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A B S T R A C T 
The master's thesis deals wi th analysis of basic chaotic dynamical systems, wi th a special 
emphasis put on the Rossler system. Besides standard bifurcation analysis, stabilization 
problems related to this system are investigated. The diagonal time-delayed feedback 
control is utilized as a basic control tool for this problem. Using derived theoretical 
results, optimal conditions for control gain and time delay parameters are established. In 
addition, a synchronization problem for two Rossler systems is discussed and investigated 
for several synchronization methods. 
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A B S T R A K T 
Diplomová práce po j ednává o teorii chaotických dynamických sys témů, speciálně se pak 
zabývá Rôsslerovým sys témem. Kromě s t anda rdn ích výpoč tů spojených s bifurkační 
analýzou se práce zaměřuje na p rob lém stabilizace, konkré tně na stabilizaci rovnovážných 
bodů . K e stabilizaci je využ i ta základní metoda zpětnovazebního řízení s časovým 
zpožděním. V ý z n a m n o u část práce tvoř í zavedení a implementace obecné metody pro 
h ledání vhodné volby p a r a m e t r ů vedoucí k úspěšné stabiliaci. Dalš ím d iskutovaným 
t é m a t e m je možnost synchronizace dvou Rôsslerových sys témů pomoc í různých synchro­
nizačních schémat . 
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ROZŠÍŘENÝ A B S T R A K T 
Chaot ické dynamické sys témy tvoř í významnou část v teorii dynamických sys témů. J e d n á 
se o systémy, k te ré vykazují velkou citlivost na volbu počátečních podmínek . J inými slovy 
systémy, u k terých se vývoj dvou velmi blízkých počátečních b o d ů značně rozchází s ros­
touc ím časem. V př ípadě sys témů se spo j i tým časem, tj. sys témů popsaných soustavou 
obyčejných diferenciálních rovnic, se chaos objevuje u nelineárních sys témů alespoň di­
menze 3. Chaos byl v minulosti považován za nežádoucí jev a nebyla mu věnována příliš 
velká pozornost. É r a chaosu započala v roce 1963 objevem Lorenzova pod ivného atrak-
toru. Lorenzův sys tém popisuje z jednodušený model nucené konvekce v atmosféře. Stu­
dován ím daného modelu, Lorenz objevil souvislost mezi chaot ickými sys témy a fraktálními 
strukturami. Ukázal , že i přes zdánlivě nahodi lé a nepředvída te lné chování, sys tém zůs tává 
ohraničený v urči té oblasti, k t e r á byla později n a z v á n a pod ivný atraktor. Lorenzův systém, 
k terý j is tě p a t ř í mezi nejznámější systémy, je t aké proslulý pod názvem "The Butterfly 
Effect". 

Před ložená diplomová práce se zabývá z n á m ý m i chaot ickými systémy, jejichž výčet, 
s t ručný popis a volba charakter is t ických p a r a m e t r ů jsou uvedeny ve 2. kapitole. Kromě 
nejznámějších sys témů, jako je Lorenzův nebo Rosslerův model, se v t é to kapitole objevují 
další chaotické systémy, k teré byly objeveny v různých vědních oborech. P ř ík l adem je 
Bělousovova-Žabot inského chemická reakce, C h u ů v elektrický obvod nebo modifikovaný 
Van der Pol lův oscilátor. Ty to modely jsou pro lepší ilustraci doplněny charakter is t ickými 
fázovými por t ré ty . 

V dalších kapitolách je práce zaměřena převážně na p ř ípad Rôsslerova chaotického 
modelu, k te rý je dán soustavou 3 diferenciálních rovnic s j edn ím nel ineárním členem 

x = -y- z. 

y' = x + ay, 

z = b + z(x — c) , 

kde a ,b, c jsou reálné parametry. 
3. kapitola se detai lně zabývá analýzou stability rovnovážných b o d ů a bifurkační 

analýzou Rôsslerova sys tému s využ i t ím teoret ických p ředpok ladů uvedených v 1. kapi­
tole. Podle volby p a r a m e t r ů a ,bq , c může mí t sys tém dva, jeden, nebo žádný rovnovážný 
bod. V př ípadě dvou rovnovážných b o d ů je pomocí Routh-Hurwitzova kr i tér ia ukázáno, 
že jeden bod je vždy nestabi lní , za t ímco d r u h ý může bý t pro některé kombinace pa­
r a m e t r ů stabilní . P o d m í n k y vedoucí na s tabi lní s ingulární bod jsou uvedeny teoreticky 
a i lustrovány numer ickým experimentem. Druhou část kapitoly tvoř í bifurkační analýza 
vzhledem k měníc ímu se bifurkačnímu parametru c při fixních hodno tách a = b = 0.1. 
V t é t o části je naznačen přechod od per iodického k chaot ickému chování s měnící se 
hodnotou c. P ř i p řechodu lze pozorovat jev zvaný "period doubling", př i k t e r ém dochází 
ke zdvojnásobení period l imitních cyklů. Výsledky jsou in te rpre továny graficky pro inter­
val c = [0.2, 20]. N a tomto intervalu dojde několikrát ke zmiňovanému přechodu, k te rý je 
následován kolapsem chaosu zpět na periodické chování. 

Ve 4. kapitole je řešen problém stabilizace rovnovážných b o d ů . Jsou zde uvedeny 
některé p ř í s tupy a schémata možné kontroly chaotických sys témů. Metoda časově zpoždě­
ného zpětnovazebního řízení Pyragasova typu, kdy ř ízená soustava je tvaru 

X ' ( Í ) = / ( X ( Í ) ) - Í Í / [ X ( Í ) - X ( Í - T ) ] ; 



je dále hlouběji zkoumána a apl ikována pro p ř ípad dvourozměrného nes tab í lnho ohniska 
a Rôsslerova sys tému s parametry vedoucími k chaosu. Hlavním př ínosem té to kapi­
toly je zavedení obecné p o d m í n k y pro volbu kontrolních p a r a m e t r ů , přesněji volbu ve­
likosti působících rozruchů K a časového zpoždění r . Podle uvedeného kr i tér ia lze sta­
novit množinu všech (K,r), k t e r á vede k úspěšné stabilizaci konkré tn ího rovnovážného 
bodu. Zavedené k i té r ium je s rovnáno se z n á m ý m i výsledky kontroly nes tabi ln ího ohniska 
uvedeného v [27]. V závěru t é t o kapitoly je p rezen tována množ ina vhodných (K,T) pro 
Rosslerův sys tém s parametry a = b = 0.1 a c = 14. Dále jsou zde vyobrazeny konkré tn í 
př íklady různých dvojic (K,T). 

V 5. kapitole je uveden j iný p ř í s tup k otázce kontroly chaotických sys témů, a to 
možnost synchronizace více stejných nebo různých chaotických modelů . Jsou zde teo­
reticky popsány vybrané př í s tupy a schémata různých synchronizačních metod. K a p i ­
tola je zaměřena na metody abso lu tn í synchronizace, tj. metody, kdy dochází k úp lnému 
splynut í t ra jektor i í obou sys témů. Konkré tn í př íklad synchronizace je demons t rován na 
dvou Rôsslerových systémech se s te jnými parametry pomoc í schémat založených na tzv. 
"master -s lave"vazbě a obous t r anné vazbě. 

V závěru je uvedeno shrnu t í dosažených výsledků a jsou naznačeny možnost i dalšího 
výzkumu v t é m a t u t é t o diplomové práce , speciálně pak v oblasti synchronizace a jejího 
využit í . 
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INTRODUCTION 
Many physical or other real-life phenomena can be described by mathematical models. 
A dynamical system describes evolution in time of the investigated mathematical model 
which is given by a system of differential or difference equations. In general, most of 
the models based on real problems are nonlinear and thus uneasy to solve. Particularly, 
there appears a numerous group of nonlinear dynamical systems across all different fields 
of study that evolve into chaos. Extreme sensitivity to the ini t ial data and the impossi­
ble long-term prediction of their state is characteristical for these systems. The chaotic 
behaviour of certain systems had already been observed a long time ago, however, the phe­
nomenon had not been properly investigated unti l the significant progress in the modern 
technologies in the second half of the last century. 

The beginning of a great era in the chaos theory is connected to the discovery of 
a strange attractor by American scientist Edward Lorenz. Whi le studying a simplified 
atmospheric model, Lorenz found a certain regularity in the chaotic motion. Observing 
the trajectory of the solution, soon it became clear, that despite the chaotic motion, the 
solution stays bounded inside the region of a strange attractor. Lorenz's discovery evoked 
a great interest in this field which was followed by many scientific works investigating 
other systems wi th similar behaviour. Over the decades, many chaotic systems have been 
introduced together with a complete or partial analysis of each system. Conditions for the 
transition from periodic behaviour to a chaotic one have also been investigated widely. 

Apar t from the general studies, soon there appeared a question whether the chaotic 
motion of a given system can be controlled or suppressed. Even though several successful 
methods are already known, the chaos control is stil l an investigated topic. Another 
question which arose was how two chaotic systems influence each other, more precisely, 
if it is possible to achieve synchrony between the motion of two chaotic systems. Again , 
methods providing tools for achieving certain synchrony can be easily found. Furthermore, 
the research in the problem of synchronization brought an interesting idea of application of 
chaos. The chaotic signal can be used in secure communication by hiding the information 
signal in randomly looking signals. 

The goal of this work is to introduce the theory of chaos in dynamical systems together 
wi th several examples, present and verify some of the known results in case of Rossler 
system, investigate the problem of chaos control and synchronization on this model and 
apply the theoretical results. The thesis is organized as follows: 

Chapter 1 presents an overview of basic notions and properties related to dynamical 
systems and chaos theory. Some of the famous dynamical systems displaying chaotic 
behaviour are stated in Chapter 2, e.g. the Lorenz system, the Rossler system, the 
Chua's systems and others. 

Chapter 3 contains a deeper qualitative and numerical analysis of the Rossler dynam­
ical system that is the simplest system (with only one nonlinear term) displaying chaos. 
This analysis is divided into two parts, first, the investigation of the stability of equilib­
r ium points, and second, the characterization of the behaviour of the system wi th respect 
to a changing bifurcation parameter. The results of the analysis are verified by the results 
of numerical experiments. 

Chapter 4 discusses methods of chaos control wi th a special attention paid to the 
time-delayed feedback control. Besides a survey of some recent results obtained by other 
authors, this part involves the main theoretical contribution of this thesis, namely explicit 

15 



conditions for the control gain and time delay to stabilize unstable equilibrium of a general 
dynamical system by use of time delayed diagonal feedback control. Also, this chapter 
contains series of experiments confirming and specifying the theoretical conclusions. 

Finally, Chapter 5 is devoted to synchronization problem for chaotic dynamical sys­
tems. The core of this problems is specified, few basic methods are presented and illus­
trated v ia synchronization of two Rossler systems. 

16 



1 DYNAMICAL SYSTEMS AND CHAOS 
The theory of chaos forms just a fraction in the theory of dynamical systems. Thus, before 
beginning with the discussion of chaotic models, it is important to introduce some math­
ematical background of dynamical systems. The following theory can be found in more 
details in [1], [2], [3] or [4], [5]. In general, dynamical system represents a rule describing 
time evolution of a state of a physical problem or a mathematical model given by a sys­
tem of differential or difference equations. Under certain conditions, a current state of the 
system is fully determined by its previous state. If the state of the system is measured 
only in the integer time values, it refers to discrete dynamical systems. O n the contrary, 
continuous measuring of time, i.e. i e l , refers to continuous dynamical systems. Despite 
the fact, that chaos can occur in both discrete and continuous dynamical systems, this 
work wi l l be focused only on the continuous dynamical systems given by ordinary differ­
ential equations (ODEs) . Moreover, the restriction is made to the autonomous systems 
of O D E s in Mn, i.e. systems given by 

where function / : Mn —> Mn is a C1 function and does not depend on the variable t. B y 
x ' is meant the time derivative of x (x = x(t)) . The nonautonomous systems are not 
considered here, as any nonautonomous system x ' = / ( x , t) wi th x e R " can be rewritten 
as autonomous wi th x G Mn+1, by letting x n + 1 = t. 

1.1 Definition of dynamical system 
Definiton 1.1. A smooth continuous dynamical system denotes a pair {Q,(p}, where fl 
is a state space and 0 : M x f 2 — > - f 2 i s a continuously differentiable function (0 G C 1(f2)) 
satisfying 

(i) 0 o (x ) = x , V x e f i , 
(ii) 0 t + s ( x ) = 0 4 (0 s (x ) ) , V x e f i and t, s G M. 

The function <ft is often called an evolution operator, where 0t(x) = 0 ( t ,x ) . 

Definiton 1.2. Let x 0 G Q be an init ial state of a system. For a fixed time i 6 1 the 
evolution operator 0 transforms x 0 into some state x(t) at time t, i.e. 

Remark 1. The state space f2 usually refers to Mn, as it will be considered in this work. 

Definiton 1.3. Suppose an init ial value problem of an autonomous system of O D E s 

where / : E —> Mn, E is an open subset of Mn, f G C1 (E) and x 0 G E is the ini t ial value. 
Then x(t) is a solution of the ini t ial value problem (1.1)-(1.2) on an interval I if to G I, 
x(to) = x 0 and x(t) is a solution of the system of O D E s (1.1) on the interval / . 

x = / ( x ) 

X ( t ) = 0 i (x O ) . 

x ' = / ( x ) 

x ( t 0 ) = x 0 

(1.1) 

(1.2) 
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Remark 2. In the following chapters the function f will be assumed to be defined for 
all* G Mn, i.e. f : Mn -»• Mn. 

Theorem 3. (The Existence and Uniqueness Theorem). Consider the initial value prob­
lem (1.1)-(1.2), where / : £ ' — > • Mn, f G C 1 ( £ ; ) . Then there exists an a > 0 such that the 
initial value problem has a unique solution x(t) on the interval [—a, a}. 

Proof. See [1] • 

Theorem 4. Consider the initial value problem (1.1)-(1.2), then for each x 0 G E there 
is a maximal interval J = (a, (3) on which the initial value problem has a unique solution 
x(t ) . 

Proof. See [1] • 

Definiton 1.4. Let E C Mn and / G C 1 ^ ) . Let 0 ( £ , x o ) be the solution of (1.1)-(1.2) 
defined on its maximal interval J(XQ), xo G -E. Then for t G J(xo) , the family of evolution 
operators <f>t defined by 

0 t ( x o ) = 0 ( £ , x o ) (1.3) 

is called the flow of the system (1.1). 0* is often referred to as the flow of the vector 
field/. 

Definiton 1.5. Suppose the ini t ia l value x 0 is fixed and J = J ( x 0 ) . Then the mapping 
0 ( - ,x o ) : J —> E defines a solution curve or a trajectory of the system (1.1) through the 
point x 0 G E. The trajectory is visualized as a motion along a curve F through the point 
xo. The arrow then indicates the orientation of the curve as time increases. 

The phase portrait of the system (1.1) refers to the set of all solution curves of (1.1) for 
different ini t ial points satisfying the init ial value problem (1.1)-(1.2) in the phase space. 
The solution curves in the phase space never intersect each other. 

Definiton 1.6. A point x* G E is called equilibrium point (fixed point, critical point) 
of the system (1.1) if / (x*) = 0 (0 means the zero vector). Moreover, for any trajectory 
starting in x*, i.e. x(0) = x*, is x(£) = 0t(x*) = x* for any i e R . 

In general, trajectories of the solution x(t) can be divided into 3 main categories: 
(i) F ixed point - the solution x(£) is constant, i.e. trajectory stays in the fixed point 

for all time. 
(ii) Cycle, periodic orbit - the solution x(t) is periodic, i.e. the trajectory forms a closed 

curve and stays on this curve for all time. 
(iii) Open curve - the trajectory is an injective map never intersecting itself. 

1.2 Linear dynamical system 
Suppose the system given in (1.1) is linear, i.e. function / consists of linear terms only, 
/ : M™ —> MP. Then the system can be rewritten as 

x ' = A x , 

where x G Mn, A is an n x n matr ix and the following theorem holds. 

18 



Theorem 5. (The Fundamental Theorem for Linear Systems). Let A be annxn matrix. 
Then for a given x 0 e K " , the initial value problem x ' = A x , x(0) = x 0 has a unique 
solution for all t G M given by 

x(t) = eAW 

Proof. See [1] • 

1.3 Nonlinear dynamical system 
According to Theorem 3, a unique solution of an init ial value problem of a nonlinear 
system exists on some interval I. However, unlike the linear cases, very few nonlinear 
systems can be solved analytically. The investigation of behaviour of nonlinear systems 
usually consists of analytical, geometrical, and topological techniques. Numerical methods 
play also very important role in such analysis. 

Linearization of nonlinear systems 

Nonlinear systems are often investigated in the neighborhood of its equilibrium points. It 
can be shown that the local behaviour of the nonlinear system x ' = / ( x ) near a hyperbolic 
equilibrium point x* is qualitatively determined by the behaviour of the linear system 
x ' = A(x), where A is the Jacobian matrix evaluated at point x*. 

Remark 6. Recall, the Jacobian matrix J evaluated at a fixed point x* e W1 is given by 
n x n matrix 

J = D / ( x * 

/ / i (x ' ) 
' dxi 

. dxi 

/l(x*)\ 
8xn 

/»(*') 

The eigenvalues X of the Jacobian matrix can be computed as the roots of characteristic 
polynomial 

P(X) = det ( J - AJ), 

where I represents the identity matrix. 

Definiton 1.7. A n equilibrium point x* of the system (1.1) is called hyperbolic if none 
of the eigenvalues of the Jacobian matrix J = Df(x*) has zero real part. Otherwise, the 
equilibrium point is called nonhyperbolic. 

If the fixed point x* is hyperbolic, then according to Hartman-Grobman Theorem [1] 
there exists a neighborhood of this point, in which the nonlinear system x ' = / ( x ) is 
topologically conjugate to the system x ' = A(pi), where A is the linearization matrix, 
i.e. A = D / ( x * ) . 
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1.4 Stability 
Generally, stability of a solution is determined by the sensitivity to a perturbation of the 
init ial data. The solution is called stable if a small perturbation of ini t ial data yields 
a small change in the solution. Furthermore, the solution is called attractive or asymp­
totically stable if the deviation of the solution caused by a perturbation of ini t ial data 
wi l l disappear as t —> oo. In dynamical systems, it is more common to refer to a stability 
of equilibrium points of the given system. 

Definiton 1.8. Let <f>t denotes the flow of the system (1.1) defined for all i e l . A n equi­
l ibr ium point x* is (locally) stable if for all e > 0 there exists a S > 0 such that for all 
x e N5(x.*) and t > 0 then 

<Mx) e N£ (x*). 

Furthermore, x* is (locally) asymptotically stable if it is stable and if there exists a S > 0 
such that for all x e Ns(x*), 

l im 0t(x) = x*. 
t—¥00 

The equilibrium point is said to be unstable if it is not stable. 

Remark 7. Similarly, these stability notions are used for other significant solutions of 
the system (1.1) (e.g. periodic solutions). 

The basic tool for stability analysis of equilibrium points is provided by the lineariza­
tion method. The stability of a fixed point can be determined by the sign of real parts of 
eigenvalues A of the Jacobian matrix. The following theorem holds. 

Theorem 8. Let J = Df(x*) be the Jacobian matrix for the system (1.1) evaluated at 
a fixed point x* and let Aj be its eigenvalues. 

(i) 7/3?(Aj) < 0 for all Aj, then the fixed point x* is asymptotically stable. 
(ii) 7/3?(Aj) > 0 for at least one Aj, then the fixed point x* is unstable. 

(hi) / / 9ft(Aj) = 0 for at least one Aj, then the fixed point x* is nonhyperbolic and its 
stability cannot be determined by the linearization method. 

Classification of basic fixed points can be found in the literature. [1] For further 
investigation of nonhyperbolic points, it is possible to use other methods which can help 
to determine their stability. The stability according to Lyapunov is defined as follows. 

Theorem 9 (Lyapunov Function). Suppose the nonlinear system (1.1) with an equilib­
rium point x*, x* G E, where E is an open subset in W1. Now, suppose that there exists 
a function V : E —> Rn satisfying 

(i) V(x*) = 0, 
(ii) V ( x ) > 0 i / x ^ x * . 

Then 
(i) ifV(x) < 0 for V x e E, x* is stable, 

(ii) ifV(x) < 0 for V x e E \ {x*}, x* is asymptotically stable, 
(hi) ifV(x) > 0 / o r V x e £ \ { x * } , x* is unstable. 

The function V is called the Lyapunov function. The term V(x) = DV(x)f(x), where 
( QXL ; • • • ; QXN ) • 

Proof. See [1] • 
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1.5 Routh—Hurwitz Criterion 
If the dynamical system has a dimension grater than two, it is often almost impossible 
to express the eigenvalues of characteristic polynomial. Therefore, the following criterion 
gives an algebraic tool for verification if the characteristic equation has roots in the left 
half of the complex plane. [6] 

Theorem 10 (Routh-Hurwitz Criterion). Given the polynomial, 

P(A) - ' ~ 

where are real constants, i 

A™ + a i A n _ 1 + . . . + a„_iA + a„ , 

1 , . . . , n, define the n Hurwitz matrices using the coel 
cients a, of -P(A): 

and 

= (ai), H 2 — (a #3 = = (ai), 
0.2 J 

( a i 1 0 0 / . . 
a 3 a i 1 . . . 0 

Hn = a 5 «3 a 2 . 0 

1° 0 0 0 . . • anJ 

for n > 3. 

Coefficients aj = 0 if j > n. All of the roots of the polynomial -P(A) are negative or have 
negative real part if and only if the determinants of all Hurwitz matrices are positive, i.e. 

detHj > 0, j = 1, 2 , . . . ,n. 

Then, particularly for n = 3 the criteria can be given as 

o i > 0 , as > 0 , and a\02 > a^. 

1.6 Bifurcation 
Bifurcation theory studies the qualitative behaviour of the system (1.1) as the vector field 
/ changes. If the qualitative behaviour of the system remains unchanged for all nearby 
vector fields, then the system (or the vector field / ) is said to be structurally stable. O n 
the contrary, if the vector field is not structurally stable, it belongs to the bifurcation set. 

In other words, bifurcation can be explained as follows. Suppose that the system 
depends on a parameter \x G M. (or a set of parameters \x G M m ) . Then the system is given 
by 

x' = /(x, fl). 

A bifurcation occurs in the system when a small smooth change made to the bifurcation 
parameter \i causes a sudden change in the qualitative behaviour. The value of the 
parameter at this change is known as the bifurcation value or a critical value of bifurcation 
parameter /x. 

The structural changes of the system usually refer to the changes in stability of sig­
nificant solutions (e.g. equilibrium points, periodic orbits) or to the appearance of new 
significant solution as parameter passes the critical value. 
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1.7 Attractors 
Attractor can be denned as a closed set A in the phase space with the following properties: 

(i) A is an invariant set, i.e. any trajectory starting in A stays in A for all the time. 
(ii) A attracts an open set of ini t ial conditions, i.e. there is an open set U,ACU such 

that if x e U, 0t(x) e U for all £ > 0 and 0 t(x) ->• A as t ->• oo. 
(iii) A is minimal , i.e. there is no proper subset of A that satisfies the previous conditions. 

In other words, an attractor is a specific set that attracts all trajectories in its neigh­
borhood. There are three types of so-called nonstrange attractors, namely fixed point 
attractor, l imit cycle attractor and torus attractor. A particular attractor, which was 
observed in chaotic systems is called a strange attractor and its definition leads to fractal 
theory, i.e. theory of sets wi th non-integer dimension. [7] 

B y the term chaos, it is understood a randomly looking, aperiodic long-term behaviour of 
a deterministic dynamical system, which exhibits sensitive dependence on init ial condi­
tions. This means, that two trajectories starting in the infinitesimal neighbourhood can 
reach completely different positions after some time. In continuous dynamical systems, 
chaos can occur only in 3 and higher-dimensional spaces. 

Chaotic behaviour of a system can be revealed by computation of the Lyapunov ex­
ponents. If at least one of the exponents from the Lyapunov spectrum is positive then 
the system is chaotic in nature. 

Lyanupov exponents 
Lyapunov exponents measure the sensitivity of a dynamical system to small changes in 
init ial conditions. Therefore, it is a useful tool for identifying chaos in dynamical systems. 

The Lyapunov exponent can be defined by the following. Let do be the distance of 
two close points at t0. After time t the separation of the trajectories starting at these 
points is given by 

The A is called the Lyapunov exponent. This definition, however, provides the value 
for two specific neighbouring points over a specific interval of time. Thus, to approxi­
mate the exponent for entire system, it is necessary to take an average of many different 
neighbourhoods. 

Definiton 1.9. If the displacement between the i-th point and a neighbouring point at 
time ti is di, and the init ial displacement between these two points is rJo« at time toi, then 
the Lyapunov exponent is defined as 

Moreover, a system defined in n-dimensions has n exponents, one for each dimension. 
The set of all exponents is called the Lyapunov spectrum. If one of the exponents is 
positive then chaos occurs in the system. [8], [9]. 

1.8 Chaos 

d~ dneA(t-to). 
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2 EXAMPLES OF CHAOTIC SYSTEMS 
The theory of chaos has achieved a great interest since the Lorenz's discovery. Nowadays, 
a good deal of chaotic systems can be found across all different fields of science. In this 
chapter, some of the most famous models wi l l be introduced, including short explana­
tion, graphical demonstration and potential use. General information about some of the 
systems introduced in this chapter can be found in [7], [10], [11], [12]. 

The common property of chaotic systems is the strong dependence on the choice 
of system parameters and init ial values. Considering the first observation, it is important 
to remember that many combinations of system parameters do not necessarily lead to 
chaotic behaviour at all . Some of the specific choices for which the chaos occurs wi l l be 
given along with each presented model. For deeper investigation of suitable choices, it 
is necessary to run an analysis of the system, comparing the influence of the parameters 
in the equilibrium points. Later in this work, analysis of suitable values of the Rossler 
system wi l l be discussed. 

The graphical demonstration wi l l be given using M A T L A B ' s function ode45. This 
function is a standard M A T L A B ' s solver for ordinary differential equations based on 
an algorithm of Dormand and Prince, which is an explicit Runge-Kut t a 4th/5th order 
method. It is a single-time step method containing the correction of the step size according 
to error estimation. For this work, the maximum step-size was improved to achieve 
smoother solutions. 

2.1 Lorenz's system 
Lorenz's system is probably the best known deterministic nonlinear system exhibiting 
chaotic behaviour. The model was named after an American mathematician and meteo­
rologist Edward Norton Lorenz who was studying a simplified model of convection rolls 
in the atmosphere, t rying to explain some unpredictable weather evolutions. Some may 
recognise the system as The Butterfly Effect. 

Behind the poetic name, The Butterfly Effect, are two hidden meanings. First one 
gives a popular metaphorical simplification of a chaos development, saying that even 
a single flap of butterfly's wings can cause a storm far away from its location. In reality, 
it means that the system is so dependent on the ini t ial values that even a small change 
in one state can cause great differences in some later state. In meteorology, this explains 
why the forecast in the longer term is very unreliable since even a slight disturbance from 
the known weather evolution may result in very different behaviour after some time. The 
second meaning is connected to the 3D phase portrait of the systems (Figure 2.1), which 
is reminiscent of the shape of butterfly's wings. 

Lorenz's goal was to find a system of differential equations that would correspond to 
and simplify the real problem. His approach can be explained in brief as follows: imagine 
the atmosphere as a single fluid particle which is heated from below and cooled from 
above. Thanks to the heating the particle rises up but the cooling makes it fall back 
down again, and the process can repeat. In general, the model of the atmosphere is very 
complex since changes in temperature, pressure, wind velocity, etc., must be considered. 

Lorenz simplified the problem wi th the help of the techniques as Oberbeck-Boussinesq 
approximation, Rayleigh-Benard convection (describing the fluid circulation between two 
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horizontal layers of different temperature), Galerkin method, and finally the key equations 
of fluid dynamics, such as the continuity equation, Navier-Stokes equations and Fourier 
law. [3] The final Lorenz's model, consists of 3 nonlinear ordinary differential equations 
in M 3 containing three positive parameters and two nonlinear (quadratic) terms. The 
equations determining the Lorenz's model are 

x' = a(y - x). 

y = rx — y — xz , 

z' = xy — bz , 

where a, r, b > 0 are system parameters. Parameter a stands for the Prandt l number, 
r for the Rayleigh number and b is a parameter related to the physical size of the system. 
The nonlinearity is present in the second and third equations in the terms xz and xy. 

The most famous phase portrait of Lorenz's system corresponds to the choice of pa­
rameters a — 10, r = 28, b = 8/3. From Figure 2.1, it is easy to understand the first 
reason why the name 'Butterfly effect' is used. 

Figure 2.1: The Lorenz's model (a = 10, r = 28, b = 8/3). 

Whi le studying the system, Lorenz came to a great discovery, and he showed that 
despite the chaos, there exists a complicated structure which gives certain l imitat ion 
to the developement of the trajectories. In other words, despite the fact that the so­
lution of the model for certain parameters behaves irregularly and never repeats itself 
exactly, it remains in some bounded region of the phase space. This structure was later 
named a strange attractor and leads to the theory of fractals. Above that, another im­
portant property of the system is its symmetry. If (x(t), y(t), z(t)) is a solution, so is 
(—x(t), —y(t), z(tj). Further details about the system can be found in [3], [10]. 

In practice, the Lorenz's system does not give the weather forecast. However, its 
properties are very useful when applied to collected statistical data. Besides atmospheric 
convection, there are several other applications of Lorenz's system. For example, the 
same equations appear in models for lasers, electric circuits or dynamos. Moreover, the 
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equations can describe motion of a specially designed waterwheel wi th leaky cups regularly 
placed on the wheel. The cups on the wheel are getting filled wi th water, and the wheel 
is turning to the side where the gravitational force is greater. For a certain flow, velocity 
and amount of water in each cup it suddenly becomes impossible to determine which way 
wi l l the wheel turn. [7] 

The fact, that the chaotic systems are highly sensitive to the choice of ini t ial con­
ditions is demonstrated in Figure 2.2. Two init ial conditions were taken from a small 
neighborhood, precisely Xq and Xq differ only in the y-variable by value 0.1. Yet, the 
trajectories separate fast from each other in time. 

20 

0 5 10 15 20 25 30 35 40 
t 

Figure 2.2: Lorenz's model; evolution of variable x for 2 ini t ial points. 

2.2 Rossler system 
Another well-known model wi th chaotic behaviour is the Rossler system, which was stud­
ied by a German biochemist Otto Rossler. After the discovery of the Lorenz attractor, 
lots of studies appeared, trying to find similar results in different fields. Rossler set a dif­
ferent goal for himself, to find a model which behaves similarly to the Lorenz's one but 
is easier to solve. He presented a theoretical model fulfilling his aims. The system of 
Rossler evolves into chaos and compared to the previous model there appears only one 
nonlinear term in the equations. Moreover, the system was later found to be useful in 
modelling equilibrium states in chemical reactions. The Rossler system is also considered 
to be a minimal system for continuous chaos. That is achieved for at least three reasons: 
its phase space has the minimal dimension possible for chaos appearance, its nonlinearity 
is made by a single quadratic term, and it generates a chaotic attractor wi th a single lobe. 

Rossler discovered more chaotic systems, including the first 4D hyperchaotic attractor. 
However, the following model wi th three real parameters a, b, c, became the most famous. 

x = -y - z , 

y' = x + ay, 

z = b + z{x — c). 

In his work, Rossler investigated the chaotic behaviour for the combination of parameters 
a = 0.2, b = 0.2 and c = 5.7 as can be seen in Figure 2.3. [13] 
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y -20 -10 

Figure 2.3: Rossler system (a = 0.2, b = 0.2 and c = 5.7). 

Later, another combination a = 0.1, b = 0.1 and c = 14 started to appear more often 
in the studies. In both simple attractor can be observed. However, for another 
combination a different type of attractor appears. For example, for a choice a = 0.343, 
b = 1.82 and c = 9.75 a screw-type attractor appears. This can be seen in Figure 2.4. 

Figure 2.4: Rossler system (a = 0.343, b = 1.82 and c = 9.75). 

The Rossler model wi l l be further discussed within this work. More details wi l l be 
therefore given in the following chapters. 

2.3 Chua's circuit 
The nonlinear electronic circuits form another field of study where chaos occurs widely. 
The most famous and theoretically well described one is Chua's circuit. This simply 
constructed circuit was invented by an American electrical engineer and computer scientist 
Leon Ong Chua in 1983. The third-order R L C circuit contains four linear elements (two 
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capacitors, inductor and linear resistor) and one nonlinear element (nonlinear resistor Rn 

sometimes called 'Chua's diode'). The scheme of the circuit is shown in Figure 2.5. 

Nr. 

Figure 2.5: Chua's circuit. [11] 

Using the Kirchhoff's circuit laws the circuit is described by equations 

a 

dv, 
dt 

dvc2 

dt 
diL 

u—:— 
dt 

G{vC2 - v C l ) -f(vd), 

G(vCl -Vc2)+iL; 

VC2 ; 

with usual indication: i stands for current, G — 1/R is the conductance of a resistor 
and indexes stand for capacitors, L for inductor. The nonlinear element is given by 
function / ( ^ C i ) — ̂ o ^ C i + \ {m\ ~ ^oHI^Ci + Bp\ — \vcx — Bp\] describing the electrical 
response of the nonlinear resistor. 

For mathematical analysis, it is more common to use a dimensionless model which is 
referring to Chua's circuit given by 

x a[y-x- f(x)} 

y = X - y + Z ) 

z' = -(3y, 

where x = vCl/Bp, y = vC2/Bp, i/BPG, a C2/Cu (3 = C2/G2L and finally 
f(x) = bx + \{a - b)[\x + 1| - \x - 1|] wi th a = mjG, b = m0/G. [11] 

The system is also interesting for the tendency to produce different kinds of attractors 
for different combinations of system parameters which are shown in Figures 2.6 and 2.7. 
In the following figures, a simple attractor and a double-scroll attractor can be seen. 
Moreover, the system is invariant under the transformation (x, y, z) —> (—x, —y, —z). 
The Chua's circuit is often used as a physical source of pseudo random signals. Further, the 
system is implemented in the experiments on secure communication by chaotic systems. 
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The case of simple attractor: 
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Figure 2.6: Chua's circuit (a = 9.4, (3 = 16, m 0 = —8/7 and m\ = —5/7). 

The case of double-scroll attractor: 
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Figure 2.7: Chua's circuit (a = 10, j3 = 14.87, m0 = - 1 .27 and mx = -0 .68) . 

2.4 Modified Van der Pol's Oscillator 
One of the lesser known but very interesting system is the modified model of Van der 
Pol 's oscillator. The original Van der Pol 's oscillator analysis the dynamic behaviour of 
(self) excited oscillations. The system is of dimension 2 and the solution is periodic. B y 
modifying the system wi th a feedback loop, it is possible to achieve chaotic behaviour. 
According to [14], equations of Van der Pol 's oscillator can be modified and applied in 
economics. It is possible to find a heuristic model of economic cycles focused on the 
capital flight observed in the less developed countries. The new system in 3D is of the 
form 

x = ky + fix(b — y2). 

y' = —x + sz , 

z = px — qy , 
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where k, /x, b, s, p and q are positive parameters. In economics, the variables x, y, and z 
represent dimensionless variables of savings, gross domestic product, and foreign capital 
inflow. The main parameter of interest is s, since it corresponds to the feedback loop. 
Therefore, by varying s the system can be changed from periodic to chaotic and vice-
versa. For some interval of s the system is also antisymmetric. To demonstrate that the 
structure of chaos is changing wi th varying s the following parameters were chosen and 
depicted in Figure 2.8; k = 0.02, \x = 0.4, b = 0.2, p — 10, q — 0.1, s was taken to be 
si = 0.2, s 2 = 35 and S3 = 150. 

(e) S3 = 150; xy-plane. (f) S3 = 150; yz-plane. 

Figure 2.8: Modified Van der Pol 's Oscillator; different values of s. 
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2.5 Belousov—Zhabotinsky reaction 
A s well as the chaotic systems in physics, one can find strange behaviour also in chem­
istry. In 1951, Boris Belousov discovered a chemical reaction which oscillated between 
the state when the solution is colourless and when it is yellow due to ions of its catalyst. 
However, Belousov's discovery was not accepted at first, and it took some years before 
the problem was introduced in papers. In the late '70s, his work was further investigated 
and discussions over whether the reaction exhibits only limit-cycle oscillations or if there 
are some conditions for which chaos can occur were made. Several approaches were used 
in order to find the answer to this question. 

The most famous are probably The Oregonator and The Gyorgyi-Field Model . The 
Oregonator gave a great simplification reducing the model into 3 differential equations. 
Unfortunately, this model d id not succeed to allow the observation of chaos. O n the 
contrary, the second model introduced by Gyorgyi and Fie ld was more successful. B y 
allowing the reaction to happen in continuous-flow stirred tank reactor, they proved the 
theory that chaos can occur in chemical systems when the reaction starts far from the 
equilibrium. During the next years, many more studies appeared replacing the cerium 
catalyst to ferroin catalyst or others, reaching very similar results. [15] 

The derivation of this system is out of the scope of this chapter since many chemical 
species appear during the reaction. However, more information can be found in [7], [16] 
and [17]. The following system of equations describes The Gyorgyi-Field Model and can 
be found in more details in [17] together wi th the appropriate parameters and phase 
portrait. 

where r = t/T0, x = X / X 0 , z = Z/Z0, v = V/VQ 

y = [akeZoVoZv/ihHXox + k2AH2 + kf)]/Y0. 

In the equations x, z, v represent dimensionless variables of the chemical components 
Y = Br~, X = HBr02, Z = Ce 4 +, V = BrCH(COOH)2, A = BrOs, H = H+, and 
M = CH2(COOH)2. Out of the other parameters the most important one is kf since in 
varying kf the system's behaviour can change to chaotic. 

dx 
dr T0[-hHY0xy + k2AH2Y0X^y - 2k3X0x2+ 

^hA1/2H3/2X~1/2(C - Z0z)x1/2 - ^hZ0xz - kfx] 

T 0 [ f c 4 A 1 / 2 # 3 / 2 X 0

1 / 2 ( C y Z 0 - z)x1/2 - k5X0xz-

ak6V0zv — ßkjMz — kfz] 

TofihHXoYoV^xy + k2AH2Y^y + k3X2VQ~^2 

ak6Z0zv — kfv], 

+ 
dz 
dr 

dv 
dr 
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2.6 Other chaotic models 
One can see now, that chaos became a widely investigated topic. Many systems were 
discovered or built across all the fields of study, especially in electrics, biology, physics 
or economics. In the rest of this chapter some more examples of chaotic systems wi l l be 
given in brief. 

2.6.1 Double pendulum 
Double pendulum, as the name suggests, is a pendulum with another one attached to 
its end point (see Figure 2.9). The motion of the pendulum is described by a system of 
nonlinear O D E s . The system solution depends on the length of the two limbs holding 
the pendulums. The trajectory of any double pendulum system is strongly influenced by 
init ial conditions involving init ial position and velocity. [18] 

IIU 

Figure 2.9: Double pendulum. [18] 

2.6.2 Sprott systems 
There exist even simpler examples of chaotic systems than the ones presented by E . Lorenz 
or O. Rossler. J . C. Sprott presented a group of 18 different models of chaos that contain 
either six terms and one quadratic nonlinearity or five terms and two quadratic nonlin-
earities. A n overview of this group can be found in his book [12]. The models can be 
easily applied to electric circuits. 

The model S Q B depicted in Figure 2.10a is given by a system of equations 

x' = yz, 

y' = x - y . 

z' — 1 — xy . 

Another example presented by Sprott is system S Q L 

x = y + 3.9z , 

y' = 0.9x2-y, 

z — 1 — x , 
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which is depicted in Figure 2.10b. 

(a) System SQB. (b) System SQL. 

Figure 2.10: Sprott systems S Q B and S Q L . 

2.6.3 Chen system 
Besides the Chua's system, another example of a double-scroll attractor is the Chen sys­
tem. This system was discovered by anticontrol method (sometimes called chaotification) 
and it is similar to Lorenz's system as they differ from each other in only one equation. 
[19] O n the other hand, there are certain differences both in the phase portraits and 
suitable parameters leading to chaos. The Chen system is given by 

x = a(y — x), 

y = (c — a)x — xz + cy , 

z' = xy — bz , 

where a, b, c are positive real parameter. The characteristic trajectory for parameters 
a = 35, b = 3, c = 28 is given in Figure 2.11. 

-20 -15 -10 -5 0 5 1 0 1 5 20 25 3 0 

Figure 2.11: Chen system (a = 35, b = 3, c = 28). 
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3 ANALYSIS OF ROSSLER SYSTEM 
U p to this point, a list of chaotic models was presented in brief as well as a basic theory 
for nonlinear dynamical systems. In the sequel, the attention wi l l be paid to the stability 
analysis of the Rossler system. Namely, the local behaviour wi l l be investigated in the 
neighbourhood of its equilibrium points. In order to show the changes in the evolution of 
the system, some more phase portraits wi l l be included as a result of numerical analysis 
for various parameters. In the end, specific cases of bifurcation analysis wi l l be presented 
for the fixed choice of parameters a = b = 0.1 and c varying. Recall , that the system is 
given by equations 

x = -y - z , 

y' = x + ay, (3.1) 

z' = b + z{x — c) , 

where a, b, c are real parameters. For the later work, all parameters wi l l be assumed to 
be positive. 

3.1 Equilibrium points 
A s was defined earlier, an equilibrium point of a system 

x' = /(x) 

is every point x* for which / (x*) = 0. Hence, fixed points of the Rossler system (3.1) are 
given as a solution of 

0 = - y - z , 

0 = x + ay , 

0 = 6 + z{x — c ) . 

Taking y = —z, x = az, and substituting them into the thi rd equation, z can be expressed 
as the roots of quadratic equation az2 — cz + b = 0. Thus 

Z l , 2 
± Vc2 - Aab 

2a 

Now three cases are possible: If the condition c 2 > 4ab is fulfilled, then there exist two 
equilibrium points 

+ 
Vc2 - Aab c 

2 i ~2a 

V c 2 - Aab c 
2 ~2a 

V c 2 - Aab 
2a ' 

\ / c 2 - Aab 
2a ' 

c \ / c 2 — Aab 
1 

2a 2a 
c \Jc2 — Aab 

2a 2a 

while for c 2 = Aab there is only one equilibrium point 

"c c c 
- 2 ' _ 2 ^ ' 2a. 

(3.2) 

(3.3) 

(3.4) 

In the last case, c 2 < Aab, no equilibrium point exists. 
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3.2 Stability of equilibrium points 
To determine the nature of an equilibrium point and the behaviour in its neighbourhood, 
the linearization method can be used. Firstly, the Jacobian matrix needs to be built by 
computing partial derivatives of all components of (3.1). The Jacobian matrix for the 
Rossler system evaluated at an equilibrium point x* = [x*, y*, z*\ has the form 

/ 0 - 1 - 1 
J= I 1 a 0 

\z* 0 x* - c 

The nature of an equilibrium point depends on the eigenvalues of characteristic equation. 
This is now defined as det ( J — A J) = 0. Then, the characteristic equation is given by 

/ - A - 1 - 1 
det 1 a - A 0 

\z* 0 x* - c - A 

The eigenvalues can be expressed as the roots of polynomial 

P(A) = A 3 + (c - a - x*)\2 + (ax* -ac + z* + 1)A + (c - x* - az*). (3.5) 

The previous computation yields that two cases must be investigated, i.e. the cases when 
one and two fixed points exist. 

3.2.1 The case of one equilibrium point 
The Rossler system has only one equilibrium point if c 2 = 4ab. Thus, evaluating the Ja­
cobian matrix at the fixed point x* given by (3.4), the roots of characteristic polynomial 
(3.5) can be obtained from 

A « + < § - ) A ' + ( £ - f + l)A = 0. 

Obviously, one eigenvalue is zero and the other two can be easily computed as the roots 
of quadratic equation 

. o , C . . . / c etc , „ 

2 ~ + 2a - "2" ' ' 

Therefore, the eigenvalues of characteristic equation for x* = [f, — j - , f-\ are 

Ai = 0, 

Since at least one of the eigenvalues has the zero real part, the fixed point is nonhyperbolic 
and thus difficult to classify. Analyt ica l computation requires applying the theory given on 
the center manifold or finding Lyapunov function that would either confirm or disprove 
the stability of this equilibrium point. Such analysis wi l l not be given here, however, 
classification of a single equilibrium point for the Rossler system was proposed in [20]. 
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Following the analytical results from [20], the choice a = 1, b = 10 (hence c = 2\/i~0) 
should classify the equilibrium point as a locally stable node. The results of a numerical 
experiment indicate, that the equilibrium point is t ruly locally stable as can be seen in 
Figure 3.1. However, the stability is secured only for a small basin of attraction. The basin 
of attraction of an equilibrium point represents a region in the phase space such that any 
trajectory starting in this region wi l l be eventually attracted into this equilibrium point. 

The reason, why the attracting region is small for this system is due to the significant 
sensitivity of the system in general. Thus, in Figure 3.1, the ini t ial points were carefully 
chosen to fit in the corresponding region of attraction. O n the other hand, Figure 3.2 
shows the evolution of the system when the init ial point is taken a bit further from the 
equilibrium point. Despite the fixed point being locally stable, it is no longer attracting 
the trajectory to itself. Furthermore, the trajectory escapes to infinity. 

In both figures the equilibrium point is denoted by red star, and each init ial point 
wi th a green cross. For this particular combination of parameters, the fixed point has 
coordinates x* = [3.16,-3.16,3.16]. The init ial point x 0 = [3.1,-3.1,3] belongs to the 
basin of attraction, which means that the trajectory starting at this point wi l l reach x* 
as t —> oo (Figure 3.1). O n the other hand, the trajectory starting at x 0 = [3.3, —2.4, 2.7] 
wi l l be escaping to infinity wi th the spiral motion (Figure 3.2). 

Figure 3.1: (a = 1, b = 10, c = 2 \ / l 0 ) ; x 0 inside the basin of attraction. 

Figure 3.2: (a = 1, b = 10, c = 2vT(J); x 0 outside the basin of attraction. 
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3.2.2 The case of two equilibrium points 
The system has two equilibrium points if the condition c 2 > Aab holds. Similarly to 
the previous case, the eigenvalues of characteristic equation (3.5) must be computed for 
both points and x .̂ A t this point, however, the task is to solve a general cubic equation 
which might be a bit complicated matter. One possibility is to apply the Cardan's method 
which gives the algorithm for finding eigenvalues of cubic function. Another approach 
consists of applying the Routh-Hurwi tz criterion which was presented in Chapter 1. 

Recall , the characteristic equation is given by (3.5). Then, according to Routh-Hurwitz 
criterion, all its roots are negative or have a negative real part if and only if all determi­
nants of the Hurwitz matrices Hi, H2, H3 are positive. In this case it means, that all of 
the following conditions must hold 

det Hi = c — a — x* > 0 and 

det H2 = (c — a — x*)(ax* — ac + z* + 1) — (c — x* — az*) > 0 and 

det H3 = (c — x* — az*)[(c — a — x*)(ax* — ac + z* + 1) — (c — x* — az*)] 

= (c - x* - az*) det H2 > 0. 

Particularly, two cases must be investigated as there are two equilibrium points. In the 
sequel, each fixed point wi l l be studied separately by fitting the values from (3.2) and 
(3.3) into (3.6). 

Fixed point x̂  

In this case it is possible to start from the last determinant of (3.6) and focus on the 
condition det H3 = (c — x* — az*) det H2 > 0. Since it is desired that det H2 > 0, 
the second term in the inequality must be also positive, i.e. (c — x* — az*) > 0. However, 
substitution z* and x* wi th the values from (3.2) yields 

(c - x* - az*) = -Vc2 - Aab < 0, 

which means that either det H3 < 0 or det H2 < 0. Therefore, the equilibrium point x̂  
is not stable for any combination of a, b, c. 

Fixed point X j 

The case of the second equilibrium point requires more computations. Unlike the previous 
case, here the term (c — x* — az*) = \fc2 — Aab is always positive as far as two equilibrium 
points exist and thus the condition for det H3 is satisfied if and only if det H2 > 0. From 
the first two equations of (3.6) follows: the roots of (3.5) have negative real parts if and 
only if 

Vc2 — Aab > 2a — c and a(a — c)Vc2 — Aab > ac(c — a) — 2(a2b + b — a). 

These two inequalities give the desired conditions but they are still unwieldy in sense of 
expressing one of the parameters. More practical conditions were derived and proven in 
[21], [22]. 

Theorem 11. The fixed point X 2 is locally asymptotically stable if and only if parameters 
a, b, c satisfy: 
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(i) a, c belong to Si U S2 given as 

51 = {(a, c) : a < 1 and c > 2a} , 

5 2 = {(a, c) : a G (1, y/2) and c G (2a, 2a / ( a 2 - 1))}. 

(3.7) 

(3.8) 

(ii) b satisfies bn(a,c) < b < o^(a,c) ; where 

bH{a,c) 
i(2 - a 4 + c a 3 + 2a 2 -ca + c2 + (c- a ) \ / a 6 - 4 a 4 + 2ca 3 - 4a 2 + c 2 

2(a 2 + 1) 

6^(a,c) = - . 

Proof. See [21]. • 
To demonstrate the theoretical result given in the theorem, two different examples wi l l 

be further presented wi th the value of parameter a from both of the sets S i given by (3.7) 
and S2 given by (3.8). Firstly, assume a G Si, precisely the threshold case a = 1. In order 
to fulfil the condition c > 2a the value of c is chosen as c = 3. B y this choice, only a 
small interval of possible b is left. One of the possible values of b is b = 2.22. A s can be 
observed from Figure 3.3a, under the choice of ini t ial states (green stars) from the close 
neighbourhood of x^, the trajectories are attracted into this equilibrium point, particularly 
wi th a spiral movement. This illustrates that x 2 is locally asymptotically stable. Similarly, 
Figure 3.3b shows the attraction of another stable equilibrium when a G S2. In this second 
case, the combination of parameters was chosen as a = 1.3, b = 1.7306, c = 3. 

(a) a G Si, X Q = [1.3, —1.3,1.3]. (b) a G 5*2, x 0 = [1.485, -1.142,1.142]. 

Figure 3.3: Demonstration of stable fixed points. 

Even though the attraction of these fixed points was illustrated, both of the presented 
cases have small basin of attraction. Similarly to the case of one equilibrium, the init ial 
points were carefully chosen to fit in the corresponding region of attraction. 

In Figure 3.4, the same parameters as in Figure 3.3a were used, with only difference in 
the starting point. Again , the attraction towards the fixed point failed when the starting 
point was chosen a bit further from x 2 . 

Another consequence of Theorem 11 is that any choice of parameters wi l l never lead 
to a system wi th asymptotically stable equilibrium point whenever a > y 2 -
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3.3 Numerical Analysis for varying c 
In general, investigating analytically nonlinear systems wi th multiple parameters is a de­
manding task to do, and this is also the case of the Rossler model. Therefore, numerical 
methods must be often used. F ix ing one or two parameters and letting the rest of them 
vary, one can considerably simplify the analysis. Following the Rossler's original work, 
a and b w i l l be considered as fixed parameters and c wi l l vary as a bifurcation parameter. 
Suppose 

a = b = 0.1 

=> c > V4ab = 0.2. 

According to Routh-Hur twi tz criterion, in all cases when a = b, no possible value of c 
exists for which the equilibrium point Xg is asymptotically stable. Thus, analysis of other 
specific solutions can be performed. 

Consider the Rossler system given by (3.1) wi th parameters a = b = 0.1, c G [0.2, 20] 
and wi th ini t ial condition xo = [1, —1,0]. Firstly, assume c = 0.2. This case corresponds 
to the situation when only one fixed point exists. Moreover, this value of c is critical for 
the system (c = c c r ) , since the system undergoes so-called fold bifurcation (saddle-node 
bifurcation) as c decreases or increases. During fold bifurcation, the single fixed point 
either disappears (if c < c c r ) , or two equilibrium points are formed from the single fixed 
point (if c > c c r ) , either one stable and one unstable, or two unstable. 

The case of one equilibrium was already discussed in the beginning of this chapter. It 
was shown that the corresponding fixed point is nonhyperbolic, and for the ini t ial value 
chosen for this analysis the behaviour is plotted in Figure 3.5. The trajectory starting at 
x 0 is moving fast away from the fixed point wi th a spiral movement. 

Greater interest arises in the cases of two equilibria. For any c > ccr = 0.2, two 
equilibria exist. Moreover, for this specific choice of parameters a, b, a stable limit cycle is 
created immediately when the parameter c is increased above 0.2. However, the formation 
of the stable limit cycle comes from a bifurcation over a different system parameter as is 
described in [20]. The stable cycle has a great effect on the system as all the trajectories 
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starting in its neighbourhood wi l l converge to this cycle as t —> oo. O n the contrary to 
the cases of stable equilibrium points, the basin of attraction of this orbit is significantly 
larger. Moreover, this l imit cycle plays the main role in the transition to chaos via period 
doubling bifurcation. This phenomenon is based on a sequence of actions when the period 
of the limit cycle is doubled, leading to a loss of stability and chaotic behaviour. The 
transition to chaos and back to periodicity is described in the next part. 

Figure 3.5: Bifurcation analysis: c = 0.2; critical value. 

A t first, the creation of stable l imit cycle can be observed in Figure 3.6. For a demon­
stration, two starting points were chosen, one from 'outside' and one from 'inside' of the 
assumed position of the l imit cycle. The figure provides a good idea where the actual 
orbit is located. Since the limit cycle is of period one, it is often called period one orbit. 
This terminology wi l l be useful later when cycles of different period appear. 

Figure 3.6: Bifurcation analysis: c = 0.21; demonstration of l imit cycle. 

Further increasing values of parameter c w i l l not bring any new observation for a while, 
since up to the value c ~ 5.3 the behaviour of the system has the same scenario. A l l nearby 
trajectories settle down on the period one orbit as can be seen in Figure 3.7 which was 
plotted for the value c = 4. The 2D view shows the settled solution on the periodic orbit. 
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Figure 3.7: Bifurcation analysis: c = 4; period one orbit. 

Once c passes the value 5.3, the system undergoes first period doubling. The periodic 
orbit enlarges its period twice from the original value. The new limit cycle has period two 
and it is made of two loops. A demonstration of period two orbit is depicted in Figure 3.8 
for the value c = 5.4. The period two orbit occurs up to the value c ~ 7.8 when another 
period doubling takes place. 

Figure 3.8: Bifurcation analysis: c = 5.4; period two orbit. 

In the interval between the values 7.8 and 8.6, period four orbits can be observed as 
is in Figure 3.9, following another period doubling. Around the value c ~ 8.7, period 
eight orbit appears. W i t h further increase of the value of c the period doubling happens 
so often, that it starts to lead to chaos which appears already around the value c ~ 9. 
Figure 3.10 shows the chaotic behaviour of the system for the value c = 10. The solution 
wi l l never settle down as new and new loops are created. This can be observed from the 
2D view which shows evolution for t » t0. 

This phenomenon continues up to the value c ~ 11.9. A t this value a collapse of 
chaos appears suddenly and the periodicity of the solution reappears. For the interval 
between the values 11.9 and 12.5, the solution settles onto period three orbit as can be 
seen in Figure 3.11a for c = 12. A t the value 12.6, the period doubling bifurcation occurs 
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Figure 3.9: Bifurcation analysis: c = 8; period four orbit. 

15 

Figure 3.10: Bifurcation analysis: c = 10; chaotic behaviour. 

again letting the period enlarge to six. The six period orbit can be seen in Figure 3. 
representing the settled solution for the value of c = 12.5. 

20 -20 20 25 

(a) c = 12; period three orbit. (b) c = 12.7; period six orbit. 

Figure 3.11: Bifurcation analysis: c = 12; c = 12.7. 

41 



The trajectory for the value c = 13 in Figure 3.12 is already chaotic and chaos occurs 
for increasing c up to the value 15.4, where the solution becomes periodic again, however, 
just for a small interval of c. The collapse of chaos for a small interval of the bifurcation 
parameter is often called a periodic window, precisely period five window in this case 
(see Figure 3.13). Finally, starting wi th the value 15.5 t i l l the end of the investigation at 
c = 20, the behaviour is fully chaotic as is noticeable in Figure 3.14. 

2D 

Figure 3.12: Bifurcation analysis: c— 13.5; chaotic behaviour. 

Figure 3.13: Bifurcation analysis: c = 15.4; collapse of chaos. 

Figure 3.14: Bifurcation analysis: c = 18; chaotic behaviour. 
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Bifurcation diagram 

It is apparent, that the method used above is not very practical, since every value of c from 
the chosen interval must be separately plotted and investigated. In case, when the only 
desired information is whether the chaos occurs or not for certain values, a bifurcation 
diagram can be plotted using Poincare theorem. 

Creation of a bifurcation diagram is based on the idea similar to the construction of 
Poincare map. The nature of any structure in dynamical systems is determined by the 
behaviour of the system in its neighbourhood as time goes to infinity. Obviously, it is 
impossible to run such calculation. Therefore, sufficiently long time t = Ts is chosen after 
which the system is assumed to behave as it would behave in infinity. Clearly, this can be 
claimed only if the solution approaches an attracting fixed point or an attracting periodic 
orbit. In case of stable periodic orbits, it can be assumed that for time t > Ts, if the 
trajectory runs through a certain point in the phase space, then after time equal to the 
period of the orbit, the trajectory wi l l cross this point again. Moreover, this behaviour 
wi l l be repeated infinitely. 

Suppose, that the local maxima of one state variable are measured and recorded in the 
graph for a certain period of time starting at some t > Ts. Then, if the solution of the sys­
tem is attracted to a periodic orbit, all the measurements coincide at one value. However, 
in the case when chaos occurs in the system, the measurements wi l l differ. The bifurca­
tion diagram can be then explained as follows. For each value of bifurcation parameter, 
the number of different values recorded in the graph corresponds to the periodicity of the 
limit cycle. Thus, in the case of period one orbit, only a single value of the measured state 
variable wi l l occur in the graph. On the contrary, if for certain parameters the system is 
chaotic, then there wi l l be infinitely many different values plotted in the graph. 
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Figure 3.15: Bifurcation diagram for varying c. 
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The bifurcation diagram depicted in Figure 3.15 confirms the results of the numerical 
analysis done before. Clearly, for small c, period one orbit occurs, following several period 
doubling. Around the value c = 9 there is already too many points plotted in the figure. 
This suggests the transition to chaos. The region from 9 to 12 is clearly chaotic and 
similarly the region from 13 t i l l the end of the investigated interval of the bifurcation 
parameter (except of the small interval around 15.4 which refers to periodic window). 
Mat lab code for the bifurcation diagram was inspired by [23]. 
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4 CONTROLLING CHAOS 
The impossible long-term prediction and sensitivity on the init ial data had been the 
reason why the chaotic systems were undervalued and undesired in the past. The strange 
behaviour had often been attributed to random influences and thus, there was a tendency 
to avoid such systems or to design them out if possible. However, with the development 
in the computer science, the potential usefulness of chaotic systems have been found, 
followed by an idea of stabilizing (control) such systems in the early '90s. 

The concept of stabilization usually includes an implementation of external forces 
(perturbations) to make the system behave as desired. That means reaching a chosen 
state and secure that the system becomes stable at this state and even more, resistant to 
another perturbations. For this task, the properties of chaotic systems can be beneficial, 
since these systems are also extremely sensitive to the effect of perturbation. Under 
certain conditions, it is then possible to find suitable perturbation parameters to control 
the system. O n the other hand, the goal of control does not have to always implement 
stabilization of a chosen system. The control can be as well used in the opposite way, 
making the trajectories become chaotic. [7], [11], [24] 

In this chapter, some of the well-known methods wi l l be presented, following deeper 
investigation in the time-delayed feedback control method, where several examples wi l l 
be introduced. 

4.1 Methods of control 
There are two main approaches to achieve a certain control over the system. The first 
approach is based on application of a feedback process, e.g. external force, that influences 
the trajectory to the desired direction. Hence, the actual state of the system must be 
monitored during all the control process. Into this category belong the O G Y method, the 
external force control wi th continuous-time or the Pyragas method (time-delayed feedback 
control method). The second group represents the nonfeedback methods. Such methods 
do not need monitoring of trajectories and so they can be applied at any time. O n the 
other hand, nonfeedback methods usually affect more the system itself. 

4.1.1 O G Y Method 

The O G Y method was firstly introduced in 1990 and it was named after its inventors 
Q. Ott , C. Grebogi and J . A . Yorke. The method is based on elimination of chaos 
by applying small time-dependent perturbations. [25] The method takes advantage of 
the properties of chaotic attractors, precisely that a chaotic attractor contains within it 
an infinite number of unstable periodic orbits of all periods. The target of the control is 
to apply the force in appropriate time to direct the trajectory on one of those unstable 
orbits, where it remains. The first step is choosing one of the orbits, and computing 
precisely the perturbation needed. The perturbation, which is usually very small, is then 
applied on the system whenever the trajectory is close to this chosen orbit. This way, 
the trajectory is getting closer wi th each perturbation up to the point when it stays on 
the orbit and thus the orbit becomes stable. In some papers, this process is described as 
suppressing chaos by shadowing one the system's unstable periodic orbit. [11] 
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The O G Y method belongs to the feedback control group with non-invasive control. 
The non-invasive control means that the control vanishes once the stability is achieved. 
The method is very general and can be used for stabilizing both periodic orbits or steady 
states inside the chaotic attractor. The advantage of O G Y method is that, it is sufficient 
to study only part of the chaotic model, i.e. the Poincare map. On the other hand, the 
method requires a permanent tracking of the state of the system and a lot of computation 
to earn the precise perturbations necessary to stabilize the system. 

4.1.2 Time-Delayed Feedback Control 
The method of time-delayed feedback control ( T D F C ) , also called time-delayed auto syn­
chronization, was originally introduced by K . Pyragas in 1992 to stabilize unstable periodic 
orbits [26]. Unlike the O G Y method, T D F C uses time-continuous perturbation and thus 
can avoid some problems connected wi th O G Y method. Moreover, the method does not 
need any external source of perturbation since the control force is constructed from the 
delayed output signal applied in a special form in the system input. This way a certain 
self-control of the system is achieved. Hence, the main task in this method is to con­
struct the form of the perturbation which wi l l stabilize the system but wi l l not change the 
solution. To construct the form of control, recall, an autonomous nonlinear dynamical 
system 

At) = / (x ( t ) ) , (4.1) 

where x G Mn, and / : Mn —> Mn is a function defined as / : x —> / ( x ) . In general, 
a system under some control force can be written as 

x , ( t ) = / ( x ( t ) ) + « ( « ) • (4-2) 

Suppose now the system is I D , i.e. given by single equation x' = f(x). Let r G M+ be 
the time delay and K e l the control gain (weight of the feedback force), then according 
to the Pyragas scheme, the control force is constructed from the difference of the present 
state x(t) and its delayed value x(t — r ) . In other words, the perturbation is of the form 

u(t) = K[x(t-r) -x(t)]. 

The advantage of the delay arise from the property of the periodic orbits, such that, if 
r is equal to the period of the orbit (r = T) then the control force vanishes if the orbit is 
stabilized since x(t + T) = x(t). Thus, the method is non-invasive. Equivalently, it can be 
shown, that the non-invasive property holds also for stabilizing steady states. The force 
vanishes when the steady state x* is stabilized as x*(t) = x*(t — r ) . However, the optimal 
choice of the time delay is not so obvious in this case. 

The T D F C method is easy to implement, however, the crucial task is finding a suitable 
combination of parameters r and K which makes the stabilization successful. Later in this 
chapter, an assertion wi l l be presented, giving restrictions on the possible choice of the 
pairs {\K, r] for the Pyragas scheme wi th diagonal feedback control, i.e. when the matrix 
describing the control is diagonal. The controlled system (4.2) in the case of Pyragas 
scheme has the form 

x'(t) = / ( x ( 0 ) - A7[x( t ) - x( t - r )] , (4.3) 

where I is an identity matrix. 
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4.1.3 Non-Feedback methods 
A s it was mentioned in the beginning of this chapter, one possibility to avoid chaos is 
to design it out from the system. The idea of this method can be demonstrated on the 
dynamical vibration absorber. The absorber is a small mass connected to the main system 
preventing the system to reach resonance frequency. Similarly in controlling chaos, the 
considered system can be coupled wi th additional, much simpler system, that helps it to 
avoid chaotic behaviour. 

4.2 Applying the Time-Delayed Feedback Control 
This part of the work is focused on the T D F C method presented earlier. Firstly, the method 
wi l l be demonstrated on a simple 2D example, which was studied in the work of P. Hovel 
[27]. Then, a general assertion wi l l be stated, presenting different approach of finding 
suitable pairs [K, r] for successful stabilization. The 2D example wi l l be then used again, 
to demonstrate the second approach. Finally, the task of stabilizing the chaotic Rossler 
system wi l l be presented. 

4.2.1 Stabilization of Unstable Focus 
Both periodic orbits and fixed points can be stabilize by the T D F C method. Thus, 
an example of unstable focus in M 2 is chosen to demonstrate the method. This task is 
described in more details in Chapter 3.2 from [27]. A brief summary of the results from 
[27] wi l l be presented as it wi l l be useful in the next considerations. Suppose a linear 
dynamical system in M 2 of the form 

where O , 6 G R \ {0} are two different constants. Besides that, if a > 0, then eigenvalues 
A of the characteristic equation are complex wi th 9fJ(A) > 0. The system exhibits unstable 
focus in the origin. Furthermore, if x 0 is the ini t ial point, then solution of this system is 
given by 

Assuming the Pyragas scheme given by (4.3), the system (4.4) under the time-delayed 
feedback control becomes 

It is easily seen that in the absence of control, i.e. K = 0, the system gets back into 
(4.4). The stabilization process is successful if there exists a suitable choice (or choices) 
of [K, r] for which the origin becomes asymptotically stable, i.e. all eigenvalues s of the 
characteristic equation of system given by (4.5) satisfy 9ft(s) < 0. Thus, it is necessary to 
prescribe the restrictions on the control gain K and time delay r to obtain the domain of 
control. This leads to the following computation. 

(4.4) 

(4.5) 
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In the first step, eigenvalues Sj corresponding to the fixed point in the origin need to 
be obtained from the characteristic equation. Using the exponential ansatz for x(t) , the 
characteristic equation of (4.5) is given as 

0 = det 
a - s b \ _ fl - e~ST 0 

—b a — s I \ 0 1 — e" ST 

which after the computation yields 

a ± ib = s + K(l - e~ST). (4.6) 

A s mentioned earlier, system is asymptotically stable, if for all s is 9?(s) < 0. Therefore, 
it is convenient to find the threshold of stability, i.e. 9ft(s) = 0. For easier manipulation, 
s is written as a complex number, s = p + iq. Using the Euler's formula 

e~ST = e~pT(cos(qr) — i s in (gr ) ) , 

the equation (4.6) can be divided in real and imaginary part as 

a = p + K[l-e-pT cos(gr)], 

b = q + Ke~pr sin(gr). 

The threshold between stability and instability in complex plane is given by p = 0. 
Al lowing p — 0, the system gets easier into 

a = K - K cos(gr), (4.7) 

b = q + Ksm(qr). (4.8) 

From the range of cosine function, it is easy to see that a lower bound for the control gain 
K providing successful stabilization is obtained from (4.7) and given by 

a-<K. 
2 ~ 

Further, using the trigonometrical identities, the equations (4.7) and (4.8) written as 

K — a 
K 

b — q 

cos(gr), 

sin(gr) , 
K 

can be put to the second power and sum together, leading into 

K J \ K 

The equation (4.9) enables to express q 

K a, \ ^ (b \ ^ 
V ~ +(—Jt -̂J = cos 2 (g r )+ sin 2 (gr) = 1. (4.9) 

q = b =F y/(2K - aja. (4.10) 
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Substituting q from (4.10) into the equation (4.7), the time delay r can be obtained as 
a function of the control gain K 

K-a 
K 

— a)a)r) 

, x arccos ( ^ ^ ) 

b =F A / ( 2 K - a)a 

However, the solution obtained by (4.11) is given only on the interval where cosine function 
is a bijection. Thus, extending the interval according to the periodicity of the cosine func­
tion, three families of branches of solutions are obtained. Namely, let n be a non-negative 
integer and suppose firstly q = b - ^/{2K — a)a. Taking into account the condition of 
non-zero denominator (K ^ ^~2^~)-> two families of branches arise 

2nir + arccos (%^) a a2 + b2 , 

( 2 , + arccos ( ^ ) t ± L < K . (4.13) 

Finally, for q = b + A / ( 2 i f — a)a the denominator is always non-zero and the time delay 
is given as 

(2n + l)7r - arccos ( ^ p ) a 
* ( * - " ) =

 t + V ( ^ - a ) a ' 2 ^ K - ( 4 ' 1 4 ) 

The region of suitable choices of parameters K and r for which unstable focus can be 
stabilized is defined by the union of all subregions restricted by branches Ti , given by 
(4.12), from bellow and T 3 , given by (4.14), from above for n — 0,1, 2 , . . . . The family 
of branches T2 given by (4.13) are not relevant since T2 > T3 for all K > • To 
demonstrate the theoretical results, the parameters of the dynamical system (4.4) are 
fixed as a = 0.1 and b = ir. The system has the form 

A t ) = ( ^ l qA) x(t) . (4.15) 

According to the conditions given in (4.12) and (4.14), the domain of control for the system 
(4.15) is depicted in Figure 4.1. Particularly, subregions S0, Si, S2, S3 corresponding to 
n = {0,1 ,2 ,3} are presented. The red and blue curves correspond to the solutions of 
Ti(K,n) and T3(K,n), respectively. It is easy to observe, that the number of suitable 
pairs [K, T] decreases as the time delay increases. 

The original uncontrolled system (4.15) is given in Figure 4.2a. O n the other hand, 
Figure 4.2b refers already to a stabilized system, in this case wi th [K,T] = [0.8,1.5] from 
the subregion S0. The fixed point is stabilized and the trajectory approaches x* as t —> 00. 
O n the contrary, choosing parameters outside the domain of control wi l l not stabilize the 
fixed point and the trajectory wi l l escape to infinity. Figure 4.2c represents the choice of 
parameters [K, r] = [1.5,2] under which it is not possible to stabilize the fixed point. Due 
to the numerical method which was used for the feedback control schemes, the trajectory 
is firstly getting closer to the fixed point, however, it soon reverses the direction. The 
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fixed point remained unstable as was expected. Finally, the choice of the values from the 
boundary of the subregions leads to a creation of a stable limit cycle. This phenomenon 
can be observed in Figure 4.2d. In this particular case K was fixed at the value K = 1 
and r was computed from the relation (4.12). 

0 5 10 15 20 25 30 35 40 45 50 

K 

Figure 4.1: Domain of control in (K, 7")-plane. 
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4.2.2 General condition for finding domain of control 
In the previous example, the stabilization via T D F C method was demonstrated for a par­
ticular case in 2D. The presented approach gives the condition for successful stabilization, 
however, it is not general enough. In the sequel, another approach wi l l be introduced, 
providing more general method for obtaining the domain of control parameters. 

Suppose the system (4.1) under the control of Pyragas type, i.e. system given by 
(4.3). The problem of stabilization of a fixed point can be determined by investigating 
the linearized controlled system around the equilibrium point. The linearization of (4.3) 
yields 

x'(t) = B x ( t ) + KIx(t-r), (4.16) 

where x £ M.n, the matrix B £ R n x n is given as B = Df(x*) — KI, where Df(x*) is the 
Jacobian matrix of the original uncontrolled system (4.1) evaluated at the equilibrium 
point x*. The set of suitable control parameters [K,T] is characterized by the following 

Theorem 12. Let B £ M n x n be matrix with eigenvalues \ , i — 1 , . . . ,n and let K £ R, 
T £ R+. The zero solution of (4.16) is asymptotically stable if and only if each \ , 
i — 1 , . . . , n satisfies any of the following conditions: 

(i) Sft(Aj) + \K\ < 0 and r is arbitrary; 
(ii) ft(Ai) + \K\ = 0, K ^ 0 and r3 (Aj ) - a rg (K) ^ 2£ir for any £ £ Z ; 

(iii) \ ^ \ ) \ - \ K \ < 0 

and T^/K2 - (3?(Aj))2 + arccos (̂ l̂ 1) < arccos[sgn(K) cos(r^(A i ))] . 

Proof. To prove Theorem 12, it is necessary to show that the conditions presented in the 
assertion are necessary and sufficient for characteristic equation of (4.16) to have all eigen­
values wi th negative real part. Using the exponential ansatz for x(t) , the characteristic 
equation has the form 

det [sI-B- KIe~ST] = 0. 

A s the matrix B can be decomposed into the diagonal matrix with eigenvalues Aj of B on 
its diagonal, it is possible to say that the equilibrium point x* of (4.16) is asymptotically 
stable if and only if all roots of quasi-polynomial 

n 

F(s) = ]J(s - A, - Ke~ST) 
i=l 

have negative real part, i.e. 9ft(s) < 0. Thus, it is possible to reduce the investigation on 
the roots of 

s - Xi - Ke~ST = 0 (4.17) 

for each eigenvalue Aj. Now, turning back to the conditions presented in the assertion, 
the goal is to show that all the roots s have negative real parts if and only if just one of 
the conditions (i)-(iii) holds. 

Firstly, write A instead of Aj in (4.17) and express it from (4.17) as A = s — Ke~ST. 
Suppose a set defined as 

U(K,T) = {S- Ke~ST : seC, K(s) > 0}, 
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then on the contrary the property of stability is true if and only if A ^ U(K,r). Thus, it 
is enough to describe the structure of U(K,T) for K ^ 0 and r > 0 (the case K = 0 is 
tr ivial) . Since 

s + Ke~TS = s + Ke~TSem 

= s - ITT/T - Ke-T{s-'m/T) + ITT/T , 

the set U(—K,r) can be obtained from U(K,r) v ia shifting by ITT/T along the imaginary 
axis. Thus, it is enough to restrict the investigation for K > 0. Using the properties from 
complex analysis, let s, —TT < T^S(S) < TT be such that s = S + I2TT£/T for a suitable £ e Z . 
Then 

s - Ke~ST = s - Ke~rS + i 2TT£/T , 

hence it is possible to consider another restriction of U(K,r), namely to 

U0(K,T) = { S - Ke~ST : s e C , K(s) > 0, -TT/T < 3(s) < T T / T } . 

Finally, separating the real and imaginary part of (4.17), one can easily check that s* is 
a root of (4.17) if and only if its complex conjugate s* is the root of 

s - A - Ke~ST = 0 , 

A being complex conjugate to A. Consequently, because of symmetry of UQ{K,T) wi th 
respect to the real axis, it is sufficient to describe the structure of the set 

Uj(K,r) = {S- Ke~ST : seC, K(s) > 0, 0 < 3(s) < T T / T } . 

The border of UQ (K, T) is formed by the sets 

Bi(K, T) = {S- Ke~ST : seC, K(s) > 0, 3f(s) = T T / T } , 

£ 2 ( K , r ) = {s - K e " s r : s e C , K(s) = 0, 0 < 3f(s) < T T / T } , 

£ 3 ( K , r ) = {s - K e " s r : s e C , K(s) > 0, 3f(s) = 0} . 

Let A = a + i(3. For B\(K,r), where f3 — 7r/r it holds 

Bi(K, T) = {a + ITT/T - K e " ™ - 1 " : a e I , a > 0} 

= { a + K e - ™ + i7r/r : a e R, a > 0} . 

Since /1(a) = a + Ke~ra has the stationary point as = (1D.(KT))/T, it is decreasing for 
all a < as and increasing for all a > as, hence 

B!(K,T) = {a + m/r : a e R, a > K} for Kr < 1 

and 

B!(K,T) = {a + m/r : a e R, a > ( l n ( K r ) + l ) / r } for Kr > 1. 

Now, analysing the form of B2(K,T), where a — 0, it can be obtained 

B2(K, T) = {i/3 - Ke~'lTfi : f3 e R, 0 < f3 < TT/T} 

= {—K COS(T/3) + i(/3 + K Bin(r/3)) : ^ e R, 0 < /3 < T T / T } . 
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Equivalently, putt ing a = — Kcos(r/3), then 

B2(K,r) = {a + i 
. ( arccos(—a/K) 

+ VK2 - a2^ : a G R, -K < a < K} . 

Notice that the function 

„ . , arccosf—a/K) r— 

f2(a) = i '—L + ^/K2 - a2, —K < a < K 
T 

has the stationary point as = 1/r, hence f2 is increasing on its domain if Kr < 1 while 
it is increasing on [-K, 1/r] and decreasing on [1/r, K] if Kr > 1. It remains to dispose 
wi th B3(K,r). Obviously, 

B3(K, T) = {a- Ke~Ta : a 6 l , a > 0 } = { « 6 l : a> -K} . 

Thus, the border of UQ(K,T), when (K,T) is fixed is depicted in Figure 4.3. 
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Figure 4.3: Three border parts of the set UQ(K,T). 

Using appropriate shifties and symmetries described above one can obtain the set 
U(K, r ) of all A e C such that (4.17) admits a root wi th a positive or zero real part. This 
set is depicted on Figure 4.4. 

Of course, the complement of U(K, r ) in the complex plane is the stability region 
S(K,T), i.e. the set of all A G C such that (4.17) has all roots wi th negative real parts. 
We describe this set analytically. First let A G C be such that — n < r S ( A ) < n and 
distinguish two cases with respect to the sign of K. For K G R + , it holds A G S(K,T) if 
and only if one of the following conditions is satisfied 

(i) K(A) < —K; 
(ii) K(A) = -K, 3(A) ^ 0 ; 

(iii) |H(A)| <K, | 3 (A) | > / 2 ( H ( A ) ) . 
Similarly, for K G R~, it holds A G S(K,r) if and only if one of the following conditions 
is satisfied 

(i) K(A) < K ; 
(ii) K(A) = i f , r ^ ( A ) ^ t t ; 

(iii) |K(A) | < - K , t t - | 9 ( A ) | > / 2 ( » ( A ) ) . 
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(a) (K,r)=(l,l). (b) {K,r)={2,\). 

Figure 4.4: The instability set U(K, r) in the complex plane. 

Generalization of these conditions to a general complex A is only a computational 
matter; in particular, it needs to employ periodic extensions of the functions r | 9 : (A) | 
and n — T\Q(X)\ for K G M+ and K G M~, respectively. The required extension (and 
at the same time also unification of both sign cases for K) is provided by the function 
arccos[sgn(if) cos(r3f(A))]. Thus, A G S{K,r) if and only if any of the conditions of 
Theorem 12 (with \ replaced by A) holds. • 

4.2.3 Stabilization of Unstable Focus (revised) 
Now it can be shown, that Theorem 12 actually provides a generalization of the result 
presented in Section 4.2.1. 

Recall , the system (4.5) has unstable focus in the origin. For easier manipulation it is 
convenient to rewrite the system into the form (4.16) used in Theorem 12, obtaining 

At) = (° ~_i a - K) X(T) + ~ T)' ( 4 1 8 ) 

where matrix B from (4.16) is in this case given by 

f a - K b 
\ -b a - K 

The eigenvalues Aj of the matrix B can be computed from the characteristic equation 

° = d e t { a ' - b ' X a - K - \ 

=> A i , 2 = (a - K) ± ib. (4.19) 

If the control is successful then the origin becomes asymptotically stable. Thus, according 
to the Theorem 12, one of the conditions (i)-(iii) must be satisfied for each Aj given by 
(4.19). The next step is to analyse each condition and determine for which pairs [K,r] 
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the condition holds (if there are any). The following computation is given in more details 
as it wi l l be later similarly applied for more complicated example, 

(i) The case ft(Ai) + \K\ < 0, \ given by (4.19) 

{a-K) + \K\ < 0 
if K > 0 then 0 > a 

if K < 0 then K > 2 ' 

Both results lead to a < 0 which is in contradiction with the assumption for unstable 
focus. This condition is not fulfilled. 

(ii) The case Sft(Aj) + \K\ = 0, A; given by (4.19) 

(a-K) + \K\ = 0 = 
if K > 0 then 0 = a 

if K <0 then X = 2 

Similarly leads to a < 0 which is again in contradiction wi th the assumption. 

(iii) The case |K(A; ) | - \K\ < 0, \ given by (4.19) 

a - K < - K for K e ( -oo , 0) 

=>• 0 > a 

l a - A l - \K\ < 0 
a — K < K f o r i v " e [ 0 , a ) 

-{a-K)<K for iv" e [a, oo) 

0 < a. 

The case leading to 0 > a is not possible as it contradicts wi th the given task. The 
rest of the cases give the restriction for the control gain, namely 

a 

- < K. 
2 

Now, it is necessary to investigate for which time delays hold the second part of 
(iii), i.e. the condition for r given by 

r^K2 - i^{\i))2 + arccos (Zjj^p) < arccos[sgn(K) cos(rS(A i ))] . 

For A i = (a — K) + i6, the inequality becomes 

T A / K 2 — (a — K)2 + arccos ( ^ ^ < arccos[sgn(iv") cos(r6)]. 

The case of A2 = (a — i f ) — ib is not necessary to solve since imaginary part is present 
only in the term of cosine. Cosine is even function, i.e. cos(x) = cos(—x), and 
therefore this case does not bring any new information. The previous computation 
gave the restriction for a and K which can be directly applied into the inequality. 
Since K > 0, there is no need for the absolute value and sgn(iv") = 1. Moreover, 
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condition 0 < | < K keeps the term under the root positive and the argument of 
arccosine is held in interval [—1,1] as desired. The inequality becomes 

r A / a(2K — a) + arccos (—J{~^j < arccos[cos(r^)]-

Now, the problem is, that r is included in the term arccos[cos(r6)]. The function 
arccos(x) has domain of x equal to [—1,1] and range of values [0,7r]. In this case, 
the argument of arccosine is given by cosine function and therefore it is convenient 
evaluate the term firstly for rb G (0, n] and rb G [—IT, 0). The zero point is excluded 
because both r and b are different from zero. Using the periodicity of cosine func­
tion, the domain can be extended for al l rb G R \ {2nn}, where n G Z . It is useful 
to add that the negative values of rb are accomplished only by taking b < 0 since 
r G R+. 

(a) If rb G (0,7r] then arccos[cos(r6)] = rb. Thus, 

r A/a{2K — a) + arccos (—J{~^j < T^ 

arccos (KJTĹ) 
r > , V K ' . 4.20 

b- ^/a(2K - a) 

(b) If rb G [—7T, 0) then arccos[cos(r6)] = — rb. Thus, 

T\Ja{2k — a) + arccos ( — < 

— arccos (^r^) 
^ r < , V K ' . 4.21 

b + ^a{2K - a) 

In the last step, the periodicity of cosine must be taken into consideration. Since 
cosine has period equal to 2n the conditions on rb can be extended from (4.20) and 
(4.21) by taking intervals (0,7r] + 2nn and [—IT, 0) + 2nn, where n G Z respectively. 
Then new restrictions for r are given by 

(a) If rb G (0,7r] + 2nn then arccos[cos(r6)] = rb — 2nn. For n = 0,1, 2 , . . . the 
time delay 

2nn + arccos (^ŤŤ^) 
T > V K ' . (4.22) 

b — y/a{2k — a) 

(b) If rb G [IT, 2n) + 2nn then arccos [cos (r 6)] = — rb + 2(n+ l)ir. For n = 0,1, 2 , . . . 
the time delay 

(2n + l)?r - arccos ( ^ ) 
r < ' -. v - ^ A 4.23 

b+^/a(2K-a) 

Taking the threshold of (4.22) as r + = 2 w 7 r + a r " ^ ( _ g ) a n c j threshold of (4.2.3) as 
ta V ' b-^/a{2k-a) V ' 

_ (2n+l)-7r—arccos( K ~ - ) . 

r = , — , the final condition for time delay can be written as 
b+^Ja(2K-a) 

T+ <r <T~ for n = 0 , 1 , 2 , . . . . (4.24) 
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The results obtained by this method are following. In the case of unstable focus given 
by (4.5) and control scheme (4.18), the condition (iii) holds for both eigenvalues of (4.19), 
if the control parameters are chosen from the region restricted by K > | and r satisfies 
r + < r < r~ , where r + , r~ are given by (4.22), (4.2.3), respectively. In the comparison 
to the results obtained earlier by (4.2.3), it is easy to see that this approach leads to the 
same domain of control as in the case of control introduced by Hovel in [27]. 

Another comparison can be done for a case of a saddle point in 2D which was also 
studied by Hovel. This case wi l l not be presented here, however, it is easy to prove, that 
none of the condition (i)-(iii) given by the Theorem 12 can be satisfied for any pair [K, r] 
due to the real positive eigenvalue of a saddle point. 

Finally, it can be added that stability conditions of Theorem 12 can be applied to 
a more general stabilization problem than studied in [27]. 

4.2.4 Stabilization of chaotic Rossler system 
In the following part, Theorem 12 wi l l be applied to a particular Rossler system and 
numerical experiments wi l l be included to support the theoretical results. Firstly, the 
parameters of the system are chosen according to the previous analysis of Rossler system 
given in Chapter 3. It was observed, that for the choice a = b = 0.1 and c = 14 the 
system is chaotic. The procedure of applying the stability theorem is similar to the case 
of unstable focus, however, it is convenient to rewrite the condition (i)-(iii) in the following 
way. 

Remark 13. Conditions (i)-(iii) of Theorem 12, where B = Df(x*)—KI is the linearised 
matrix of controlled system (4.16), can be equivalently rewritten as 

(V) Sft(Aj) — K + \K\ < 0 and r is arbitrary; 
(ii') ft(Ai) -K+\K\ = 0, K ^ 0 and T3(A*) - a rg (K) ^ 2£ir for any £ e Z; 

(iii') \&(\i)-K\ - \K\ < 0 

and TSJK2 - (3ft(A;) - K)2 + arccos < arccos[sgn(K) cos( rS(A i ) ) ] , 

where \ , = 1,. . . ,n are eigenvalues of A = Df(x*), i.e. the Jacobian matrix evaluated 
at x*. Equivalently, the fixed point x* is stabilized if any of the conditions is satisfied for 
each eigenvalue A, of A. 

A s an application of Theorem 12 the Rossler system wi th parameters a = b = 0.1 and 
c = 14 given by the system of equations 

x' = —y — z 

y' = x + 0.1y (4.25) 

z' = 0.1 +z(x-U), 

is investigated. For this particular system there exist two unstable equilibria 

x* = [13.9993, -139.9929, 139.9929] , 

x.* = [7.1432 • 1 0 - 4 , -7.1432 • 1 0 - 3 , 7.1432 • 10 - 3 ] 

wi th corresponding eigenvalues 

A 1 . , w 0.099286 w -2.5149160 • 10" 8 ± 11.874038 i , 

A 2 , w -13.998778 \ 2

+ / _ w 0.049746 ± 0.998755 i . 
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A t this point, similar analysis to the case of unstable focus is necessary. For the equilib­
r ium point X j , it can be directly computed that the domain of control is empty due to 
the positive real eigenvalue. On the other hand, investigation of the conditions (i ')-(iii ') 
for Xg yields the following results. 
The case A 2 : The eigenvalue is real valued (negative), hence 9ft(A2) = A 2 . Since A2, has 
to satisfy one of the condition (i ')-(ii i ' ) , for any pair [K,T] must hold either 

A~ 
<K, r e or 

\ 2 7T arccos 
r < 

K 

^\2

r{2K - Af

2 

The case A ^ _ : The eigenvalues are complex wi th positive real part. Hence, it is again 
sufficient to run the computation only for one of the them. Choosing A+, it can be easily 

seen that only condition (hi') satisfies, namely if K > — ( > 0). Condit ion for the time 
delay is then given 

2mr + arccos K-M(\2

+) 
K (2n + l)n — arccos 

3( 
< r < 

K-M(\2

+) 
K 

(4.26) 
f(A 2

+) - ^WAWK^WA)) %{\l) + j&{\\){2K-&{\\)y 

where n — 0,1, 2 , . . . . This is similar to the result obtained in case of unstable focus. 
According to the results (4.26) obtained by using Theorem 12, the domain of control 

parameters that can be used to stabilize the Rossler system (4.25) is depicted in Figure 4.5 
for n = {0 ,1 ,2 ,3} . 
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Figure 4.5: Domain of control in (K,r)-plane. 

Numerical experiments 

To verify the theoretical results obtained above, few pairs [K, r] wi l l be tested numerically 
using the implemented function in Mat lab called dde23. [28] The function dde23 solves 
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the ini t ial value problem for a system of delay differential equations (DDEs) wi th constant 
time delays. The method is closely related to ordinary differential equations solver ode23 
based on the explicit Runge -Kut t a methods. 

The main difference between O D E s and D D E s consists in the ini t ial data. Whi le the 
solution of an O D E is determined by its value at the init ial point t = to, in the case of 
D D E s it is necessary to prescribe the solution of the problem also for times preceding 
the ini t ial one. Thus, not only the value of the solution at the ini t ial point, but also the 
'history' must be provided. If r is the time delay (or the largest among the delays), then 
on the interval to — T < t < to, it is necessary to define the solution of x(t — r ) since t — r 
refers to a time before the init ial point. 

In the case of dde23, the history data are usually given by a constant function. This 
approximation causes a problem of discontinuities of low-order derivatives. Thus, the 
solution close to the init ial point can be rough. However, the goal of the method is to 
determine the behaviour of the system as t —> oo and therefore the early difficulties can 
be ignored. 

The method dde23 was used to prove that choosing a pair of control parameters 
[K, r] from the domain of control given by (4.26) and depicted in Figure 4.5 wi l l lead 
to stabilization of the fixed point X j . For several examples the history data was chosen 
uniformly H = [—1,-1,0.1] and [K,r] was taken from the subsets So and S\. 

(a) [K,r} = [1.5,0.5]. (b) [K,r] = [2.5,1.5]. 

-1.5 -1 X -1.6 -1.5 * 

(c) [K,r} = [0.5,2]. (d) [K,r} = [7.5,2]. 

Figure 4.6: Stabilization of x 2 for suitable pairs [K,r] G SQ. 
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In Figure 4.6, four pairs of [K, r] were chosen from the set S0. It is easy to see, that the 
choice presented in Figure 4.6c is the most efficient as the trajectory moves fast towards 
the equilibrium point. On the other hand, under the choice [K,T] = [7.5,2] depicted in 
Figure 4.6d the trajectory is moving slowly towards the equilibrium point. 

Similarly, pairs from region Si are investigated and plotted in Figure 4.7. 

(a) [K,T} = [0.2,9]. (b) [K,T} = [0.3,10]. 

Figure 4.7: Stabilization of for suitable pairs [K,T] G SI. 

In the last examples the influence of the chosen history data was tested. It was 
observed, that the value of the history data can be chosen freely as illustrate the choices 
depicted in Figure 4.8. 

(a) [K,r] = [1.4,1.5], (b) [K,T] = [2.9,1.5], 

H = [8.65,10.87, -0.58]. H = [8.04, -9 .86 , 0.3]. 

Figure 4.8: Stabilization of Xg for suitable pairs [K,T] using different history. 
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5 SYNCHRONIZATION OF CHAOTIC SYSTEMS 
A s it was already mentioned and shown in the previous parts of this work, the sensitivity 
on the ini t ial conditions plays a significant role in the chaos theory. Therefore, the evolu­
tion of chaotic system in time wi l l differ even for two very close starting points, since the 
trajectories separate exponentially in time. Yet, the trajectories remain trapped inside 
the strange attractor. In the previous chapter, the concept of controlling chaos was pre­
sented together wi th some examples of stabilization unstable equilibrium points. It was 
proven, that for certain conditions, all trajectories starting at a point from the basin of 
attraction wi l l eventually reach the desired state, in this case the equilibrium point. 

Another way, how to think about control of dynamical systems, is the idea of syn­
chronization. In the original meaning, synchronization is understood as an agreement in 
time of different processes. In the theory of chaos, synchronization refers to a process, 
when two (or more) chaotic systems (not necessarily identical) are forced to adapt their 
behaviour to a common property. According to the recent studies, the common property 
can be defined by the desired stage of synchronization. The strongest request, i.e. com­
plete unification of the states of the systems, is connected to the method called complete 
synchronization. This method can be applied in the case of two identical systems start­
ing at different ini t ial points. The process of synchronization is then successful, if the 
trajectories of both systems converge to the same values and remain in step wi th each 
other. This approach wi l l be further discussed in this chapter, and applied in examples 
for synchronizing two identical Rossler systems. 

Other approaches do not require the trajectories to merge completely, but specify 
the nature of the desired synchrony. Therefore, they are also more suitable for cases 
of nonidentical systems. The phase synchronization is based on a weak coupling of two 
systems. During the process, the phases become locked on some value and provide the 
trajectories to be in phase wi th each other, while the amplitudes may remain completely 
diverse. In case of lag synchronization, on the other hand, the states of the two systems 
become nearly identical due to a stronger coupling, however, shifted in time. Thus, if si, 
s 2 are states of the two systems, the lag synchronization is reached if Si(t) ~ s2(t — r ) . 
The stronger the coupling scheme, the smaller the time lag r. A t the strongest schemes, 
r can almost approach zero, providing almost complete synchronization. 

The method of generalized synchronization extends the case of complete synchroniza­
tion to a problem of nonidentical systems. If x , y are trajectories of two different systems, 
then probably, there does not exist a coupling scheme which could provide an equality 
between the synchronized states. Therefore, the method defines a relation h : y = h(x), 
according to that each state of one system is completely determined by the state of the 
other system. The method can be applied as well to two identical systems, moreover, 
if h(x) is an identity, then generalized synchronization becomes equivalent to complete 
synchronization. A n extended overview of the methods can be found in [29]. 

The common property of the methods described above is that after the time needed 
for synchronization, the systems remain in synchrony. However, there exist several meth­
ods which cannot secure synchrony for all time, since local bursts occur. A n example 
exhibiting this phenomena is the imperfect phase synchronization or the intermittent lag 
synchronization. A l l methods can be further divided according to the use of specific 
coupling scheme. Two basic concepts wi l l be described for the case of the complete syn­
chronization method, however, they do not differ in principal for the rest of the methods. 
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Finally, for each method there is necessity of restrictions for successful synchronization. 
Usually, they are given as a restriction on the Lyapunov exponents spectrum which was 
introduced in the first chapter. 

5.1 Methods of complete synchronization 
Complete (identical) synchronization is based on coupling two identical systems (with 
same parameters) and synchronization of their trajectories onto one common trajectory. 
However, it is necessary to distinguish the way how the systems influence each other during 
the process. If one of the system remains unaltered during the process of synchronization, 
the concept is called unidirectional coupling or drive-response coupling. This type of 
coupling is widely used for secure communication by using chaotic signals. O n the other 
hand, if both of the systems are changed and influenced by each other during the process, 
the concept is called bidirectional coupling. This type can be applied in the physiology, 
e.g. while synchronizing the cardiac and respiratory system. 

A s this work follows up mainly continuous systems, the following methods wi l l be 
described also only for continuous cases. However, the ideas can be applied as well for 
discrete cases. 

5.1.1 Drive-Response configuration 
This method, also called master-slave configuration or unidirectional coupling, is based 
on forming a global system out of two subsystems, where one of them evolves freely and 
drives the evolution of the other. A s a result, the response system is forced to forget its 
ini t ial data and follow the evolution of the master. The method can be further divided 
according to the coupling scheme. 

Pecora and Caroll 

One of the first works investigating the possibility of synchronization of two identical 
chaotic systems was given by L . Pecora and T. Carol l . [11], [30] Their method is based 
on the master-slave configuration. Suppose a chaotic dynamical system x ' = / ( x ) in W1 

which can be decomposed into two subsystems 

v ' = g(v,w), 

w ' = h(v, w ) , 

where x = ( v , w ) , v = ( x i , . . . , xm), g = ( / i ( x ) , . . . , / m ( x ) ) , w = (xm+1,..., xn) and 
h = ( / m + i ( x ) , . . . , / n ( x ) ) . Now create a new subsystem w identical to w . The new 
system of interest is then given by 

v ' = g ( v , w ) , w ' = / i ( v , w ) , w ' = / i ( v , w ) . 

The original two subsystems v , w refer to the driving subsystem, while the w corresponds 
to the response subsystem. Particularly in this case, the expression 'v-drive configuration' 
is often used. The subsystems are in synchrony if the trajectories of the driving system 
w and its replica w under the same driving signal v are equal. Let A w = w — w . The 
subsystems can be synchronized only if A w —> 0 as t —> oo. The necessary condition for 
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successful synchronization is based on the sign of the Lyapunov exponents of the response 
system which are called conditional. A l l conditional Lyapunov exponents must be nega­
tive, otherwise the synchronized state would not be stable. Thus, for many systems, only 
some equations are suitable to be applied as the drive. 

Active-passive decomposition method 

The method introduced by Pecora and Carol l is specific considering the suitable form of 
driving signal. The active-passive decomposition represents more general approach, where 
the driving signal can be chosen more freely if certain conditions hold. [31] The method 
is based on formal rewriting of the autonomous dynamical system as a nonautonomous 
one 

x' = / ( x , s ( 0 ) , (5.1) 

where s(t) corresponds to the driving signal given as s(t) = /i(x) or s' = fo(x, s). Then, 
the same driving signal is applied on the identical system which can be rewritten as 

y' = /(y, *(*))• 

Let e = x — y be the difference between the two states. If the differential equation 

e' = x ' - y ' = / ( x , S ) - / ( y , S ) (5.2) 

has a stable fixed point at e = 0, then the synchronization is successful, i.e. x = y. The 
stability of (5.2) at e = 0 can be determined by using Lyapunov function. Nevertheless, 
as in the previous case, the condition on the negative conditional Lyapunov exponents of 
the system (5.1) must be satisfied. 

Negative feedback control 

Synchronization by negative feedback control is very similar to the processes discussed in 
the previous chapter. Consider two identical chaotic systems x' = /(x) and y' = /(y). 
The systems are coupled unidirectionally in the way that the difference between two 
corresponding variables is applied to the appropriate equation of the driven system as 
a negative feedback. Together wi th a suitable value of the feedback gain K, the term of 
the control signal has the form 

F(t) = K(xi(t)-yi(t)). (5.3) 

To achieve the synchrony between the two systems, the control gain K (K > 0) must be 
chosen in the way that the number of positive Lyapunov exponents of the new composed 
system and the driving system must be the same. For chaotic system in 3D it means, 
that the composed system is allowed to have exactly one positive Lyapunov exponent. 

Generally, the control signal can be added to more than just one equation of the driven 
system, which wi l l enlarge the region of suitable control gains for successful synchroniza­
tion. Moreover, this method is non-invasive since the control disappears when the two 
systems synchronize onto one trajectory. 
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5.1.2 Bidirectional coupling 
In contrast to the master-slave methods, the bidirectional coupling is based on interaction 
between the systems which is achieved by adding a term of additional dissipation into both 
systems 

x' = /(x) + D(y - x) 

y ' = / ( y ) + J D ( x - y ) . 1 • j 

If the matrix presenting the dissipation has a particular form D = dl then the synchrony 
is achieved for d > | A m a i , where Amax is the largest Lyapunov exponent of unsynchronized 
system. 

5.2 Synchronization of two Rossler systems 
In this part of the chapter, some of the methods mentioned above wi l l be tested on 
Rossler system, which is the main subject of this work. The choice of parameters remains 
unchanged, i.e. a = b = 0.1 and c is chosen specifically for each method. 

Negative feedback control 

The synchronization by negative feedback is possible only for certain control gains and 
driving signals. Thus, the task is to find the suitable configurations which wi l l fulfil the 
condition of number of Lyapunov exponents. Firstly, the parameter c is chosen to be 
c = 18, which corresponds to the chaotic behaviour and the control signal is of the form 
given in (5.3). 

The method wi l l be demonstrated wi th control by variable x and wi th control by 
variables x and y. Analysis for control by variable y, z and their combinations could be 
done similarly. 

• Control by variable x: The configuration 

x' = —y — z , x = —y — z + K{x — x), 

y' = x + 0.1y, y' = —x + 0.1y, 

z'= 0.1 + z(x - 18), z = 0.1 + z(x - 18) 

was tested for several values of K for which the number of positive Lyapunov expo­
nents is the same in composed system and in the original driving system. Results 
for K = 0.8, 2.5 can be seen in Figures 5.1 and 5.2. Each figure shows the evolu­
tion in variables x, x, y and y and the difference between the corresponding ones. 
For K = 0.2 (see Figure 5.3), on the other hand, it is not possible to reach the 
synchrony. 

• Control by two variables (x and y): The configuration 

x' = —y — z , x' — —y — z + K{x — x), 

y' = x + 0.1y, y = -x + O.ly + K(y - y), 

z'= 0.1 + z(x - 18), z = 0.1 + z(x - 18) 

was tested for K = 0.2 to prove that the control by two variables can enlarge the 
region of suitable control gains. For this configuration the driven system merged 
wi th its master as can be seen in Figure 5.4. 
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Figure 5.3: Unsuccessful synchronization; control by variable x, K — 0.2. 

Figure 5.4: Successful synchronization; control by variables x and y, K = 0.2. 
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Bidirectional coupling 

The bidirectional coupling method given by (5.4) was tested on Rossler system wi th 
parameter c = 14. The dissipative term was taken as D = dl. For the original system, 
the largest Lyapunov exponent is approximately Amax « 0 . 1 . Thus, taking any d > 0.05 
should lead to success. The coupled system has the form 

x' = —y — z + d(x — x) x' — —y — z + d(x — x) 

y' = x + O.ly + d(y — y) y = —x + O.ly + d(y — y) (5.5) 

z' = 0.1 + z[x - 14) + d[z - z) z' = 0.1 + z[x - 14) + d{z - z). 

Some of the particular choices of d are presented in Figures 5.5-5.9. Again , each figure 
shows the evolution in variables x, x, y and y and the difference between the corresponding 
ones. For d = 0.06, 0.1, 2.5, 12 the synchrony is easy to see, since the differences between 
the variables approach zero after some time. From the calculations also yield, that wi th 
increasing d the convergence to zero is faster. O n the other hand, for d = 0.03 (which is 
less than ^Amax) the synchronization is not successful as it was expected (see Figure 5.9). 
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Figure 5.6: Bidirectional coupling, d — 0.1. 

Figure 5.7: Bidirectional coupling, d = 2.5. 
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Figure 5.8: Bidirectional coupling, d = 12. 

Figure 5.9: Unsuccessful synchronization; bidirectional coupling, d = 0.03. 
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6 CONCLUSION 
The goal of this thesis was to provide a survey of the famous chaotic dynamical sys­
tems and to demonstrate a stability analysis and other currently investigated topics on 
a chosen chaotic model. The Rossler system, as the simplest chaotic system with only 
one nonlinear term, was chosen for this purposes. Besides the analysis of the stability of 
its equilibrium points, bifurcation of one of its parameters was studied extensively. The 
Rossler system was further employed in the topics of current research, i.e. the problems 
of stabilization and synchronization. The theoretical assumptions and results in each sec­
tion were supported by numerical experiments using Mat lab. The advantage was taken 
of certain Mat lab tools, namely the O D E and D D E solvers. 

Chapter 1 was devoted to the fundamental theory of the dynamical systems necessary 
for the stability and bifurcation analysis investigated in the next chapters. Chapter 2 was 
focused on the research of various chaotic systems presented in the literature. Besides 
the most famous models, which are the Lorenz or the Rossler system, some of the less 
common models, e.g. modified Van der Pol 's oscillator, Sprott systems, were introduced 
as well. This chapter provided the evidence that chaos occurs in many dynamical systems 
across different fields of science. 

In Chapter 3, the theoretical background from Chapter 1 was used to investigate the 
behaviour of the Rossler system in the neighbourhood of its equilibrium point. Part icu­
larly it was shown that the Rossler system can have either none, one or two fixed points. 
According to Routh-Hurwi tz criterion, the case of two equilibrium points leads to one 
fixed point being always unstable, the second one being locally asymptotically stable for 
some suitable choices of system parameters. Two such choices were depicted to demon­
strate the theoretical results. In further investigation, it was observed that the stability 
has just a local character since only a small basin of attraction of this point was found. The 
rest of Chapter 3 was dedicated to the bifurcation analysis of parameter c (a = b = 0.1). 
The numerical experiments provided a graphical solution of the transition from periodic 
behaviour to chaos. Some of the chaotic cases, e.g. cases when c = 9,13,18, and peri­
odic cases, e.g. cases when c = 5.5, 8,12, were illustrated in this part of the work. The 
construction of a bifurcation diagram also confirmed the results. 

Chapter 4 forms the main part of this work as it deals wi th a problem of chaos control. 
Particularly, the investigation of stabilization of fixed points was presented. From the 
introduced methods, the emphasis was put on the time-delayed feedback control method 
following a general statement giving explicit conditions for the control parameters, i.e. the 
control gain and time delay. This statement was proven theoretically and supported by the 
numerical experiments, namely by stabilization of an unstable focus in 2D and one of the 
fixed points of the chaotic Rossler system. In case of the Rossler system, the parameters 
were chosen as a = b = 0.1, c = 14. W i t h the use of the introduced statement, it was 
possible to find a domain of control parameters for successful stabilization of one of the 
fixed points of the system (the other fixed point turned out to be impossible to stabilize). 
The domain of control was computed and depicted together with the results of numerical 
experiments for several choices of suitable control parameters from the domain of control. 

Finally, the last chapter was devoted to another currently studied topic, i.e. synchro­
nization of two chaotic systems. Two chaotic Rossler systems were applied to demonstrate 
some of the methods of complete synchronization introduced in the literature. Namely 
the master-slave scheme with negative feedback control and bidirectional coupling scheme 
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was investigated. In both cases, complete synchronization of the trajectories was achieved 
as can be apparent from the provided results. 

Synchronization of chaotic systems belongs among the topics of a great interest in 
the latest research in chaos theory. Thus, a future work could investigate the methods 
presented in Chapter 5 in more details. Furthermore, as the phenomenon of synchroniza­
tion can be utilized in the secure communication by masking the information signal wi th 
a larger chaotic signal, this work could be further extended in the way of investigation of 
possible masking techniques and reliable synchronization of the transmitter and receiver 
systems. 
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