
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS
ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

3D MODEL REGISTRATION WITH DEPTH CAMERA DATA
REGISTRACE 3D MODELU S DATY Z HLOUBKOVÉ KAMERY

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Daniel Boháč

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Roman
Adámek

BRNO 2023

Assignment Master's Thesis

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

3D model registration with depth camera data

Brief Description:
Depth sensors and cameras are currently widely used in a variety of different industries, from
mobile robotics and automation to 3D object scanning. This thesis deals with the challenge of
identifying a specific object from depth sensor data based on its known 3D model. And also
determine its position and orientation in space. Such data can then be used, for example, to guide
a robotic arm to grasp the object.

Master's Thesis goals:
1. Conduct a literature review of the state–of–the–art methods for matching and registration of
objects specified by their 3D model and corresponding point cloud.
2. Based on the literature review, select a suitable algorithm that will be able to match a 3D model
to data obtained from a depth sensor and determine its position and orientation in space.
3. Validate the result on a set of test objects and assess the functionality and limitations of this
method.

Recommended bibliography:

TRUCCO, Emanuele a Alessandro VERRI. Introductory techniques for 3-D computer vision. Upper
Saddle River, NJ: Prentice Hall, c1998. ISBN 0132611082.

SOLEM, Jan Erik. Programming computer vision with Python. Sebastopol, CA: O'Reilly, 2012.
ISBN 1449316549.

KAEHLER, Adrian a Gary R. BRADSKI. Learning OpenCV 3: computer vision in C++ with the
OpenCV library. Sebastopol, CA: O'Reilly Media, [2017]. ISBN 1491937998.

Institut: Institute of Solid Mechanics, Mechatronics and Biomechanics
Student: Bc. Daniel Boháč
Degree programm: Mechatronics
Branch: no specialisation
Supervisor: Ing. Roman Adámek
Academic year: 2022/23

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2022/23

In Brno,

L. S.

prof. Ing. Jindřich Petruška, CSc.
Director of the Institute

doc. Ing. Jiří Hlinka, Ph.D.
FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Summary

This thesis deals with 3D object recognition and pose estimation based on depth camera
data, specifically point clouds. The only references for potential objects considered are
their corresponding 3D models. The goal is to identify an appropriate algorithm through
a literature review, develop a solution implementing this algorithm, assess its functionality,
and describe its limitations. The work proposes an easily usable extendable library written
in C++ and usable within Python. This library incorporates a pipeline derived from the
literature review that addresses the problem by utilizing global descriptors. Lastly, the
solution is validated in experiments using artificial and real data.

Abstrakt

Tato práce se zaměřuje na úlohu 3D rozpoznáńı objektu a odhadu jeho transformace na
základě dat źıskaných z hloubkové kamery. Konkrétně jde o mračna bod̊u, přičemž jedinou
referenćı pro dané objekty jsou jejich 3D modely. Ćılem práce je vybrat vhodný algorit-
mus na základě provedené rešerše, implementovat řešeńı využ́ıvaj́ıćı tento algoritmus,
ověřit jeho funkčnost a identifikovat jeho limity. Práce představuje snadno použitelnou
a rozšǐritelnou knihovnu napsanou v C++, která je dostupná také prostřednictv́ım Py-
thonu. Tato knihovna využ́ıvá postup identifikovaný během rešerše, který řeš́ı danou úlohu
pomoćı globálńıch deskriptor̊u. Nakonec je řešeńı ověřeno na umělých i reálných datech.

Keywords

3D object recognition, pose estimation, point cloud, 3D model, global descriptor

Kĺıčová slova

3D rozpoznáńı objektu, odhad transformace, mračno bod̊u, 3D model, globálńı deskriptor

Rozš́ı̌rený abstrakt

Prob́ıhaj́ıćı automatizace ve všech odvětv́ıch pr̊umyslu si žádá řešeńı mnoha d́ılč́ıch výzev.
Jednou z těchto výzev je i rozpoznáváńı objekt̊u a źıskáńı informace o jejich přesné poloze
a orientaci (transformaci). Řešeńı této úlohy umožňuje tyto objekty uchytit a přesunout,
či založit na přesné mı́sto. Potenciálně lze pak vytvořit univerzálńı pracovǐstě vhodné pro
v́ıcero objekt̊u, bez nutnosti jeho drahé specializace v oblasti manipulace.

Tuto úlohu je vhodné řešit metodami poč́ıtačového viděńı. Ty lze rozdělit na dva
hlavńı proudy: 2D a 3D. Právě druhý zmı́něný čeĺı v posledńı době rostoućımu zájmu,
mimo jiné, d́ıky stále lepš́ı dostupnosti hloubkových kamer. Tento zájem je nav́ıc podpořen
potenciálem robustněǰśıch metod, d́ıky větš́ımu množstv́ı informaćı o scéně (hloubka).

Tato práce se zabývá problematikou 3D rozpoznáńı objektu z dat hloubkové kamery,
konkrétně mračna bod̊u, a odhadu jeho transformace. Konkrétně je uvažována situace, kdy
se objekty nacháźı volně na posuvném pásu a zároveň je možná př́ıtomnost pouze jednoho
objektu ve sńımáné scéně v daném okamžiku. Zároveň maj́ı být jedinými referencemi
k možným objekt̊um pouze jejich 3D modely, bez textur či informace o barvě.

Nejprve je v práci uvedena uvažovaná situace. Poté jsou popsány typy 3D dat, které
jsou relevantńı pro řešeńı dané úlohy. Tud́ıž jsou uvedeny základńı typy reprezentaćı
3D model̊u, následované popisem mračen bod̊u a zp̊usoby, jak je źıskat. V př́ıpadě mračen
bod̊u je d̊uležité zd̊uraznit, že pokud využ́ıváme jednu scénu zachycenou hloubkovou ka-
merou, jsou objekty v této scéně reprezentovány pouze takzvaným částečným mračnem
bod̊u. To je zp̊usobeno nedostatkem informaćı o částech objektu, které nejsou viditelné
z daného umı́stěńı kamery. Dále je v práci provedena základńı rešerše možných řešeńı
d́ılč́ıch problémů, jako je 3D rozpoznáváńı objekt̊u, odhad transformace mračna bod̊u
a vhodných nástroj̊u. Z této rešerše vyplývá, že pro daný scénář je vhodné použ́ıt př́ıstupy
založené na rysech pro 3D rozpoznáváńı objekt̊u a př́ıstup hrubého odhadu a jemného
dopřesněńı pro odhad transformace. Dále je specifikován zp̊usob hodnoceńı přesnosti od-
hadu transformace a jeho nedostatky, které jsou zp̊usobeny předevš́ım existenćı nejedno-
značných pohled̊u. Nav́ıc je určena nejvhodněǰśı knihovna pro implementaci řešeńı, a to
Point Cloud Library pro jazyk C++.

Na základě zpřesněńı oblast́ı zájmu, je provedena hlubš́ı rešerše, zaměřuj́ıćı se na po-
stupy využ́ıvaj́ıćı zmı́něné dva př́ıstupy a srovnávaćı práce. S ohledem na dosavadńı práce
provedené v této oblasti, je extrahován obecný postup řešeńı celé úlohy. Tento postup je
založen na využit́ı databáze částečných mračen bod̊u objekt̊u a globálńıch deskriptor̊u.
Dále jsou popisovány jednotlivé kroky tohoto postupu a algoritmy, které využ́ıvaj́ı.

Následně je navrhnuto řešeńı, které integruje postup uvedený v rešeršńı části. Toto
řešeńı je ve formě knihovny, která je nav́ıc modulárńı a relativně jednoduchá na použit́ı,
s širokými možnostmi konfigurace. Umožňuje jednoduché testováńı, diagnostiku a řešeńı
př́ıpadných chyb při konfiguraci. Knihovna zajǐst’uje celý proces, od generováńı částečných
mračen bod̊u jednotlivých objekt̊u s možnost́ı přidáńı šumu, až po testováńı úspěšnosti
rozpoznáváńı a přesnosti odhadnutých transformaćı.

Po představeńı návrhu následuj́ı detaily implementace tohoto řešeńı. Výsledkem je
knihovna napsaná v jazyce C++, skládaj́ıćı se z několika modul̊u, které umožňuj́ı po-
tenciálńı rozš́ı̌reńı o daľśı postupy. Pro tuto knihovnu byl vytvořen i adaptér, poskytuj́ıćı
jednoduché rozhrańı pro jej́ı použit́ı, který je nav́ıc začleněn do Python modulu. Veškerá
konfigurace je předávána ve formě JSON soubor̊u, které lze upravovat v libovolném tex-
tovém editoru.

Po implementaci řešeńı je přistoupeno k jeho ověřeńı prostřednictv́ım tř́ı druh̊u ex-
periment̊u se třemi skupinami objekt̊u. Experimenty byly navrženy tak, aby bylo možné
z jejich výsledk̊u obecně posoudit chováńı vytvořeného řešeńı. Druhy experiment̊u proto
přesdstavuj́ı: ideálńı generovaná data bez šumu, uměle generovaná data s šumem, a reálně
zachycená data. Výsledky ukázuj́ı funkčnost řešeńı i pro data zachycená reálnou hloubko-
vou kamerou, navzdory značné deformaci geometrických rys̊u objektu v d̊usledku charak-
teristiky šumu použité kamery. V rámci experimentu s reálně zachycenými daty, který za-
hrnuje tři objekty rozpoznávané v celkem 72 scénách, dosahuje řešeńı úspěšnosti správného
rozpoznáńı objektu 40,28 %, přičemž u 27,59 % z těchto správných rozpoznáńı je přesně
odhadnuta i transformace objektu. Experiment provedený na uměle generovaných datech
s šumem dosahuje daleko lepš́ıch výsledk̊u. Při zahrnut́ı šesti objekt̊u rozpoznávaných
v celkem 252 scénách dosáhuje řešeńı úspěšnosti správného rozpoznáńı objektu 74,21 %,
přičemž u 67,91 % z těchto správných rozpoznáńı je přesně odhadnuta i transformace
objektu.

Na základě výsledk̊u z experiment̊u je možné identifikovat některé aspekty chováńı
navrženého řešeńı a identifikovat jeho limity. Úspěšnost řešeńı se ukazuje být závislá jak
na konfiguraci, tak i na konkrétńıch objektech ve skupinách. Některé objekty vykazuj́ı
mnohem horš́ı rozpoznatelnost i přesnost odhad̊u transformace, než objekty jiné. Nav́ıc
je zaznamenána možnost nesprávného rozpoznáńı menš́ıho objektu ve větš́ım, pokud oba
disponuj́ı velmi podobnými geometrickými rysy. Mezi omezeńı řešeńı patř́ı nedostatečná
robustnost v odhadu transformace, což je ovlivněno i př́ıtomnost́ı nejednoznačných po-
hled̊u. Daľśı limitaćı je nutnost úpravy parametr̊u vždy dle charakteru daných vstupńıch
dat. V závěru práce jsou uvedena možná vylepšeńı navrženého řešeńı a návrhy pro daľśı
práce s navazuj́ıćı tématikou.

Bibliographic citation

BOHÁČ, Daniel. 3D model registration with depth camera data [online]. Brno, 2023.
Available from: https://www.vut.cz/studenti/zav-prace/detail/149546. Master’s
Thesis. Brno University of Technology, Faculty of Mechanical Engineering, Institute of
Solid Mechanics, Mechatronics and Biomechanics. 88 pages, Supervisor Roman Adámek.

https://www.vut.cz/studenti/zav-prace/detail/149546

I declare that this thesis has been composed solely by myself under the supervision
of Ing. Roman Adámek. All references, literary sources, and other resources I have utilized
to develop this work have been appropriately cited and acknowledged.

Bc. Daniel Boháč

Brno, May 26, 2023

I want to acknowledge my thesis supervisor, Ing. Roman Adámek, who has provi-
ded valuable guidance and significant motivational support, contributing greatly to the
completion of this thesis. In addition, my sincere gratitude goes to my girlfriend for her
unwavering support throughout this process. I must also extend my appreciation to my
family, whose understanding and encouragement have been vital to my perseverance.

Bc. Daniel Boháč

Contents

1 Introduction 12

2 Base research 13
2.1 Scenario details and assessment . 13
2.2 3D data representations . 14

2.2.1 Considered 3D model file formats 14
2.2.2 Point clouds and their acquisition 15

2.3 3D object recognition . 16
2.3.1 General pipeline . 17
2.3.2 Main feature-based representations 17
2.3.3 Relevant datasets for the considered scenario 18

2.4 Pose estimation . 18
2.4.1 Ambiguous views and pose estimate evaluation 19

2.5 Available libraries for depth data processing 20
2.6 Main conclusions of the chapter . 21

3 Algorithm research 22
3.1 Related work . 22

3.1.1 Point Cloud Library recognition pipelines 22
3.1.2 Relevant comparison works . 24
3.1.3 Other relevant works . 24
3.1.4 Assessment of current state . 25

3.2 Common steps for both stages . 26
3.2.1 Downsampling . 26
3.2.2 Normal estimation . 26

3.3 Selected global descriptors . 27
3.3.1 Viewpoint Feature Histogram and improved variants 27
3.3.2 Ensemble of Shape Functions . 28
3.3.3 Global Orthographic Object Descriptor 28

3.4 Offline stage . 29
3.5 Online stage . 29

3.5.1 Filtering . 29
3.5.2 Segmentation . 30
3.5.3 Matching . 30
3.5.4 Coarse alignment . 30
3.5.5 Pose refinement . 31
3.5.6 Hypothesis verification . 31

3.6 Key PCL dependencies . 32

9

4 Solution draft 33
4.1 Required features . 33
4.2 Architecture proposal . 34

4.2.1 Utilities module . 34
4.2.2 Dataset preparation module . 34
4.2.3 Global pipeline module . 35
4.2.4 Usage . 35

4.3 Validation of the solution . 35

5 Implementation 36
5.1 Tools and algorithms . 36
5.2 List of used hardware and software . 37
5.3 Implementation of the solution draft . 38

5.3.1 Utilities module implementation . 38
5.3.2 Dataset preparation module implementation 39
5.3.3 Global pipeline module implementation 42
5.3.4 Solution wrapper implementation 46

6 Validation of the solution 48
6.1 Data . 48

6.1.1 3D models and its groups . 48
6.1.2 Generated datasets . 49
6.1.3 Captured data . 50

6.2 Experiments . 51
6.2.1 Types . 51
6.2.2 Conditions . 52
6.2.3 Execution . 52
6.2.4 Data processing . 52

6.3 Results . 53
6.3.1 Ground truth tests . 53
6.3.2 Virtual noise tests . 56
6.3.3 Capture tests . 59
6.3.4 Commentary . 62

6.4 Assesment of the solution . 64

7 Conclusion 66

Bibliography 67

List of Abbreviations 72

List of Figures 73

List of Tables 75

10

A Attached files 76

B Instructions 77

C Solution pipeline related files 78
C.1 Dataset preparation . 78

C.1.1 Dataset preparation config JSON 78
C.1.2 Model list JSON . 78
C.1.3 Dataset out JSON . 79
C.1.4 Generated dataset folder . 79

C.2 Global pipeline . 80
C.2.1 Global pipeline config JSON . 80
C.2.2 Result JSON . 82
C.2.3 Extras JSON . 83
C.2.4 Evaluation JSON . 83

D Configuration used for testing 85
D.1 Dataset preparation config . 85
D.2 Global pipeline config . 86

11

1 Introduction

The ongoing automation in manufacturing and related industries demands solutions to
various challenges. One of these challenges is recognizing objects and determining their
accurate pose. This is vital for automating manipulation tasks, such as picking, trans-
ferring, and settling with a robotic manipulator, without costly and highly specialized
workstations. While these tasks are intuitively simple for humans, replicating this ease
in an automated setup has proven computationally and algorithmically complex. Cur-
rently, this problem is being solved thanks to state-of-the-art computer vision solutions
in combination with the qualities of modern sensors.

Generally, computer vision solutions can be divided into two main groups: 2D and
3D data-based. The 3D data-based approach shows great potential in object recognition
due to the additional dimension of spatial and geometric information of the captured
scene. Moreover, the increasing availability of depth cameras stimulates the adoption of
3D data-based computer vision solutions in industrial applications.

To ensure the overall automation process is efficient, adaptable, and flexible, the la-
tency between incorporating a new object into the database and its recognition during
production should be negligible. In this regard, Computer Aided Design (CAD) models of
parts, generally accessible to manufacturers, can be utilized. Ideally, adding a 3D model
to the possible object database would be followed by its correct recognition in the produc-
tion line. Thus, the factory employing such a solution will be able to adapt workstations
quickly, which is demanded in an increasingly dynamic environment of modern manufac-
turing and associated industries.

This thesis explores possible solutions to the problem in a specific industrial appli-
cation scenario, where only a single object at a time is located in an area captured by
a depth camera. Chapter 2 outlines the problem, specifies the scope of this thesis, item-
izes the relevant requirements, introduces relevant data formats, presents introductory
research on object recognition and pose estimation methods based on 3D data, and draws
relevant conclusions to narrow subsequent chapter. Chapter 3 describes relevant related
work, extracts a general pipeline for 3D object recognition and pose estimation, and de-
scribes each step regarding this solution pipeline. Chapter 4 proposes a solution without
implementation details. Chapter 5 describes the implementation details of the solution.
Chapter 6 is dedicated to validating the solution, assessing its functionality, identifying
its limitations, and suggesting further work.

12

2 Base research

This chapter forms the basis for the entire thesis. First, Section 2.1 introduces the details
of a specific application scenario, defines and evaluates the problem to be solved, and
illustrates the scope of this thesis. Section 2.2 introduces the relevant 3D data represen-
tations to be used. Sections 2.3 and 2.4 provide an overview of approaches to solving parts
of the problem at hand. Section 2.5 briefly introduces the appropriate libraries available
for 3D data processing. Finally, Section 2.6 draws the relevant conclusions for conducting
a more specific literature review in the following, more detailed chapter.

2.1 Scenario details and assessment

Depth sensor/camera

Conveyor belt

 Captured scene

 (Additional operations)

Robotic arm

Algorithm

3D models
of the parts

Matched model
&

Pose estimate

Randomly posed parts

Figure 2.1: Illustration of the problem scenario. The scope of this work is highlighted. Green
are the inputs, orange is the main part, and the output is blue.

A real-life workplace scenario inspires the problem addressed in this thesis, an illustra-
tion of which can be seen in Figure 2.1. This scenario contains a robotic arm, a conveyor
belt, and a depth sensor/camera. The intended task is to transfer parts from the conveyor
belt using the robotic arm. These parts are randomly placed with a considerable gap be-
tween them and are randomly oriented. Furthermore, assume that the only reference for
possible parts apart from the depth sensor data is their CAD models (3D models) and
that these models lack texture (and color).

For transferring a specific part, it must be held. However, ideally, its pose (position and
orientation) in the space must be known in advance. Thus, when dealing with multiple
possible individual parts, the part in the scene must first be recognized. In other words,
the corresponding 3D model must match the captured scene. Therefore, the algorithm
sequence is as follows: match the 3D model to the captured scene (recognize the object),
obtain the pose of the part, and perform additional operations that lead to the transferring
of the part.

13

2 BASE RESEARCH 2.2 3D DATA REPRESENTATIONS

The scope of this thesis includes only the matching of the captured scene to the
3D model and the obtaining of the pose of the part, not the additional operations or the
transfer itself. These two problems are well known in 3D computer vision and are more
commonly called 3D object recognition and pose estimation [1]. Because the solution
should serve in a robotic perception system, both should take as little time as possible
with reasonable accuracy. In addition, the entire solution should be fully automated,
ideally including only the initial setup.

Thus, the main tasks to be solved are:

• Match the depth data of the captured scene to the corresponding 3D model (recog-
nize the object).

• Estimate the pose of the matched object relative to the depth sensor/camera and
retrieve it.

While the conditions are:

• The captured scene includes only one object at a time.

• The only references for the objects are their 3D models without texture/color.

2.2 3D data representations

In this thesis, two types of 3D data representation are considered. The first is a 3D model,
and the second is a point cloud. Currently, it is relatively standard to have CAD models
of parts available. However, to use the 3D models designed in CAD software, they must
be exported to a universal file format. On the other hand, a point cloud is a common
output of most depth sensors and is essential for 3D computer vision.

The following subsection covers the two most widely used universal 3D model file for-
mats. The subsequent subsection provides a closer look at the point cloud representation
and its acquisition.

2.2.1 Considered 3D model file formats

The two most widely used universal 3D model file formats are Standard for the Exchange
of Product Data (STEP) and STereo Lithography (STL) [2]. The differences between
these two file formats are more than formal, as they use two different representations of
3D models. Illustration of these two representations can be seen in Figure 2.2.

NURBS representation Mesh representation

STEP model STL model

Polygon

Figure 2.2: Representations of STEP and STL file formats.

14

2 BASE RESEARCH 2.2 3D DATA REPRESENTATIONS

The STEP file format uses the same mathematical model for geometry description
as the 3D CAD software programs1. Thus it maintains high precision [2]. However, the
nature of the description results in slower rendering and processing. This file format can
also include texture, material types, and other product data. It is the preferred file format
when geometry modifications are expected or when the high accuracy of the 3D models
matters, and slower processing is not an issue.

The STL file format uses an approximate triangular mesh (polygons) to describe the
surface of the model (see Figure 2.2) [2]. In the description of a whole model, each polygon
is defined by a normal vector aim and coordinates of three vertices in counterclockwise
order relative to the normal vector (this is referred to as the right-hand rule). The two
descriptions of normal orientation may seem redundant, but their mismatch is used to
indicate corrupted data [3]. The number of polygons directly depends on the level of
detail of curved geometry and corresponds to the file size. This file format cannot store
information about the texture or color of the model but has the advantage of having a rel-
atively small footprint. Furthermore, the specific description of the approximated surface
enables faster and more straightforward processing than in the case of the STEP file for-
mat. Moreover, the STL file format is the most widely supported 3D file format because
of its simplicity.

2.2.2 Point clouds and their acquisition

A point cloud is a type of 3D data representation that is described by a set of points in
a 3D space, defined by their coordinates [4]. Moreover, each point can also contain color
information (RGB values), normal vector direction, and even more additional values. The
point cloud representation allows for various processing operations, which forms the basics
of 3D computer vision. These operations include, among others, downsampling, filtering,
and normal estimation.

RGB image

Depth map RGB point cloud

Figure 2.3: Depth map, RGB image, and RGB point cloud captured using an RGB-D camera.

1The mathematical model is called Non-Uniform Rational Basis Spline (NURBS).

15

2 BASE RESEARCH 2.3 3D OBJECT RECOGNITION

Currently, three main approaches are used to acquire depth data for 3D computer
vision [5]. These are structured light, stereo vision (passive or active), and time of flight.
The choice depends mainly on the specifics of the application. However, the most widely
used depth sensors are based on structured light or active stereo vision. Both contain
standard camera chips and thus are more commonly called depth cameras or 3D cameras.
Moreover, both of them use a projection of patterns, which in the case of active stereo
vision makes it more robust, and in the case of structured light, is the very essence of
the method. Depth cameras that can capture point clouds and fuse them with color
information from standard images are also frequently called RGB-D cameras.

Generally, unlike 2D image frames, point clouds are innately disordered [4]. However,
a single point cloud frame acquired by a depth camera is typically ordered, similar to
a standard 2D image. Ordered point clouds can also be represented as a depth map,
an image where each pixel’s color encodes the depth information. The possibility of
representation through a 2D image implies that the data are, in fact, 2.5D and not entirely
3D. An example of a depth map, RGB image, and a point cloud of the same captured
scene using an RGB-D camera can be seen in Figure 2.3. The 2.5D nature of the data
means that any object in a single captured frame is represented only by a directly seen
portion of it, often referred to as the partial view.

Apart from obtaining point clouds via a depth sensor or camera, it is also possible to
simulate these sensors on an artificial scene using appropriate software. Another alterna-
tive would be to sample the surfaces of the 3D model with points. However, this does not
produce partial view point clouds without special point-discarding techniques.

2.3 3D object recognition

As stated in Section 2.1, the first step towards a solution is recognizing the object based on
depth data. Therefore, this section presents an overview of the approaches to 3D object
recognition. The main source of information for this section is the systematic review
of the literature on 3D object recognition and classification conducted by Carvalho and
Wangenheim [6].

Carvalho and Wangenheim analyzed works published between 2006 and 2016, includ-
ing only articles that describe techniques in their abstracts and compressed them into an
overview of 3D object recognition approaches. They subdivided the approaches by the
type of representation used for the recognition itself. The three most commonly used types
of representation were feature-based, model-based, and view-based. In their work, 68 % of
the reviewed works used a feature-based representation, compared to 8 % and 7 %, which
used a model-based representation and a view-based representation. Therefore, methods
that employ feature-based representation are possibly the most appropriate choice for the
solution in this thesis.

The subdivision of approaches by type of representation does not differ between hand-
made and learning-based methods. Learning-based methods are gaining more popularity,
especially for more complex scenarios. Such scenarios are usually heavily cluttered, and
thus mutual occlusion of objects occurs. In such scenarios, learning-based methods gen-
erally perform better than hand-made methods [7]. However, learning-based methods
require considerable high-quality training data, and acquiring and labeling such data can
be quite time-consuming. Therefore, hand-made methods should still be considered, es-
pecially for simpler scenarios where mutual occlusion of the objects is not expected.

16

2 BASE RESEARCH 2.3 3D OBJECT RECOGNITION

2.3.1 General pipeline

Regardless of the type of representation, the authors of [6] described a general pipeline
for 3D object detection based on their literature review. This pipeline can be seen in Fig-
ure 2.4, and its steps are briefly described below.

Data acquisition Preprocessing Similarity/Correspondence
calculation

Database

Object
identification/classification

Data representation

Figure 2.4: General pipeline for 3D object recognition and classification. Redrawn from [6].

The first step in the pipeline is data acquisition. In addition to self-obtaining actual
data, freely available datasets or synthetic data can also be utilized. The preprocessing
step usually contains multiple operations. These include filtering for noise removal and
better sampling, selecting the region of interest, segmenting to separate representations
of possible objects, and possibly normalizing the data. The data representation step then
utilizes a specified data representation to describe the input data. Next, the similari-
ty/correspondence calculation step compares the chosen data representation with object
representations from a database. Thus, the database must be generated in advance. Al-
ternatively, a trained classifier (using a neural network, deep learning model, or fuzzy
model) can replace the database and the similarity/correspondence calculation steps. Fi-
nally, the object identification/classification step chooses the best candidate based on
a specified metric.

2.3.2 Main feature-based representations

The feature-based representations for 3D object recognition can be mainly subdivided
into local and global features [6]. Some works combine both but are not considered in
this thesis to preserve a relevant level of simplicity. Every 3D object (or point cloud) has
features that can be utilized for its description, for example, shape, edges, or distribution
of normal vectors. Therefore, these features can form a description of an individual
object, called a descriptor. The descriptor is then used for comparison and search of the
corresponding object.

Local features are the most widely used feature-based representation [6]. The term
local feature means that it describes only part of the object. Thus, local descriptors
are computed in the neighborhood of a specified point of an object. Object recognition
methods using local descriptors can better differentiate between objects with similar over-
all shapes. However, the computation of such descriptors for all points representing the
entire object tends to be slow. Therefore, keypoint detectors are commonly used [8].
Then, every object can be described by a set of local descriptors. Due to the structure
of this description, sophisticated matching methods, such as a voting scheme, need to be
employed.

17

2 BASE RESEARCH 2.4 POSE ESTIMATION

Global features are the second most widely used feature-based representation [6]. The
term global feature implies that one description describes the entire object. Thus, object
recognition methods that use global descriptors are usually computed more efficiently
than local ones. However, global descriptors are not as discriminative and can pose
problems distinguishing two objects with only minor differences. The computation of
global descriptors on real data should be preceded by a segmentation of the scene, which
can be particularly difficult in more complex scenarios [8]. Because of a single description
of the whole object, the matching stage tends to be simpler and faster than in the case
of local descriptors.

2.3.3 Relevant datasets for the considered scenario

Multiple datasets are available for download online, especially for algorithm testing. The
type of dataset content ranges from 2D images over 3D models to point clouds acquired
by RGB-D cameras. Many of these datasets are mentioned in [6] and [7]2. However, most
of them are unsuitable for the considered scenario (see Section 2.1) since they are often
aimed at complex objects, occluded scenes, and textured objects. In contrast, industrial
objects (and especially their 3D models) commonly lack color/texture. Therefore, the
most relevant datasets contain relatively simple 3D models, which are usable in simula-
tions or could be 3D printed. Suitable datasets are the ABC dataset [9] and the DeepCAD
dataset [10]. An example of models from the DeepCAD dataset can be seen in Figure 2.5.
Both collections allow export to various file formats, including STEP and STL (see Sub-
section 2.2.1).

Figure 2.5: Example of objects from the DeepCAD dataset [10].

2.4 Pose estimation

As stated in Section 2.1, the second step towards a solution is the pose estimation of the
recognized object. Therefore, this section introduces the task, the general approach for
depth data, the problem of ambiguous views, and a method for evaluating pose estimates.

An object in a 3D space has six degrees of freedom, three translational and three
rotational. If the object has its local Coordinate System (CS) constructed, its relationship
to a reference CS can be described by a transformation matrix T (4× 4) [11]. Usually, the
camera CS is the reference CS. However, any known point and orientation in the space
can be chosen as the reference CS instead.

2Or can be found on related website https://bop.felk.cvut.cz/datasets/.

18

https://bop.felk.cvut.cz/datasets/

2 BASE RESEARCH 2.4 POSE ESTIMATION

The homogeneous transformation matrix is defined as

T =

[
R t
0 1

]
, (2.1)

where R (3× 3) is a rotation matrix, t (3× 1) is a translation vector and 0 (1× 3) is
a vector of zeros. Such a matrix converts data from one CS to another [12]. Thus, it
fully describes the pose of an object relative to the camera/reference CS. Furthermore,
multiple matrices can be chained together (and be inverse) to create additional CSs or to
manipulate data.

Pose estimation based on point clouds is called the 3D registration problem. In the
3D registration problem, one point cloud is labeled as the source and the other as the
target. Then, the solution deals with searching for a spatial transformation that aligns
the source data with the target data. An illustration of this problem can be seen in Figure
2.6.

Source point cloud
Registration

Target point cloud Registered point clouds

Transform

Figure 2.6: Illustration of 3D registration of two point clouds.

The most used methods for solving the 3D registration problem are iterative [4]. They
are based on the principle of minimization of the distances between points (or surfaces).
However, these methods can fall into local minima, resulting in a wrong alignment when
a poor initial guess is provided. Furthermore, iterative methods tend to be computation-
ally heavy. Because of these facts, a coarse-to-fine alignment approach is often employed.
The idea of this approach is to provide a decent initial guess (coarse alignment) for an
iterative method (fine alignment) to ideally reach global minima (accurate pose of an
object).

2.4.1 Ambiguous views and pose estimate evaluation

Symmetries characterize many, even non-industrial, objects. Unfortunately, this prop-
erty poses a problem within the estimation of poses due to the existence of ambiguous
views [13]. Moreover, a potentially considerable number of these views can be present
when a single fixed depth sensor (or standard camera) is used because of self-occlusion.
Illustrations of self-occlusion and symmetric parts can be seen in Figure 2.7. The most un-

19

2 BASE RESEARCH 2.5 LIBRARIES FOR 3D PROCESSING

derstandable example of self-occlusion is possibly a cup, where from a considerable range
of viewpoints, the exact pose of the cup cannot be identified, as from these viewpoints,
the handle, which determines the pose of the cup, cannot be seen. The descriptions com-
puted on partial views from these viewpoints would be identical, thus possibly resulting
in a significant pose error in rotation. This error should always be considered, especially
in the end applications which involve gripping the object.

Self-occlusion Symmetric objects

30 deg -30 deg

Model
&

axes

Figure 2.7: Illustrations of self-occlusion on a cup model and symmetric parts.

The pose estimate can only be evaluated when the ground truth pose is known. This
condition is met only in the case of algorithm testing, either in a real-measured scene
or in a simulation. One of the simplest and most common pose error functions is the
translation and rotational error [13]. Let Pest = (Rest, test) be the estimated pose, and
let Pgt = (Rgt, tgt) be the ground truth. Then the translation error is

εtrans(test, tgt) = ∥tgt − test∥2, (2.2)

and rotation error is

εrot(Rest,Rgt) = arccos

(
Tr(RgtR

⊺
est) − 1

2

)
, (2.3)

where t is the translation vector, R is the rotation matrix, and Tr is the sum of elements
on the main diagonal (trace) of a matrix. The translation error is a simple distance
(L2 norm) in the 3D space. The rotation error expresses an angle specified by an axis-angle
representation of rotation. This angle is the smallest angle that alignsRest withRgt, which
ranges from zero to π rad [14]. The axis-angle rotation representation also specifies an axis
that can be obtained (in the form of a vector) but is not needed for rotational accuracy
evaluation. These errors do not assume ambiguous views, which may be considered when
evaluating pose estimates on data that were taken from a single depth camera.

2.5 Available libraries for depth data processing

Several open-source libraries are available for 3D data processing. This section briefly
explores the three most appropriate for use in the solution.

20

2 BASE RESEARCH 2.6 MAIN CONCLUSIONS

OpenCV is the most well-known library for computer vision. Its main aim is 2D com-
puter vision, but it also includes a few modules for depth data processing. However, there
are only a handful of options for working with point clouds, and several basic functions are
not implemented. This could be changed in the future due to the increasing popularity
of 3D computer vision. Although its primary programming language is C++, wrappers
to other languages like Python and Java are also available. [15]

Open3D is a newer (2018) library aiming at 3D computer vision. Although it has ex-
cellent documentation and implements all basic and numerous registration functions, it
does not feature many functions relevant to object recognition. This library supports
C++ and Python programming languages. [16]

Point Cloud Library (PCL) is a large-scale library for point cloud and 3D model pro-
cessing. It has many modules, including filtering, feature estimation, key point search,
registration, segmentation, recognition, and more. Many state-of-the-art methods are im-
plemented in these modules, making PCL the best choice for developing applications based
on depth data, especially point clouds. Furthermore, its Tools module enables the user to
perform file conversions, virtual scanning, visualizations, and many more, directly from
the command line. This library officially supports only the C++ programming language,
as there are currently no official wrappers for other programming languages. [17]

2.6 Main conclusions of the chapter

At the end of this chapter, it is appropriate to draw a few conclusions to narrow the
objectives for the subsequent chapters. The conclusions are as follows.

• Section 2.3 provided an overview of 3D object recognition approaches and suggested
that the most suitable approach is to use methods using feature-based representa-
tions. Moreover, because of the simplicity of the scene and the solution, learning-
based approaches can be omitted in favor of hand-made ones.

• Section 2.4 introduced the 3D registration problem related to pose estimation and
suggested the coarse-to-fine alignment approach to estimate the pose of an object
efficiently. It also defined metrics to evaluate the accuracy of the pose estimation,
revealing its possible deficiencies due to ambiguous views caused by symmetries and
self-occlusions.

• Section 2.5 specified the PCL as the most suitable choice of the depth data processing
library. This choice is made due to the alternative libraries not providing such a wide
selection of state-of-the-art methods, especially for 3D object recognition. This also
implies that the solution will be written in C++ language.

21

3 Algorithm research

This chapter builds on the previous one and, among others, provides a detailed view
of the whole algorithm. First, Section 3.1 introduces and assesses related work. Subsec-
tion 3.1.4 is especially important, as it shows a specific pipeline, which serves as a template
for the entire solution and even the rest of this chapter. The following sections describe
the individual parts of this pipeline, which are divided into offline and online stages. Sec-
tion 3.2 introduces common steps in both stages. Section 3.3 describes specifically selected
feature descriptors. Sections 3.4 and 3.5 provide an explanation of the steps in the offline
and online stages, respectively. Finally, Section 3.6 mentions PCL dependencies that are
significant for the implementation of the solution.

3.1 Related work

The papers mentioned in the following sections are the most relevant to the specific sce-
nario (see Section 2.1) while keeping in mind the main conclusions from the previous chap-
ter (see Section 2.6). Thus, the focus is on feature-based 3D object recognition methods
and the coarse-to-fine approach to pose estimation while omitting learning-based methods
to avoid manual data labeling. This section is structured as follows. First, the PCL ob-
ject recognition and pose estimation pipelines are briefly described to understand other
related work. Then, related comparison works are summarized. Subsequently, other rel-
evant related works are also mentioned. Finally, the current state is assessed, and the
pipeline is extracted based on the mentioned related works.

3.1.1 Point Cloud Library recognition pipelines

This subsection describes the pipelines presented in [8] because they are a great example of
a 3D object recognition and pose estimation pipelines that use hand-made feature-based
representations. Moreover, they also utilize a coarse-to-fine approach to pose estimation,
and the whole work considers implementation using the PCL. Therefore, it is the ideal
template for the reader to create a picture of the possible solution, which is then modified
by related work in the following subsections.

Aldoma et al. [8] presented two recognition pipelines and implied their implementation
using the PCL. The pipelines deal with 3D object recognition and pose estimation while
assuming CAD models or 3D meshes as object references. One pipeline is aimed at local
descriptors and the other at global descriptors (see Subsection 2.3.2 for basic information
on descriptors). These pipelines follow similar steps as shown in Subsection 2.4. Thus,
both consist of offline and online stages. First, an object description database is created
based on its reference models in the offline stage. Then, in the online stage, the description
of the scene is matched with the description from the database. However, specific steps
vary between the two pipelines, as shown in Figure 3.1.

22

3 ALGORITHM RESEARCH 3.1 RELATED WORK

Key point
extraction Description Matching Correspondence

grouping
Absolute

orientation
ICP

refinement
Hypothesis
verification

Segmentation Description Matching Alignment

PCL global recognition pipeline

PCL local recognition pipeline

Figure 3.1: Point Cloud Library recognition pipelines. Redrawn from [8].

The creation of a database (offline stage) described in [8] involves using a virtual cam-
era placed at 80 positions around the mesh model to generate partial view point clouds
of the objects. Such positions are defined using a subdivided icosahedron, which leads
to uniformly placed positions on a sphere of defined radius. Then, on the generated par-
tial views, chosen descriptors are computed, and the results are saved into the database
together with transformations between the virtual camera CS and the object CS. Gen-
erating partial views is necessary for global descriptors, as they are computed based on
all provided points. On the other hand, creating a database based on the full sampled
model is possible when using local descriptors. Such a point cloud can also be created by
joining partial views and resampling overlapping points [18].

The first step in the local recognition pipeline is key point extraction, where each key
point must be both repeatable and distinctive. Then, at each key point, the chosen lo-
cal descriptor is computed. Next, in the matching step, each scene descriptor is matched
against all descriptors in the database to find correspondences. Thereafter, the correspon-
dences per object are grouped based on geometric consistency. Finally, the clusters are
reduced by applying the RAndom SAmple Consensus (RANSAC) algorithm, discarding
those not of the same pose.

The first step in the global recognition pipeline is to segment the scene point cloud to
retain only points related to the object. This step could also enhance the local recognition
pipeline, although it is not mandatory for simple scenes. Then a global descriptor is
computed, which usually results in a histogram (or, in some cases, multiple histograms).
The histogram is then compared with the database using Nearest-Neighbors Search (NNS)
in the matching stage. Due to the global descriptors being often invariant to camera roll
angle, an additional descriptor named the Camera Roll Histogram (CRH) can also be
used to get a more accurate initial pose estimate.

The estimated pose from both pipelines could be categorized as a coarse alignment.
Thus, two more steps are employed to improve the results. First, the pose refinement (fine
alignment) can be done using the Iterative Closest Point (ICP) algorithm, as the coarse
alignment should provide a reasonable initial guess for it to converge correctly. Then,
in the second additional step, the hypothesis verification algorithm evaluates the finely
aligned result based on inlier and outlier points based on reference. This step addresses
the need for discarding false positives and possibly results in a correctly recognized object
and its accurate pose. Hypothesis verification also enables the evaluation of more than
one result candidate, although the tradeoff is a longer computation time.

23

3 ALGORITHM RESEARCH 3.1 RELATED WORK

3.1.2 Relevant comparison works

Han et al. [19] reviewed 3D point cloud descriptors, including global, local, and hy-
brid variants. First, the authors described various available descriptors and summarized
their main characteristics in a table. Then, they conducted several experiments using
13 selected descriptors, eight of which were local and five global. A dataset was used
as input data, where each frame contained only one object and no clutter. Four global
descriptors outperformed all selected local descriptors based on the recognition accuracy
results. These four global descriptors were (from best to worst): Ensemble of Shape
Functions (ESF), Viewpoint Feature Histogram (VFH), Oriented Unique and Repeatable
Clustered Viewpoint Feature Histogram (OUR-CVFH), and Clustered Viewpoint Feature
Histogram (CVFH). Moreover, the authors suggested that these descriptors are suitable
for real-time object recognition applications.

Himri et al. [20] surveyed global descriptors for 3D object recognition in an underwater
environment. The authors chose global descriptors over local descriptors because of their
(generally lower) computational cost. They conducted real and simulated experiments
using seven different global descriptors on a simple scene with one object in it and without
clutter. The descriptor database was created based on only 12 views of each object.
From the results, the best-performing descriptors were CVFH and OUR-CVFH, while
the Global Orthographic Object Descriptor (GOOD) performed best on noisy data. The
authors note that the database and the scene should have the same resolution for the best
recognition rate.

Li et al. [21] evaluated two main variants of ICP: point-to-point and point-to-plane.
The authors performed experiments to assess the validity, robustness, precision, and effi-
ciency. Point-to-point ICP was more valid and robust in most cases based on the results
of the experiments. However, when Gaussian noise was present, the point-to-plane ICP
was more robust and accurate, while also significantly fewer iterations were needed to
converge.

The considered scenario is similar to a more known bin-picking scenario. However,
there is no conveyor belt or considerable gap between parts in such a scenario. Instead, all
parts are randomly stacked in a bin, cluttering the scene. This type of scene then requires
more complex processing due to the amount of clutter and occlusion. Recent works
dealing with the bin-picking scenario in a non-learning-based manner [22, 23, 24, 25]
utilize the Point Pair Feature (PPF) method [26] or its enhanced versions. Although
the PPF method is arguably the best hand-made method for bin-picking and 3D object
recognition in complex scenes [27, 7], it may be unnecessarily complex for a simple scenario
as the one considered in this thesis.

3.1.3 Other relevant works

Li et al. [28] investigated 3D object recognition and pose estimation for a random bin-
picking scenario. The authors dealt with this task using global descriptors. They used
the VFH descriptor for recognition and coarse pose estimate, refined the pose estimate
using ICP, and finally verified the hypothesis. The authors also sufficiently described the
entire procedure, from database creation to post-processing.

Liang and Cheng [29] dealt with RGB-D camera-based 3D pose estimation of parts and
the grasping of these parts. They utilized a coarse-to-fine approach using the VFH descrip-
tor for the initial pose estimate and the ICP algorithm for pose refinement. The approach

24

3 ALGORITHM RESEARCH 3.1 RELATED WORK

was based on the evaluation of multiple candidates and employed an offset removal pro-
cedure to improve the use of VFH. The authors also conducted a real-life experiment
on a scene with a known object sitting on a table, which according to their results, had
a high success rate. Thus, based on their experiment, using the global descriptor method
for such a task proved to be an effective choice.

Hu et al. [30] investigated a fast pose estimation of shell parts in a robotic assembly
scenario. The challenge of estimating the pose of shell parts lies in the similarity of the
inner and outer shapes of the part. The authors dealt with pose estimation using a coarse-
to-fine approach. The initial (coarse) pose was estimated using a Principal Component
Analysis (PCA) algorithm and an image template matching strategy for symmetric ob-
jects. Furthermore, an additional initial pose correction strategy and translational offset
were also used to avoid local minima when refining the pose estimate. The refinement
step itself used a weighted point-to-plane ICP algorithm. Overall, this approach resulted
in an accurate and reasonably fast pose estimation of the shell parts.

3.1.4 Assessment of current state

Based on the work mentioned above in this chapter, the most appropriate approach to
solving the problem, introduced in Section 2.1, is to use global descriptors for object
recognition and coarse pose estimation and a point-to-plane ICP algorithm for pose re-
finement, mainly due to the simplicity of the considered scenario. Furthermore, the
best-suited global descriptors to use are VFH, CVFH, OUR-CVFH, ESF, and GOOD.
Except for GOOD, all other mentioned descriptors are implemented in the PCL itself [17].
However, the GOOD has source code available online [31].

Based on the work mentioned above, the pipeline for 3D object recognition and pose
estimation in Figure 3.2 was extracted. It assumes 3D models as the only source reference
for possible objects and the use of global descriptors. All individual steps are described
in detail in the remainder of this chapter.

 For each partial view

Filtering MatchingScene point cloud

Generate
partial view
point clouds

3D
models Downsample

Descriptor
& model ID

Compute descriptor

Downsample

Compute
descriptorSegmentation

Normal estimation

Hypothesis
verification

Pose
refinement

Normal
estimation

Recognized model
&

Pose estimate

Offline stage

Online stage

Transformation
& point cloud

Coarse
alignment

Database

Figure 3.2: Detailed global pipeline based on related work.

25

3 ALGORITHM RESEARCH 3.2 COMMON STEPS

3.2 Common steps for both stages

The offline and online steps of the pipeline (see Figure 3.2) share common steps. These
are the downsample and the normal estimation. The first mentioned lowers the density of
a given point cloud, making subsequent operations more efficient. The second estimates
the normal vector of each point in the given point cloud, which many descriptors and
alignment methods require. These operations are described in more detail below.

3.2.1 Downsampling

Downsampling primarily reduces the point count in a given point cloud. Reducing the
number of points is essential when dealing with point clouds acquired using depth cam-
eras/sensors. Such point clouds usually have hundreds of thousands of points per capture
frame, which can lead to computationally heavy processing when considering all the cap-
tured data. Moreover, downsampling simultaneously suppresses details and thus can serve
as a noise filter.

Downsampled 0.5 voxel size
377 points

Downsampled 0.3 voxel size
1032 points

Input point cloud
6561 points

Figure 3.3: Example of point cloud downsampling using a voxel grid. The units of the voxel size
values are relative to the point cloud CS units.

The most widely used method for downsampling is using a voxel grid [4]. A voxel
can be defined as a cube of fixed dimensions in a 3D space. Thus, a voxel grid is a grid
of 3D cubes of defined size. Individual voxels are sometimes also referred to as cells.
Downsampling represents all points in a cell by (usually) a single point. There are three
main approaches to specifying the coordinates of the point representing the cell: random
selection, selecting the center of the cell, and computing the centroid of all points inside
the cell. The basic implementation of the voxel grid in the PCL uses the centroid approach
because of its more accurate surface representation [17]. However, it is slightly slower than
the other two methods. When using a voxel grid as a noise filter, the voxel size should
be appropriately selected to suppress artifacts, such as multiple layers representing the
surface. For an illustration of point cloud downsampling using a voxel grid, see Figure 3.3.

3.2.2 Normal estimation

Many global descriptors and some variants of the ICP algorithm utilize point clouds with
normals. However, such information is usually not present in raw point clouds acquired
by a depth camera/sensor and thus must be estimated. This estimation is commonly used

26

3 ALGORITHM RESEARCH 3.3 SELECTED GLOBAL DESCRIPTORS

for each point in the input point cloud by fitting a plane to the neighborhood points [4].
The neighbor points are defined by a fixed radius or k nearest points around the primary
point. In the PCL, the basic implementation is based on the least-squares plane fitting
and viewpoint location [17]. Thus, incorrectly oriented normals are flipped toward the
viewpoint. Moreover, a parallelized version of normal estimation is available in the PCL,
significantly reducing computation time. Generally, a normal estimation based on dense
point clouds tends to be more accurate but at the price of a longer computation time.
Thus, it can make more sense to downsample the point cloud in advance and set the
radius for normal estimation accordingly. For an illustration of a normal estimation,
see Figure 3.4.

Normal estimation

Point cloud
with normals

Point cloud

Figure 3.4: Example of input and output of point cloud normal estimation. Black lines represent
the normal vectors of each point.

3.3 Selected global descriptors

Point cloud descriptors and their matching form the core of the 3D object recognition
and pose estimation pipeline. The choice of a descriptor determines the robustness and
speed of object recognition itself. In this section, the principles of the five specific global
descriptors, which were selected based on related work (see Section 3.1), are briefly de-
scribed. A point cloud is sometimes referred to as a cluster, especially where it represents
a partial view of an object.

3.3.1 Viewpoint Feature Histogram and improved variants

Before diving into the Viewpoint Feature Histogram (VFH) description, the local descrip-
tor, Fast Point Feature Histogram (FPFH), which the VFH internally utilizes, must first
be introduced. FPFH describes three relative angles between the normal vectors of a pair
of points. These pairs of points are defined between a selected point and its k nearest
neighbors [8]. The results for all possible point pairs are then binned into a histogram,
which forms the FPFH.

Furthermore, an additional extension is part of the PCL implementation of the VFH
and dependent variants, which is named the Shape Distribution Component (SDC) [32].
The SDC encodes the distribution of points in the cluster related to its centroid. This
should help to differentiate between objects with similar characteristics.

Viewpoint Feature Histogram (VFH) proposed in [33] consists of two components,
one representing the viewpoint direction and the other representing the surface shape.
The viewpoint component is computed as follows. First, the centroid of the cluster is

27

3 ALGORITHM RESEARCH 3.3 SELECTED GLOBAL DESCRIPTORS

computed. Subsequently, a vector originating from the point of view and terminating
at the centroid point is constructed. Then, this vector is normalized and translated to
each cluster point. Next, the relative angle between the said vector and the normal
vector of each point is computed. The results are then binned into a histogram. The
surface shape component computes the FPFH for the centroid point, while the points
considered for point pairs are extended to the whole cluster. These results are also binned
into a histogram. Implementation of this descriptor in the PCL defaults to 308 bins.
Where 128 bins belong to the viewpoint direction component, 135 to the surface shape
component, and the remaining 45 bins are used for the SDC as mentioned at the beginning
of this section [32]. As mentioned in [19], the VFH is computationally efficient. However,
it is sensitive to noise and occlusion and is invariant to camera roll.

Clustered Viewpoint Feature Histogram (CVFH) proposed in [34], is based on
the VFH, while the main objective was to make the descriptor more robust to occlusion.
It adds region-growing segmentation to subdivide the cluster into stable and smooth re-
gions. The VFH is then computed on each sub-cluster. Thus, using this descriptor results
in multiple histograms per object. Capabilities under occlusion are improved, but at the
cost of longer computation, while the camera roll invariance remains.

Oriented, Unique, and Repeatable CVFH (OUR-CVFH) proposed in [35],
enhances the CVFH descriptor by adding a unique reference frame. After the segmenta-
tion of CVFH, another filter is applied to form better-shaped regions using the difference
between the sub-cluster normals orientation and their average. After such filtering, the
Semi-Global Unique Reference Frame (SGURF) is computed, which constructs the ref-
erence frame. This repeatable reference frame should solve the camera roll invariance,
making the descriptor more robust.

3.3.2 Ensemble of Shape Functions

The Ensemble of Shape Functions (ESF), proposed in [36], describes the cluster based on
shapes and does not need information about normal vectors. Only segmentation is needed
to compute the ESF, as it constructs its voxel grid approximation internally. Then, it
randomly selects three points and computes three different shape functions. This process
is repeated until all points in the cluster are iterated over. The results are then binned
into a histogram of 640 bins. Due to the specific description, it is robust to incomplete
surfaces.

3.3.3 Global Orthographic Object Descriptor

The Global Orthographic Object Descriptor (GOOD), proposed in [37, 38] also does not
require information about normal vectors. It uses PCA to determine the principal axes of
the cluster. Then the cluster points are projected onto three orthographic planes based on
the principal axes. The description then represents the distribution of points on planes
subdivided into several bins. The number of binds in the resulting histogram is only
75 bins, making it the most memory-efficient selected global descriptor. It should be
robust to noise and density variance between cluster and database.

28

3 ALGORITHM RESEARCH 3.4 OFFLINE STAGE

3.4 Offline stage

First, a database must be created for 3D object recognition using global descriptors.
Moreover, due to the nature of global descriptors, the database must be based on partial
view point clouds of objects. This method is referred to as a template-based method.
In the considered scenario, the partial views are meant to be acquired exclusively using
a virtual camera/scanner and a 3D model of the objects. Then, for each partial view,
the chosen global descriptor is computed. Due to the virtual scanning approach, the
transformation from virtual camera CS to object CS can be easily obtained, and the
partial view point cloud is accurate. Thus, the computed description, transformation
matrix, and model identifier are saved to the database.

A common way to create the database using a virtual camera is to place it on the
vertices or centers of the faces of a subdivided icosahedron. This 3D shape ensures uni-
formly distributed points in the 3D space around its defined center point. Part of the
PCL Tools module is a command line tool Virtual Scanner does exactly that [39]. The
virtual scanning in this tool takes a mesh model as an input and, via ray casting, samples
points on the mesh surface. Furthermore, the PCL has its own file format called Point
Cloud Data (PCD), which allows the saving of both point clouds and computed global
descriptors (histograms) [40]. Therefore, files of this file format can be utilized as part
of the database.

3.5 Online stage

The main steps of the online stage include matching, coarse pose estimation, pose re-
finement, and hypothesis verification. However, preparing the depth camera/sensor data
accordingly (preprocessing them) is essential to make the whole pipeline work efficiently
and correctly. This typically includes filtering, downsampling, and segmenting the input
scene point cloud.

3.5.1 Filtering

Filtering in this subsection depicts operations that discard unwanted points of a point
cloud, leading to faster processing and improved data representation accuracy. It can
be divided into two types: discarding points based on coordinates and discarding points
based on their neighborhood. The most basic filters are also the fastest and, thus, are the
most relevant for the considered scenario.

The two most basic filters for discarding points based on their coordinates are the
passthrough filter and conditional removal [41]. The passthrough filter points out a spec-
ified range along the Z-axis, the same axis used for depth value by depth cameras. Con-
ditional removal does the exact thing but for all three axes. These filters are especially
useful for processing point clouds acquired by depth cameras because the Region Of In-
terest (ROI) is usually not identical to the whole captured data.

The most basic filter to discard points based on neighborhood is outlier removal [41].
Outliers are points that do not truly represent any surface or relevant information. They
are commonly produced by noise, insufficient segmentation, insufficient filtering, or ar-
tifacts (for example, caused by reflective surfaces). Outliers may induce errors in many
operations, including description and pose estimation. Radial outlier removal discards
points based on the minimal number of neighboring points in a defined radius. Statisti-
cal outlier removal has a similar effect but removes the outliers based on statistical data

29

3 ALGORITHM RESEARCH 3.5 ONLINE STAGE

about each point rather than just the minimal number of points in a specified radius.

3.5.2 Segmentation

Due to the simplicity of the considered scenario and the possible use of the conditional
removal filter to define the ROI, the only additional segmentation needed to process the
captured scene is the removal of the dominant plane (supporting surface). Using PCL,
this could be done using the RANSAC algorithm with a plane model [42]. RANSAC is
a fitting algorithm that fits the specified parametric model to the given data. Moreover,
a distance threshold is specified to identify inlier and outlier points based on the fitted
model. After successfully fitting the plane model to the scene, the inlier points can be
discarded, removing the points representing the supporting surface.

3.5.3 Matching

The matching step is essential for descriptor-based object recognition. It consists of
searching for similar computed descriptors in the database created in the offline stage. All
selected global descriptors (see Section 3.3) are represented by a histogram of a specific
number of bins. The most common algorithm for searching similar histograms is the
Nearest-Neighbors Search (NNS), specifically the k-NNS variant.

The k-NNS is used to find the k number of the most similar histograms while using
selected metrics. The metric choice should depend on the descriptor’s specifics and the
specific application characteristics. The implementation of k-NNS in the PCL uses Fast
Library for Approximate Nearest Neighbors (FLANN), which is highly computationally
efficient [40]. Therefore, it is suitable for use in real-time applications. The output of this
search is the k number of the most similar descriptions, their index, and the resulting
distances of the chosen metric. The k number of recognition candidates is then evaluated
in the following steps.

3.5.4 Coarse alignment

Due to the matching step retrieving an index of the candidates in the database, it is
possible to obtain all the data from it for each candidate for it to be evaluated. These
include a transformation matrix, a partial view point cloud, and the object identifier.
Thus, the initial coarse pose estimation can be done solely by matching and retrieving
database data. However, this initial estimate is often too coarse. Therefore, additional
correction methods should be employed for translation and even rotation. The purpose of
coarse alignment is to provide a reasonable initial guess for the subsequent use of iterative
pose refinement methods (in the next subsection).

The additional translational correction can be made by computing the centroids of the
filtered and segmented scene point cloud and the point cloud of the partial view of the
candidate. The candidate point cloud can be translated to the scene point cloud based
on the coordinate difference of the centroids, and this transformation can be added to the
candidate coarse pose estimate. An alternative to this is a computation of 3D bounding
boxes for both point clouds and using their centers instead of the centroids. The first-
mentioned method should be more robust because it is less susceptible to errors caused
by outliers.

Additional rotational correction can be done via PCA, which fits an ellipsoid into
a point cloud. The components of this ellipsoid can then be used to construct the principal
axes. However, this method is not ideal because it can lead to a wrong (flipped by

30

3 ALGORITHM RESEARCH 3.5 ONLINE STAGE

180 degrees) initial guess, possibly leading to local minima in the pose refinement step.
Alternatively, the Camera Roll Histogram (CRH) descriptor proposed in [34] can be used
to at least correct rotation along the Z-axis. After computing this descriptor for both
point clouds, it can provide a possible relative angle between the two representations
based on the phase shift of the histograms.

3.5.5 Pose refinement

The pose refinement step ensures the accuracy of the estimated pose and allows for the
hypothesis verification step. The algorithm most widely used for this task is the ICP algo-
rithm and its variations [4]. It consists of finding an optimal rigid transformation between
two point clouds, one labeled as the source and the other as the target. However, because
it is an optimization-based algorithm, it can fall into local minima, leading to a wrong
pose estimate. Therefore, a reasonable initial guess must be made to obtain an accurate
result. Even with a good initial guess provided by coarse alignment, the pose refinement
step requires considerable computation time. Thus, appropriate termination criteria must
be chosen for the solution to be efficient. There are mainly two variants of the ICP: point-
to-point and point-to-plane. The optimization methods often used for ICP are the Least
Squares or Singular Value Decomposition.

The point-to-point ICP algorithm is the most basic variant. In every iteration, two
steps are performed. Firstly, point correspondences are found using NNS, and then the
rigid transformation is estimated. After each iteration, the transformation is evaluated
by the sum of the distances between the correspondences.

The point-to-plane ICP algorithm differs from the point-to-point by incorporating in-
formation about the normal vector of the points from one of the point clouds to compute
the rigid transformation. As a result, this version converges faster while also being more
accurate and robust in the presence of noise (as mentioned in Subsection 3.1.2). Addi-
tionally, the symmetric objective function proposed in [43] may be used, incorporating
information on the normal vectors of both point clouds, further improving the computa-
tional efficiency.

3.5.6 Hypothesis verification

Hypothesis verification serves to select the best candidate produced by the pipeline. One
of the simplest hypothesis verification methods, greedy hypothesis verification, was pro-
posed in [35]. It accepts scene and model point clouds and computes the number of inlier
and outlier points based on the distance of model points to the nearest scene point. More-
over, occlusion reasoning is included to consider only the possibly visible points based on
input view point coordinates. Then, a simple metric is computed for each candidate,
where a weighted number of inlier points is subtracted from the number of outlier points.
Additionally, a threshold can be set for this metric to discard false positives.

31

3 ALGORITHM RESEARCH 3.6 KEY PCL DEPENDENCIES

3.6 Key PCL dependencies

The PCL has several mandatory and few optional dependencies [40]. Four of these are
essential to know about due to the implementation of the solution later in this thesis.
These are the Boost, OpenNI2, Eigen, and Visualization ToolKit (VTK).

Boost is a collection of free peer-reviewed portable C++ source libraries. It offers a wide
range of functionality commonly preceding the implementation of the same functionality
in the C++ standard library. [44]

OpenNI2 library, which provides support for various depth cameras and sensors. De-
signed for interaction without the need to utilize proprietary libraries from manufacturers
directly. [45]

Eigen library for linear algebra, especially vector and matrix operations. It contains
handy classes for transformations and their manipulation. It also enables conversions
between rotation representations, including axis-angle representation. [46]

Visualization ToolKit (VTK) library that is extensively used in the PCL, especially
for processing standard 3D data formats (like STL) and also for visualization. Provides
a wide variety of functions for mesh processing, including transformations. [47]

32

4 Solution draft

The problem to be solved is the 3D object recognition and pose estimation, where 3D mod-
els are the only references to the possible objects. First, in Chapter 2, the problem was
described, assessed, and the solution methods were narrowed, including the choice of
the main library for 3D data processing. The solution methods were narrowed to use
hand-made feature-based representations for 3D object recognition and a coarse-to-fine
approach to pose estimation. Then, in Chapter 3, related work was assessed, further spec-
ifying the methods for the solution, mainly to the use of global descriptors. This choice
was made in the Subsection 3.1.4. For the diagram of the global pipeline based on related
work, see Figure 3.2. The individual parts of this pipeline were then described, providing
an overview of the entire algorithm for the solution. Thus, the previous chapters already
provide the algorithm to solve the problem.

As the sequence of steps appears to be reasonable, the algorithm itself is not to be
improved in this thesis. However, a packaged solution that encapsulates such an algo-
rithm and the specifics of the considered scenario and enables easy testing and diagnosis
to ensure recognition and pose estimation capabilities on a given set of 3D models is cur-
rently not widely available. These ideas then form the solution proposed in this chapter.
Thus, this chapter serves as a draft for implementing the solution without implementation
details. First, the required features of the solution are defined. Then the architecture of
the solution is proposed, together with a description of its individual parts and intended
usage. Finally, an approach for validation of the solution is also proposed.

4.1 Required features

The required features come primarily from the logical reasoning of the considered scenario
(described in Section 2.1). The main aim of the solution created in this thesis is to provide
a tool that can be easily implemented into other applications while being extensively con-
figurable, providing an easy way of testing its functionality on a specific set of 3D models
and enabling the user to diagnose and troubleshoot the solution. Furthermore, this tool
should also be expandable for adding different pipelines (e.g., local descriptors).

Thus, to itemize the ideas above, the solution should:

• be modular,

• be relatively easy to use and implement in applications,

• be extensively configurable,

• use a 3D model of the objects as the only reference,

• enable easy testing, diagnostic, and troubleshooting.

33

4 SOLUTION DRAFT 4.2 ARCHITECTURE PROPOSAL

4.2 Architecture proposal

Based on the required features (see Section 4.1), it was decided that the solution should
contain three main modules: the Utilities module, the Dataset preparation module, and
the Global pipeline module (containing offline and online steps). The combination of
these modules then forms the solution. Furthermore, to simplify the usage of the resulting
solution in potential applications, the entire solution will be encapsulated by a wrapper,
providing an easy interface for its use. The structure of the entire solution can be seen
in Figure 4.1. The remainder of this section describes the purpose of each module in
detail.

Global pipeline module

Dataset preparation module

Utilities module Solution wrapper

(Future pipeline module)

Figure 4.1: The structure of the proposed solution, arrows indicate dependency.

4.2.1 Utilities module

The Utilities module should serve as a multipurpose module that is used by the other
modules. Thus, providing access to data in the database and containing other operations
that may be used across modules to prevent code duplication. Moreover, it should also
contain functionality to evaluate recognition and pose estimation accuracy based on given
ground truth information. The metrics to evaluate pose estimation accuracy should be
based on the error functions mentioned in Subsection 2.4.1. The module should also
support the export and visualization of all relevant information to use for additional
evaluation, diagnostic, and troubleshooting purposes.

4.2.2 Dataset preparation module

The Dataset preparation module is made independent to meet the condition of expand-
ability for other potential pipelines. Its purpose is to prepare the partial view point
clouds of the input 3D models. These point clouds can then be fed into the offline stage
(database creation) of the chosen pipeline. The partial view point clouds of the 3D model
should be generated using a virtual depth camera. Furthermore, the viewpoints of the
virtual depth camera should be uniformly placed around the 3D model, thus employing
the icosahedral technique to generate viewpoints mentioned in both Sections 3.1 and 3.4.
Moreover, parameters for creating a dataset and other relevant information should be
saved in a human-readable database to be easily overviewed.

Additionally, the dataset preparation module should also provide the functionality of
generating datasets that will be used to test the capabilities of the whole solution. For
this purpose, the virtual depth camera should be able to simulate the noise of the real
depth camera. The ability to generate data for experiments enables the possibility of
automated testing of the solution with a specific set of parameters and objects.

34

4 SOLUTION DRAFT 4.3 VALIDATION OF THE SOLUTION

4.2.3 Global pipeline module

The Global pipeline module should contain the detailed global pipeline described in Chap-
ter 3, which is based on related work (see Section 3.1), apart from the generation of the
partial views. From the usability standpoint, this pipeline should be further subdivided.
The offline and online stages should be divided because the offline stage must be executed
only once per given configuration. Moreover, the online stage should be subdivided into
initialization and iteration steps. This is similar to separating offline and online stages
because the online stage must be initialized only before the first iteration step, which
can then be used indefinitely while only providing input scene point cloud data for each
iteration. Therefore, it should be designed for possible depth camera data feed usage.
The module should enable easy troubleshooting and diagnosis of each step. Thus the
result data should be optionally exported according to the configuration for additional
evaluation or for use in an application.

4.2.4 Usage

3D models Dataset preparation

Result

Initialize online stage

Run online stageInput point cloud

Offline stage

Global descriptor pipeline

Figure 4.2: Illustration of the usage of the proposed solution.

The illustration of the intended usage of the solution is in Figure 4.2, which forms
the solution pipeline. As can be seen in the diagram, each iteration of the online stage
outputs a result. As a result, all relevant information about the recognized model and
its pose estimate is meant, as well as additional data that can be used for diagnostic and
troubleshooting. An example of such data is information about all 3D object recogni-
tion/pose estimation candidates. The amount of additional data should be an option in
the configuration. All the parts of the solution pipeline should be encapsulated by the
solution wrapper, providing an easy interface for using the solution.

4.3 Validation of the solution

The proposed solution should be validated in several experiments evaluating object recog-
nition and pose estimation capabilities. The solution testing functionality should be pro-
vided by the Utilities module, as mentioned above, while having an easy interface in the
solution wrapper as it is part of the requirements. The test experiments should include
tests on virtual data generated by the Dataset preparation module and tests on data
captured by a real depth camera.

35

5 Implementation

This chapter describes the implementation details of the solution proposed in Chapter 4.
First, information and reasoning on the selected tools and algorithms is provided. Then,
the hardware (HW) and software (SW) used are listed. Subsequently, the implementation
of each module is described. Moreover, the source code, which is part of the attachments,
is sufficiently commented on and understandable to make the implementation even clearer.
Thereafter, this chapter, together with the attached source code (see Appendix A), serves
as the documentation of the solution. Additional extended information is available in Ap-
pendix C.

5.1 Tools and algorithms

As mentioned in Section 2.6, the Point Cloud Library (PCL) [48] is used for the im-
plementation of the solution due to alternative libraries not including functionality and
state-of-the-art methods relevant to the problem. Furthermore, this choice requires the so-
lution to be programmed using the C++ language, which requires a considerable amount
of experience to work with. To ensure that the created solution would be available to
a wider audience, it was decided to bind the resulting C++ solution wrapper to a Python
module using Pybind11 [49]. This allows the end users to use the solution wrapper via
Python, which is currently considered to be one of the most popular approachable pro-
gramming languages.

It was decided not to use complex database systems to simplify the solution and instead
to use JavaScript Object Notation (JSON) files and logical folder structures. Such files
provide a solid compromise between parsing data for the computer and human readability.
However, because the C++ standard library does not support this file format, the open-
source library [50] is used instead. On the other hand, the Python standard library
contains module for JSON parsing and thus does not require additional packages. Using
such a universal data format gives the user high flexibility for data processing.

Other dependencies than those above include only the libraries needed for using the
depth camera at hand, the Intel RealSense D415. However, the dependency list is much
larger due to the PCL having various mandatory dependencies (as mentioned in Subsec-
tion 3.6).

In addition to the above, the entire solution was implemented and is intended to be
used within a Docker [51] container. This follows the current trends in SW development.
Using a Docker container ensures a consistent operating system environment, which (at
least partially) eliminates potential problems caused by incompatibility with libraries and
other SW already installed on the host machine. It creates a layer above the host oper-
ating system, which is partially sandboxed. This allows anybody with a Linux operating
system to try the solution without worrying about the impact of needed additional SW.
Additional instructions for trying the solution (or further developing it) are in Append-
inx B.

36

5 IMPLEMENTATION 5.2 LIST OF USED HARDWARE AND SOFTWARE

5.2 List of used hardware and software

The PC setup was as follows:

• Intel® Core™ i7-6700HQ CPU @ 2.60GHz,

• 32 GiB RAM,

• Ubuntu 22.04 LTS.

The depth camera used for the experiment on captured data and its specifications:
• Intel® RealSense™ D415 1,

◦ active stereo vision,

◦ resolution up to 1280 × 720,

◦ Field Of View (FOV) for HD resolution of 50 × 40 deg,

◦ minimum depth distance at max resolution approximately 45 cm,

◦ depth accuracy < 2 % at 2 m.

The used libraries and their versions:

• Docker 23.0.1,

• CMake 3.22.1,

• Ninja 1.10.1,

• GCC 11.3.0,

• Point Cloud Library 1.13.0,

◦ OpenNI2 2.2.0.33,

◦ OpenMPI 4.1.2,

◦ Visualization ToolKit 9.1.0,

◦ QT 5.15.3,

◦ SQLite 3.37.2

◦ QHULL 2020.2,

◦ Boost 1.74.0.3,

◦ Flann 1.9.1,

• RealSense 2 SDK 2.50.0,

• Catch2 3.2.1,

• Nlohmann json 3.11.2,

• Pybind11 2.10.3,

• Python 3.10.6.

1Product website https://www.intelrealsense.com/depth-camera-d415/.

37

https://www.intelrealsense.com/depth-camera-d415/

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

5.3 Implementation of the solution draft

The entire solution was programmed using the C++14 standard, as it was, at the time,
the latest version supported by PCL 1.13.0. Thus, the Boost filesystem library had to
provide functions regarding the file system since equivalent functions were only imple-
mented in the C++ library above the C++17 standard. Furthermore, the Eigen library
poses a memory alignment problem for arrays and matrices in specific scenarios when
used below the C++17 standard. After much time was wasted on solving this problem,
it was finally decided to disable all Eigen optimizations while building the PCL to avoid
it completely. This results in worse computational performance but ultimately avoids
segmentation faults caused by the said problem. Due to this fact, the implementation of
the solution serves only as a proof of concept, and no additional optimization (including
threading) was considered.

As mentioned above, the solution utilizes the detailed pipeline described in Chapter
3 while also being inspired by available tutorials [18, 32, 41, 42] that use the PCL. The
whole solution pipeline is based on the following equation.

Tobject = T4 · T3 · T2 · T1, (5.1)

where Tobject is the resulting pose estimate, and the numbered transformations are ac-
quired successively through the solution pipeline. The reasoning and details of this ap-
proach are further explained in the following subsections, as it relies on the whole solution
pipeline sequence.

As proposed in Chapter 4, the solution consists of three main modules and a solution
wrapper. This wrapper is then bound to a Python module using Pybind11, enabling users
to use the wrapper via Python. The implementation of individual modules is described
below. Individual modules use namespaces for better code readability.

5.3.1 Utilities module implementation

As mentioned above and in the Subsection 4.2.1, the Utilities module provides functions
that are used across the other modules. The structure of its implementation is illustrated
in Figure 5.1. It is divided into two namespaces: mtjson (master thesis JSON) and
mtu (master thesis utilities).

The mtjson namespace provides functions and objects related to the use of JSON files
in the solution. This includes functions for loading and saving JSON files themselves and
structures, which are used both to parse the data and as data holders for the relevant
objects in the other modules. The purpose of each of these structures is described in place
of their usage further down this chapter. These structures represent equally the JSON files
that are used throughout the pipeline. The detailed definition of all of these structures,
together with file structures that are created during the execution of the solution pipeline,
is located in Appendix C.

The mtu namespace provides functions used in the other modules and not related to
JSON files. These are relevant data input/output functions, various filtering methods, and
point cloud operations. The names of these functions are self-explanatory. The generated
timestamp is used as primary identification for files related to one iteration of the global
pipeline. The mtu namespace also contains two significant classes, the AccuracyTest and
the Viewer.

38

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

[n] mtjson

[f] loadFromFile
[f] saveToFile
[s] DatasetPreparatorConfig
[s] ModelList
[s] DatasetOut

[n] mtu

[f] drawProgressBar
[f] zeropadId
[f] generateTimestamp
[f] filterOutOfLimits
[f] filterVoxelGrid
[f] filterOutPlane
[f] filterOutStatisticalOutliers
[f] filterOutRadiusOutliers
[f] scalePointCloud
[f] saveCloudAsColoredPly
[f] saveCloudAsColoredPcd

[c] AccuracyTest
[pm] getTransformationMatrix
[pm] setTransformationMatrix
[pm] getModelName
[pm] setModelName
[pm] setModelAndViewIdsToDefault
[pm] getTestDatasetModelsVector
[pm] getTestDatasetViewsVector
[pm] loadTestDataset
[pm] loadTestDatasetEntry
[pm] getPcdPath
[pm] evaluateResultAgainstGroundTruth
[pm] getEvaluationStructure
[pm] saveEvaluation

[c] Viewer
[pm] addPointCloud
[pm] view

[s] GlobalPipelineConfiguration
[s] GlobalDescriptorReferences
[s] Result
[s] Extras
[s] Evaluation

Utilities module (C++)

Figure 5.1: Utilities module structure including namespaces, functions, structures, classes, and
public methods.

The AccuracyTest class supports testing both the object recognition and pose estima-
tion accuracy. This is done by comparing the input ground-truth data with the solution
pipeline result (defined in Appendix C). The accuracy test results are outputted to Eval-
uation structure object, which includes information about the correctness of recognition
and the accuracy of pose estimation using errors described in the Subsection 2.4.1.

The Viewer class provides an easy interface to visualize point clouds. It is used mainly
for diagnostic purposes in the Global pipeline module. As there is currently a bug in
clearing the scene of the viewer, it is always advised to use the viewer within the subscope
to ensure its one-time use.

5.3.2 Dataset preparation module implementation

As stated in the Subsection 4.2.2, the Dataset preparation module prepares the partial
view point clouds of the given 3D models. This is the prerequisite for the subsequent
computation of global descriptors in the offline solution pipeline stage. Moreover, it can
also add Gaussian noise to the generated partial views in two modes: in three directions
(3D space) or only along the view ray. The structure of the module implementation is
illustrated in Figure 5.3. It includes the namespace mtdp (master thesis dataset prepara-
tion) consisting only of two classes, VirtualDepthCamera and DatasetPreparator.

39

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

[c] DatasetPreparator
[pm] runDatasetCreation
[pm] getConfig

[c] VirtualDepthCamera
[pm] setResolution
[pm] setFieldOfView
[pm] setNoiseModel
[pm] setNoiseStandardDeviation
[pm] setOutputInCameraCoordinatesFlag
[pm] generateCameraTransformation
[pm] captureWithNormals

Dataset preparation module (C++)[n] mtdp

Figure 5.2: Dataset preparation module structure including namespaces, classes, and public
methods.

Based on Subsection 2.2.1 and after validating supported file formats of the PCL and
its dependencies, it was decided to use the STL (mesh model) file format for 3D models
of objects. Moreover, all data is assumed to be in the same units, millimeters. This may
not be the same unit that various depth cameras consider, but that is why the Utilities
module provides a function to scale the input point cloud. Using millimeters instead
of meters precedes problems with floating-point precision computations throughout the
whole solution pipeline. 3D CAD models entering the dataset preparation are assumed
to be already exported as STL models in millimeters.

The VirtualDepthCamera class is a modified virtual scanner 2 PCL tool. This tool was
originally intended to be used through the command line and perform virtual scanning of
a given 3D model using the ray casting method. It also allows the user to add Gaussian
noise to the output partial view point cloud (only in all three directions). However, its
input parameters are restricted together with the file formats it accepts. Therefore, the
code was modified and incorporated into the module as a separate class. The modifications
are as follows. The accepted 3D data are changed to a more general VTK polygon type,
enabling it to take loaded STL models. The tool was enhanced by adding functionality for
ray casted points to inherit the normal of the polygon from the STL description, which is
inspired by the approach of another PCL tool: mesh sampling3. Another modification is
the opinion to generate Gaussian noise only along the view ray, which makes the resulting
noise more realistic than the original approach of adding random numbers to all three
coordinates of each point. Moreover, the parameters were modified to resemble real depth
camera parameters. Thus, it is possible to set the FOV and the resolution. The last
modification was the generation of a virtual depth camera transformation matrix based
on its position and view point, while ensuring that the X-Axis is in the base XY plane.

The DatasetPreparator class is the main class of this module. It contains and in-
ternally uses the VirtualDepthCamera object. It has only one important public method
runDatasetCreation, which encapsulates the whole module and, thus, the dataset prepara-
tion step in the solution pipeline. The method takes paths to a DatasetPreparatorConfig
and a ModelList JSON file as input. The DatasetPreparatorConfig contains parameters

2Link to its source code https://github.com/PointCloudLibrary/pcl/blob/master/tools/virtual_
scanner.cpp.

3Link to its source code https://github.com/PointCloudLibrary/pcl/blob/master/tools/mesh_

sampling.cpp.

40

https://github.com/PointCloudLibrary/pcl/blob/master/tools/virtual_scanner.cpp
https://github.com/PointCloudLibrary/pcl/blob/master/tools/virtual_scanner.cpp
https://github.com/PointCloudLibrary/pcl/blob/master/tools/mesh_sampling.cpp
https://github.com/PointCloudLibrary/pcl/blob/master/tools/mesh_sampling.cpp

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

for creating datasets, including parameters for the VirtualDepthCamera. On the other
hand, the ModelList includes just a list of paths to STL models of objects that are con-
tained in the created dataset. The creation of datasets results in a logical folder structure
with relevant files, including partial view point clouds and also DatasetOut JSON, which
contains all relevant information about the created dataset. For more details on the
JSON files and file structure, see Appendix C.

Dataset preparation
config JSON

Model path list
JSON

Create dataset
output folder

Prepare camera
transformations

Dataset output folder

Dataset JSON

Mesh STL
Per model in list

Partial view PCD

Load STL
model

Transform to
bounding box center

Per path in Model path list JSON

Per generated camera transformation

Capture with
normals

Model info +

Views info +

Figure 5.3: Illustration of the dataset creation implementation.

The sequence for generating partial views is largely based on Section 3.4 while also
incorporating ideas from Chapter 4. The illustration of the implementation of the dataset
creation is in Figure 5.3. After loading the relevant files, the output folder is created based
on the path given as the argument for the runDatasetCreation method. Then, the camera
transformations are generated using an icosahedron (see illustration in Figure 5.4) and
stamped with an identification number (ID). The center of its faces or the vertices can
be used for camera positions, while the center of the icosahedron is used as a viewpoint.
There is also a parameter for subdivision, which results in 12, 20, 42, 80, or 162 camera
transformations. The inverses of each camera transformation generated, labeled as T2, are
then added to the DatasetOut. Then, the following sequence of operations is performed for
each STL model of ModelList. The STL model is loaded as a mesh polyfile and stamped
with its ID, which is added to the relevant list in DatasetOut. Then, its CS is translated
to the center of the 3D bounding box of the model. This ensures better positioning of
the model in relation to the icosahedron. This transformation is labeled T1 and added
to the relevant list in DatasetOut. Subsequently, the method captureWithNormals of the
VirtualDepthCamera is used for every generated camera transformation. Each generated
partial view point cloud is then saved in the relevant folder as PCD file, with the name
corresponding to the ID of the view. In addition to that, the source STL file is also saved
in the relevant folder for convenience.

41

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

Figure 5.4: Illustration of the model, icosahedron and partial views.

5.3.3 Global pipeline module implementation

As mentioned above and in the Subsection 4.2.3, the Global pipeline module is based on
the detailed pipeline described in Chapter 3. As proposed, the module is subdivided into
offline and online stages, while the online stage is further subdivided into initialization
and iteration parts. This module also serves as a hint for the implementation of different
pipelines. The structure of the module implementation is illustrated in Figure 5.5. It
includes namespace mtgp (master thesis global pipeline), which consists of Candidate
structure and two main classes, the GlobalDescriptor and the GlobalPipeline.

[c] GlobalPipeline
[pm] loadPipelineConfigJson
[pm] runOfflineStage
[pm] initializeOnlineStage
[pm] setSceneCloud
[pm] runOnlineStage
[pm] getResultStructure
[pm] getTimestampedOutputPath

[c] GlobalDescriptor
[pm] loadPipelineConfig
[pm] setInput
[pm] compute
[pm] addToStorage
[pm] saveStorage
[pm] loadStorage
[pm] match
[pm] populateCandidates

Global pipeline module (C++)[n] mtgp

[s] Candidate

Figure 5.5: Global pipeline module structure including namespaces, structures, classes, and
public methods.

42

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

The GlobalDescriptor class encapsulates all the selected global descriptors (see Sec-
tion 3.3). Apart from the GOOD, all other global descriptors are implemented in the PCL.
The source code of GOOD4 needed to be modified to work properly with PCL 1.13.0. More
specifically, the Boost shared pointers had to be replaced by standard library shared point-
ers. Due to the use of template methods and the need for simple incorporation into the
solution, the whole implementation was moved to a single HPP file. In the case of adding
another global descriptor, it is preferable to augment only this class (and the relevant
part of the Utilities module).

The GlobalPipeline is the main class of the global pipeline. It encapsulates the entire
global pipeline process. Moreover, it enables the user to define a folder path for saving
output from online stage iterations in its constructor. Both the offline stage and the online
stage involve the loading of two JSON files. The first is a GlobalPipelineConfiguration
JSON, which contains all relevant parameters for each configurable step in both the offline
and online stages. The second is the DatasetOut JSON, which is meant to be located in
the folder generated while creating a dataset within the solution pipeline.

Per model in dataset

Global pipeline
configuration JSON

Compute global descriptor

Per view in dataset

Dataset JSON

Load partial view

Add to PCD Global descriptor
PCD

Global descriptor reference
JSON

Global descriptor config
JSON

Dataset folder

Descriptors subfolder
Dataset folder

Figure 5.6: Illustration of the offline stage implementation.

Figure 5.6 illustrates the implementation of the offline stage. After loading the two
mentioned essential JSONs, it loads each partial view of each model in the dataset. Then
the selected global descriptor (one of the global descriptors mentioned in Section 3.3) is
computed, and the result is added to the storage. The storage is an array of computed
global descriptors that are saved as a PCD file at the end of the offline stage. For the exact
association of the computed global descriptors with the dataset, the procedure generates
a GlobalDescriptorReferences file. Apart from that, the implementation also saves the
configuration of the used global descriptor, so in case it is equivalent for multiple runs, it
does not recompute the same descriptors, thus saving computation time. The resulting
files are saved in the dataset folder structure. This step must be executed only once per
specific global descriptor configuration.

The illustration of the implementation of the online stage is in Figure 5.7. After loading
the two already mentioned JSONs, it loads the computed global descriptors (from the
offline stage) PCD file and the GlobalDescriptorReferences JSON containing references to
the dataset. Apart from that, all partial views of an object are fused to form a point cloud
of the whole object without possible inner cavities, which is used later in the hypothesis

4Link to its repository https://github.com/SeyedHamidreza/GOOD_descriptor/tree/master.

43

https://github.com/SeyedHamidreza/GOOD_descriptor/tree/master

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

verification step. This forms the initialization of the online stage and must be executed
at least once per global pipeline run before any online stage iteration.

Per model in dataset

Result

Dataset JSON
Dataset folder

Global pipeline
configuration JSON Load computed

global descriptors

Create complete point
cloud from partial views

Preprocess

Initialize

Input
point cloud

Normal
estimation

Compute global
descriptor

Match
descriptors

Populate
candidates

Load candidate
data

Coarse
align

Fine
alignment

Sort
candidates

Hypothesis
verification

Figure 5.7: Illustration of the online stage implementation.

The iteration of the online stage uses, apart from the data already loaded during the
initialization, only an input scene point cloud. Then, based on the GlobalPipelineCon-
figuration, it proceeds through all the steps of the global pipeline and retrieves a Result
structure object. This object is then saved under the defined output folder into a newly
created subfolder named, using a timestamp, that is generated for each iteration. Each
step has several parameters configurable through the GlobalPipelineConfiguration, de-
scribed in Appendix C.

The preprocessing step enables to scale, filter, and segment the input point cloud of
the scene. The user can choose only the relevant operations required for a specific setup.
The point cloud, after preprocessing, should include only the data related to the object
of interest. This can be verified by visualization.

The normal estimation step is particularly important for the solution pipeline, as the
normals are used both for recognition (besides GOOD and ESF descriptors) and final pose
estimation. Its radius parameter influences the global smoothness of resulting normals.
Thus setting it too large leaves the results without much geometric information about the
underlying object, while setting it too small can cause distortions in case of noisy data.
Thus, the setting should be compromised and consider the amount of noise.

The compute global descriptor step computes the global descriptor of the preprocessed
input point cloud with estimated normals. All global descriptors mentioned in Section
3.3 are available, with their most relevant parameters configurable. This is the same
operation as for all partial views in the offline stage.

The matching step matches the computed global descriptor with the global descriptors
computed in the offline stage. This results in k candidates based on the distance of the
match. The metric used by k-NSS for all of the descriptors is set to L1 and is not
configurable to not add another complexity to the already complicated solution.

44

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

The populate candidates step populates the vector of Candidates objects based on
the references from the offline stage. After the candidates have proper references to the
dataset, the load candidates step loads relevant partial point clouds of each candidate
and add all already known information, such as the T1 matrix, T2 matrix, and match
distance.

The coarse alignment step coarsely aligns the loaded point cloud of each candidate
to the scene point cloud. It is possible to use CRH and, in the case of OUR-CVFH
or GOOD, even their alignment estimation. Moreover, there is an option to remove
translation offset in coarse alignment by centroid correction. After the transformation of
each candidate point cloud, its coarse alignment transformation is stored in the relevant
Candidates object as T3.

The fine alignment step finely aligns the loaded point cloud of each candidate to
the scene point cloud. It uses point-to-plane ICP with the option to use a symmetric
objective function, which speeds up convergence and provides better accuracy. After the
transformation of each candidate point cloud, its fine alignment transformation is stored
in the relevant Candidate object as T4 and ICP fitness. Because this step is usually the
most computationally demanding, there is an option to additionally use a voxel filter
on both the scene and the candidate point cloud. This can considerably shorten the
computation time but can result in lower final pose accuracy. At this point, as all the
partial transformations of the solution pipeline are known, the Tobject (see Equation 5.1)
is computed for each candidate.

The sort candidates step then sorts the candidates based on the value of the candidate’s
ICP fitness, representing the average distance between correspondences. Thus, the sorting
is done from the lowest ICP fitness to the highest. Candidates with lower ICP fitness are
more likely to be correct. However, it could also be just a local minimum in an inaccurate
pose.

The hypothesis verification step then helps skip candidates in inaccurate poses or
entirely different objects. It goes sequentially through the sorted candidates and searches
for the first candidate that succeeds in greedy hypothesis verification. This step uses
the fused model representation created in the offline stage, transformed to Tobject pose.
Configuration of this stage is essential to eliminate (at least partially) false positives and
incorrect poses. At the end of the hypothesis verification step, the result is embedded
into Result structure object and saved to the iteration output folder.

Moreover, the implementation has several diagnostic options available under the debug
key in the GlobalPipelineConfiguration. This includes printing results to the command
line and the notion of the individual steps in progress. Then there is an option to save
an Extras structure object, which includes all information about each of the candidates,
the scene point cloud, and the computation time of individual steps. Other options
enable saving point clouds from the global pipeline itself, used DatasetOut JSON and
used GlobalPipelineConfig JSON. The last practical option is to visualize selected steps in
the pipeline, which is especially useful during finetuning of the parameters. All additional
files, if requested, are also saved to the iteration output folder, just as the Result.

45

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

5.3.4 Solution wrapper implementation

The solution wrapper envelops the entire solution pipeline, providing an interface for easier
use in potential applications. Thus, it covers all the steps, from creating a dataset to the
accuracy testing. The structure of the solution wrapper implementation is illustrated
in Figure 5.8. The solution wrapper is bound to Python using the already mentioned
Pybind11 library into the mtsolution module. The bound functions have the same names
and arguments as the solution wrapper.

Solution wrapper (C++)

[c] Solution
[pm] createDataset
[pm] runOfflineStage
[pm] initializeOnlineStage
[pm] runOnlineStageOnPointXYZ
[pm] runOnlineStageOnPcd
[pm] runOnlineStageOnPly
[pm] getResultStructure
[pm] runOnlineStageAccuracyTestOnDatasetEntry
[pm] runOnlineStageCustomAccuracyTest
[pm] getEvaluationStructure

Pybind11 mtsolution
(Python module)

Figure 5.8: Illustration of the solution wrapper implementation, including classes and public
methods.

The solution wrapper involves only one class that wraps around all the other modules
described in the sections above. This class is named Solution. When constructing an
object of this class, it can take an argument equal to the argument for the GlobalPipeline
class. Thus, specifying the path for the output folder. The created Evaluation structure
object is also saved to this folder when using the accuracy test functionality. The individ-
ual methods are then self-explanatory. This class can be used in Python scripts thanks
to the binding to the Python module mtsolution. The binding also provides the Result
and Evaluation structures as Python classes for convenience. Less advanced users should
use the solution only through the Solution module, which makes the whole solution more
accessible and flexible. Configuring the solution pipeline is as easy as editing relevant
JSON files in a text editor. Illustration of the solution pipeline, which visually clarifies
the Equation 5.1, can be seen in Figure 5.9. In case of interest in using the solution,
getting inspired, or developing it further, see Appendix A as well as Appendix B and
Appendix C.

46

5 IMPLEMENTATION 5.3 IMPLEMENTATION OF THE SOLUTION DRAFT

Solution pipeline

Input scene point cloud

Preprocessed input

Loaded candidate:
Coarse alignment:
Fine alignment:

Result

Figure 5.9: Illustration of the solution pipeline.

47

6 Validation of the solution

As proposed in Section 4.3, the solution was tested by conducting experiments on data
of two categories: artificially generated datasets using the solution and real-world data
captured with the Intel RealSense D415 depth camera on an improvised setup. Three
main types of experiments were conducted: ground truth tests, virtual noise tests, and
captured tests.

This chapter is structured as follows. First, the data used for the experiments are
presented and described in more detail. Then, the conditions and details of the execution
of the experiments are described. After that, results from each experiment are shown and
commented on. Finally, the created solution is assessed, its limitations identified, and
advancements proposed.

6.1 Data

For validation of the solution, data for experiments had to be generated first. In this
section, first, the selected 3D models for the experiments are presented. Then, the de-
scription and visual examples of the input scene point clouds for each type of experiment
are shown, including a closer description of the real-world data capture.

6.1.1 3D models and its groups

Due to the realization of the real-life data capture, three industrial-looking objects that
were available at hand were selected, modeled in 3D CAD software, and exported as STL
files. However, to test the solution capabilities with more than three objects, another
six objects from the DeepCAD dataset (which was mentioned in Subsection 2.3.3) were
also selected. All of these models and their identification names in testing datasets can
be seen in Figure 6.1. It is worth noting that the origin CSs of these models are placed
on various points of the objects. Thus, a rotation error of 180 degrees can also result in
a significant translational error, which may look unintuitive.

For the experiments, three 3D model lists further referred to as groups, were created:

• One object, containing only one 3D model, which is the real object 0.

• Real objects, containing all three 3D models of real objects.

• Six objects, containing all the six 3D models selected from DeepCAD dataset.

These groups were created to better evaluate the behavior under different conditions from
the database size standpoint. All three groups are used for ground truth and virtual noise
experiments. Only the first two groups mentioned are used for the captured tests as none
of the models in the six objects groups were captured in the real world.

48

6 VALIDATION OF THE SOLUTION 6.1 DATA

real_object_0 real_object_1 real_object_2

mesh_0 mesh_1

mesh_2 mesh_3

mesh_4 mesh_5

3D models based on real objects 3D models from DeepCAD dataset

(Photo of the real objects)

Figure 6.1: 3D models of selected real objects and selected 3D models from the DeepCAD
dataset, together with identification names.

6.1.2 Generated datasets

All the artificial data used as input for the experiments were created using the dataset
creation functionality of the solution. It was decided to use configuration, which results
in 42 views per object for both datasets for the database and for the accuracy test in-
put. The exact configuration parameters used to create all the datasets can be checked
in Appendix D. The virtual depth camera parameters are set to resemble the Intel Re-
alSense D415 depth camera parameters in the VGA setting.

3D model Partial view
No noise

Partial view
Gaussianray noise std = 3 mm

Figure 6.2: Example of generated partial views for accuracy tests.

The dataset for ground truth tests is characterized by no added noise to the generated
partial views, an icosahedral radius of 650 mm, and a global rotation of 5 degrees. In

49

6 VALIDATION OF THE SOLUTION 6.1 DATA

contrast, the dataset for virtual noise tests has added noise with a standard deviation of
3 mm using the Gaussianray noise model, an icosahedral radius of 700 mm, and a global
rotation of 15 degrees. An example of generated partial view point clouds both with and
without noise can be seen in Figure 6.2. Data generated using the solution needs no
preprocessing, as it is already segmented. Thus, all preprocessing flags for experiments
on artificially generated datasets are set to false.

6.1.3 Captured data

The real dataset was captured using the Intel RealSense D415 depth camera on an im-
provised setup. Both the setup and part of an example captured point cloud can be seen
in Figure 6.3. As can be seen, the captured data needs preprocessing, resulting in a seg-
mented point cloud of only the object. Moreover, because the output of the depth camera
is in meters, even the scaling preprocessing option must be employed. Additionally, it is
appropriate to draw attention to the wave-like character of the noise, which smoothens
out the whole captured point cloud, degrading many details in the scene.

Improvised capture setup View of the noise

Captured point cloud

Figure 6.3: Improvised capture setup and part of an example captured data.

The depth camera was calibrated in advance using the automatic calibration algorithm
provided by the Intel RealSense SW, and an artificial light source secured proper lighting
conditions. Each object was placed in 24 predefined poses relative to their origin CS and
captured in all of them. The ground truth transformation was estimated by capturing
an RGB point cloud using the RealSense Viewer SW, from which a pattern drawn on
the surface was measured and based on which object transformations were reconstructed.
However, due to the noisy character of the captured point cloud, these transformations
are just coarse estimates with a possible error of approximately 20 mm.

The data capture process faced numerous challenges, particularly with regard to the
RealSense depth camera and its connection with the PCL. Although PCL is compatible
with both ReaSense and OpenNI2, both methods of point cloud acquisition demonstrated
inconsistency and slowness in the specific tried implementations. Thus, more investiga-
tion into the data acquisition problematics is needed to use the depth camera in con-

50

6 VALIDATION OF THE SOLUTION 6.2 EXPERIMENTS

junction with the solution properly. Nevertheless, eventually, it managed to capture the
already-mentioned scenes successfully. However, the successful data capture did not offer
adjustable depth camera output. Thus every object position was captured both through
the direct application of the RealSense SDK and via OpenNI2, each with distinct de-
fault resolutions. The RealSense SDK defaulted to 1280 × 720 (HD) resolution, whereas
OpenNI2 defaulted to 640 × 480 (VGA).

3D model Segmented capture
OpenNI2

Segmented capture
Intel RealSense SDK 2.0

Figure 6.4: Example of segmented captured point clouds from real dataset.

Figure 6.4 shows segmented point clouds captured by both configurations. The higher-
resolution configuration preserves more geometric features than the lower-resolution con-
figuration. However, the geometric features of the captured data are very subtle due to
the character of the output of the specific depth camera, regardless of the configurations.

6.2 Experiments

As already mentioned above, three types of experiments were conducted: ground truth
tests, virtual noise tests, and captured tests. This section first provides more details about
each type of experiment considered. Then, the conditions and execution are described
in more detail. Subsequently, the tools and procedures used for data processing of the
outputs are mentioned.

6.2.1 Types

Ground truth tests are characterized by the use of the same data for accuracy testing and
for database creation. This means that each partial view in the database is also used for
global pipeline iteration. This represents the ideal scenario, as both data are exactly the
same. However, the results may not be ideal due to the inaccuracies during the solution
pipeline and the ambiguous views. This type of experiment is designed to assess the
capabilities of the solution core because the influence of the input data quality can be, in
this case, neglected.

The virtual noise tests use the same dataset for the database creation as ground
truth tests (no noise) but use partial views generated with Gaussianray noise as input for
accuracy tests. Moreover, the parameters for generating virtual depth camera viewpoints
differ from the database dataset to introduce more deviation between the two. This type
of experiment is designed to test the capabilities of the solution on more realistic data,
which will always be nonideal.

The captured tests also use the same database dataset as the two previous types of

51

6 VALIDATION OF THE SOLUTION 6.2 EXPERIMENTS

experiments. However, the input data for accuracy tests were captured using the Intel
RealSense D415 camera on an improvised capture setup (see Subsection 6.1.3). The data
were captured using two configurations, which differ in capture resolution. The ground
truth poses were estimated using RGB point cloud and grid pattern drawn on the table.
Due to the wave-like character of the captured data, the ground truth pose estimation is
quite coarse, especially in the translation factor. This type of experiment is designed to
test the capabilities of the solution on real data. However, it is appropriate to note that
the data from this particular model of the depth camera highly suppresses the geometrical
details of captured objects (as can be seen in Figure 6.4).

6.2.2 Conditions

The parameters in the configuration files used for the experiment were fine-tuned man-
ually by assessing the visual feedback (debug option) in a few iterations of mentioned
experiment types. The aim was to achieve an acceptable balance between recognition
capabilities and false positive results. It is crucial to point out that these parameters
may not be optimal, and employing parameter optimization techniques could improve the
results. However, this thesis did not pursue such optimization due to time constraints.
Thus, the results within this chapter serve more as an indicative measure. The parameters
were set to such values that were appropriate for all the experiments, only differing in
a few details between the experiment types due to the various amount of noise in input
data. For the exact configuration parameters used in this chapter, see Appendix D.

6.2.3 Execution

All the experiments were executed solely using the solution wrapper via the mtsolution
module in Python using the HW and SW listed in Section 5.2. Each experiment was
conducted for each object in each relevant model group and for each supported global
descriptor. The main portion of the evaluation was done via the AccuracyTest class
under hood. This means that the metrics are the correctness of recognition, based on
the name of the 3D model in the database and the name provided to the AccuracyTest.
If the recognition result is correct, the pose estimation accuracy is then specified by
rotational and translational error mentioned in the Subsection 2.4.1. It is worth noting
that the pose accuracy errors do not consider ambiguous views or symmetries. Moreover,
the configuration was also set to save the Extras for additional information about each
iteration.

6.2.4 Data processing

The results were processed using Python, the Pandas library 2.0.1, and the Python stan-
dard library. All the presented data were extracted from Result JSON, Extras JSON, and
Evaluation JSON of individual online stage iterations. First, the data from individual
iterations were packed together and organized by models, then by the global descriptors
used, and finally, by the model group. These organized data groups were subsequently
processed to compare the performance of different global descriptors and to provide more
detailed results for the top-performing descriptor within each model group.

Two kinds of results are presented in this chapter. First, the recognition results present
tables illustrating the recognition capabilities of each supported descriptor, sorted by the
number of correct results. If it is appropriate, confusion maps for the top-performing
descriptors are also illustrated. Then, the pose accuracy results present the top-performing

52

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

descriptors in each group based on the number of pose estimations with errors under
a predefined threshold. This is followed by a boxplot representation of both rotational and
translational errors (while excluding outliers) for the relevant groups. This comprehensive
evaluation can then establish a broader understanding of the capabilities and limitations
of the solution.

6.3 Results

In this section, individual results are first shown while being organized by the experiment
type. This includes results related to both 3D object recognition and pose estimation.
Subsequently, the results are commented on.

6.3.1 Ground truth tests

Table 6.1: Recognition results for ground truth tests on one object group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 42 42 100.0 0 0.0 0 0.0
ESF 42 42 100.0 0 0.0 0 0.0
VFH 42 42 100.0 0 0.0 0 0.0
OUR-CVFH 42 42 100.0 0 0.0 0 0.0
GOOD 42 42 100.0 0 0.0 0 0.0

Table 6.2: Recognition results for ground truth tests on real objects group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 126 125 99.21 0 0.00 1 0.79
OUR-CVFH 126 123 97.62 0 0.00 3 2.38
VFH 126 123 97.62 1 0.79 2 1.59
GOOD 126 117 92.86 3 2.38 6 4.76
ESF 126 110 87.30 11 8.73 5 3.97

Table 6.3: Recognition results for ground truth tests on six objects group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 252 232 92.06 6 2.38 14 5.56
OUR-CVFH 252 229 90.87 10 3.97 13 5.16
GOOD 252 206 81.75 22 8.73 24 9.52
VFH 252 205 81.35 26 10.32 21 8.33
ESF 252 167 66.27 62 24.60 23 9.13

53

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

Table 6.4: Pose errors under the specific threshold for ground truth tests of each group on best
recognizing descriptor.

Under εrot < 15 ° and εtrans < 15mm
Group Descriptor [-] Of correct [%] Of total [%]
One object CVFH 39 92.86 92.86
Real objects CVFH 117 93.60 92.93
Six objects CVFH 215 92.67 85.32

mesh 0 mesh 1 mesh 2 mesh 3 mesh 4 mesh 5

Predicted model

mesh 0

mesh 1

mesh 2

mesh 3

mesh 4

mesh 5

A
ct
u
a
l
m
o
d
el

42
(100.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

30
(90.91 %)

0
(0.00 %)

2
(6.06 %)

0
(0.00 %)

1
(3.03 %)

0
(0.00 %)

0
(0.00 %)

41
(100.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

41
(97.62 %)

0
(0.00 %)

1
(2.38 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

37
(94.87 %)

2
(5.13 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

41
(100.00 %)

Confusion matrix: ground truth tests, six objects, CVFH

0 %

20 %

40 %

60 %

80 %

100 %

N
u
m
b
er

o
f
resu

lts
(p
ercen

ta
g
e)

1

Figure 6.5: Confusion matrix of the best global descriptor in ground truth tests on six objects
group.

54

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

real object 0 real object 1 real object 2

Model name

0.00

0.02

0.04

0.06

0.08

0.10

ε r
o
t
[°
]

Rotation error

real object 0 real object 1 real object 2

Model name

0.00

0.05

0.10

0.15

0.20

0.25

ε t
ra

n
s
[m

m
]

Translation error

Pose errors: ground truth tests, real objects, CVFH

1
Figure 6.6: Box plot of pose errors of the best global descriptor in ground truth tests on real
objects group.

mesh 0 mesh 1 mesh 2 mesh 3 mesh 4 mesh 5

Model name

0.0

0.2

0.4

0.6

0.8

1.0

ε r
o
t
[°
]

Rotation error

mesh 0 mesh 1 mesh 2 mesh 3 mesh 4 mesh 5

Model name

0.0

0.5

1.0

1.5

2.0

ε t
ra

n
s
[m

m
]

Translation error

Pose errors: ground truth tests, six objects, CVFH

1
Figure 6.7: Box plot of pose errors of the best global descriptor in ground truth tests on six
objects group.

55

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

6.3.2 Virtual noise tests

Table 6.5: Recognition results for virtual noise tests on one object group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 42 42 100.00 0 0.0 0 0.00
VFH 42 42 100.00 0 0.0 0 0.00
ESF 42 42 100.00 0 0.0 0 0.00
OUR-CVFH 42 41 97.62 0 0.0 1 2.38
GOOD 42 40 95.24 0 0.0 2 4.76

Table 6.6: Recognition results for virtual noise tests on real objects group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 126 102 80.95 12 9.52 12 9.52
GOOD 126 93 73.81 11 8.73 22 17.46
ESF 126 91 72.22 24 19.05 11 8.73
OUR-CVFH 126 87 69.05 29 23.02 10 7.94
VFH 126 76 60.32 31 24.60 19 15.08

Table 6.7: Recognition results for virtual noise tests on six objects group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 252 187 74.21 47 18.65 18 7.14
VFH 252 171 67.86 64 25.40 17 6.75
OUR-CVFH 252 157 62.30 75 29.76 20 7.94
GOOD 252 140 55.56 90 35.71 22 8.73
ESF 252 123 48.81 114 45.24 15 5.95

Table 6.8: Pose errors under the specific threshold for virtual noise tests of each group on best
recognizing descriptor.

Under εrot < 15 ° and εtrans < 15mm
Group Descriptor [-] Of correct [%] Of total [%]
One object CVFH 26 61.9 61.9
Real objects CVFH 60 58.82 47.62
Six objects CVFH 127 67.91 50.4

56

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

real object 0 real object 1 real object 2

Predicted model

real object 0

real object 1

real object 2

A
ct
u
a
l
m
o
d
el

42
(100.00 %)

0
(0.00 %)

0
(0.00 %)

4
(10.81 %)

29
(78.38 %)

4
(10.81 %)

2
(5.71 %)

2
(5.71 %)

31
(88.57 %)

Confusion matrix: virtual noise tests, real objects, CVFH

0 %

20 %

40 %

60 %

80 %

100 %

N
u
m
b
er

o
f
resu

lts
(p
ercen

ta
g
e)

1Figure 6.8: Confusion matrix of the best global descriptor in virtual noise tests on real objects
group.

mesh 0 mesh 1 mesh 2 mesh 3 mesh 4 mesh 5

Predicted model

mesh 0

mesh 1

mesh 2

mesh 3

mesh 4

mesh 5

A
ct
u
a
l
m
o
d
el

35
(85.37 %)

0
(0.00 %)

2
(4.88 %)

1
(2.44 %)

1
(2.44 %)

2
(4.88 %)

1
(3.33 %)

8
(26.67 %)

0
(0.00 %)

20
(66.67 %)

0
(0.00 %)

1
(3.33 %)

0
(0.00 %)

0
(0.00 %)

38
(90.48 %)

1
(2.38 %)

0
(0.00 %)

3
(7.14 %)

2
(4.76 %)

1
(2.38 %)

0
(0.00 %)

39
(92.86 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

0
(0.00 %)

33
(86.84 %)

5
(13.16 %)

2
(4.88 %)

0
(0.00 %)

1
(2.44 %)

0
(0.00 %)

4
(9.76 %)

34
(82.93 %)

Confusion matrix: virtual noise tests, six objects, CVFH

0 %

20 %

40 %

60 %

80 %

N
u
m
b
er

o
f
resu

lts
(p
ercen

ta
g
e)

1

Figure 6.9: Confusion matrix of the best global descriptor in virtual noise tests on six objects
group.

57

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

real object 0 real object 1 real object 2

Model name

0

30

60

90

120

150

180

ε r
o
t
[°
]

Rotation error

real object 0 real object 1 real object 2

Model name

0

50

100

150

200

250

ε t
ra

n
s
[m

m
]

Translation error

Pose errors: virtual noise tests, real objects, CVFH

1
Figure 6.10: Box plot of pose errors of the best global descriptor in virtual noise tests on real
objects group.

mesh 0 mesh 1 mesh 2 mesh 3 mesh 4 mesh 5

Model name

0

30

60

90

120

150

180

ε r
o
t
[°
]

Rotation error

mesh 0 mesh 1 mesh 2 mesh 3 mesh 4 mesh 5

Model name

0

20

40

60

80

100

120

ε t
ra

n
s
[m

m
]

Translation error

Pose errors: virtual noise tests, six objects, CVFH

1
Figure 6.11: Box plot of pose errors of the best global descriptor in virtual noise tests on six
objects group.

58

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

6.3.3 Capture tests

Table 6.9: Recognition results for capture OpennNI2 tests on one object group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
OUR-CVFH 72 17 23.61 22 30.56 33 45.83
ESF 72 15 20.83 15 20.83 42 58.33
GOOD 72 14 19.44 11 15.28 47 65.28
CVFH 72 14 19.44 16 22.22 42 58.33
VFH 72 14 19.44 19 26.39 39 54.17

Table 6.10: Recognition results for capture RealSense SDK tests on one object group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
VFH 72 19 26.39 21 29.17 32 44.44
OUR-CVFH 72 17 23.61 17 23.61 38 52.78
ESF 72 15 20.83 14 19.44 43 59.72
CVFH 72 15 20.83 17 23.61 40 55.56
GOOD 72 12 16.67 17 23.61 43 59.72

Table 6.11: Recognition results for capture OpennNI2 tests on real objects group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
CVFH 72 30 41.67 22 30.56 20 27.78
VFH 72 29 40.28 14 19.44 29 40.28
OUR-CVFH 72 28 38.89 18 25.00 26 36.11
ESF 72 22 30.56 12 16.67 38 52.78
GOOD 72 19 26.39 8 11.11 45 62.50

Table 6.12: Recognition results for capture RealSense SDK tests on real objects group.

Total Correct result Incorrect result No result
Descriptor [-] [-] Of total [%] [-] Of total [%] [-] Of total [%]
VFH 72 30 41.67 10 13.89 32 44.44
OUR-CVFH 72 26 36.11 10 13.89 36 50.00
ESF 72 26 36.11 10 13.89 36 50.00
CVFH 72 26 36.11 14 19.44 32 44.44
GOOD 72 16 22.22 9 12.50 47 65.28

59

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

real object 0 real object 1 real object 2

Predicted model

real object 0

real object 1

real object 2

A
ct
u
a
l
m
o
d
el

18
(100.00 %)

0
(0.00 %)

0
(0.00 %)

7
(43.75 %)

7
(43.75 %)

2
(12.50 %)

6
(33.33 %)

7
(38.89 %)

5
(27.78 %)

Confusion matrix: capture OpenNI2 tests, real objects, CVFH

0 %

20 %

40 %

60 %

80 %

100 %

N
u
m
b
er

o
f
resu

lts
(p
ercen

ta
g
e)

1
Figure 6.12: Confusion matrix of the best global descriptor in capture OpenNI2 tests on real
objects group.

real object 0 real object 1 real object 2

Predicted model

real object 0

real object 1

real object 2

A
ct
u
a
l
m
o
d
el

22
(100.00 %)

0
(0.00 %)

0
(0.00 %)

1
(16.67 %)

4
(66.67 %)

1
(16.67 %)

4
(33.33 %)

4
(33.33 %)

4
(33.33 %)

Confusion matrix: capture RealSense SDK tests, real objects, VFH

0 %

20 %

40 %

60 %

80 %

100 %

N
u
m
b
er

o
f
resu

lts
(p
ercen

ta
g
e)

1
Figure 6.13: Confusion matrix of the best global descriptor in capture RealSense SDK tests on
real objects group.

Table 6.13: Pose errors under the specific threshold for OpenNI2 capture tests of each group on
best recognizing descriptor and descriptor with most poses under the threshold. Ground truth
poses were just coarsely estimated.

Under εrot < 15 ° and εtrans < 30mm
Group Descriptor [-] Of correct [%] Of total [%]
One object OUR-CVFH 0 0 0
Real objects CVFH 7 23.33 9.72
One object VFH 4 28.57 5.56
Real objects VFH 8 27.59 11.11

60

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

Table 6.14: Pose errors under the specific threshold for RealSense SDK capture tests of each
group on best recognizing descriptor and descriptor with most poses under the threshold.
Ground truth poses were just coarsely estimated.

Under εrot < 15 ° and εtrans < 30mm
Group Descriptor [-] Of correct [%] Of total [%]
One object VFH 2 10.53 2.78
Real objects VFH 2 6.67 2.78
One object GOOD 4 33.33 5.56
Real objects ESF 7 26.92 9.72

real object 0 real object 1 real object 2

Model name

0

30

60

90

120

150

180

ε r
o
t
[°
]

Rotation error

real object 0 real object 1 real object 2

Model name

50

100

150

200

250

ε t
ra

n
s
[m

m
]

Translation error

Pose errors: capture OpenNI2 tests, real objects, CVFH

1
Figure 6.14: Box plot of pose errors of the best global descriptor in capture OpenNI2 tests on
real objects group. Ground truth poses were just coarsely estimated.

real object 0 real object 1 real object 2

Model name

0

30

60

90

120

150

180

ε r
o
t
[°
]

Rotation error

real object 0 real object 1 real object 2

Model name

50

100

150

200

250

ε t
ra

n
s
[m

m
]

Translation error

Pose errors: capture RealSense SDK tests, real objects, VFH

1
Figure 6.15: Box plot of pose errors of the best global descriptor in capture RealSense SDK
tests on real objects group. Ground truth poses were just coarsely estimated.

61

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

Incorrect recognition

Correct recognition
Inaccurate pose

Correct recognition

Accurate pose

Figure 6.16: Visual examples of results in capture OpenNI2 tests on real objects group.

6.3.4 Commentary

As shown by the Tables 6.1, 6.2, and 6.3, which regards the ground truth tests experi-
ment, even if the input data are ideal, with more objects in the database the recognition
correctness lowers. Specifically, the percentage of correct results lowers from 100.00 % for
the one object to 99.21 % for the real objects, and then to 92.06 % for the six objects.
However, the CVFH was the most robust of supported global descriptors in such condi-
tions. Based on the confusion matrix in Figure 6.5, it can be said that some objects are
harder to recognize than others. Moreover, they are even more prone to false positives.
An example of such properties is the mesh 1 model, which has only 30 correct recogni-
tions (out of 42 possible) and three incorrect ones. Due to the ideal input, the fine pose
alignment has minimal errors, apart from a few outliers, as shown in Table 6.4. More
specifically, around 93 of the correct results have pose errors under thresholds of 15 deg
and 15 mm. However, some models are more prone to these pose errors than others, as
shown in Figures 6.6 and 6.7.

As can be seen from trends in Tables 6.5, 6.6, and 6.7, which regards the virtual noise
tests experiment, the correct recognition capabilities lowers faster, when the database and
scene data differs. Specifically, the percentage of correct results lowers from 100.00 % for
the one object to 80.95 % for the real objects, and then to 74.21 % for the six objects.
Moreover, the percentage of incorrect results raised significantly between the real objects

62

6 VALIDATION OF THE SOLUTION 6.3 RESULTS

with 9.52 % and the six objects with 18.65 %. However, the CVFH was (again) the most
capable global descriptor for all model groups in this experiment. The rise of incorrect
recognitions is also apparent from the confusion matrix in Figure 6.9. The mesh 1 is not
suited well for the specific tested configuration parameters or the given set of objects, as
it has more incorrect results than correct ones. Both mesh 1 and mesh 3 have similar
features, mainly their thickness, which can cause confusion between models. The other
confusion matrix in Figure 6.8 shows that the model real object 0 has exceptional recog-
nizability against the rest of its set. However, the remainder of the models in real objects
group had at least four incorrect results. The pose accuracy results are also worse than in
the previous experiment, which is apparent from Table 6.8. More specifically, only around
52 % of the correct results have pose errors under thresholds of 15 deg and 15 mm. This
suggests that the pose refinement step falls into a bad pose, which can be either caused
by a bad coarse pose or by the character of the deformed data. As shown in Figures
6.10 and 6.11, the median pose error of some object are low, while another object, like,
for example, the real object 2, tends to be more susceptible to it. This can be caused by
ambiguous views, as there is only a fine detail (hole on the side) describing the unique
pose of the object.

The results in Tables 6.9 and 6.14 should be reviewed differently than in the previous
experiments, as the tests for the one object group involves all the captured scenes and not
just the ones containing the object. The capabilities of best-performing global descriptors
in such cases are similar, with around 30 % of incorrect results and 45 % of no results.
However, those best-performing global descriptors are not the same. For the lower resolu-
tion (OpenNI2) capture, the best performing global descriptor was OUR-CVFH, while for
the higher resolution (RealSense SDK) capture, it was the VFH. A similar occurrence is
apparent from Table 6.11 and 6.12, where the best performing global descriptor for lower
resolution capture is CVFH, with 41.67 % of correct results and 30.56 % of incorrect
results, meanwhile for the higher resolution capture it is again the VFH, with 41.67 % of
correct results and only 13.89 % of incorrect results. This may be related to the differ-
ences in the character of the captured data between the two, which can be seen in Figure
6.4. Based on both confusion matrices in Figures 6.12 and 6.13, it is apparent that the
used configuration parameters do not filter the results enough, as there are many incor-
rect recognitions. More specifically, apart from the real object 0 model, all models have
unconvincing results. As the ground truth poses for this experiment were only coarsely
estimated (see Subsection 6.1.3), the following results should be taken with a grain of
salt. However, for this reason, the translational error threshold was raised from 15 mm
to 30 mm. The pose accuracy results for the best-performing global descriptors for the
recognition part have, in the case of the lower resolution capture, 23.33 % of correct re-
sults under pose thresholds of 15 deg and 30 mm, and in the case of the higher resolution
capture, only 6.67 % of correct results under the same threshold. As shown in Figures
6.14 and 6.15, the vast majority of the poses have significant errors, the best object in
this regard is the real object 2 in case of the lower resolution capture and CVFH descrip-
tor. Moreover, in this type of experiment, the best-performing global descriptor in the
recognition part is not the best-performing regarding the accuracy of the resulting pose.
The most successful results on real objects group in the capture tests experiment overall
were obtained using the VFH global descriptor used on the lower resolution (OpenNI2)
capture. More specifically, 40.28 % of correct results and 19.44 % of incorrect results
out of 72 test scenes regarding the recognition, while 27.59 % of the correctly recognized

63

6 VALIDATION OF THE SOLUTION 6.4 ASSESMENT OF THE SOLUTION

results are under the pose error thresholds of 15 deg and 30 mm. These results are still
respectable, considering the lack of geometrical details in the captured data. A visual
example of results from each main category of results can be seen in Figure 6.16.

6.4 Assesment of the solution

This section assesses the solution following its successful validation and the commentary
of the results in Section 6.3. First, additional information about computation time and
storage requirements is provided. Then, the key observations are presented, followed by
identifying the limitations. Finally, suggestions for improving the solution and future
work are proposed.

By disabling architecture optimizations and not implementing additional threading in
the solution, the assessment of the computation performance is highly distorted. More-
over, it heavily depends on the used HW and solution configuration. However, to provide
at least a few indicative values, the capture OpenNI2 tests experiment using VFH was
selected as the source of the following data, as it is closest to the real usage scenario.
One iteration of the online stage took an average of 1.83 seconds. Around 65 % of that
time was taken by fine alignment of the candidates. Another 12 % was taken up by scene
preprocessing, including scaling of the point cloud. This is followed by 7 % on coarse
alignment, 6 % on loading data of the candidates, and 6 % on scene normal estimation.

As for the storage requirements, the created database in the case of the real ob-
jects model group, with the specified configuration, takes up 165.3 MiB of storage space,
thus 55.1 MiB per object. Space taken by iteration result varies based on the debug
options. In the most compact form, only the Result structure is saved and takes up
only 4 KiB of storage space per iteration. The optional Extras structure takes up an
additional 24 KiB. The storage space taken up by the computed descriptors varies based
on the used global descriptor.

A key observation based on the conducted experiments is that the success of the solu-
tion pipeline is tied to the specific set of objects within the database and the parameters
of the configuration files. Moreover, some objects may demonstrate lower success rates
and more incorrect results than others. Furthermore, shell objects resembling boxes may
lose some geometric features due to plane removal segmentation, which affects global de-
scriptors that do not create sub-clusters. Another observation is that smaller objects can
be falsely recognized in larger objects with the same local features, as seen in Figure 6.16.

Moving on to the limitations. The coarse pose estimation often produces a suboptimal
initial pose for fine alignment. Ambiguate views are not identified in the database and
cause part of the suboptimal coarse alignment cases. With a larger radius for normal
estimation, the minimal possible difference between database partial view normals and
the normals estimated on the input scene enlarges, resulting in considerably different
descriptions even though both point clouds may be identical. It is clear from the results
that the configuration parameters used were suboptimal. Thus, ideally, the parameters
should be tuned to the specific character of the input. Moreover, it would be insightful
to conduct an experiment with a different depth camera, which possibly preserves more
geometrical details, than the one used in this thesis.

Building upon these observations, several potential improvements can be made. Mod-
ifying the pose alignment and hypothesis verification stages to utilize more robust algo-
rithms could significantly benefit the robustness of the solution. Ambiguous views should

64

6 VALIDATION OF THE SOLUTION 6.4 ASSESMENT OF THE SOLUTION

ideally be identified and treated in a specialized manner, including different behavior in
accuracy tests. The issue of different normals information due to the normal estimation
parameters could be mitigated by not retrieving the normals from the mesh model when
creating the dataset but by estimating them the same way as in the online stage. Although
this might enhance both the recognition and pose estimation accuracy, it could simulta-
neously degrade the level of detail for all models in the database, possibly making them
too similar. Enhancing the build configuration and implementation details could lead
to enabling architecture-based optimizations, which can significantly boost the computa-
tional efficiency of the whole solution. Concurrently, employing threading for candidate
evaluation would offer further performance enhancements.

As for future work, several promising directions are evident. Firstly, implementing
a local descriptor pipeline would provide a relevant comparison of the two competing hand-
made methods. It could also be beneficial to compare this solution with learning-based
methods or explore a hybrid approach integrating both approaches. Further integration of
the solution with planning and robotic control applications, particularly in pick-and-place
tasks, could provide more insight into the needs of a practical solution. Last but not least,
exploring the usage of a moving depth camera to help mitigate ambiguate views should
also be considered.

65

7 Conclusion

The primary goal of this thesis was to select and validate an algorithm for the recognition
and pose estimation of objects, relying solely on depth camera data and 3D models as
references.

Following the initial literature review, the focus was refined to hand-made feature-
based methods for 3D object recognition, a coarse-to-fine approach to pose estimation,
and the utilization of the Point Cloud Library. A general pipeline using global descriptors
was extracted based on a more in-depth literature review. Based on this pipeline, a solu-
tion was proposed, resulting in a C++ library composed of modules, and a wrapper, that
provides an easy interface for users. This wrapper was extended to a Python module,
offering even greater flexibility in its usage. Moreover, the entire solution pipeline is con-
figured using JSON files, enabling easy modification with any text editor. The developed
solution offers various functionalities, from generating partial view point clouds to test-
ing the accuracy of object recognition and pose estimation. This solution was validated
through extensive experiments involving both artificial and real data and multiple sets of
models.

These experiments demonstrated that the success of the solution is dependent not
only on the particular configuration of the solution pipeline but also on the specific set
of objects in the database. As the number of objects in a database increased, the number of
correct recognitions decreased. Moreover, some objects demonstrated lower success rates
and a higher occurrence of incorrect results. Although the real captured data considerably
suppressed geometric details of the objects, the solution resulted in 40.28 % of correct
recognitions and 19.44 % of incorrect recognitions out of 72 test scenes for a database
containing three objects. However, just 27.59 % of the correct recognitions had accurate
poses. Results on the artificial data with noise were much better. For example, tests on
a database containing six objects resulted in 74.21 % of correct recognitions and 18.65 %
of incorrect recognitions out of 252 test scenes, while 67.91 % of the correct recognitions
had accurate poses. The relatively high number of inaccurate poses is caused by the
limited robustness of the used pose estimation algorithms and the existence of ambiguous
views. Another limitation is the need for fine-tuning the configuration parameters based
on the specifics of the input data.

Regarding future work. It would be insightful to test the solution on a better depth
camera, which does not suppress geometrical features as much as the one used for ex-
periments in this thesis. However, there are also many possible advancements regarding
the current pipeline. These include improving coarse and fine alignment steps using more
robust algorithms, or optimizing the implementation, especially regarding candidate eval-
uation. Another interesting insight could potentially arise from implementing a pipeline
with local descriptors, learning-based methods, or a hybrid approach and comparing re-
sults with the already implemented global descriptor pipeline.

66

Bibliography

[1] Szeliski, R. Computer Vision. 2nd ed. Cham: Springer International Pub-
lishing, 2022 [cit. 2022-05-10]. ISBN 978-3-030-34371-2. Available at: DOI:

10.1007/978-3-030-34372-9.

[2] Kelly, R. and Chakravorty, D. The Most Common 3D File Formats in 2022:
So Many File Formats, So Little Time! [Munich]: All3DP, 2022 [cit. 2022-05-01].
Available at: https://all3dp.com/2/most-common-3d-file-formats-model/.

[3] The STL File Format – Simply Explained: Standard Tessellation Language. [Mu-
nich]: All3DP, 2021 [cit. 2022-05-01]. Available at: https://all3dp.com/1/

stl-file-format-3d-printing/.

[4] Liu, S., Zhang, M., Kadam, P. and Kuo, C.-C. J. 3D Point Cloud Analysis:
Traditional, Deep Learning, and Explainable Machine Learning Methods. 1st ed.
Cham: Springer International Publishing, 2021 [cit. 2022-05-01]. ISBN 978-3-030-
89179-4. Available at: DOI:10.1007/978-3-030-89180-0.

[5] Depth Sensing Technologies Overview: Choose the Best one for Your Application.
[Taufkirchen]: FRAMOS, c2022 [cit. 2022-05-03]. Available at: https://www.framos.

com/en/products-solutions/3d-depth-sensing/depth-sensing-technologies.

[6] Carvalho, L. E. and Wangenheim, A. von. 3D object recognition and classifica-
tion: a systematic literature review. Pattern Analysis and Applications. 2019, vol. 22,
no. 4, p. 1243–1292, [cit. 2022-05-05]. DOI: 10.1007/s10044-019-00804-4. ISSN 1433-
7541. Available at: http://link.springer.com/10.1007/s10044-019-00804-4.

[7] Hodaň, T., Sundermeyer, M., Drost, B., Labbé, Y., Brachmann, E. et al.
BOP Challenge 2020 on 6D Object Localization. Cham: Springer International Pub-
lishing. 2020, vol. 12536, p. 577–594, [cit. 2022-05-08]. DOI: 10.1007/978-3-030-66096-
3 39. Available at: https://link.springer.com/10.1007/978-3-030-66096-3_39.

[8] Aldoma, A., Marton, Z.-C., Tombari, F., Wohlkinger, W., Potthast, C.
et al. Tutorial: Point Cloud Library. IEEE Robotics & Automation Magazine. 2012,
vol. 19, no. 3, p. 80–91, [cit. 2022-05-07]. DOI: 10.1109/MRA.2012.2206675. ISSN
1070-9932. Available at: https://ieeexplore.ieee.org/document/6299166/.

[9] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A. et al. ABC:
A Big CAD Model Dataset for Geometric Deep Learning. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019,
p. 9593–9603 [cit. 2022-05-08]. DOI: 10.1109/CVPR.2019.00983. ISBN 978-1-7281-
3293-8. Available at: https://ieeexplore.ieee.org/document/8954378/.

67

DOI:10.1007/978-3-030-34372-9
DOI:10.1007/978-3-030-34372-9
https://all3dp.com/2/most-common-3d-file-formats-model/
https://all3dp.com/1/stl-file-format-3d-printing/
https://all3dp.com/1/stl-file-format-3d-printing/
DOI:10.1007/978-3-030-89180-0
https://www.framos.com/en/products-solutions/3d-depth-sensing/depth-sensing-technologies
https://www.framos.com/en/products-solutions/3d-depth-sensing/depth-sensing-technologies
http://link.springer.com/10.1007/s10044-019-00804-4
https://link.springer.com/10.1007/978-3-030-66096-3_39
https://ieeexplore.ieee.org/document/6299166/
https://ieeexplore.ieee.org/document/8954378/

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Wu, R., Xiao, C. and Zheng, C. DeepCAD: A Deep Generative Network for
Computer-Aided Design Models. In: 2021 IEEE/CVF International Conference
on Computer Vision (ICCV). IEEE, 2021, p. 6752–6762 [cit. 2022-05-08]. DOI:
10.1109/ICCV48922.2021.00670. ISBN 978-1-6654-2812-5. Available at: https:

//ieeexplore.ieee.org/document/9710909/.

[11] Marchand, E., Uchiyama, H. and Spindler, F. Pose Estimation for Aug-
mented Reality: A Hands-On Survey. IEEE Transactions on Visualization and
Computer Graphics. 2016-12-1, vol. 22, no. 12, p. 2633–2651, [cit. 2022-05-08]. DOI:
10.1109/TVCG.2015.2513408. ISSN 1077-2626. Available at: http://ieeexplore.

ieee.org/document/7368948/.

[12] Mortenson, M. E. Geometric transformations for 3D modeling. 2nd ed. New York:
Industrial Press, 2007. ISBN 978-0-8311-3338-2.

[13] Hodaň, T., Matas, J. and Obdržálek Štěpán. On Evaluation of 6D Object
Pose Estimation. In: Computer Vision – ECCV 2016 Workshops. Cham: Springer
International Publishing, 2016, p. 606–619 [cit. 2022-05-09]. DOI: 10.1007/978-3-319-
49409-8 52. ISBN 978-3-319-49408-1. Available at: http://link.springer.com/10.

1007/978-3-319-49409-8_52.

[14] Huynh, D. Q. Metrics for 3D Rotations: Comparison and Analysis. Journal of
Mathematical Imaging and Vision. 2009, vol. 35, no. 2, p. 155–164, [cit. 2022-05-
09]. DOI: 10.1007/s10851-009-0161-2. ISSN 0924-9907. Available at: http://link.

springer.com/10.1007/s10851-009-0161-2.

[15] OpenCV: OpenCV Modules. 2022 [cit. 2022-05-12]. Available at: https://docs.

opencv.org/4.x/.

[16] Open3D: A Modern Library for 3D Data Processing. C2018-2021 [cit. 2022-05-12].
Available at: http://www.open3d.org/docs/release/.

[17] Point Cloud Library (PCL): PCL API Documentation. 2022 [cit. 2022-05-12]. Avail-
able at: https://pointclouds.org/documentation/index.html.

[18] PCL/OpenNI tutorial 5: 3D object recognition (pipeline). [León]: [Robotics
Group of the University of León], 2015 [cit. 2022-05-13]. Available at:
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_5:

_3D_object_recognition_(pipeline).

[19] Han, X.-F., Sun, S.-J., Song, X.-Y. and Xiao, G.-Q. 3D Point Cloud Descriptors
in Hand-crafted and Deep Learning Age: State-of-the-Art. arXiv, 2018 [cit. 2022-

05-13]. DOI: 10.48550/ARXIV.1802.02297. Available at: https://arxiv.org/abs/

1802.02297.

[20] Himri, Ridao and Gracias. 3D Object Recognition Based on Point Clouds in
Underwater Environment with Global Descriptors: A Survey. Sensors. 2019, vol. 19,
no. 20, [cit. 2022-05-13]. DOI: 10.3390/s19204451. ISSN 1424-8220. Available at:
https://www.mdpi.com/1424-8220/19/20/4451.

68

https://ieeexplore.ieee.org/document/9710909/
https://ieeexplore.ieee.org/document/9710909/
http://ieeexplore.ieee.org/document/7368948/
http://ieeexplore.ieee.org/document/7368948/
http://link.springer.com/10.1007/978-3-319-49409-8_52
http://link.springer.com/10.1007/978-3-319-49409-8_52
http://link.springer.com/10.1007/s10851-009-0161-2
http://link.springer.com/10.1007/s10851-009-0161-2
https://docs.opencv.org/4.x/
https://docs.opencv.org/4.x/
http://www.open3d.org/docs/release/
https://pointclouds.org/documentation/index.html
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_5:_3D_object_recognition_(pipeline)
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_5:_3D_object_recognition_(pipeline)
https://arxiv.org/abs/1802.02297
https://arxiv.org/abs/1802.02297
https://www.mdpi.com/1424-8220/19/20/4451

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Li, P., Wang, R., Wang, Y. and Tao, W. Evaluation of the ICP Algorithm in
3D Point Cloud Registration. IEEE Access. 2020, vol. 8, p. 68030–68048, [cit.
2022-05-14]. DOI: 10.1109/ACCESS.2020.2986470. ISSN 2169-3536. Available at:
https://ieeexplore.ieee.org/document/9060927/.

[22] Li, M. and Hashimoto, K. Fast and Robust Pose Estimation Algorithm for
Bin Picking Using Point Pair Feature. In: 2018 24th International Conference on
Pattern Recognition (ICPR). Beijing: IEEE, 2018, p. 1604–1609 [cit. 2022-05-
14]. DOI: 10.1109/ICPR.2018.8545432. ISBN 978-1-5386-3788-3. Available at:
https://ieeexplore.ieee.org/document/8545432/.

[23] Li, D., Wang, H., Liu, N., Wang, X. and Xu, J. 3D Object Recognition and
Pose Estimation From Point Cloud Using Stably Observed Point Pair Feature.
IEEE Access. 2020, vol. 8, p. 44335–44345, [cit. 2022-05-14]. DOI: 10.1109/AC-
CESS.2020.2978255. ISSN 2169-3536. Available at: https://ieeexplore.ieee.org/

document/9024052/.

[24] Hanh, L. D. and Hieu, K. T. G. 3D matching by combining CAD model and
computer vision for autonomous bin picking. International Journal on Interactive
Design and Manufacturing (IJIDeM). 2021, vol. 15, 2-3, p. 239–247, [cit. 2022-
05-14]. DOI: 10.1007/s12008-021-00762-4. ISSN 1955-2513. Available at: https:

//link.springer.com/10.1007/s12008-021-00762-4.

[25] Wang, N., Lin, J., Zhang, X. and Zheng, X. Fast and Robust Object Pose Estima-
tion Based on Point Pair Feature for Bin Picking. In: 2021 27th International Con-
ference on Mechatronics and Machine Vision in Practice (M2VIP). Shanghai: IEEE,
2021-11-26, p. 528–533 [cit. 2022-05-14]. DOI: 10.1109/M2VIP49856.2021.9664997.
ISBN 978-1-6654-3153-8. Available at: https://ieeexplore.ieee.org/document/

9664997/.

[26] Drost, B., Ulrich, M., Navab, N. and Ilic, S. Model globally, match locally: Effi-
cient and robust 3D object recognition. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010, p. 998–
1005 [cit. 2022-05-14]. DOI: 10.1109/CVPR.2010.5540108. ISBN 978-1-4244-6984-0.
Available at: http://ieeexplore.ieee.org/document/5540108/.

[27] Hodaň, T., Michel, F., Brachmann, E., Kehl, W., Glent Buch, A. et al.
BOP: Benchmark for 6D Object Pose Estimation. European Conference on Computer
Vision (ECCV). 2018, [cit. 2022-05-13].

[28] Li, D., Liu, N., Guo, Y., Wang, X. and Xu, J. 3D object recognition and pose
estimation for random bin-picking using Partition Viewpoint Feature Histograms.
Pattern Recognition Letters. 2019, vol. 128, p. 148–154, [cit. 2022-05-14]. DOI:
10.1016/j.patrec.2019.08.016. ISSN 01678655. Available at: https://linkinghub.

elsevier.com/retrieve/pii/S0167865518304501.

[29] Liang, X. and Cheng, H. RGB-D Camera based 3D Object Pose Estimation and
Grasping. In: 2019 IEEE 9th Annual International Conference on CYBER Tech-
nology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019,

69

https://ieeexplore.ieee.org/document/9060927/
https://ieeexplore.ieee.org/document/8545432/
https://ieeexplore.ieee.org/document/9024052/
https://ieeexplore.ieee.org/document/9024052/
https://link.springer.com/10.1007/s12008-021-00762-4
https://link.springer.com/10.1007/s12008-021-00762-4
https://ieeexplore.ieee.org/document/9664997/
https://ieeexplore.ieee.org/document/9664997/
http://ieeexplore.ieee.org/document/5540108/
https://linkinghub.elsevier.com/retrieve/pii/S0167865518304501
https://linkinghub.elsevier.com/retrieve/pii/S0167865518304501

BIBLIOGRAPHY BIBLIOGRAPHY

p. 1279–1284 [cit. 2022-05-14]. DOI: 10.1109/CYBER46603.2019.9066550. ISBN 978-
1-7281-0770-7. Available at: https://ieeexplore.ieee.org/document/9066550/.

[30] Hu, H., Gu, W., Yang, X., Zhang, N. and Lou, Y. Fast 6D object pose es-
timation of shell parts for robotic assembly. The International Journal of Ad-
vanced Manufacturing Technology. 2022, vol. 118, 5-6, p. 1383–1396, [cit. 2022-
05-14]. DOI: 10.1007/s00170-021-07960-0. ISSN 0268-3768. Available at: https:

//link.springer.com/10.1007/s00170-021-07960-0.

[31] Kasaei, S. H., Lopes, L. S., Tome, A. M. and Oliveira, M. GOOD: A Global Or-
thographic Object Descriptor for 3D Object Recognition and Manipulation. GitHub,
2017. Available at: https://github.com/SeyedHamidreza/GOOD_descriptor.

[32] PCL/OpenNI tutorial 4: 3D object recognition (descriptors). [León]:
[Robotics Group of the University of León], 2015 [cit. 2022-05-13]. Available
at: https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_4:

_3D_object_recognition_(descriptors).

[33] Rusu, R. B., Bradski, G., Thibaux, R. and Hsu, J. Fast 3D recognition and
pose using the Viewpoint Feature Histogram. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010, p. 2155–2162 [cit.
2022-05-16]. DOI: 10.1109/IROS.2010.5651280. ISBN 978-1-4244-6674-0. Available
at: http://ieeexplore.ieee.org/document/5651280/.

[34] Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S. et al. CAD-
model recognition and 6DOF pose estimation using 3D cues. In: 2011 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCV Workshops). Barcelona:
IEEE, 2011, p. 585–592 [cit. 2022-05-16]. DOI: 10.1109/ICCVW.2011.6130296. ISBN
978-1-4673-0063-6. Available at: http://ieeexplore.ieee.org/document/6130296/.

[35] Aldoma, A., Tombari, F., Rusu, R. B. and Vincze, M. OUR-CVFH – Oriented,
Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recog-
nition and 6DOF Pose Estimation. In: Pattern Recognition. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, p. 113–122 [cit. 2022-05-15]. DOI: 10.1007/978-3-
642-32717-9 12. ISBN 978-3-642-32716-2. Available at: http://link.springer.com/

10.1007/978-3-642-32717-9_12.

[36] Wohlkinger, W. and Vincze, M. Ensemble of shape functions for 3D object
classification. In: 2011 IEEE International Conference on Robotics and Biomimet-
ics. Karon Beach: IEEE, 2011, p. 2987–2992 [cit. 2022-05-16]. DOI: 10.1109/RO-
BIO.2011.6181760. ISBN 978-1-4577-2138-0. Available at: http://ieeexplore.

ieee.org/document/6181760/.

[37] Kasaei, S. H., Tomé, A. M., Lopes, L. S. and Oliveira, M. GOOD: A
global orthographic object descriptor for 3D object recognition and manipulation.
Pattern Recognition Letters. 2016, vol. 83, p. 312–320, [cit. 2022-05-16]. DOI:
10.1016/j.patrec.2016.07.006. ISSN 01678655. Available at: https://linkinghub.

elsevier.com/retrieve/pii/S0167865516301684.

70

https://ieeexplore.ieee.org/document/9066550/
https://link.springer.com/10.1007/s00170-021-07960-0
https://link.springer.com/10.1007/s00170-021-07960-0
https://github.com/SeyedHamidreza/GOOD_descriptor
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_4:_3D_object_recognition_(descriptors)
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_4:_3D_object_recognition_(descriptors)
http://ieeexplore.ieee.org/document/5651280/
http://ieeexplore.ieee.org/document/6130296/
http://link.springer.com/10.1007/978-3-642-32717-9_12
http://link.springer.com/10.1007/978-3-642-32717-9_12
http://ieeexplore.ieee.org/document/6181760/
http://ieeexplore.ieee.org/document/6181760/
https://linkinghub.elsevier.com/retrieve/pii/S0167865516301684
https://linkinghub.elsevier.com/retrieve/pii/S0167865516301684

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Kasaei, S. H., Lopes, L. S., Tome, A. M. and Oliveira, M. An orthographic
descriptor for 3D object learning and recognition. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, p. 4158–
4163 [cit. 2022-05-16]. DOI: 10.1109/IROS.2016.7759612. ISBN 978-1-5090-3762-9.
Available at: http://ieeexplore.ieee.org/document/7759612/.

[39] Point Cloud Library. GitHub, 2013. Available at: https://github.com/

PointCloudLibrary/pcl#point-cloud-library.

[40] Point Cloud Library: The Point Cloud Library (PCL) is a standalone, large scale,
open project for 2D/3D image and point cloud processing. [cit. 2022-05-19]. Available
at: https://pointclouds.org/.

[41] PCL/OpenNI tutorial 2: Cloud processing (basic). [León]: [Robotics Group of the
University of León], 2015 [cit. 2022-05-13]. Available at: https://robotica.unileon.

es/index.php?title=PCL/OpenNI_tutorial_2:_Cloud_processing_(basic).

[42] PCL/OpenNI tutorial 3: Cloud processing (advanced). [León]: [Robotics Group of the
University of León], 2015 [cit. 2022-05-13]. Available at: https://robotica.unileon.

es/index.php?title=PCL/OpenNI_tutorial_3:_Cloud_processing_(advanced).

[43] Rusinkiewicz, S. A symmetric objective function for ICP. ACM Trans-
actions on Graphics. 2019, vol. 38, no. 4, p. 1–7, [cit. 2022-05-19]. DOI:
10.1145/3306346.3323037. ISSN 0730-0301. Available at: https://dl.acm.org/

doi/10.1145/3306346.3323037.

[44] Boost C++ Libraries. Boost, 2022 [cit. 2023-05-19]. Available at: https://www.

boost.org/.

[45] OpenNi 2 Downloads and Documentation. Occipital, c2022 [cit. 2022-05-19]. Available
at: https://structure.io/openni.

[46] Eigen. 2022 [cit. 2022-05-19]. Available at: https://eigen.tuxfamily.org/index.

php?title=Main_Page.

[47] VTK: The Visualization Toolkit. [Kitware] [cit. 2022-05-19]. Available at: https:

//vtk.org/.

[48] Rusu, R. B. and Cousins, S. 3D is here: Point Cloud Library (PCL). In: 2011
IEEE International Conference on Robotics and Automation. IEEE, 2011, p. 1–4.
ISBN 9781612843865.

[49] Jakob, W., Rhinelander, J. and Moldovan, D. Pybind11 - Seamless operability
between C++11 and Python. GitHub, 2017 [cit. 2023-05-13]. Available at: https:

//github.com/pybind/pybind11.

[50] Lohmann, N. JSON for Modern C++. GitHub, 2020 [cit. 2023-05-13]. Available at:
https://github.com/nlohmann.

[51] Merkel, D. Docker: lightweight linux containers for consistent development and
deployment. Linux journal. 2014, vol. 2014, no. 239, p. 2.

71

http://ieeexplore.ieee.org/document/7759612/
https://github.com/PointCloudLibrary/pcl#point-cloud-library
https://github.com/PointCloudLibrary/pcl#point-cloud-library
https://pointclouds.org/
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_2:_Cloud_processing_(basic)
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_2:_Cloud_processing_(basic)
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_3:_Cloud_processing_(advanced)
https://robotica.unileon.es/index.php?title=PCL/OpenNI_tutorial_3:_Cloud_processing_(advanced)
https://dl.acm.org/doi/10.1145/3306346.3323037
https://dl.acm.org/doi/10.1145/3306346.3323037
https://www.boost.org/
https://www.boost.org/
https://structure.io/openni
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://vtk.org/
https://vtk.org/
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://github.com/nlohmann

List of abbreviations

CAD Computer-Aided Design

CRH Camera Roll Histogram

CRH Camera Roll Histogram

CS Coordinate System

CVFH Clustered Viewpoint Feature Histogram

ESF Ensemble of Shape Functions

FLANN Fast Library for Approximate Nearest Neighbors

FOV Field Of View

FPFH Fast Point Feature Histogram

GOOD Global Orthographic Object Descriptor

ICP Iterative Closest Point

ID Identification number

JSON JavaScript Object Notation

NNS Nearest-Neighbors Search

OUR-CVFH Oriented Unique and Repeatable Clustered Viewpoint Feature Histogram

PCA Principal Component Analysis

PCD Point Cloud Data

PCL Point Cloud Library

RANSAC RANdom Sample Consensus

ROI Region Of Interest

STEP Standard for the Exchange of Product Data

STL STereo Litography

VFH Viewpoint Feature Histogram

72

List of Figures

2.1 Illustration of the problem scenario . 13

2.2 Representations of STEP and STL file formats 14

2.3 Depth map, RGB image, and RGB point cloud 15

2.4 General pipeline for 3D object recognition and classification 17

2.5 Example of objects from the DeepCAD dataset 18

2.6 Illustration of 3D registration of two point clouds 19

2.7 Illustrations of self-occlusion on a cup model and symmetric parts 20

3.1 Point Cloud Library recognition pipelines 23

3.2 Detailed global pipeline based on related work 25

3.3 Example of point cloud downsampling using voxel grid 26

3.4 Example of input and output of point cloud normal estimation 27

4.1 The structure of the proposed solution . 34

4.2 Illustration of the usage of the proposed solution 35

5.1 Utilities module structure . 39

5.2 Dataset preparation module structure . 40

5.3 Illustration of the dataset creation implementation 41

5.4 Illustration of the model, icosahedron and partial views. 42

5.5 Global pipeline module structure . 42

5.6 Illustration of the offline stage implementation 43

5.7 Illustration of the online stage implementation 44

5.8 Illustration of the solution wrapper implementation 46

5.9 Illustration of solution pipeline. 47

6.1 3D models of selected real objects and selected 3D models from the Deep-
CAD dataset . 49

6.2 Example of generated partial views for accuracy tests 49

6.3 Improvised capture setup and part of an example captured data 50

6.4 Example of segmented captured point clouds from real dataset 51

6.5 Confusion matrix of the best global descriptor in ground truth tests on six
objects group . 54

6.6 Box plot of pose errors of the best global descriptor in ground truth tests
on real objects group . 55

6.7 Box plot of pose errors of the best global descriptor in ground truth tests
on six objects group . 55

6.8 Confusion matrix of the best global descriptor in virtual noise tests on real
objects group . 57

73

LIST OF FIGURES LIST OF FIGURES

6.9 Confusion matrix of the best global descriptor in virtual noise tests on six
objects group . 57

6.10 Box plot of pose errors of the best global descriptor in virtual noise tests
on real objects group . 58

6.11 Box plot of pose errors of the best global descriptor in virtual noise tests
on six objects group . 58

6.12 Confusion matrix of the best global descriptor in capture OpenNI2 tests
on real objects group . 60

6.13 Confusion matrix of the best global descriptor in capture RealSense SDK
tests on real objects group . 60

6.14 Box plot of pose errors of the best global descriptor in capture OpenNI2
tests on real objects group . 61

6.15 Box plot of pose errors of the best global descriptor in capture RealSense
SDK tests on real objects group . 61

6.16 Visual examples of results in capture OpenNI2 tests on real objects group . 62

74

List of Tables

6.1 Recognition results for ground truth tests on one object group. 53
6.2 Recognition results for ground truth tests on real objects group. 53
6.3 Recognition results for ground truth tests on six objects group. 53
6.4 Pose errors under the specific threshold for ground truth tests of each group

on best recognizing descriptor. 54
6.5 Recognition results for virtual noise tests on one object group. 56
6.6 Recognition results for virtual noise tests on real objects group. 56
6.7 Recognition results for virtual noise tests on six objects group. 56
6.8 Pose errors under the specific threshold for virtual noise tests of each group

on best recognizing descriptor. 56
6.9 Recognition results for capture OpennNI2 tests on one object group. 59
6.10 Recognition results for capture RealSense SDK tests on one object group. . 59
6.11 Recognition results for capture OpennNI2 tests on real objects group. . . . 59
6.12 Recognition results for capture RealSense SDK tests on real objects group. 59
6.13 Pose errors under the specific threshold for OpenNI2 capture tests of each

group on best recognizing descriptor and descriptor with most poses under
the threshold. Ground truth poses were just coarsely estimated. 60

6.14 Pose errors under the specific threshold for RealSense SDK capture tests of
each group on best recognizing descriptor and descriptor with most poses
under the threshold. Ground truth poses were just coarsely estimated. . . . 61

75

A Attached files

/

solution/

configs/

examples/

example.py

include/

dataset preparation.h

global pipeline.h

solution.h

thirdparty/

good.hpp

utilities.hpp

src/

dataset preparation.cpp

global pipeline.cpp

pybind.cpp

solution.cpp

utilities.cpp

CMakeLists.txt

data/

docker/

build image.sh

Dockerfile

experiments/

configs/

build solution.sh

run docker.sh

... folder all source files regarding the solution

... folder including sample input JSON for the solution pipeline

... folder examples of both in Python and C++

... example usage of the solution wrapper in Python

... folder containing mostly header files

... headers file of the Dataset preparation module

... headers file of the Global pipeline module

... headers file of the solution wrapper

... folder containing modified third party code

... modified GOOD for use in the solution

... headers file of the Utilities module

... folder containing cpp files

... source code of the Dataset preparation module

... source code of the Global pipeline module

... source code of the Pybind of solution wrapper

... source code of the solution wrapper

... source code of the Utilities module

... CMakeLists file for building the project

... folder including 3D models and data examples

... folder including Docker image recepie

... shell script for building the image based on the Dockerfile

... Dockerfile for the creation of an image that can run the solution

... folder regarding experiments

... folder including all used JSON files for the experiments

... shell script for building the solution

... shell script for building the solution.

76

B Instructions

To run/develop the solution, a Linux OS, preferably Ubuntu or related distributions, is
required. First, the Docker image must be built to create a stable environment for the
solution to compile. The procedure is as follows:

1. Install the Docker.

2. Extract the contents of the attachments folder to a folder on your disk.

3. Via terminal, change directory into the attachments/docker folder.

4. Run the build image.sh shell script, root privileges may be required. The build of
the image can take approximately 40 minutes, as the PCL is built from the source.

After successfully building the image, a Docker container of this image can be run. The
interactive run makes building or developing the solution within this container possible,
with a workflow similar to doing so on a remote machine. The procedure for running the
container and building the solution, and executing an example is as follows:

1. Change directory to the attachments folder.

2. Execute the run docker.sh, which creates a container of the Docker image created
earlier and enters this container in interactive mode.

3. Within the Docker container, execute the build solution.sh shell script, which com-
piles the solution.

4. To test the solution, run ‘python3 /masters project/solution/examples/example.py‘.

77

C Solution pipeline related files

Multiple JSON files are used within the created solution pipeline. These include file
path lists, configuration files, and results. Individual contents of these types of files are
described below while being organized by relevant parts of the solution pipeline, where
they are used or generated. For each object, its type is noted in square brackets, followed
by a short description.

C.1 Dataset preparation

The dataset preparation part of the solution pipeline requires two JSON files as an input
and outputs dataset folder, including the main dataset JSON file.

C.1.1 Dataset preparation config JSON

These files are used as input.

• tag [str] user note on the dataset,

• virtual depth camera [contains objects below],

◦ field of view deg [1×2 vec of float] horizontal and vertical FOV of the virtual depth
camera,

◦ noise [contains objects below],

⋄ model [str] noise model to use (”none”, ”gaussian”, and ”gaussianray”),
⋄ standard deviation mm [float] standard deviation of the noise models in mm,

◦ resolution px [1×2 vec of int] resolution of a virtual depth camera in horizontal
and vertical axes,

• organized output [bool] output point clouds are organized (this makes the resulting
files bigger),

• virtual views icosahedron [contains objects below],

◦ capture distance mm [float] virtual depth camera distance from the origin in mm,

◦ subdivide [int] number of icosahedron subdivisions,

◦ use vertices [bool] use vertices for camera views generation,

◦ xyz rotation deg [float] rotate the whole icosahedron in all axes.

C.1.2 Model list JSON

These files are used as input.

• model paths [1×n vec of str] paths to the STL 3D model files.

78

C SOLUTION PIPELINE RELATED FILES C.1 DATASET PREPARATION

C.1.3 Dataset out JSON

These files are outputted.

• dataset preparation config [dataset preparation config],

• models [1×n vec of model objects],

◦ [model],

⋄ T1 [4×4 mat] transformation matrix,
⋄ id [int] ID of the model,
⋄ name [str] name of the model,

• views [1×6 vec of view],

◦ [view],

⋄ T2 [4×4 mat] transformation matrix,
⋄ id [int] ID of the view.

C.1.4 Generated dataset folder

The following file structure is generated when creating a dataset.

specified dataset output path/

dataset.json

descriptors/

descriptor name.pcd

descriptor name config.json

descriptor name references.json
...

models/

0000/

mesh.stl

views

0000.pcd
...

...

... generated Dataset out JSON

... descriptors already computed in the offline stage

... folder named by model ID

... partial view named by view ID

79

C SOLUTION PIPELINE RELATED FILES C.2 GLOBAL PIPELINE

C.2 Global pipeline

The global pipeline requires extensive configuration contained within the JSON file de-
scribed below. Moreover, this part of the solution pipeline outputs various JSON files,
which are also presented.

C.2.1 Global pipeline config JSON

These files are used as input.

• preprocessing [contains objects below],

◦ scale flag [bool] use scaling,

◦ scale factor [flaot] scale factor,

◦ xyz filter flag [bool] use XYZ filter,

◦ xyz limits [1×6 vec of float] points within this limits are preserved,

◦ voxel grid flag [bool] use voxel grid filter,

◦ voxel size [float] voxel size,

◦ plane removal flag [bool] use plane removal,

◦ plane removal distance threshold [float] plane removal threshold in mm,

◦ radius outlier removal flag [bool] use radius outlier removal,

◦ radius outlier removal radius [float] radius around each point of the point cloud,

◦ radius outlier removal min points in radius [int]minimal number of points that must
be inside the radius,

◦ statistical outlier removal flag [bool] use statistical outlier removal,

◦ statistical outlier removal num of k nearest neighbors [int] number of k nearest neigh-
bors that will be considered for computing statistics,

◦ statistical outlier removal std deviation multiplier [float] standard deviation multi-
plier for a threshold above which the points are removed,

• normal estimation [contains objects below],

◦ search radius [float] search radius for normal estimation in mm,

◦ normal to view angle deviation degrees [float] allowed deviation from the camera -Z
axis and estimated normal,

• global descriptor [str] global descriptor to use (”vfh”, ”cvfh”, ”ourcvfh”, ”good”, ”esf”),

• coarse alignment [contains objects below],

◦ use crh [bool] use crh for coarse rotation alignment,

◦ use descriptor if possible [bool] use a descriptor for coarse alignment if possible (in
case of ”ourcvfh” or ”good”)

◦ use correction by centroids [bool] use correction by translating candidate point cloud
based on centroids,

80

C SOLUTION PIPELINE RELATED FILES C.2 GLOBAL PIPELINE

• pose refinement [contains objects below],

◦ voxelize scene [bool] voxelize scene before pose refinement,

◦ voxelize view [bool] voxelize candidates before pose refinement,

◦ voxel size [float] voxel size,

◦ enforce same direction normals [bool] enforce same direction of normals for scene
and candidates,

◦ euclidean fitness epsilon [float] euclidian fitness epsilon,

◦ max correspondence distance [float] max distance between correspondences,

◦ max iterations [int] maximum number of iterations,

◦ transformation epsilon [float] transformation epsilon,

◦ use symmetric objective [bool] use symmetric objective,

• hypothesis verification [contains objects below],

◦ model representation voxel size [float] voxel size for creation of full point cloud from
all partial views,

◦ inlier threshold [float] inlier threshold,

◦ occlusion reasoning [bool] use occlusion reasoning,

◦ occlusion threshold [float] occlusion threshold,

◦ regularizer [float] regularizer size,

◦ verification voxel size [float] voxel size used for hypothesis verification

• vfh [contains objects below],

◦ k nn [int] number of nearest neighbours,

◦ use fill size component [bool] use fill size component,

◦ use normalized bins [bool] normalize bins after computation,

• cvfh [contains objects below],

◦ cluster tolerance distance [float] cluster tolerance distance,

◦ eps angle threshold deg [float] eps angle threshold in degrees,

◦ k nn [int] number of nearest neighbours,

◦ min points [int] minimum number of points in a cluster,

◦ use normalized bins [bool] normalize bins after computation,

• ourcvfh [contains objects below],

◦ cluster tolerance distance [float] cluster tolerance distance,

◦ eps angle threshold deg [float] eps angle threshold in degrees,

◦ k nn [int] number of nearest neighbours,

◦ min points [int] minimum number of points in a cluster,

◦ use normalized bins [bool] normalize bins after computation,

• esf [contains objects below],

◦ k nn [int] number of nearest neighbours,

81

C SOLUTION PIPELINE RELATED FILES C.2 GLOBAL PIPELINE

• good [contains objects below],

◦ k nn [int] number of nearest neighbours,

◦ num of bins [int] number of bins for orthogonal view,

◦ threshold [float] threshold value,

• debug [contains objects below],

◦ result to cout [bool] print result to the terminal,

◦ step notion to cout [bool] print information about executing individual steps to the
terminal,

◦ save extras json [bool] print result to the terminal,

◦ save point clouds [bool] save point clouds to the output folder,

◦ save used dataset json [bool] save used dataset out to the output folder,

◦ save used pipeline config json [bool] save used pipeline config to the output folder

◦ visualize flag [bool] visualize steps according to visualize object

◦ visualize [contains objects below],

⋄ preprocess [bool] visualize preprocess step,
⋄ normal estimation [bool] visualize normal estimation step,
⋄ coarse alignment [bool] visualize coarse alignment step,
⋄ pose refinement [bool] visualize pose refinement step,
⋄ result [bool] visualize result,
⋄ result with candidates [bool] visualize result with all candidates.

C.2.2 Result JSON

These files are outputted.

• T final [4×4 mat of float] transformation matrix,

• candidate id [int] result candidate id (default: -1),

• icp converged [bool] signaling if the ICP converged for the resulting candidate (de-
fault: false),

• icp fitness [float] ICP fitness of the resulting candidate (default: -1),

• match distance [float] descriptor match distance of the resulting candidate (default: -1),

• model id [int] model id of the resulting candidate,

• model name [str] model name of the resulting candidate,

• timestamp [str] formatted timestamp,

• view id [int] view id of the resulting candidate.

82

C SOLUTION PIPELINE RELATED FILES C.2 GLOBAL PIPELINE

C.2.3 Extras JSON

These files are outputted.

• candidate extras [1×n vec of candidate objects]

◦ [candidate]

⋄ T 1 [4×4 mat of float] transformation matrix,
⋄ T 2 [4×4 mat of float] transformation matrix,
⋄ T 3 [4×4 mat of float] transformation matrix,
⋄ T 4 [4×4 mat of float] transformation matrix,
⋄ T final [4×4 mat of float] transformation matrix,
⋄ icp converged [bool] signaling if the ICP converged for the resulting candidate
(false),

⋄ icp fitness [float] ICP fitness of the resulting candidate (default: -1),
⋄ id [int] candidate ID (before ICP fitness sorting),
⋄ match distance [float] descriptor match distance of the resulting candidate (de-
fault: -1),

⋄ model id [int] model id of the resulting candidate,
⋄ model name [str] model name of the resulting candidate,
⋄ num of points [int] number of candidate view point cloud points,
⋄ num of points refinement [int] number of candidate point cloud points used for
pose refinement,

⋄ view id [int] view id of the resulting candidate

• scene extras [contains objects below],

◦ num of points input [int] number of input scene point cloud points,

◦ num of points normal estimation [int] number of input scene point cloud points used
for normal estimation,

◦ num of points refinement [int] number of input scene point cloud points used for
pose refinement,

• time profiling [1×n vec of measured operation objects]

◦ [measured operation]

⋄ measure ms [float] measured time in ms,
⋄ tag [str] tag of the counter

• timestamp [str] formatted timestamp,

C.2.4 Evaluation JSON

These files are outputted.

• ground truth model id [int] ground truth model id (in case of using dataset created by
solution, otherwise -1),

• ground truth model name [str] mesh model name

• ground truth transformation matrix [4×4 mat of float] transformation matrix,

• ground truth view id [int] ground truth model id (in case of using dataset created by
solution), otherwise -1,

• timestamp [str] formatted timestamp,

83

C SOLUTION PIPELINE RELATED FILES C.2 GLOBAL PIPELINE

• recognized correctly [bool] signals if the ground truth model corresponds with the re-
sulting model,

• rotation error deg [float] result to ground truth pose rotation error in degrees,

• translation error mm [float] result to ground truth pose translation error in mm.

Iteration output folder

specified global pipeline out folder/

formatted-timestamp/

result.json

evaluation.json (accuracy testing)

evaluation dataset.json (accuracy testing)

extras.json (debug option)

used dataset.json (debug option)

used pipeline config.json (debug option)

candidate 0.ply (debug option)
...

candidate n.ply (debug option)

result full.ply (debug option)

result partial.pcd (debug option)

result partial.ply (debug option)

scene cloud w normals.pcd (debug option)

scene cloud w normals.ply (debug option)

scene original.ply (debug option)

... the iteration output folder

84

D Configuration used for testing

Apart from this chapter, the exact JSON files used for experiments are also in the attached
files. The bold values are the values that differ between the experiments.

D.1 Dataset preparation config

Dataset preparation JSON for the ground truth tests and database creation:

• virtual depth camera :

◦ field of view deg : [50.0, 40.0],

◦ noise :

⋄ model : none,
⋄ standard deviation mm : 0.0,

◦ resolution px : [640, 480],

◦ organized output : false,

• virtual views icosahedron :

◦ capture distance mm : 650.0,

◦ subdivide : 1,

◦ use vertices : true,

◦ xyz rotation deg : 5.0,

Dataset preparation JSON for the virtual noise tests dataset creation:

• virtual depth camera :

◦ field of view deg : [50.0, 40.0],

◦ noise :

⋄ model : gaussianray,
⋄ standard deviation mm : 3.0,

◦ resolution px : [640, 480],

◦ organized output : false,

• virtual views icosahedron :

◦ capture distance mm : 700.0,

◦ subdivide : 1,

◦ use vertices : true,

◦ xyz rotation deg : 15.0,

85

D CONFIGURATION USED FOR TESTING D.2 GLOBAL PIPELINE CONFIG

D.2 Global pipeline config

Global pipeline config JSON for ground truth tests and virtual noise tests experi-
ments:

• preprocessing :

◦ scale factor : 1000.0,

◦ scale flag : false,

◦ xyz filter flag : false,

◦ xyz limits : [-10000.0, 10000.0, -10000.0, 10000.0, -10000.0, 10000.0],

◦ voxel grid flag : true,

◦ voxel size : 1.0,

◦ plane removal distance threshold : 10.0,

◦ plane removal flag : false,

◦ radius outlier removal flag : false,

◦ radius outlier removal min points in radius : 50,

◦ radius outlier removal radius : 10.0,

◦ statistical outlier removal flag : false,

◦ statistical outlier removal num of k nearest neighbors : 50,

◦ statistical outlier removal std deviation multiplier : 1.0,

• normal estimation :

◦ normal to view angle deviation degrees : 89.0,

◦ search radius : 9.0,

• vfh :

◦ k nn : 6,

◦ use fill size component : true,

◦ use normalized bins : true,

• cvfh :

◦ k nn : 6,

◦ min points : 200,

◦ cluster tolerance distance : 9.0,

◦ eps angle threshold deg : 20.0,

◦ radius normals : 9.0,

◦ use normalized bins : true,

• ourcvfh :

◦ k nn : 6,

◦ min points : 200,

◦ cluster tolerance distance : 9.0,

◦ eps angle threshold deg : 20.0,

◦ radius normals : 9.0,

◦ use normalized bins : true,

86

D CONFIGURATION USED FOR TESTING D.2 GLOBAL PIPELINE CONFIG

• esf :

◦ k nn : 6,

• good :

◦ k nn : 6,

◦ num of bins : 6,

◦ threshold : 200.0,

• coarse alignment :

◦ use crh : true,

◦ use descriptor if possible : true,

◦ use correction by centroids : true,

• pose refinement :

◦ enforce same direction normals : true,

◦ euclidean fitness epsilon : 0.1,

◦ max correspondence distance : 1500.0,

◦ max iterations : 150,

◦ transformation epsilon : 0.1,

◦ use symmetric objective : true,

◦ voxel size : 3.0,

◦ voxelize scene : true,

◦ voxelize view : true,

• hypothesis verification :

◦ inlier threshold : 10.0,

◦ regularizer : 45.0,

◦ resolution : 5.0,

◦ occlusion reasoning : true,

◦ occlusion threshold : 6,

• debug :

◦ result to cout : false,

◦ step notion to cout : true,

◦ save extras json : true,

◦ save point clouds : false,

◦ save used dataset json : true,

◦ save used pipeline config json : true,

◦ visualize flag : false,

◦ visualize :

⋄ preprocess : false,
⋄ normal estimation : false,
⋄ coarse alignment : false,
⋄ pose refinement : false,
⋄ result : false,
⋄ result with candidates : false,

87

D CONFIGURATION USED FOR TESTING D.2 GLOBAL PIPELINE CONFIG

Differences from the configuration above for capture experiments:

• preprocessing :

◦ scale flag : true,

◦ scale factor : 1000,

◦ xyz filter flag : true,

◦ xyz limits : [-262, 262, -261, 200, 200, 790],

◦ voxel grid flag : true,

◦ voxel size : 1.0,

◦ plane removal flag : true,

◦ plane removal distance threshold : 11.0,

◦ radius outlier removal flag : false,

◦ radius outlier removal radius : 10.0,

◦ radius outlier removal min points in radius : 50,

◦ statistical outlier removal flag : true,

◦ statistical outlier removal num of k nearest neighbors : 50,

◦ statistical outlier removal std deviation multiplier : 4.0,

• hypothesis verification :

◦ inlier threshold : 15.0,

◦ regularizer : 45.0,

◦ resolution : 5.0,

◦ occlusion reasoning : true,

◦ occlusion threshold : 15,

88

	Introduction
	Base research
	Scenario details and assessment
	3D data representations
	Considered 3D model file formats
	Point clouds and their acquisition

	3D object recognition
	General pipeline
	Main feature-based representations
	Relevant datasets for the considered scenario

	Pose estimation
	Ambiguous views and pose estimate evaluation

	Available libraries for depth data processing
	Main conclusions of the chapter

	Algorithm research
	Related work
	Point Cloud Library recognition pipelines
	Relevant comparison works
	Other relevant works
	Assessment of current state

	Common steps for both stages
	Downsampling
	Normal estimation

	Selected global descriptors
	Viewpoint Feature Histogram and improved variants
	Ensemble of Shape Functions
	Global Orthographic Object Descriptor

	Offline stage
	Online stage
	Filtering
	Segmentation
	Matching
	Coarse alignment
	Pose refinement
	Hypothesis verification

	Key PCL dependencies

	Solution draft
	Required features
	Architecture proposal
	Utilities module
	Dataset preparation module
	Global pipeline module
	Usage

	Validation of the solution

	Implementation
	Tools and algorithms
	List of used hardware and software
	Implementation of the solution draft
	Utilities module implementation
	Dataset preparation module implementation
	Global pipeline module implementation
	Solution wrapper implementation

	Validation of the solution
	Data
	3D models and its groups
	Generated datasets
	Captured data

	Experiments
	Types
	Conditions
	Execution
	Data processing

	Results
	Ground truth tests
	Virtual noise tests
	Capture tests
	Commentary

	Assesment of the solution

	Conclusion
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	Attached files
	Instructions
	Solution pipeline related files
	Dataset preparation
	Dataset preparation config JSON
	Model list JSON
	Dataset out JSON
	Generated dataset folder

	Global pipeline
	Global pipeline config JSON
	Result JSON
	Extras JSON
	Evaluation JSON

	Configuration used for testing
	Dataset preparation config
	Global pipeline config

