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Abstract

The single photon subtraction is an operation commonly employed in
production of non–Gaussian states of light. Its primary disadvantage
lies in its limited probability of success. In this thesis, we propose a
modification of the method, addressing this drawback. The proposed
enhancement relies on chaining the individual single photon subtrac-
tion operations in a repeat–until–success fashion. We analyze the ben-
efits of this iterative approach using the overall probability of success
and the negativity of the successfully subtracted states. We present a
significant increase of the success rates for obtaining maximally non–
Gaussian states.

Keywords

continuous variables quantum optics, continuous variables
quantum information theory, single photon subtraction, squeezed
states, non-Gaussian states, adaptive operations



Abstrakt

Odebrání jednoho fotonu je běžně užívanou operací při přípravě
ne–Gaussovských stavů světla, jejíž hlavní nevýhodou je omezená
pravděpodobnost úspěchu. Navrhovaná úprava zaměřující se na tento
problém spočívá v zřetězení jednotlivých odebíracích procedur ve
smyslu opakuj–dokud–neuspěješ. Výhody takovéhoto iterativního přís-
tupu jsou analyzovány s pomocí celkové pravděpodobnosti úspěchu
a negativity stavů, ze kterých byl foton úspěšně odebrán. Výz-
namné zvýšení pravděpodobnosti úspěchu při získání stavů s nejvyšší
dosažitelnou negativitou je představeno.

Klíčová slova

spojité proměnné v kvantové optice, spojité proměnné v kvantové
teorii informací, odebrání jednoho fotonu, stlačené stavy,
ne-Gausovské stavy, adaptivní operace
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Introduction

In the recent years the quantum optics has come quite a long way to play an impor-
tant role in the field of quantum information theory mainly due to its accessibility
in experimental implementations of various theoretical concepts [1].

One of the interesting aspects of light is its relative resilience to decoherence.
However, the very same property is its greatest shortcoming as it makes most phys-
ical interactions nearly impossible, especially on the level of individual photons.
As a consequence, fields of light may only be manipulated with linear optical
elements, either passive or active, comprising a subset of Gaussian operations.
Unfortunately such operations are not applicable in many interesting concepts of
quantum information theory, e.g, universal quantum computation [2], entangle-
ment distillation [3], as these require at least cubic non–linear operations [1, 4].

A lot of attention has been therefore dedicated to finding non–Gaussian opera-
tions and methods of preparation of non–Gaussian states with a degree of success,
as methods such as projective measurements on number states [5, 6], single photon
addition [7, 8] and subtraction [9, 10, 11, 12] have been successfully implemented
to yield highly non–Gaussian states of light.

In this thesis an improved version of the single photon subtraction proce-
dure [9, 10] is proposed with the intention of enhancing the general performance
of the procedure along with the probability of a successful subtraction of a single
photon.

In chapter I of the thesis, the necessary theoretical framework is briefly intro-
duced. In chapter II a theoretical model of the original single step subtraction
procedure [9] is derived both in the general quantum notation and the phase space
representation. Consequently the improved iterative subtraction procedure is in-
troduced in detail in chapter III, where it is also accompanied by a thorough
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analysis of mathematical properties of the conclusions arising from phase space
description of the iterative procedure.

The effects of both the single step and the iterative procedures on the class of
squeezed states of light are compared in chapter IV in terms of the overall success
probability and negativity of the resulting non–Gaussian state.

The notation and used symbols

There are quite many different symbols used in this thesis. The rather standard
Dirac notation [13] of kets and bras is adopted to describe general quantum states.
The Hermitian conjugate operation is denoted using the † (dagger) symbol. In this
respect, the symbol ϱ is almost exclusively used for density operators, 1 always
indicates an identity operator, x and p represent the equivalents of position and
momentum operators.

However, x and p can also refer to quadrature variables in the phase spece
description, where such entities are often collected in column vectors denoted us-
ing ξ = (x1, p1, . . . , xχ, pχ)

⊺. The symbol ξχ then always refers to the (xχ, pχ)
⊺

subset of the vector ξ.

Gaussian states are characterized by vectors of mean values µ and variance
matrices σ. In the current consideration, the variance matrices of the initial and
resulting Gaussian states are exclusively diagonal, i.e, σ = diag (ν1, ν2, . . . ).

Wigner functions of general operators ϱ are denoted with the symbol Wϱ and
Gaussian Wigner functions of zero vectors of mean values are expressed as G (ξ, σ)

using their respective variance matrices.

Finally, I indicates the identity 2× 2 matrix and O a 2× 2 matrix of zeroes.
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Chapter I

A brief overview of the essential
theoretical framework

1 Continuous variables

Traditionally a pair of distinct approaches is used in the quantum information
theory. On one hand, observables of discrete spectra, e.g., polarization states or
excitation levels of atomic ensembles, are used to encode the information in a dig-
ital manner. On the other hand, observables of continuous spectra, e.g., position
or momentum of a particle, are used in an analogue manner. The latter approach
is commonly referred to as the quantum information theory with continuous vari-
ables [14, 4].

An arbitrary quantum system is called a continuous variable system if the
dimension of the associated Hilbert state space is infinite [14, 15]. A typical con-
tinuous variable system prevalent in the scope of quantum optics is the quantised
electromagnetic field, which might be modelled as a collection of one dimensional
non–interacting quantum harmonic oscillators with different oscillation frequen-
cies. Each individual oscillator is usually referred to as an oscillation mode of the
underlying electromagnetic field or only as a mode for short [1, 15]. Only single
oscillatory modes are considered in the context of this thesis.

The quantum state of each oscillatory mode of the field can be naturally
described in the number representation, i.e., expressed in the basis of eigen-
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states {|n⟩} of the number operator n = a†a comprising the creation a† and annihi-
lation a operators of the field excitation. Alternatively the state may be described
in the wave function representation [14, 16] employing the eigenstates {|x⟩} of
the position operator x, which can be together with the momentum operator p
obtained in the form of a combination of the creation and annihilation operators

x =
a+ a†√

2
, p =

a− a†√
−2

(I.1)

adhering to the canonical commutation relation [x, p] = ı.

2 Phase space representation,
Wigner distribution functions

The concept of a phase space description is widely employed in the classical sta-
tistical physics to characterize physical systems by probability distributions. The
probability of finding a physical system in a certain state is then given by the prob-
ability distribution in question [17]. This approach, however, can not be directly
transcribed to the context of quantum mechanics due to the uncertainty relations
arising from the exclusive nature of the physical quantities (position, momentum)
used to characterize the physical system.

This issue is quite elegantly resolved with the introduction of quasiprobability
distributions [14, 15], which relax some of the Kolmogorov axioms [18]. Although
the quasiprobability distributions share some mathematical properties with the
classical probability distributions, there are several major differences, such as the
possibility of attaining negative values or being singular.

A Wigner distribution functions

Even though there are different quasiprobability distribution functions utilized in
the phase space representation of quantum states, only the Wigner distribution
function [14, 15, 19] is introduced in this chapter.

Wigner function associated with an arbitrary quantum state of a single mode
of light characterized by the density operator ϱ is obtained by employing Wigner’s
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transformation formula

Wϱ (x, p) =
1

π

+∞∫
−∞

exp (2ıpq) ⟨x− q | ϱ | x+ q⟩ dq . (I.2)

Some of the more interesting mathematical properties of Wigner functions [14, 15]
include (i) — (iv).

(i) Wigner functions are real for Hermitian operators ψ,

Wϱ (x, p) ∈ R ∀ϱ ∈
{
ϱ
∣∣ ϱ = ϱ†

}
. (I.3)

(ii) Wigner functions are normalized,

+∞∫
−∞

+∞∫
−∞

Wϱ (x, p) dx dp = 1 . (I.4)

(iii) Marginal probability distributions are obtained in the usual manner,

⟨x | ϱ |x⟩ =
+∞∫

−∞

Wϱ (x, p) dp ,

⟨p | ϱ | p⟩ =
+∞∫

−∞

Wϱ (x, p) dx .

(I.5)

(iv) Wigner functions of physical states are bound,

|Wϱ (x, p)| ≤ π−1 . (I.6)

An overlap of two arbitrary operators ϱ, ψ may be obtained using the overlap
formula

Tr (ϱψ) = 2π

+∞∫
−∞

+∞∫
−∞

Wϱ (x, p)Wψ (x, p) dx dp , (I.7)

which is one of the most remarkable properties of Wigner functions [15] and may
be used in a variety of applications, e.g., to obtain transition probabilities and the

8



purity of quantum ensembles. Similarly, the respective statistical moments

µn(x) =

+∞∫
−∞

+∞∫
−∞

Wϱ (x, p)x
n dx dp ,

µn(p) =

+∞∫
−∞

+∞∫
−∞

Wϱ (x, p) p
n dx dp

(I.8)

of the quadrature operators x and p may be derived using (I.5). Wigner’s for-
mula (I.2) may be extended [14, 4] to apply to multimode product states

Wϱ (ξ) =
1

πχ

+∞∫
−∞

· · ·
+∞∫

−∞

exp (2ıp · q) ⟨x− q | ϱ |x+ q⟩ dq1 · · · dqχ , (I.9)

where x, p, q ∈ Rχ with the integer χ ∈ N denoting the number of modes in
the system. The vector ξ = (x1, p1, . . . , xχ, pχ)

⊺ ∈ R2χ comprises the quadrature
variables of individual modes.

The previously obtained properties (i) — (iv) hold even for multimode (mul-
tipartite) Wigner functions with minor adjustments of the integration variables.
The overlap formula (I.7) can be also adopted to represent partial overlaps

Trχ (ϱψ) = 2 π

+∞∫
−∞

+∞∫
−∞

Wϱ (ξ)Wψ (ξ) dxχ dpχ (I.10)

where χ refers to the mode the partial overlap is performed over.

B Wigner functions of pure number states

It is only appropriate to derive Wigner functions of pure number states, which
were briefly introduced in the section I.1. An arbitrary number state |n⟩ may be
obtained [15, 16] by applying the creation operator a† to the vacuum state |0⟩

|n⟩ = (a†)n√
n!

|0⟩ . (I.11)
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The respective Wigner function is then derived [15, 20] using the transformation
formula (I.2), yielding a

W|n⟩⟨n|(x, p)
1

2π
Ln
(
x2 + p2

)
(−1)n exp

(
−2−1(x2 + p2)

)
, (I.12)

where Ln (u) represents Laguerre polynomial [21] of the order n.

3 Gaussian states and Gaussian operations
in the continuous variable quantum optics

Gaussian states [1, 2] are relevant in the continuous variable quantum optics, as
such states are produced by some of the most common sources of electromagnetic
radiation, such as lasers or black bodies. The class of Gaussian states includes
but is not limited to coherent states, thermal states and even the vacuum state |0⟩
related to vacuum fluctuations.

The eventual Gaussian nature of interacting states is preserved by Gaussian
operations, which include some of the most common optical elements used to
manipulate light, e.g., two mode beam spliterrs, phase shifters and both the single
and two mode squeezers [15, 1, 14].

A Gaussian states

An arbitrary multipartite quantum state characterized by the density operator ϱ
is a Gaussian state if and only if the corresponding Wigner function Wϱ is found
in the form of a Gaussian distribution

Wϱ (ξ) =
1

(2π)χ
√

det (σ)
exp

(
−1

2
(ξ − µ)⊺ σ−1 (ξ − µ)

)
, (I.13)

where ξ, µ ∈ R2χ, σ ∈ R2χ×2χ with χ indicating the number of optical modes and
the vector ξ = (x1, p1, . . . , xχ, pχ)

⊺ comprises the quadrature variables pertaining
to the individual modes similarly to (I.9).

The symbols σ and µ in (I.13) represent the variance matrix and the vector of
mean values of the multipartite Gaussian distribution. A Gaussian state is there-
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fore completely characterized by the first two moments, µ and σ of the quadrature
operators. In this document every Gaussian Wigner function (I.13) with zero
vector of mean values µ = 0 is denoted by symbol G (ξ, σ)

G (ξ, σ) =
1

(2π)χ
√

det (σ)
exp

(
−1

2
ξ⊺σ−1ξ

)
. (I.14)

A prime example of a Gaussian state is the vacuum state |0⟩ with the respective
Wigner function

W|0⟩⟨0| (x, p) = π−1 exp
(
−x2 − p2

)
= G ((x, p)⊺, σ) , (I.15)

where σ = diag (2−1, 2−1) and µ = 0.

B Gaussian operations

Interactions in quantum optics are generally described using unitary transforma-
tions, which might preserve the eventual Gaussian nature of the interacting states
of light. Transformations of this kind — labeled Gaussian operations — are
associated with at most quadratic interaction Hamiltonians in respect to the cre-
ation and annihilation operators of the field excitation, therefore affecting at most
a pair of modes of light [1, 14].

It is possible to express every Gaussian operation applied on a Gaussian state
in the form of a linear transformation V of the coordinate system in the phase
space representation, essentially ensuing in the linear transformation

σ → V σV ⊺ , µ→ V µ (I.16)

of the respective variance matrix σ and the vector of mean values µ of the Gaussian
state [1, 14]. Gaussian operations include linear optical elements such as the single
mode squeezer with 2× 2 transformation matrix

V (γ) =

(
γ 0

0 γ−1

)
, (I.17)

where the parameter γ specifies the squeezing gain (with the momentum p squeezed
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for γ > 1) and the two mode beam splitter with 4× 4 transformation matrix

V (ζ) =


√
ζ 0

√
1− ζ 0

0
√
ζ 0

√
1− ζ√

1− ζ 0
√
ζ 0

0
√
1− ζ 0

√
ζ

 , (I.18)

where the parameter ζ denotes its transmittance [1, 14, 15].

4 Measurement

One of the most general approaches used to describe measurement operations in
quantum physics uses the positive operator valued measure [1, 14] composed
of Hermitian positive operators (elements) Πγ corresponding to possible measure-
ment outcomes, where the operators Πγ add up to an identity operator 1.

A measurement operation with the outcome Πγ performed on the mode χ of
a multimode system characterized by the density operator ϱ yields a marginal
density operator

ϱ′ = Trχ [Πγϱ] (Tr [Πγϱ])−1 (I.19)

normalized with the probability of actually measuring the outcome Πγ given by

Pγ = Tr [Πγϱ] . (I.20)

The positive operator valued measure framework may be adopted in the phase
space representation with the aid of Wigner’s formula (I.9) and the remarkable
overlap formula (I.10), yielding

W γ
ϱ′ (ξ

′) = (Pγ)
−1 2 π

+∞∫
−∞

+∞∫
−∞

Wϱ (ξ)WΠγ (ξ) dxχ dpχ ,

Pγ = 2π

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫

−∞

+∞∫
−∞

Wϱ (ξ)WΠγ (ξ) dx1 dp1 · · · dxχ dpχ ,

(I.21)

where the vectors ξ = (x1, p1, . . . , xχ, pχ)
⊺ and ξ = (x1, p1, . . . , xχ−1, pχ−1)

⊺ com-
prise the respective quadrature variables.
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Chapter II

Single step single photon
subtraction procedure

The single step single photon subtraction procedure was originally conceived and
implemented [9] as a method of constructing non–Gaussian states of light. Both the
procedure itself and states transformed with the procedure were later on assessed
from a theoretical point of view [10]. The subtraction protocol was also utilized in
an experimental setting to increase the entanglement between Gaussian states [11]
and applied to arbitrary fields of light [12] prepared both in Gaussian and strictly
non–Gaussian states.

1 Breakdown of the procedure

The single photon subtraction is realized by reflecting a fragment of the signal
mode of light on a strongly unbalanced beam splitter and measuring the reflected
fragment of light in the idler mode on an avalanche photodiode. The subtraction
is considered successful if and only if the detector produces the positive detection
outcome, that is if it clicks.

A Ideal detection regime

The conceptual scheme of the subtraction presented in Figure II.1 is divided into
three parts, each pertaining to a different logical step of the procedure: a prepara-
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tion of both the signal and idler modes (1), tapping off a fraction of the signal mode
(2) and finally measuring the idler mode utilizing an ideal avalanche photodiode
in (3).

(1) (2) (3)

ϱ1

ϱ◦1, ϱ•1ϱ2

APD

BS

ζ

Figure II.1: The procedure transforms the initial signal mode density operator ϱ1 into
either ϱ•1 or ϱ◦1 based on the positive (Π•) or negative (Π◦) detection outcome of the idler
mode (ϱ2) measurement utilizing an ideal avalanche photodiode (APD).

A fragment of light from the signal mode is tapped off using a strongly unbalanced beam
splitter (BS) with transmittance ζ.

(1) The signal mode of light in an arbitrary state characterized by a density
operator ϱ1 is introduced into the procedure, along the idler mode of light
in a vacuum state, described by an appropriate density operator ϱ2. The
modes form a bipartite state, characterized by the density operator

ϱ = ϱ1 ⊗ ϱ2

= ϱ1 ⊗ |0⟩ 2 ⟨0|
(II.1)

obtained as tensor product ⊗ of the individual density operators ϱ1, ϱ2.

(2) The signal and idler modes interact on a strongly unbalanced beam splitter
with transmittance ζ ∈ (0, 1). The interaction is described by a Gaussian
unitary operator

U12 (ϑ) = exp
[
−ıϑ

(
a1a

†
2 + a†1a2

)]
, (II.2)

where ϑ = arccos
√
ζ. The density operator ϱ of the bipartite system is then

transformed by the beam splitter operation U12 (ϑ) into

ϱ′ = U12 (ϑ) ϱ U
†
12 (ϑ) . (II.3)
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As a result of the beam splitter interaction, the idler mode incorporates the
reflected fraction of the signal mode of light.

(3) Whether the subtraction procedure is successful or not is determined by the
idler mode measurement utilizing an ideal avalanche photodiode, which is
completely represented by a pair of positive operator valued measure ele-
ments [14] corresponding to the positive Π• = 1− |0⟩ 2 ⟨0| (click) and the
negative Π◦ = |0⟩ 2 ⟨0| (no click) detection outcomes.

Both the probabilities P• of a successful and P◦ of an unsuccessful subtraction

P• = Tr [ϱ′Π•] , P◦ = Tr [ϱ′Π◦] , (II.4)

along with the respective marginal density operators

ϱ•1 = Tr2 [ϱ′Π•] (Tr [ϱ′Π•])
−1 , ϱ◦1 = Tr2 [ϱ′Π◦] (Tr [ϱ′Π◦])

−1 (II.5)

are obtained using the positive valued measure operator formalism [14].

B Inefficient detection regime

So far the detection mechanism utilized an ideal avalanche photodiode detector. In
practice, however, the avalanche photodiode possesses a limited detection efficiency
only and has to be taken into account in the model of the single photon subtraction
procedure. Such a detector may be modeled [9, 22] using a virtual ancillary mode
of light in a vacuum state, which interacts with the original idler mode on a virtual
beam splitter of transmittance equal to the detection efficiency η ∈ (0, 1).

The revised conceptual scheme of the procedure is presented in Figure II.2, ac-
commodating the necessary modifications introduced by the model of an inefficient
avalanche photodiode. The scheme is divided into five parts — preparation of the
the signal, idler and the virtual ancillary modes (1), tapping off a fraction of the
signal mode (2), interaction of the idler mode with the virtual ancillary mode in a
vacuum state on te virtual beam splitter, accounting for losses due to the limited
detection efficiency in (3), discarding the virtual mode (4) and finally measuring
the idler mode utilizing an ideal avalanche photodiode in (5).
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(1) (2) (3) (4) (5)

ϱ1

ϱ◦1, ϱ•1ϱ2

ϱ3

DM

APD

BS

ζ BS

η

Figure II.2: The procedure transforms the initial signal mode density operator ϱ1 into
either ϱ•1 or ϱ◦1 based on the positive (Π•) or negative (Π◦) detection outcome of the idler
mode (ϱ2) measurement utilizing an inefficient avalanche photodiode, modeled with an
ideal photodiode (APD), a virtual beam splitter (BS) of transmittance η equal to the
efficiency of the detector and a virtual ancillary mode (ϱ3) in a vacuum state, which is
then discarded (DM).

A fragment of light from the signal mode is tapped off using a strongly unbalanced beam
splitter (BS) with transmittance ζ.

(1) In contrast with the ideal detection regime, an additional ancillary mode of
light in a vacuum state is introduced into the procedure, forming a tripartite
state characterized by the density operator

ϱ = ϱ1 ⊗ ϱ2 ⊗ ϱ3

= ϱ1 ⊗ |0⟩ 2 ⟨0| ⊗ |0⟩ 3 ⟨0| .
(II.6)

(2) As in the ideal detection regime, the signal and the idler mode interact on
a beam splitter of transmittance ζ ∈ (0, 1). The interaction is described by
the Gaussian operator (II.2)

U12 (ϑ) = exp
[
−ıϑ

(
a1a

†
2 + a†1a2

)]
, (II.7)

with the parameter ϑ = arccos
√
ζ. The tripartite density operator is then

transformed by the unitary operator U12 (ϑ) into

ϱ′ = U12 (ϑ) ϱ U
†
12 (ϑ) , (II.8)

where the marginal density operator ϱ′3 of the virtual ancillary mode remains
unchanged due to the structure of the U12 (ϑ) operator.
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(3) The inefficient avalanche photodiode is modeled using a virtual ancillary
mode of light in a vacuum state, which interacts with the idler mode on a
virtual beam splitter with transmittance equal to the efficiency η ∈ (0, 1),
accounting for the lossess caused by the limited efficiency of detection. The
beam splitter interaction is described by a Gaussian unitary operator similar
to (II.7)

U23 (κ) = exp
[
−ıκ

(
a2a

†
3 + a†2a3

)]
, (II.9)

with the parameter κ = arccos√η. The transformed density operator ϱ′′ is
obtained similarly to (II.8) in the form

ϱ′′ = U23 (κ) ϱ′ U †
23 (κ) . (II.10)

(4) The newly introduced virtual ancillary mode accounts for the losses in the
model of inefficient avalanche photodiode. It is discarded in order to actually
model the loss of information contained within the mode. The state is there-
fore traced out of the tripartite state (II.10), yielding a marginal bipartite
state characterized by the density operator

ϱ′′′ = Tr3 [ϱ′′] . (II.11)

The resulting marginal state is then measured by an ideal avalanche photo-
diode, in the very same fashion as the bipartite state in the ideal detection
regime.

(5) The detection process is the same as in the final part (3) of the ideal detection
regime, with the only difference being that the marginal density operator ϱ′′′
is used instead of ϱ′ in (II.4) and (II.5).

Both the aforementioned relations are derived for the operator ϱ′′′ obtained
in the previous step to provide an unified picture of the transformation of
the initial density operator ϱ1 induced by the subtraction procedure, yielding
the respective probabilities

P• = Tr
[
ϱ′′′Π•] = Tr

{
Tr3

[
U23 (κ)U12 (ϑ) ϱU

†
12 (ϑ)U

†
23 (κ)

]
Π•
}

, (II.12)

P◦ = Tr
[
ϱ′′′Π◦] = Tr

{
Tr3

[
U23 (κ)U12 (ϑ) ϱU

†
12 (ϑ)U

†
23 (κ)

]
Π◦
}

(II.13)
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and relations pertaining to the marginal density operators

ϱ•1P• = Tr2
[
ϱ′′′Π◦]

= Tr2
{

Tr3
[
U23 (κ)U12 (ϑ) ϱU

†
12 (ϑ)U

†
23 (κ)

]
Π•
}

,
(II.14)

ϱ◦1P◦ = Tr2
[
ϱ′′′Π◦]

= Tr2
{

Tr3
[
U23 (κ)U12 (ϑ) ϱU

†
12 (ϑ)U

†
23 (κ)

]
Π◦
}

,
(II.15)

where ϱ = ϱ1 ⊗ |0⟩ 2 ⟨0| ⊗ |0⟩ 3 ⟨0| was defined in (II.6).

2 Phase space representation,
Gaussian signal modes

The original objective of the subtraction procedure was to provide a method of cre-
ating non–Gaussian states of light. The method, along with its improved version is
later in chapter IV applied to signal modes of light in a particular class of Gaussian
states, i.e., squeezed vacuum states. The procedure is therefore described in the
phase space representation using Wigner quasiprobability distribution functions,
as these provide a rather convenient method of Gaussian state description.

A Inefficient detection regime

The description of the inefficient detection regime, which was done in the sub-
section II.1.B, is reproduced in the phase space representation. The assumption of
the signal mode of light being in a squeezed vacuum state allows further evaluation
and discussion of both the probability of successful (II.12) and unsuccessful (II.13)
subtraction and also of the relations (II.14) and (II.15) describing the transforma-
tion of the signal mode state. The conceptual scheme presented in Figure II.3 is
similarly to Figure II.2 divided into five parts.

18



(1) (2) (3) (4) (5)

σ1

σ◦
1, σ•

1σ2

σ3

DM

APD

BS

ζ BS

η

Figure II.3: The procedure transforms the initial signal mode variance matrix σ1 into
either σ•

1 or σ◦
1 based on the positive (WΠ•) or negative (WΠ◦) detection outcome of

the idler mode (σ2) measurement utilizing an inefficient avalanche photodiode, modeled
with an ideal photodiode (APD), a virtual beam splitter (BS) of transmittance η equal to
the efficiency of the detector and a virtual ancillary mode in a vacuum state (σ3), which
is then discarded (DM).

A fragment of light from the signal mode is tapped off using a strongly unbalanced beam
splitter (BS) with transmittance ζ.

(1) The signal mode of light is prepared in a Gaussian state characterized by
a diagonal variance matrix σ1 = diag (ν1, ν2) and a zero vector of mean val-
ues µ1. Both the idler and the virtual ancillary mode are found in vacuum
states characterized by their respective variance matrices σ2 = σ3 = 2−1

I and
zero vectors of mean values µ2, µ3.

The tripartite system is characterized by a diagonal 6× 6 variance matrix

σ = σ1 ⊕ σ2 ⊕ σ3

= σ1 ⊕ 2−1
I⊕ 2−1

I ,
(II.16)

which is obtained in the form of a direct sum ⊕ of the individual variance
matrices σ1, σ2 and σ3. The corresponding Wigner function Wϱ of the system
generally characterized by the density operator ϱ derived in (II.6) is readily
obtained either by directly multiplying the individual Wigner functions

Wϱ (x1, p1, x2, p2, x3, p3) = W1 (x1, p1)W2 (x2, p2)W3 (x3, p3) (II.17)

or by constructing the respective Gaussian Wigner function from the previ-
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ously derived variance matrix σ

Wϱ (x1, p1, x2, p2, x3, p3) = G (ξ, σ) , (II.18)

where the vector ξ = (x1, p1, x2, p2, x3, p3)
⊺ comprises the respective phase

space quadrature variables.

(2) Following that the beam splitter interaction is a Gaussian operation charac-
terized by unitary operators like (II.2) or (II.7), the transformed tripartite
state (II.8) remains Gaussian. The unitary operator (II.7) is in the phase
space representation characterized by the linear transformation of the vari-
ance matrix (II.16)

σ′ = [V (ζ)⊕ I]σ [V (ζ)⊕ I]⊺ (II.19)

with the matrix V (ζ) defining the linear transformation of an arbitrary beam
splitter operation in the form of

V (ζ) =


√
ζ 0

√
1− ζ 0

0
√
ζ 0

√
1− ζ√

1− ζ 0
√
ζ 0

0
√
1− ζ 0

√
ζ

 . (II.20)

(3) The inefficient avalanche photodiode is modeled using a virtual beam splitter
and a virtual ancillary mode in a vacuum state. The interaction of the virtual
and idler modes on the virtual beam splitter was described by the unitary
operator (II.9) in the previous section.

Similarly to the recently derived linear transformation (II.19), the variance
matrix σ′ is transformed into

σ′′ = [I⊕ V (η)]σ′ [I⊕ V (η)]⊺ (II.21)

by the virtual beam splitter, where the transformation matrix V (η) takes
the form of (II.20).

(4) The second ancillary mode used in the inefficient photodiode model is dis-
carded — it is traced out of the tripartite state characterized by the variance
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matrix σ′′. The marginal bipartite state is obtained with the aid of the
Wigner’s overlap formula (I.10) in the integral form

Wϱ′′′ (ξ
′) =

+∞∫
−∞

+∞∫
−∞

Wϱ′′ (ξ) dξ3

=

+∞∫
−∞

+∞∫
−∞

G (ξ, σ′′) dξ3 ,

(II.22)

where the vector ξ′ = (x1, p1, x2, p2)
⊺ comprises the remaining phase space

quadrature variables and the vector ξ3 = (x3, p3)
⊺ covers the quadrature vari-

ables related to the virtual ancillary mode.

Following the integrand G (ξ, σ′′) is a Gaussian function, the integration
in (II.22) results in a Gaussian Wigner function

Wϱ′′′ (ξ
′) = G (ξ′, σ′′′) (II.23)

characterized by the no longer diagonal 4× 4 variance matrix

σ′′′ = Y (η)V (ζ) [σ1 ⊕ σ2]V
⊺ (ζ)Y ⊺ (η) + 2−1

[
I− Y 2 (η)

][
O⊕ I

]
, (II.24)

where Y (η) = I⊕√
η I. The variance matrix σ′′′ is essentially the matrix σ′′

stripped off of the rows and columns pertaining to the virtual ancillary mode.

(5) As the relations (II.4) and (II.5) suggest, an ideal avalanche detector is char-
acterized by a pair of distinct outcome events represented by positive oper-
ator value measure elements Π◦ and Π• with respective Wigner functions

WΠ◦ (ξ′2) = G
(
ξ′2, 2

−1
I
)

, WΠ• (ξ′2) = (2π)−1 −G
(
ξ′2, 2

−1
I
)

, (II.25)

where ξ′2 = (x2, p2)
⊺. The first function (WΠ◦) represents the negative detec-

tion outcome (no–click), i.e., the unsuccessful execution of the procedure as
no photons are subtracted from the signal state, while the other one (WΠ•)
describes the positive detection event (click), i.e., the successful subtraction
of at least a single photon.

Both the outcome probability P◦ and the marginal Wigner function W ◦
1 (ξ

′
1)
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associated with the unsuccessful subtraction are obtained using the Wigner’s
overlap formula (I.10) from (II.13) and (II.15) with the help of (II.25)

P◦ = 2 π

+∞∫
−∞

+∞∫
−∞

Wϱ′′′ (ξ
′)WΠ◦ (ξ′) dξ′

= 2 π

+∞∫
−∞

+∞∫
−∞

G (ξ′, σ′′′)G
(
ξ′2, 2

−1
I
)

dξ′ ,

(II.26)

W ◦
1 (ξ

′
1)P◦ = 2 π

+∞∫
−∞

+∞∫
−∞

Wϱ′′′ (ξ
′)WΠ◦ (ξ′) dξ′2

= 2 π

+∞∫
−∞

+∞∫
−∞

G (ξ′, σ′′′)G
(
ξ′2, 2

−1
I
)

dξ′2 ,

(II.27)

where ξ′1 = (x1, p1) and ξ′2 = (x2, p2). Following that the composite integrand
in (II.27) is a Gaussian function, the marginal Wigner function W ◦

1 (ξ
′
1) is

Gaussian as well.

The probability P• and the marginal Wigner functionW •
1 (ξ

′
1) associated with

the successful subtraction are obtained similarly from (II.12) and (II.14)

P• = 2 π

+∞∫
−∞

+∞∫
−∞

Wϱ′′′ (ξ
′)WΠ• (ξ′) dξ′

= 2 π

+∞∫
−∞

+∞∫
−∞

G (ξ′, σ′′′)
[
(2 π)−1 −G

(
ξ′2, 2

−1
I
)]

dξ′

=

+∞∫
−∞

+∞∫
−∞

G (ξ′, σ′′′) dξ′ − 2 π

+∞∫
−∞

+∞∫
−∞

G (ξ′, σ′′′)G
(
ξ′2, 2

−1
I
)

dξ′

= 1− P◦ ,

(II.28)
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W •
1 (ξ

′
1)P• = 2 π

+∞∫
−∞

+∞∫
−∞

Wϱ′′′ (ξ
′)WΠ• (ξ′) dξ′2

= 2 π

+∞∫
−∞

+∞∫
−∞

G (ξ′, σ′′′)
[
(2 π)−1 −G

(
ξ′2, 2

−1
I
)]

dξ′2

=

+∞∫
−∞

G (ξ′, σ′′′) dξ′2 −W ◦
1 (ξ

′
1)P◦ ,

(II.29)

where the marginal Wigner function W •
1 (ξ

′
1) is no longer Gaussian, as it is

a linear combination of two Gaussian functions.

B Negative detection outcome

The Gaussian Wigner function (II.27) of the unsuccessfully subtracted state is
characterized by a diagonal variance matrix σ◦

1. Notably the relation between σ◦
1

and the initial variance matrix σ1 = diag (ν1, ν2) of the signal mode is found to be

σ◦
1 = diag (Ξ (ν1) ,Ξ (ν2)) , (II.30)

where the function Ξ (ν) defines the transformation of each diagonal element ν1, ν2

Ξ (ν) =
1

2
+

ζ (2ν − 1)

2 + η (1− ζ) (2ν − 1)
, (II.31)

while the probability relation (II.26) of unsuccessful subtraction is found to be

P◦ (σ1) =
2√

det [2I+ η (1− ζ) (2σ1 − 1)]
(II.32)

with the argument σ1 emphasizing the dependence of the probability on the vari-
ance of the signal mode. Moreover the Gaussian Wigner function (II.27) may be
expressed as

W ◦
1 (ξ

′
1) = G (ξ′1, σ

◦
1) (II.33)

with the knowledge of the recently derived variance matrix σ◦
1 of the unsuccessfully

subtracted state.
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C Positive detection outcome,
successful subtraction of a single photon

The non–Gaussian Wigner function (II.29) of the unsuccessfully subtracted state
can not be described by a single variance matrix; the normalized Wigner function
is a weighed linear combination

W •
1 (ξ

′
1) =

1

P•(σ1)

[
G

(
ξ′1,

I+ ζ(2σ1 − I)

2

)
−G(ξ′1, σ

′
1)P◦(σ1)

]
, (II.34)

which depends on the variance matrix σ1 of the signal mode, the Gaussian Wigner
function W ◦

1 (ξ
′
1) = G (ξ′1, σ

◦
1) of the unsuccessfully subtracted state and both the

probabilities of successful and unsuccessful detection probability. The former prob-
ability P• (σ1) is readily obtained in the relation (II.28) as

P• (σ1) = 1− P◦ (σ1) . (II.35)

Formally the W •
1 (ξ

′
1) derived in (II.34) is a function of the vector ξ′1 = (x1, p1), the

variance matrix σ1 and the matrix σ◦
1 readily obtained in (II.30).
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Chapter III

Iterative single photon
subtraction procedure

An improved version of the single step single photon subtraction procedure is
introduced in this chapter with the intention of enhancing the probability of a
successful subtraction of a single photon.

The most significant difference between the original and the improved pro-
cedure lies in the manner in which the unsuccessful subtraction is handled: in
contrast to the original version, the unsuccessfully subtracted states are itera-
tively recycled until the procedure either finally succeeds or a reasonable number
of attempts (iterations) is exceeded. This can be achieved, for example, by em-
ploying an optical resonator equipped with a shutter [23]. Following the nature
of the modification, the proposed procedure is called iterative single photon
subtraction procedure.

1 Breakdown of the iterative procedure model

The iterative subtraction is realized with a number of individual single step pro-
cedures concatenated together; the conceptual scheme of the iterative procedure
presented in Figure III.1 is divided into three parts, each describing a different
stage of the iterative process, i.e., the preparation of the initial signal mode (1),
attempting the subtraction without any success (2) and eventually succeeding at
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it in (3).

(1) (2) (3)

(0)ϱ◦1

ϱ2

ϱ3

DM

APD
Π◦

BS

ζ BS

η

(S)ϱ•1ϱ2

ϱ3

DM

APD
Π•

BS

ζ BS

η

(S−1)ϱ◦1

Figure III.1: The iterative procedure eventually transforms the initial signal mode
density operator (0)ϱ◦1 prepared in the part (1) into (S)ϱ•1 in the iteration step (S). The
part (2) represents the preceding (S − 1) unsuccessful attempts at subtraction, until at
least a single photon is successfully subtracted in the part (3).

The conceptual scheme comprises several concatenated single step procedures, which
were described in detail in the subsection II.1.B. The symbol APD denotes an ideal
avalanche photodiode, BS a beam splitter and finally DM a mode discarder.

(1) The initial signal mode of light is prepared in an arbitrary state character-
ized by the density operator (0)ϱ◦1 similarly to the part (1) of the inefficient
detection regime introduced in the subsection II.1.B.
The upper left index (S) in (S)ϱ◦1 denotes the iteration step (S) in which the
the density operator of the signal mode was produced: the initial density
operator (0)ϱ◦1 is henceforth denoted by the (0) upper left index.

(2) The iterative subtraction procedure has not yet successfully subtracted any
photon from the signal mode of light in this stage. The probability of an
unsuccessful subtraction of a single photon from the signal mode of light in
a state characterized by the density operator (S−1)ϱ◦1 is derived by adopting
the relation (II.13).
However, the probability P◦

(
(S−1)ϱ◦1

)
in question only provides an incomplete

picture of the situation, as it fails to account for the conditional probability
of the procedure not succeeding in the previous steps of the iteration. The
conditional probability

(S)P◦ =
S∏

Z=1

P◦
(
(Z−1)ϱ◦1

)
(III.1)
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therefore yields a complete probability of an unsuccessful single photon sub-
traction in the iteration step (S) of the iterative procedure. The first term
of the product in (III.1) is assumed to satisfy the condition P◦

(
(0)ϱ◦1

)
= 1.

The density operator (S−1)ϱ◦1 is in each subsequent unsuccessful iteration
step (S) transformed according to the relation (II.15) into (S)ϱ◦1 with the
symbols ϱ1 and ϱ◦1 taken to be

ϱ1 → (S−1)ϱ◦1 , ϱ◦1 → (S)ϱ◦1 . (III.2)

(3) The iterative subtraction procedure eventually succeeds at subtracting at
least a single photon from the signal mode in the final iteration step (S).
The probability of a successful subtraction from the state characterized by
the respective density operator (S−1)ϱ◦1 is obtained by adopting (II.12). The
conditional probability is derived in the product form

(S)P• = P•
(
(S−1)ϱ◦1

)
(S−1)P◦ (III.3)

of the conditional probability (S)P◦ of an unsuccessful subtraction in previ-
ous iteration steps and the probability P• of a successful subtraction in the
current step. The relation can be further simplified into the form

(S)P• = P•
(
(S−1)ϱ◦1

)
(S−1)P◦

=
[
1− P◦

(
(S−1)ϱ◦1

)] S−1∏
Z=1

P◦
(
(Z−1)ϱ◦1

)
=

S−1∏
Z=1

P◦
(
(Z−1)ϱ◦1

)
−

S∏
Z=1

P◦
(
(Z−1)ϱ◦1

)
= (S−1)P◦ − (S)P◦ ,

(III.4)

which turns out to be quite handy in the following paragraph. The respec-
tive density operator (S)ϱ•1 of the successfully subtracted state is obtained
by employing the transformation (II.14), where the symbols ϱ1 and ϱ•1 are
substituted according to the

ϱ1 → (S−1)ϱ◦1 , ϱ•1 → (S)ϱ•1 . (III.5)
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The iterative single photon subtraction procedure was introduced as a clearly prob-
abilistic process; following its probabilistic nature it is only sensible to describe the
procedure using the resulting density operator ϱ(S)1 of the successfully subtracted
state in in up to S iteration steps. The overall probability Q(S) of a successful
subtraction of at least a single photon in up to S iteration steps is then derived as
a sum

Q(S) =
S∑

Z=1

(Z)P• (III.6)

of respective conditional probabilities (Z)P• of successful subtraction in individual
iteration steps. It is possible to further simplify the expression with the aid of the
expanded relation (III.4) into the form

Q(S) =
S∑

Z=1

(Z)P• =
S∑

Z=1

(Z−1)P◦ − (Z)P◦

= (0)P◦ − (1)P◦ +
(1)P◦ − (2)P◦ + · · · − (S−1)P◦ +

(S−1)P◦ − (S)P◦

= 1− (S)P◦ ,

(III.7)

which implies that the expression Q(S) yields a valid probability, as the condi-
tion 0 ≤ Q(S) ≤ 1 clearly holds. The resulting density operator characterizing the
successfully subtracted state in up to S iteration steps is obtained in the form of
a statistical mixture of individual density operators

ϱ
(S)
1 =

1

Q(S)

S∑
Z=1

(Z)P•
(Z)ϱ•1 . (III.8)

2 Phase space representation,
Gaussian signal modes

Similarly to the section II.2, the iterative single photon subtraction procedure is
described in the phase space representation as well. The signal mode is assumed
to be in a Gaussian state completely characterized by a diagonal variance matrix,
allowing a further evaluation of the relations obtained in the section III.1. The
conceptual scheme presented in the , is similarly to Figure III.1 divided into three
parts.
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(1) (2) (3)

(0)σ◦
1

σ2

σ3

DM

APD
Π◦

BS

ζ BS

η

(S)σ•
1

σ2

σ3

DM

APD
Π•

BS

ζ BS

η

(S−1)σ◦
1

Figure III.2: The iterative procedure eventually transforms the initial signal mode
density operator (0)σ◦

1 prepared in the part (1) into (S)σ•
1 in the iteration step (S). The

part (2) represents the preceding (S − 1) unsuccessful attempts at subtraction, until at
least a single photon is successfully subtracted in the part (3).

The conceptual scheme comprises several concatenated single step procedures, which
were described in detail in the subsection II.2.A. The symbol APD denotes an ideal
avalanche photodiode, BS a beam splitter and finally DM a mode discarder.

(1) The initial signal mode of light is prepared in a Gaussian state characterized
by a diagonal variance matrix

(0)σ1 = diag
(
(0)ν1,

(0)ν2
)

(III.9)

and a zero vector of mean values (0)µ1 = 0. Notably, the condition (S)µ1 = 0

holds for each iteration step (S) .

(2) The variance matrix (S)σ1 = diag
(
(S)ν1,

(S)ν2
)

is according to (II.30) trans-
formed with each subsequent unsuccessful iteration step. The relation (II.30)
yields a recurrently defined sequence

(S+1)σ1 = diag
(
Ξ
(
(S)ν1

)
,Ξ
(
(S)ν2

))
, (III.10)

which characterizes the evolution of the variance matrix in the course of the
iterative procedure. The recurrently defined sequence can be conveniently
expressed in the positional form

(S)ν =
1

2
+

ζS
(
2 (0)ν − 1

)
2 + η (1− ζS) (2 (0)ν − 1)

, (III.11)

where (S)ν stands for both the diagonal elements (S)ν1 and (S)ν2 of the (S)σ1.
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The sequence (III.11) depends solely on the pair of parameters ζ, η and the
initial variance matrix (0)σ1 = diag

(
(0)ν1,

(0)ν2
)
.

The probability of an unsuccessful subtraction of a single photon from the
signal mode of light in a state characterized by the variance matrix (S−1)σ1 in
the iteration step (S) is obtained by adopting the familiar equation (II.32).
The conditional probability (S)P◦ introduced earlier in (III.1) is derived here
as a product

(S)P◦ =
S∏

Z=1

P◦
(
(Z−1)σ1

)
(III.12)

of individual probabilities P◦
(
(Z)σ1

)
from (II.32).

(3) The probability of a successful subtraction in the iteration step (S) is ob-
tained (II.35). Similarly to (III.4) the conditional probability (S)P• is derived
in the form of

(S)P• = P•
(
(S−1)σ◦

1

)
(S−1)P◦ =

(S−1)P◦ − (S)P◦ . (III.13)

It was established in the section II.2 that the successfully subtracted mode
of light is no longer in a Gaussian state; its respective Wigner function is
obtained in (II.34) as a linear combination of a pair of Gaussian Wigner func-
tions. The adopted version of (II.34) in the iterative procedure constitutes

(S)W •
1 (ξ

′
1) =

1

P•((S−1)σ◦
1)
G

(
ξ′1,

I+ ζ(2 (S−1)σ◦
1 − I)

2

)
−

1

P•((S−1)σ◦
1)
G(ξ′1,

(S)σ◦
1)P◦(

(S−1)σ◦
1) .

(III.14)

In the preceding section the iterative single photon subtraction procedure was
characterized by a pair of equations (III.7) and (III.8), which gave a general de-
scription of effects of the subtraction procedure on fields of light in arbitrary states.
In this section, the vast amount of possible quantum states of light was limited to
the class of squeezed vacuum states; with this assumption the procedure was de-
scribed in the phase space representation, using the Wigner distribution functions
in particular.

Similarly to the section II.2, the constriction imposed on the class of discussed
states of light grants a possibility of further evaluation of the relations describing
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the effects of the procedure. The overall probability Q(S) of successful subtraction
in up to S iteration steps

Q(S) = 1− (S)P◦ (III.15)

is obtained similarly to (III.7), with the only difference arising from the formu-
lation of the probability (S)P◦ in (III.13). The successfully subtracted state is
characterized by a Wigner function obtained as a weighed linear combination of
Wigner functions pertaining to individual iteration steps

W
(S)
1 (ξ′1) =

1

Q(S)

S∑
Z=1

(Z)P•
(Z)W •

1 (ξ
′
1) , (III.16)

which may be expanded using (III.14) and (III.13) into

W
(S)
1 (ξ′1) =

1

Q(S)

S∑
Z=1

G

(
ξ′1,

I+ ζ(2 (Z−1)σ◦
1 − I)

2

)
(Z−1)P◦ −

G(ξ′1,
(Z)σ◦

1)
(Z)P◦ .

(III.17)

The introduction of the iterative subtraction procedure would be woefully incom-
plete without a proper analysis of certain mathematical properties of the rela-
tions (III.15) and (III.16), namely the (uniform) convergence.

A Probability of a successful subtraction

In order to show that the sequence Q(S) defined in (III.15) is indeed convergent,
it is imperative to investigate the conditional probability (S)P◦ of unsuccessful
subtraction first. The conditional probability was derived in (III.12) as a product

(S)P◦ =
S∏

Z=1

P◦
(
(Z−1)σ◦

1

)
=

S−1∏
Z=0

P◦
(
(Z)σ◦

1

)
(III.18)

of individual probabilities P◦
(
(Z)σ◦

1

)
. The respective diagonal variance matri-

ces (Z)σ◦
1 = diag

(
(Z)ν1,

(Z)ν2
)

are easily determined using (III.11), which is rewritten
into the form

(S)ν =
1

2
+

ζSχ

2 + η (1− ζS)χ
(III.19)
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using the substitution χ :=
(
2 (0)ν − 1

)
, where the symbol ν refers to both the

diagonal elements of (0)σ◦
1 = diag

(
(0)ν1,

(0)ν2
)
. It is highly advantageous to expand

the matrix determinant in the relation (II.32) into

P◦
(
(Z)σ◦

1

)
=

2√
det [2I+ η (1− ζ) (2 (Z)σ◦

1 − I)]

=
2√

2 + η (1− ζ) (2 (Z)ν1 − 1)
√
2 + η (1− ζ) (2 (Z)ν2 − 1)

=
2

√
αZ

√
βZ

,

(III.20)

while introducing another pair of substitutions

αZ := 2 + η (1− ζ)
(
2 (Z)ν1 − 1

)
= 2 + η (1− ζ)

ζZχ1

2 + η (1− ζZ)χ1

,

βZ := 2 + η (1− ζ)
(
2 (Z)ν2 − 1

)
= 2 + η (1− ζ)

ζZχ2

2 + η (1− ζZ)χ2

,
(III.21)

where the relation (III.19) was used. The substitutions αZ and βZ can be further
simplified into the form

αZ = 2
2 + η

(
1− ζZ+1

)
χ1

2 + η (1− ζZ)χ1

= 2
uZ+1

uZ
,

βZ = 2
2 + η

(
1− ζZ+1

)
χ2

2 + η (1− ζZ)χ2

= 2
vZ+1

vZ
,

(III.22)

with both the αZ and βZ expressed as fractions of consecutive elements of struc-
turally identical sequences

uZ = 2 + η
(
1− ζZ

)
χ1 , vZ = 2 + η

(
1− ζZ

)
χ2 . (III.23)

The relation (III.18) is rewritten using the substitution (III.20) of the P◦
(
(Z)σ◦

1

)
(S)P◦ = 2S

S−1∏
Z=0

1
√
αZ

√
βZ

= 2S

√√√√(S−1∏
Z=0

αZ

)−1(S−1∏
Z=0

βZ

)−1

, (III.24)
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which can be further simplified by employing the substitution (III.22)

S−1∏
Z=0

αZ = 2S
u1 · · ·uS
u0 · · ·uS−1

= 2S
uS
u0

= 2S−1
[
2 + η

(
1− ζS

)
χ1

]
,

S−1∏
Z=0

βZ = 2S
v1 · · · vS
v0 · · · vS−1

= 2S
vS
v0

= 2S−1
[
2 + η

(
1− ζS

)
χ2

]
.

(III.25)

Following the previous simplification, the conditional probability (S)P◦ is obtained
in the form

(S)P◦ = 2S
1√

2S−1 (2 + η (1− ζS)χ1)
√

2S−1 (2 + η (1− ζS)χ2)

=
2√

(2 + η (1− ζS) (2 (0)ν1 − 1))
√

(2 + η (1− ζS) (2 (0)ν2 − 1))
,

(III.26)

which can be expressed in the compact form using a matrix determinant

(S)P◦ =
2√

det [2I+ η (1− ζS) (2 (0)σ◦
1 − I)]

, (III.27)

giving the final form to the probability (III.15) of successful subtraction of a single
photon in up to S iteraton steps

Q(S) = 1− (S)P◦

= 1− 2√
det [2I+ η (1− ζS) (2 (0)σ◦

1 − I)]
.

(III.28)

The knowledge of (III.27) grants an insight into the convergence of the overall
probability Q(S) by simply evaluating the limit

lim
S→∞

Q(S) = 1− lim
S→∞

(S)P◦

= 1− lim
S→∞

2√
det [2I+ η (1− ζS) (2 (0)σ◦

1 − I)]

= 1− 2√
det [2I+ η (2 (0)σ◦

1 − I)]
,

(III.29)
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where ζ ∈ (0, 1) =⇒ limS→∞ ζS = 0. The overall probability Q(S) of successful
subtraction of a single photon from a mode of light in an arbitrary Gaussian state
in up to S iteration steps is therefore convergent.

The value of the Q(S) limit corresponds to a scenario in which the transmit-
tance of the beam splitter used to realize the subtraction is taken to be ζ = 0

and the entire the signal mode is therefore reflected into the inefficient avalanche
photodiode in the first step of the iteration. The limit matches the probability
associated with the detection outcome Π• in the direct measurement of the initial
signal mode,

lim
S→∞

Q(S) = lim
ζ→0

P◦
(
(0)σ◦

1

)
= 1− lim

ζ→0

2√
det [2I+ η (1− ζ) (2 (0)σ◦

1 − 1)]

= 1− 2√
det [2I+ η (2 (0)σ◦

1 − 1)]
.

(III.30)

B Wigner function of the successfully subtracted state

The uniform convergence of the series W (S)
1 (ξ′1) defined in (III.16) is verified with

the aid of the Weierstrass M–test [24]. Each summand of the function series

W
(S)
1 (ξ′1) =

1

Q(S)

S∑
Z=1

(Z)P•
(Z)W •

1 (ξ
′
1) (III.31)

is shown to be dominated by the respective conditional probability (Z)P• in the
chain of inequalities

(Z)W •
1 (ξ

′
1)

(Z)P• ≤ |(Z)W •
1 (ξ

′
1)| (Z)P• ≤ π−1 (Z)P• ≤ (Z)P• , (III.32)

as every normalized real Wigner function is fundamentally bound to |(S)W•| ≤ π−1.
In order to satisfy the Weierstrass M–test, the dominating number sequence must
converge as series, which it does following that the sequence Q(S) was originally
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defined in (III.7) in the form of a number series

Q(S) =
S∑

Z=1

(Z)P• , (III.33)

which apparently converges, as was shown in (III.29).

The Wigner function W (S)
1 (ξ′1) characterizing the successfully subtracted state

in up to S iteration steps, defined in (III.16) in the structure of a function series,
therefore converges uniformly.

C Evolution of the variance matrix

It is also illustrative to investigate the behavior of the sequence (III.11), which
is used to determine the variance matrix of the unsuccessfully subtracted state
produced in each iteration step.

The sequence (III.11) defined in the positional form

(S)ν =
1

2
+

ζS
(
2 (0)ν − 1

)
2 + η (1− ζS) (2 (0)ν − 1)

(III.34)

depends on a couple of parameters — the transmittance ζ of a beam splitter
realizing the subtraction of a single photon and the efficiency η of an inefficient
avalanche photodiode introduced in (II.9). Both the parameters are constrained
by the nature of the underlying physical operations to

ζ ∈ (0, 1) , η ∈ (0, 1) . (III.35)

It is possible to rewrite the second summand in the relation (III.34) into

ζS

2 + η (1− ζS)χ

φS

χ = φSχ , (III.36)

with the substitution χ :=
(
2 (0)ν − 1

)
. The multiplicative factor φS clearly satisfies

the 0 ≤ φS ≤ ζS ∀S ∈ N inequality, which is exploited to show φSχ → 0 in the
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chain of implications

ζ ∈ (0, 1) =⇒ lim
S→∞

ζS = 0

=⇒ lim
S→∞

φS = 0

=⇒ lim
S→∞

φSχ = 0

=⇒ lim
S→∞

(S)ν = 2−1 ,

(III.37)

which clearly shows (S)σ◦
1 = diag

(
(S)ν1,

(S)ν2
)
→ diag (2−1, 2−1).

The variance matrix (S)σ◦
1 of the unsuccessfully subtracted state, defined by

the relation (III.11), therefore converges to the variance matrix diag (2−1, 2−1) of
a vacuum state in the course of the iterative procedure.

Moreover the sequence (III.11) is strictly monotone. Whether the sequence is
actually monotonically increasing or decreasing depends on the value of the first
element (0)ν. Following (III.11), the difference

(S+1)ν − (S)ν = −ζS
(

[1− ζ] [1 + ηχ]

[2 + η (1− ζS)χ] [2 + η (1− ζS+1)χ]

)
φS

χ , (III.38)

where χ :=
(
2 (0)ν − 1

)
is substituted again. The inequality φS > 0 ∀S ∈ N holds

as each bracketed expression comprising the φS is positive due to the constraints
set in (III.35). The sign of the difference (S+1)ν − (S)ν depends solely on the sign
of χ.

There are two separate branches of the sequence, the first one is monotonically
increasing, while the other one is monotonically decreasing

(S+1)ν > (S)ν ∀ (0)ν ∈
(
0, 2−1

)
, (S+1)ν < (S)ν ∀ (0)ν ∈

(
2−1,∞

)
, (III.39)

where the symbol ν represents both the diagonal elements of (S)σ◦
1.
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Chapter IV

Subtraction of a single photon
from a mode of light in a
squeezed vacuum state

Effects of the subtraction procedure on arbitrary squeezed vacuum states of light
are studied through the course of this chapter. The states in consideration are
completely described by the variance matrix

(0)σ◦
1 = diag

(
1

2
γ + ω,

1

2
γ−1 + ω

)
, (IV.1)

where the factor γ defined the gain of the squeezing operation and the parameter ω
characterizes the amount of thermal noise, manifested in the form of an additional
variance of the quadratures. The parameters γ and ω satisfy

1 < γ , 0 ≤ ω , (IV.2)

with the former condition arising from the assumption of the state being squeezed
in the second quadrature variable (p) and the latter condition follows the thermal
nature of the noise. Were the condition 0 < γ < 1 to hold, the state would
be squeezed in the first and anti–squeezed in the second quadrature variable (x)
instead.

The original single step (chapter II) and the iterative (chapter III) single photon
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subtraction procedures are compared to each other in terms of the overall prob-
ability of success (III.15), (III.28) and the quality of the resulting state (III.17),
assessed using the negativity of the central point

N (S) = W
(S)
1 (0, 0) , (IV.3)

of the resulting non–Gaussian Wigner function (III.17). The negativity is generally
deemed a suitable measure of the transformation quality [9], as the central point of
the initial Gaussian Wigner function of the signal mode in consideration is strictly
positive

G
(
0, (0)σ◦

1

)
> 0 (IV.4)

and negative values of N (S) therefore indicate a successful transformation into a
non–Gaussian state.

1 Probability and negativity assessment

Both the single step and the iterative procedures are parametrized by the effi-
ciency η of the avalanche detector and the transmittance ζ of the beam splitter
used to realize the subtraction. The former parameter η is usually predetermined
by the physical properties of the detection apparatus, while the latter parameter ζ
may be in principle set to any suitable value with arbitrary precision, allowing the
procedure to be fine tuned with optimal performance in mind.

Following that the value of ζ is close to 1 due to the nature of the proce-
dure, it is only reasonable to express both the N (S) (IV.3) and Q(S) (III.28) as
functions of the reciprocal reflectivity τ instead of transmittance ζ, yielding the
substitution ζ = 1− τ 2.

The negativity N (S) and overall probability Q(S) are presented in Figure IV.1
as functions of reflectivity τ on a logarithmic scale for S = 1, 10, 100, 1000 it-
eration steps with the assumption of an ideal detection efficiency η = 1 and a
noiseless ω = 0 squeezed vacuum state γ = 12.

As the number of iteration steps S increases, the overall probability Q(S) attains
its maximal value (III.29) for lower values of τ , permitting a subtraction resulting
in the maximal attainable negativity with the maximal achievable probability of
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success.

For instance, it is nearly impossible (Q(1) ≈ 0.00025) to attain the maximal
negativity N ≈ −π−1 in the case of the single step subtraction, however, it may
be obtained with the maximal probability (Q(42000) ≈ 0.467) in S = 42000 steps.

The negativity N (S) remains mostly unchanged with increasing S; it slightly
deepens for higher values of τ before reaching a pointwise limit in respect to S.

10−3 10−2 10−1 100

0.0

0.2

0.4

τ

Q(S)

10−3 10−2 10−1 100

−0.3

−0.1

−0.2

0.0

0.3

τ

N (S)

S = 1 S = 10
S = 100 S = 1000

Figure IV.1: The overall probability Q(S) of successful subtraction and the negativ-
ity N (S) are displayed as functions of reflectivity τ on a logarithmic scale. The subtrac-
tion procedure utilizes an ideal avalanche photodiode (η = 1) and the signal mode is
prepared in a noiseless (ω = 0) squeezed (γ = 12) vacuum state.

With the increasing number (S = 1, 10, 100, 1000) of iteration steps the performance of
the procedure improves, as the overall probability Q(S) reaches its limit for lower values
of τ , which in turn allows for a subtraction resulting in maximal attainable negativity
with the maximal achievable probability of success.

A General comparison of the single step and the iterative
subtraction procedures

It would be illustrative to display the relation between Q(S) (ζ) and N (S) (ζ) di-
rectly, that is to derive the function N (S)

(
Q(S)

)
, which can be readily done with
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an inverse
[
Q(S)

]−1

N (S) (ζ) = N (S)
([
Q(S)

]−1 (
Q(S)

))
. (IV.5)

If the function Q(S) (ζ) was strictly monotone ∀S ∈ N it would be also invert-
ible [25]. It is clearly monotone for different values of S in Figure IV.1, however, a
more rigorous test is required to establish the function is indeed monotone ∀S ∈ N.

The function Q(S) (ζ) is therefore differentiated in respect to ζ, yielding the fraction

∂Q(S) (ζ)

∂ζ
=

∂

∂ζ

[
1− 2√

det [2I+ η (1− ζS) (2 (0)σ◦
1 − I)]

]

= −2SηζS−1 α+ β + αβ
(
1− ζS

)2√
[(2 + (1− ζS)α)(2 + (1− ζS) β)]3

,
(IV.6)

with the substitutions α = (2ω − 1 + γ) η and β = (2ω − 1 + γ−1) η. While the
denominator in the fraction is clearly positive, it is necessary to establish the
numerator is never zero. Expansion of the α and β in the numerator yields

0 <
(γ − 1)2

γ

([
1−

(
1− ζS

)2
η
]
η + 2ω

(
1− ζS

)2
η2
)
+

4ωη + 4ω2
(
1− ζS

)2
η2

(IV.7)

for parameters γ and ω satisfying the conditions (IV.2). Following that both the
numerator and denominator are positive, the first differential itself is negative

∂Q(S) (ζ)

∂ζ
< 0 (IV.8)

and the Q(S) (ζ) is therefore a monotonically decreasing function, implying Q(S) (ζ)

is indeed invertible. Because the substitution ζ = 1−τ 2 was used in the figure Fig-
ure IV.1, the Q(S) (1− τ 2) appears to be a monotonically increasing function of τ

40



as clearly

∂Q(S) (1− τ 2)

∂τ
=
∂Q(S) (ζ)

∂ζ

∂ζ

∂τ
=
∂Q(S) (ζ)

∂ζ

∂

∂τ

(
1− τ 2

)
= −2τ

∂Q(S) (ζ)

∂ζ
> 0 .

(IV.9)

The convenience of the mapping N (S)
(
Q(S)

)
arises from the comparison of the sin-

gle step and the iterative procedure presented in the figure Figure IV.2, where the
negativity N (S) of the successfully subtracted state in up to S = 1, 10, 100 and 1000

iteration steps is shown as a function of the success probability Q(S) for both
ideal (η = 1) and inefficient avalanche photodiode (η = 0.6).

The iterative procedure outperforms the single step (S = 1) subtraction as
in general the attained values of negativity N (S) are higher in magnitude with
increasing number of iteration steps S for arbitrary values of the probability Q(S).

For example if the procedures (η = 1) are tuned to yield N (S) = −0.2, the
success probability increases approximately 3.6× from Q(1) ≈ 0.13 to Q(1000) ≈
0.47. Similarly for a given probability Q = 0.4, the negativities N (1) ≈ −0.046

and N (1000) ≈ −0.247 are obtained, yielding approximately a 5.4× improvement
over the single step procedure.

Moreover, the single step procedure might not yield any negativity at all for
higher probabilities, rendering the single step procedure unsuccessful at producing
a suitable non–Gaussian state efficiently.

The maximal attainable probability is in both the single and iterative proce-
dures fundamentally bound by the value of (III.29), which depends only on the
initial variance (0)σ◦

1 and the detection efficiency η. In principle there exist suffi-
ciently squeezed vacuum states (γ → ∞)

lim
γ→∞

lim
S→∞

Q(S) = 1− 2√
lim
γ→∞

(2− η + 2ηω) ηγ
= 1 , (IV.10)

for which the overall probability Q(S) reaches 1.
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Figure IV.2: The negativity N (S) is displayed as a function of Q(S) for different values
of S = 1, 10, 100, 1000 using both the ideal and inefficient avalanche photodiode in the
procedure. The signal mode is prepared in a noiseless (ω = 0) squeezed (γ = 12) vacuum
state.

B Local minimum of negativity with noisy signal modes

The effects of both subtraction procedures on noiseless squeezed vacuum states
were discussed so far. In a more realistic scenario, however, a presence of an
additional thermal noise has to be taken into account.

In genral the achievable negativity is reduced with the introduction of the
thermal noise. However, a local minimum (a dip) ofN (S) is observed in Figure IV.3.
The position of the minimum is shifted to the left with higher values of S, i.e., the
dip is attained for lower values of τ .

Similarly to Figure IV.1, the negativity slightly improves with increasing num-
ber of iteration steps S. The overall probability Q(S) of a successful subtraction
behaves equally to the noiseless case; the only difference lies in the value of upper
boundary (III.29) arising from the additional noise.

The local minimum of negativity (IV.3) is closely tied to the convergence rate of
the underlying series, more precisely to the convergence rate of the series (III.17).
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Figure IV.3: Both the overall probability Q(S) of a successful subtraction and the
negativity N (S) are displayed as functions of reflectivity τ on a logarithmic scale. The
subtraction procedure utilizes an ideal avalanche photodiode (η = 1) and the signal
mode is prepared in a noisy (ω = 0.01) squeezed (γ = 12) vacuum state.

A local minimum of negativity N (S) is observed for higher numbers of iteration steps.

The relation (IV.3) may be reduced into series

N (S) =
2 π−1

Q(S)

S∑
Z=1

1√
det [2 + χ (φZ−1 + 2 ζZ)]

−

1√
det [2 + χ (φZ + 2 ζZ)]

,
(IV.11)

where the factor χ = 2 (0)σ◦
1 − 1 follows the initial variance matrix (IV.1) and the

factor φZ = η
(
1− ζZ

)
. The series N (S) has been shown to converge in the sub-

section III.2.B. As an implication, the underlying sequence converges to 0. The
convergence rate of the sequence then determines the number of significant sum-
mands in (IV.11).

The convergence rate depends on the value of ζ = 1− τ 2, which is demon-
strated in Figure IV.4, where the elements of the series are shown for different
values of τ . In particular, the value τ = 10−1.5 is chosen as it roughly corresponds
to the position of a local minimum of negativity attained in up to S = 1000 steps.

It is clear from Figure IV.4 that the number of significant summands in (IV.11)
considerably increases for lower values of τ . The increase is most noticeable for
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values of τ close to the position of the local minimum of N (S).

1 100 200 300 400 500
−0.003

−0.002

−0.001

0.000

S

ω = 0.01, γ = 12, η = 1

τ = 10−0.3 τ = 10−1.0 τ = 10−1.5

Figure IV.4: Individual elements of the negativity series (IV.11) are displayed for
different values of τ .

The subtraction procedure utilizes an ideal avalanche photodiode (η = 1) and the signal
mode is prepared in a noisy (ω = 0.01) squeezed vacuum state (γ = 12).

Furthermore, the existence of the local minimum of N (S) may be explained
with the aid of Figure IV.5, where the negativity of individual Wigner functions
of successfully subtracted states (III.14) is presented along with the conditional
probability of a successful subtraction (III.13) for different values of τ , chosen to
represent the points surrounding the local minimum (for S = 1000) in Figure IV.3.

The presence of the thermal noise (ω > 0) prevents the negativity from ever
reaching its maximal value

(S)W •
1 (0, 0) > −π−1 ∀S ∈ N . (IV.12)

Each subsequent unsuccessful subtraction attempt reduces the energy of the state:
on one hand, the squeezing gain is decreased in this process, but on the other hand
so is the noise. The rate at which the gain and noise are reduced is different and
after a certain number of iterations, the noise component in the variance (III.11)
becomes significant in comparison to the squeezed vacuum until it finally converges
to diag (2−1, 2−1). Consequently the negativity of the Wigner function (III.14)
decreases.

Moreover, only a limited number of iterations has any effect on the total neg-
ativity, as the weighing factor (S)P• presented in Figure IV.5 converges to zero.
For instance the (S)P• (τ = 10−0.3) converges in mere 15 iteration steps, while
the (S)P• (τ = 10−1.5) converges in over 1000 steps.
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Figure IV.5: The negativities of individual Wigner functions (III.14) is displayed along
the probability (III.13) for different values of τ . The subtraction procedure utilizes an
ideal avalanche photodiode (η = 1) and the signal mode is prepared in a noisy (ω = 0.01)
squeezed vacuum state (γ = 12).

The strength of the effects of both procedures in the ideal detection regime η = 1

on noisy signal modes is presented in Figure IV.6 with each plot pertaining to a
different level of noise ω, e.g., 2, 5, 10 and 20 percent of vacuum fluctuations. The
presence of the local minimum (dip) is manifested by the decreasing tendency of
the negativity.

The importance of the existence of local minimum arises from the observation
that the minimum of N (S) occurs close to the upper boundary of probability Q(S),
implying it is possible to fine tune the iterative subtraction to perform optimally
even with noisy signal modes.
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Figure IV.6: The negativity N (S) is displayed as function of probability Q(S) for
different values of S. The procedure is assumed to be working in the ideal detection
regime (η = 1). The signal modes are prepared in a noisy squeezed (γ = 12) vacuum
states with the additional noise taking the values of ω = 0.01, 0.025, 0.05, 0.10.

The presence of the local minimum (dip) is manifested by the decreasing tendency of the
negativity until it reaches a local minimum in respect to Q(S) located near the maximal
achievable value given by (III.29).

Unfortunately, the local minimum slowly ceases to exist when the inefficient
detection is considered, as is shown in Figure IV.7 for η = 0.91, 0.60. Notably, it is
possible to counter the inefficient detection with strongly squeezed states to some
extent.
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Figure IV.7: The negativity N (S) is displayed as function of probability Q(S) for
different values of S. The procedure is assumed to be working in the inefficient de-
tection regime (η = 0.91, 0.60). The signal modes are prepared in a noisy (ω = 0.01)
squeezed (γ = 12) vacuum state.

The local minimum (dip) previously manifested by the decreasing tendency of the neg-
ativity disappears with lower detection efficiencies.

2 Optimization of negativity

In practice only a single parameter characterizing the single step procedure may
be arbitrarily manipulated, i.e., the transmittance ζ = 1 = τ 2 of the beam splitter
used to tap the light off. The iterative procedure is characterized by an additional
parameter, as it either succeeds in up to S iteration steps or exceeds the number
of attempts and fails.

The relation between the number of iteration steps S and the overall probability
of success and negativity was shown in the subsection IV.1.A, indicating higher
numbers of iteration steps generally lead to better performance. These indications
were extended in the subsection IV.1.B with the observation of a local minimum
in negativity occurring when subtracting from noisy states. The presence of the
local minimum suggested that fine tuning of the procedure was possible.

It is therefore only natural to search for optimal values of τ (S) resulting in both
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the maximal negativity NS and preferably also maximal attainable probability QS

of a successful subtraction for different values of S.

The optimal values of τ (S), along with the resulting negativity NS and the
overall probability of a successful subtraction QS are presented in Figure IV.8. The
optimization is performed with only the maximal negativity in mind, resulting in
a slightly lower probabilities QS than the maximally attainable one given by the
relation (III.29).
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Figure IV.8: The optimization of the procedure working in the ideal detection
regime (η = 1) is performed with only the maximal negativity in mind. The optimal
values of τ (S), along with the resulting negativity NS and the overall probability QS

are shown in the plot for increasing number of iteration steps S for a noisy (ω = 0.01)
squeezed (γ = 0.01) vacuum state.

The upper straight dotted line represents the upper boundary (maximal value) of the
overall probability.
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Conclusions and outlooks

The iterative subtraction procedure, proposed in chapter III, was analyzed in chap-
ter IV. It surpassed the single step subtraction procedure when applied to squeezed
vacuum states, as the signal was transformed into maximally non–Gaussian states
with considerably higher probability of success. The iterative procedure produced
non–Gaussian states in situations where the single step procedure could not, e.g.,
noisy signal modes and inefficient avalanche photodiodes.

The current analysis of the proposed iterative procedure in terms of negativity
is, however, only a first step in a long flight of stairs. First of all it would be
enlightening to include purity and overlap with the initial state in the current
analysis. Secondly, the optimization strategy could perhaps profit from adoptive
tuning of the transmittance in each step of the iteration; this idea may be put to to
test in further research. Moreover, the model of the subtraction may be extended
to account for more general Gaussian states, i.e., states with non–zero vector of
mean values.
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