT 10) 48

59

Appendix A - Scripts created
This section lists important python scripts that have been created for this project In case that
the entire script or its part has been inspired by another script found on the Internet, the URL of
the source is stated in the script header.

The scripts are stored at minerval:/mnt/minerval/nlp/projects/mt/tools/myown/ and on the
accompanying CD as well. Al l the scripts need to be interpreted with Python. Some of them may
require being located in a specific directory (due to relative paths). In such case, the script
header contains a hint as to which directory the script should be run from.

1 Corpora preparation
Script Description

czeng.py Preparation of the CzEng 0.9 corpus.
dict.py Preparation of Czech-English dictionary.

kacenka.py Preparation of the Kacenka corpus. Section 2.1.1.1 gives a comprehensive
description of this script.

myclean.py This script cleans the input corpus from unnecessary quotation marks and
apostrophes.

unwrap-xml.py This script eliminates SGML formatting from the input corpus and returns plain
text on output.

2 GIZA++ training
Script Description

preparegiza.py Copies supporting files (*.vcb, *.classes, *.cats etc.) for GIZA++ run from one
location to another.

traingiza.py Trains a corpus with MGIZA++.

3 Moses training
Script Description

frequent_words.py Prints a list of words that occur in the input corpus with a frequency exceeding
the given frequency limit.

morphologyjna.py Does a morphological pre-processing on the input corpus using the Libma
library.

morphology_ma_env.py This script is an envelope for the morphologyjna.py script and should be run in
case the morphology.py scripts uses too much memory, gets a SIGABRT and
cannot finish the work on large corpora.

morphology_pdt.py Does a morphological pre-processing on the input corpus using the Prague
Dependency Treebank.

moses.py This is the main script used for testing and tuning various modifications of the
Moses system.

60

Appendix B - Working directories
The root directory of the thesis is minerval:/mnt/minerval/nlp/projects/mt/. It contains these
subdirectories:

.../mt/ Description
/corpora/ This directory contains all corpora. The names of the subdirectories

correspond to names of the corpora. Some of the directories contain
combinations of two corpora. Refer to section 2.3.2.1 on how the
combination corpora have been created.

/tools/ This directory contains both sources and executables of third-party tools
used throughout the work.

/work/ In this directory, all work has been accomplished.
/work/czeng_preprocessing/ Preparation of the CzEng 0.9 corpus (see section 2.1.5.1)
/work/dict_preprocessing/ Preparation of Czech-English dictionary (see section 2.1.7)
/work/ kacenka_preprocessing/ Preparation of the Kacenka corpus (see section 2.1.1.1)
/work/mgiza_tests/ Performance tests of MGIZA++ (see section 2.2.1)
/wo r k/m oses_tests/ Tests of the Moses system (see chapter 3)
/work/pgiza_tests/ Performance tests of PGIZA++ (see section 2.2.2)

Appendix C - Corpora statistics
Sentences Czech tokens English tokens Average

sentence
Total size

(UTF-8)
Acquis 234 320 5 804 785 6 752 251 26,8 words 71 MB

Books 2 982 937 12 467 864 14 602 134 13,8 words 133 MB
CzEng 0.7 1 096 940 15 292 171 17 868 659 15,2 words 184 MB
CzEng 0.9 8 029 801 80 256 429 92 522 247 10,8 words 890 MB
Kacenka 2 118 285 1 523 903 1 697 637 13,7 words 17 MB

Open Subtitles 377 623 2 458 480 3 086 874 7,4 words 25 MB
WMT10 99 756 2 171 419 2 378 823 22,9 words 27 MB
Lite Diet 80 960 93 948 99 292 1,2 words 2 MB
Full Diet 293 020 515 576 597 341 1,9 words 8MB

All corpora are stored in the minerval:/mnt/minerval/nlp/projects/mt/corpora/ directory.

The token counts are measured after tokenization.

61

