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Abstract 
This Master's thesis describes the principles of statistical machine translation and demonstrates 
how to assemble the Moses statistical machine translation system. In the preparation step, a 
research on freely available bilingual Czech-English corpora is done. An empirical analysis of 
time requirements of multithreaded word alignment tools demonstrates that MGIZA++ can 
achieve a five-fold speed-up, while PGIZA++ can reach an eight-fold speed-up (compared to 
GIZA++). 

Three scenarios of morphological pre-processing of Czech training data are tested, using simple 
unfactored models. While pure lemmatization can aggravate the BLEU, more sophisticated 
approaches usually raise BLEU. The positive effect of morphological pre-processing diminishes 
as corpus size rises. The relation between other corpora characteristics (size, genre, extra data) 
and the resulting BLEU are empirically gauged. A final system is trained on the CzEng 0.9 corpus 
and evaluated on the testing set from WMT 2010 workshop. 

Tato diplomová práce popisuje principy statistického strojového překladu a demonstruje, jak 
sestavit systém pro statistický strojový překlad Moses. V přípravné fázi jsou prozkoumány volně 
dostupné bilingvní česko-anglické korpusy. Empirická analýza časové náročnosti vícevláknových 
nástrojů pro zarovnání slov demonstruje, že MGIZA++ může dosáhnout až pětinásobného zrychlení, 
zatímco PGIZA++ až osminásobného zrychlení (v porovnánís GIZA++). 

Jsou otestovány tři způsoby morfologického pre-processingu českých trénovacích dat za použití 
jednoduchých nefaktorových modelů. Zatímco jednoduchá lemmatizace může snížit BLEU, 
sofistikovanější přístupy většinou BLEU zvyšují. Positivní efekty morfologického pre-processingu se 
vytrácejí s růstem velikosti korpusu. Vztah mezi dalšími charakteristikami korpusu (velikost, žánr, 
další data) a výsledným BLEU je empiricky měřen. Koncový systém je natrénován na korpusu 
CzEng 0.9 a vyhodnocen na testovacím vzorku z workshopu WMT2010. 
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Preface 

Machine translation (MT) aims at substituting a human translator by a computer. In broader 
perspective, machine translation is a specific application of a scientific discipline called natural 
language processing (NLP). NLP is a computer science field. Apart from computer science, 
language processing derives insights from fields such as electrical engineering, linguistics and 
psychology (Jurafsky etal. , 2009:9). 

So far, quality translations from one language to another have not been common, except for the 
most restricted domains, such as weather reports (Manning, 1999:463). In most cases, it is 
necessary for the human translator to post-edit the output of MT. According to certain 
experiments (Plitt, 2010), this can considerably increase translators' productivity. 

In the European Union, there is a growing need for high quality machine translation systems 
because the number of language combinations used in the EU rises with the entry of every new 
country. To address this issue, the EuroMatrix Project (2010a) and the The EuroMatrixPlus 
Project (EuroMatrixPlus Consortium, 2010) have been founded. 

The objective of the master's thesis is to design, implement and evaluate a statistical machine 
translation system. 

In chapter 1, we start by introducing some theoretical aspects of the machine translation. We 
do not intend to give a comprehensive account of all the mathematical aspects of machine 
translation. The objective here is to give the reader a basic idea of the process of building the 
entire machine translation system. 

Following the theoretical introduction, chapter 2 provides a step-by-step guide on the process 
of building a statistical machine translation (SMT) system. First, we research available Czech-
English corpora and prepare them for use in our system. Next, we empirically analyze the 
benefits of multithreading when doing word alignment with the MGIZA++ and PGIZA++ 
alignment tools. Based on our observations, we create a SMT system based on the Moses SMT 
system. We then draw up a methodology to empirically assess the system's performance under 
several scenarios. 

In chapter 3, we carry out the previously proposed experiments. We attempt to establish a 
relation between various corpora characteristics and the resulting BLEU score. We investigate 
how the size and genre of the corpus influence the BLEU. Next, we attempt to raise the BLEU by 
introducing additional information into the system. We include a dictionary into the training 
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data and we use an extra corpus to train the language model. Subsequently, we analyze the 
system's performance under three different schemes of morphological pre-processing. Finally 
we train the system on the CzEng 0.9 corpus and evaluate it on the testing data from the WMT 
10 workshop. 

This Master's thesis draws on the Term project. The core of the first chapter (sections 1.1, and 
1.2.1 to 1.2.4) from the Term project has been used and supplemented with additional 
information on morphology (section 1.2.5). In chapter 2, information on corpora (section 2.1) 
has been updated and extended. Section 2.2 has been borrowed from the term project almost 
without change. The following sections (starting with section 2.3) and the entire chapter 3 are 
novel additions first appearing in this thesis. 
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1 Theoretical approaches to machine 
translation 

We can conceptually divide the strategies for MT into two categories: classical MT and 
statistical MT. Practical applications nowadays combine these two approaches so think of the 
concepts introduced in this chapter as ideas that can be incorporated to various extents in MT 
systems. 

1.1 Classical MT 
The most trivial idea of how we could translate a text from one language to another would 
probably be: Take the words from the source text, one by one, and by means of a dictionary, 
substitute them with corresponding words from the target language. This approach is called 
direct translation. Before substituting the words we usually need to do some morphological 
analysis on the source text 

Although direct translation is usually not feasible for distant language pairs, it can be used for 
close language pairs, such as Czech-Polish or Czech-Lithuanian where the syntactic 
constructions of both languages are almost identical. This approach has been used in the Česílko 
system (Cufin etal. , 2007). 

A more sophisticated approach is to analyze the source language text syntactic structures. Once 
we have got a parse tree of the source text, we transform the tree so that it conforms to syntactic 
structures of the target language1. We can also make use of semantic information. These two 
approaches are generally called transfer approaches. In practise, this architecture has been 
used in the Dependency-based Machine Translation system developed at ÚFAL (Cufin et al., 
2007). 

To see the context of the options discussed so far, please refer to Figure 1.1, depicting the 
Vauquois triangle, which shows the individual levels at which the language can be analyzed. So 
far, we have described all the "floors" except for the one at the top. 

1 This is done using contrastive knowledge - e.g. knowing that adjectives in the source language come 
before nouns but in the target language, they come after nouns etc. 
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Source Language Text Target Language Text 

Figure 1.1 Vauquois triangle 

At the top of the Vauquois triangle, there is the interlingua approach. In this case, we analyze 
the source language text and save it into an abstract representation called interlingua. Then we 
can generate the target text directly from the interlingua. The advantage of this approach is that 
we can use the interlingua representation to generate the target text in any language. However, 
there are other problems to tackle2. 

1.2 Statistical MT 
Statistical MT differs from the classic architectures in that it concentrates on the result, not the 
process of translating. What we want is a translation that reads fluently and is faithful in respect 
to the original sentence. Jurafsky et al. (2009:875) exemplifies this by the Hebrew adonai roi 
["The lord is my shepherd.") that cannot be literally translated into a language that has no sheep. 
We can either say something like "the Lord will look after me" or "the Lord is for me like somebody 
who looks after animals with cotton-like hair". The first translation is clear in the target language 
but is only partially faithful to the original. The second translation, on the other hand, is faithful 
to the original but reads awkwardly in the target language. The task of a human translator is to 
compromise between fluency and faithfulness and this is exactly what statistical MT systems 
attempt to do as well. 

We can formalize the idea as follows (T denoting target, S denoting source): 

best translation T = argmaxT(faithfulness(T,S)fluency(T)) 
(1.1) 

We choose such a target language sentence that has the maximum product of faithfulness and 
fluency. 

2 For example, if the interlingua distinguishes between elder brother and younger brother (which is 
necessary for Japanese and Chinese) then it will have to compute a lot of unnecessary disambiguation 
when translating between English and Czech where there is only one concept for a brother. 
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To further formalize the idea, let us assume we translate a foreign language sentence 
F = f\,J2, •••>fm t ° English. We are looking for the best English sentenced = e1,e2, ...el whose 
probability P(E\F) is the highest Using the Bayes' rule we can rewrite this as follows: 

E = argmaxEP(E\F) 

P(F\E)P(E) 
= argmaxE  

= argmaxEP(F\E)P(E) 
(1.2) 

The denominator P ( F ) can be ignored because it is a constant The resulting equation consists of 
two components - a translation model P(F\E) and a language model P(E). The last thing we 
need is a decoder which wil l be given F and it should produce E. 

1.2.1 Language model 
We need a description of the rules that govern the language we want to translate to. This 
description is called a language model (LM) and in statistical MT language models are based on 
iV-grams. What are they? 

Suppose you have to guess the next word in the sentence Have a nice ... You would agree that 
these three words wil l probably be followed by day or weekend but it is much less likely they will 
be followed by at or nice. 

The idea of iV-grams is exactly the same. More formally, given a sequence of words of length N-l, 
the model tries to predict what the Nth word will be. A 2-gram model is commonly called a 
bigram model, a 3-gram model is called a trigram model, a 4-gram is called a quadrigram (or 
tetragram) model etc. When we just say iV-gram we either mean a word sequence of length N or 
a language model based on iV-grams. 

To create a language model we need a monolingual corpus of the target language and a toolkit 
for building a language model, for example the SRILM toolkit (SRI International, 2009). 

1.2.2 Translation model 
The translation model tells us the probability that a given English sequence of words E generates 
a foreign sequence of words F. In the case these sequences have a length of 1, we work with 
individual words (this is called word-based statistical MT) but in this thesis, we concentrate on 
entire chunks of words, called phrases (this is called phrase-based statistical MT). 

How do we go about building a translation model? 

First, we group the English sentence into phrases e{,e^, ...e}. Next, we need to translate these 
phrases one by one into foreign phrases fi and then to reorder the foreign phrases. 
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How do we enumerate the probability P(F\E)7 It wil l rely on two factors - the translation 
probability (how likely is the given translation?) and distortion probability (how likely is a 
given reordering of phrases?). We will denote the probability of an English phrase being 
translated to a foreign phrase as 0(/J 

Next, we denote the distortion probability as d. The distortion probability means the probability 
of two consecutive English phrases being separated in the translation into a foreign language by 
a span of words of a particular length. Formally, d(at — denotes the distortion probability 
where at is the start position of the foreign phrase generated by the z'th English phrase e~i, and 

is the end position of a foreign phrase generated by the (z'-l)th English phrase e]3j~. We can 
compute a simple distortion probability using the following formula: d(at — b^) = a ' a ' _ & ' - 1 _ 1 ' . 
In this way, we penalize the probability of a translation where the phrases lie far apart. 

The final translation model for phrase-based MT is: 

P(F\E) = Y\<p(fi\ěi)d(ai-bi_1) 
i=l 

(1.3) 

Now what we need is a list of English and foreign phrases and a probability they match together 
(the so called phrase-translation table). To create such a table manually would be too time 
consuming. Therefore we try to automate the process. First, we need parallel corpus on input 
Then, for each sentence pair, we do a word alignment (we figure out which word in the English 
sentence corresponds to which word in the foreign sentence). Having the word alignment, we 
can extract phrases and produce the phrase alignment and the phrase-translation table. 

1.2.2.1 Word alignment 
What we want to achieve is a mapping between words in a source language sentence and words 
in a target language sentence, for example: 

John reads a book Jan si cte knihu 
John 

Jan si cte knihu reads 
a 

book 

Figure 1.2 Example of a simple word alignment 

Notice that we allow here that one English word is mapped to any number of Czech words and a 
Czech word can be mapped to any number of English words. 

There exist several algorithms for word alignment. They differ in the level of sophistication. The 
most popular are the IBM models 1, 3, 4, 5 and the HMM model (HMM being a better alternative 
to the IBM model 2). However, these models align the words under the assumption that the 
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mappings can only be one-to-many (one word from the source language aligns to one or more 
words in the target language). 

We should note that we usually add a fictitious NULL word in the source sentence which can 
map to a word in the target sentence that has no real equivalent in the source sentence. 

When training the model, we need a parallel corpus. A parallel corpus is a text that is available in 
two languages. More formally, we need a corpus consisting of S sentence 
pairs {(i^,£" s)|s = 1 ...S). We use this corpus as input to a tool that can align words. A standard 
for word alignment is currently the GIZA++ tool (Och, 2001) which is based on the IBM and 
HMM models mentioned above. 

How do we tackle the problem with the restricting one-to-many assumption? We simply do the 
word alignment in both directions (English —> Czech, Czech —> English) and then do an 
intersection (or other sensible operation) of the two matrices. 

Once we have the word alignment matrix, we compute the phrase-translation table. 

1.2.3 Decoder 
The decoder first takes the original sentence and divides it into phrases. (If we were doing a 
word-based MT it would be words, not phrases.) There are usually many ways how to divide a 
sentence into phrases. They are called translation options (Figure 1.3 illustrates this). 

John reads a book 
Jan čte nějakou kniha 

si čte knihu 
si čte knihy 
čte knihu 

Figure 1.3 Translation options 

Now the decoder starts generating the output sentence from left to right in the form of 
hypotheses (Figure 1.4), starting with an initial hypothesis. Then it expands it so that the phrase 
John is translated as Jan. We use an asterisk to denote that the first word has already been 
translated. Also, we record the probability of this translation (0.487). We can then decide to 
expand the tree further, which can yield Jan si čte with the probability 0.176. 

Decoders are usually based on a best-first search algorithm (Jurafsky et al., 2009:890). This is an 
informed search that expands a node n based on the evaluation function/fnj. 

The evaluation function in our case for partially translated phrases S = (F, E) is based on the 
following formula: 

cost(E,F) = Y\4>{fi.ěi)d(fli-bi-1W) 
ieS 

(1.4) 
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It is a product of the translation, distortion, and language model probabilities for all phrases that 
have been translated so far. This cost is usually called the current cost. It is usually combined 
with the estimated future cost because otherwise the algorithm would tend to select such 
translations that have a few high probability words at the beginning at the expense of 
translations with higher overall probability (Jurafsky etal. , 2009:892). 

Practical decoders like Moses (Euromatrix Project, 2008a) must prune the search space because 
the number of hypotheses would grow exponentially, so for example Moses uses a beam search 
algorithm rather than best-first search. 

e: kniha 
f. * 

p: 0.089 

Figure 1.4 Generation of hypotheses 

1.2.4 Evaluation 
We need to measure the quality of the output produced by the MT system. There are generally 
two ways to do this - either a human evaluator can read the output sentences one by one and 
judge its fidelity and fluency, or we can evaluate the output using an automated program. 

1.2.4.1 Human evaluation 
Human evaluation can proceed in several different ways. The first way is to present the 
evaluator the output sentences and ask him to grade it on a scale, such us fluency or fidelity. 
Another way is to hide some words in the output sentence and ask the evaluator to fill in the 
missing word. In this case we measure the time it takes for the evaluator to fill in the word. This 
method is called a cloze task. Finally, we can give the evaluator the output sentences and ask 
them to post-edit the output so that it reads fluently. In this case we measure the edit cost, 
which can be the number of words needed to be replaced or the total edit time. 

1.2.4.2 Automatic evaluation 
Human evaluation can be costly and time consuming. Therefore we need an automated means of 
evaluating the output of the MT. The fundamental idea is to measure how similar the MT output 
is to a human translation. We can then easily run the evaluation on similar versions of a MT 
system and find out which one is better. 
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There are a number of heuristic methods which do this, such as BLEU, NIST, TER, Precision 
and Recall, and Meteor (Jurafsky et al., 2009:895). One of the most popular metrics nowadays 
is the BLEU (Bilingual Evaluation Understudy). 

The BLEU takes a MT output sentence and computes the weighted average of the number of N-
grams overlapping with the corresponding human translation: 

Tce{Candidates } Tn-gram EC Count(n-gram) 
Ec'E{Candidates }T.n-gram'eC' Count(n-gram') 

(1.5) 

BLEU uses unigrams, bigrams, trigrams and quadrigrams and combines these precisions by 
taking their geometric mean (Jurafsky etal. , 2009:897). 

BLEU is generally a good choice when evaluating several versions of the same MT architecture. 
However, it performs poorly when cross evaluating different architectures. It also focuses too 
much on local information and may therefore rank higher than a human evaluator would. 

1.2.5 Morphology 
A specific issue we wil l address in this thesis is morphology. The motivation follows from the 
fact that Czech is a morphologically rich language while English is not3. 

Morphology studies the way words are built from smaller units called morphemes. For 
example, the word cars consists of two morphemes - car and s. Morphemes can be divided into 
two classes - stems and affixes (stem being car in the previous example; -s being an affix). We 
can further subdivide affixes into prefixes, suffixes, infixes and circumflexes. Prefixes precede 
the stem, suffixes follow the stem, circumflexes do both, and infixes are inserted inside the stem 
(Jurafsky etal. , 2009:47). 

Morphemes can be combined to create new words. This can happen through inflection, 
derivation, compounding and cliticization. Inflection is the combination of a word stem with a 
morpheme usually resulting in a word of the same class. The new word usually adds some 
syntactic information, for example the word cars is created by inflection from the word car. The 
-s suffix tells us it is plural. Derivation is a combination of a word stem and a morpheme, 
resulting in a word from a different class. For instance, the noun binahzation is derived from the 
adjective binary. Compounding is a combination of multiple word stems together (e.g. 
doghouse). Cliticization is a combination of a word stem with a clitic (e.g. I've - the -Ve part is a 
clitic). 

In this work we are going to address the inflectional morphology. One Czech word can occur in a 
corpus in many forms (for example, the English word bowl corresponds to the Czech forms 
miska, misky, misce, misku, misko, miskou). Unless we provide some additional information to the 

3 More specifically, we speak about inflectional morphology here. 

9 



system, the individual Czech word forms are treated separately, which can lead to data 
sparseness on the side of the Czech corpus. 

Still another problem are ambiguous words, which are written identically but have different 
meaning. For instance, the word form mnou is both a pronoun in instrumental case meaning 
with me and a plural verb in the third person meaning they rub. 

One way to work with Czech inflectional morphology is to ignore ambiguity and data 
sparseness and give the system a very large corpus so that the probabilistic rules of the 
translation and language model infer these rules like any other rules. 

Another approach is to use factored models. Instead of training only on the word factor (which 
we discussed earlier), we train on additional factors, e.g. on the word lemmas, word class, part-
of-speech etc. Figure 1.5 illustrates this. Now, instead of the word mnou, the input corpus could, 
in a simple case, contain mnou\jd\pronoun. The model will be trained on the lemma and word 
class as well and during decoding a combination of these three factors will be evaluated. 

A more simplistic approach is to use a model which is not factored. Goldwater et al. (2005) 
suggests several ways how to improve system performance. Apart from simple lemmatization or 
truncation of the Czech corpus they propose adding pseudo words to the Czech corpus that 
imitate the way English inflectional morphology works. 

Input Output 
word Q Q word 

lemma Q Q lemma 

pa/l-of-speech Q — Q part-of-speech 

morphology Q Q morphology 

word class Q Q word class 

Figure 1.5 Vector of factors (Koehn, 2010) 

1.2.5.1 Morphological annotation 
A corpus can be annotated either manually or automatically. Manual annotation is time 
consuming and for large corpora not practical. Usually, the annotation is done automatically by a 
tool. The disadvantage of using an automatic annotator is that it may fail to analyze the word 
correctly. 

There exist several tools that can analyze the input corpus and annotate each word with 
additional morphological information. In this thesis, we wil l be working with the Prague 
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Dependency Treebank 2.0 (Hana et al., 2005), more specifically with its m-layer, and with the 
Libma library4 from Stanislav Černý. 

To illustrate the output of the Prague Dependency Treebank, look at the morphological analysis 
of the word hraniční: 

hraniční AAIS4 1A 
s t a n d a r d a d j e c t i v e , m a s c u l i n e i n a n i m a t e , s i n g u l a r , a c c u s a t i v e , p o s i t i v e . 

There are 15 positions with clearly defined semantics. For example, the first position (A) 
indicates the word is an adjective. 

The output of the Libma for the word hraniční is similar: 

hraniční k2eAgNnSc5dl 
a d j e c t i v e , a f f i r m a t i v e , n e u t r a l , s i n g u l a r , v o c a t i v e , p o s i t i v e . 

The first two positions (k2) indicate that it is an adjective and so on. 

Even this simple demonstration showed that automatic annotation may not be able to determine 
some characteristics unambiguously. We don't know if the word is in accusative or vocative and 
without context, we cannot even find out. The tool for automatic annotation may or may not take 
into account the neighbourhood of the word and disambiguate more or less correctly. 

4 Obtained from minerval:/mnt/minerval/nlp/local/share/Ma/libma and documented at 
https://merlin.fit.vutbr.cz/nlp-
wiki/index.php/Morfologický_slovník_a_morfologický_analyzátor_pro_češtinu 
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2 Building a Statistical machine 
translation system 

2.1 Getting a parallel corpus 
As indicated in chapter 1, statistical machine translation is based on unsupervised learning 
algorithms that need a large number of bilingual texts on input. Such a text is called a corpus 
(plural corpora). There are several possible sources of parallel Czech-English texts. 

In this work, we wil l primarily work with these parallel Czech-English corpora: Kacenka 2 
(Slancarova, 2003), Acquis Communautaire (European Commission, 2009), OpenSubtitles 
(Tiedermann, 2007), CzEng 0.7 (Bojar et al., 2007), CzEng 0.9 (Bojar et al., 2009a) and WMT10 
(described later). 

2.1.1 Kacenka 2 
The Kacenka 2 corpus has been created at the Faculty of Arts, Masaryk University and contains 
16 bilingual Czech-English fiction books. Unfortunately, the available source5 contains only 
paragraph-aligned plain texts so a preparation had to be done before we could use this corpus. 

2.1.1.1 Preparation of the Kacenka 2 corpus6 

First, all corpus plaintext files have been uniformly converted to utf-8. Next a kacenka.py script 
has been created and run on all these files. The script proceeds as follows: First it splits each 
book into separate English and Czech files. Then it erases all non-textual elements (such as <i>), 
leaving only the <p> element (which assists the hunalign, described below). Then it separates 
the paragraphs to sentences, writing each sentence on one line. Next, it cleans the file by erasing 
all quotation marks and omitting all sentences that are shorter than 2 or longer than 40 words. 
Subsequently, it tokenizes the files and runs the hunalign programme (Hunglish Project, 2009) 
to sentence-align the files. We use a bilingual Czech-English dictionary to help hunalign align the 
sentences. Then, we split the hunalign output into separate English and Czech files. Finally, we 
merge the outputs for each book and obtain two final sentence-aligned files: kacenka.en and 
kacenka.cs. 

5 Obtained from 
minerval:/mnt/minerval/nlp/corpora/parallel/KACHNA2_hotove_texty/HOTOVE&ALIGNED/. 
6 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/kacenka_preprocessing/ 
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Apart from the hunalign tool, the kacenka.py script makes use of the clean_txt.py script 7 , the 
merge.py script 8 and the tokenizer.perl script 9. 

The original corpus contains 3 122 305 words. After preparation it contains 1 523 903 Czech 
tokens and 1 697 637English tokens (tokens being notably dots, commas and, of course, regular 
words). It contains 118 285 sentence pairs. 

2.1.2 Acquis Communautaire 
The Acquis Communautaire (AC) corpus comprises of legislative texts of the European Union 
from the 1950s to now. 

The corpus 1 0 contains 234 320 sentence pairs, which is approximately double the size of 
Kačenka 2. However, the AC corpus' average sentence length is much greater than that of 
Kačenka. The number of Czech and English tokens in the AC is 5 804 785 and 6 752 251, 
respectively. 

2.1.3 Open Subtitles 
The Open Subtitles corpus consists of subtitles from movies. The corpus 1 1 contains 377 623 
sentence pairs but only 2 458 480 Czech and 3 086 874 English tokens. This is caused by the 
fact that the sentences are very short on average. 

2.1.4 CzEng0.7 
This is the second largest corpus we wil l use. It has been compiled the ÚFAL (2007) and contains 
texts from multiple domains. Its sources are: Acquis Communautaire, Readers' Digest, Project 
Syndicate, KDE, GNOME, Kačenka, Navajo User Translations, E-Books, European Constitution 
and Samples from European Journal (Bojar, 2007). 

We wil l use its pre-processed version 1 2 . The corpus consists of 1 096 940 sentence pairs 
(15 292 m C z e c h and 17 868 659 English tokens). 

2.1.5 CzEng0.9 
CzEng 0.9 is a new release of the CzEng corpus from ÚFAL. Similar to the CzEng 0.7, this corpus 
contains texts from various domains (movie subtitles, EU legislation, technical documentation, 
fiction, parallel web pages, news, project Navajo). However, its size about seven times bigger - it 
contains 8 029 801 sentence pairs. The authors of this corpus say that their intent was to 
compose a large corpus, not a balanced corpus (Bojar et al., 2009b). They say that according to 
their findings, "larger datasets usually improve the quality of MT, even if the additional data are 
out of the translated domain" (Bojar et al., 2009b). 

7 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/clean_txt/ 
8 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/others/ 
9 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/others/ 
1 0 Obtained from minerval:/mnt/minerval/nlp/corpora/parallel/Acquis_Communautaire/xschmi01/ 
1 1 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/corpora/opus/ 
1 2 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/corpora/czeng/ 
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Figure 2.1 Proportions of texts in the CzEng 0.9 corpus (Bojar et al., 2009b) 

2.1.5.1 Preparation of CzEng 0.9 corpus13 

The CzEng 0.9 corpus is freely available for non-commercial purposes (Bojar et al., 2009b). 
There are three versions of the corpus - apart from the plaintext version there are two more 
versions that contain additional morphological and syntactic information. In this thesis we work 
only with the plaintext version. 

Apart from extracting and merging all the parts of the CzEng 0.9 it is to note that we also did a 
specific cleaning to remove apostrophes and quotation marks from the corpus. The official 
statistics and our statistics of the corpus therefore slightly differ in the number of tokens. 

This is our working name for the training, development and test sets from the Translation task 
of the Fifth Workshop on statistical Machine Translation (European Commission, 2010a). The 
training data are a combination of about 45 million words from the Europarl corpus and about 
2 million words from the News Commentary corpus (European Commission, 2010b). 

In addition to the corpora presented so far, we wil l occasionally make use of other corpora. This 
section gives a brief summary. 

First, there is the Books 2 corpus 1 4 , composed by Radek Barton (2010) from FIT, Brno 
University of Technology. This corpus has similar characteristics as the Kacenka corpus because 
it is composed exclusively by fiction books. The only difference is its size - it contains about 
8 times more sentences than the Kacenka corpus. 

Apart from ordinary corpora, we will also make use of Czech-English dictionaries 1 5 later. We will 
work with them in the very same way as with corpora. The Lite Diet corpus is a dictionary 
listing almost exclusively word-to-word records. The Full Diet corpus is a dictionary containing 
multiword phrases as well. 

1 3 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/czeng_preprocessing/ 
1 4 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/corpora/books2/ and presented at 
https://merlin.fit.vutbr.cz/nlp-wiki/index.php/Paranel_CorpusJoint-Multigram_Training_2 
1 5 Obtained from minerval:/mnt/minerval/nlp/projects/ac_books/tools/hunalign/dict/ 

2.1.6 WMT10 

2.1.7 Other corpora 

15 

https://merlin.fit.vutbr.cz/nlp-wiki/index.php/Paranel_CorpusJoint-Multigram_Training_2


2.1.8 Unused corpora1 6 

Apart from the above mentioned corpora, there are other sources on the Minerval server. 

The ČNPK (Czech-German parallel corpus, Peloušková, 2007). This corpus is useless for building 
the translation model since we concentrate on Czech-English translation. 

Similarly, the PECT directory cannot be utilized for building a translation model because, in fact, 
this directory contains a monolingual corpus consisting of extracts from the Lidové Noviny 
newspapers. Despite being a good source for building a language model if translating from 
English to Czech, it would be first necessary to pre-process the data. 

The terminologie directory contains technical texts, mostly in the PDF format These texts could 
possibly be used for building a translation model but the data would need to be pre-processed 
first This task, however, would exceed the time quota allocated for this master thesis. The clean
up would not be trivial because the corpus also contains words from other languages than Czech 
and English (e.g. French). The terminology directory has therefore not been used. 

2.2 Analysis of time requirements of word 
alignment tools 

For word alignment, we wil l be using the MGIZA++ and PGIZA++ tools (Gao, 2009). They are 
based on the standard GIZA++ (Och, 2001). Both MGIZA++ and PGIZA++ have been developed 
with the idea in mind that the most of the alignment process can run in parallel. More 
specifically, the IBM and HMM alignment models used by these tools are an implementation of 
the EM algorithm (Dempster et al., 1977; In: Gao et al., 2008), which means that the algorithm 
runs for a number of iterations. In each iteration, the best word alignment for each sentence pair 
is first computed. Once all the alignments are known, the algorithm normalizes the counts and 
proceeds to next iteration. The important thing is that the word alignment, being the most time-
consuming step, can run in parallel. 

The MGIZA++ exploits this parallelism by using multithreading on a multiprocessor system. It 
spawns several processes which do the alignment in parallel, using a common address space and 
a mutual locking mechanism. The disadvantage of the MGIZA++ is its lack of scalability (the top 
being the maximum number of CPUs available). 

The PGIZA++, on the other hand, runs on a cluster of autonomous computers. The corpus is split 
to parts and each node works on its part of the corpus. The machines communicate via the SSH 
remote procedure call. The advantage of PGIZA++ is its scalability, while its disadvantage is the 
need to transfer big amounts of data using the I/O. 

Found at minerval:/mnt/minerval/nlp/corpora/parallel/ 
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2.2.1 MGIZA++ 
First, we had to compile the MGIZA++ application 1 7 . 

The MGIZA++ is run in the same way as the standard GIZA++, except that it supports the NCPUS 
argument which allows us to define the number of threads which wil l be used for training. If the 
NCPUS equals 1 then the MGIZA++ works like the standard GIZA++. Another thing we have to do 
after the training is to run a script to merge the aligned parts from individual threads together. 

2.2.1.1 Training with MGIZA++ 
Before the actual training process can be started, we have to run three tools: plain2snt, snt2cooc, 
and mkcls. 

The plain2snt tool takes the corpus file on input and produces two files - one with a vcb 
extension, which contains all the words from the corpus together with a unique number, and 
another file with a snt extension, which contains the original corpus with all the words replaced 
by their numerical indices specified in the vcb file. This is done to speed up the subsequent 
GIZA++ run (so that it can work with numbers, not with strings). 

The snt2cooc tool creates a co-occurrence file. 

The mkcls tool creates word classes. Running this tool took from several minutes (Kacenka 
corpus) to about an hour (CzEng 0.7 corpus). 

Now we can run the MGIZA++ tool. There are a number of parameters we can set at the GIZA 
start-up; a comprehensive list is available at (Gao, 2009b). We decided to leave the implicit 
parameters. Al l we want now is to see the potential speed-up when aligning various corpora 
using various numbers of threads. The motivation now is to find out how much time we can 
spare when using MGIZA++ over standard GIZA++. Based on this knowledge, we wil l later be 
able to quickly train various corpora with various ways of pre-processing and analyze the 
quality of the translation with BLEU. 

The MGIZA++ with its implicit parameters trains five iterations of IBM model 1, five iterations of 
the HMM, five iterations of the IBM model 3, and five iterations of the IBM model 4 (the last two 
being denoted as the Viterbi model). 

After the MGIZA++ run is completed, a script (merge_alignmentpy) must be run to merge the 
alignments from individual threads. The script can be obtained from (Gao, 2009). 

The entire training process has been automated with the traingiza.py script (see Appendix A -
Scripts created). 

1 7 After several unsuccessful attempts we learnt that MGIZA++ cannot be compiled with GCC 4.3 or greater 
(Google Code, 2009). Therefore, the Makefiles had to be rewritten to use the GCC 4.1 compiler. After this 
step, the program could be successfully compiled. 
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Unless otherwise stated, the testing has been carried out on the athena3.fitvutbr.cz server. 
Currently, this server contains 8 CPUs, each having the speed of 2.6 GHz. 

2.2.1.2 MGIZA++ on the Kacenka 2 corpus 
First, we wanted to see what the potential speed-up can be when word-aligning a small corpus. 
We ran MGIZA++ for the Kacenka 2 corpus for 1, 2, 8 threads. Figure 2.2 illustrates the results. 

1 2 3 4 5 6 7 8 
Number of threads 

Figure 2.2 MGIZA++ run for the Kacenka 2 corpus on Athena3 1 8 

Model/threads 1 2 3 4 5 6 7 8 
Model 1 56 35 26 22 20 19 17 18 

HMM 384 218 186 180 235 245 261 265 
Viterbi 1185 627 453 377 355 350 341 323 

Total [s] 1625 880 665 579 610 614 619 606 
Total [min] 27 15 11 10 10 10 10 10 

Speed-up 100% 54% 41% 36% 38% 38% 38% 37% 

Table 2.1 MGIZA++ run for the Kacenka 2 corpus on Athena3 

As you can see, using up to 4 threads to parallelize the process yields almost a speed-up of 1:3. 
However, adding more threads is counterproductive. The reason for this is probably the mutual 
locking mechanism used to synchronize the threads (Gao et al., 2008). 

The numbers suggest, however, that using more than 4 threads leads to a slight speed-up in the 
Viterbi training. Could this speed-up outweigh the increasing cost of the HMM training if we 
trained on a larger corpus? 

1 8 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/kacenka_ncpus [1-8]/ 
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2.2.1.3 MGIZA++ on the CzEng 0.7 corpus 
To find out if more that 4 threads are of any use when training on a large corpus, we repeated 
the training from previous section - this time, using the CzEng 0.7 corpus (see Figure 2.3). The 
testing for 7 CPUs has been omitted (it would probably bring no new information). 
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Figure 2.3 MGIZA++ run for CzEng 0.7 on Athena3 1 9 

Model/threads 1 2 3 4 5 6 7 8 
Model 1 1011 635 449 379 305 281 260 

HMM 7452 4039 3079 2860 2939 3040 3460 
Viterbi 30880 16344 8076 6557 5590 5337 5084 

Total [s] 39343 21018 11604 9796 8834 8658 8804 
Total [min] 656 350 193 163 147 144 147 

Speed-up 100% 53% 29% 25% 22% 22% 22% 

Table 2.2 MGIZA++ run for CzEng 0.7 on Athena3 

As you can see, the overall speed slightly increases even for NCPUS>4, even though we spare 
only about 15 minutes. There is, however, another important think to notice. With Kacenka 2 we 
didn't get above a speed-up of 1:3, whereas here, we almost get a speed-up of 1:5 for 5 CPUs. 

2.2.1.4 MGIZA++ on the Acquis Communautaire corpus 
The results for the Acquis Communautaire corpus are similar to the CzEng 0.7 corpus (see 
Figure 2.4). Some of the NCPUS counts have not been tested because it would probably yield no 
new information. 

1 9 The work can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/mgiza_tests/czeng_ncpus[l-8]/ 
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1 2 3 4 5 6 7 8 
Number of threads 

Figure 2.4 MGIZA++ run for the AC corpus on Athena3 2 0 

Model/threads 1 2 3 4 5 6 7 8 
Model 1 585 366 260 215 166 123 

HMM 8705 3659 2648 2180 2089 1868 
Viterbi 18883 9194 6244 4842 3731 3496 

Total [s] 28173 13219 9152 7237 5986 5487 
Total [min] 470 220 153 121 100 91 

Speed-up 100% 47% 32% 26% 21% 19% 

Table 2.3 MGIZA++ run for the AC corpus on Athena3 

One thing to notice here is that the speed-up for 8 threads is a little greater than by the 
CzEng 0.7. We suppose this to be due to the fact that the AC corpus average sentence is longer 
than that of the CzEng 0.7 corpus. 

At this point, we wanted to see the results for AC when run on another server. We used the 
Athenal server. The total running time was 432 and 115 minutes for 1 and 4 threads, 
respectively. The difference is minor, reflecting solely that the Athenal has slightly more 
powerful CPUs (each having 2.8 GHz, while Athena3's CPUs each have 2.6 GHz). 

2.2.1.5 MGIZA++ on the OpenSubtitles corpus 
The OpenSubtitles corpus demonstrates a similar behaviour as Kacenka in that the increasing 
the number of threads becomes counterproductive at a specific point (here for more than 5 
threads). 

2 0 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/acquis_ncpus [1-8]/ 
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Figure 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena3 2 1 

Model/threads 1 2 3 4 5 6 7 8 
Model 1 67 56 45 44 36 37 30 27 

HMM 282 222 199 181 188 172 243 212 
Viterbi 1004 714 593 515 370 416 412 401 

Total [s] 1353 992 837 740 594 625 685 640 
Total [min] 23 17 14 12 10 10 11 11 

Speed-up 100% 73% 62% 55% 44% 46% 51% 47% 
Table 2.4 MGIZA++ run for the OpenSubtitles corpus on Athena3 

To compare the results, we ran the alignment once again on the Athenal server. The results are 
depicted in Figure 2.6. 

2 1 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/subtitles_ncpus [1-8]/ 

21 



1600 

1400 

1200 I ^ ^ ^ w —Model 1 ^ ^ H M M ^ ^ V i t e r b i ^ ^ T o t a l [s] 

S, i o oo ^ ^ ^ ^ 

E 800 ^ ^ ^ ^ = ^ — -
| 600 t—^—^l* j 

400 

0 1 = 

1 2 3 Number of nodes 4 

Figure 2.6 MGIZA++ run for the OpenSubtitles corpus on A t h e n a l 2 2 

Model/threads 1 2 3 4 
Model 1 69 50 41 38 

HMM 290 180 148 145 
Viterbi 1081 613 455 386 

Total [s] 1440 843 644 569 
Total [min] 24 14 11 9 

Speed-up 100% 59% 45% 40% 

Table 2.5 MGIZA++ run for the OpenSubtitles corpus on Athenal 

The speed-up for 4 CPUs at Athenal is greater than the speed-up for any number of CPUs at the 
Athena3 server. Looking just the speed-up in percentage, we could think that Athenal is 
considerably quicker compared to Athena3. However, the OpenSubtitles is a small corpus and 
the whole alignment process takes just minutes so it almost does not matter if we choose 
Athenal or Athena3 to align this corpus. The lesson here could rather be that the simpler and 
shorter the sentences in the corpus are, the less time wil l the threads spend by computing the 
individual word alignments and the more often they wil l access the memory to pop another 
sentence, potentially blocking other processes wanting more sentences as well. 

2.2.1.6 MGIZA++ final notes 
During training the MGIZA++ outputs information on standard output and on standard error 
output By analyzing the error output, we found that there are usually sentences whose ratio of 
its source length and its target length exceeds the allowed ratio (the so called fertility limit, 
implicit value being 9). For Kacenka 2, this happened 126 times (about 0.1 % of all sentences). 
For the Acquis Communautaire corpus, this problem did not occur. For the CzEng 0.7 corpus, 
this problem occurred 19572 times (about 1.7 % of all sentences). For the OpenSubtitles corpus, 
this happened 11634 times (about 3 % of all sentences). 

2 2 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/mgiza_tests/subtitles_ncpus [1 -4]_athenal / 
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It seems that the ratio of sentences which exceeded the fertility limit indicates the alignment 
quality of the source corpora. By looking into the OpenSubtitles corpus at the specific lines 
where the fertility limit has been exceeded, we found that these sentences are completely 
misaligned. 

2.2.2 PGIZA++ 
Similar to MGIZA++, PGIZA++ has to be compiled with a GCC of lesser version than 4.3. We 
compiled it with GCC 4.1. 

The PGIZA++ runs on several machines. One machine acts as a master. This machine connects to 
the other machines via the SSH and coordinates the work of other machines. The master 
continually checks the work being done by other machines by looking into specific directories 
where the other machines put their results. These directories have to be shared by all the 
workstations (using NFS or AFS). 

The parallelizing is based on idea that we split the corpus into n parts [n being the number of 
nodes in the machine pool ready to run PGIZA++) and do the alignment step in each iteration in 
parallel. Once all nodes are done with their alignment part, the master takes their work and 
normalizes the results. This sequence of alignment and normalization is repeated for each 
iteration. 

The advantage of PGIZA++ is its scalability (we can use any number of nodes). However, the I/O 
can become the bottleneck when the number of child processes is large and also, when the 
alignment time is much lower than the normalization time (Gao et al., 2008). 

2.2.2.1 Training with PGIZA++ 
The training is run by the train_ega.sh script (available at Gao, 2009). This script first runs the 
snt2plain, plain2snt, and mkcls tools, after which the training itself is launched. 

We tested the PGIZA++ performance on these servers: athena[l|2|3], minerval , pcnlp[3|4|5|6]. 
The athena[l|2] server each offers 4x2.8 GHz, the athena3 has 8 CPUs, each having 2.6 GHz. The 
minerval server has 4x2.33 GHz. The pcnlp[3|4|5|6] server each has 2x2.66 GHz. 

Table 2.6 gives an overview of the nodes used for the testing. 

Nodes Master Other nodes 
2 Athena2 Pcnlp4 
4 Athena2 Pcnlp4 Pcnlp5 Pcnlp6 
6 Athena2 Athenal Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6 
8 Athena2 Athenal Athena3 Minerval Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6 

Table 2.6 Computers used for testing PGIZA++ 
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2.2.2.2 PGIZA++ on the Kacenka 2 corpus 
Kacenka 2 is a very small corpus and after reading the preliminary notes on PGIZA++ it should 
be clear that this corpus is not suitable for PGIZA++. To prove this, we ran the alignment (see 
Figure 2.7). 

2 4 6 Number of nodes 8 

Figure 2.7 PGIZA++ run for the Kacenka 2 corpus 2 3 

Model/nodes 2 4 6 8 
Model 1 343 339 366 369 

HMM 434 319 303 296 
Viterbi 651 485 579 493 

Total [s] 1428 1143 1248 1158 
Total [min] 24 19 21 19 

Speed-up 88% 70% 77% 71% 

Table 2.7 PGIZA++ run for the Kacenka 2 corpus 

You can check for yourself that the speed is worse compared to MGIZA++. What is more, using 
more than 4 nodes takes more time than using just 2 or 4 nodes. 

2.2.2.3 PGIZA++ on the CzEng 0.7 corpus 
We attempted to train the CzEng 0.7 corpus on PGIZA++, first with 4 nodes and then with 6 
nodes but each time the training failed because one machine failed. When we switched the 
machines then another machine failed so the problem is not the server selected. Looking into the 
log files we found the following error: 

I n s o u r c e p o r t i o n o f t h e t r a i n i n g c o r p u s , o n l y 1 u n i q u e t o k e n s a p p e a r e d 
I n t a r g e t p o r t i o n o f t h e t r a i n i n g c o r p u s , o n l y 165370 u n i q u e t o k e n s a p p e a r e d 

2 3 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/pgiza_tests/kacenka_nodes [2141618]/ 
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It seems that there is a problem with reading the data. To further investigate on the cause of this 
error, we repeated the test for the Books 2 corpus. We ran the test on 4 nodes but again, the 
same error caused a premature termination of the training process. The server and the iteration 
number differed from the server and iteration number where the error occurred for CzEng 0.7. 

To find the cause for this error, we would have to examine thoroughly how the bash scripts used 
for the training process work. Unfortunately, due to time constraints, we had to leave this 
problem unresolved. 

2.2.2.4 PGIZA++ on the Acquis Communautaire corpus 
Does the PGIZA++ bring a speed-up when given the AC on input? We ran PGIZA++ for 2, 4, 6, and 
8 nodes and found that ityields better results than the MGIZA++ indeed (see Figure 2.8). 
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Figure 2.8 PGIZA++ run for the AC corpus 2 4 

Model/threads 2 4 6 8 
Model 1 929 798 772 797 

HMM 3088 1689 1288 1092 
Viterbi 5183 2716 1967 1620 

Total [s] 9200 5203 4027 3509 
Total [min] 153 87 67 58 

Speed-up 33% 18% 14% 12% 

Table 2.8 PGIZA++ run for the AC corpus 

This is the first time (and, alas, the last time too) we see the PGIZA++ outperform the MGIZA++. 
We can tentatively imply that if we have a corpus of the size of AC or greater we should start 
considering to choose PGIZA++ over MGIZA++. Of course, we would have to support this 

2 4 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/pgiza_tests/acquis_nodes [2141618]/ 

25 



conjecture by other tests because it may be the high average sentence length rather than the 
overall size of the AC corpus that gives the PGIZA++ advantage over the MGIZA++. 

2.2.2.5 PGIZA++ on the OpenSubtitles corpus 
To make the testing complete, we also ran PGIZA++ on the OpenSubtitles corpus (see Figure 
2.9). The results are not dissimilar to the Kacenka's results. What is worth noting is that the 
speed-up in percentages is exactly the same compared to PGIZA++ run on Kacenka. The Viterbi 
alignment, for some reason, takes consistently more time on 6 nodes rather than on 4 or 8 nodes 
for small corpora. 

1400 

Number of nodes ^ 

Figure 2.9 PGIZA++ run for the OpenSubtitles corpus 2 5 

Model/nodes 2 4 6 8 
Model 1 291 221 229 236 

HMM 292 267 272 255 
Viterbi 608 464 541 475 

Total [s] 1191 952 1042 966 
Total [min] 20 16 17 16 

Speed-up 88% 70% 77% 71% 

Table 2.9 PGIZA++ run for the OpenSubtitles corpus 

2.2.3 Should we use MGIZA++ or PGIZA++? 
To sum the above sections up, it is highly advisable to use MGIZA++ on a small corpus like 
Kacenka or OpenSubtitles (Figure 2.10 and Figure 2.11). On the other hand, when training on a 
larger corpus like Acquis Communautaire, the PGIZA++ seems a better choice (Figure 2.12). 

When using MGIZA++, we found that in most cases it does not really matter if we choose 
Athena3 with its 8 CPUs or Athenal with its 4 CPUs. The training time difference between 
Athena3 (8 CPUs) and Athenal (4 CPUs) is maximally tens of minutes for the corpora tested. 

2 5 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/pgiza_tests/subtitles_nodes [2141618]/ 
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Figure 2.10 MGIZA++/PGIZA++ comparison for the Kačenka corpus 
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Figure 2.11 MGIZA++/PGIZA++ comparison for the OpenSubtitles corpus 
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Figure 2.12 MGIZA++/PGIZA++ comparison for the AC corpus 



2.3 Assembling a machine translation system 
In chapter 1 we outlined the core parts that a statistical machine translation system consists of -
parallel corpora, language model, translation model, decoder and evaluator. So far, we have 
thoroughly analyzed how to create word alignment using the GIZA++ tool. We have also seen 
that GIZA++ requires other programmes to pre-process the data, such as mkcls, developed by 
Franz Josef Och. If we investigate further we learn that Och implemented extensions for GIZA++, 
enhancing the capabilities of the older GIZA, which in turn was developed in 1999 by a team at 
Johns-Hopkins University (Och, 2001). Later, Qin Gao took the GIZA++ and added support for 
multithreading. 

The idea we are trying to convey is that different parts of a machine translation system are being 
developed by different groups of people and that it is quite common to enhance the capabilities 
of existing programmes, rather than implement them anew from scratch. 

A similar approach is usually taken when building the entire machine translation system -
existing blocks are utilized and integrated. Popular machine translation systems, such as Moses 
(Euromatrix Project, 2008a), Joshua (Callison-Burch, 2009) or Cunei (Phillips etal. , 2009) follow 
such a modular architecture. 

In this thesis, we decided to base our following work on the Moses translation system. We did 
this because the system is open source, well documented and there is a lot of active development 
going on. Moreover, Philipp Koehn, under whose guidance the project is being developed, claims 
thatthe system is "the de facto benchmark for research in the field" (2010). 

2.3.1 Architecture of the Moses translation system 
The first thing to notice is that the term Moses is used both for the entire statistical machine 
translation system as well as for the decoder, which is only a part of the system. In the following 
text, we wil l either say Moses system or Moses decoder to make the distinction clear. 

To start with, inspect Figure 2.13 to see the top-level architecture of the Moses system. Note that 
boxes with red border indicate thatthe part has not been developed yet (as of May 2010). 

As you can see, the input to the system can either be a plain text, XML, a confusion network or a 
lattice. We will be using the first option because our corpora are in plain text 2 6 . Another thing to 
mention here is that we wil l be doing phrase-based translation that is not factored. That means 
that we wil l provide no analytical or morphological information (factor) in the input corpus 
except for the literal words. 

Next in the diagram we can see the translation model. As we already mentioned in section 
1.2.2, the main part of the translation model is the phrase-translation table. Moses creates this 
table from the output of GIZA++. It is quite common that the phrase-translation table is very 
large (up to several tens of gigabytes) to fit into memory, in which case we may need to load the 

2 6 The remaining input options are used for hierarchical syntax-based tree models and/or for models that 
integrate machine translation with other upstream speech processing tools, such as speech recognizers. 
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table from disk. We wil l be loading the phrase-translation table both from memory and from 
hard disk, based on its size. 
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Figure 2.13 Modular architecture of the Moses system (Koehn, 2010) 

For the decoding, we wil l be using the main version of the Moses decoder which is based on 
stack beam decoding 2 7 . 

The language model can be based on several third party toolkits - SRILM, irstLM and randLM. 
In this thesis we work exclusively with the SRILM toolkit 

The output of the system is usually the translated plain text. However, if we want to peak into 
the internal workings of the decoder, we may choose the N-Best or Search Graph options. In the 
first case we learn what other hypotheses (output sentences) were evaluated (but eventually 
received lower score that the winning hypothesis). In the latter case, we get a dump of the 
search graph. 

2.3.2 Methodology of training and testing with the Moses 
system 

In this section we dig deeper into the Moses system. We introduce the moses.py 2 8 script that we 
created for training and evaluating various versions of the system. 

The moses.py script has been created with the objective to compare performance of various 
modifications of the Moses system. We wil l run the system many times, each time modifying one 

2 7 Cube pruning is another search algorithm that is "faster than the traditional search at comparable levels 
of search error" (Euromatrix Project, 2010b). Chart Parse-Decoding is used for tree-based decoding. 
2 8 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/ 
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input variable (independent variable), and then evaluate the performance measured in BLEU 
(dependent variable). We want to answer these questions: 

a) How does the size of the training corpus influence the quality of the translation? 
b) Wil l the quality of the translation increase if we incorporate a bilingual dictionary into 

the training data? 
c) How wil l the incorporation of an extra monolingual corpus into the language model 

affect translation quality? 
d) What effects will have a morphological pre-processing of the Czech part of the corpus? 

2.3.2.1 Preparing the corpora 
The corpora we wil l use 2 9 have first to be split up into three parts - the training, development 
and test sets. The division follows the ratio 90:5:5. We split the corpus based on the count of the 
sentences. In case we combine two corpora to train either the translation or language model, the 
training data is a concatenation of the training sets of both corpora, while the development and 
test sets are taken only from one of the corpora (the one we are interested to analyze primarily). 

Before we start training, we first tokenize, filter, clean, pre-process and lowercase the input 
corpus 3 0 . By filtering we mean discarding sentences that are longer than 40 words 3 1 . By cleaning 
we mean running a script 3 2 that erases quotation marks and apostrophes that indicate direct 
speech (clitics remain unaffected). By pre-processing we mean converting the words in the input 
corpus into their lemmas or other ways of adding or replacing words in the corpus with the 
intent to convey some extra morphological information (see section 2.3.2.2 for more details). 
Please note that we still work with unfactored systems. Finally, lowercasing the input corpus is 
required. 

2.3.2.2 Morphological pre-processing 
As already mentioned in section 1.2.5.1, we wil l be using both the Prague Dependency Treebank 
(PDT) as well as the Libma library to pre-process the Czech part of the corpus. We base our 
work on the findings of Goldwater et al. (2005). We wil l test three scenarios: 

a) We wil l replace all words with their lemmas. 
b) We wil l do the same as in point a) but we also add some extra pseudo words into the 

corpus. 
c) We will do the same as in point b) but only for words that appear sparsely in the input 

corpus. Words that occur often in the corpus will be completely unaffected. 

In the first scenario, we lemmatize all words. This wil l clearly discard some information but at 
the same time, it should ameliorate the effects of data sparseness. To give an example, the 
sentence "Jen ať tam jde děda." ("Let the old man go.") wil l be converted to "Jen ať tam jít děda." 

2 9 Stored jointly in the minerval:/mnt/minerval/nlp/projects/mt/corpora/ directory. 
3 0 This step corresponds to step 1 in the moses.py script. 
3 1 More specifically, only training data used for building the translation model are filtered. This is because 
GIZA++ run takes a long time on unfiltered data. Also note that development and test data are not filtered. 
3 2 Located at minerval:/mnt/minerval/nlp/projects/mt/tools/myown/corpora preparation/myclean.py 
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In the second scenario, apart from lemmatization we do two more modifications: In case it is a 
noun, we indicate whether it is singular or plural number (e.g., house wil l correspond to dům+S, 
while houses wil l correspond to dům+P). In case the word is a verb, we indicate the person and 
tense. For instance, the sentence "Jen ať tam jde děda. " w i l l be converted to "Jen ať tarn PER_3 
jít+TEN_P děda." We indicate that the verb jit (go) is in the present tense (TEN_P) and in the 
third person (PER_3). Also note that the person indication is a separate word so as to imitate the 
pronoun (he, she, it) that is often omitted in the Czech language. In contrast, the tense indication 
(TEN_P) is concatenated with the base form jit (go) so as to imitate the (quite simple) inflectional 
morphology of English verbs (go vs. goes). 

In the third scenario, we apply the modifications described in the second scenario but this time 
only for words that occur in the corpus with a frequency lower than a defined threshold. We will 
work with the threshold of 5 0. It follows that before the actual pre-processing the corpus must 
be analyzed, frequent words extracted and stored somewhere 3 3 . Later, we wil l have to cross
check each word, determine if it is a frequent word or a sparse word and either carry out 
scenario 2 or leave the original word form unaltered. 

Automatic morphological annotation is not as unproblematic as it may seem. We already 
touched upon the problem of ambiguity of word forms and different quality of automatic 
annotators in section 1.2.5.1. The Libma library, for example, does not analyze the 
neighbourhood of the word because you can give it only one word form on input, not the whole 
sentence. If there are more lemmas or more options of part-of-speech tags for a given lemma, it 
wil l return all of them. The PDT, on the other hand, takes whole sentences on input and it does 
analyze the neighbourhood of the word. In case there are more lemmas corresponding to a word 
form, it wil l probably return the correct one as the first lemma and also inform you about the 
alternative lemmas. 

How should we go about when more than one lemma is found? After some preliminary testing 
(on the same corpora which we will be using for main testing) we discovered that it is better to 
do the lemmatization only in case an unambiguous lemma is found by the morphological 
analyzer. If there are several matches of the same lemma but multiple parts of speech 
returned 3 4 , we wil l do the morphological pre-processing with the first part of speech returned. 

2.3.2.3 Building the language and translation model35 

The language model wil l be created with the SRILM toolkit 3 6 from a tokenized and lowercased 
training set of the given corpus or combination of more corpora. We wil l create n-grams up to 
order 5. We wil l use interpolation and Kneser-Ney discounting. 

The training of the translation model takes place in several steps 3 7. First of all, we pre-process 
the corpus with the plain2snt and mkcls tools 3 8 . Then we run MGIZA++ to get word alignments3 9. 

3 3 This is done by the frequent_words.py script. 
3 4 Refer to 1.2.5.1 where we did not know for sure if the word form is in accusative or vocative. 
3 5 These steps correspond to steps 2 and 3 in the created moses.py script. 
3 6 More specifically, we will use the ngram-count executable. 
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Based on our analysis of MGIZA++, we decided to run MGIZA++ in 4 threads. Moreover, we need 
to run MGIZA++ twice (both in the Czech-English and English-Czech direction; refer to 1.2.2.1). 
In order to spare time, we wil l run both directions in parallel. In this way, there wil l be up to 8 
threads running at a moment, computing word alignments. 

Once the MGIZA++ runs finish, we compute a final word alignment taking into account the two 
alignments from both runs of MGIZA++. There are several options how to combine the two 
alignments. We will use the default heuristic called grow-diag-final40. It starts with the 
intersection of the two alignments and then adds additional alignment points (Koehn, 2010). 
Figure 2.14 shows an example of the alignment 

0-0 1-1 2-2 3-3 3-4 4-4 5-5 6-6 6-7 7-8 
tři p r s t e n y pro krále elfů pod nebem , 

t h r e e r i n g s f o r the e l v e n - k i n g s under t h e sky , 

Figure 2.14 Example of word alignment 

Having the word alignment of the entire corpus, the Moses system uses it to extract a lexical 
translation table 4 1 . An extract from an example translation table is shown in Figure 2.15. 

k i n g král 0.5250000 
the král 0.1750000 
o f král 0.0500000 

n a r g o t h r o n d král 0.0250000 
e l v e n - k i n g král 0.0250000 
e l f - k i n g s král 0.0250000 

Figure 2.15 Example of a translation table 

Next, all phrases are extracted and dumped into a fi le 4 2 (see extract of this file in Figure 2.16). 

krále elfů ||| t h e e l v e n - k i n g s ||| 0-0 0-1 1-1 
krále elfů pod ||| t h e e l v e n - k i n g s under ||| 0-0 0-1 1-1 2-2 
pro krále elfů ||| f o r t h e e l v e n - k i n g s ||| 0-0 1-1 1-2 2-2 

pro krále elfů pod ||| f o r t h e e l v e n - k i n g s under ||| 0-0 1-1 1-2 2-2 3-3 

Figure 2.16 Example of extracted phrases 

3 7 The entire training is done by the train-factored-phrase-model.perl script, which is part of the Moses 
translation system. 
3 8 Already explained in section 2.2.1.1. 
3 9 Please note that we will not be using PGIZA++. Although PGIZA++ proved to perform better on larger 
corpora than MGIZA++ (see section 2.2.2.4), the Moses system provides considerably easier integration 
with MGIZA++. Moreover, MGIZA++ has lower synchronization overhead than PGIZA++. 
4 0 The output of this step can be found in the aligned.grow-diag-final-and files located at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_*/model/ directories. 
4 1 These files are named lex.e2f and lex.f2e and are in the model directories as well. 
4 2 More specifically, there are three files under the implicit settings - extractgz, extract.inv.gz, and 
extracto.gz. The first two are the base and inverse version of what is shown in Figure 2.16, while the third 
is created when a lexicalized reordering model is trained. 
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In the next step, all phrases are scored (see Figure 2.17). There are five scores in the file: phrase 
translation probability cp(f\e), lexical weighting lex(f\e), phrase translation probability^ 
lexical weighting lex(e\f) and phrase penally. 

králové 1 1 1 k i n g s 1 1 1 0 416667 0 228571 1 0 727273 2 718 
králů 1 1 1 k i n g s 1 1 1 0 166667 0 228571 0 666667 0 470588 2 718 
králi 1 1 1 k i n g s 1 1 1 0 0833333 0 0571429 0 333333 0 153846 2 718 

Figure 2.17 Example of a scored phrase table 

The last step is to build the reordering model. We will use the msd-bidirectional-fe option to 
build the reordering model. This reordering is an addition to the standard reordering model 
which gives cost linear to the reordering distance (recall the distortion probability from section 
1.2.2). 

Finally, Moses 4 3 stores the information about the models created so far into the moses.ini file. It 
contains information on where the models are stored and their parameters. Later, this file is 
used by the decoder when doing the actual translation. 

2.3.2.4 Tuning and testing44 

If we look into the abovementioned moses.ini file we wil l see that it contains default weights that 
the decoder uses when evaluating the most probable translation of a given sentence. Figure 2.18 
displays an extract from a simple moses.ini file. 

# d i s t o r t i o n ( r e o r d e r i n g ) w e i g h t 
[weight-d] 
1 

# language model w e i g h t s 
[ w e i g h t - 1 ] 
1 

# t r a n s l a t i o n model w e i g h t s 
[ w e i g h t - t ] 
1 

# word p e n a l t y 
[weight-w] 
-1 

Figure 2.18 Extract from a simple moses.ini file 4 5 

For each sentence, the decoder has to evaluate the probability: 

4 3 Specifically, the train-factored-phrase-model.perl script. 
4 4 Tuning and testing corresponds to steps 4,5,6,7 in the moses.py script. 
4 5 The distortion and translation weights are actually vectors (implicitly of orders 7 and 5, respectively) 
but our intent is here to keep the example simple. However, if you inspected the weights thoroughly, you 
would learn that 5 translation weights correspond to the five weights for each phrase listed in figure 2.15. 

33 



p(e\f) = 0 ( / | e ) w e ' 5 / l t * X LMwei3htLM x D(e,f)wei3hta x W{e)wei9htw 

(2.1) 

Now if you recall equations 1.2 and 1.3, you will see that there is almost nothing new in equation 
2.1. We just added a fourth member W(e) which is the word penally that ensures that the 
translations do not get too long or too short Then we raised each member of the product to a 
weight which we found in the moses.ini configuration file. 

It should now be clear what the purpose of tuning is. We give the decoder a set of previously 
unseen sentence pairs (the development set) and it iteratively adjusts the weights in the 
moses.ini file so that the resulting BLEU score of the development set is maximal. Whether it will 
eventually improve the BLEU score of the testing set, that remains a question. 

Next, we run the decoder on the test set On input, the decoder requires the moses.ini 
configuration file and the text to be translated. The decoder then loads the language model, 
phrase table and reordering table into memory and starts translating. Often, however, the 
models are too big to fit into memory so it is usual to filter the models first 4 6 . Filtering means 
that the model wil l be reduced to contain only phrases that occur in the test s e t 4 7 

2.3.2.5 Evaluation48 

The evaluation was performed with the multi-bleu.perl script on the output of the decoder and 
the reference translation. Both these texts are still lowercased at the moment of evaluation. 

4 6 Using the filter-model-given-input.pl script, which is part of the Moses system package. 
4 7 During our following experiments, the filtering alone was not sufficient - the decoder still needed more 
than 4 GB memory and once this memory threshold was exceeded, it received SIGABRT and the 
translating could not start. This happened despite the fact that the Athena 3 server hosts 64 GB memory. 
After an investigation we attempted to compile the 64 bit version of the Moses decoder but the 
compilation failed. Finally, we found out that the filtered model can be binarized with the script filter-and-
binarize-model-given-input.pl. After this step, the decoder worked within the limits of the 4 GB memory 
for all our experiments. 
4 8 Evaluation is performed in step 9 of the moses.py script. 
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3 Analysis of the created SMT system 

In this final chapter we wil l first analyze how various corpora characteristics and the degree of 
morphological pre-processing influence the resulting BLEU. Each time, we start with a base 
system and change one variable to see the effects on BLEU. Once we gain some insight, we 
proceed to train a final system which is inspired by the Translation Task from WMT 10 
(European Commission, 2010a). 

3.1 Analysis of individual factors 
3.1.1 Size of the corpus 
In this section, we wil l analyze the relation between corpus size and the resulting BLEU score. 
First, we wil l work with the Kacenka corpus. We start with evaluating the base BLEU for the 
Kacenka corpus, which is the BLEU we get when we train both the language and translation 
model from the training data of the corpus. We do no morphological pre-processing and no 
tuning 4 9 . 

Next we successively truncate the training set to the first 10 %, 20 %, 30 %, 90 % sentences 
and repeat the steps executed for the base BLEU (both language and translation model wil l be 
trained on only a part of the training data). The testing set will be identical for all 10 
measurements (it wil l not be truncated). The development set wil l not be used at all. 

Figure 3.1 shows the results. We can see that the relation is roughly linear, with a slight skew 
from the trend in the area around 50 %. 

Now we repeat this experiment for the Acquis corpus. Recall that Acquis has about twice as 
many sentences as Kacenka and the average sentence is also twice as long compared to Kacenka. 
However, many of the sentences in Acquis wil l be filtered out in the first step. Table 3.1 and 
Table 3.2 display the different characteristics of both corpora. 

4 9 The work can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_base/ 
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% used BLEU Sentences Unique Unique EN 
CS tokens tokens 

10% 9,20 10290 24632 10660 
20% 10,73 20644 38330 15024 
30% 11,99 30919 48641 18161 
40% 12,88 41141 57004 20622 
50% 12,93 51422 65759 23990 
60% 13,74 61559 74613 27295 
70% 14,81 71798 82442 30248 
80% 15,52 82136 88426 32411 
90% 16,54 92550 93728 34267 

100% 17,71 102944 97714 35603 
Table 3.1 Relat ion between corpus size and B L E U ( K a c e n k a ) 5 0 

19,00 - i 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Percent of Kacenka corpus used 

Figure 3.1 Relat ion between the size of the Kacenka corpus and the result ing B L E U 5 1 

% used BLEU Sentences Unique 
CS tokens 

Unique EN 
tokens 

10% 34,62 14816 13011 7402 
20% 37,44 30619 20832 11381 
30% 39,39 45975 26974 14306 
40% 41,73 61233 31195 16168 
50% 43,90 76192 35307 18318 
60% 45,00 90815 39223 20306 
70% 46,17 105985 42178 21694 
80% 47,14 120769 45325 23290 
90% 48,09 136082 48101 24844 

100% 48,89 150770 50312 25893 
Table 3.2 Relat ion between corpus size and B L E U ( A c q u i s ) 5 2 

5 0 These numbers come from the training sets after filtering, cleaning and tokenization. 
5 1 The relevant work can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_part_xx where xx is 10, 20, 
30, 40, 50, 60, 70, 80, and 90. 
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Figure 3.2 Relation between the size of the Acquis corpus and the resulting B L E U 5 3 

Figure 3.2 shows the results for the Acquis corpus. We can see that the relation is linear as well 
but the slope is sharper, especially in the first 50 %. The resulting BLEU is considerably higher 
than the BLEU for Kacenka. This agrees with a simple intuition that fiction uses much richer 
language and the translation is more difficult. The numbers of token types confirm this. The 
Kacenka corpus has almost 100000 unique Czech tokens, while Acquis has only about 50000. 

3.1.2 Additional training data 
In this section, we first investigate if the incorporation of a bilingual Czech-English dictionary 
into the training data improves the BLEU. We do this both for the Lite Diet corpus and Full Diet 
corpora. The training data is simply a concatenation of both the Kacenka's training set and the 
respective dictionary. Figure 3.3 shows the results. 

As you can see, including a simple dictionary resulted in BLEU increase of 0.3 %. It may be that 
the testing set contains previously unseen words (the language of fiction is rich). 

Again, we wil l run this test for the Acquis corpus as well (see Figure 3.4). Surprisingly, the effects 
are quite different - Acquis benefitted from Full Diet containing additional technical phrases, 
while the effects of Lite Diet are close to none. 

5 2 These numbers come from the training sets after filtering, cleaning and tokenization. 
5 3 The relevant work can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_acquis_part_xx where xx is 10,20, 
30, 40, 50, 60, 70, 80, and 90. 
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Kačenka Kačenka + Lite Kačenka + Full 
Diet Diet 

Figure 3.3 Adding a dictionary into the training data of the Kacenka corpus 5 4 
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Figure 3.4 Adding a dictionary into the training data of the Acquis corpus 5 5 

Now we focus on the training data for the language model. We start with the base scenario in 
which the language model is trained on the Kacenka training set Next, we train the language 
model on different corpora - first, the Books 2 corpus and then the CzEng 0.7 corpus. In these 
two scenarios, the Kacenka corpus is not used to build the language model at all. Next, we repeat 
the same two scenarios but this time, we add the Kacenka corpus so that we wil l train on 
Kacenka + Books 2 and then on Kacenka + CzEng 0.7. The results are shown in Figure 3.5. 

5 4 The working directories are to be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_dict_[lite|full]/ 
5 5 The work can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_acquis_dict_[lite | full]/ 

38 



Kačenka Books 2 only CzEng0.7 Kačenka + Kačenka+ 
only only Books 2 CzEng0.7 

Figure 3.5 Training language model on various corpora combinations 5 6 

We can clearly see that eliminating the Kacenka corpus from the language model training data is 
counterproductive. However, we can see that working with smaller Books 2 corpus still yields 
better results than the CzEng 0.7 corpus. The genre of the corpus is more important than its size. 

The last two columns convey a similar message: it is better to combine Kacenka with a fiction 
corpus, not the multi-domain CzEng 0.7 (the BLEU in this last case still drops slightly). 

3.1.3 Morphological pre-processing 
As already indicated in section 2.3.2.2, we wil l test three scenarios of morphological pre
processing each time using both the Libma l ibrary 5 7 and the Prague Dependency Treebank 5 8 . 

Both Libma and PDT are exploited through a Python interface5 9. The interface for Libma is more 
sophisticated and allows us to set up several parameters. We wil l set the case sensitivity to 0 and 
lemmatization level 6 0 to 111. These quite restrictive settings should have the effect that we do 

5 6 The work for the five scenarios can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/ in the following directories: 
work_kacenka_base, work_kacenka_lm_books2, work_kacenka_lm_czengl, 
work_kacenka_lm_books2_kacenka, and work_kacenka_lm_czengl_kacenka 
5 7 The pre-processing is done by two our scripts - morphology_ma.py and morphology_ma_env.py 
5 8 The pre-processing is done by the morphology_pdt.py script. 
5 9 Libma through minerval:/mnt/minerval/nlp/projects/mt/tools/ma/libma/pylibma/. PDT through 
minerval:/mnt/minerval/nip/local/lib/python2.5/site-packages/. 
6 0 The SetLemmatizationfJ method. 
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not unnecessarily discard much information 6 1 . The PDT Python interface does not allow us to set 
any level of lemmatization 6 2 . 

Let's see the results (Figure 3.6). 

Figure 3.6 Morphological pre-processing of the Kacenka corpus 6 3 

The results of the first two scenarios are rather disappointing - the BLEU drops for both Libma 
and PDT. However, the third scenario does improve the BLEU, in the best case from 17.71 to 
18.22. We can also see that the Libma library performs better in all three scenarios. But why? Let 
us see the extent to which the morphological pre-processing reduces the number of unique 
tokens in the Czech portion of the corpus (Figure 3.7). 

6 1 For example, nedobrý (not good) will not be stripped to dobrý (good). Nejkrásnější (most beautiful) will 
not be stripped to krásný (beautiful). Generally, negation, superlatives, and other prefixes won't get lost. 
6 2 In retrospect, we discovered that the PDT's positional tags 10 (grade) and 11 (negation) could possibly 
be used in an analogous way to the Libma's SetLemmatizationfJ method. However, further tests would 
have to be run to confirm whether PDT's performance would exceed Libma's performance if these tags 
were exploited. 
6 3 The relevant working directories can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_kacenka_[libma|pdt] [11213]/ 
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Figure 3.7 Number of unique Czech tokens in the training set of Kacenka 
after morphological pre-processing 

We can see that the Libma library is more conservative when doing lemmatization. In the pre-
processed corpus, there are several thousand lemmas more for each scenario compared to the 
PDT pre-processing. It may be that the PDT drops too much information when doing the 
lemmatization. 

We wil l run the morphological pre-processing for the Acquis corpus as well to see if there is a 
difference. Figure 3.8 shows the resulting BLEU under individual scenarios. Figure 3.9 displays 
the degree of unique tokens reduction. 

49,60 
49,40 
49,20 

3 49,00 
^ 48,80 
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49,36 

Figure 3.8 Morphological pre-processing of the Acquis corpus 6 4 

6 4 The relevant working directories can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_acquis_ [libma | pdt] [11213]/ 
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Figure 3.9 Number of unique Czech tokens in the training set of Acquis 
after morphological pre-processing 

From the results we can see that they are not dissimilar from the Kacenka's results. The only 
thing to observe is that PDT performed better for the third scenario. Al l in all, the best BLEU 
increase is about 0.5 % for both Kacenka and Acquis. 

Now the question is whether morphological pre-processing would have greater impact if we had 
fewer training data (smaller corpus). We repeated all the six scenarios for both Kacenka and 
Acquis but this time taking only 10 % and 50 % of the respective corpus. Let's see the results 
(Figure 3.10 and Figure 3.11). 
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Figure 3.10 Morphological pre-processing of parts of the Kacenka corpus 6 5 

6 5 The relevant working directories can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_part_[10|50]_[libma|pdt][ 
1|2|3]/ 
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60,00 

Figure 3.11 Morphological pre-processing of parts of the Acquis corpus 6 6 

Looking at the graphs, the correlation between corpus size and the effectiveness of 
morphological pre-processing may not be obvious at first glance. Let's look at the corresponding 
tables (Table 3.3 and Table 3.4). 

Scenario / 
corpus part 

100% 50% 10% 

Sentences 102944 51422 10290 
No pre-processing 17,71 12,93 9,20 

Libma scenario 1 16,80 12,36 9,14 
Libma scenario 2 17,44 13,30 9,70 
Libma scenario 3 18,22 13,42 9,79 

PDT scenario 1 16,10 12,13 9,25 
PDT scenario 2 17,20 13,05 9,67 
PDT scenario 3 18,09 13,57 10,01 

Max increase 
(% BLEU) 

0,51 0,64 0,81 

Table 3.3 Morphological pre-processing of parts of the Kacenka corpus 

6 6 The relevant working directories can be found at 
minerval:/mnt/minerval/nip/projects/mt/work/moses_tests/work_acquis_part_[l 015 0]_[libma| pdt] [11 
213]/ 
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Scenario / 
corpus part 

100% 50% 10% 

Sentences 150770 76192 14816 
No pre-processing 48,89 43,90 34,62 

Libma scenario 1 48,86 44,02 35,04 
Libma scenario 2 48,99 44,38 35,30 
Libma scenario 3 49,27 44,60 35,22 

PDT scenario 1 48,58 43,75 34,89 
PDT scenario 2 48,90 44,16 35,52 
PDT scenario 3 49,36 44,38 35,42 

Max increase 
(% BLEU) 0,47 0,70 0,90 

Table 3.4 Morphological pre-processing of parts of the Acquis corpus 

Indeed, we can see that corpus size is in indirect proportion to the significance of morphological 
pre-processing. Moreover, we see that Acquis benefits a bit more from the pre-processing (if we 
subtract the effects of the fact that Acquis has more sentences). 

3.1.4 Combination of individual factors 
Now that we have researched several factors that increase the BLEU score, we proceed to build a 
system that combines the best factors together. We will take the Kacenka corpus along with a 
dictionary, pre-process it with Libma according to scenario 3 and use it to train the translation 
model. Then we take the combination of Kacenka + Books 2 corpora to train the language model. 
Let's see the final BLEU in Figure 3.12. 

Figure 3.12 Final system combination 6 7 

We raised the BLEU from 17.71 (base system) to 19.56 (system combination). 

6 7 The relevant working directory for the combination system can be found at 
minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/work_kacenka_best/ 
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Let's now see the most important thing - the actual translations! After all, BLEU is only an 
automatic tool to give as an idea of the system performance. But do the sentences read fluently 
and are they of any use at all? See Table 3.5. 

Input Czech sentence Output English sentence Reference English sentence 
1 Na to bych moc nespoléhal. He was not relying on it. Shouldn't build on it if 1 were 

you. 
2 Pablo nás tu nechal hnít v 

nečinnosti. 
Pablo left us rot in idleness. Pablo has rotted us here with 

inaction. 
3 Přišel Anselmo se sekyrou. Anselmo came the ax. Anselmo came up with the ax. 
4 Neměl se však k odchodu, 

zřejmě aby si mohl prohlédnout 
Dixonovu podlitinu na oku. 

But he had to leave, apparently 
to inspect the Dixonovu 
haematoma in his eye. 

He lingered, no doubt to 
examine Dixon's black eye. 

5 Chceš ještě nějaký větve? You want some branch? Do you wish more branches? 
6 Pravil Dixon odmítavě. Dixon said disapprovingly. Thanks, Dixon said dismissively. 
7 Zeptal se. He asked. He asked. 
8 Mně se zdá ten kulomet dobře 

schovaný. 
It seems that gun well hidden. To me it seems well hidden. 

9 Vyjeli na dlouhý úsek rovné 
silnice, svažující se uprostřed do 
mělkého dolíku, takže každý 
metr byl dokonale přehledný. 

He rode straight on a long 
stretch of the road, sloping 
cloud-roof in a shallow 
depression, so that every stere 
was perfectly clear. 

They entered a long stretch of 
straight road, with a slight dip in 
the middle so that every yard of 
its empty surface was visible. 

10 Větve už ne, řekl Robert Jordán. And no more, Robert Jordan 
said. 

Not branches, Robert Jordan 
said. 

Table 3.5 Example translations from best system combination (Kačenka) 6 8 

At first glance you see that the system really works and most of the sentences do read fluently 
and give (some) sense. However, a close inspection reveals that in some cases the meaning 
changes, even if the mistake is minor. 

Take the first sentence right away. The meaning shifts quite considerably. The original is about 
person A giving advice to person B, reflecting the situation of person B. The translation shifts the 
meaning so that a reader could, without a context, assume that person B has already acquiesced 
in the attitude of person A or that person B never actually relied on it. Now consider for example 
an automatic web translation. If the reader had no knowledge of the original language and did 
not see the original sentence, he could infer incorrect conclusions about the interaction between 
person A and person B. 

The second sentence, on the other hand, is an almost perfect translation (it only omitted here, 
which could probably be inferred from the context). The third sentence is grammatically 

6 8 The sentences come from the test set of Kacenka. The recasing and detokenization have been done 
automatically with the recase.perl and detokenizer.perl scripts. The recaser has been trained with the 
train-recaser.perl script. All the listed scripts are part of the Moses system package. Finally, the recasing 
and detokenization has been manually corrected. This was done to improve readability. After all, the 
original Kacenka corpus is lowercased so the recaser could not be properly trained. The actual words have 
naturally been left intact. 
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incorrect but we could suppose the reader could easily infer the with conjunction. The fourth 
sentence is similar to the first sentence. It completely negates the first proposition. 

The following sentences resemble the cases already discussed. 

3.1.5 Final notes 
Despite all the imperfections of the final system we do think that the system could possibly be 
used as an aid for a professional translator to make his/her work more productive. However, in 
case of an automatic translation (like web translation) we should be aware that it can lead to 
quite severe meaning shifts. 

Reflecting the final translations, the next iteration of our system's improvement should 
definitively start with morphological analysis of the negation in Czech verbs and an isolation of 
the ne (not) token out of the verb. Maybe the system would then correctly translate sentences 1 
and 4. 

You may ask: Why didn't we carry out tuning on the final system? This is because we attempted 
the tuning both with the mert-moses.pl and the mert-moses-new.pl scripts but the BLEU actually 
dropped for the test set in both cases (from 17.71 to 16.97 and 17.06, respectively). We could 
not find a clue as to why this happens so we did not tune the data. 

Furthermore, it may be objected that we insufficiently played with various settings of the tools 
used for training (thresholds for GIZA++, n-gram order of SRILM, decoder weights from 
moses.ini etc.). That is true. Nevertheless, we had to choose certain limits and trade-offs when 
deciding upon the contents of this thesis and given the fact that most of the tools are not 
analyzed down to the implementation level in the theoretical part of the work, this task would 
eventually require much more space and time in order to be carried out properly. 

The final question is: Can the morphological pre-processing possible compensate for an 
inadequately small training corpus? From our experiments it follows that such a simple pre
processing which we have done is quite ineffective. We get better results simply by feeding the 
language or translation model with a bit more parallel data (be it Books 2 or another fiction 
corpus). 

3.2 Training for WMT 10 
In the final part of this thesis, we attempt the Translation task from the ACL 2010 Joint Fifth 
Workshop on Statistical Machine Translation (European Commission, 2010a) and compare the 
results to the best system from Euromatrix Viewing Matrix (Euromatrix Project, 2010c). 

We start with the training portion of the CzEng 0.9 corpus, train the models and test the system 
on the test data from WMT 10 workshop. Next, we repeat the scenario but this time, we 
concatenate the CzEng 0.9 corpus training data with the training data from WMT 10 (we denote 
this corpus as WMT 10). Thirdly, we add morphological pre-processing to the second scenario. 
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We use the Libma library (third scenario - lemmatization, adding pseudo words; leaving 
frequent word forms intact). We must be careful when determining which words are to be 
marked as frequent. We decided to extract frequent words only from a combination of the 
training and developing set of the WMT 10 corpus. 

Figure 3.13 shows the results. The last column corresponds to the best system from the 
Euromatrix Viewing matrix for WMT 10 based on the Moses system (named CU Moses CS->EN 
WMT10). Now actually, the very best system based on BLEU is the Google CS->EN system with 
BLEU 23.4 but here we primarily want to do the comparison of the systems based on Moses 6 9 . 

CzEng0.9 CzEng0.9+ CzEng0.9+ Bojar reference 
WMT10 WMT10+Libma WMT10 

3 

Figure 3.13 Individual scenarios of the WMT 10 Translation Task and their B L E U 7 0 

As you can see, our system loses 0.21 % BLEU to the Moses CS->EN WMT10 system. 

Finally, we wil l look the Example translations (Table 3.6). 

Input Czech sentence Output English sentence Reference English sentence 
1 Barack Obama dostane jako 

čtvrtý americký prezident 
Nobelovu cenu míru 

Barack Obama gets as the 
American President the Nobel 
Peace Prize 

Barack Obama becomes the 
fourth American president to 
receive the Nobel Peace Prize 

2 Americký prezident Barack 
Obama přiletí do norského Osla 
na 26 hodin, aby si zde jako 
čtvrtý americký prezident v 
historii převzal Nobelovu cenu 
míru. 

President Barack Obama will 
arrive in Oslo, Norway on 26 
hours to get here as the 
American president in history 
took the Nobel Peace Prize. 

The American president Barack 
Obama will fly into Oslo, Norway 
for 26 hours to receive the Nobel 
Peace Prize, the fourth American 
president in history to do so. 

3 Diplom, medaili a šek na 1,4 
milionů dolarů dostane mimo 

The diploma, medals and a check 
for $1.4 million gets in efforts to 

He will receive a diploma, medal 
and cheque for 1.4 million 

6 9 Another imperfection to note is that our system has been evaluated with the multi-bleu.perl script while 
the WMT10 systems are evaluated with the mteval-vl lb .pl script. However, both these scripts compute a 
standard BLEU score on lowercased data. 
7 0 The work can be found at minerval:/mnt/minerval/nlp/projects/mt/work/moses_tests/ in the 
following directories: work_czeng2_base, work_czeng2_news_base, and work_czeng2_news_libma3. 
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jiné za výjimečné úsilí o posílení 
světové diplomacie a spolupráce 
mezi národy. 

strengthen the world diplomacy 
and cooperation among nations. 

dollars for his exceptional efforts 
to improve global diplomacy and 
encourage international 
cooperation, amongst other 
things. 

4 Šéf Bílého domu přiletí do 
norské metropole ráno i s 
manželkou Michelle a bude mít 
napilno. 

The chief of the White House to 
Norwegian metropolis morning 
with his wife, Michelle, and will 
have been busy. 

The head of the White House 
will be flying into the Norwegian 
city in the morning with his wife 
Michelle and will have a busy 
schedule. 

5 Nejprve zavítá do Nobelova 
institutu, kde se vůbec poprvé 
setká s pěti členy výboru, který 
ho v říjnu vybrali ze 172 lidí a 33 
organizací. 

First come to the Institute, 
where the first meets with five 
members of the Committee, in 
October the 172 people and 33 
organisations. 

First, he will visit the Nobel 
Institute, where he will have his 
first meeting with the five 
committee members who 
selected him from 172 people 
and 33 organisations. 

Table 3.6 Example translations of our system (WMT 10) 

As you can see, the translation completely misses the fourth numeral in the first and second 
sentence. Another problem may be an unclear specification of subject (due to the pronoun pro-
drop nature of Czech). However, we could assume that the reader would in some cases be able to 
infer the subject from context 

3.2.1 Final notes 
Despite the abovementioned imperfections, the output sentences are quite readable and faithful 
to the original. We suppose this is mainly due to the considerable size of the CzEng 0.9 corpus. 
We saw that our morphological pre-processing had only minor effects on the BLEU. 

We did not outperform the reference system from EuroMatrix Viewing Matrix. However, we did 
come quite close and we gained valuable working experience with state-of-the-art statistical 
machine translation. 
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Conclusion 

This Master's thesis elaborated both on theory and practical issues concerning building a 
statistical machine translation system. The cornerstone and the main deliverable of the thesis is 
its empirical part. Firstly we thoroughly analyzed the time requirements of multithreaded 
modifications of GIZA++ word alignment tools. Secondly we empirically analyzed several factors 
that influence the quality of the translations of the SMT system. 

We showed that by using MGIZA++ we can reduce the time needed to perform word alignment 
down to about 20 % (depending on the corpus characteristics; compared to standard GIZA++). 
Furthermore, we found out that running PGIZA++ on a cluster may exceed the performance of 
MGIZA++ but only if the corpus is large. We also learnt that using PGIZA++ is more complicated 
than using MGIZA++. 

As to the quality of the translations, we determined that the relation between corpus size and 
the resulting BLEU is roughly linear. We found out that incorporating extra bilingual data from 
the same domain into the language model improved BLEU quite considerably. We showed that 
including a bilingual dictionary or doing a morphological pre-processing on the Czech input can 
slightly increase BLEU. We also saw that the effects of morphological pre-processing are in 
indirect proportion to corpus size, and that the simplest pre-processing (pure lemmatization) 
can in fact decrease BLEU. 

Finally, we demonstrated that our system's performance is comparable to the performance of 
best systems in the Euromatrix Viewing Matrix. 

After inspecting the final translations, we suggested that a possible future improvement of the 
system should focus on a more sophisticated morphological pre-processing of Czech verbs. The 
rationale for this is to eliminate certain mistakes that could lead to misinterpretation of the 
translated sentences. 

There are also other possible ways of improving the system. We could play with various 
parameters of the tools (GIZA, SRILM, Moses decoder). We could also completely abandon Moses 
and use for example Cunei or Joshua. 

In the course of working on the project, several new things happened. At end of 2009, Qin Gao 
announced that the development of PGIZA++ had been discontinued and that his efforts 
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concentrate on MGIZA++, which is now integrated with Chaksi and can be run on Hadoop 
Clusters (Gao, 2009). 

Another update comes from the Moses system. One of the additions listed for year 2010 is the so 
called Experimental management system whose purpose is actually quite similar to what this 
thesis dealt with: It should help you doing experiments with Moses and compare its 
performance under different scenarios. 

To sum it up, we saw that machine translation is no science fiction. Computers are able to do 
translation and can help people gain access to information which they would otherwise not 
understand. The SMT can also improve the productivity of professional translators. 
Nevertheless, we must be aware of the limitations of machine translation and especially, of 
seemingly insignificant meaning shifts that can, in fact, have severe consequences. Despite all the 
improvements and active research in the field of natural language processing the author believes 
that professional human translators and interpreters can never be fully substituted by a 
computer. 
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Appendix A - Scripts created 
This section lists important python scripts that have been created for this project In case that 
the entire script or its part has been inspired by another script found on the Internet, the URL of 
the source is stated in the script header. 

The scripts are stored at minerval:/mnt/minerval/nlp/projects/mt/tools/myown/ and on the 
accompanying CD as well. Al l the scripts need to be interpreted with Python. Some of them may 
require being located in a specific directory (due to relative paths). In such case, the script 
header contains a hint as to which directory the script should be run from. 

1 Corpora preparation 
Script Description 

czeng.py Preparation of the CzEng 0.9 corpus. 
dict.py Preparation of Czech-English dictionary. 

kacenka.py Preparation of the Kacenka corpus. Section 2.1.1.1 gives a comprehensive 
description of this script. 

myclean.py This script cleans the input corpus from unnecessary quotation marks and 
apostrophes. 

unwrap-xml.py This script eliminates SGML formatting from the input corpus and returns plain 
text on output. 

2 GIZA++ training 
Script Description 

preparegiza.py Copies supporting files (*.vcb, *.classes, *.cats etc.) for GIZA++ run from one 
location to another. 

traingiza.py Trains a corpus with MGIZA++. 

3 Moses training 
Script Description 

frequent_words.py Prints a list of words that occur in the input corpus with a frequency exceeding 
the given frequency limit. 

morphologyjna.py Does a morphological pre-processing on the input corpus using the Libma 
library. 

morphology_ma_env.py This script is an envelope for the morphologyjna.py script and should be run in 
case the morphology.py scripts uses too much memory, gets a SIGABRT and 
cannot finish the work on large corpora. 

morphology_pdt.py Does a morphological pre-processing on the input corpus using the Prague 
Dependency Treebank. 

moses.py This is the main script used for testing and tuning various modifications of the 
Moses system. 
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Appendix B - Working directories 
The root directory of the thesis is minerval:/mnt/minerval/nlp/projects/mt/. It contains these 
subdirectories: 

.../mt/ Description 
/corpora/ This directory contains all corpora. The names of the subdirectories 

correspond to names of the corpora. Some of the directories contain 
combinations of two corpora. Refer to section 2.3.2.1 on how the 
combination corpora have been created. 

/tools/ This directory contains both sources and executables of third-party tools 
used throughout the work. 

/work/ In this directory, all work has been accomplished. 
/work/czeng_preprocessing/ Preparation of the CzEng 0.9 corpus (see section 2.1.5.1) 
/work/dict_preprocessing/ Preparation of Czech-English dictionary (see section 2.1.7) 
/work/ kacenka_preprocessing/ Preparation of the Kacenka corpus (see section 2.1.1.1) 
/work/mgiza_tests/ Performance tests of MGIZA++ (see section 2.2.1) 
/wo r k/m oses_tests/ Tests of the Moses system (see chapter 3) 
/work/pgiza_tests/ Performance tests of PGIZA++ (see section 2.2.2) 

Appendix C - Corpora statistics 
Sentences Czech tokens English tokens Average 

sentence 
Total size 

(UTF-8) 
Acquis 234 320 5 804 785 6 752 251 26,8 words 71 MB 

Books 2 982 937 12 467 864 14 602 134 13,8 words 133 MB 
CzEng 0.7 1 096 940 15 292 171 17 868 659 15,2 words 184 MB 
CzEng 0.9 8 029 801 80 256 429 92 522 247 10,8 words 890 MB 
Kacenka 2 118 285 1 523 903 1 697 637 13,7 words 17 MB 

Open Subtitles 377 623 2 458 480 3 086 874 7,4 words 25 MB 
WMT10 99 756 2 171 419 2 378 823 22,9 words 27 MB 
Lite Diet 80 960 93 948 99 292 1,2 words 2 MB 
Full Diet 293 020 515 576 597 341 1,9 words 8MB 

All corpora are stored in the minerval:/mnt/minerval/nlp/projects/mt/corpora/ directory. 

The token counts are measured after tokenization. 
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