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ABSTRACT

The master’s thesis deals with analysis of basic chaotic dynamical systems, with a special
emphasis put on the Rossler system. Besides standard bifurcation analysis, stabilization
problems related to this system are investigated. The diagonal time-delayed feedback
control is utilized as a basic control tool for this problem. Using derived theoretical
results, optimal conditions for control gain and time delay parameters are established. In
addition, a synchronization problem for two Rossler systems is discussed and investigated
for several synchronization methods.

KEYWORDS

Chaotic dynamical system, Rossler system, bifurcation analysis, stabilization, time-
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ABSTRAKT

Diplomova prace pojednava o teorii chaotickych dynamickych systému, specialné se pak
zabyva Rosslerovym systémem. Kromé standardnich vypoctu spojenych s bifurkaéni
analyzou se prace zaméruje na problém stabilizace, konkrétné na stabilizaci rovnovaznych
bodu. Ke stabilizaci je vyuzita zakladni metoda zpétnovazebniho tizeni s ¢asovym
zpozdénim. Vyznamnou ¢ast prace tvori zavedeni a implementace obecné metody pro
hledani vhodné volby parametru vedouci k uspésné stabiliaci. Dalsim diskutovanym
tématem je moznost synchronizace dvou Rosslerovych systému pomoci riznych synchro-
nizacnich schémat.
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ROZSIRENY ABSTRAKT

Chaotické dynamické systémy tvoii vyznamnou cast v teorii dynamickych systému. Jedna
se o systémy, které vykazuji velkou citlivost na volbu pocatecnich podminek. Jinymi slovy
systémy, u kterych se vyvoj dvou velmi blizkych poc¢atecnich bodu znaéné rozchazi s ros-
toucim ¢asem. V pripadé systému se spojitym cCasem, tj. systému popsanych soustavou
oby¢ejnych diferencidlnich rovnic, se chaos objevuje u nelinedrnich systému alespon di-
menze 3. Chaos byl v minulosti povazovan za nezddouci jev a nebyla mu vénovéana ptilis
velkd pozornost. Era chaosu zapocala v roce 1963 objevem Lorenzova podivného atrak-
toru. Lorenzuv systém popisuje zjednoduseny model nucené konvekce v atmosfére. Stu-
dovanim daného modelu, Lorenz objevil souvislost mezi chaotickymi systémy a fraktalnimi
strukturami. Ukazal, ze i pres zdanlivé nahodilé a neptedvidatelné chovani, systém zustava
ohraniceny v urcité oblasti, kterd byla pozdéji nazvana podivny atraktor. Lorenzuv systém,
ktery jisté patii mezi nejznaméjsi systémy, je také prosluly pod nazvem ”The Butterfly
Effect”.

Predlozend diplomova prace se zabyva znamymi chaotickymi systémy, jejichz vycet,
struény popis a volba charakteristickych parametru jsou uvedeny ve 2. kapitole. Kromé
nejznameéjsich systému, jako je Lorenzuv nebo Rossleruv model, se v této kapitole objevuji
dalsi chaotické systémy, které byly objeveny v ruznych védnich oborech. Ptikladem je
Bélousovova-Zabotinského chemické reakce, Chutiv elektricky obvod nebo modifikovany
Van der Polluv oscilator. Tyto modely jsou pro lepsi ilustraci doplnény charakteristickymi
fazovymi portréty.

V dalsich kapitolach je prace zamérena prevazné na piipad Rosslerova chaotického
modelu, ktery je ddn soustavou 3 diferencidlnich rovnic s jednim nelinearnim ¢lenem

m':—y—z,

y =x+ay,
2 =b+z(x —c),

kde a,b,c jsou redlné parametry.

3. kapitola se detailné zabyva analyzou stability rovnovaznych bodu a bifurkaéni
analyzou Rosslerova systému s vyuzitim teoretickych predpokladt uvedenych v 1. kapi-
tole. Podle volby parametri a, bq , ¢ muze mit systém dva, jeden, nebo zadny rovnovazny
bod. V piipadé dvou rovnovaznych bodu je pomoci Routh—Hurwitzova kritéria ukazano,
ze jeden bod je vzdy nestabilni, zatimco druhy muze byt pro nékteré kombinace pa-
rametru stabilni. Podminky vedouci na stabilni singularni bod jsou uvedeny teoreticky
a ilustrovany numerickym experimentem. Druhou ¢ast kapitoly tvofi bifurka¢ni analyza
vzhledem k meénicimu se bifurkacnimu parametru ¢ pii fixnich hodnotach a = b = 0.1.
V této casti je naznacen piechod od periodického k chaotickému chovani s ménici se
hodnotou c. Pti ptechodu lze pozorovat jev zvany ”period doubling”, pti kterém dochéazi
ke zdvojnasobeni period limitnich cykli. Vysledky jsou interpretovany graficky pro inter-
val ¢ = [0.2,20]. Na tomto intervalu dojde nékolikrat ke zminovanému ptechodu, ktery je
nasledovan kolapsem chaosu zpét na periodické chovani.

Ve 4. kapitole je Tesen problém stabilizace rovnovaznych bodu. Jsou zde uvedeny
nékteré pristupy a schémata mozné kontroly chaotickych systému. Metoda ¢asové zpozdé-
ného zpétnovazebniho tizeni Pyragasova typu, kdy fizend soustava je tvaru

X'(t) = f(x(t)) = KI[x(t) —x(t —7)],



je dale hloubéji zkoumana a aplikovana pro ptipad dvourozmeérného nestabilnho ohniska
a Rosslerova systému s parametry vedoucimi k chaosu. Hlavnim pfinosem této kapi-
toly je zavedeni obecné podminky pro volbu kontrolnich parametri, presnéji volbu ve-
likosti pusobicich rozruchtt K a casového zpozdéni 7. Podle uvedeného kritéria lze sta-
novit mnozinu vsech (K, 1), kterd vede k tispésné stabilizaci konkrétniho rovnovazného
bodu. Zavedené kitérium je srovnano se znamymi vysledky kontroly nestabilniho ohniska
uvedeného v [27]. V zavéru této kapitoly je prezentovana mnozina vhodnych (K, 7) pro
Rossleruv systém s parametry a = b = 0.1 a ¢ = 14. Dale jsou zde vyobrazeny konkrétni
piiklady ruznych dvojic (K, 7).

V 5. kapitole je uveden jiny piistup k otézce kontroly chaotickych systému, a to
moznost synchronizace vice stejnych nebo ruznych chaotickych modelu. Jsou zde teo-
reticky popsany vybrané pristupy a schémata ruznych synchronizaénich metod. Kapi-
tola je zaméfena na metody absolutni synchronizace, tj. metody, kdy dochézi k tplnému
splynuti trajektorii obou systému. Konkrétni piiklad synchronizace je demonstrovan na
dvou Rosslerovych systémech se stejnymi parametry pomoci schémat zalozenych na tzv.
"master-slave” vazbé a oboustranné vazbe.

V zaveéru je uvedeno shrnuti dosazenych vysledku a jsou naznaceny moznosti dalstho
vyzkumu v tématu této diplomové prace, specialné pak v oblasti synchronizace a jejiho
vyuziti.
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INTRODUCTION

Many physical or other real-life phenomena can be described by mathematical models.
A dynamical system describes evolution in time of the investigated mathematical model
which is given by a system of differential or difference equations. In general, most of
the models based on real problems are nonlinear and thus uneasy to solve. Particularly,
there appears a numerous group of nonlinear dynamical systems across all different fields
of study that evolve into chaos. Extreme sensitivity to the initial data and the impossi-
ble long-term prediction of their state is characteristical for these systems. The chaotic
behaviour of certain systems had already been observed a long time ago, however, the phe-
nomenon had not been properly investigated until the significant progress in the modern
technologies in the second half of the last century.

The beginning of a great era in the chaos theory is connected to the discovery of
a strange attractor by American scientist Edward Lorenz. While studying a simplified
atmospheric model, Lorenz found a certain regularity in the chaotic motion. Observing
the trajectory of the solution, soon it became clear, that despite the chaotic motion, the
solution stays bounded inside the region of a strange attractor. Lorenz’s discovery evoked
a great interest in this field which was followed by many scientific works investigating
other systems with similar behaviour. Over the decades, many chaotic systems have been
introduced together with a complete or partial analysis of each system. Conditions for the
transition from periodic behaviour to a chaotic one have also been investigated widely.

Apart from the general studies, soon there appeared a question whether the chaotic
motion of a given system can be controlled or suppressed. Even though several successful
methods are already known, the chaos control is still an investigated topic. Another
question which arose was how two chaotic systems influence each other, more precisely,
if it is possible to achieve synchrony between the motion of two chaotic systems. Again,
methods providing tools for achieving certain synchrony can be easily found. Furthermore,
the research in the problem of synchronization brought an interesting idea of application of
chaos. The chaotic signal can be used in secure communication by hiding the information
signal in randomly looking signals.

The goal of this work is to introduce the theory of chaos in dynamical systems together
with several examples, present and verify some of the known results in case of Rossler
system, investigate the problem of chaos control and synchronization on this model and
apply the theoretical results. The thesis is organized as follows:

Chapter 1 presents an overview of basic notions and properties related to dynamical
systems and chaos theory. Some of the famous dynamical systems displaying chaotic
behaviour are stated in Chapter 2, e.g. the Lorenz system, the Rdssler system, the
Chua’s systems and others.

Chapter 3 contains a deeper qualitative and numerical analysis of the Rossler dynam-
ical system that is the simplest system (with only one nonlinear term) displaying chaos.
This analysis is divided into two parts, first, the investigation of the stability of equilib-
rium points, and second, the characterization of the behaviour of the system with respect
to a changing bifurcation parameter. The results of the analysis are verified by the results
of numerical experiments.

Chapter 4 discusses methods of chaos control with a special attention paid to the
time-delayed feedback control. Besides a survey of some recent results obtained by other
authors, this part involves the main theoretical contribution of this thesis, namely explicit
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conditions for the control gain and time delay to stabilize unstable equilibrium of a general
dynamical system by use of time delayed diagonal feedback control. Also, this chapter
contains series of experiments confirming and specifying the theoretical conclusions.

Finally, Chapter 5 is devoted to synchronization problem for chaotic dynamical sys-
tems. The core of this problems is specified, few basic methods are presented and illus-
trated via synchronization of two Rossler systems.

16



1 DYNAMICAL SYSTEMS AND CHAOS

The theory of chaos forms just a fraction in the theory of dynamical systems. Thus, before
beginning with the discussion of chaotic models, it is important to introduce some math-
ematical background of dynamical systems. The following theory can be found in more
details in [1], [2], [3] or [4], [5]. In general, dynamical system represents a rule describing
time evolution of a state of a physical problem or a mathematical model given by a sys-
tem of differential or difference equations. Under certain conditions, a current state of the
system is fully determined by its previous state. If the state of the system is measured
only in the integer time values, it refers to discrete dynamical systems. On the contrary,
continuous measuring of time, i.e. t € R, refers to continuous dynamical systems. Despite
the fact, that chaos can occur in both discrete and continuous dynamical systems, this
work will be focused only on the continuous dynamical systems given by ordinary differ-
ential equations (ODEs). Moreover, the restriction is made to the autonomous systems
of ODEs in R", i.e. systems given by

where function f: R™ — R" is a C! function and does not depend on the variable t. By
x' is meant the time derivative of x (x = x(¢)). The nonautonomous systems are not
considered here, as any nonautonomous system x’ = f(x,t) with x € R” can be rewritten
as autonomous with x € R"™!, by letting x,,, = t.

1.1 Definition of dynamical system

Definiton 1.1. A smooth continuous dynamical system denotes a pair {2, ¢}, where (2
is a state space and ¢ : R x  — Q is a continuously differentiable function (¢ € C'(Q))
satisfying

(i) 60(x) = x, ¥x €9,

(i) Prys(x) = Pe(ps(x)), Vx € Q and t,s € R.

The function ¢ is often called an evolution operator, where ¢;(x) = ¢(t, x).

Definiton 1.2. Let xq € (2 be an initial state of a system. For a fixed time t € R the
evolution operator ¢ transforms x, into some state x(t) at time ¢, i.e.

x(t) = ¢u(x0).
Remark 1. The state space €2 usually refers to R™, as it will be considered in this work.

Definiton 1.3. Suppose an initial value problem of an autonomous system of ODEs

x' = f(x), (1.1)
x(ty) = Xo, (1.2)

where f: E — R™, E is an open subset of R", f € C'(F) and x¢ € E is the initial value.
Then x(t) is a solution of the initial value problem (1.1)-(1.2) on an interval I if ¢y € I,
x(tp) = x¢ and x(t) is a solution of the system of ODEs (1.1)) on the interval I.
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Remark 2. In the following chapters the function f will be assumed to be defined for
allx € R*, i.e. f:R® — R".

Theorem 3. (The Existence and Uniqueness Theorem). Consider the initial value prob-
lem (L1)-(1.2), where f : E — R"™, f € C(E). Then there exists an a > 0 such that the
initial value problem has a unique solution x(t) on the interval [—a, al.

Proof. See [1] O
Theorem 4. Consider the initial value problem (1.1))-(L.2)), then for each xo € E there

is a mazximal interval J = («, 5) on which the initial value problem has a unique solution
x(t).

Proof. See [1] O

Definiton 1.4. Let £ C R" and f € C*(E). Let ¢(t,%o) be the solution of (1.1))-(1.2)
defined on its maximal interval J(xg), xo € E. Then for ¢t € J(xg), the family of evolution
operators ¢, defined by

¢(x0) = (1, %0) (1.3)

is called the flow of the system (1.1). ¢; is often referred to as the flow of the vector
field f.

Definiton 1.5. Suppose the initial value xq is fixed and J = J(Xg). Then the mapping
¢(+,x0) : J — E defines a solution curve or a trajectory of the system through the
point xo € E. The trajectory is visualized as a motion along a curve I' through the point
Xo. The arrow then indicates the orientation of the curve as time increases.

The phase portrait of the system (|1.1)) refers to the set of all solution curves of (|1.1f) for
different initial points satisfying the initial value problem (1.1)-(|1.2)) in the phase space.
The solution curves in the phase space never intersect each other.

Definiton 1.6. A point x* € F is called equilibrium point (fixed point, critical point)
of the system (1.1)) if f(x*) = 0 (0 means the zero vector). Moreover, for any trajectory
starting in x*, i.e. x(0) = x*, is x(t) = ¢y(x*) = x* for any t € R.

In general, trajectories of the solution x(¢) can be divided into 3 main categories:
(i) Fixed point - the solution x(¢) is constant, i.e. trajectory stays in the fixed point
for all time.
(ii) Cycle, periodic orbit - the solution x(t) is periodic, i.e. the trajectory forms a closed
curve and stays on this curve for all time.
(iii) Open curve - the trajectory is an injective map never intersecting itself.

1.2 Linear dynamical system

Suppose the system given in ([1.1)) is linear, i.e. function f consists of linear terms only,
f :R™ — R". Then the system can be rewritten as

x = Ax,

where x € R A is an n X n matrix and the following theorem holds.

18



Theorem 5. (The Fundamental Theorem for Linear Systems). Let A be an nxn matriz.
Then for a given xo € R™, the initial value problem x' = Ax, x(0) = x¢ has a unique
solution for all t € R given by

x(t) = e'x.

Proof. See [1] O

1.3 Nonlinear dynamical system

According to Theorem [3] a unique solution of an initial value problem of a nonlinear
system exists on some interval I. However, unlike the linear cases, very few nonlinear
systems can be solved analytically. The investigation of behaviour of nonlinear systems
usually consists of analytical, geometrical, and topological techniques. Numerical methods
play also very important role in such analysis.

Linearization of nonlinear systems

Nonlinear systems are often investigated in the neighborhood of its equilibrium points. It
can be shown that the local behaviour of the nonlinear system x’ = f(x) near a hyperbolic
equilibrium point x* is qualitatively determined by the behaviour of the linear system
x' = A(x), where A is the Jacobian matrix evaluated at point x*.

Remark 6. Recall, the Jacobian matriz J evaluated at a fized point x* € R™ is given by
n X n matrix

f1(x*) f1(x*)
oz T Oy
J=Dfx" )= + .
fn(x¥) fn(x*)
o0x1 o OTn

The eigenvalues A of the Jacobian matrixz can be computed as the roots of characteristic
polynomial

P(X\) = det (J — M),
where I represents the identity matriz.
Definiton 1.7. An equilibrium point x* of the system (|1.1]) is called hyperbolic if none
of the eigenvalues of the Jacobian matrix J = D f(x*) has zero real part. Otherwise, the

equilibrium point is called nonhyperbolic.

If the fixed point x* is hyperbolic, then according to Hartman-Grobman Theorem [1]

there exists a neighborhood of this point, in which the nonlinear system x’ = f(x) is
topologically conjugate to the system x' = A(x), where A is the linearization matrix,
ie. A= Df(x").
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1.4 Stability

Generally, stability of a solution is determined by the sensitivity to a perturbation of the
initial data. The solution is called stable if a small perturbation of initial data yields
a small change in the solution. Furthermore, the solution is called attractive or asymp-
totically stable if the deviation of the solution caused by a perturbation of initial data
will disappear as t — co. In dynamical systems, it is more common to refer to a stability
of equilibrium points of the given system.

Definiton 1.8. Let ¢; denotes the flow of the system (1.1]) defined for all ¢ € R. An equi-
librium point x* is (locally) stable if for all € > 0 there exists a § > 0 such that for all
x € Ns(x*) and ¢ > 0 then

o1 (x) € No(x").

Furthermore, x* is (locally) asymptotically stable if it is stable and if there exists a § > 0
such that for all x € Ng(x*),

Jim ) =
The equilibrium point is said to be unstable if it is not stable.

Remark 7. Similarly, these stability notions are used for other significant solutions of
the system (1.1)) (e.g. periodic solutions).

The basic tool for stability analysis of equilibrium points is provided by the lineariza-
tion method. The stability of a fixed point can be determined by the sign of real parts of
eigenvalues A of the Jacobian matrix. The following theorem holds.

Theorem 8. Let J = Df(x*) be the Jacobian matriz for the system evaluated at
a fized point x* and let \; be its eigenvalues.
(i) If R(N;) < 0 for all \;, then the fized point x* is asymptotically stable.
(i) If R(\;) > 0 for at least one \;, then the fized point X* is unstable.
(iii) If ®(N;) = 0 for at least one \;, then the fized point x* is nonhyperbolic and its
stability cannot be determined by the linearization method.

Classification of basic fixed points can be found in the literature. [I] For further
investigation of nonhyperbolic points, it is possible to use other methods which can help
to determine their stability. The stability according to Lyapunov is defined as follows.

Theorem 9 (Lyapunov Function). Suppose the nonlinear system (L.1) with an equilib-
rium point X*, x* € E, where E is an open subset in R™. Now, suppose that there exists
a function V : E — R" satisfying

(i) V(x") =0,
(i) V(x) >0 if x # x*.
Then

(i) if V(x) <0 for Vx € E, x* is stable,
(ii) if V(x) <0 for VYx € E\ {x*}, x* is asymptotically stable,
(iti) if V(x) > 0 for Vx € E\ {x*}, x* is unstable.
The function V is called the Lyapunov function. The term V(x) = DV (x)f(x), where
DV = (&Y . V),

oz’ ) Oy,

Proof. See [1] O
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1.5 Routh—Hurwitz Criterion

If the dynamical system has a dimension grater than two, it is often almost impossible
to express the eigenvalues of characteristic polynomial. Therefore, the following criterion
gives an algebraic tool for verification if the characteristic equation has roots in the left
half of the complex plane. [6]

Theorem 10 (Routh-Hurwitz Criterion). Given the polynomial,
PO = X"+ a N 4 an )+ ap,

where a; are real constants, 1 = 1,...,n, define the n Hurwitz matrices using the coeffi-
cients a; of P(\):

a 1 aq 1 0
Hy = (a1), HZZ(l ), Hz=laz az ai],
as as
as a4 das
and
ap 1 0 0 [... O
as a2 ap 1 0
H,=|0 a a3 az ... 0| forn>3.
O 0 0 0 ... apn

Coefficients a; = 0 if j > n. All of the roots of the polynomial P(\) are negative or have
negative real part if and only if the determinants of all Hurwitz matrices are positive, i.e.

detH; >0, j7=12,...,n.
Then, particularly for n = 3 the criteria can be given as

a1 >0,a3 >0, and ajas > as.

1.6 Bifurcation

Bifurcation theory studies the qualitative behaviour of the system as the vector field
f changes. If the qualitative behaviour of the system remains unchanged for all nearby
vector fields, then the system (or the vector field f) is said to be structurally stable. On
the contrary, if the vector field is not structurally stable, it belongs to the bifurcation set.

In other words, bifurcation can be explained as follows. Suppose that the system
depends on a parameter p € R (or a set of parameters p € R™). Then the system is given
by

x' = / (X’ N)'

A bifurcation occurs in the system when a small smooth change made to the bifurcation
parameter p causes a sudden change in the qualitative behaviour. The value of the
parameter at this change is known as the bifurcation value or a critical value of bifurcation
parameter pu.

The structural changes of the system usually refer to the changes in stability of sig-
nificant solutions (e.g. equilibrium points, periodic orbits) or to the appearance of new
significant solution as parameter passes the critical value.
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1.7 Attractors

Attractor can be defined as a closed set A in the phase space with the following properties:
(i) A is an invariant set, i.e. any trajectory starting in A stays in A for all the time.
(ii) A attracts an open set of initial conditions, i.e. there is an open set U, A C U such

that if x € U, ¢4(x) € U for all t > 0 and ¢(x) — A as t — oc.
(iii) A isminimal, i.e. there is no proper subset of A that satisfies the previous conditions.
In other words, an attractor is a specific set that attracts all trajectories in its neigh-
borhood. There are three types of so-called nonstrange attractors, namely fixed point
attractor, limit cycle attractor and torus attractor. A particular attractor, which was
observed in chaotic systems is called a strange attractor and its definition leads to fractal

theory, i.e. theory of sets with non-integer dimension. [7]

1.8 Chaos

By the term chaos, it is understood a randomly looking, aperiodic long-term behaviour of
a deterministic dynamical system, which exhibits sensitive dependence on initial condi-
tions. This means, that two trajectories starting in the infinitesimal neighbourhood can
reach completely different positions after some time. In continuous dynamical systems,
chaos can occur only in 3 and higher-dimensional spaces.

Chaotic behaviour of a system can be revealed by computation of the Lyapunov ex-
ponents. If at least one of the exponents from the Lyapunov spectrum is positive then
the system is chaotic in nature.

Lyanupov exponents

Lyapunov exponents measure the sensitivity of a dynamical system to small changes in
initial conditions. Therefore, it is a useful tool for identifying chaos in dynamical systems.

The Lyapunov exponent can be defined by the following. Let dy be the distance of
two close points at ty. After time ¢ the separation of the trajectories starting at these
points is given by

d ~ dye™t=t0)

The A is called the Lyapunov exponent. This definition, however, provides the value
for two specific neighbouring points over a specific interval of time. Thus, to approxi-
mate the exponent for entire system, it is necessary to take an average of many different
neighbourhoods.

Definiton 1.9. If the displacement between the i-th point and a neighbouring point at
time t; is d;, and the initial displacement between these two points is dy; at time tg;, then
the Lyapunov exponent is defined as

1 1
A= Jl—{goﬁz;mmwz'/d“i"

Moreover, a system defined in n-dimensions has n exponents, one for each dimension.
The set of all exponents is called the Lyapunov spectrum. If one of the exponents is
positive then chaos occurs in the system. [§], [9].
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2 EXAMPLES OF CHAOTIC SYSTEMS

The theory of chaos has achieved a great interest since the Lorenz’s discovery. Nowadays,
a good deal of chaotic systems can be found across all different fields of science. In this
chapter, some of the most famous models will be introduced, including short explana-
tion, graphical demonstration and potential use. General information about some of the
systems introduced in this chapter can be found in [7], [10], [L1], [12].

The common property of chaotic systems is the strong dependence on the choice
of system parameters and initial values. Considering the first observation, it is important
to remember that many combinations of system parameters do not necessarily lead to
chaotic behaviour at all. Some of the specific choices for which the chaos occurs will be
given along with each presented model. For deeper investigation of suitable choices, it
is necessary to run an analysis of the system, comparing the influence of the parameters
in the equilibrium points. Later in this work, analysis of suitable values of the Rossler
system will be discussed.

The graphical demonstration will be given using MATLAB’s function ode45. This
function is a standard MATLAB’s solver for ordinary differential equations based on
an algorithm of Dormand and Prince, which is an explicit Runge-Kutta 4th/5th order
method. It is a single-time step method containing the correction of the step size according
to error estimation. For this work, the maximum step-size was improved to achieve
smoother solutions.

2.1 Lorenz’s system

Lorenz’s system is probably the best known deterministic nonlinear system exhibiting
chaotic behaviour. The model was named after an American mathematician and meteo-
rologist Edward Norton Lorenz who was studying a simplified model of convection rolls
in the atmosphere, trying to explain some unpredictable weather evolutions. Some may
recognise the system as The Butterfly Effect.

Behind the poetic name, The Butterfly Effect, are two hidden meanings. First one
gives a popular metaphorical simplification of a chaos development, saying that even
a single flap of butterfly’s wings can cause a storm far away from its location. In reality,
it means that the system is so dependent on the initial values that even a small change
in one state can cause great differences in some later state. In meteorology, this explains
why the forecast in the longer term is very unreliable since even a slight disturbance from
the known weather evolution may result in very different behaviour after some time. The
second meaning is connected to the 3D phase portrait of the systems (Figure , which
is reminiscent of the shape of butterfly’s wings.

Lorenz’s goal was to find a system of differential equations that would correspond to
and simplify the real problem. His approach can be explained in brief as follows: imagine
the atmosphere as a single fluid particle which is heated from below and cooled from
above. Thanks to the heating the particle rises up but the cooling makes it fall back
down again, and the process can repeat. In general, the model of the atmosphere is very
complex since changes in temperature, pressure, wind velocity, etc., must be considered.

Lorenz simplified the problem with the help of the techniques as Oberbeck-Boussinesq
approximation, Rayleigh-Bénard convection (describing the fluid circulation between two
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horizontal layers of different temperature), Galerkin method, and finally the key equations
of fluid dynamics, such as the continuity equation, Navier—Stokes equations and Fourier
law. [3] The final Lorenz’s model, consists of 3 nonlinear ordinary differential equations
in R3 containing three positive parameters and two nonlinear (quadratic) terms. The
equations determining the Lorenz’s model are

o' =o(y—a),
v =rex—y—uxz,
7 =zy — bz,
where o, r, b > 0 are system parameters. Parameter ¢ stands for the Prandtl number,
r for the Rayleigh number and b is a parameter related to the physical size of the system.
The nonlinearity is present in the second and third equations in the terms xz and xy.
The most famous phase portrait of Lorenz’s system corresponds to the choice of pa-

rameters o = 10, r = 28, b = 8/3. From Figure , it is easy to understand the first
reason why the name 'Butterfly effect’ is used.

50
40
30
20

10

15 20

Figure 2.1: The Lorenz’s model (o = 10, r = 28, b = 8/3).

While studying the system, Lorenz came to a great discovery, and he showed that
despite the chaos, there exists a complicated structure which gives certain limitation
to the developement of the trajectories. In other words, despite the fact that the so-
lution of the model for certain parameters behaves irregularly and never repeats itself
exactly, it remains in some bounded region of the phase space. This structure was later
named a strange attractor and leads to the theory of fractals. Above that, another im-
portant property of the system is its symmetry. If (z(¢), y(t), 2(t)) is a solution, so is
(—x(t), —y(t), z(t)). Further details about the system can be found in [3], [10].

In practice, the Lorenz’s system does not give the weather forecast. However, its
properties are very useful when applied to collected statistical data. Besides atmospheric
convection, there are several other applications of Lorenz’s system. For example, the
same equations appear in models for lasers, electric circuits or dynamos. Moreover, the
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equations can describe motion of a specially designed waterwheel with leaky cups regularly
placed on the wheel. The cups on the wheel are getting filled with water, and the wheel
is turning to the side where the gravitational force is greater. For a certain flow, velocity
and amount of water in each cup it suddenly becomes impossible to determine which way
will the wheel turn. [7]

The fact, that the chaotic systems are highly sensitive to the choice of initial con-
ditions is demonstrated in Figure Two initial conditions were taken from a small
neighborhood, precisely x} and x2 differ only in the y-variable by value 0.1. Yet, the
trajectories separate fast from each other in time.

20 T T T T T T T
151 | Y I i I

10§ I

- (
-10 |

15 ‘ [

220 | | | | | | |

Figure 2.2: Lorenz’s model; evolution of variable z for 2 initial points.

2.2 Rossler system

Another well-known model with chaotic behaviour is the Rossler system, which was stud-
ied by a German biochemist Otto Rossler. After the discovery of the Lorenz attractor,
lots of studies appeared, trying to find similar results in different fields. Rossler set a dif-
ferent goal for himself, to find a model which behaves similarly to the Lorenz’s one but
is easier to solve. He presented a theoretical model fulfilling his aims. The system of
Rossler evolves into chaos and compared to the previous model there appears only one
nonlinear term in the equations. Moreover, the system was later found to be useful in
modelling equilibrium states in chemical reactions. The Rossler system is also considered
to be a minimal system for continuous chaos. That is achieved for at least three reasons:
its phase space has the minimal dimension possible for chaos appearance, its nonlinearity
is made by a single quadratic term, and it generates a chaotic attractor with a single lobe.

Rossler discovered more chaotic systems, including the first 4D hyperchaotic attractor.
However, the following model with three real parameters a, b, ¢, became the most famous.

=—-Yy—z,
=r+ay,
2 =b+z(x—c).

x/
/
Y

In his work, Rossler investigated the chaotic behaviour for the combination of parameters
a=0.2,b=0.2 and ¢ = 5.7 as can be seen in Figure [13]
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Figure 2.3: Rossler system (a = 0.2, b = 0.2 and ¢ = 5.7).

Later, another combination a = 0.1, b = 0.1 and ¢ = 14 started to appear more often
in the studies. In both cases, a simple attractor can be observed. However, for another
combination a different type of attractor appears. For example, for a choice a = 0.343,
b=1.82 and ¢ = 9.75 a screw-type attractor appears. This can be seen in Figure 2.4

15

Figure 2.4: Rossler system (a = 0.343, b = 1.82 and ¢ = 9.75).

The Rossler model will be further discussed within this work. More details will be
therefore given in the following chapters.

2.3 Chua’s circuit

The nonlinear electronic circuits form another field of study where chaos occurs widely.
The most famous and theoretically well described one is Chua’s circuit. This simply
constructed circuit was invented by an American electrical engineer and computer scientist
Leon Ong Chua in 1983. The third-order RLC circuit contains four linear elements (two
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capacitors, inductor and linear resistor) and one nonlinear element (nonlinear resistor R,,,
sometimes called ’Chua’s diode’). The scheme of the circuit is shown in Figure 2.5

3

Cy e

Ml

Figure 2.5: Chua’s circuit. [11]

Using the Kirchhoft’s circuit laws the circuit is described by equations

dv
i d?l = G(UC’2 - UC’1) - f(vcl) )
dv .
(Y d02 = G(UC’1 - UC2> +ir,
¢
L% — UCQ ,

with usual indication: i stands for current, G = 1/R is the conductance of a resistor
and indexes ('  stand for capacitors, L for inductor. The nonlinear element is given by
function f(ve,) = move, + 5(my — mo)[|ve, + By| — |ve, — By|] describing the electrical
response of the nonlinear resistor.

For mathematical analysis, it is more common to use a dimensionless model which is
referring to Chua’s circuit given by

where © = vo, /By, y = ve,/By, 2 = i/B,G, a = Cy/Cy, B = Cy/G*L and finally
f(@) =bx+ L(a—b)[|lz+ 1] — |z — 1|] with a =m /G, b=my/G. [11]

The system is also interesting for the tendency to produce different kinds of attractors
for different combinations of system parameters which are shown in Figures and [2.7]
In the following figures, a simple attractor and a double-scroll attractor can be seen.
Moreover, the system is invariant under the transformation (z, y, z) — (—z, —y, —2).
The Chua’s circuit is often used as a physical source of pseudo random signals. Further, the
system is implemented in the experiments on secure communication by chaotic systems.
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The case of simple attractor:
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Figure 2.6: Chua’s circuit (o = 9.4, § = 16, mg = —8/7 and my; = —5/7).

The case of double-scroll attractor:
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Figure 2.7: Chua’s circuit (o = 10, § = 14.87, my = —1.27 and m; = —0.68).

2.4 Modified Van der Pol’s Oscillator

One of the lesser known but very interesting system is the modified model of Van der
Pol’s oscillator. The original Van der Pol’s oscillator analysis the dynamic behaviour of
(self) excited oscillations. The system is of dimension 2 and the solution is periodic. By
modifying the system with a feedback loop, it is possible to achieve chaotic behaviour.
According to [I4], equations of Van der Pol’s oscillator can be modified and applied in
economics. It is possible to find a heuristic model of economic cycles focused on the
capital flight observed in the less developed countries. The new system in 3D is of the
form

' = ky + pa(b—y7),
y = —x + sz,

2 =pr—qy,
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where k, u, b, s, p and g are positive parameters. In economics, the variables x, y, and z
represent dimensionless variables of savings, gross domestic product, and foreign capital
inflow. The main parameter of interest is s, since it corresponds to the feedback loop.
Therefore, by varying s the system can be changed from periodic to chaotic and vice-
versa. For some interval of s the system is also antisymmetric. To demonstrate that the
structure of chaos is changing with varying s the following parameters were chosen and
depicted in Figure k=002 p=04,b=0.2 p=10, g = 0.1, s was taken to be
s1 =0.2,s9 = 35 and s3 = 150.

z
1S N < S = T ST R NS |

-01 -0.08 -0.06 -004 -002 O 002 004 006 008 0.1 -8
x

(a) s1 = 0.2; zy-plane.

0 0.005 0.01 0.015 0.02 0.025 0.03 -2 -1 0 1 2 3 4 5

(e) s3 = 150; zy-plane. (f) s3 = 150; yz-plane.

Figure 2.8: Modified Van der Pol’s Oscillator; different values of s.
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2.5 Belousov—Zhabotinsky reaction

As well as the chaotic systems in physics, one can find strange behaviour also in chem-
istry. In 1951, Boris Belousov discovered a chemical reaction which oscillated between
the state when the solution is colourless and when it is yellow due to ions of its catalyst.
However, Belousov’s discovery was not accepted at first, and it took some years before
the problem was introduced in papers. In the late '70s, his work was further investigated
and discussions over whether the reaction exhibits only limit-cycle oscillations or if there
are some conditions for which chaos can occur were made. Several approaches were used
in order to find the answer to this question.

The most famous are probably The Oregonator and The Gyorgyi-Field Model. The
Oregonator gave a great simplification reducing the model into 3 differential equations.
Unfortunately, this model did not succeed to allow the observation of chaos. On the
contrary, the second model introduced by Gyorgyi and Field was more successful. By
allowing the reaction to happen in continuous-flow stirred tank reactor, they proved the
theory that chaos can occur in chemical systems when the reaction starts far from the
equilibrium. During the next years, many more studies appeared replacing the cerium
catalyst to ferroin catalyst or others, reaching very similar results. [15]

The derivation of this system is out of the scope of this chapter since many chemical
species appear during the reaction. However, more information can be found in [7], [16]
and [I7]. The following system of equations describes The Gyorgyi-Field Model and can
be found in more details in [I7] together with the appropriate parameters and phase
portrait.

d
ﬁ = Ty[—k1 HYyz§ + ke AH?Yy X5 — 2z Xoz+
1 . 1

+ 5/{:4141/2]:13/2)(0 1/2(0 — Zoz)z'/? — §k5ZOxz — k]
d
ﬁ = To[k4A1/2H3/2Xé/2(C/ZQ - Z)ZL‘I/2 - k?5Xol‘Z—

— ake¢Vozv — Bke Mz — k2]
d
% = To[2ky H XoYoVy 2 + ks AH2Yy Vi b + ks X2V a2 —

— akeZozv — k),
where 7 =1t/Ty, x = X/Xo, 2= Z/Zy, v =V/V
y = [akeZoVozv/ (ki H Xox + ke AH? + ky)]/ Yo.

In the equations x, z,v represent dimensionless variables of the chemical components
Y = Br—, X = HBrO,, Z = Ce*", V. = BrCH(COOH),, A = BrO;, H = H*, and
M = CHy(COOH),. Out of the other parameters the most important one is k; since in
varying k¢ the system’s behaviour can change to chaotic.
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2.6 Other chaotic models

One can see now, that chaos became a widely investigated topic. Many systems were
discovered or built across all the fields of study, especially in electrics, biology, physics
or economics. In the rest of this chapter some more examples of chaotic systems will be
given in brief.

2.6.1 Double pendulum

Double pendulum, as the name suggests, is a pendulum with another one attached to
its end point (see Figure . The motion of the pendulum is described by a system of
nonlinear ODEs. The system solution depends on the length of the two limbs holding
the pendulums. The trajectory of any double pendulum system is strongly influenced by
initial conditions involving initial position and velocity. [I§]

Figure 2.9: Double pendulum. [I§]

2.6.2 Sprott systems

There exist even simpler examples of chaotic systems than the ones presented by E. Lorenz
or O. Rossler. J. C. Sprott presented a group of 18 different models of chaos that contain
either six terms and one quadratic nonlinearity or five terms and two quadratic nonlin-
earities. An overview of this group can be found in his book [I2]. The models can be
easily applied to electric circuits.

The model SQB depicted in Figure is given by a system of equations

¥ =yz,
y=z-y,
2 =1-uxy.

Another example presented by Sprott is system SQL

¥ =y+39z,
y =0.92% — vy,
J=1-x,
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which is depicted in Figure [2.10b]

(a) System SQB. (b) System SQL.

Figure 2.10: Sprott systems SQB and SQL.

2.6.3 Chen system

Besides the Chua’s system, another example of a double-scroll attractor is the Chen sys-
tem. This system was discovered by anticontrol method (sometimes called chaotification)
and it is similar to Lorenz’s system as they differ from each other in only one equation.
[19] On the other hand, there are certain differences both in the phase portraits and
suitable parameters leading to chaos. The Chen system is given by

a:':a(y—a:),
/

y =(c—a)xr —zz+cy,
7 =axy— bz,

where a, b, c are positive real parameter. The characteristic trajectory for parameters
a = 3b,b=3,c=28is given in Figure [2.11

40
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3 ANALYSIS OF ROSSLER SYSTEM

Up to this point, a list of chaotic models was presented in brief as well as a basic theory
for nonlinear dynamical systems. In the sequel, the attention will be paid to the stability
analysis of the Rossler system. Namely, the local behaviour will be investigated in the
neighbourhood of its equilibrium points. In order to show the changes in the evolution of
the system, some more phase portraits will be included as a result of numerical analysis
for various parameters. In the end, specific cases of bifurcation analysis will be presented
for the fixed choice of parameters a = b = 0.1 and ¢ varying. Recall, that the system is
given by equations

m/:—y—z,

v =x+ay, (3.1)
2 =b+z(x —c),

where a, b, c are real parameters. For the later work, all parameters will be assumed to
be positive.

3.1 Equilibrium points
As was defined earlier, an equilibrium point of a system

x' = f(x)
is every point x* for which f(x*) = 0. Hence, fixed points of the Rossler system ({3.1)) are
given as a solution of
0=-y—=z,
0=2+ay,
0=b+z(x—c).

Taking y = —z, x = az, and substituting them into the third equation, z can be expressed
as the roots of quadratic equation az? — cz + b = 0. Thus

c+ 2 —4ab

212 =
2a

Now three cases are possible: If the condition ¢® > 4ab is fulfilled, then there exist two
equilibrium points

y ¢ V2 —4dab ¢ VA —4ab ¢ A —4ab
x=|-+—-———+——, (3.2)
2 2 2a 2a 2a 2a
. c 2—4ab ¢ Ve —4ab ¢ V2 —4dadb
x=|l--— —F—\— ——— | (3.3)
2 2 2a 2a 2a 2a
while for ¢? = 4ab there is only one equilibrium point
c ¢ c
S 3.4
* [2’ 20’ 2(1} (3.4)

In the last case, ¢® < 4ab, no equilibrium point exists.
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3.2 Stability of equilibrium points

To determine the nature of an equilibrium point and the behaviour in its neighbourhood,
the linearization method can be used. Firstly, the Jacobian matrix needs to be built by
computing partial derivatives of all components of . The Jacobian matrix for the
Rossler system evaluated at an equilibrium point x* = [2*, y*, z*] has the form

The nature of an equilibrium point depends on the eigenvalues of characteristic equation.
This is now defined as det (J — AI) = 0. Then, the characteristic equation is given by

. —1
det 1 a—A\ 0 =0.
z* 0 ¥ —c— A

The eigenvalues can be expressed as the roots of polynomial
PA) =N+ (c—a—a)\+ (ar* —ac+ 2" + DA+ (c — 2* — az¥). (3.5)

The previous computation yields that two cases must be investigated, i.e. the cases when
one and two fixed points exist.

3.2.1 The case of one equilibrium point

The Rossler system has only one equilibrium point if ¢ = 4ab. Thus, evaluating the Ja-
cobian matrix at the fixed point x* given by ({3.4)), the roots of characteristic polynomial
(3.5) can be obtained from

C

)\3
+(2

Obviously, one eigenvalue is zero and the other two can be easily computed as the roots
of quadratic equation

A2+(g—a)A+(i—§+1):0.

c
29

Therefore, the eigenvalues of characteristic equation for x* = [ o i} are

)\1:0,

a c¢ 1 c 2 2
dog =5 =tk (5+a) -S4
28757 2\/ > T
Since at least one of the eigenvalues has the zero real part, the fixed point is nonhyperbolic
and thus difficult to classify. Analytical computation requires applying the theory given on
the center manifold or finding Lyapunov function that would either confirm or disprove

the stability of this equilibrium point. Such analysis will not be given here, however,
classification of a single equilibrium point for the Rdssler system was proposed in [20].
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Following the analytical results from [20], the choice a = 1, b = 10 (hence ¢ = 2v/10)
should classify the equilibrium point as a locally stable node. The results of a numerical
experiment indicate, that the equilibrium point is truly locally stable as can be seen in
Figure(3.1. However, the stability is secured only for a small basin of attraction. The basin
of attraction of an equilibrium point represents a region in the phase space such that any
trajectory starting in this region will be eventually attracted into this equilibrium point.

The reason, why the attracting region is small for this system is due to the significant
sensitivity of the system in general. Thus, in Figure [3.1] the initial points were carefully
chosen to fit in the corresponding region of attraction. On the other hand, Figure
shows the evolution of the system when the initial point is taken a bit further from the
equilibrium point. Despite the fixed point being locally stable, it is no longer attracting
the trajectory to itself. Furthermore, the trajectory escapes to infinity.

In both figures the equilibrium point is denoted by red star, and each initial point
with a green cross. For this particular combination of parameters, the fixed point has
coordinates x* = [3.16,—3.16, 3.16]. The initial point x¢ = [3.1, —3.1, 3] belongs to the
basin of attraction, which means that the trajectory starting at this point will reach x*
as t — oo (Figure . On the other hand, the trajectory starting at xo = [3.3, —2.4,2.7]
will be escaping to infinity with the spiral motion (Figure .

3.2
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Figure 3.1: (a =1, b = 10, ¢ = 2v/10); x¢ inside the basin of attraction.
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Figure 3.2: (a =1, b = 10, ¢ = 24/10); x¢ outside the basin of attraction.
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3.2.2 The case of two equilibrium points

The system has two equilibrium points if the condition ¢* > 4ab holds. Similarly to
the previous case, the eigenvalues of characteristic equation (3.5) must be computed for
both points x} and x3. At this point, however, the task is to solve a general cubic equation
which might be a bit complicated matter. One possibility is to apply the Cardan’s method
which gives the algorithm for finding eigenvalues of cubic function. Another approach
consists of applying the Routh-Hurwitz criterion which was presented in Chapter 1.

Recall, the characteristic equation is given by . Then, according to Routh-Hurwitz
criterion, all its roots are negative or have a negative real part if and only if all determi-
nants of the Hurwitz matrices Hy, Hy, H3 are positive. In this case it means, that all of
the following conditions must hold

det HH=c—a—2">0 and

det Hy=(c—a—2z")(az" —ac+2z"+1) — (c—2" —az") >0 and

det Hy = (¢ — 2" —az")[(c—a—z")(az" —ac+ 2"+ 1) — (¢ — 2" — az")]
=(c—a" —az")det Hy > 0.

(3.6)

Particularly, two cases must be investigated as there are two equilibrium points. In the
sequel, each fixed point will be studied separately by fitting the values from (3.2)) and

into .

Fixed point xj

In this case it is possible to start from the last determinant of (3.6) and focus on the
condition det Hy = (¢ — z* — az*)det Hy > 0. Since it is desired that det Hy > 0,

the second term in the inequality must be also positive, i.e. (¢ —x* —az*) > 0. However,
substitution z* and z* with the values from (3.2)) yields

(c—a*—az") ==V —4ab < 0,

which means that either det H3 < 0 or det Hy < 0. Therefore, the equilibrium point xj
is not stable for any combination of a, b, c.

Fixed point x}

The case of the second equilibrium point requires more computations. Unlike the previous
case, here the term (c—z* — az*) = v/c? — 4ab is always positive as far as two equilibrium
points exist and thus the condition for det Hj is satisfied if and only if det Hy > 0. From

the first two equations of (3.6)) follows: the roots of (3.5)) have negative real parts if and
only if

V2 —4dab>2a—c and a(a —c)Vc — 4dab > ac(c —a) — 2(a*b + b — a).

These two inequalities give the desired conditions but they are still unwieldy in sense of
expressing one of the parameters. More practical conditions were derived and proven in
217, [221.

Theorem 11. The fized point x5 is locally asymptotically stable if and only if parameters
a, b, c satisfy:
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(i) a, ¢ belong to S; U Sy given as

S1=A{(a,¢):a <1 andc>2a},
Sy ={(a,¢):a € (1,V2) and ¢ € (2a,2a/(a® — 1))}. (3.8)

(ii) b satisfies by(a,c) < b < bg(a,c), where

a2 —a* 4 ca® 4+ 20° — ca+ & + (¢ — a)Va® — dat + 2ca® — 4a® + 2

bH<a7 C) - 2(&2 + 1>2 )
2
c
be(a,c) = "
Proof. See [21]. O

To demonstrate the theoretical result given in the theorem, two different examples will
be further presented with the value of parameter a from both of the sets S; given by
and Sy given by . Firstly, assume a € S1, precisely the threshold case a = 1. In order
to fulfil the condition ¢ > 2a the value of ¢ is chosen as ¢ = 3. By this choice, only a
small interval of possible b is left. One of the possible values of b is b = 2.22. As can be
observed from Figure , under the choice of initial states (green stars) from the close
neighbourhood of x3, the trajectories are attracted into this equilibrium point, particularly
with a spiral movement. This illustrates that x3 is locally asymptotically stable. Similarly,
Figure|3.3b/shows the attraction of another stable equilibrium when a € S,. In this second
case, the combination of parameters was chosen as a = 1.3, b = 1.7306, ¢ = 3.

1.146
1.144
~ 1142
1.14

1.138
-1.138

-1.142

-1.144
y -136 128 x y -1.146 1475 X

(a) a € Sy, xo = [1.3,-1.3,1.3]. (b) a € Sa, xo = [1.485, —1.142,1.142).

Figure 3.3: Demonstration of stable fixed points.

Even though the attraction of these fixed points was illustrated, both of the presented
cases have small basin of attraction. Similarly to the case of one equilibrium, the initial
points were carefully chosen to fit in the corresponding region of attraction.

In Figure [3.4] the same parameters as in Figure were used, with only difference in
the starting point. Again, the attraction towards the fixed point failed when the starting
point was chosen a bit further from x3.

Another consequence of Theorem [11]is that any choice of parameters will never lead
to a system with asymptotically stable equilibrium point whenever a > v/2.
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Figure 3.4: a € Sy, xo = [0.8,1,0.6].

3.3 Numerical Analysis for varying c

In general, investigating analytically nonlinear systems with multiple parameters is a de-
manding task to do, and this is also the case of the Rossler model. Therefore, numerical
methods must be often used. Fixing one or two parameters and letting the rest of them
vary, one can considerably simplify the analysis. Following the Rdssler’s original work,
a and b will be considered as fixed parameters and ¢ will vary as a bifurcation parameter.
Suppose

a=b0=0.1
= ¢ > Vidab=0.2.

According to Routh—Hurtwitz criterion, in all cases when a = b, no possible value of ¢
exists for which the equilibrium point x3 is asymptotically stable. Thus, analysis of other
specific solutions can be performed.

Consider the Rossler system given by with parameters a = b = 0.1, ¢ € [0.2, 20]
and with initial condition xo = [1, —1,0]. Firstly, assume ¢ = 0.2. This case corresponds
to the situation when only one fixed point exists. Moreover, this value of ¢ is critical for
the system (¢ = ¢), since the system undergoes so-called fold bifurcation (saddle-node
bifurcation) as ¢ decreases or increases. During fold bifurcation, the single fixed point
either disappears (if ¢ < ¢.,), or two equilibrium points are formed from the single fixed
point (if ¢ > ¢..), either one stable and one unstable, or two unstable.

The case of one equilibrium was already discussed in the beginning of this chapter. It
was shown that the corresponding fixed point is nonhyperbolic, and for the initial value
chosen for this analysis the behaviour is plotted in Figure 3.5l The trajectory starting at
Xq is moving fast away from the fixed point with a spiral movement.

Greater interest arises in the cases of two equilibria. For any ¢ > ¢, = 0.2, two
equilibria exist. Moreover, for this specific choice of parameters a, b, a stable limit cycle is
created immediately when the parameter c is increased above 0.2. However, the formation
of the stable limit cycle comes from a bifurcation over a different system parameter as is
described in [20]. The stable cycle has a great effect on the system as all the trajectories
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starting in its neighbourhood will converge to this cycle as ¢ — co. On the contrary to
the cases of stable equilibrium points, the basin of attraction of this orbit is significantly
larger. Moreover, this limit cycle plays the main role in the transition to chaos via period
doubling bifurcation. This phenomenon is based on a sequence of actions when the period
of the limit cycle is doubled, leading to a loss of stability and chaotic behaviour. The
transition to chaos and back to periodicity is described in the next part.

10

s10 F

-20

-30

40 b

-50 -

-60

Figure 3.5: Bifurcation analysis: ¢ = 0.2; critical value.

At first, the creation of stable limit cycle can be observed in Figure[3.6] For a demon-
stration, two starting points were chosen, one from ’outside’ and one from ’inside’ of the
assumed position of the limit cycle. The figure provides a good idea where the actual
orbit is located. Since the limit cycle is of period one, it is often called period one orbit.
This terminology will be useful later when cycles of different period appear.

Figure 3.6: Bifurcation analysis: ¢ = 0.21; demonstration of limit cycle.

Further increasing values of parameter ¢ will not bring any new observation for a while,
since up to the value ¢ &~ 5.3 the behaviour of the system has the same scenario. All nearby
trajectories settle down on the period one orbit as can be seen in Figure (3.7 which was
plotted for the value ¢ = 4. The 2D view shows the settled solution on the periodic orbit.
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Figure 3.7: Bifurcation analysis: ¢ = 4; period one orbit.

Once c¢ passes the value 5.3, the system undergoes first period doubling. The periodic
orbit enlarges its period twice from the original value. The new limit cycle has period two
and it is made of two loops. A demonstration of period two orbit is depicted in Figure (3.8
for the value ¢ = 5.4. The period two orbit occurs up to the value ¢ ~ 7.8 when another
period doubling takes place.

Figure 3.8: Bifurcation analysis: ¢ = 5.4; period two orbit.

In the interval between the values 7.8 and 8.6, period four orbits can be observed as
is in Figure 3.9, following another period doubling. Around the value ¢ ~ 8.7, period
eight orbit appears. With further increase of the value of ¢ the period doubling happens
so often, that it starts to lead to chaos which appears already around the value ¢ = 9.
Figure [3.10] shows the chaotic behaviour of the system for the value ¢ = 10. The solution
will never settle down as new and new loops are created. This can be observed from the
2D view which shows evolution for ¢ >> t;.

This phenomenon continues up to the value ¢ ~ 11.9. At this value a collapse of
chaos appears suddenly and the periodicity of the solution reappears. For the interval
between the values 11.9 and 12.5, the solution settles onto period three orbit as can be
seen in Figure for ¢ = 12. At the value 12.6, the period doubling bifurcation occurs

40



15

0

20

Figure 3.10: Bifurcation analysis: ¢ = 10; chaotic behaviour.

again letting the period enlarge to six. The six period orbit can be seen in Figure
representing the settled solution for the value of ¢ = 12.5.

-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 25

(a) ¢ = 12; period three orbit. (b) ¢ = 12.7; period six orbit.

Figure 3.11: Bifurcation analysis: ¢ = 12; ¢ = 12.7.
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The trajectory for the value ¢ = 13 in Figure is already chaotic and chaos occurs
for increasing ¢ up to the value 15.4, where the solution becomes periodic again, however,
just for a small interval of ¢. The collapse of chaos for a small interval of the bifurcation
parameter is often called a periodic window, precisely period five window in this case
(see Figure . Finally, starting with the value 15.5 till the end of the investigation at
¢ = 20, the behaviour is fully chaotic as is noticeable in Figure

30 20

Figure 3.12: Bifurcation analysis: ¢ = 13.5; chaotic behaviour.

30 30

Figure 3.13: Bifurcation analysis: ¢ = 15.4; collapse of chaos.

30 30

Figure 3.14: Bifurcation analysis: ¢ = 18; chaotic behaviour.
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Bifurcation diagram

It is apparent, that the method used above is not very practical, since every value of ¢ from
the chosen interval must be separately plotted and investigated. In case, when the only
desired information is whether the chaos occurs or not for certain values, a bifurcation
diagram can be plotted using Poincaré theorem.

Creation of a bifurcation diagram is based on the idea similar to the construction of
Poincaré map. The nature of any structure in dynamical systems is determined by the
behaviour of the system in its neighbourhood as time goes to infinity. Obviously, it is
impossible to run such calculation. Therefore, sufficiently long time ¢ = T is chosen after
which the system is assumed to behave as it would behave in infinity. Clearly, this can be
claimed only if the solution approaches an attracting fixed point or an attracting periodic
orbit. In case of stable periodic orbits, it can be assumed that for time ¢ > T, if the
trajectory runs through a certain point in the phase space, then after time equal to the
period of the orbit, the trajectory will cross this point again. Moreover, this behaviour
will be repeated infinitely.

Suppose, that the local maxima of one state variable are measured and recorded in the
graph for a certain period of time starting at some ¢ > T. Then, if the solution of the sys-
tem is attracted to a periodic orbit, all the measurements coincide at one value. However,
in the case when chaos occurs in the system, the measurements will differ. The bifurca-
tion diagram can be then explained as follows. For each value of bifurcation parameter,
the number of different values recorded in the graph corresponds to the periodicity of the
limit cycle. Thus, in the case of period one orbit, only a single value of the measured state
variable will occur in the graph. On the contrary, if for certain parameters the system is
chaotic, then there will be infinitely many different values plotted in the graph.

351
301
251

20
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Figure 3.15: Bifurcation diagram for varying c.
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The bifurcation diagram depicted in Figure [3.15] confirms the results of the numerical
analysis done before. Clearly, for small ¢, period one orbit occurs, following several period
doubling. Around the value ¢ = 9 there is already too many points plotted in the figure.
This suggests the transition to chaos. The region from 9 to 12 is clearly chaotic and
similarly the region from 13 till the end of the investigated interval of the bifurcation
parameter (except of the small interval around 15.4 which refers to periodic window).
Matlab code for the bifurcation diagram was inspired by [23].
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4 CONTROLLING CHAOS

The impossible long-term prediction and sensitivity on the initial data had been the
reason why the chaotic systems were undervalued and undesired in the past. The strange
behaviour had often been attributed to random influences and thus, there was a tendency
to avoid such systems or to design them out if possible. However, with the development
in the computer science, the potential usefulness of chaotic systems have been found,
followed by an idea of stabilizing (control) such systems in the early '90s.

The concept of stabilization usually includes an implementation of external forces
(perturbations) to make the system behave as desired. That means reaching a chosen
state and secure that the system becomes stable at this state and even more, resistant to
another perturbations. For this task, the properties of chaotic systems can be beneficial,
since these systems are also extremely sensitive to the effect of perturbation. Under
certain conditions, it is then possible to find suitable perturbation parameters to control
the system. On the other hand, the goal of control does not have to always implement
stabilization of a chosen system. The control can be as well used in the opposite way,
making the trajectories become chaotic. [7], [I1], [24]

In this chapter, some of the well-known methods will be presented, following deeper
investigation in the time-delayed feedback control method, where several examples will
be introduced.

4.1 Methods of control

There are two main approaches to achieve a certain control over the system. The first
approach is based on application of a feedback process, e.g. external force, that influences
the trajectory to the desired direction. Hence, the actual state of the system must be
monitored during all the control process. Into this category belong the OGY method, the
external force control with continuous-time or the Pyragas method (time-delayed feedback
control method). The second group represents the nonfeedback methods. Such methods
do not need monitoring of trajectories and so they can be applied at any time. On the
other hand, nonfeedback methods usually affect more the system itself.

4.1.1 OGY Method

The OGY method was firstly introduced in 1990 and it was named after its inventors
Q. Ott, C. Grebogi and J. A. Yorke. The method is based on elimination of chaos
by applying small time-dependent perturbations. [25] The method takes advantage of
the properties of chaotic attractors, precisely that a chaotic attractor contains within it
an infinite number of unstable periodic orbits of all periods. The target of the control is
to apply the force in appropriate time to direct the trajectory on one of those unstable
orbits, where it remains. The first step is choosing one of the orbits, and computing
precisely the perturbation needed. The perturbation, which is usually very small, is then
applied on the system whenever the trajectory is close to this chosen orbit. This way,
the trajectory is getting closer with each perturbation up to the point when it stays on
the orbit and thus the orbit becomes stable. In some papers, this process is described as
suppressing chaos by shadowing one the system’s unstable periodic orbit. [11]
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The OGY method belongs to the feedback control group with non-invasive control.
The non-invasive control means that the control vanishes once the stability is achieved.
The method is very general and can be used for stabilizing both periodic orbits or steady
states inside the chaotic attractor. The advantage of OGY method is that, it is sufficient
to study only part of the chaotic model, i.e. the Poincaré map. On the other hand, the
method requires a permanent tracking of the state of the system and a lot of computation
to earn the precise perturbations necessary to stabilize the system.

4.1.2 Time-Delayed Feedback Control

The method of time-delayed feedback control (TDFC), also called time-delayed auto syn-
chronization, was originally introduced by K. Pyragas in 1992 to stabilize unstable periodic
orbits [26]. Unlike the OGY method, TDFC uses time-continuous perturbation and thus
can avoid some problems connected with OGY method. Moreover, the method does not
need any external source of perturbation since the control force is constructed from the
delayed output signal applied in a special form in the system input. This way a certain
self-control of the system is achieved. Hence, the main task in this method is to con-
struct the form of the perturbation which will stabilize the system but will not change the
solution. To construct the form of control, recall, an autonomous nonlinear dynamical
system

xX'(t) = f(x(1)), (4.1)

where x € R", and f : R" — R" is a function defined as f : x — f(x). In general,
a system under some control force can be written as

X' (t) = f(x(t)) + u(t). (4.2)

Suppose now the system is 1D, i.e. given by single equation 2/ = f(z). Let 7 € RT be
the time delay and K € R the control gain (weight of the feedback force), then according
to the Pyragas scheme, the control force is constructed from the difference of the present
state z(t) and its delayed value (¢t — 7). In other words, the perturbation is of the form

ut) = Kla(t — ) — x(t)].

The advantage of the delay arise from the property of the periodic orbits, such that, if
7 is equal to the period of the orbit (7 = T') then the control force vanishes if the orbit is
stabilized since z(t+7') = x(t). Thus, the method is non-invasive. Equivalently, it can be
shown, that the non-invasive property holds also for stabilizing steady states. The force
vanishes when the steady state x* is stabilized as x*(t) = 2*(t — 7). However, the optimal
choice of the time delay is not so obvious in this case.

The TDFC method is easy to implement, however, the crucial task is finding a suitable
combination of parameters 7 and K which makes the stabilization successful. Later in this
chapter, an assertion will be presented, giving restrictions on the possible choice of the
pairs ([K, 7] for the Pyragas scheme with diagonal feedback control, i.e. when the matrix
describing the control is diagonal. The controlled system in the case of Pyragas
scheme has the form

X'(t) = f(x(t)) = KI[x(t) = x(t —7)], (4.3)

where [ is an identity matrix.
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4.1.3 Non-Feedback methods

As it was mentioned in the beginning of this chapter, one possibility to avoid chaos is
to design it out from the system. The idea of this method can be demonstrated on the
dynamical vibration absorber. The absorber is a small mass connected to the main system
preventing the system to reach resonance frequency. Similarly in controlling chaos, the
considered system can be coupled with additional, much simpler system, that helps it to
avoid chaotic behaviour.

4.2 Applying the Time-Delayed Feedback Control

This part of the work is focused on the TDFC method presented earlier. Firstly, the method
will be demonstrated on a simple 2D example, which was studied in the work of P. Hovel
[27]. Then, a general assertion will be stated, presenting different approach of finding
suitable pairs [K, 7| for successful stabilization. The 2D example will be then used again,
to demonstrate the second approach. Finally, the task of stabilizing the chaotic Rossler
system will be presented.

4.2.1 Stabilization of Unstable Focus

Both periodic orbits and fixed points can be stabilize by the TDFC method. Thus,
an example of unstable focus in R? is chosen to demonstrate the method. This task is
described in more details in Chapter 3.2 from [27]. A brief summary of the results from
[27] will be presented as it will be useful in the next considerations. Suppose a linear
dynamical system in R? of the form

X0 = (4, 1)x0 (44

where a,b € R \ {0} are two different constants. Besides that, if a > 0, then eigenvalues
A of the characteristic equation are complex with (A) > 0. The system exhibits unstable
focus in the origin. Furthermore, if xq is the initial point, then solution of this system is
given by

at { cos(bt)  sin(bt)
x(t) =e (—Sin(bt) cos(bt)) %o0-

Assuming the Pyragas scheme given by (4.3)), the system (4.4) under the time-delayed
feedback control becomes

() = (_“b 2) x(t) — KIx(t) — x(t — 7). (4.5)

It is easily seen that in the absence of control, i.e. K = 0, the system gets back into
([4.4). The stabilization process is successful if there exists a suitable choice (or choices)
of [K, 7| for which the origin becomes asymptotically stable, i.e. all eigenvalues s of the
characteristic equation of system given by satisfy R(s) < 0. Thus, it is necessary to
prescribe the restrictions on the control gain K and time delay 7 to obtain the domain of
control. This leads to the following computation.
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In the first step, eigenvalues s; corresponding to the fixed point in the origin need to
be obtained from the characteristic equation. Using the exponential ansatz for x(t), the
characteristic equation of (4.5)) is given as

a—s b 1—e 5 0
0= det [(—b a—s>_K< 0 1—687)]’

which after the computation yields
atib=s+K(1—e ). (4.6)

As mentioned earlier, system is asymptotically stable, if for all s is R(s) < 0. Therefore,
it is convenient to find the threshold of stability, i.e. R(s) = 0. For easier manipulation,
s is written as a complex number, s = p 4+ ig. Using the FEuler’s formula

e T = e P (cos(qr) — isin(qr)),
the equation (4.6) can be divided in real and imaginary part as

a=p+ K[l —e P cos(qr)],
b=q+ Ke " sin(qr).

The threshold between stability and instability in complex plane is given by p = 0.
Allowing p = 0, the system gets easier into

a=K — K cos(qr), (4.7)
b=q+ Ksin(qr). (4.8)

From the range of cosine function, it is easy to see that a lower bound for the control gain
K providing successful stabilization is obtained from (4.7)) and given by

Y< k.
5 S
Further, using the trigonometrical identities, the equations (4.7)) and (4.8) written as

K—a
K
b—q

T = sin(qr) s

= cos(qr1),

can be put to the second power and sum together, leading into

<Kl; a>2 " (b_Tq)Q = cos’(g7) +sin®(g7) = 1. (4.9)

The equation (4.9) enables to express ¢

b—q K—a 2
T_i\/l_( K )
=q=b0F /(2K — a)a. (4.10)
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Substituting ¢ from (4.10]) into the equation (4.7)), the time delay 7 can be obtained as
a function of the control gain K

% = cos((bF \/M)T)

arccos ( KI; a )

b 2K —a)a

However, the solution obtained by (4.11]) is given only on the interval where cosine function
is a bijection. Thus, extending the interval according to the periodicity of the cosine func-
tion, three families of branches of solutions are obtained. Namely, let n be a non-negative

integer and suppose firstly ¢ = b — /(2K — a)a. Taking into account the condition of

non-zero denominator (K # “2;; b2), two families of branches arise
2n7 + arccos (£=¢ 24 b2
TI(K7n) - ( S ) g S K < v ) (412)
b— /(2K —a)a 2 2a
2n + 1)7 — arccos (£z2 240
ro(Km) = & ) - B (4.13)

—b++/(2K—a)a 2a

Finally, for ¢ = b+ /(2K — a)a the denominator is always non-zero and the time delay
is given as

(Kon) = (2n + 1)m — arccos (£2%) ,

b+ /(2K —a)a

The region of suitable choices of parameters K and 7 for which unstable focus can be
stabilized is defined by the union of all subregions restricted by branches 71, given by
, from bellow and 73, given by , from above for n = 0,1,2,... . The family
of branches 7 given by are not relevant since 7 > 73 for all K > . To
demonstrate the theoretical results, the parameters of the dynamical system (4.4) are

fixed as @ = 0.1 and b = w. The system has the form

<K. (4.14)

N2

(1) = (gi 07.T1> x(b). (4.15)

According to the conditions given in and , the domain of control for the system
is depicted in Figure . Particularly, subregions Sy, S1, Sa, S3 corresponding to
n = {0,1,2,3} are presented. The red and blue curves correspond to the solutions of
71(K,n) and 73(K,n), respectively. It is easy to observe, that the number of suitable
pairs [K, 7] decreases as the time delay increases.

The original uncontrolled system is given in Figure [£.2a] On the other hand,
Figure refers already to a stabilized system, in this case with [K, 7] = [0.8, 1.5] from
the subregion Sy. The fixed point is stabilized and the trajectory approaches x* as ¢t — oo.
On the contrary, choosing parameters outside the domain of control will not stabilize the
fixed point and the trajectory will escape to infinity. Figure [4.2¢ represents the choice of
parameters [K, 7| = [1.5, 2] under which it is not possible to stabilize the fixed point. Due
to the numerical method which was used for the feedback control schemes, the trajectory
is firstly getting closer to the fixed point, however, it soon reverses the direction. The
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fixed point remained unstable as was expected. Finally, the choice of the values from the
boundary of the subregions leads to a creation of a stable limit cycle. This phenomenon
can be observed in Figure [£.2d] In this particular case K was fixed at the value K =1
and 7 was computed from the relation (4.12)).

T T T T 1
0 5 10 15 20 25 30 35 40 45 50

y
A b kb o e oM ow s @
*

y

X X

(b) [K, 7] = [0.8,1.5]; stabilized.

L L L L L L L R L L L L L
-2.5 -2 -15 -1 -0.5 0 0.5 1 15 2 25 -15 -1 -0.5 ] 0.5 1 15 2

(c) [K, 7] = [1.5,2]; not stabilized. (d) [K, 7] = [1,1.63024]; periodic orbit.

Figure 4.2: Stabilization of unstable focus.
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4.2.2 General condition for finding domain of control

In the previous example, the stabilization via TDFC method was demonstrated for a par-
ticular case in 2D. The presented approach gives the condition for successful stabilization,
however, it is not general enough. In the sequel, another approach will be introduced,
providing more general method for obtaining the domain of control parameters.

Suppose the system under the control of Pyragas type, i.e. system given by
(4.3). The problem of stabilization of a fixed point can be determined by investigating
the linearized controlled system around the equilibrium point. The linearization of
yields

x'(t) = Bx(t) + KIx(t — ), (4.16)

where x € R™, the matrix B € R™*" is given as B = D f(x*) — K1, where D f(x*) is the
Jacobian matrix of the original uncontrolled system (4.1) evaluated at the equilibrium
point x*. The set of suitable control parameters [K, 7| is characterized by the following

Theorem 12. Let B € R™" be matrixz with eigenvalues \;, i = 1,...,n and let K € R,
7 € R*. The zero solution of 1s asymptotically stable if and only if each \;,
1 =1,...,n satisfies any of the following conditions:
(i) R(N) + K| <0 and 7 is arbitrary;
(i) R(N\)+|K|=0, K#0 and 73(\)—arg(K) # 20m  for any { € Z;
(iil) JR(A:)] — K] <0
and 7y/K?— (R(\:))% + arccos (LQ)) < arccos[sgn(K) cos(7(\;))] -

K]

Proof. To prove Theorem [I2] it is necessary to show that the conditions presented in the
assertion are necessary and sufficient for characteristic equation of to have all eigen-
values with negative real part. Using the exponential ansatz for x(t), the characteristic
equation has the form

det [s] — B— KIe™*"] = 0.

As the matrix B can be decomposed into the diagonal matrix with eigenvalues A; of B on
its diagonal, it is possible to say that the equilibrium point x* of (4.16]) is asymptotically
stable if and only if all roots of quasi-polynomial

n

F(s)=[](s =\ — Ke™)

i=1
have negative real part, i.e. (s) < 0. Thus, it is possible to reduce the investigation on
the roots of

s—XN—Ke ¥ =0 (4.17)

for each eigenvalue )\;. Now, turning back to the conditions presented in the assertion,
the goal is to show that all the roots s have negative real parts if and only if just one of
the conditions (i)-(iii) holds.

Firstly, write X instead of A; in and express it from as A= s — Ke .
Suppose a set defined as

UK, 7)={s—Ke* : se€C, R(s) >0},
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then on the contrary the property of stability is true if and only if A ¢ U(K, 7). Thus, it
is enough to describe the structure of U(K,7) for K # 0 and 7 > 0 (the case K = 0 is
trivial). Since

s+ Ke ™ =5+ Ke e
=s—in/T— Ke "7 g /1

the set U(—K, T) can be obtained from U (K, ) via shifting by ir/7 along the imaginary
axis. Thus, it is enough to restrict the investigation for K > 0. Using the properties from
complex analysis, let §, —m < 78(8) < 7 be such that s = §+12x¢/7 for a suitable ¢ € Z.
Then

s—Ke ™" =5—Ke ™ +i2nl/T,
hence it is possible to consider another restriction of U (K, 7), namely to
Up(K,7)={s—Ke*:s€C, R(s) >0, —1/7 < S(s) < 7/7}.

Finally, separating the real and imaginary part of (4.17)), one can easily check that s* is
a root of (4.17) if and only if its complex conjugate s* is the root of

s—A—Ke ™ =0,

X being complex conjugate to A. Consequently, because of symmetry of Uy(K,7) with
respect to the real axis, it is sufficient to describe the structure of the set

UF(K,7)={s—Ke*":s5€C,R(s)>0,0<3(s) <7/7}.
The border of Uj(K, ) is formed by the sets

Bi(K,7)={s—Ke* : s€C, R(s) >0,
By(K,7)={s—Ke ™ : s€C, R(s) =0,
Bs(K,7)={s— Ke* : s€C, R(s) >0,

Let A = a+if. For By (K, 7), where § = /7 it holds

Bi(K,7)={a+in/Tr—Ke ™ ™. a€R, a>0}
={a+Ke ™ +in/t: a € R, a > 0}.

Since fi(a) = o+ Ke 7 has the stationary point as = (In(K7))/7, it is decreasing for
all o < a, and increasing for all a > ay, hence

Bi(K,7)={a+ir/t: aeR,a> K}  for KT1<1
and
Bi(K,7)={a+ir/t: a eR, a> (In(K7)+1)/r}  for K7 >1.
Now, analysing the form of By(K, ), where a = 0, it can be obtained
By(K,7)={if —Ke™ . BcR,0< B <7/}
={—Kcos(t8) +i(f+ Ksin(rB)): BeR, 0< < 7/7}.
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Equivalently, putting a = — K cos(73), then

—a/K
BQ(K,T)Z{a+i<arCCOS( o/ >+\/K2—oz2):oz€R, ~-K<a<K}.

T

Notice that the function

—a/K
fola) = arccos(—a/K) L VET K<a<K
T

has the stationary point «g = 1/7, hence f; is increasing on its domain if K7 < 1 while
it is increasing on [— K, 1/7] and decreasing on [1/7, K] if K7 > 1. It remains to dispose
with B3(K, 7). Obviously,
By(K,7)={a—Ke ™ :aeR a>0}={aeR: a>—-K}.
Thus, the border of U (K, 7), when (K, 7) is fixed is depicted in Figure

3

;]
/ Bl\(u)

(a) (K, 7)=(1,1). (b) (K, 7)=(2,1).

Figure 4.3: Three border parts of the set Uy (K, 7).

Using appropriate shifties and symmetries described above one can obtain the set
U(K, ) of all A € C such that admits a root with a positive or zero real part. This
set is depicted on Figure [4.4]

Of course, the complement of U(K,7) in the complex plane is the stability region
S(K,T), i.e. the set of all A € C such that has all roots with negative real parts.
We describe this set analytically. First let A € C be such that —7 < 7¥(\) < 7 and
distinguish two cases with respect to the sign of K. For K € R*, it holds A € S(K, 1) if
and only if one of the following conditions is satisfied

(i) RN < —K;
(i) R(N) = —-K, S(\) #0;
(iii) [RA)| < K, [S(V)] > fo(R(A)).
Similarly, for K € R™, it holds A € S(K,7) if and only if one of the following conditions
is satisfied
(i) ROV < K
(i) R(\) = K, 78(\) # 7;
(iii) ROV < =K, 7= [S(A)] > f(R(N)).

23



3 3
T L
< U(ljl) ] U(211)
— — =T
N 1 2 3 R -1 0, 1 2 3 R
— g
5l —ad
/—m>- 31 g L S o
(a) (K, 7)=(1,1). (b) (K, 7)=(2,1).

Figure 4.4: The instability set U (K, 7) in the complex plane.

Generalization of these conditions to a general complex A is only a computational
matter; in particular, it needs to employ periodic extensions of the functions 7|(\)]
and 7 — 7|S(A)| for K € Rt and K € R™, respectively. The required extension (and
at the same time also unification of both sign cases for K) is provided by the function
arccos[sgn(K) cos(t7(A))]. Thus, A € S(K,7) if and only if any of the conditions of
Theorem [12f (with \; replaced by A) holds. O

4.2.3 Stabilization of Unstable Focus (revised)

Now it can be shown, that Theorem actually provides a generalization of the result
presented in Section [4.2.1]

Recall, the system has unstable focus in the origin. For easier manipulation it is
convenient to rewrite the system into the form (4.16)) used in Theorem obtaining

(1) = (“ N K) x(t) + KTx(t —7), (4.18)

where matrix B from (4.16)) is in this case given by

a—K b
B = ( b a—K ) '
The eigenvalues \; of the matrix B can be computed from the characteristic equation

a— K-\ b
O_det( b a—K—)\)
= A2 = (a— K)=£ib (4.19)
If the control is successful then the origin becomes asymptotically stable. Thus, according

to the Theorem one of the conditions (i)-(iii) must be satisfied for each \; given by
(4.19). The next step is to analyse each condition and determine for which pairs [K, 7]
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the condition holds (if there are any). The following computation is given in more details
as it will be later similarly applied for more complicated example.

(i)

(i)

(i)

The case R(\;) + |K| < 0, \; given by (4.19)

if K >0then0>a

(a—K)+|K|l<0=<.
1fK<0thenK>%.

Both results lead to a < 0 which is in contradiction with the assumption for unstable
focus. This condition is not fulfilled.

The case R(\;) + | K| =0, \; given by (4.19)

if K >0then0=a

—K)+ K] =0=
(@ = K)+1K] {1fK<0thenK:g.

Similarly leads to a < 0 which is again in contradiction with the assumption.

The case |R(\;)| — | K| < 0, \; given by (4.19)

(0 — K < —K for K € (—00,0)
=0>a
|a—K|—|K|<O:><a_K<K for K € [0,a)
= K>3
—(a—-K)< K  for K € [a,00)
L = 0<a.

The case leading to 0 > a is not possible as it contradicts with the given task. The
rest of the cases give the restriction for the control gain, namely

a
- < K.
2

Now, it is necessary to investigate for which time delays hold the second part of
(iii), i.e. the condition for 7 given by

—R\)
K]

7V K2 — (R(\;))? + arccos ( > < arccos[sgn(K) cos(7(\;))].

For A; = (a — K) + ib, the inequality becomes

K—a

K|

/K% — (a — K)? + arccos ( ) < arccos[sgn(K) cos(rb)].

The case of \y = (a— K) —1b is not necessary to solve since imaginary part is present
only in the term of cosine. Cosine is even function, i.e. cos(z) = cos(—x), and
therefore this case does not bring any new information. The previous computation
gave the restriction for ¢ and K which can be directly applied into the inequality.
Since K > 0, there is no need for the absolute value and sgn(K) = 1. Moreover,
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condition 0 < § < K keeps the term under the root positive and the argument of
arccosine is held in interval [—1, 1] as desired. The inequality becomes

K—a

7v/a(2K — a) + arccos ( ) < arccos|cos(7b)].

Now, the problem is, that 7 is included in the term arccos|cos(7h)]. The function
arccos(z) has domain of x equal to [—1,1] and range of values [0, 7]. In this case,
the argument of arccosine is given by cosine function and therefore it is convenient
evaluate the term firstly for 76 € (0, 7] and 7b € [—m,0). The zero point is excluded
because both 7 and b are different from zero. Using the periodicity of cosine func-
tion, the domain can be extended for all 76 € R \ {2n7}, where n € Z. It is useful
to add that the negative values of 7b are accomplished only by taking b < 0 since
T € RT.

(a) If 76 € (0, 7] then arccos[cos(7b)] = 7b. Thus,

K
7v/a(2K — a) 4 arccos <Ta> <7b

K—a
. arccos (£=2) . (4.20)
b—+/a(2K — a)

(b) If 70 € [—m,0) then arccos[cos(7b)] = —7b. Thus,

K —
T/ a(2k — a) + arccos ( e a) < —7b

— arccos (Klga)

< .

b+ a(2K —a)
In the last step, the periodicity of cosine must be taken into consideration. Since
cosine has period equal to 27 the conditions on 7b can be extended from (4.20)) and
(4.21)) by taking intervals (0, 7] + 2n7 and [—7,0) + 2n7, where n € Z respectively.

Then new restrictions for 7 are given by
(a) If 70 € (0, 7] + 2n7 then arccos[cos(Tb)] = 7b — 2nm. For n = 0,1,2,... the

=7 (4.21)

time delay
2 K—a
I N -+ arccos ( 74 ) . (4'22)
b— a2k — a)

(b) If 7b € [m, 27) +2n7 then arccos[cos(7b)| = —7b+2(n+1)7. Forn =0,1,2,...
the time delay

(2n + 1)m — arccos (£22)
b+ a(2K —a)

na+arccos( £=2
Taking the threshold of (4.22) as 7+ = 2nmtarcoos(F*) and threshold of (4.2.3) as

b—+/a(2k—a)

T < (4.23)

_ K—a
- = @ntDr arccos( ), the final condition for time delay can be written as
b++/a(2K —a)

T <r<7t forn=0,1,2,.... (4.24)
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The results obtained by this method are following. In the case of unstable focus given

by (4.5 and control scheme (4.18)), the condition (iii) holds for both eigenvalues of (4.19)),

if the control parameters are chosen from the region restricted by K > ¢ and 7 satisfies
7t <7 < 7, where 7%, 77 are given by , , respectively. In the comparison
to the results obtained earlier by , it is easy to see that this approach leads to the
same domain of control as in the case of control introduced by Hovel in [27].

Another comparison can be done for a case of a saddle point in 2D which was also
studied by Hovel. This case will not be presented here, however, it is easy to prove, that
none of the condition (i)-(iii) given by the Theorem [12| can be satisfied for any pair [K, 7|
due to the real positive eigenvalue of a saddle point.

Finally, it can be added that stability conditions of Theorem can be applied to
a more general stabilization problem than studied in [27].

4.2.4 Stabilization of chaotic Rossler system

In the following part, Theorem will be applied to a particular Rossler system and
numerical experiments will be included to support the theoretical results. Firstly, the
parameters of the system are chosen according to the previous analysis of Rossler system
given in Chapter 3. It was observed, that for the choice a = b = 0.1 and ¢ = 14 the
system is chaotic. The procedure of applying the stability theorem is similar to the case
of unstable focus, however, it is convenient to rewrite the condition (i)-(iii) in the following
way.

Remark 13. Conditions (i)-(iii) of Theorem[13, where B = D f(x*)— K is the linearised
matriz of controlled system , can be equivalently rewritten as

(i) R(\) — K +|K| <0 and 7 is arbitrary;

(i) R\ —K+|K|=0, K#0 and 7S(\) —arg(K) # 2n  for any { € Z;
(i) RO\ — K| — K] < 0

and T\/K2 — (R(\;) — K)2 + arccos (W) < arccos[sgn(K) cos(3(\:))] ,

where ):z-, =1,...,n are eigenvalues of A = Df(x*), i.e. the Jacobian matriz evaluated
at x*. Equivalently, the fized point X* is stabilized if any of the conditions is satisfied for
each eigenvalue \; of A.

As an application of Theorem [12| the Rossler system with parameters a = b = 0.1 and
¢ = 14 given by the system of equations

¥=—y—=z
y =x+0.1y (4.25)
2 =01+ z(z — 14),

is investigated. For this particular system there exist two unstable equilibria

X = [13.9993, —139.9929, 139.9929] ,
x5 = [7.1432-107%, —7.1432-107°, 7.1432- 10|
with corresponding eigenvalues

A, 20099286 AL, A~ —2.5149160 - 107° 4 11.8740381,

AL~ —13.998778 AL, & 0.049746 £ 0.9987551 .
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At this point, similar analysis to the case of unstable focus is necessary. For the equilib-
rium point xj, it can be directly computed that the domain of control is empty due to
the positive real eigenvalue. On the other hand, investigation of the conditions (i’)-(iii’)
for x5 yields the following results.

The case \2: The eigenvalue is real valued (negative), hence $(\?) = A\2. Since A\? has
to satisfy one of the condition (i’)-(iii’), for any pair [K, 7] must hold either

2 22 T — arccos (A%I;K)
LT <LK, TeRt o K<L, 1<
9 2 A2(2K — \2)

The case )\i = The eigenvalues are complex with positive real part. Hence, it is again
sufficient to run the computation only for one of the them. Choosing A%, it can be easily

m(;i) (> 0). Condition for the time

seen that only condition (iii’) satisfies, namely if K >
delay is then given

2nm + arccos <K_§§((Ai)> (2n + 1) — arccos (K_i(/\i))
<T< , 4.26
S00) — VRODOR R0 | s08) + yRoDEK Rody
where n = 0,1,2,.... This is similar to the result obtained in case of unstable focus.

According to the results (4.26)) obtained by using Theorem the domain of control
parameters that can be used to stabilize the Rossler system (4.25)) is depicted in Figure
for n = {0, 1, 2, 3}.

24+
224D
20

S

18
16—[>SZ

14
T 127

7~ U

Figure 4.5: Domain of control in (K,7)-plane.

Numerical experiments

To verify the theoretical results obtained above, few pairs [K, 7] will be tested numerically
using the implemented function in Matlab called dde23. [28] The function dde23 solves
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the initial value problem for a system of delay differential equations (DDEs) with constant
time delays. The method is closely related to ordinary differential equations solver ode23
based on the explicit Runge-Kutta methods.

The main difference between ODEs and DDEs consists in the initial data. While the
solution of an ODE is determined by its value at the initial point ¢ = ¢y, in the case of
DDEs it is necessary to prescribe the solution of the problem also for times preceding
the initial one. Thus, not only the value of the solution at the initial point, but also the
"history” must be provided. If 7 is the time delay (or the largest among the delays), then
on the interval tg — 7 < t < to, it is necessary to define the solution of x(t — 7) since t — 7
refers to a time before the initial point.

In the case of dde23, the history data are usually given by a constant function. This
approximation causes a problem of discontinuities of low-order derivatives. Thus, the
solution close to the initial point can be rough. However, the goal of the method is to
determine the behaviour of the system as t — oo and therefore the early difficulties can
be ignored.

The method dde23 was used to prove that choosing a pair of control parameters
[K, 7] from the domain of control given by and depicted in Figure will lead
to stabilization of the fixed point x3. For several examples the history data was chosen
uniformly H = [—1,—1,0.1] and [K, 7] was taken from the subsets Sy and 5.

(o) [K, Tj: [0.5,2)]. () [K,7] = [7.5,2].

Figure 4.6: Stabilization of x} for suitable pairs [K, 7] € Sp.
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In Figure , four pairs of [K, 7] were chosen from the set Spy. It is easy to see, that the
choice presented in Figure is the most efficient as the trajectory moves fast towards
the equilibrium point. On the other hand, under the choice [K, 7] = [7.5,2] depicted in
Figure the trajectory is moving slowly towards the equilibrium point.

Similarly, pairs from region S; are investigated and plotted in Figure [4.7

(a) [K,7] =1[0.2,9]. (b) [K, 7] = [0.3,10].

Figure 4.7: Stabilization of x} for suitable pairs [K, 7] € 5.

In the last examples the influence of the chosen history data was tested. It was
observed, that the value of the history data can be chosen freely as illustrate the choices
depicted in Figure [4.8]

0.1 03

-0.1
0.2
" -0.3
0.4

05 0.05

0.6 0
15 15

10 15

0 0 0 5
5 0
S -10 % 5
y
10 s x 10 a0

(a) [K, 7] = [1.4,1.5], (b) [K,7] = [2.9,1.5],
H = [8.65,10.87, —0.58]. H = [8.04,—9.86,0.3)].

Figure 4.8: Stabilization of x} for suitable pairs [K, 7] using different history.
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5 SYNCHRONIZATION OF CHAOTIC SYSTEMS

As it was already mentioned and shown in the previous parts of this work, the sensitivity
on the initial conditions plays a significant role in the chaos theory. Therefore, the evolu-
tion of chaotic system in time will differ even for two very close starting points, since the
trajectories separate exponentially in time. Yet, the trajectories remain trapped inside
the strange attractor. In the previous chapter, the concept of controlling chaos was pre-
sented together with some examples of stabilization unstable equilibrium points. It was
proven, that for certain conditions, all trajectories starting at a point from the basin of
attraction will eventually reach the desired state, in this case the equilibrium point.

Another way, how to think about control of dynamical systems,; is the idea of syn-
chronization. In the original meaning, synchronization is understood as an agreement in
time of different processes. In the theory of chaos, synchronization refers to a process,
when two (or more) chaotic systems (not necessarily identical) are forced to adapt their
behaviour to a common property. According to the recent studies, the common property
can be defined by the desired stage of synchronization. The strongest request, i.e. com-
plete unification of the states of the systems, is connected to the method called complete
synchronization. This method can be applied in the case of two identical systems start-
ing at different initial points. The process of synchronization is then successful, if the
trajectories of both systems converge to the same values and remain in step with each
other. This approach will be further discussed in this chapter, and applied in examples
for synchronizing two identical Rossler systems.

Other approaches do not require the trajectories to merge completely, but specify
the nature of the desired synchrony. Therefore, they are also more suitable for cases
of nonidentical systems. The phase synchronization is based on a weak coupling of two
systems. During the process, the phases become locked on some value and provide the
trajectories to be in phase with each other, while the amplitudes may remain completely
diverse. In case of lag synchronization, on the other hand, the states of the two systems
become nearly identical due to a stronger coupling, however, shifted in time. Thus, if s,
sy are states of the two systems, the lag synchronization is reached if s1(t) & so(t — 7).
The stronger the coupling scheme, the smaller the time lag 7. At the strongest schemes,
T can almost approach zero, providing almost complete synchronization.

The method of generalized synchronization extends the case of complete synchroniza-
tion to a problem of nonidentical systems. If x, y are trajectories of two different systems,
then probably, there does not exist a coupling scheme which could provide an equality
between the synchronized states. Therefore, the method defines a relation h : y = h(x),
according to that each state of one system is completely determined by the state of the
other system. The method can be applied as well to two identical systems, moreover,
if h(x) is an identity, then generalized synchronization becomes equivalent to complete
synchronization. An extended overview of the methods can be found in [29].

The common property of the methods described above is that after the time needed
for synchronization, the systems remain in synchrony. However, there exist several meth-
ods which cannot secure synchrony for all time, since local bursts occur. An example
exhibiting this phenomena is the imperfect phase synchronization or the intermittent lag
synchronization. All methods can be further divided according to the use of specific
coupling scheme. Two basic concepts will be described for the case of the complete syn-
chronization method, however, they do not differ in principal for the rest of the methods.
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Finally, for each method there is necessity of restrictions for successful synchronization.
Usually, they are given as a restriction on the Lyapunov exponents spectrum which was
introduced in the first chapter.

5.1 Methods of complete synchronization

Complete (identical) synchronization is based on coupling two identical systems (with
same parameters) and synchronization of their trajectories onto one common trajectory.
However, it is necessary to distinguish the way how the systems influence each other during
the process. If one of the system remains unaltered during the process of synchronization,
the concept is called unidirectional coupling or drive-response coupling. This type of
coupling is widely used for secure communication by using chaotic signals. On the other
hand, if both of the systems are changed and influenced by each other during the process,
the concept is called bidirectional coupling. This type can be applied in the physiology,
e.g. while synchronizing the cardiac and respiratory system.

As this work follows up mainly continuous systems, the following methods will be
described also only for continuous cases. However, the ideas can be applied as well for
discrete cases.

5.1.1 Drive-Response configuration

This method, also called master-slave configuration or unidirectional coupling, is based
on forming a global system out of two subsystems, where one of them evolves freely and
drives the evolution of the other. As a result, the response system is forced to forget its
initial data and follow the evolution of the master. The method can be further divided
according to the coupling scheme.

Pecora and Caroll

One of the first works investigating the possibility of synchronization of two identical
chaotic systems was given by L. Pecora and T. Caroll. [II], [30] Their method is based
on the master-slave configuration. Suppose a chaotic dynamical system x’ = f(x) in R"
which can be decomposed into two subsystems

vi=g(v,w),
w' = h(v,w),
where x = (v,w), v = (z1,...,2n), ¢ = (fi(X),..., fm(X), W = (Tpmi1,...,%,) and
h = (fms1(x),..., fu(x)). Now create a new subsystem w identical to w. The new
system of interest is then given by
v =g(v,w), w' = h(v,w), w' = h(v,W).

The original two subsystems v, w refer to the driving subsystem, while the W corresponds
to the response subsystem. Particularly in this case, the expression 'v-drive configuration’
is often used. The subsystems are in synchrony if the trajectories of the driving system
w and its replica W under the same driving signal v are equal. Let Aw = W — w. The
subsystems can be synchronized only if Aw — 0 as t — co. The necessary condition for
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successful synchronization is based on the sign of the Lyapunov exponents of the response
system which are called conditional. All conditional Lyapunov exponents must be nega-
tive, otherwise the synchronized state would not be stable. Thus, for many systems, only
some equations are suitable to be applied as the drive.

Active-passive decomposition method

The method introduced by Pecora and Caroll is specific considering the suitable form of
driving signal. The active-passive decomposition represents more general approach, where
the driving signal can be chosen more freely if certain conditions hold. [3I] The method
is based on formal rewriting of the autonomous dynamical system as a nonautonomous
one

x' = f(x,s(t)), (5.1)

where s(t) corresponds to the driving signal given as s(t) = h(x) or s’ = h(x,s). Then,
the same driving signal is applied on the identical system which can be rewritten as

y' = fly,s(t).

Let e = x — y be the difference between the two states. If the differential equation

e =x -y =f(x,5) — f(y,s) (5.2)

has a stable fixed point at e = 0, then the synchronization is successful, i.e. x =y. The
stability of at e = 0 can be determined by using Lyapunov function. Nevertheless,
as in the previous case, the condition on the negative conditional Lyapunov exponents of
the system (|5.1)) must be satisfied.

Negative feedback control

Synchronization by negative feedback control is very similar to the processes discussed in
the previous chapter. Consider two identical chaotic systems x’ = f(x) and y' = f(y).
The systems are coupled unidirectionally in the way that the difference between two
corresponding variables is applied to the appropriate equation of the driven system as
a negative feedback. Together with a suitable value of the feedback gain K, the term of
the control signal has the form

F(t) = K(n:(t) — 5i(0)). (5.3)

To achieve the synchrony between the two systems, the control gain K (K > 0) must be
chosen in the way that the number of positive Lyapunov exponents of the new composed
system and the driving system must be the same. For chaotic system in 3D it means,
that the composed system is allowed to have exactly one positive Lyapunov exponent.

Generally, the control signal can be added to more than just one equation of the driven
system, which will enlarge the region of suitable control gains for successful synchroniza-
tion. Moreover, this method is non-invasive since the control disappears when the two
systems synchronize onto one trajectory.
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5.1.2 Bidirectional coupling

In contrast to the master-slave methods, the bidirectional coupling is based on interaction
between the systems which is achieved by adding a term of additional dissipation into both
systems

X' = f(x)+ D(y —x)
Y =f(y)+Dx-y)
If the matrix presenting the dissipation has a particular form D = d I then the synchrony

is achieved for d > %Amax, where A,,4. is the largest Lyapunov exponent of unsynchronized
system.

(5.4)

5.2 Synchronization of two Rossler systems

In this part of the chapter, some of the methods mentioned above will be tested on
Rossler system, which is the main subject of this work. The choice of parameters remains
unchanged, i.e. a = b = 0.1 and c is chosen specifically for each method.

Negative feedback control

The synchronization by negative feedback is possible only for certain control gains and
driving signals. Thus, the task is to find the suitable configurations which will fulfil the
condition of number of Lyapunov exponents. Firstly, the parameter ¢ is chosen to be
¢ = 18, which corresponds to the chaotic behaviour and the control signal is of the form
given in (|5.3)).

The method will be demonstrated with control by variable x and with control by
variables x and y. Analysis for control by variable y, z and their combinations could be
done similarly.

e Control by variable x: The configuration

¥=—y—2z, P=—g—z2+K(x—17),
y =x+0.1y, ¥ =—-140.17,
S =014 2(x—18), =01+ 2(F —18)

was tested for several values of K for which the number of positive Lyapunov expo-
nents is the same in composed system and in the original driving system. Results
for K = 0.8, 2.5 can be seen in Figures and [5.2] Each figure shows the evolu-
tion in variables x, Z, y and ¢ and the difference between the corresponding ones.
For K = 0.2 (see Figure , on the other hand, it is not possible to reach the
synchrony.

e Control by two variables (x and y): The configuration

¥ =—y—z, P=—g—2+K(x—17),
v =2+0.1y, 7 =—-2+019+K(y—7),
2 =01+ z(x—18), Z'=0.1+z2(z—18)
was tested for K = 0.2 to prove that the control by two variables can enlarge the

region of suitable control gains. For this configuration the driven system merged
with its master as can be seen in Figure [5.4
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Figure 5.1: Control by variable x, K = 0.8.

Figure 5.2: Control by variable x, K = 2.5.
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Figure 5.3: Unsuccessful synchronization; control by variable x, K = 0.2.
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Figure 5.4: Successful synchronization; control by variables x and y, K = 0.2.
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Bidirectional coupling

The bidirectional coupling method given by (5.4) was tested on Rossler system with
parameter ¢ = 14. The dissipative term was taken as D = dI. For the original system,
the largest Lyapunov exponent is approximately A,,,. =~ 0.1. Thus, taking any d > 0.05
should lead to success. The coupled system has the form

¥=—-y—2z+d&—x) P=—g—z+dx—7)
v =2+ 01y +d§—vy) 7 =—2+0.19+d(y —9) (5.5)
2=01+z(x—14) +d(z — 2) 2 =01+2(2—14) +d(z — 2).

Some of the particular choices of d are presented in Figures Again, each figure
shows the evolution in variables x, z, y and y and the difference between the corresponding
ones. For d = 0.06, 0.1, 2.5, 12 the synchrony is easy to see, since the differences between
the variables approach zero after some time. From the calculations also yield, that with
increasing d the convergence to zero is faster. On the other hand, for d = 0.03 (which is
less than %Amax) the synchronization is not successful as it was expected (see Figure .

0 50 100 150 200

(t)

0 50 100 150 200

Figure 5.5: Bidirectional coupling, d = 0.06.
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Figure 5.6: Bidirectional coupling, d = 0.1.
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Figure 5.7: Bidirectional coupling, d = 2.5.
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Figure 5.8: Bidirectional coupling, d = 12.
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Figure 5.9: Unsuccessful synchronization; bidirectional coupling, d = 0.03.
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6 CONCLUSION

The goal of this thesis was to provide a survey of the famous chaotic dynamical sys-
tems and to demonstrate a stability analysis and other currently investigated topics on
a chosen chaotic model. The Rossler system, as the simplest chaotic system with only
one nonlinear term, was chosen for this purposes. Besides the analysis of the stability of
its equilibrium points, bifurcation of one of its parameters was studied extensively. The
Rossler system was further employed in the topics of current research, i.e. the problems
of stabilization and synchronization. The theoretical assumptions and results in each sec-
tion were supported by numerical experiments using Matlab. The advantage was taken
of certain Matlab tools, namely the ODE and DDE solvers.

Chapter 1 was devoted to the fundamental theory of the dynamical systems necessary
for the stability and bifurcation analysis investigated in the next chapters. Chapter 2 was
focused on the research of various chaotic systems presented in the literature. Besides
the most famous models, which are the Lorenz or the Rossler system, some of the less
common models, e.g. modified Van der Pol’s oscillator, Sprott systems, were introduced
as well. This chapter provided the evidence that chaos occurs in many dynamical systems
across different fields of science.

In Chapter 3, the theoretical background from Chapter 1 was used to investigate the
behaviour of the Rossler system in the neighbourhood of its equilibrium point. Particu-
larly it was shown that the Rossler system can have either none, one or two fixed points.
According to Routh—Hurwitz criterion, the case of two equilibrium points leads to one
fixed point being always unstable, the second one being locally asymptotically stable for
some suitable choices of system parameters. Two such choices were depicted to demon-
strate the theoretical results. In further investigation, it was observed that the stability
has just a local character since only a small basin of attraction of this point was found. The
rest of Chapter 3 was dedicated to the bifurcation analysis of parameter ¢ (a = b = 0.1).
The numerical experiments provided a graphical solution of the transition from periodic
behaviour to chaos. Some of the chaotic cases, e.g. cases when ¢ = 9,13, 18, and peri-
odic cases, e.g. cases when ¢ = 5.5,8,12, were illustrated in this part of the work. The
construction of a bifurcation diagram also confirmed the results.

Chapter 4 forms the main part of this work as it deals with a problem of chaos control.
Particularly, the investigation of stabilization of fixed points was presented. From the
introduced methods, the emphasis was put on the time-delayed feedback control method
following a general statement giving explicit conditions for the control parameters, i.e. the
control gain and time delay. This statement was proven theoretically and supported by the
numerical experiments, namely by stabilization of an unstable focus in 2D and one of the
fixed points of the chaotic Rossler system. In case of the Rossler system, the parameters
were chosen as a = b = 0.1, ¢ = 14. With the use of the introduced statement, it was
possible to find a domain of control parameters for successful stabilization of one of the
fixed points of the system (the other fixed point turned out to be impossible to stabilize).
The domain of control was computed and depicted together with the results of numerical
experiments for several choices of suitable control parameters from the domain of control.

Finally, the last chapter was devoted to another currently studied topic, i.e. synchro-
nization of two chaotic systems. Two chaotic Rossler systems were applied to demonstrate
some of the methods of complete synchronization introduced in the literature. Namely
the master-slave scheme with negative feedback control and bidirectional coupling scheme
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was investigated. In both cases, complete synchronization of the trajectories was achieved
as can be apparent from the provided results.

Synchronization of chaotic systems belongs among the topics of a great interest in
the latest research in chaos theory. Thus, a future work could investigate the methods
presented in Chapter 5 in more details. Furthermore, as the phenomenon of synchroniza-
tion can be utilized in the secure communication by masking the information signal with
a larger chaotic signal, this work could be further extended in the way of investigation of
possible masking techniques and reliable synchronization of the transmitter and receiver
systems.
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