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Abstract

This Master’s thesis deals with the electromagnetic analysis and modeling of a
solid rotor induction machine. The work includes a state-of-review on the topic of
high-speed electrical machines, with the description of their advantages and disad-
vantages compared to conventional electrical machines with gearboxes, division of
high-speed electrical machines with solid rotors, and comparison of their advantages
and disadvantages, where the emphasis is placed mainly on high-speed induction
machines with solid rotors and their use and applications in industry. Furthermore,
the work deals with methods of calculation of electrical induction machines with
solid rotors. Thus, methods for analytical calculation and finite element calculation of
induction machines with solid rotors are described here. Above all, the emphasis is
placed on the finite element method in a 2D space using correction end-effect factors,
which are divided and described in detail here. Based on the obtained literature, an
electric machine with a solid rotor is calculated using electromagnetic FEM analysis.
The calculation of the machine is automatized with Python script. As another main
objective of this work is to describe the so called surrogate models, their advantages
and disadvantages, their use in industry and especially the application of surrogate
models to a electrical machines with a solid rotor. Using surrogate models, the case
study machine with a solid rotor is then optimized using SymSpace and Optimizer. For
the optimizations, 3 machine designs were considered and eventually compared with

each other from an electromagnetic performance point of view.
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Abstrakt

Tato diplomova prace se zabyva elektromagnetickou analyzou a modelovanim
asynchronniho stroje s plnym rotorem. Tato prace tedy zahrnuje literarni resersi na
téma vysokootackovych elektrickych stroju s porovnanim s klasickymi elektrickymi
stroji s prevodovkou a popisem jejich vyhod ¢i nevyhod, rozdéleni vysokootackovych
elektrickych stroju s plnymi rotory a srovnani jejich vyhod ¢i nevyhod, kde se tato
prace nejvice soustfeduje na vysokootackové asynchronni stroje s plnymi rotory a
jejich pouziti v prumyslu. Dale se tato prace zabyva metodami vypoctu elektrickych
asynchronnich stroju s plnymi rotory. Proto jsou zde uvedeny a popsany metody
vypoctu stroje mezi které patii analytické metody i metoda kone¢nych prvku. Vzh-
ledem k povaze elektrickych stroju s plnymi rotory je hlavné kladen duraz v této
praci na vypocet stroje pomoci metody kone¢nych prvku ve 2D prostoru s vyuzitim
korekénich ¢initelu koncu plnych rotoru, které jsou zde velmi detailné popsany a
rozdéleny. Na zakladé dostupné literatury je vypocitany elektricky stroj s plnym
rotorem pomoci MKP analyzy. Elektromagneticky vypocet stroje je automatizovan
pomoci skriptu vytvofeného v Pythonu. Dalsim hlavnim cilem této prace je popis tzv.
nahradnich modelu, uvedeni jejich vyhod ¢i nevyhod, pouziti v jinych prumyslovych
odvétvich a hlavné pouziti nahradnich modelu na elektricky stroj s plnym rotorem. S
vyuzitim nahradnich modelu je dale optimalizovany vybrany asynchronni stroj s plnym
rotorem a to pomoci programu SymSpace a Optimizer. Pro samotnou optimalizaci byly
uvazovany 3 navrhy stroje, které byly na zavér mezi sebou porovnany a to hlavné z

hlediska jejich elektromagnetického vykonu.

Klicova slova
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Elektromagneticky vypocet, Elektromagneticka analyza, Nahradni model, Nahradni
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Rozsireny abstrakt

Tato diplomova prace se zabyva elektromagnetickou analyzou a modelovanim
asynchronniho stroje s plnym rotorem. Elektricke stroje s plnymi rotory jsou v
dnesni dobé pozadovany hlavné v prumyslovych aplikacich, kde jsou nutné vyssi
otacky stroje. Duvodem vyuziti pravé vysokootackovych stroju s plnymi rotory je
jejich robustnost, odolnost vuci vysokym centrifugalnim a tahovym silam, dosahuje
vysokych obvodovych rychlosti rotoru, kompaktnost bez nutnosti pouziti prevodovky,
bezudrzbovost a jsou vyhodné zejména z ekonomického a ekologického hlediska. Z
tehle duvodu jsou elektrické stroje s prevodovkou nahrazovany vysokootackovymi
stroji. Diky rozsahlému vyzkumu a vyvoje frekvencich ménicu je to mozné. Navic
frekve¢ni ménice v dnesni dobé dosahuji vysokych ucinosti s mnohem dostupnéjsi
cenou nez tomu bylo diive. Elektrické vysokootackoveé stroje s plnymi rotory maji navic

tu vyhodu, ze dosahuji lepsich elektromangetickych parametru pti vyssich rychlostech.

V prvni kapitole jsou vice popsany vyhody a nevyhody vysokootackovych elek-
trickych s plnymi rotoy, oproti klasikym elektrickym strojum s pfevodovkou. Navic tato
prace obsahuje literarni resersi na téma vysokootackovych elektrickych stroju a jejich
rozdéleni. Mezi tyto typy vysokootackovych stroju s plnymi rotory patii napi. indukéni
stroje, synchroni reluktancni stroje, homopolarni stroje a dalsi. Vsechny tyto typy
vysokootackovych stroju jsou vypsany s jejich vyhodami a nevyhodami, popfipadé
vlastnostmi. Dale jsou zde vypsany materialové pozadavky téchto stroju, které by
méli byt dodrzeni pro dosaZzeni nejlepsich parametru stroje. Ze vSech vypsanych typu
vysokootackovych stroju, je nejvétsi duraz kladen na vysokootackovy indukéni stroj
s plnym rotorem, ktery je nejvice rozsifeny, nejlevnéji, nejjednodussi na vyrobu a
dosahuje pfi vyssich rychlostech dobre elektromagnetické parametry. Pro tento typ
stroje byly vypsany a detailné popsany ruzné typy rotorovych konstrukci. Mezi tyto
rotorvé konstrukce patfi naptiklad hladky plny rotor, axialné drazkovany plny rotor a
dalsi. Nakonec této kapitoly bylo vypsano nékolik aplikaci a pouziti vysokootackovych
stroju s plnymi rotory v prumyslovém odvétvi, mezi které patii napt. turbo cirkulator,

plynovy kompresor, turbomolekularni cerpadla a dalsi.

Ve druhé kapitole se prace zaobira metodami vypoctu elektrickych indukénich
stroju s plnymi rotory. Jsou zde popsany dvé zakladni metody vypoctu elektrickych
stroju: analyticka metoda vypoctu a metoda koneénych prvku. Pro analytické metody
je zde popsano nékolik postupu a metodik pro vypocet indukéniho stroje s plnym
rotorem, vcetné jejich vyhod a nevyhod. V dalsi casti jse uvedena metoda konecnych
prvku a jeji moznosti. Je tu hlavné popsan rozdil mezi programy vyuzivajici metodu

koneénych prvki pro simulaci elektromagnetického modelu, a to bud ve 2D nebo 3D



prostfedi s jejich vyhodami a nevyhodami. V ramci pouziti metody kone¢nych prvku
pro vypocet stroje v této praci, se dalsi ¢ast zaobira postupy a uskalimi 2D simulaci
pomoci metody konenénych prvku. V ramci téchto simulaci jsou uvedeny a podrobné
popsany korekéni faktory koncu pevného rotoru, pro ruzné typy pevnych rotoru, které
maji za ukol upravit vodivost materialu ve 2D modelu. Hlavni korekéni faktory jsou

mezi sebou porovnany a v urcitych pripadech jsou uvedeny i priklady jejich vypoctu.

Ve treti kapitole je popsan proces tzv. Nahradniho modelovani. Jedna se v podstaté o
aproximaci zavislosti mezi vstupnimi a vystupnimi parametry stroje, kdy se vytvoii tzv.
nahradni model. Jinymi slovy by se nahradni modely daly popsat jako statistické mod-
ely, které jsou strojové uceny. Hlavni vyhodou této metody je tedy znacné zrychleni
pfi optimalizaci navrhu stroje, nebof se v podstaté jedna o rychlé vyhodnoceni a
predikci mozné hodnoty vystupniho parametru stroje. Konvencni optimalizace stroje
zahrnuje hlavné vypocet stroje pomoci metody koneénych prvku, ktery je znacné
Casové narocnéjsi. V této kapitole je tedy obecné popsana prace s procesem nahradniho
modelovani, jeho vyhody ¢i nevyhody, pouziti ve prumyslu a mozné vyuziti i pravé na

induk¢ni stroje s plnymi rotorem.

Ve ctvrté kapitole je uveden stroj pro pripadovou studii. Uvazovany stroj byl
indukéni axialné drazkovany s plnym rotorem. Stroj je napajeny rovnou ze sité z
duvodu jednodussiho vypoctu pomoci MKP simulaci a potencionalné mozného méteni
vyrobenéeho vzorku. Dale byl zde popsan algoritmus pro vypocet a vyhodnoceni
simulovanych vysledku. Algoritmus a vyhodnoceni vyslekdu je zproztfedkovano
pomoci programovaciho jazyka Python. Vytvoreni geometrie je provedeno v programu
FreeCAD, coz je open-source program pro tvorbu 2D a 3D modelu ¢i vykresu. Samotna
simulace byla provedena v programu Ansys maxwell, kde byla vyuzita 2D tranzientni

simulace. Veskeré vlastnosti a duvody vybéru programu byly popsany v této kapitole.

V paté kapitole jsou uvedeny a popisany dosazené vysledky vsech simulaci vy-
braného stroje. Jsou zde ukazany zejména momentova charakteristika stroje, vykonove
charakteristiky v zavislosti na elektromagnetickeé Gc¢innosti, t¢inniku, fazového proudu
a ztrat ve stroji. Nakonec byl pro stroj vybran pracovni bod, ktery byl dale pouzit pro

potieby nahradniho modelovani stroje.

Sesta kapitola ukazuje p¥imou implementaci nahradniho modelu na vybrany
indukéni stroj. Tato operace se sestava z nékolika kroku, kde prvni krok byl urceni
celkovy pocet vsech vstupnich parametru stroje. Druhy krok je pak citlivostni analyza
stroje s vyuzitim uréenych vstupnich parametru stroje, ktera slouzi pro zjisténi mozného

dalsiho zlepsni vykonu stroje a hlavné pro zjisténi charakteristik mezi vstupnimi a



vystupnimi parametry stroje. Po tom nasleduje vybrani vhodného vzorkovaciho
schématu, ktery slouzi jak podklad pro vypocet pocatecnich dat pro uceni nahradnich
modelu. Poslednim krokem je urceni spravné aproximacni funkce jako zaklad pro
nahrani model. Pro vybrany typ stroje byla vybrana jako aproximacni funkce radialni
bazova funkce. Po vytvoreni nahradniho modelu prace ukazuje jejich presnost a zda-li

jsou nahradni modely vhodné pro vybrany typ stroje.

Sedma kapitola pojednava o optimalizaci navrhu stroje s vyuzitim nahradnich
modelu. Optimalizace navrhu stroje byla provedena pomoci programu SymSpace a
Optimizer. V této kapitole jsou tedy uvedeny postupy optimalizace stroje, vybrani
vhodného optimalizacniho algoritmu, pozadavky pro optimalizovany stroj béhem

optimalizace a také aktivni u¢eni nahradnich modelu.

V osmeé a posledni kapitole jsou uvedeny elektromagnetické analyzy optimalizo-
vanych navrhu stroje. Proces elektromagnetické analyzy je stejny jako v paté kapitole.
Jsou ale provedeny pro vice navrhu stroje, kde jsou vsechny navrhy stroje mezi sebou

porovnany.
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Introduction

Since the invention of the induction machine by Nikola Tesla in 1888, the induction
machine has played a major role in the development of the electrotechnical industry.
After this invention, more attention was focused on electrical machines with a solid
ferromagnetic rotor. The design problem of such a rotor has been an interesting research
topic since the invention of the induction machine. The solid rotor is made of a single
piece of ferromagnetic material and is ideal with respect to the fluid dynamical and
mechanical performance, with excellent heat resistance. It is also very cheap, easy
to manufacture and the ferromagnetic materials are in most cases easily available.
However, in most of the early prototypes, the rotor was a simple smooth cylinder,
and the power supply used for the machine was a conventional network with lower
frequency. Hence, the performance of the solid-rotor induction machine was very poor

compared with laminate-rotor squirrel-cage induction machines [1].

In the late 1950s and early 1960s, with the increasing interest in solid rotor tech-
nology, research and development started to be more active in the field of solid rotors.
Most of the early studies on solid rotors were accomplished with various simplifications
and simplified models. This was due to the fact, that computer technology was not very
advanced and most of the calculations were done by analytical equations. For example
one of the simplifications was the assumption of an unsaturated rotor having a constant
permeability, which resulted in poor validity. Later on, more complex and advanced
models of high-speed induction machines with solid rotors were proposed. These
models included three-dimensional nature of the solid rotor as for example end-effects
of the rotor [2]. Some of the issues and research are mentioned in publications [3] -

[10], where later on, some of the authors continued in this research.

In recent years, the demand for high-speed electrical machines has increased. This
is due to the fact that some industrial applications require high rotational speed. For
example compressors, turbo-compressors, turbo-circulators, pumps, and machine tools
can often achieve better performance at higher speeds. Also, the energy efficiencies of
such applications improve at higher speeds, so it is a great option from an economic
and ecological point of view. With the extensive research and development in the field
of frequency converter technology, it has become feasible to apply the variable speed

technology of different high-speed machines to such a range of applications [11].
With better and more advanced frequency converters, the emphasis is also placed on

the research and development of high-speed machines. High-speed machines are char-

acterized by high efficiency, great mechanical properties, and better electromagnetic
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parameters than regular electric machines with a mechanical gearbox. Therefore, the
best solution and design in terms of electromagnetic, mechanical, and thermal parame-
ters for high-speed electrical machines are constantly being sought. These best solutions
and designs include mechanical modification of the rotor. For example, a high-speed
induction machine with a solid rotor is mechanically modified with axial slits, radial
grooves, a conductive layer, etc. Those modifications help to improve electromagnetic
parameters and cooling. But in some cases can worse mechanical parameters and can
be challenging to manufacture. Another challenging aspect of designing a high-speed

electrical machine is its calculation itself, from the electromagnetic point of view [12].

For this purpose, modern numerical methods are used for the calculation of electrical
machines, in general. The most used numerical method is FEM, where a lot of the
programs are using this method for multi-physical calculations. These programs, used
for designing electrical machines, are in some cases faster and more accurate than
analytical calculations. But in the case of the high-speed electrical machine, these
FEM based calculations can take large amounts of time. The best type of analysis for
high-speed electrical machines would be 3D analysis. But it could even take months to
finish this analysis and without proper experience with this analysis, the accuracy of
outcome results could be questionable. A better option for this is 2D analysis, which is
less time-consuming. However, it does not capture all aspects that 3D simulation can
offer. For this purpose, corrective factors of electric current bending at the end of the
rotor were introduced. These corrective factors helps bring the results, of the calculated
model, closer to a real electrical machine. Despite these simplifications, the analysis
still takes too much time. And mainly because, time-transient analysis is used in this
case which is also the most suitable for accurate results. This is due to the fact that
high-speed electrical machines, mainly stator and rotor, have large electromagnetic

constants [13].

For this reason, a new method of calculation of electrical machines with solid ro-
tors has been proposed, which will help to reduce the time consumption of optimization
of machine design even more. This method consists of using FEM-based analysis and
statistical models that approximate the results of FEM-based analysis. These statistical
models are also called surrogate models and are used in many other engineering fields.
Surrogate models are often used with optimization algorithms to find the best machine
design. The advantage of surrogate models is that they are an approximate function
of the results, so optimizing the machine design is many times faster than using con-
ventional optimization. This Master’s thesis deals with the possibilities and methods of
calculation of induction machines with solid rotors and its accelerated design optimiza-

tion using surrogate model.
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1 High-speed electrical machines

1.1 Introduction and motivation

Nowadays, there is increasing pressure to shift technology in the field of high-speed
electrical machines with an increasing demand for reducing the electricity consump-
tion of electrical machines and increasing their efficiency, reliability, lifetime, improve
maintenance, and reduce their size. For that reason, in several branches of industry, elec-
trical machines with gearboxes are being replaced with high-speed electrical machines.
According to [2], speed-increasing gearboxes are commonly used between the normal
speed electric machines and the higher speed compressors. The speed ratios in such
gearboxes vary generally from 2:1 to 6:1. However, a gearbox has an efficiency penalty
of 1-1.5% loss per gear stage at full load. It is also noteworthy that the efficiency of the
gearbox drops as the load decreases. Another drawback is the need for lubrication of
gears, a cooling system, and the need for additional space. Moreover, the overall effi-
ciency is lower. On the other hand, for example, the construction of an electric machine
with a gearbox and compressor is simple. And better external cooling for the electrical

machine can be applied. An illustration of this system is shown in Fig. 1.1.

FAN ATTACHED l
TO SHAFT
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SPEED

\yncrensiG y | AAAAIIAAY, 7 T

GEARBOX

EXTERNAL
FAN

Fig. 1.1: Illustration of a system with electric motor, gearbox and gas compressor unit

[2].

For these reasons, high-speed electrical machines are being used more in areas where
higher speeds are required. From this point of view, high-speed electrical machines are
integrated into single systems. For example, they are integrated into compressors, turbo-
compressors, turbo-circulators, pumps, etc. According to [14], this integration system

helps to improve the reliability, maintenance, efficiency of the electrical machine (and
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whole system) and the construction is more robust with mechanical rigidity and resis-
tance to centrifugal forces. The biggest advantage of this system is less space require-
ment because the load is connected directly to the machine, which can be in some cases
crucial. Basically, it eliminates the total length of the train and the alignment of the drive
train is greatly simplified. Also, power frequency converters are nowadays much more
advanced and their efficiency is close to the efficiency of the gearboxes (in some cases
even better). And the price of these converters is, in some cases, very close to the price
of gearboxes. An illustration of this system is shown in Fig. 1.2. With the use of convert-
ers (and with the possibility of using magnetic bearings or air bearings) the following

properties are eliminated or improved in the whole system:
« Need for lubrication of gearbox
« Lower losses caused by gearbox

« Positive contribution to vibrations behavior

Fig. 1.2: Illustration of a system with high-speed electrical machine integrated into com-

pressor unit [2].

On the other hand, the cooling of the high-speed electrical machine can be in some cases,
difficult. It is mainly due to a closed construction of the system, where cooling depends
on internal air exchange and heat exchangers, where the electrical machine is cooled by
the internal fluid. According to [15], the cooling system must be extremely reliable and

efficient. The reasons for that are to avoid over temperatures of the stator winding, rotor
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(rotor cage/ magnets), bearing, and shaft deformations. Therefore, the cooling system
of a high-speed machine is of primary importance and strongly dependent on the appli-
cation. Another main issue with this type of machine can be manufacture difficulties.
For example, a high-speed induction machine with a coated solid rotor or a high-speed
synchronous machine with permanent magnets can be in some cases very difficult to
produce. With increasing machine size, the manufacturing problems are increasing.
All the features of these two systems can by summarized, according to [2], in the

following table:

Tabel 1.1: Overview of the properties of electrical machines with gearbox and high-

speed electrical machines integrated into system [2].

Electrical machines with gearbox Highs-speed electrical machines
e Direct/Non-direct drive e Direct drive
e Non-integrated casing e Integrated bearing
e External cooling for motor e Integrated and sealed casing
e Simple construction e Internal gas cooling for motor
e Non-integrated casing e Thermal stresses affecting on motor
e Gas seals e Compact size
e Lower costs
e No shaft seals

In the next sections of this work, an emphasis will be placed on division, design and

application of high-speed electrical machines.

1.2 Division of high-speed electrical machines

The use of a particular high-speed electrical machine highly depends on the applica-
tion, manufacture possibilities and in some cases price. Another crucial parameter for a
high-speed electrical machine is its size. According to [16], with increasing size, a high
power density, good dynamic performance, and also mechanical durability is needed.
The permanent magnet machine is usually the first candidate for a high-speed machine
application due to its good electromagnetic behavior. However, the permanent mag-
net material has small tensile strength and can not withstand the large centrifugal force
due to the high rotation speed. For this reason, high-speed IM are widely used in many
applications due to their good mechanical performance. But its electromagnetic perfor-
mance is worse. Another type of high-speed machine can be used as an alternative, but
this machine also has its advantages and disadvantages. Based on these properties and

attributes, a high-speed electrical machine is chosen for its application.
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According to [17], the main division of high-speed machines with their advantages

and disadvantages is show in the following table:

Tabel 1.2: Overview of high-speed electrical machines with their attributes [17].

Types Positive attributes Negative attributes
e High power density e Rotor robustness (require careful
e High efficiency in the full rotor construction design)
speed range e Intolerance to elevated
PMBM e Large air gap length temperature
e Simple power converter e Iron loss at idling Field
(Self-excitation at all times) weakening
e High phase inductance to e High cost
limit short-circuit currents
e High intrinsic fault tolerance e Inferior power and torque
e High reliability density than PMBM
e High rotor/inertia ration e High torque ripple
e High efficiency e High ventilation losses
e Robust rotor structure e High vibration
e Simpler construction e High windage losses
SRM e Thermal management easier e Small air gap length
e Without magnet saturation e Sophisticated power
concern converter
e Wide speed operational
capability
e Low copper and iron loss
e Field adjustment
e Constant voltage over a e Lower power
reasonable speed range e High rotor loss
e Robust rotor structure e Sophisticated power converter
IM e High reliability to provide both control
e Easy starting and excitation
e Open loop speed regulation e Low fault tolerance
e Low cost
CPM e High power factor e Complicated rotor structure
e Field adjustment e Rotor loss
e High power factor e High windage losses
HM e Field adjustment e High iron losses
e Simple rotor structure
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e Simple rotor structure
Syn. RM e Singly excited

e Low rotor losses

e Field adjustment

e Low power factor
e Low torque density

e High windage losses

e Small air gap length

For high-speed electrical machines, it depends not only on their properties but also

on the properties of the materials. Due to increasing demand for these machines, more
types of new materials are being created. According to [18], these new materials are
specifically designed to meet higher demands in mechanical strength (Yield strength,
Young’s modulus, elongation), whilst at the same time trying to preserve or improve
their electromagnetic characteristics (efficiency, lower losses, lower saturation of mate-
rial). For high-speed electrical machines mentioned in Table 1.2, five material classes are

considered as main properties of interest. These material classes are shown in table 1.3:

Tabel 1.3: Classification of main material requirements for high-speed induction ma-
chines [18].

Material class Location Properties of interest
e Saturation flux density
e Rotor Yield and tensile strengths
Soft magnetic e Ductility and Brittleness
e Stator e Low iron loss behaviour over
a wide frequency range
e Coercivity
e Rotor e Reminiscent flux
Hard magnetic e Yield and tensile strengths
e Operating temperature
e Stator e Temperature variation
e Low electrical conductivity
Conductors e Rotor e Conductivity
e Stator e Mechanical strength
e Maximum operating temperature
Electrical insulation e Rotor e Method of application
systems e Stator e Ageing mechanisms
e Thermal conductivity
e Yield strength
Retention e Rotor e Magnetic properties
systems e Electrical conductivity
e Thermal conductivity
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Despite all the advantages and disadvantages, High-speed IM are the most used high-
speed electrical machines with solid rotors in the industry. It is due to its low cost,
mechanical rigidity, robust rotor structure and high reliability. In this work, an emphasis

will be placed mainly on this type of high-speed electrical machine.

1.3 Construction of high-speed IM with solid rotors

High-speed IM with solid rotors made of a solid single piece of ferromagnetic material,
which is able to reach very high speed. For high-speed applications, centrifugal forces
and peripheral speed play an important role to decide the construction type. For this
reason, this type of rotor is preferred mainly in megawatt range power and higher rota-

tional and peripheral speeds over a laminated rotor, as can be seen in Fig. 1.3.
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Fig. 1.3: Powers limited by the rotor material yield stress (700 MPa) versus rotational
speed [11].

In order to have good efficiency, the rotor of a high-speed IM should usually provide

the following two basic functions, according to [24]:
« High permeability flux path is needed so that most of the magnetic field energy
generated is usable at the air gap for the production of the torque
« The rotor has to have low resistivity flow paths for the electric currents induced
so that the ohmic losses relating to torque producing currents are low.

Ferromagnetic materials have high permeability, but they lack low resistivity com-
pared to other metals. This problem is usually solved in such a way, that those two

functions are performed by different parts of the rotor.

18



According to [11], the simplest solid rotor is a smooth steel cylinder, which has
the best mechanical properties. However, such a type of solid rotor has the worst
electromagnetic properties. Hence, some modifications of the solid smooth rotor have
to be made in order to improve electromagnetic properties. On the other hand, these
modifications can be very expensive and also can raise manufacturing demands. But
they are essential in order to improve every electromagnetic aspect of the machine
and to ensure the economical operation of the machine. So the possibilities of the

manufacturer and itself should be taken into account.

Emphasis should also be placed on choosing the right material for a solid rotor, to
achieve the best electromagnetic and mechanical properties. The biggest problem with
choosing the right material is the low availability of information for these materials,
especially in terms of electromagnetic properties. Manufacturers often provide enough
information on mechanical properties, but sometimes they only provide basic electric
properties such as electric resistivity of the material. For this purpose, publications [19]
and [20] provides a comparison of materials used for the solid rotors. It also shows
necessary electromagnetic properties, such as the B-H curve for some materials. So it
can be easier for some engineers, who are less experienced in designing high-speed IM,
to choose the most suitable material for a solid rotor.

Overall, high-speed IM with solid rotor construction offers these advantages accord-
ing to [11]:

« High mechanical integrity, rigidity and durability. The solid rotor is the most stable

and of all rotor types it maintains best its balance.
« High thermal durability.
- Simple to protect against aggressive chemicals.
« High reliability.
« Simple construction, easy and cheap to manufacture.

« Very easy to scale at large power and speed ranges.

Low level of noise and vibrations (if smooth surface).

In the next sections, all types and modifications of solid rotors for high-speed IM will

be described with their advantages and disadvantages.
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1.3.1 High-speed IM with smooth solid rotor

As was mentioned above, solid smooth rotors have the worst electromagnetic properties,
such as the slip and losses of the rotor tends to be large and the power factor is low. It
is due to a poor flux density penetration into the rotor caused by high rotor frequencies
and low electric conductivity of a material, which leads to large apparent resistance,
a low magnetization inductance, and an over-saturated surface of the solid rotor. This
results in very poor electromagnetic torque. But this type of rotor is also simplest in
its construction. According to [2], [11], [12] and [23] it is easy to manufacture, cheap
and has the best mechanical and fluid-dynamical properties for low air friction. It also
offers the best solution to minimize the parasitic effects of mechanical nature. This type

of rotor can be seen in Fig. 1. 1.4 (a).

For better electromagnetic performance and increasing torque, adding non-magnetic
high-conductivity (either copper or aluminum) end-rings helps to improve these param-
eters, according to [11], [22] and [24]. It is due to rotor current flow in the solid iron that
tends to be more aligned into the axis-parallel direction, which increases the Lorentz
force. Publications [16], [21] and [22] states that for example, a two-pole smooth
solid rotor equipped with copper end-rings produces twice as much torque at a certain

slip compared to an ordinary smooth rotor. This type of rotor can be seen in Fig. 1. 1.4 (b).

The last and best modification of a smooth solid rotor, according to [2], [11] and
[12], is adding a conductive layer on the surface of the rotor, which covers the whole
rotor from one end-ring to another end-ring. In most cases, the thickness of the
copper layer is bigger on the end rings to increase conductivity for the end-ring rotor
current. Publications [16], [21] and [22] states that for coat it is either used low or
high conductivity non-magnetic material, to improve electromagnetic properties of
high-speed IM. In most cases, a high conductive copper layer is used for coating this
type of rotor. This copper coat is acting both as an infinite number of bars and as the
end rings. Due to its high conductivity, it is the main circuit path of the fundamental
currents. Some part of the fundamental current circulates in the solid steel part of
the rotor cross-section. According to [23] and [24], it also acts as a high-frequency
filter for air gap harmonics and does not let higher-frequency stator slot harmonics
to penetrate through the coating layer. This helps to reduce rotor eddy-current losses
and losses in the stator winding. To achieve the best electromagnetic properties with
the highest electromagnetic torque, the thickness of copper should be thick enough to
carry induced rotor currents. But the layer should be thin enough not to decrease air
gap flux. Of course, with regard to the mechanical limits of copper. This type of rotor
can be seen in Fig. 1.4 (c).
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The only problem with these two modifications is their higher cost and demanding
manufacturing. It can even degrade the mechanical properties of the rotor because cop-
per does not have such great tensile strength as the material used for the solid rotor.
In some cases, these modifications can not be used or another conductive material has
to be used, such as copper alloys. On the other hand, it dramatically improves every

electromagnetic property compared to the construction of a simple solid smooth rotor.

] T |

Fig. 1.4: Constructions of solid smooth rotor for high-speed IM: (a) simple smooth rotor,
(b) smooth rotor with copper end rings and (c) smooth rotor coated with conductive
material according to [2], [11] and [23].
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1.3.2 High-speed IM with axially slitted solid rotor

To further improve the electromagnetic properties of high-speed IM, a modification of
the smooth solid rotor was developed in such a way, that better flux penetration into
the rotor is enabled. This is achieved by axially slitting the cross-section of the rotor, as
it is illustrated in Fig. 1.5 (a). According to [2], [16], [25] and [26]. The slit makes the
fundamental flux component into the rotor much easier. Also, slitting the rotor decreases
the low-frequency impedance of the rotor, thus producing more torque and increase
efficiency. Moreover, it increases the high-frequency surface impedance of the rotor,
which decreases the rotor eddy-current loss. The drawback of axial slitting is that the
ruggedness of the solid rotor is partially lost and at very high speeds, the friction between
the rotating rotor and air increases significantly. However, the axial slitting intensifies

the cooling of the rotor, due to the increased cooling surface of the rotor.

From the electromagnetic point of view, it is very important to choose the right
amount of slits. In publication [21], it is stated that to achieve a smooth torque the stator
slot and the rotor combinations producing synchronous torques must be avoided, which
is the same case for selecting rotor bars in common IM. According to another study in
[11] and [27], the output torque of the machine as a function of the number of rotor slits
has a form of a downward-opening parabola. In [11] the number of stator slots was 48
and the number of the rotor slits, that achieved the highest torque, lied between 34 and
42, with increasing slip, sliding to the higher number. Also with a higher number of slits
at the same slip, the electromagnetic torque is increased. The study was only limited to
even numbers of the rotor slits. That is because the use of odd numbers of rotor slits is
not allowed in most of the recommendations for slit numbers on the construction and
operation of an electrical machine. The main reason for that is because the magnitude
of the unbalanced magnetic pull may be large (even larger than the weight of the rotor)
or it can create unwanted vibrations. This is caused by the odd number of rotor slits. On
the other hand, the ripple of electromagnetic torque is decreased. Another study [28],

recommends that the optimal number of the slits is between 5 and 15 per pole pair.

Another crucial aspect of designing an axially slitted solid rotor is the depth of the
slits. According to [21] and [34], the depth of the rotor slits has a significant effect on
motor performance. The slits should reach very deep inside the rotor. The 60% radius
is the best choice to produce the best electromagnetic properties. Unfortunately, the
mechanical strength of the rotor may become too weak. Depending on the maximal
stress to maximize the fatigue life in zero to full speed cycles the rotor slit depth should
be selected to be approximately 50% of the radius of the solid rotor. In reality, the depth
of the slits varies between 40-50% of the radius of the solid rotor, depending on the size

and speed of the machine.

Also, the selection of the width of the slits is based on the number of slits. It is
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also limited by mechanical stress that is created at the bottom of the slit where the
highest concentration of mechanical stress is located. For this reason, if it is possible,
the bottom of the slit is rounded, which further decreases the mechanical stress of the
material at the bottom of the slit. It is also limited by the amount of coolant flow (which

should be as large as possible) and the production capabilities of the manufacturer.

This construction can be modified as it is illustrated in Fig. 1.5 (b). Here slit
depths vary, where every second slit is deeper than the previous one. The reason
why such construction was proposed is that, when the depth of the rotor slitting
is too deep, the rotor material between the slits is highly saturated. The depth of
the axial slits is then restricted by the saturation of the rotor between slits. This is
the reason why the maximum electromagnetic torque can be reached at 60% of the
radius of the solid rotor, as it was stated in previous construction. With very deep
slits the material between the slits is highly saturated and the flux flow in the rotor
teeth is restricted. With various slit depth, this high saturation is limited. The biggest
drawback of such construction is its mechanical limitation. If the longer slits become
too deep, the rotor becomes too fragile. And also the longer slits are restricted to
some extent as was described in the previous construction. In study [2], it is stated
that from the electromagnetic point of view, it gives very similar results as the con-

struction with equal slit depths, in terms of electromagnetic torque and the power factor.

Next construction of high-speed IM is illustrated in Fig. 1.5 (c). This construction
holds the advantages of the axially slitted rotor and copper end rings. It is a very similar
construction as it was described for a smooth solid rotor with copper end rings in
chapter 1.3.1, except for axial slits. Here the current flow also tends to be more aligned

to the axis-parallel direction. The torque and efficiency are increased according to [29].

The construction illustrated in Fig. 1.5 (d) is an axially slitted solid rotor coated with
either highly-conductive or resistive non-magnetic material. According to [2], if the
rotor is coated with a highly conductive material (such as copper), the machine will
have the best electromagnetic properties with the highest torque, higher efficiency, and
better power factor. This improvement holds the same electromagnetic properties as it
was described in chapter 1.3.1 with the coated solid smooth rotor. The main advantage of
this construction is that the machine holds both advantages of axial slits and copper coat.
If the rotor is coated with resistive non-magnetic material it behaves similarly as with
high-conductive material, according to a study in [30]. This coat creates high-surface
impedance which damps the air gap harmonic effects in the coating layer. So it also
works as a high-frequency filter. The highest value of the rotor surface impedance can

be achieved if the coating material has high permeability and low conductivity.
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Fig. 1.5: Constructions of axially slitted solid rotor for high-speed IM: (a) axially slitted
rotor, (b) axially slitted rotor where every second slit is deeper, (c) axially slitted rotor
with copper end rings and (d) axially slitted rotor coated with conductive/resistive ma-

terial according to [2].
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With this material, the effectiveness of rotor loss reduction is significant. No matter
which type of coat is used, the penetration depth of higher air gap harmonics is reduced.
Furthermore, the coating material can reduce the transient unbalanced magnetic force.

Another use for coating is mechanical reinforcement of the rotor. When the axial
slits are created, the mechanical rigidity and robustness of the solid rotor is partially
lost, as was stated. Using non-magnetic material, for example titan, helps to improve the
mechanical properties of the solid rotor. The disadvantage of this procedure is that the
titan is electrically conductive, but its conductivity is similar to that of the material used
for the solid rotor. So it is not highly resistive or conductive compared to the material
used for the solid rotor and in some cases can create additional eddy current losses in
the rotor, because in this state, it does not behave as a high-frequency filter.

Regardless of the coat type used, every coat helps to reduce mechanical losses caused
by friction between air and the solid rotor. The biggest drawback of this technology is
its price and mainly the demand for manufacturing. The coat should be welded to the
material of the solid rotor, and the joint should have higher tensile strength than the
coating material. In the case of using titan, a solid rotor can be inserted into a titan tube
which is less demanding from the manufacturing point of view. But with increasing

machine size, it can become a challenging task.

Based on all the construction described above, a special construction was designed to
have the best possible electromagnetic parameters. This construction is called shielded
axially slitted solid rotor and is illustrated in Fig. 1.6. This construction is composed of
axially slitted solid rotor, copper end rings and copper coating which covers only rotor
teeth, according to [31] and [32]. It, therefore, creates a hybrid technology, which re-
sembles a solid rotor with a squirrel cage. This construction combines all advantages
and electromagnetic properties of all used components which are described above, and
besides, the benefits of squirrel cage are added. While the slits help to lower impedance
of the rotor and penetration of flux density into the rotor, the copper coat on slit teeth
acts as rotor bars, where end-rings collects the induced rotor current. It also helps to
filter higher-frequency air gap harmonics and reduce eddy current losses. Most of the
induced rotor current passes through the teeth coat, while some of the current induced
in the solid rotor is extruded to the surface of the rotor due to higher rotor frequencies
and better axially-aligned as a result of copper end rings. Thus, most of the induced cur-
rent is located on the surface, which creates the highest electromagnetic torque possible,
with the reduction of torque ripple and eddy-current losses. In study [32], a compari-
son is made between the axially slitted solid rotor, copper-coated smooth solid rotor and
shielded axially slitted solid rotor. The shielded axially slitted solid rotor had the highest
torque and output power. Compared to the copper-coated smooth solid rotor, the start-

ing torque was remarkably increased. In terms of rotor loss, this construction placed
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second due to eddy-current losses induced in the copper layer. But the efficiency was
the highest of all three constructions. The authors of the study even showed the power
factor of these machines. But the analysis was done in 2D FEM program with transient
magnetic analysis. In such analysis, it is known that the accuracy of power factor calcu-
lation is not very high and serves only to determine a kind of idea how the power factor
changed based on different topology or construction of the machine.

The construction of this solid rotor is made by axially slitting a smooth rotor and
coating it with copper. Then end-rings are placed on both sides of the solid rotor. Finally,
the slits are opened. This type of construction is quite new and has not been described
well enough and tested in the industry yet. The biggest drawback of such construction is
its price and highly demanding manufacturing. It is also not entirely determined whether
such a solid rotor can withstand centrifugal forces and tensile strength, especially in

places of copper coating, with a higher power range and speed.
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Fig. 1.6: Construction of shielded axially slitted solid rotor for high-speed IM according
to [32].

A further modification can be applied on the axially slitted solid rotor as illustrated in
Fig. 1.7. Here the slits are skewed in a radial direction and according to [33], this modified
topology increases electromagnetic torque. In the case of Fig. 1.7(a), the electromagnetic
torque, was in the study, increased by 10.7% compared with the construction with non-
skewed rotor slits. This topology was even improved by creating rotor slits where every
second slit is deeper than the previous one and skewed in the radial direction. This
optimized topology improved the electromagnetic torque by 37.7%. Due to skewing,
this topology does not have such drawbacks as those in topology with non-skewed slits.
Here the slits do not go deep enough and can be longer. In the study, the machine was
calculated with a skew angle of 15°, 30°, 45° and 60°. The study showed that with the
skew angles increases, the output electromagnetic torque increases slightly. However,
with skewed slits, the torque ripple increased by 40.3%. The torque ripple was improved
by skewing the rotor slits in the radial direction by 30° and additionally skewing the rotor

slits in the axial direction by 26°. The torque ripple was significantly reduced to nearly
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1% of its output torque. This topology can be used in combination with the described
slitted solid rotors above. The drawback of this topology is demanding to manufacture

and it may not withstand high centrifugal forces and tensile strength at higher speeds.

Fig. 1.7: Construction of axially slitted solid rotor with skewed slits in radial and axial

directions with: (a) normal depth and (b) every second slit is deeper according to [33].

1.3.3 High-speed IM with squirrel cage solid rotor

This construction is very similar to a common induction machine with a squirrel cage.
For high-speed applications, even the laminated rotor can be used, but only to some
extent. It is due to large centrifugal forces and high tensile strength which the laminated
rotor would not withstand, according to [36]. For this reason, the rotor is made of solid
ferromagnetic material with inserted copper bars into the drilled bores or cut slots and a
copper short-circuit ring is added that connects the rotor bars. Some of the construction
of a solid rotor with squirrel cage is illustrated in Fig 1.8. According to [37] and [38]
most, of the current, is induced in rotor bars, so the current flowing in the solid rotor is
reduced. Additionally, eddy current losses in the solid rotor are also reduced, and better
than any other construction previously described, as stated in [39] and [40]. It is due
to the remarkably lower rotor resistance of the copper cage. With low resistance also
comes the lower slip of the IM. Moreover, the power factor is highest compared to all IM
with a solid rotor and efficiency is also high. However, inserting the rotor bars inside the
solid rotor increases the rotor leakage inductance to a high value, which limits the rotor
performance. And the steel bridges between the rotor bars are saturated, as it is stated
in study [21]. These two factors reduce the power factor of the squirrel cage rotor. Even
with these drawbacks, if the high-speed IM with squirrel cage is designed properly, it
can achieve the best electromagnetic parameters of all described IM with solid rotors.
For further improvement of electromagnetic properties, the opening of rotor slots
would be beneficial from the magnetic point of view, mainly in construction Fig 1.8(c).
But this will also remarkably increase frictional losses and from the mechanical point of
view, opening the rotor slots is not preferred. So smooth rotor construction is the right

choice. So for higher speed, construction Fig. 1.8(a) and Fig. 1.8(b) are not very ideal.
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The main disadvantage of this construction is challenging and complicated manufac-
turing. This is the reason why it is not preferred in high-speed applications. According
to study [41] and [42], the most critical part of a squirrel-cage rotor is the short-circuit
ring, which must be designed differently compared to the traditional one. Here, the
joint between the short-circuit ring and rotor bar must be designed properly from the
mechanical and thermal point of view. Otherwise, the rotor would not withstand cen-

trifugal forces, dynamic bending and high temperatures during operation.

"1—

Fig. 1.8: An example of constructions of solid rotor with: (a) rectangular open slots

with brazed squirrel cage, (b) embedded squirrel cage by isostatic pressure and (c) round

embedded copper bars inserted in a solid rotor core with drill holes according to [35].
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1.3.4 High-speed IM with radial rotor surface grooves

This special case of solid rotor modification is illustrated in Fig. 1.9. In this case, radial
grooves are created on the surface of the solid rotor and they act as a coating for a
solid rotor. It increases the surface impedance of the solid rotor and therefore behaves
as a highly resistive coating material. Thus acts as a high-frequency air gap harmonic
filter which reduces rotor losses. The high resistivity of the solid rotor surface is made
intentionally by choosing the correct distance between individual radial grooves, but the
radial grooves have to be on the active length of the rotor (not on end rings). The depth
of radial grooves should be as deep as penetration depth for high-frequency harmonic
components of induced rotor current. The width of radial grooves should be designed
concerning the active length of the rotor and the distance between each groove. With
all these rules applied, the conductivity of the surface of the solid rotor should be at least
80% less conductive than the rest of the rotor. According to [43], if the radial grooves
are designed correctly the rotor surface eddy current losses can be decreased up to 60%
and total rotor eddy current losses can be decreased up to 30%. As a result of that, the
efficiency of the machine then increases. This modification can be done on any type of
high-speed IM with a solid rotor, which does not contain other coating material. The
main advantage of this modification is its simplicity and easy manufacturing. It also

does not affect the mechanical or thermal properties of the solid rotor.

T T

Fig. 1.9: An example of construction of axially slitted solid rotor with radial grooves for
high-speed IM according to [43].
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1.4 Applications of high-speed electrical machines

As it was stated, due to simple construction, low production cost and excellent mechan-
ical/thermal stress withstanding capabilities, high-speed IM with solid rotors structure
are widely used in many high-speed, high-pressure application fields. As reported by
[44], an advantage of high-speed machines is the reduction of system weight for a given
magnitude of power conversion. This is particularly desirable in mobile applications,
where any saving in weight results directly in reduced fuel burn and emissions. Also,
another benefit in adopting high-speed machines in certain applications is the improve-
ment in reliability as a result of the elimination of intermediate gearing. In this section,

an overview of some applications for high-speed IM will be shown and described.

1.4.1 High-speed electrical machines for more electric engines (Automo-

tive/Power Generation)

According to [44] - [48], the concept is to have high-performance traction machines in-
tegrated within hybrid drive trains to improve fuel efficiency and reduce emissions. Due
to increasing calls for emission and fuel efficiency improvement, further electrification
for engines is being used for automotive and power-generating applications. Mainly by
using high-speed machines. The potential applications of high-speed electrical machines
within a more-electric engine are several, as it is for example shown in Fig. 1.10. This
application shows the layout of four possible high-speed electrical machines around an
engine. The electrical machine M1 is placed on the same shaft as the turbine and the
compressor wheels in a turbocharger. It has two functions: First, it is used for speeding

up the compressor to the required speed. And second, at high loads when excessive en-
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Pump S motor / generator
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Fig. 1.10: High-speed electrical machines for the more-electric engine [44].
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ergy is created in the exhaust, the machine is used as a generator. The electrical machine
M2 improves driveline efficiency. It is done by installing this machine downstream of
the turbocharger to extract waste heat from the exhaust gases. The recovered energy is
then used to supply the vehicle’s electrical load, including the traction machine if used
within a hybrid drivetrain architecture. The electrical machine M3 drastically reduces

the pumping energy required in comparison with more conventional EGR systems.

1.4.2 Flywheel energy storage systems applications

As stated in [44] and [49]-[51], this system operates by mechanically storing energy
in a rotating flywheel. Electric energy is stored by using a machine that spins the fly-
wheel, therefore converting the electric energy into mechanical energy. The process of
recovering mechanical energy is using the same machine to slow down the flywheel.
Hence converting the mechanical energy back to electrical energy. Modern flywheels
have commonly large diameters, rotate at higher speeds, and have higher power and
lower energy densities. They have higher power densities than the NiMH batteries typ-
ically used in hybrid vehicles or aerospace applications, although their energy densities
are lower. These systems also offer several advantages over battery technologies such
as more compact solutions, higher efficiency, longer lifetime, greater depth of discharge

than batteries, and wider operating temperature range.

Fig. 1.11: High-speed composite flywheel [44].

1.4.3 High-speed spindle applications

Nowadays, in the machine tool industry, there is increased demand for higher rotational
speeds, speed control, low vibration levels, power density, and more compact systems,
as it is described in [44] and [52]-[54]. For this, high-speed electrical machines are used

for spindle applications.
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The electrical spindles applications can be divided into two main areas:
« Milling applications
+ Grinding applications

The maximum rotational speed achieved during the different milling applications

depends on the processed material type, as it is shown in Table 1.4.

Tabel 1.4: Typical milling applications speed [52].

Applications Speed
Metal 4500 - 12000 rpm
Stones 8000-12000 rpm

Glass/Marble 8000 - 14000 rpm
Wood 18000 - 25000 rpm

Aluminum 30000 - 40000 rpm

For the grinding applications, the machine tools rotational speed is higher than the
typical range for milling applications. Speed is achieved up to hundreds of thousands of
revolutions per minute in the ultra-precision machining application such as mesoscale
dimension range and mega-speed drive systems. Some typical spindle applications are
grinding of bearings, screw, constant velocity joints, injectors pumps, etc. An example

of an high-speed drilling spindle is illustrated in Fig. 1.12.

Fig. 1.12: High-speed 200 W 300000 rpm PCB drilling spindle [44].

1.4.4 Turbomolecular pumps applications

As stated in [44] and [55]-[57], the turbomolecular pumps are used to obtain and main-

tain a high vacuum. They are portable, fast-starting, and require little in the way of a
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support system. The principle of these pumps is that gas molecules can be given mo-
mentum in the desired direction by repeated collision with a moving solid surface. In
a turbopump, a rapidly spinning turbine rotor hits gas molecules from the inlet of the
pump toward the exhaust to create or maintain a vacuum. For this purpose, high-speed
machines are a great choice for this application, where the speeds reach higher rota-
tional speeds of up to 100 000 rpm at low power density (a few hundred watts). These
pumps are used to get a very high vacuum condition up to 107! mbar. Because of that,
the rotor runs in a deep vacuum, with extreme thermal exchange problems. An example

of a turbomolecular pump is shown in Fig. 1.13.

Fig. 1.13: Cross section of a turbomolecular pump driven by a high-speed motor [44].

1.4.5 Gas compressor applications

Asreported by [44] and [58]-[61], gas compression is needed at many places in the chem-
ical, oil, and gas industries. It is mainly for gathering, transmitting, and processing the
gas downstream. Due to an increasing call for lowering emissions and increasing diffi-
culty of installation due to environmental restrictions, gas-fired drives are being replaced
with high-speed electrical machines. The idea of using high-speed electrical machines is
to minimize the environmental, regulatory and maintenance issues. The main advantage
of electric high-speed gas compressors is placing the machine with a compressor on a
single shaft, which minimizes the demand for additional space. The electric high-speed
compressor is integrated into the whole system, which additionally, improves the me-
chanical robustness of the whole system. Also, these machines do not need lubrication
systems, so they are more suitable than electrical machines with a gearbox. It is due to
the extensive use of magnetic bearings lately these days. Magnetic bearings also increase
availability, safety, and efficiency, which reduce maintenance costs. Therefore, electric
high-speed drives are the most environment-friendly compressor drives. An example of

a conventional and integrated compressor is shown in Fig. 1.14.
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Fig. 1.14: (Left) Conventional compressor and (right) integrated compressor [44].

1.4.6 Industrial air compressors and air blowers applications

According to [44], [61]-[62], the demand for higher quality and oil-free compressed air
is also increasing in industrial applications such as the food, beverage, and pharmaceu-
tical industry. Any oil contamination can lead to unsafe products and consumer health
hazards. In the automotive industry, it is essential to achieve oil-free air. In the elec-
tronics industry, moisture can affect sensitive processes and cause oxidation of micro
terminal strips, which results in product failure. If oil contamination occurs in any of
the aforementioned industries, it can lead to expensive product recalls and in the worst-
case plant shutdown. Nowadays, high-speed electrical machines that operate at power
levels of 100-500 kW and speeds of 80-15000 rpm, using magnetic or air bearings, are
being used lately as oil-free direct drive industrial compressors, in the range of 4-9 bars.
Also in wastewater treatment plants, over 60% of power demand is required for the de-
livery of air to provide oxygen for biological treatment of waste streams and mixing to
solids. In the last decade, there is a rapid growth in the use of turbo blowers driven by
high-speed motors. The advantages of these blowers are higher reliability and durability,
reduced noise, 25% reduction in ecological footprint, and energy savings above 35% with

respect to conventional blowers.

1.4.7 Microturbines applications

As stated in [44] and [53], microturbines are small combustion turbines of a size com-
parable to a refrigerator. The typical output power is 30-400kW. They are typically
used for stationary energy generation applications at sites with space limitations for
power production. These machines are very fuel-flexible and can run on natural gas,
biogas, propane, butane, diesel and kerosene. Microturbines have few moving parts,
high efficiency, low emissions, and have waste heat utilization opportunities. They are
lightweight and compact in size. Waste heat recovery can be used in combined heat
and power systems to achieve energy efficiency levels greater than 80%. Fig. 1.15 shows
the typical layout of a micro gas turbine. It consists of a compressor, a combustor, a

turbine, an alternator, a recuperator (optional), and a generator. Recently, there is an
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interest in using microturbines as a range extender within serial hybrid vehicles, as well
as all-electric vehicles. It would be used as a power unit that can charge the vehicle’s
batteries. It is claimed that such technology can be just 5% of the size, weight, and parts

of an equivalent piston engine.
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Fig. 1.15: Typical layout of a micro gas turbine [44].

1.4.8 Naval applications

According to [18], [63]-[64], this sector was the first one to implement more electri-
cal craft concept. The main reason for that is better weight distribution and reduced
man shaft lengths, which reduces hull vibrations and transmission power loss issues.
Nowadays, additional motives are behind extensive electrification of naval applica-
tions, namely: reduced Noise/vibration signatures, increased fuel efficiency, and re-
duced/eliminated mechanical gearing. The main concepts of naval applications are IEP
and IFEP. Both of these concepts find the industrial backing of military and commercial
outfits and allow for a reduction in prime mover count. IFEP eliminates the need for
the traditional auxiliaries generator sets and caters to a centralized grid having several
generators operating at their optimum loading. Here high-speed IM is the most suitable
choice for such an application. It is mainly used for its lower cost, mechanical robust-
ness, higher-speeds, controllability, and most importantly for a wide flux-weakening
operation, where high-speed IM excels and naval applications demands. High-speed IM

are in naval applications used for example as assisted turbochargers.

1.4.9 Aerospace applications

As described by [18] and [65]-[67], nowadays, the research takes place in two main con-
cepts of aerospace applications: MEA and MEE. The MEE aims at replacing functions of
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critical nature to the engine traditionally driven off by mechanical systems by using the
electrical drive. Thus potentially eliminating external gearboxes and the strategic reloca-
tion of components such as starter/generators and hydraulic systems. The MEE concept

also increases global propulsion efficiency by targeting three main areas, namely:
« A reduction of existing pumping losses
« Replacing the conventional pneumatic engine starting methods

« Reducing to a certain degree, or even eliminate, the number of utility bleed-offs

required for systems such as cabin pressurization and compressor deicing

The MEE also caters to enabling emergency power extraction through wind-milling of
the main power plant. The goal of MEA is to include MEE with all the engine auxiliaries
being driven by electrical variable speed drives, together with electrically driven control
surface actuators and landing gear. High-speed machines are therefore preferred in such
applications. For example, high-speed machines are directly coupled to the auxiliary
power turbine, flywheels, or engine-starting functions which demands a wide operating

speed range.
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2 Electromagnetic analysis of high-speed IM with
solid rotors and calculation of solid rotor end-

effects correction factors

2.1 Analytical analysis of high-speed IM with a solid rotors

In the past, there has been an effort to create analytical methods for the design and
calculation, of the performance, of high-speed IM. However as it was stated before, these
analytical methods included some simplifications. The first thought of the researchers
was the assumption of an unsaturated rotor having constant permeability. This resulted
in poor validity of the calculated electrical machine. Later on, the three-dimensional
nature of the solid rotor was included in the analytical method, which improved the

results of analytical methods.

In today’s modern analytical methods, the saturation of a solid rotor is included.
For this reason, many researchers are trying to divide the solid rotor into several layers.
This helps to better describe the solid rotor with analytical equations. For example,
one of the more comprehensive analytical methods for the analysis of a high-speed
induction machine with solid rotors was presented in work [68], where it combines
the three-dimensional linear method and transfer matrix method for calculation of
the performance of the machine. Additionally, both the saturation and finite-length
effects were taken into account. Here, the active region of the solid rotor is divided into
saturated and unsaturated parts, with an assumption of sinusoidal time dependence
and phasor quantities used in the solution. But this method was applied only on the
calculation of smooth solid rotors where different materials were tested on the machine
performance, with an assembly of the equivalent electrical circuit for steady-state
performance. The results obtained by the method had agreed fairly well with the
measured results. The main drawback of this analytical method is its limitation to only
one type of a solid rotor. However, this type of rotor is very rarely used in the industry,

and besides, the analytical method is rather complicated.

Newer analytical methods, which are dividing the solid rotor into several parts, are
trying to get even better results by using other numerical methods than those in the
literature described above. Some of these analytical methods are presented in [69] -
[77]. These analytical methods are trying to estimate torque, power, or eddy-current
losses accurately. Nonetheless, they are limited mainly to smooth solid rotors with or
without a copper coat. A publication [78] that is not related directly to the high-speed

induction machine, focuses on the issue of analytical solution of electromagnetic field
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problem of the high-speed spinning ball. This publication is more related to applied
physics but can be useful in the determination of some aspects of the performance of
high-speed IM with the solid rotor for example torque or eddy-current losses. The ball
can be considered as a rotor with a round shape and the physical principle, used for the
ball, can be applied for a cylindrical rotor. Overall, these analytical methods are also

rather complicated and do not provide satisfactory results compared to measured results.

Another attempt of the researchers was to create even more simplified analytical
methods with emphasis on the assembly of an equivalent electrical circuit for the
steady-state performance of the machine. These analytical methods are much more
comprehensible and easier to use for calculating the machine performance of the
high-speed IM with solid rotors. One of the older literature [79], is using for the design
of a high-speed IM equivalent electrical circuit in the shape of I for steady-state perfor-
mance. To achieve some parameters of the equivalent electrical circuit, it additionally
uses a circular diagram. Such a method is outdated and in some cases not very accurate.
Newer and more optimized analytical methods, where some of them are proposed in
[80] - [83], are using the different equivalent electrical circuit in the shape of T, which
is a more traditional and general shape used for other types of an induction machine.
These methods are focusing on increasing the accuracy of calculated results with the
measured results, which is done using empirical formulas. Other literature such as [84]
is even proposing analytical methods for the preliminary design of high-speed IM with
an assembly of equivalent electrical circuit and steady-state performance calculation. A
publication [85] shows an analytical calculation of other electromagnetic parameters
such as resistance and leakage reactance of the end ring of the solid rotor. A special case
of single-phase IM with the copper coated smooth solid rotor is also analyzed via an
electric equivalent circuit, as it is suggested in [86]. Here, the machine is analyzed via
d-q axes, where each axis has its own equivalent electrical circuit. Each of the elements

of the equivalent electrical circuit is then calculated with analytical formulas.

These analytical methods provide one major advantage compared to those that are
dividing rotor into several parts. They can be used on other solid rotor constructions
and are not limited to a smooth solid rotor only. But they also do not provide the
wanted accuracy of the calculated results. As an example, an analytical method for the
calculation of an equivalent electrical circuit for the steady-state performance of a solid
smooth rotor will be shown below. This method is proposed in [87] and has very good

agreement with calculated results from a FEM program.

The calculation is based on the equivalent electrical circuit shown in Fig. 2.1. Here

iron losses are neglected and for the calculation, the fundamental harmonic component
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is considered only. The parameters of the equivalent electrical circuit are as follows:
Ry is stator resistance, which is determined by a classical analytical formula, L; is the
magnetizing inductance (stator inductance), N;(s) is the leakage inductance expressed
in the rotor frame (which depends on the slip) and Rj(s) is the equivalent resistance
expressed in the rotor frame (which depends on the slip). The magnetizing inductance
L, can be determined by performing either a simulation of no-load operation (i.e., s =
0) or by any analytical calculation. The formula proposed in this publication for the

calculation of magnetizing inductance for phase a is:
Ly =—, (2.1)

where U, is flux linkage of phase a and I, is stator peak current. This formula can be

used only in assumption that input currents have sinusoidal waveform.

I R I, Nho(s)

L AAAM— 7 —>— (0
’ R'z(s)
Lw s

Z

Fig. 2.1: Equivalent electrical circuit for high-speed IM with smooth solid rotor [87].

The secondary current /) is determined for phase A by:

v

I(s) = In — “(8). (2.2)
Ly
The secondary impedance Z)(s) of phase a can be calculated by:
WU, /
Zy(s) = J w, (5) = R (s) +7-N'2(s) - w, (2.3)
I3(s)

Ry(s) = 5 Re{ Zy(5)}. (2.4

o /
i = 2L o5

where w is angular frequency of the stator field. With the assumption that the machine
is fed with constant three phase’s voltage, the stator current of the phase a for each slip

can be determined as:

Vi

W) =z m T R

(2.6)
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oLy w- {Réis>+j~N§(s)-w}
Zop(s) = ; : (2.7)
' j-Ll-w—I—{RzT@—I—j-Né(s)-w}

where V] in input voltage. For electromagnetic torque an electromotive force has to be

calculated:

Ei(s) =Vi — Ry Li(s). (2.8)

Then calculation of transmitted rms apparent power to the rotor:

3 . ,

Str(s) = 5 'El(s) ']1(3) :Ptr(3)+] 'Qtr(s)7 (2-9)
where P, is active power and (), is reactive power. Then the torque is calculated with:

Pu(s)
Tem = y 2.10
() = =5 210

2-m-n

Q= 2.11
=, (211)

where n is rotational speed of the solid rotor. The formula for the torque can be even
used for calculation of torque-slip characteristics, which can help to determine starting

torque or pull out torque of the machine.

Overall, using the analytical methods for designing or calculating the performance
of high-speed IM can be in some cases fast and simple process. But for this type of
electrical machine, it mostly comes with rather complicated formulas that hold some
simplifications, which impairs the accuracy of the calculated results compared to the
measured results. Moreover, some analytic methods can be applied only on some specific
rotor construction, which are defined using empiric formulas. So they are not usable on
every type of high-speed IM. From the description above, the reason for the inaccuracies

can be described and summarized with one following formula:

i= /-2 (2.12)
Wpo Lk

where w, is the angular frequency of the penetrating field, o is electrical conductivity of

material, and p is permeability of material. Permeability of material can be written as:

B

= = =, o, 2.13
=g = Hr " Ho (2.13)

where B is magnetic flux density, / is magnetic field strength, y, is relative permeabil-

ity and ji is permeability of vacuum.
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Formula (2.12) is called penetration depth of magnetic field and it states how deep
the magnetic field of the higher harmonic components penetrates into the solid rotor.
So the most crucial part of the solid rotor is the outer layer of the solid rotor, which is
the most sensitive to higher harmonic components of the magnetic field. The formula

will be discussed and described further in this part.

The formula contains three variables, where two of the variables mostly complicate
the assembly of the analytical method. The first variable is the conductivity ¢ of the
material, which can be considered constant in the material. One could say that the
conductivity of the material is dependent on the temperature of the solid rotor, and
thus the conductivity varies depending on the temperature and location of the solid
rotor. But the value of conductivity does not change that drastically and the most
important part, for penetration depth, is the outer layer of the solid rotor. So the conduc-

tivity of the solid rotor material does not complicate the assembly of analytical methods.

The angular frequency w, is complicating the assembly of the analytic method much
more. For example, let’s assume the high-speed IM with a smooth solid rotor that is
supplied with very high frequency. The stator magnetic field induces eddy currents into
the rotor, with varying slip-dependent rotor frequency, which creates electromagnetic
torque as well as high rotor losses. The higher the rotor frequencies are, the more of
the rotor eddy-currents are pushed outwards to the surface of the solid rotor. This
makes penetration of the flux density difficult, and most of the flux lines are located on
the surface of the solid rotor, which creates rotor losses. Additionally, higher air-gap
frequencies, that penetrate through the outer layer of the solid rotor, create most of the
rotor losses. For penetration depth, the number of stator slots and frequency of power
supply is very crucial, because it determines the value of higher air-gap frequencies
and thus the depth of the penetration. For the smooth solid rotor, the assembly of
the analytic formulas can be considered the simplest, compared to other solid rotor
construction. It is due to the simple shape of the solid rotor, so the distribution of
electromagnetic fields is easier to determine. But these electromagnetic fields are still
complicated to analytically describe because they are time and spatially dependent.
To further improve the electromagnetic parameters of the high-speed IM with a solid
rotor, it is quite common to create axial slits in the solid rotor, which helps to penetrate
flux lines deeper into the rotor. With this rotor modification, it is almost impossible to
analytically describe electromagnetic fields in the solid rotor, due to the complexity of

the rotor geometry.

The last variable is the permeability of material x4, which defines the conductivity of

rotor material for magnetic fields. This variable complicates the description of analytical
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methods the most because it highly depends on the type of used material, where every
material has a different non-linear B-H curve. So the analytic formulas have to be,
in nature, non-linear. The main problem with the permeability lies in the saturation
of the solid rotor, which is directly related to the rotor field’s angular frequency. As
was stated above, because of the high rotor field’s angular frequencies, the penetration
depth of flux lines is very low. Thus, most of the rotor current is located at the outer
layer of the solid rotor, mainly, in the case of a smooth solid rotor. The higher density
of the rotor current located at this layer causes high saturation of rotor material. With
the high saturation of rotor material, the permeability of the material is decreasing,
making it more difficult to enter the fundamental component of magnetic fields into
the solid rotor, because of low magnetic conductivity on the rotor surface. However, if
the permeability is low, the penetration depth is high for higher air-gap frequencies.
So magnetic field with a higher harmonic component penetrates deeper into the rotor,
causing high rotor losses. Overall, the assembly of analytical formulas for the solid

smooth rotor is the simplest, but for the axially slitted solid rotor, it is incredibly difficult.

All these described assumptions can be easily verified in some of the 2D FEM
programs. In this work, Ansys maxwell was used for the calculation of high-speed
IM and verification of the assumptions. For example permeability of material for

smooth solid rotor can be seen in Fig. 2.2(a). Here the relative permeability of the
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Fig. 2.2: Distribution of relative permeability in: (a) smooth solid rotor and (b) axially

slitted solid rotor.

rotor material is lowest at the outer part of the solid rotor and increases towards the
rotor yoke. This is caused by the higher rotor frequencies that push the rotor current
outwards to the rotor surface. Although, it does not apply to some parts of the solid

rotor, where it can be seen that on two sides the value of the permeability is high. And
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even the rotor yoke does not have the same value of permeability and is changing
due to higher rotor frequencies. It can also be seen the reaction of the stator and
rotor magnetic fields, which causes curvature of the field when the machine is loaded.
In Fig. 2.2(b), the permeability of the rotor material is further affected by axial slits

in the solid rotor. Here the field is much less periodical than in the previous construction.

Another example can be seen in Fig. 2.3(a), where is shown the distribution of rotor
losses in the smooth solid rotor. It can be seen that most rotor losses are found on the
rotor surface. This proves, that the most rotor current is located on the outer layer of
the solid rotor, due to high rotor frequencies. Additionally, most of the rotor losses are
caused by higher air-gap harmonic components of the magnetic field, where the largest
concentration of rotor losses is right below the rotor surface. The depth of penetration
indicates how deep the largest concentration of rotor losses will be. Thus, it highly
depends on the conductivity of the material, rotor frequency and permeability of the
material. The concentration of rotor losses then decreases towards the rotor yoke. The
distribution of the rotor losses for the axially slitted solid rotor can be seen in Fig. 2.3(b).

Here the largest concentration is as well, under the surface of the rotor.
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slitted solid rotor.

In conclusion, it can be assumed that the issue of analytical methods is very extensive
and complex. This work will not focus on those issues or procedures on how to assembly
the analytical formulas. Some of the problems behind it were outlined above. For this
reason, it is nowadays much more effective and easier to use FEM programs, that use
modern numerical methods. As was shown above, it is quite easy to calculate a high-
speed IM with solid rotors and verify all the physical principles behind it. Moreover,
it can analyse the machine in space and time. In the next section, the possibilities of

high-speed IM with a solid rotors analysis using FEM programs will be discussed.
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2.2 FEM analysis of high-speed IM with a solid rotors

This section will deal with the possibilities of high-speed IM with a solid rotor using FEM
programs. Therefore, the main goal will not be to describe the principle of calculation
using the FEM method. For further information, literature [88] - [93] explains the
principle of calculation using FEM, where some of this literature even shows direct use

in electrical engineering.

As it was stated, the best choice for calculating high-speed IM with solid rotors is
using FEM based software. It is due to very good agreement with measured results.
However, compared to analytical methods, it can become time-consuming. In general,
high-speed IM with solid rotors are, from the physical point of view, complex elec-
tromagnetic systems. For that reason, simulation of such a machine is recommended
to be carried out in 3D space, to capture all of the 3D aspects of the machine and to
reach the best possible agreement with measured results. Unfortunately, according
to [94] - [97], a complex geometry must be created in 3D space with very fine mesh.
On top of that, to improve the accuracy of the results a time-stepping method is
used. With this method, the transient states of the machine are simulated, but it is
very time consuming, expensive, and requires a large amount of memory. On the
other hand, this type of simulation includes effects of eddy-currents, a saturation of
material, and non-linear properties. The benefits of 3D simulation are, for example,
taking into account that magnetic flux can pass from one pole to another in multiple
ways, as stated in [98]. In another instance, [99], complex distribution of eddy-currents
and the changes in the magnetic flux density distribution is included and can be
simulated with very good accuracy. As stated in publication [100], the stator end-
winding leakage inductance is taken into account with all 3D aspects. And as reported

by [101], the 3D simulation takes into account leakage inductance of the solid rotor ends.

Although 3D simulations have the best agreement with the measured results, it
has a major drawback, due to which this type of simulation is not recommended. And
that is time-consumption, which can take even months. For simulation time reduction,
time-harmonic analysis can be considered, or combined 3D numerical and analytical
computation approach for analysis, as publication [102] suggests. However, it still takes
a lot of time due to the 3D nature of geometry, which is complex and needs to have a
very fine mesh in order to calculate the results correctly. Another disadvantage of 3D
simulations is the precision of setting up the simulations themselves. If anyone, who
is setting up the simulation makes a mistake, it can lead to false simulation results.
Considering the nature of 3D simulation, which can take even months, the design of

such a machine can get very expensive.
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A much better option is to simulate the machine in 2D space. A major advantage of
this is a significant reduction of simulation time consumption. Time consumption can be
reduced from months to days or even hours. Moreover, the needed space for memory is
reduced, and using such simulation is less expansive. On the other hand, 2D simulations
lose all the benefits of 3D simulation. That includes calculation of end-winding leakage
inductance, the leakage inductance of the solid rotor ends, complex distribution of
eddy-currents and other described or related benefits. This leads to very poor agreement
with measured results. Fortunately, nowadays the abilities of 2D electromagnetic field
computation programs are much more advanced, as publication [103] suggests. These
shortcomings can be included in the model and simulation in such a way that the

accuracy of calculated results is very close to those of 3D simulation and measured one.

In the next section, an emphasis will be placed on how to include 3D aspects of high-

speed IM machine with solid rotors in 2D simulations.

2.3 Finite length of the solid rotor and solid rotor end-effects

When 2D FEM based programs are used for calculations of high-speed IM with solid
rotors, the whole rotor is treated as an infinitely long solid conductor. Hence, the
inductances of the rotor ends are not taken into account in the coupled circuit modeling.
Therefore, some assumptions have to be established in order to calculate the machine

properly and correctly.

The first one is, the rotor power factor angle remains too small, and thus the power
factor of the whole machine in the 2D analysis is too optimistic. According to [104], the
power factor of the smooth solid rotor can be estimated. If the rotor surface impedance
is solved using linear materials, where formula (2.12) of penetration depth is used, its
angle will be 45°. This corresponds to the phase shift between the electric field strength
and the surface current, which is also 45° when using linear theory. This produces for
a non-saturating smooth rotor a power factor of cosy = 0.707. Such a power factor is
wrong and contrary to other obtained results with the practical experiments, the phase
angle of the solid rotor is far less than 45°. For this reason, Agarwal’s limiting non-
linear theory assumes idealized rectangular magnetization characteristics for smooth
steel surface. Agarwal’s model also assumes that the flux density within the material
may exist only at a magnitude up to a saturation level, either positive or negative. For

estimation of surface impedance Agarwal’s depth of penetration is used:

2 2H,
d arwal — = 5 2.14
el \/wmu \/wroBs 2149
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where Hj is the peak value of the sinusoidal applied surface magnetic field strength,
w, is angular frequencies of the rotor fields, and B; is the saturation value of magnetic
field flux density. The phase shift of the impedance of the solid rotor calculated with
Agarwal’s limiting non-linear theory is then 26.6°, which corresponds to a totally
saturated smooth solid rotor. Hence, the power factor of solid rotor is cosp = 0.894.
Based on these two theories, the rotor power factor angle should vary between 26.6°
and 45°. So the value of the power factor of the solid rotor should vary between
cosp = 0.707 — 0.894, depending on the circumstances. In [105], a non-linear variation
of the fundamental B-H curve was used in the calculation. It was concluded that the
rotor impedance phase angle varies between 35.3° - 45°, which corresponds to the value
of power factor cosp = 0.707 — 0.816. The test results showed that the real phase angle
of the rotor impedance approaches the lower value when the slip increases and the
magnetic field strength drives the surface of the rotor steel into magnetic saturation. So
the values in both methods come very similar in size. These methods unfortunately do
not apply to every type of rotor construction. For example, if the solid rotor is slitted
the rotor power factor angle is 22°, which corresponds to the value of power factor
cosp = 0.927, as stated in [104]. But this interval still gives an idea of the size of the

power factor.

The second assumption is the path of the rotor currents. As it was stated, due to high
slip-dependent rotor frequencies, the rotor current is pushed outwards to the outer layer
of the solid rotor. In the rotor ends region the skin effect forces the currents to flow at
the end ring surface. So the path for the rotor currents will be mainly under the surface

of the solid rotor, as is illustrated in Fig. 2.4.
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Fig. 2.4: Assumed curved current paths in the solid-rotor with long (left) and short
(right) end iron lengths [106].

This can be easily verified in 2D FEM simulation on some simple machine with a solid
rotor. In 2D FEM simulation, it is not common to calculate the path of rotor currents in
the axis along with the solid rotor. But a current density can be shown in the cross-

section of the solid rotor. This can at least partially verify the assumption with sufficient
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accuracy. The distribution of current density is shown in Fig. 2.5. It can be seen that
in both, the solid smooth and axially slitted solid rotor, the highest density of current is
right under the surface of the solid rotor. This confirms the assumption of the current
path. At a closer look, smaller regions right under the rotor surface can be seen there,
and each of the regions has the opposite polarity of current density than the rest of the
rotor. These regions are currents induced by higher air-gap frequencies. The location of
these currents matches those of the rotor losses in Fig. 2.3. The only part of the current
path which cannot be verified with 2D FEM simulation is in the rotor end. But, this part

of the solid rotor is also very important.
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Fig. 2.5: Distribution of current density in: (a) smooth solid rotor and (b) axially slitted

(b)

solid rotor.

As stated in [105], the longer the rotor end is, the higher will be apparent resistance,
which is caused by the skin effect that forces the current to the rotor surface. So the
skin effect basically lengthens the current path. This is also assumed in Fig. 2.4. For the
optimal end ring length, Agarwall’s formula for depth penetration can be used for the
calculation of end rotor regions. This way;, it is possible to achieve the lowest apparent

resistance and at the same time the best efficiency of the machine, as [106] suggests.

The third and last assumption is directly related to the rotor end regions and is the
most crucial for 2D FEM calculations. When the solid rotor is modeled in 2D space, the
main problem is related to the rotor impedance behavior, which is tightly related to the
rotor field solution. The reason is that in 2D space (or 2D FEM based programs) it is only
possible to specify the axial stator length of the whole model. So the rotor end regions
cannot be directly specified or modeled in the 2D space. However, a lot of 2D FEM based
programs allows specifying bond between objects, for example, in induction machines
with squirrel cage the rotor bars are connected with a copper ring. In 2D FEM programs

these rotor bars are connected by resistance and leakage inductance between 2 rotor
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bars. In the case of a solid rotor, it is much more complicated, because the whole rotor
geometry has to be taken into account instead of just rotor bars. So it is not an easy task
to correctly determine, how to split a solid rotor into parts and which parts of the solid
rotor to connect with the resistance and leakage inductance. There is also no guarantee if
this procedure is correct, due to the absence of calculations and visualization of magnetic
fields along the rotor axis. This is the biggest drawback of 2D FEM simulation, compared
to 3D FEM simulation. But this issue can be bypassed as stated in [104], by modifying the
solid rotor impedance. The modification of the solid rotor impedance acts as the much

needed 3D rotor end-effect and it is done with a simple formula:
Zgx = kerZra (215)

where Zj, is corrected solid rotor impedance, k., is complex corrective end-effect factor,
and Z, is solid rotor impedance. Also the phase angle of the rotor impedance can be

calculated as:

R, R, R,

COSYy = — =

Z: R+ (@ilw)?  /RZ+ (5wl

where R, is resistance of the solid rotor, wy is the angular frequency of the stator field,

(2.16)

and L,, is leakage inductance of the solid rotor.

The complex corrective end-effect factor has the function of increasing the
impedance of the active part of the solid rotor by the impedance of the rotor end
regions. Without it, the solid rotor impedance will be too small and the output power
of the machine too optimistic. In 2D FEM calculations, the 3D rotor end-effects are
traditionally taken into account by modifying the rotor effective resistivity by an end-
factor, because the reactance of the solid rotor cannot be changed in these programs.
The corrected effective resistance can lead to a very accurate calculation of the machine
torque, but the calculation of the power factor of the rotor and also the entire machine

will undoubtedly fail. This is demonstrated in Fig. 2.6.

In the figure, it can be seen that the magnitude of calculated and measured total
impedance differs. That is due to the impossibility of changing the rotor reactance in
the 2D model, which has to be increased due to the absence of the rotor end regions.
This difference just indicates the unchanged reactance of the solid rotor. Also, the phase
shift of both total impedances naturally differs, which is most important for the power
factor. The phase shift of the calculated total impedance has a lower value, which leads
to a higher power factor. The phase shift of the measured total impedance, on the other
hand, has a higher value. This leads to a lower value of the power factor. In the literature
[2], a high-speed IM with a solid rotor was studied on this effect. It was concluded that
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calculated power factor had value of cosy = 0.68, but the real measured machine had
power factor value of cosp = 0.61. The difference is large, given the power factor, so

using this method will inevitably lead to incorrect power factor determination.

tot,er

Fig. 2.6: Solid rotor induction machine total impedance at the rated operational point

(left) and solid rotor impedance consisting of active and end region part [104].

In the vast majority of cases, it is possible to change only the rotor conductivity in 2D
FEM programs. The conductivity of the rotor is directly related to the effective resistivity
of the rotor, which is very convenient in this case. Instead of changing the resistivity of
the rotor, the conductivity of the rotor will be changed instead. This can be done by the
end-effect factor for conductivity in the same was, as for the resistivity. The next section,
of this work, will provide an overview of most of the correction end-effect factors used

for rotor conductivity correction, from various authors.

2.4 Corrective end-effect factors

2.4.1 Corrective end-effect factors for a solid rotor

The formula for correction of the solid rotor conductivity, in the case of 2D FEM calcu-

lations, is the same as for correction of the solid rotor impedance in the formula (2.15):

OcCorr = ]{O', (217)

Here, corrected conductivity is given by modified conductivity of the rotor material
by end-effect factor. The rotor conductivity must be recalculated for the operating
temperature of the machine, but the issue of heat calculation is out of the scope of this

work. The end-effect factor £ is represented here in general and many publications
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show its different shape.

According to Russell [10], the rotor ends can be taken into account in the computa-
tions by modifying the rotor resistivity by the end-factor depending on the length and
the pole pitch of a solid rotor:

2 L,
Frussen = 1 — Tp tanh (ﬂ- ) (218)

L, 27,

where 7, is the pole pitch and L, is the rotor length.

As reported by O’Kelly [107], for calculation of end-factor that reduces the rotor
equivalent conductivity, the end-effect corrective factor is dependent on the length, the
pole pair number, and average rotor radius:

L
kO’Kelly = %7 (219)
L + ave

p

where 7, is the average rotor radius and p is the pole pair number.

Woolley’s [8] formula for the end-factor depends on length, outer diameter, and addi-

tional parameters of a solid rotor and is defined as:

k:Woolley = [% <Q1 + \/Q% + 4k, - tanh (%r)>] 7 (2.20)

where D, is the rotor outer diameter. The variables () and k; are defined as:

D, L,
O,=1-— (pL + kl) tanh (pD ) , (2.21)
ey = y’zlerzC , (2.22)
slitMer

where z., and p., represent the end region thickness and the resistivity, yg;; is the slit
depth and p. is the cylindrical shell region resistivity.

In study presented by Yee [7], it is assumed that the rotor current density is confined

in a thin shell around the rotor. The end-factor for a smooth solid rotor is defined as:

al, (1 + coth <%Lr))
s , (2.23)
al, (1 + coth ( Qr)) -2

kYee -
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The variable a is defined as:

a=— (2.24)
Tp

According to Trickey [5], the end-factor depends on the inner and outer diameters and

the pole pair number of the rotor, and is defined as:

1+ <Din)p
oo P \D: /)
Trickey 2 ( Din ) D>

\D

(2.25)

In the case of a slitted solid rotor, the inner diameter D;,, can be defined according to the
rotor slit depth:
Din = Dr - 2yslit- (226)

It should be noted, that (2.25) does not take into account the rotor length. Thus,
according to Trickey’s formula, the correction factor is a constant value for all rotor

lengths.

The corrective end-effect factors listed above, are the most basic and well know.
The studies in [2] and [108], presented a comparison between all of these corrective
end-effect factors on a real machine. For the case study, a three-phase, two-pole 170
Hz induction machine equipped with a slitted solid steel rotor with an output power
of 120 kW was chosen. The solid rotor had at the beginning long “end rings”, which
were gradually shortened piece by piece. For achieving the most comparable results
between the measured and FEM calculated values, the machine was supplied directly
from the 50 Hz network instead of the frequency converter. This led to a reduction
of supply voltage, which had to be reduced to keep the air-gap flux density and the
machine performance at rated values. Thus, the nominated output power of the ma-

chine was reduced to around 35 kW. This also led to a higher nominal slip of the machine.

The main goal of the work was to show the difference between each corrective
end-effect factor with respect to the length of the rotor. The study showed that the
corrective factor according to Trickey (2.25), had the highest value of all corrective
factors. However as was expected, the value was the same regardless of the length of the
rotor. The lowest value, on the other hand, had a corrective factor according to Russell
(2.18). Each of the corrective factors was then applied in the 2D FEM simulation of the
electrical machine with the solid rotor and calculated with different load conditions.

The real machine was also measured with the same load conditions.

The main two investigated quantities were the torque and power factor of the

machine. In terms of machine torque, the corrective factor for Woolley (2.20), Yee (2.23),
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and mainly Trickey (2.25) had the worst agreement with the measured results. On the
other hand, Russell (2.18) and O’Kelly (2.19) had the best and quite accurate agreement.
In terms of the power factor of the machine, all of the corrective end-effect factors
noticeably failed, for the reasons described in the previous section. Only Russell’s and
O’Kelly’s came closest to the measured characteristics. Overall, O’Kelly end-effect
factor gave quite accurate results and provided a good approximation in a wide rotor
angular frequency range. However, the calculation with O’Kelly’s factor failed, because
the behavior of the correction factor is more linear than the real measured torque-speed
characteristics. This was most noticeable in the characteristics of the power factor.
For this reason, Russell’s end-factor was chosen as the best option. As the author
suggested, the results are not too realistic as the rotor frequency increases, but the
generated electromagnetic torque had a great accuracy when the machine is close to

the synchronous speed. That is because the solid rotor is not heavily saturated.

The biggest issue of all listed end-effect factors is that most of them are partly based
on the calculation of the penetration depth. So this basically means that the conductivity
(or apparent resistance) of the solid rotor is adjusted only on the basis of the geometry
of the solid rotor. This is not entirely correct, because the same machine, with the same
geometrical dimensions, may have a different rotor slip in a given operation. This as-
sumption was verified for example in [12], using 3D FEM simulation. For that reason,
an additional function that includes a rotor slip frequency should be added, because the
magnetic flux in the rotor end-regions is associated with the most heavily saturated parts
of the rotor. Due to the skin effect to the rotor currents, the rotor end-regions drifts in a
deep saturation, which additionally increases the apparent resistance of the solid rotor
when the slip increases. Thus, an additional correction factor that includes a slip was
presented in [108] by Aho. This factor was used with Russell’s end-factor as a basis for
the slip-corrected end-factor. Total correction factor then contains both of the factors is

written as:
ktot = kRussell : kAhm (227)

where kap, is the slip-corrected factor by Aho. The correction factor kap, further in-
creases the rotor resistivity. This formula was created with experimental measurements

and finite element calculations. The factor is written as:

4
_— (g) , (2.28)

With the Aho correction factor, the calculated results of the torque compared with
the measured values showed much better accuracy and almost matched the measured
torque-speed characteristics. Unfortunately, the power factor of the whole machine

still did not show the desired accuracy. But the calculated results approached a little

52



bit more the measured values. So it can be concluded, that despite very accurately
calculated results of the torque, the power factor cannot be calculated correctly in 2D
FEM calculations, if this type of end-effect corrective factor is used. That is due to the
lower phase angle of the solid rotor impedance, which is caused by not including the

reactance of the rotor end regions.

For even better results of the calculated torque and power factor of the slitted solid
rotor, a modified version of Russell’s correction end-factor formula (2.18) was presented
in [109]. A classic Russell’s correction factor has a minor disadvantage and that is using
only the whole length of the rotor in the calculation. So it is not possible to enter the
length of the rotor end region in the formula. Considering the length of the active part
and additionally the end regions of the rotor in the formula, will result in different values
of the correction factor and better agreement between calculated and measured results.

The shape of modified Russell’s formula is:

tanh <7T—ls)
kRussell,M =1- T_;) I Tp I s
Tt (1 + tanh (E) tanh (7T end))
Tp Tp

where [; is the half of the active stator-pack length and /.4 is the length of the rotor end

(2.29)

beyond the active stator pack. For a more detailed comparison between the classic and
modified version of Russell’s corrective coefficient, let’s assume for example a machine

with the following parameters needed for calculation:
« Outer diameter of rotor D, = 500 mm,
« Number of poles 2p = 2,
« Length of stator pack [, = 750 mm.

By entering these values into the formulas (2.18) and (2.29) with a gradual increase in the
length of the rotor ends from 0 to 675, the graphs are created and shown in Fig. 2.7. The
length of the rotor end is deliberately high in the graph to explain the difference between
the two formulas. In reality, such a long rotor end could not of course be realized, due
to much worse electromagnetic performance and the dynamics of the solid rotor. Here
it is shown for demonstration purposes only. In the graph, it can be seen that both
of the characteristics have noticeably different courses, which is caused by adding the
length of the rotor end to modified Russell’s corrective factor. However, one thing is very
important to note because it diametrically distinguishes the two formulas. The course of
modified Russell’s corrective factor formula tends to be constant with increasing rotor

length, where the classical formula is still rising. Hence, at some point of the rotor length,
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Fig. 2.7: Graph comparing classic and modified formula of the Russell’s end-effect factor.

the corrective factor of the modified formula will be constant. Where on the other hand,
the corrective factor of the classical formula will rise to a value of one, with a very long
rotor. But this is not correct, because if very long rotor ends would be considered, the
current in the rotor would not flow to its end. Instead, it would be dispersed beyond
the stator pack end in a way that it flows through the path of least resistance, no matter
how long is the solid rotor or how large is the total impedance of the solid rotor. This is

approximately demonstrated in Fig. 2.8 on one half of the whole machine.

SOLID STATOR

ROTOR

PATH IN THE ROTOR

ASSUMED CURRENT “

Fig. 2.8: Assumed curved current path in the solid rotor with very long rotor end region.

The modified Russell’s formula, therefore, ensures that the value of the final

conductivity of the solid rotor will not rise beyond some point of the rotor length. If
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the classic Russell’s formula would be used in a case with very long rotor ends, it could
result in an incorrect value of final conductivity, which would result in bad results of
2D FEM simulation.

It could be pointed out that the current path in the rotor also depends on the rotor
frequency, which will have some effect on the value of the modified Russell’s end-effect
factor. This is true, thus the slip-correction factor has to be applied in this case as well. In
the same study, a new slip-correction factor was proposed which corrects the modified

Russell’s end-effect factor:
ktot = kRussell,M . kPANa (230)

where kpay is the slip-correction factor by Pyrhonen, Aho and Nerg. This factor is based
on Agarwal’s depth of penetration, which is further improved by experimental measure-

ments in a way that has good agreement with the measured results:

3
kPAN =1—-c- (,dr4, (231)

where c is an adaptation coefficient.

The adaptation coeflicient c is used for further correction of slip-correction factor
kpan. In the study, the adaptation coeflicient was determined based on measured results
with the polyfitting technique to obtain good agreement between the simulations and
measurements. For the case study, a three-phase, two-pole 170 Hz induction machine
equipped with a slitted solid steel rotor with an output power of 120 kW was chosen.
On this machine, the value of the adaptation coefficient was determined to be ¢ = 0.022.
But, the value of the adaptation coefficient may slightly differ with another machine.
Therefore, the slip-correction factor by Aho can be used instead, because it purely

depends on the slip of the rotor.

Despite an even better agreement between calculated and measured results, the
value of the calculated power factor of the whole machine is still not satisfactory due to
the lower phase angle of the rotor impedance. For this reason, a method for correction
of power factor was proposed in [2], [104], and [109]. This correction method can be
used for both formulas of Russell’s correction factor and it is even compatible with
both slip-correction factors. The correction of the power factor is based on Agarwal’s
nonlimiting theory. Using this theory a total rotor impedance is raised by end-region
inductance, which is not included in the 2D FEM calculation and creates an error
between calculated and measured results. This was described and demonstrated in
previous section in Fig. 2.6. It is assumed that the smooth ferromagnetic end rings are
heavily saturated under load and produces an inductance corresponding to the phase

angle of 26.6°. This correction approach is also called Agarwal’s inductance at the rotor
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end. This procedure will be shown in the following example:

Let’s assume a machine with a slitted solid rotor with the following parameters

needed for calculation:
« Outer diameter of rotor D, = 197.5 mm,

« Number of poles 2p = 2,

Length of stator pack [, = 280 mm,

Length of rotor end region [.,420 mm,

Supply frequency f = 170 Hz,

- Angular frequency of the rotor fields w = 13.9 rads™'.

First, the conductivity of the solid rotor is modified by Russell’s factor. In this case,

a modified Russell’s factor is used:

tanh (W—ls)
kRussell,M =1- T_le ] Tp I
Tt (1 + tanh (E) tanh (7T end))
Tp Tp

Then the slip-dependent correction factor is applied. Here, correction factor kpay is used:

= 0.46. (2.32)

3
kpan = 1 — 0.022w = 0.84 (2.33)

where the total correction factor for the solid rotor is:
Fior = kRusselLM - kpan = 0.386. (234)

As it can be seen in 2.34, the rotor conductivity must be lowered to 38.6% to take the
rotor end effects into account in the torque production. So the resistivity of the rotor

material is then increased by a factor of:

L_ 1 = 2.59 (2.35)
kot 0386 7 ‘

So it can be said, that the slitted part producing torque accounts only for 38.6% of
the total rotor resistive impedance. Thus, 61.4% of the rotor resistance comes from the
end effects. This illustrates how dominating the end effects in a purely solid rotor really
are. For further calculation, let’s assume that the value of rotor impedance is in the per-
unit system Z, = 1/22°, which can be calculated with 2D FEM programs. According

to Agarwal, the impedance phase angle is assumed to be 26.6°, in the smooth end areas.
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The rotor total inductance is calculated so that 38.6% of the rotor has an inductance
corresponding to the phase angle of 22° and 61.4% of the rotor will have an inductance

corresponding to the rotor angle of 26.6°. The rotor end-leakage reactance is:
Xer = 70.614 - tan(26.6°) = 50.305. (2.36)

Then this reactive part of Agarwal’s impedance has to be added to the active part
impedance Z, = 1/22°= 0.927 + j0.375 of the rotor, which will result in the rotor

total impedance in the per-unit system:
Z, = 0.927 + j(0.375 + 0.305) = 0.927 + j0.68 = 1.15£36°. (2.37)

This newly recalculated impedance is used for the correction of the calculated power
factor of the whole machine. It also should be noted, that the corrected impedance of
the rotor is changing based on the slip of the machine. This has to be included in the
calculation if the torque slip characteristics are investigated. Using this approach in the

study proved to be very accurate for the correction of the power factor.

Aside from both main factors described above, a corrective factor given by Yee [6]

can be written in a way that it includes slip dependency. The shape of the formula is:

2
KYee,M - ]- + = Lr L ) (238)
ceoth [~ 2=
(. L +a cot (7 2) 2.a
R 7 L

where [y, is the length of the air gap. Where variables a, A, and ~y are written as follows:

, (2.39)

A=+VJ w-p-o, (2.40)

v =4]a%+ (2.41)

lgap : Mr.
a-L,

In case of very small rotor frequencies, coth ~ 1 and in addition, setting 7 ~ a,

the formula (2.38) gets the form of (2.23). Therefore, with smaller rotor frequencies, the
formula becomes frequency independent, as [103] states. This may result in an incorrect
2D FEM calculation of the torque. For this reason, this corrective factor is not very

accurate, which was proven in the study [2] and [104].
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2.4.2 Corrective end-effect factors for a smooth solid rotor and copper coating

These corrective end-effect factors are mainly for high-speed machines with a smooth
solid rotor and a copper coating. In the study [23], a corrective factor for a smooth solid
rotor with a copper coating was presented. Each of the factors is calculated and applied
separately to each part in the rotor for the best and most accurate 2D FEM simulation
results. The reason for the separate calculation is the different behavior of each part
from a physical point of view. Both of these corrective factors have been verified with
measurements on a real machine. In this case, for correction of a smooth solid rotor

conductivity, the following formula is applied:

1
OCorr — ﬁ 0, (242)

z

where £, is the corrective end-effect factor for the smooth solid rotor with the following
shape:
2
k,=1+-2 (2.43)
m L
The corrective factor for the copper coating depends on several following factors, which

has to be included in the calculation:

« For better electromagnetic performance, if the manufacturer’s capabilities allow
it, a copper coat is thicker on the end regions of the solid rotor. This minimizes the

solid rotor impedance.
« The length of the copper coat.

+ The number of space harmonic.

Based on these factors, a sketch is created and illustrated in Fig. 2.9.

tov l dCu
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Fig. 2.9: Sketch of the smooth solid rotor with a copper coating [23].

For the correction of the copper layer conductivity, the Russell-Northworthy’s coeffi-

cient is used. This correction factor has a very similar shape to that of modified Russell’s
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correction factor but is adjusted to the stated factors. The formula for correction of the

copper coat conductivity has a classic shape:
OCorr — kRNga (244)

where kgy is the Russell-Northworthy’s correction end-effect factor:

B tanh (0.55,L)
0.58,L [1 + kitanh(0.58, L)tanh(5,wey )]’

where k; is the correction factor for the thicker layer of the copper coat and 3, is constant

foy = 1 (2.45)

that depends on the number of space harmonic. The correction factor k. is very important

in 2D FEM calculation because a thicker layer of the end-regions on the copper coat

cannot be modeled in a 2D space. So the conductivity of the copper coat on the active

part of the solid rotor is changed based on the thickness of the thicker layer. The formula

for this corrective factor is:

1.2(toy — dcy)
deu ’

where %, is the thickness of the copper coat at the rotor end regions and dc, is the

thickness of the copper coat on the active part of the rotor. After a closer look at
the formula (2.46), it can be seen that the corrective factor k; does not depend on the
thickness of each part of the copper layer but rather on the thickness ratio of both
copper layers. The thicker is the copper layer at the rotor end regions the higher
conductivity of the copper layer on the active part of the rotor will be in the 2D FEM
model. The thickness of both copper layers can be the same but this will result in lower

conductivity of the copper coating in the 2D FEM model.

And the last variable 3, is written as:

B, =v—, (2.47)

Tp

where v is the number of space harmonic. The formula (2.47) acts as a constant, that
changes the conductivity of the copper layer based on the number of space harmonic
components. That means with a higher number of space harmonic components the
copper layer will be more conductive. So it acts as a higher harmonic frequency filter
where it let the fundamental harmonic component of the magnetic fields pass. In 2D
FEM simulation, the most important is the fundamental harmonic component so in that

case v = 1.

The only drawback of both corrective factors is that they are slip independent. Thus,
slip correction for end-factor (2.28) and (2.31) can be applied. Also, the formula (2.45) for
correction of the copper layer can be used for any other rotor construction that contains

the copper coat.
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2.4.3 Corrective end-effect factors for a solid rotor with high-conductive end-

rings

If the solid rotor is equipped with end-rings made of a high-conductive material, e.g.
copper or aluminum, the rotor end-effects should be also considered. The studies [11],
[22], and [29], presented an approach to obtain fairly accurate 2D FEM calculation
results. The approach is very similar to that in the previous cases. For example,
the copper end rings represent a 3D end-effect that cannot be included in the 2D
model. So, an equivalent conductivity for the rotor material has to be calculated. The
equivalent conductivity takes the resistivity of the end rings into account when the

rotor conductivity is considered.

The equivalent conductivity for the solid rotor is:
Ocorr = ke - 0, (2.43)
where k. is corrective end-factor for copper end rings:
ke=1+C-(a—1), (2.49)

where ¢ = 0.3 for thick copper end-rings and C' = 1 for rotors without copper end rings.
The coefficient o represents copper end-rings resistance contribution to the solid rotor

and is expressed with Russell end-effect factor:

1 1
o =

kRussell 1— & tanh 7T_
L 27,

(2.50)

where L is the active part of the solid rotor.

The calculation of the correction factor for copper end-ring is based on the assump-
tion of eddy-current paths in the solid rotor as it is demonstrated in Fig. 2.10(a). In Fig.
2.10(b) it is assumed that the rotor current flows more or less axially in the solid rotor
and in circumference direction in the copper end-rings. Hence, the approximation of
the conductivity of the solid rotor, equipped with copper end-rings, fits the current flow

much better than without copper end-rings.

And additionally, for the preliminary design of the width of the copper rings, it is
possible to use the formula for Agarwal’s depth of penetration (2.14). Or another method
for calculation of copper end-rings thickness can be used, which is based on the analogy

of the squirrel cage induction machine. This method is proposed in [22].
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Fig. 2.10: Rotor induced eddy current paths: (a) without copper end-rings, (b) with
copper end-rings [22].

2.4.4 Corrective end-effect factors for a solid rotor with a radial rotor surface

grooves

This is a special case of rotor surface modification to improve the electromagnetic
performance of the electrical machine with a solid rotor. As it was mentioned before,
higher air-gap frequencies, which are caused by stator slotting and additionally
(depending on rotor construction) rotor slitting, penetrates through the surface of the
solid rotor and causing high-frequency rotor eddy currents mainly underneath the
rotor surface. These high-frequency rotor eddy currents are demonstrated in Fig. 2.11.
The rotor eddy currents additionally cause high rotor losses, which increases the rotor
temperature. For this reason, radial grooves are created on the rotor, which has the task

of disrupting these high-frequency eddy currents, according to, [22] and [43].

As it was stated, for coating of the solid rotor either high conductive or high resistive
material is used. In this case, by grooving the solid rotor surface, the surface becomes
effectively more resistive and thereby cutting the path of high-frequency harmonic cur-
rents. Thus, radial grooves are acting as a high resistive coating for the solid rotor. In
studies [22] and [43] radial grooves were used on the case study machine. The rotor
eddy current losses beneath the outer surface were decreased significantly by 75% for
400 Hz, 70% for 600 Hz, and 65% for 800 Hz. For 800 Hz operating frequency the total

rotor eddy current losses were decreased by 30%. In the 2D model, the radial grooves

61



are created as an outer layer of the solid rotor with defined depth. The end-effect fac-
tors for correction of the rotor conductivity are defined for the outer layer and the rest
of the rotor separately. The conductivity of the outer layer, which represents the radial
grooves, should be decreased by approximately 80-90%, depending on the machine. A

method for calculating the correction factor for the radial grooves will be shown below.
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Fig. 2.11: Detail of distribution of current density in: (a) smooth solid rotor and (b)
axially slitted solid rotor.

The geometry of the radial grooves consists of three main parameters as is shown in
Fig. 2.12. The width of the radial grooves (a) depends mainly on the capabilities of the
manufacturer. It can vary between 0.1 - 1 mm, also depending on the machine size. The
depth of the radial grooves (c) depends on the penetration depth of the higher air-gap
frequencies. It can be easily calculated with a classic formula for penetration depth (2.12).
The distance between each radial groove (b) is the most important for the calculation and
determines the conductivity of the radial grooves in the 2D model.

/
// <— Stator

a b <+— Air-gap

Radial grooves

Fig. 2.12: The geometry of the radial grooves on the stator surface according to [22].
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As an example, let’s assume an electrical machine with the 3-phase stator winding
with shortening of the winding step to 5/6 equipped with an axially slitted solid rotor

with the following parameters needed for calculation:

« Number of stator slots ()1 = 24,

« Number of rotor slits () = 28,

Outer rotor diameter D, = 150 mm,

Number of poles 2p = 2,

Length of the active part of the rotor L = 250 mm.

First, to determine the conductivi ty of the radial grooves, a 2D FEM simulation is needed
to get the distribution of flux density in the air gap. Then FFT analysis is performed to
get all the components of the air-gap flux density. For this example, a graph containing
all harmonic components of the air-gap flux density is shown in Fig. 2.13. The graph
shows that the air-gap flux density is composed of fundamental and higher harmonic
components caused by stator slotting and rotor slitting. So the most dominant higher
harmonic components are with ordinal numbers -23, 25, -27, and 29. According to [43],
for the calculation of the correction factor, all higher harmonic components were used.
But newer study [22] shows that the highest value of the higher harmonic components
is preferred. So for the calculation, higher harmonic components with ordinal numbers

-27 and 29 are used, which corresponds to the rotor slits.
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Fig. 2.13: Air gap flux density variation with its harmonic spectrum.

For the calculation of the corrected conductivity for the radial grooves, Russell’s end-

effect factor is used, which takes into account the rotor ends by decreasing conductivity
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in the 2D computation. However, instead of calculating one corrective factor, an average
equivalent Russell end-effect factor (2.51) is calculated, which consists of corrective end-

effect factors for fundamental (2.52) and higher harmonic (2.53) air-gap fields.

kry—1+ kry
kpeg = — 2 1; = (2.51)
2- AFey
kpo_1 =1— ——" tanh (W F ) , (2.52)
T lpe 2.7
2. y .l v
kp, =1 — =" tanh (W r ) (2.53)
’ T tFev 2'Tpu

where [p., is the distance between each individual radial groove and represents
dimension () in Fig. 2.13, v,,. is average value of higher harmonic component, and 7,
is the average pole pitch of the stator slot harmonic fields. Dimension /., is assumed as
an iron length path for high-frequency harmonic currents and is selected and designed
with respect to the active length of the rotor and width of the radial grooves. 7, is
assumed as the length of the pole pitch for high-frequency eddy currents under the rotor
surface. The following example shows the whole process of calculating the correction

factor for the radial grooves and is based on previously determined machine parameters:

In this case, the width of the radial grooves is selected to 0.5 mm and thus with the

respect to the active part of the rotor, the length between the radial grooves is 8 mm:

2- : l ev _
kpyet =1 — — P ganh (2 ) g 471 . 1074 (2.54)
' Tl pey 2.1,
— 27| +2
Voo = # =28 (2.55)
Tow = VTP — 13,09 mm (2.56)
2 : 1 : l ev
kp, =1— =P tanh ( TP ) — 995 (2.57)
’ T lpey 2T
kpver + kry
Keq = % —0.113 (2.58)

So, according to (2.58), the radial grooves will have reduced conductivity up to 89%.
Accordingly, in the 2D model, applying only 11% of the rotor conductivity to the outer
layer of the solid rotor with the penetration depth, the rotor surface eddy current losses
should be decreased significantly. Moreover, the electromagnetic torque of the machine

is hardly affected by this modification of the solid rotor, according to [22].
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3 Surrogate modeling

3.1 Introduction

In the last few decades, numerical design methods and models have been widely used
for engineering purposes. They have become a key aspect in designing and optimizing
the final product in a wide range of fields, both in science and industry. It is also
due to their increasing accuracy and complexity. However, in the vast majority of
cases, running these numerical design methods and models on computers takes a lot of
computational time and power. To accelerate the design and optimization of the final

product a surrogate modeling is used.

According to [110], surrogate modeling is often used to reduce computational time of
all tasks by replacing expensive numerical simulations with approximate functions that
are much faster to evaluate. Surrogate models are constructed by evaluating the original
model at a set of points, called training points and using the corresponding evaluations
to construct an approximate model based on mathematical functions. In other words,
surrogate model is statistical model that accurately approximate the simulation outputs.
It does not require large number of simulations and is able to perform hundreds and

thousands of output evaluations, which would be extremely time-consuming with
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Cheap, since training and employing
a surrogate model is not expensive

Fig. 3.1: Demonstration of the advantages of the surrogate model over conventional

simulations and optimization [111].
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conventional simulation and optimization. Simply put, a surrogate model is a
predictive model that is trained with a set of initial simulations or calculations of some
specific object or model. So, surrogate modeling is a special case of supervised machine

learning. This idea is illustrated in Fig. 3.1.

Another advantage of the surrogate modeling is its easy use. Due to this reason it is
gaining popularity in a wide range of scientific and engineering fields. Just to name few
fields for example: medical [112], automotive [113], electronics [114], oil industry [115],
chemical process engineering [116], fluids [117] and many others. Surrogate modeling
is additionally very suitable for the design and optimization of electrical machines, es-
pecially the ones with solid rotors. The next section will deal more with the basic idea

about surrogate modeling and its use for electrical machines with a solid rotor.

3.2 Workflow of surrogate modeling

As stated in [111], a surrogate model is trained using a data-driven approach. Its
training data is obtained via probing the simulation outputs at several suitably selected
locations in the design parameter space. At each of these locations, a full simulation is
conducted to calculate the corresponding simulation output. By assembling the pairs of
inputs (design parameters) and their corresponding outputs into a training dataset, a

statistical model can be build based on the obtained dataset.

For an electrical machine, this means that a sensitivity analysis of the machine
must be performed. So, the first step to create a surrogate model is to make a list of all
input variables of the proposed electrical machine. For example number of conductors,
depth of slits, width of slits and others. One of the disadvantages of the surrogate
model is that it cannot work very well with too many input parameters of the designed
product. The acceptable number of input parameters is up to around 10. However, if the
investigated object (electric machine) had around 50 input parameters, the surrogate
model would not be able to accurately evaluate the output parameters of the object
(electric machine). The electrical machine with a solid rotor has low number of input
parameters, so the surrogate model can be applied. On the other hand, for example,
Line-start synchronous machines would be problematic because they have a high
number of input parameters. In that case, another methodology for machine design and
optimization would have to be chosen, such as optimization using a genetic algorithm,
as [118] suggests. After selecting all suitable input parameters, it is also necessary
to select the important and monitored output parameters, such as electromagnetic
torque, electromagnetic efficiency, power factor and other. Based on the selected

input and output parameters a sensitivity analysis must be preformed to show the
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relationship between input and output parameters. This is done by executing several
calculations, where each input parameter is individually changed in a wide range of
values with reasonable limits. Here, the calculations can be preformed by FEM-based
program, preferably in 2D space for electrical machines with a solid rotor, as it was
discussed in section 2.2. Based on all calculated results, graphs are created, which show
the dependence of all input parameters on each monitored output parameter of the
calculation. If the input variables differ in their size and physical unit, it is preferable
to convert all input parameters to per unit system. This will achieve relative growth
of each input parameter and better comparison between them. The graphs could also
reveal if the function of the input parameter to the output parameter does not have
some very complex function shape. This could be problematic and the approximation of
the function with the surrogate model would not be possible. This would mean that the
surrogate model would show poor accuracy of the output results. The best possible case
scenario is when all function of input parameters to output parameters have a linear or

quadratic course of the function. The reason behind this will be explained later.

Based on sensitivity analysis of the electrical machine and all available graphs with
function of all input and output parameters, it can be determines which input parameters
improve, or conversely degrade, the output parameter of the machine. This can help to
predict the behaviour of the machine even better and narrow the selection for the input
parameter limit even more. The limit of the input parameters is on of the most crucial
parts of the surrogate modeling. After the selection of the most suitable limit for all input

parameters, the surrogate model is ready to be made. The workflow of creating

Sampling
(Design of experiments)

}

{ Output evaluations

(simulation runs) } \
4 )
Construct Add new
L surrogate model ) samples
e N\
Active learning —]

\. J

Fig. 3.2: Diagram of the workflow of surrogate modeling [111].
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surrogate model, according to [111], is shown in Fig. 3.2. Each step shown in the diagram

will be discussed and described in the following sections.

3.2.1 Sampling

Sampling is used to create training data for surrogate model. This is done by selecting
samples from the full range of each input parameter, where each input parameter has
its reasonable limit. This practice is known as design of experiments. It is preferable
to have samples that are spread evenly across the input parameter space. However,
this varies from case to case. For example, in most cases, it is appropriate to use a
linear distribution of samples in the range of the input parameter. But, in some cases,
the sampling of the input parameter could have a completely different course of the
distribution. This is important, because the sampling of input parameters will affect the
predicted output parameters of surrogate model. This situation is illustrated in Fig. 3.3.
Here, the original function (blue line) of input parameter (X) to output parameter (Y) has
some unspecified course of the function. The samples are here linearly distributed, but
the samples do not reveal the minima and the maxima of the function. If this sampling
would have been used in surrogate model, the surrogate model would evaluate and
approximate this sampling as a linear function. This would lead to a huge error in
evaluating the output values of the surrogate model. To avoid this problem, a sensitivity
analysis was performed. Another task of sensitivity analysis was to reveal the course

of functions between input and output parameters and, if necessary, to determine the
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Fig. 3.3: Illustration of simulated function of input and output parameters with approx-

imated surrogate model function.

most suitable sampling for input parameters for the most optimal approximation of the
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functions for surrogate modeling.

However, to create initial training data, it is not enough to simply select suitable sam-
ples of input parameters. It is also necessary to create space-filling sampling schemes,
which creates all sample combinations for the selected input parameters. Many sampling
schemes exists, but the most well-known are Latin Hypercube scheme or Box-Behnken
scheme. The general difference between the sampling schemes is the prediction error
of the surrogate model, which is very important. So each scheme has its application to
a given situation. The difference between Latin hypercube and Box-Behnken scheme is
shown in Fig. 3.4. The Latin hyper cube scheme is presented as 2D dimensional lay-
out with samples in it. The Box-Behnken scheme is created as three-level cube. This

work will not deal with these schemes in detail. For further information, publications
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Fig. 3.4: Sampling scheme of: two-prarameters Latin hypercube sampling (a) [119] and
three-level Box-Behnken sampling (b) [120].
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[121] - [125] provides more information on Latin hyper cube sampling scheme, where

publications [126] - [130] provides more information on Box-Behnken sampling scheme.

3.2.2 Output evaluations

After the sampling scheme for initial data were determined, all these sampling points
have to be simulated or calculated. After all of the simulations or calculations are com-
pleted, both input parameters and output parameters of the simulations/calculations, are
assembled together in their correspondence. All data are then conveniently stored for

further use on the surrogate model.

3.2.3 Construction of the surrogate model

In this step, the surrogate model is constructed by using collected training data from
previous step. As the core for surrogate modeling, multiple machine learning technique
exists. This work will not deal with each of the machine learning techniques in-depth
or which one is the best. Publications [132] - [137] deal in depth with the surrogate
modeling and possible different machine learning techniques used in it. These machine

learning techniques include, for example:

« Response surface models,

Splines with tensions,

Gaussian processes,

+ Sparse Gaussian process,
« Radial basis function,

« Polynomial regression,

+ And others ...

The surrogate model itself is then created by using one of such methods mentioned above
(the one that is most suitable for a given application) with the initial training data. This
creates trained predictive model, that is almost ready to be used. Before the surrogate
model is further used, it is also advantageous to plot surrogate model data and simula-
tions data from initial training, as it is shown in Fig. 3.5. This way, it can be determined
whether the surrogate model is creating an unwanted error, when evaluating the output
parameter. If the plotted data of model predictions and simulated data have a purely
linear course, then surrogate model has practically no error and is now ready to be used.
If some points deviates, then the surrogate modeling is not suitable for a given appli-

cation. For better testing of surrogate model, some of the initial training data (about
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10%), can be taken out before creating the surrogate model and used for verification of
the model. These verification data would be plotted in the same graph, but this time the
error between model predictions and simulation data would be much more noticeable.
This is because verification data are not included in the training data. So, naturally the
surrogate model has to predict them, where in process of evaluation creates and error

between predicted and simulated data.
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Fig. 3.5: Comparison of surrogate model predictions data and simulated data [131].

To determine how much is the linear relationship between the predicted and simu-
lated data, and possibly see how big is the evaluation error of the surrogate model, the
Pearson R coefficient can be used. This coefficient shows the strength of the linear re-
lationship between two set of data. The value of this coefficient ranges from -1 to 1. If
the coefficient is 1 then the it is purely positive linear correlation. When one parameters
increases, the other increase as well with no deviation. When the value is -1 then it is
purely negative linear correlation and when one parameter increases, the other is de-
creasing with no deviation. If the value is 0 than there is practically no linear correlation
between two parameters. In addition to the pearson R coeflicient, covariance can also
be used. This one shows only linear relationship like the Pearson R coefficient (not its
strength). The range of this coefficient is much higher, which can reveal a much greater
linear correlation between the two parameters. Publication [138], deals more with these

two coefficients, its characteristics, and its use.

3.2.4 Active learning

When creating a sampling scheme for initial training data, it is not possible to predict the

total number of samples or sometimes the correct sampling of input parameters. There-
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fore, most of the time the Surrogate model is not accurate when it is first constructed.
This is determined by the complexity of the approximated input-output relation. So,
in the vast majority of cases, it is necessary to enrich the initial training data of the

surrogate model as the the training progresses. This practice is known as Active learning,.

This process has two possible approaches, where both of these approaches are done
iteratively. The first one is to use learning functions, which helps to identify the next
sample with the highest information value. In other words, as stated in [111] and [131],

those learning functions are designed to allocate samples to regions where:

« the surrogate model is thought to be inaccurate, uncertain or where the model has

the largest expected error,

« or to regions where particularly interesting combinations of design parameters
lie, such as the region that possibly contains the globally optimum values of the

design parameters.

This way the surrogate model can learn the fastest way. In the second approach, the
samples are picked manually. Thus, the samples can be selected evenly across the limits
of the input parameters, or based on the size of the monitored output parameter, or
selected completely randomly. Regardless of the approach used, the accuracy of the
surrogate model should increase. Publications [139] - [141] deal in more depth with the

active learning of the surrogate model.

3.2.5 Adding new samples

Once the new samples have been identified, new simulations or calculations are per-
formed in order to get new corresponding simulation data. These new data are stored in
existing training data. Subsequently, the surrogate model is re-trained on the enriched
training dataset. This process is iterative and is repeated until the surrogate model pro-
duces satisfying results with the highest possible accuracy and lowest possible errors.

In practice, the number of iterations is often around 2 to 3.

3.3 Deployment of surrogate model

Based on the previous sections, the surrogate model is, at this point, ready to be used
in the final design and optimization of the object (in this case electrical machine). The
main advantage of the surrogate model, as it was mentioned at the very beginning of this
chapter, namely that it can significantly reduce the time consumption of all calculations
or simulations with good accuracy. It is then possible to use for example multi-objective

evolutionary algorithms to determine the best design using a surrogate model. This case
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was shown in publications [142] and [143] for electrical machines and electric drives.
In these publications, it was also shown, the difference between conventional and hy-
brid surrogate modeling design using MOEA-based optimization. It has been shown that
the conventional process of designing an electrical machine or drive using FEM-based
analysis with MOEA-based optimization is considerably longer than using a hybrid sur-
rogate model with MOEA-based optimization. This is illustrated in Fig. 3.6. For the
conventional MOEA-based optimization, the FEM-based analysis was used during all
M generations. Where on the other hand the hybrid optimization with the surrogate
model, FEM-based analysis was used only in sampling and creating initial training data
for N generations and for final FEM-based re-evaluation and verification of Pareto font
computations. The Pareto font computations only required surrogate model, which is
basically function with some data. And of course, there was an option with some of the
steps were repeated due to active learning of the surrogate model. But nonetheless, the
total number of FEM-based simulations were reduced and this type of optimization was
proved to be less time consuming with very good accuracy of the evaluated designs for

electrical machine and drive.
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Fig. 3.6: Comparison of the optimization processes for a conventional generational
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MOEA-based optimization (ConvOpt) and a hybrid optimization run (HybridOpt) that
uses surrogate models during the MOEA execution, according to [142] and [143].

The next chapters of this work will be devoted to the analysis of an electric machine
with a solid rotor and its subsequent use for a surrogate model and possible optimization

of the design of the selected machine.
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4 Electromagnetic analysis of the case study IM with

a solid rotor

4.1 Case study electric machine

For the case study, a 3-phase induction machine with a squirrel cage rotor and a sin-

gle layer stator winding with 35 conductors was chosen. Electrical parameters, of the

machine, are shown in Table 4.1 and its dimension with used material in Table 4.2.

Tabel 4.1: Overview of electric parameters for the case study machine.

Parameters Unit Value
Rated power kW 1.5
Rated torque Nm 9.905
Rated voltage Vv 400
Efficiency % 84.62
Power factor - 0.744
Rated current A 3.43
No-load current A 2.23
Relative short-circuit current - 7.67
Relative short-circuit torque - 3.925
Pull out torque Nm 42.112
Winding connection - Y
Number of poles - 4
Frequency Hz 50
Slip % 3.588
Slip at pull out torque % 30.273
Speed min 1! 1446.2

Tabel 4.2: Overview of geometric dimensions and used material for the case study ma-

chine.

Dimension Unit Value

Stator Rotor
Outer diameter mm 145 83.4
Inner diameter mm 83.9 35
Length of the active part mm 170
Air-gap length mm 0.25
Number of slots - 36 28
Used material - M470-50A M470-50A
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Due to the nature and goals of this work, the squirrel cage rotor was replaced with
a solid rotor. In this case study, only one type of solid rotor is examined, and that is
an axially slitted solid rotor. The solid rotor is made of a single piece of ferromagnetic
material, so naturally, the material was also replaced with shaft steel 1008. The material
was chosen based on its price and easy availability. For this reason, it is easy to produce
a prototype for the measurement of the case study. The dimensions of the new solid

rotor are illustrated in Fig. 4.1.
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Fig. 4.1: Sketch of slitted solid rotor construction used for the case study electromagnetic

analysis.

Here, the dimensions of the new rotor is limited by the dimensions of the original
electric machine. So the length of the end-regions can be a maximum of 20 mm, which
is the thickness of the original end ring of the squirrel cage. The optimal length of end-
regions for the solid rotor can be verified with Agarwal’s depth of penetration formula.
For the calculation, the rated slip of the original machine is used because at this moment
the slip of the modified machine is not known. At the slip of 0.036, the corresponding
electrical angular frequencies of the rotor currents is 11.31 rads~!. The steel 1008 has a
conductivity of 2 - 106 Sm ™" at a temperature of 20°C and the saturation flux density is

1.9 T with a corresponding saturation field strength of 15915 Am L.

2H, \/ 215915
Dparal = _ —97.2 4.1
Agarwal \/wTJBS 11.31-2-100- 1.9 i (41)

Based on this result, it may be concluded that the optimal end-region length of the
solid rotor at this slip is about 27.2 mm. But it is already known that a solid rotor tends
to have a large slip, especially a smooth solid rotor. Therefore, the optimal length of the
end-region, in the end, may be higher. For slip 0.05 the optimal length of the end-region
is 23.1 mm and for slip 0.07 is 19.52 mm. For this reason, the proposed end-region length
in Fig. 4.1 may be correct or at least be very close to the optimal length calculated
with Agarwal’s penetration depth formula. Even with this difference, the match of the
two end-region lengths is relatively good. And as mentioned, it cannot be changed

due to the size of the whole electric machine, which is the limiting factor for the rotor
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end-region length.

The depth of the axial slits in the axially slitted solid rotor, in Fig. 4.1, is only
about 29% of the rotor radius. Ideally could be deeper up to 50%, to achieve bet-
ter electromagnetic parameters. The speed and mechanical properties of the rotor
would be able to allow this. However, it is due to the limited capabilities of the
manufacturer. The same goes for the width of the axial slits, which could be narrower.

But it is also limited and this is the narrowest possible width which can be manufactured.

Even with these shortcomings, the modified electrical machine, with a solid rotor,
should be able to produce some reasonable results for the study in this work. Besides,
the main advantage of this approach is the much simpler comparison of simulated and
measured results. That is because the electrical machine is powered directly from the
50 Hz network.

These shortcomings can be also improved by optimization of the machine using the
surrogate model, which is the main focus of this work. So it will be very interesting
to see how much the parameters improve after optimization and if the improvements
will correspond with the theory that was described in the first chapter of this work. So
basically, this “bad” machine design will also serve to test the capabilities of the surrogate

model.

4.2 Simulation procedure of the analyzed case study electrical

machine

The process of electromagnetic analysis, of the case study electrical machine, consists
traditionally of three main steps: pre-process, process and post-process. Each of the
steps is performed by using one of the following programs: Python, FreeCAD and An-
sys maxwell. Python script controls and manages the entire analysis process and cre-
ation of the electromagnetic model. This script also contains all needed input variables,
for other programs, such as geometric dimensions, input voltage and more. In addition,
it also holds a post-process function at the end of the machine electromagnetic analy-
sis, where is it able to show characteristics and calculated performance of the analyzed
machine. FreeCAD represents the pre-process function, where the geometry of the elec-
tromagnetic model is created and exported for electromagnetic analysis. And finally,
Ansys maxwell imports and performs the electromagnetic analysis of the electromag-
netic model created in FreeCAD. The algorithm of the whole machine analysis procedure

is shown in Fig. 4.2. Each program will be more discussed in the following sections.
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Fig. 4.2: Algorithm of the whole process of electromagnetic model simulation.
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4.2.1 FreeCAD

For the pre-process of the electromagnetic model, the FreeCAD program was chosen.
One reason is that it is free and can be used freely commercially. It is also very similar
to other CAD programs and has very similar controls with a possibility of 2D and 3D
drawing. Users familiar with other CAD environments should not have much trouble
controlling this program. Also, it has multi-platform support and it is able to export
geometries with a various file extension, as *.dxf, *.dwg, ".step, etc., that are compatible
with most of the CAD and FEM programs. So it is possible to either use it directly in
a FEM program for simulation or change some dimensions in another CAD program.
Additionally, FreeCAD can create a mesh in the model. This is done by either built-in
Netgen or Gmsh mesher. It is also able to do other FEM related tasks such as the
definition of material, boundary conditions and some post-process features. All of the

features are listed in [144].

Another reason is the ability to fully control FreeCAD using Python. This feature
is also common with other open-source or paid CAD programs, but here it is made
in a very convenient way. So, the FreeCAD can be controlled with internal macros,
can create internal macros, be directly controlled with an external Python script,
or can be controlled from a built-in Python console. With all these features, it is
possible to automate the creation of different geometries that can be exported and
used for other purposes in a fast and efficient way. The creation of an internal macro
or external python script can be either written directly by the user or is created by
sequentially creating geometry in the FreeCAD environment by the user. The second
option is way more easier and convenient. Basically when the user is creating some
geometries at the same time python commands are written in the built-in python
console. The created Python script can be copied and further modified according to
the user’s needs. The main advantage of scripting is the creation of geometry as a
background process without the use of a FreeCAD GUI. On the other hand, the main
disadvantage of scripting in FreeCAD is the requirement of Python ver. 3.6, which is
only supported Python version for scripting. More information and all the necessary

procedures and tips on how scripting works in Python in FreeCAD can be found in [145].

Based on all the features mentioned above, a geometry of the axially slitted solid
rotor was created in FreeCAD, in accordance with specified parameters. The creation
procedure itself consisted of, first creating the axially slitted rotor geometry manually.
The created Python script in the in-built Python console was copied and parameter-
ized for further possible changes in geometry. This script was executed as an external

Python script, that was controlling and managing the creation of geometry in FreeCAD.
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This created geometry is shown in Fig. 4.3. Additionally, the stator was divided into
several parts for better and more controlled meshing. So each, stator yoke and teeth
were divided into two half parts. This was also done for the rotor, which was divided
into four parts in total. The first layer is very thin and it is done for better meshing and
visualization of higher stator slot air-gap frequencies currents. The height of this layer is
normally determined with the formula for penetration depth (2.12), but with these low
power supply frequencies it is set manually otherwise the height would be too small.
Other layers were then divided equally. This also helps to better determine loss den-
sity in each part of the machine. Unfortunately, the in-built meshing of the geometries
cannot be used here, because Ansys maxwell doesn’t support it and often can’t work im-
ported mesh. The meshing of the geometries was carried out later in the Ansys maxwell.
Even another FEM related pre-processing features cannot be used here because Ansys
maxwell does not support them. This geometry was then exported with *.step extension,

which is supported by Ansys maxwell.

Fig. 4.3: The whole initially created geometry of the electrical machine with the axially
slitted solid rotor in FreeCAD.

4.2.2 Ansys Maxwell

For the analysis of the case study electrical machine, the Ansys maxwell software was
chosen. It is a commercial program that is widely used to solve multi-physical problems.
Therefore, it can be used for a wide variety of simulations for example electromagnetic,
thermal, mechanical, fluids, electromechanical, etc. The big advantage of the program

is good support from the developers and robustness of the program. If used correctly,
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Ansys maxwell can produce a very good agreement between measured and simulated
results. Besides, it is user-friendly, which is very important for inexperienced users.
It also has very good documentation with a lot of practical examples that serve as a
tutorial. On the other hand, this program is very expensive and for this reason, most of

the smaller businesses are not able to afford it despite its very good properties.

For this work, Ansys maxwell software for low frequencies electromagnetic field
simulations was used. It can simulate either the steady-state of the machine or the
transients of the machine. In this case, a transient simulation was used due to more
accurate results of the simulation. And because the induction machine is a complex
electromechanical and electromagnetic system that creates transients during its
operation, which must stabilize. This type of simulation also allows visualizing the
behavior of the machine over time. Aside from simulation, Ansys maxwell is also able
to create geometries in its environments, but the tools and way of creating geometries
are not very practical. For this reason, the geometry was created in FreeCAD. However,
even with imported geometry, some parts have to be added, which will be discussed
later. Either, the imported or created geometries, have to be further defined with their
properties for the simulation. This includes defining materials for each part, excitation,
core losses, boundary conditions and others. In this work, the procedure of setting the
simulation will not be shown, but only described in general. For further information on
this topic, manuals [146] and [147] show the complete procedure of importing/creating
geometry with the setting of the electromagnetic model and executing its simulation

with a post-process.

In addition, Ansys maxwell has the option of scripting using Python, Java or VBA.
It is able to create macros, be controlled by macros, or be controlled by external scripts
as well as FreeCAD. Ansys maxwell has also an in-built command window with the
possibility of creating a macro simply by manual control of the program itself. Each
sequential step performed by the user is written in the form of a command to an
external script. Basically, Ansys maxwell has very similar scripting options, with minor
differences, as FreeCAD. Due to this, Python is a very good choice for controlling Ansys
maxwell and overall automation of the whole machine analysis. Therefore, Python was
used for automatizing all steps described below. For further information, the manual

[148] provides all the necessary information on scripting.

In terms of the analysis of the case study machine itself, only a quarter of the elec-
tromagnetic model was created in FreeCAD. That is because the machine has 4 poles
where in each pole the distribution of electromagnetic field is the same, at least in terms

of FEM simulation. This creates symmetry in the electromagnetic model that can be
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used to reduce the simulation time. After the import of geometries from FreeCAD, a few
changes had to be made in order to analyze the electromagnetic model correctly. First,
three more parts had to be added, where all of the parts represent the air region in the
machine. This helps to generate better mesh, mainly in the air gap where it is needed
the most. The next step was to define the materials for each part of the electromagnetic
machine. For stator parts, a material M470-50A was used that is typical for stator sheets.
All necessary parameters were obtained from [149], mainly the B-H curve. However,
most of the time the B-H curve is incomplete, so it is necessary to extend this curve fur-
ther. If the curve is not further extended or is poorly extrapolated, it may lead to poor
simulation results. So there are two ways to extend the B-H curve, either extend it man-
ually, which requires some experience, or use extrapolating methods for the B-H curve.
The second option is better for inexperienced people and in addition, the extrapolated
values for some methods show a very good agreement with the measured values of the
B-H curve behind the saturation point. Some of the methods are presented in [150] and

[151]. The extrapolated B-H curve of the stator material is shown in Fig. 4.4.
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Fig. 4.4: B-H curve for stator material - M470-50A.

For the rotor parts, a material Steel 1008 was used which is typical for the steel shafts
of the rotors. This material is widely used and easy to get. In this case, this material was
selected directly from the Ansys maxwell libraries, which already has extrapolated B-
H curve values. It also contains all other needed parameters for the electromagnetic
calculation. The B-H curve of the rotor material is shown in Fig. 4.5. However, the con-
ductivity of the steel had to be changed in order to include end-regions of the solid rotors,

because the Ansys maxwell does not allow to define either the length of the solid rotor

81



or length of the end-regions. The rotor is a single piece of the ferromagnetic material
without any additional modification, aside from the axial slits. That means that it does
not contain any additional conductive layer, which improves electromagnetic parame-
ters, such as copper coating. For this reason, a modified Russell end-factor corrective
factor [109] was chosen. This corrective end-effect factor was applied to the conductiv-

ity of the axially slitted solid rotor and was calculated based on the sketch presented in

Fig. 4.1:
tanh (W—ls)
Tp Tp

kRussell,M =1- ﬁ oy oy
s (1 + tanh (—S> tanh ( end))
Tp Tp

m-0.16 (4.2)
655108 tanh (65.5 - 103)

m016 ([ w016 ) (720010
M 655103 ) "\ 6551073

= 0.851.

But this correction factor was applied only in terms of rotor geometry. Thus, it is a slip
independent and for this reason, another correction factor, which includes a slip of the
machine, had to be added. In this case, two correction factors were used to compare
them. The nominal values of the original machine were used as an example and the first

correction factor used is according to Aho [108]:

4 4
n 1446.2
= _ = = U. 4 4_
kano ( s) ( 1500) 0.86 (4.3)

The second correction factor is according to Pyrhonen, Aho and Nerg [109]:
3
kpan=1—c-w! =1—-0.022-(50-0.0359 - 2 - 77)% = 0.865. (4.4)

Both of the slip correction factors proved to have almost identical values. However,
with increasing supply frequency, this difference will become more noticeable. With
this conclusion, the slip correction factor according to Pyrhonen, Aho and Nerg was
chosen. According to the authors, it shows the best results with measured data. With

calculated both of the correction factors, the total correction end-effect factor is:
ktot = kRussell,M . kpAN - 0851 . 0865 == 0736 (45)

It can be seen that, the resistivity of both solid rotors is raised by 26.4%. Due to the
low supply frequency and slip, the effect of end-region is not so crucial. But with higher
supply frequencies and slip, the effect of end-region would be much more noticeable and

in some instances would also be dominant. Even the rotor construction can noticeably
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affect the correction end-effect factor. The final conductivity of both solid rotors, used

in the electromagnetic model, is then:
Ocorr = kior - 0 = 0.736 -2 - 10% = 1.472 - 10° Sm™". (4.6)

And last, a material for machine winding was also defined, which is copper that was also

used directly from Ansys maxwell library.
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Fig. 4.5: B-H curve for rotor material - Steel 1008.

After the definition of material, a few other steps had to be made, which will be
described only in general. The boundary conditions were defined in two main sections.
The outer edge of the model, which represents 0 vector potential, and the inner edges
of the model, which determine the direction of flux lines. Next, the motion of the rotor
had to be defined, where several parameters are declared: initial position, initial speed,
the moment of inertia, load torque and damping. The initial speed and the position is
considered zero because the machine spins from the starting position. Load torque can
be variable and for the first simulation, its value was entered from the original machine.
The moment of inertia had to be calculated for the solid rotor. The new calculated value
for the moment of inertia was for the slitted solid rotor 5.95- 1073 kg - m?. The damping
of the rotor was calculated with two main variables: mechanical frictional losses and
speed of the solid rotor. The damping is calculated with the following formula:
Co = Myteen PMech’

Q 02

where Myeq, is the mechanical frictional moment of the rotor and Py, is the mechan-

(4.7)

ical frictional losses of the rotor. Mechanical frictional losses of the solid rotor can be
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considered constant, even though the value is changing with the speed of the solid rotor.
But the speed of the solid rotor is in this case low, therefore the value of mechanical losses
does not differ that much. Thus, a constant value of mechanical losses was considered
for the calculation. The value was taken from the original machine which was measured
to be 15 W. For example, at the rated speed of the original machine, the damping is

calculated with the following formula:

Pec Pec 15 — —
O, — “Mech Mech =6.54-107* N-m-s-rad™!. (4.8)

R= 02 2. 1m-n\2 2.7 -1446.2\ 2
60 60

In another step, a few other parameters had to be set up. These parameters include

defining phase winding, excitation, setting core losses, setting eddy effects, the connec-
tion of winding, and others. Additionally, an analysis setup had to be created, which
includes the frequency of the power supply and simulation length with time step. Sim-
ulation length was set up to be 0.3s which is long enough for the machine to go into a
steady state. The time step was set up to 600 steps per frequency period of the power
supply. Such a time step is very fine, with respect to the supply frequency, for the best
possible simulation results. Also, all colors of the machine have been changed for better

clarity. This modified electromagnetic model in Ansys maxwell is shown Fig. 4.6.

Fig. 4.6: Imported and modified geometry in Ansys maxwell of the axially slitted solid

rotor.

One last thing had to be done, in order to calculate the electromagnetic model cor-
rectly and that is the meshing of the model. As was stated above, the whole model was
divided into several parts for better meshing. Here, both stator and rotor yoke have

coarser mesh and stator and rotor tooth (outer layers) have finer mesh. All coils have
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coarse mesh because it is not that relevant for the magnetic calculation. On the other
hand, the air-gap region has a very fine mesh, due to large energy changes in this place.
Air-gap region meshing is always the most important. If the meshing is done poorly it
could lead to poor simulation results. For that reason, 4 elements in height were cre-
ated for good and accurate results. With all these rules, the created initial mesh for the
machine had about 20 000 elements. Overall, the model has a very fine mesh and the
electromagnetic model should show good simulation results. The whole mesh of the ma-
chine with axially slitted solid rotor is shown in Fig. 4.7 and detail of the air-gap mesh

region is shown in Fig. 4.8.

Fig. 4.7: Created initial mesh for axially slitted solid rotor.

Fig. 4.8: Detail of created initial mesh for axially slitted solid rotor.



4.2.3 Python

Python was chosen for automation of the control algorithm and post-process for
two main reasons. The first reason is that it is an open-source programming lan-
guage with great developer support, multi-platform support and an ever-expanding
community. The second reason is its simplicity and easy to understand syntax with
intuitive scripting. Basically, an experienced programmer is able to orient himself very
quickly in the given syntax and an inexperienced programmer or newcomer to the
programming should not have much trouble learning this programming language. And
that is also due to the fact that it has very great documentation on every aspect of the
scripting with constantly new versions of the program is being released. Alternatively,
if anyone has a problem orienting in the documentation, there are various forums
with the Python community that is able to answer and advise on any question. In
recent years, Python as a programming language has been directly supported by
many paid and unpaid programs and can directly control them, as for example stated
before on FreeCAD and Ansys maxwell. Also, the Python community is constantly
creating new modules for python, where for example some of them are focused on
customizable high-quality graphs, complex mathematical calculations and even there is
a model that is able to calculate physical equations in the style of Simulink from Mat-

lab. This module is called SimuPy and unfortunately is in the early stage of development.

The aim of this work is not to show the process of working with Python. But to test
and verify the functionality and efficiency of the created python script for case study
electrical machine analysis. This work also wants to introduce python as a possible
choice for automation and post-process of the simulation results obtained. Because it is
an easy to use, fast and efficient programming language. For further information with
all key features and documentation containing tutorials with practical examples which

are related to python scripting can be found in [152].
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5 Electromagnetic analysis results of the case study
IM with a solid rotor

For the analysis of IM with an axially slitted solid rotor, a torque-speed characteristic was
first performed. The analysis of the machine was performed using a transient simulation
with constant speed in Ansys maxwell, which is described in previous section. This
characteristic is shown in Fig. 5.1. It can be seen, that the machine is not able to achieve
the torque at the rated speed or pull out torque of the original squirrel cage rotor. The
curve does not also corresponds to the shape of the torque and speed characteristics
of the original machine. So the overall performance of the machine with axially slitted
solid rotor is worse. Which was expected. Here, in order to obtain higher torque, the slip
of the machine is increased. This behavior was also expected and described in previous
sections. Furthermore, it can be observed that the starting torque is very high. This

implicates that the solid rotors have very high impedance.
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Fig. 5.1: Torque-speed characteristics of the case study IM with an axially slitted solid

rotor.

For another characteristic, a number of simulations were performed, but here with
transient analysis with defined machine load. In this characteristic, electromagnetic ef-
ficiency, phase current (rms) and power factor were observed as a function of machine
output power for the machine with solid rotors. This characteristic is shown in Fig. 5.2.
The machine reached a maximum output power of about 860 W. As expected, the ma-
chine with a slitted solid rotor has failed compared to the original machine in terms of

the output power, where the output power was much higher at lower slip. Here, when
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the electromagnetic efficiency hits the highest point, it then starts to decrease to lower
values. So, the output power is even lower at the highest electromagnetic efficiency. The
maximum efficiency of the slitted solid rotor is 68.32 %. The IM with an axially slitted
solid rotor has worse electromagnetic efficiency compared to the original machine. Fur-
thermore, the highest efficiency occurs at higher slip. So, these characteristics prove the
assumptions that the machine with a solid rotor operates at a higher slip with higher
efficiency compared to conventional IM with a squirrel cage. The power factor has an
almost linear course. The maximum power factor of the machine is about 0.615. So
again, this IM with an axially slitted solid rotor has a very poor power factor, compared
to the IM with a squirrel cage. For the phase current, the curve has a course resembling
a quadratic function. The machine has a maximum of rms phase current 3.471 A. At

lower slip, the phase current is lower compared to the original machine.
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Fig. 5.2: Efficiency, Phase current and Power factor vs Output power characteristics of

the case study IM with an axially slitted solid rotor.

The last characteristic shows the dependence of Stator core losses, Rotor losses and
Winding losses on the output power of the machine. Here, the stator losses had to be
multiplied by the recommended coefficient to bring the simulated values closer to real
values. For this reason, it was very convenient to divide the stator core into several parts
in the electromagnetic model. Losses obtained from the stator yoke were multiplied by
1.5 and the stator tooth losses were multiplied by 1.8, as it is stated in [153]. In the char-
acteristic, it can be seen that the stator core losses, for solid rotor, have an almost linear
course. The higher the output power is the stator losses are lower. The characteristics
for rotor losses have a course of a quadratic function. The winding losses have as well
a quadratic course of the characteristics. Overall, the highest losses are concentrated in

the solid rotor. This is expected because the machine is operating at low speed with high

88



slip. This results in high rotor frequencies that further increases the rotor losses due to

the construction of a solid rotor.
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Fig. 5.3: Stator core losses, Rotor losses and Winding losses vs Output power character-

istics of the case study IM with an axially slitted solid rotor.

Based on all characteristics shown above, it is clear that the case study IM with a
solid rotor has overall poor performance, compared to the original IM with a squirrel
cage rotor. So, in order to further increase the performance of this machine by using the
surrogate model and its subsequent optimization, it is necessary to select the operating
point of this machine. Multiple approaches could be taken to select the operating
point, such as selecting the point with the maximum possible torque, output power,
electromagnetic efficiency, and others. In this work, the most suitable working point
was selected as the one with the highest electromagnetic efficiency. The machine
performance at this operating point is shown in the Table 5.1. But, even with the
highest electromagnetic efficiency, the overall machine performance is very poor. The
torque is low, torque ripple high, slip is very high and the power factor is very poor.

But it is very likely, that the machine performance will increase after the optimization.

Additionally in Fig. 5.4 is shown the distribution of the magnetic flux density in the
whole machine in the steady-state at the operating point shown in the table above. It can
be seen that the maximum value of the magnetic flux density is about 2 7. The highest
value of the magnetic flux density is located mainly in the stator tooth and under rotor
slits. It is evident that the flux lines are penetrating much deeper into the rotor, due to
slits. This phenomenon was described in first chapter and results in much better machine

performance and higher efficiency. Another thing that can be noticed is that in the rotor
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Tabel 5.1: Performance of analyzed case study IM with an axially slitted solid rotor at

the selected operating point.

Parameter Unit Performance
Torque Nm 4.255
Torque ripple % 38.56
Speed rpm 1322
Output power w 589
Phase current (rms) A 2.62
Power factor — 0.437
Electromagnetic efficiency % 68.32
Air-gap flux density T 0.7583
Stator core losses W 64.17
Rotor losses w 146.14
Stator winding losses w 62.77

yoke the field is curved into a vortex shape. This is due to the high slip of the machine,
which results in higher rotor frequencies. But because of the slits the rotor frequencies
are much lower. If the machine would operate at a higher slip, this vortex phenomenon

would be much more noticeable.
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Fig. 5.4: Distribution of magnetic flux density in the whole machine for IM with an

axially slitted solid rotor.

In the next chapter, this case study machine with all analyzed results will be used for

the construction of surrogate model.
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6 Creation of surrogate model based on case study IM

with a solid rotor

In this chapter, the procedure for creating a surrogate model based on case study IM with
an axially slitted solid rotor will be presented. This procedure of creating a surrogate
model is related to Chapter 3 of this thesis. Therefore, some procedures and steps will
not be explained in detail again. Thus, mainly a practical procedure will be shown on

the selected case study machine of this work.

6.1 Selection of suitable machine parameters for the surrogate

model

The first step is to define all possible machine parameters that will be optimized, in
order to improve the overall design of the machine. In this case for this machine, it was
assumed that its outer diameter would remain the same. So this parameter will not be
considered, as well as the number of stator slots and rotor slits. This is because, from
an electromagnetic point of view, the number of stator slots and rotor slots are in good
agreement and suitable for this machine and its performance. Based on these 3 excluded
parameters, only 8 possible machine parameters remain, which is perfect for surrogate
modeling. All these parameters are chosen to have a direct effect on the electromagnetic
properties of the machine. So parameters that would affect the machine in terms of
temperature change or mechanical properties of the machine are not considered. The

list of all parameters for machine optimization is as follows:

Active length of the machine (L),

« Length of the rotor end region (Lgpq),
« Length of the air-gap (Igp),

« Stator slot height (Hgjot),

« Stator slot width (Wse),

« Number of stator conductors (/Vs),

« Depth of rotor slits (Hgy),

« Width of rotor slits (Hg).

All of these parameters are illustrated in the Fig. 6.1 and Fig. 6.2.
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Fig. 6.1: Sketch of all parameters consider for optimization in: (a) cross-section of the

machine and (b) solid rotor.
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Fig. 6.2: Sketch of all parameters consider for optimization in: (a) stator slot and (b)

rotor slit.
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6.2 Sensitivity analysis of the case study IM with a solid rotor

The sensitivity analysis was done by changing individually the value, in a wide range
with reasonable limits, of all 8 parameters listed in section 6.1. The range of limits
was carefully selected based mainly on the limitations of machine construction, best

potential improvement of electromagnetic parameters, and price of the machine.

For the active length of the machine, the most crucial factor was mainly the
improvement of electromagnetic parameters and price. But otherwise, there is more
freedom of choice. The length of the rotor end region is limited mainly in terms of
rotor dynamics. So, it should not be too long so as not to affect the operation of the
machine too much. Another factor is also price. The length of the air-gap is limited by
the construction and by the electromagnetic performance of the machine. The length
should not be too long to avoid high stator currents and too low to avoid potential rotor
damage to the stator due to rotor eccentricity. Stator slot height and width are limited
mainly by the electromagnetic performance of the machine. The slot height should not
be too high otherwise the stator yoke will be over-saturated and the stator slot width
should not be too wide, which will also cause over-saturation for the stator tooth. At
the other extreme, the performance of the machine would also deteriorate. These two
parameters are limited by the production limits because it is not possible or easy to
produce stator sheets with either big slot and thin stator tooth and yoke or very small
stator slots. The number of stator conductors is limited by the machine construction
and more precisely by the filling factor of the stator slots. And finally, the depth and
width of rotor slits are limited mainly by machine construction. For the rotor slit depth,
a maximum depth of approximately 50% of the rotor radius is recommended in terms
of mechanical stresses on the rotor. The upper depth limit is therefore known, the
choice of the lower one depends only on the possible electromagnetic performance of
the machine. In terms of mechanical stress on the rotor, the recommended minimum
rotor slit width should be approximately 5 - 10% of the rotor pitch. At lower speeds
this limit can be lower. The upper limit of the rotor slit width then depends on the
electromagnetic performance of the machine. If the rotor slit width is too wide then the

rotor material could become over-saturated in the deepest part of the rotor slit.

Based on all of these assumptions and rules, a lower and upper limit for each ma-
chine input parameter has been set. A list of all machine input parameters with their
limits is provided in Table 6.1. However, these limits are normalized and related to the
base values of the machine input parameters. This makes it easier to see how much each
input parameter has increased or decreased. The given step for each input parameter

is different, which is of course influenced by the character of the parameter. Moreover,
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it is affected by the relationship between the input and output parameters of the sim-
ulations. That is, if the step for the input parameter is too large, the function between
the input and output parameters of the simulation may be incorrect. Therefore, during
sensitivity analysis, it is necessary to check all of these functions and consequently add

more simulations with smaller input parameter step. This is a optional iterative process.

Tabel 6.1: Range of limits for normalized values of input parameters of the case study
IM with a solid rotor.

Input parameters Unit Mininum Maximum
Active length of the machine % 25 187.5
Length of the rotor end region % 0 255
Length of the air-gap % 16.67 233.33
Stator slot height % 33 128.37
Stator slot width % 42.2 121.7
Number of stator conductors % 85.7 171.43
Depth of rotor slits % 8.33 175
Width of rotor slits % 30 195

The process of simulation, using Ansys maxwell, is the same as described in section
4.2, with algorithm shown in Fig. 4.2. The type of simulation is in this case, transient
analysis with constant speed. In this type of simulation, the damping and moment of
inertia of the machine do not have to be considered. And since the speed is constant,
only the other simulation outputs such as torque, electromagnetic efficiency, etc. can
change. For the sensitivity analysis purpose, it is very convenient, because it can be
seen how the overall performance of the machine will change at this speed. Whether
the overall performance of the machine will improve or also deteriorate. It is therefore
necessary to select optimum operation point of the machine with the desired machine
speed. In this case, it is the one that was selected in chapter 5 in Table 5.1, where the
machine has highest possible electromagnetic efficiency. This type of simulation with
the selected operation point of the machine will be further used in other simulations

related to surrogate modeling.

After all simulations were completed, a set of several graphs was created. Each
graph contains all 8 input parameters, which are displayed as a function of the selected
simulation output parameter. The total number of he selected and most interesting
output parameters of simulations is 10 in total. All graph with all selected results are
shown in Fig. 6.3. Here, on the x-axis of the graphs, is the normalized value of input
parameter, which represents the relative growth of changed parameters. On the y-axis

of the graphs, the output parameter of the simulations is displayed as the absolute
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value. In this way, it is possible to display all simulation results in the most readable

way. Other results not used in this section are plotted in the appendix of this paper.

By dividing and considering the influence of each input parameter on the overall
machine performance, it can be seen that the active length of the machine has the
greatest influence on the machine torque (Fig. 6.3 (a)). The relationship between torque
and active length of the machine is purely linear. This mean that, with increasing
active length of the machine the torque rises as well. This rule applies for the output
power of the machine as well (Fig. 6.3 (b)), but even for the total losses of the machine
(Fig. 6.3 (g)). This results in only a slight increase in the electromagnetic efficiency of
the machine (Fig. 6.3 (c)), where compared to the base active length of the machine
the efficiency does not increase that much. The phase current of the machine is also
linearly increased (Fig. 6.3 (f)), but the current density (Fig. 6.3 (i)) and linear current
density (Fig. 6.3 (j)) do not increase so much and are almost constant. On the other
hand power factor (Fig. 6.3 (d)) is increasing with the active length and its course is very
similar to electromagnetic efficiency. The torque ripple is decreasing with increasing
active length and after the base value of the machine active length it is almost constant
(Fig. 6.3 (e)). The flux density in the air-gap is practically constant because the ratio of
conductors and active length of the machine is kept constant (Fig. 6.3 (h)). It is clear that
as the active length of the machine increases, the overall performance of the machine
improves. On the other hand, the overall price of the machine also increases. If the
length went to much higher values, the price of the machine would be too high and the

performance of the machine might not be that much better.

The length of the rotor end region has very little effect on the overall performance
of the machine. As the length increases, the torque (Fig. 6.3 (a)), output power (Fig. 6.3
(b)), electromagnetic efficiency (Fig. 6.3 (c)), power factor (Fig. 6.3 (d)), and total losses
(Fig. 6.3 (g)) of the machine increase slightly. All curves have the same shape. From
the base length of the rotor end region, all these parameters have a constant value. The
phase current (Fig. 6.3 (f)) is nearly constant, as well as current density (Fig. 6.3 (i)) and
linear current density (Fig. 6.3 (j)) of the stator slot. However, as the length increases,
the torque ripple (Fig. 6.3 (e)) of the machine improves. But only up to the base length.
The flux density in the air-gap is again constant (Fig. 6.3 (h)) and the length of the
end-region does not have direct impact on its value. From the results it can be concluded
that the length of the rotor end is sufficiently designed in its base value and increasing
it would only result in an absolute minimal improvement. However, increasing it would
lead to a higher machine cost, weight, and a possible deterioration of the overall rotor

dynamics. This would result in a deterioration of the overall performance of the machine.
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By reducing the number of conductors in the stator it is possible to drastically
increase the torque (Fig. 6.3 (a)) and output power (Fig. 6.3 (b)) of the machine. The
shape of the function is parabolic and if the number of conductors would raise both of
the output parameters would drastically drop. This is due to the different saturation
of the stator yoke, tooth and air-gap. As the number of stator conductors decrease,
the saturation increases, resulting in increased power and consequently torque. This
situation can be seen with the flux density in the air-gap (Fig. 6.3 (h)). If the number of
conductors increased the flux density in the air gap would decrease, causing a decrease
in torque and power. In [153], it is stated that recommended value of the flux density in
the air-gap is between 0.7 — 0.9 T, for low speed machines. So, number of conductors
below base value, do not satisfies this recommendation. However, with the increased
number of conductors, the total losses of the machine (Fig. 6.3 (g)) also increase due
to higher saturation of the stator tooth and yoke, which leads to higher losses in
stator sheets. However, this is not the only reason for the increase in total losses.
With decreased number of conductors, the cross-section of the conductor is higher
which results in a higher phase current of the machine (Fig. 6.3 (g)). This is also big
contribution to the total losses of the machine, because the losses of the stator winding
are increased. Thus, reducing the conductors will also increase the current density and
linear current density of the stator slot. On the other hand, with increased total losses,
the electromagnetic efficiency (Fig. 6.3 (c)) is slightly higher with lower number of
conductors. However, it seems that power factor (Fig. 6.3 (d)) has the highest value at
the base value of the stator conductors. Either with increasing or decreasing conductors
the power factor is decreasing, after this point. The torque ripple (Fig. 6.3 (e)) in this
case is also decreasing with the lower number of conductors. So overall, with lower
number of stator conductors the overall performance of the machine rises. But they are

limited to the fill factor of the stator slot and possibly capabilities of the producer.

In the case of the length of the air-gap, with increasing length, the torque (Fig. 6.3
(a)) and output power (Fig. 6.3 (b)) are slightly rising. But the improvement is very
small and negligible. However, torque ripple (Fig. 6.3 (e)) is the dramatically decreasing
with increasing air-gap length. On the other hand, the increased length of the air-gap
also dramatically increases stator phase current (Fig. 6.3 (f)) and current density (Fig.
6.3 (i)) and linear current density (Fig. 6.3 (j)) of the stator slot. This is due to the large
magnetizing inductance, which is caused by the large air-gap. The large magnetizing
inductance results in a high magnetizing current, which is directly dependent on the
B-H curves of the stator plates. This further causes over-saturation of the stator plates
which further generates higher losses in the stator plates. Also, the higher current
increases the losses in the stator winding. But with a large air-gap, the rotor losses

are decreased. This is due to the fact that with a large air gap, the higher harmonic
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components of the stator field do not reach the rotor surface. These higher harmonic
components have the effect of generating high losses in the rotor, due to the formation
of eddy currents in the rotor. When the length of the air gap is changed, three different
types of losses are directly affected: rotor losses, stator winding losses and stator sheet
losses. So it is necessary to find such a length of the air gap when the total machine
losses are the smallest. In this case, the total losses (Fig. 6.3 (g)) have the lowest value
at the base value of the air-gap length. Which means, that at this length of the air-gap,
the electromagnetic efficiency is the highest (Fig. 6.3 (c)). So from this point of view, the
air-gap length is perfectly designed. The power factor (Fig. 6.3 (d)) is higher at lower
length of the air-gap, which corresponds with the low stator current. Flux density in
the air-gap is almost constant (Fig. 6.3 (h)). The base value of the air-gap is in this
machine is very well designed. The power factor could be higher or the torque ripple
could be improved, but at this length, the machine has the highest efficiency, which is

most important.

Increased slit depth and decreased slit width considerably increases torque (Fig.
6.3 (a)) and output power (Fig. 6.3 (b)). This confirms the theory that with higher
slit depth and narrow slit width the torque increases and with it the output power
as well. The total losses of the machine (Fig. 6.3 (g)) are with narrower width of the
rotor slits, but with increased slit depth the rotor losses raise. This results in high
electromagnetic efficiency (Fig. 6.3 (c)) with very narrow rotor slits. On the other hand,
the electromagnetic efficiency rises to a point of 150% of the rotor slot depth. After
that point, the efficiency begins to drop. The same rules apply to the power factor (Fig.
6.3 (d)), where the curves for the depth and width of the rotor slits are the same as for
the electromagnetic efficiency. The phase current (Fig. 6.3 (f)) is increased with deeper
slits but is decreased with narrow slits. Again, this rule also applies to the current
density (Fig. 6.3 (i)) and linear current density (Fig. 6.3 (j)) of the stator slot, where the
course of the curves is the same. The flux density in the air-gap (Fig. 6.3 (h)) is not
affected by these two parameters. However, in the terms of torque ripple (Fig. 6.3 (e)),
the deeper slits decrease it. But the width of the rotor slit induces multiple extremes in
the magnitude of the moment ripple across the entire range of simulations. With very
wide rotor slit the torque ripple is at the maximum value. As the width of the rotor
slits narrows, the magnitude of the torque ripple decreases, roughly to the point of the
base width of the rotor slit. After this point, the moment ripple increases again, up to a
point 90% of the slot width. Then it starts to decrease again. This phenomenon could be
explained by the fact that the value of the moment ripple is influenced by the geometry
of the rotor and the possible current value of the flux density in the air-gap. But again,
this type of machine is very complex, from the physical point of view. Therefore, it is

not easy to explain all phenomena that are happening in the machine in detail. But
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otherwise, in terms of overall machine performance, it is best if the rotor slit is as
deep and narrow as possible. This again confirms the pre-established theory. But the
depth and width of the rotor slot is in practice very dependent on the manufacturer’s

capabilities.

Finally, two parameters remain: the height and width of the stator slot. Each pa-
rameter, either alone or together, affects the area of the stator slot, which mainly results
in affecting the current density of the stator slot (Fig. 6.3 (i)). Thus, with a small slot
height or width, the stator slot current density is very high, which is due to the small
stator slot area for both parameters. On the other hand, stator phase current (Fig. 6.3
(f)) has the lowest value, because the fill factor of the stator slot is constant and thus,
the stator winding resistance is high at low slot area. As the area of the stator slot in-
creases, the current density quadratically decreases, and phase current is almost linearly
increasing, because the stator winding resistance is gradually decreasing. However, at
the point 110% of the slot height and tooth width, the current density of the stator slot
will slightly increase again. This is due to constant value of fill factor of the stator slot.
As the slot area increases, the cross-sectional area of the stator conductors increases, and
stator winding resistance decreases. This results in a significant increase in phase stator
current. The linear current density (Fig. 6.3 (j)) is then correlated with the phase stator
current curve. This is because the area of the stator slot is again increasing. The area
of the stator slot also has a further influence on the total losses of the machine (Fig. 6.3
(g)). Initially, as the stator area increases, the total losses decrease as the current density
and winding resistance decrease. But with the large slot area, the phase current is also
high, which increases the losses in the stator winding much more. At high values of slot
height and width, the yoke and stator tooth are very narrow. So the stator sheets start
to become over-saturated. This results in high losses in the stator plates. This is directly
reflected in the electromagnetic efficiency (Fig. 6.3 (c)), where the efficiency increases
up to about the base value of the height and width of the stator slot and then decreases
again with increasing phase current. However, the power factor (Fig. 6.3 (d)) is increas-
ing with smaller stator slot area. The torque (Fig. 6.3 (a)) and output power (Fig. 6.3
(b)) increase only slightly to approximately the point of the base value of the height and
width of the stator slot. It can be considered that the length and height of the stator
slot does not have too much influence on these two parameters. The torque ripple (Fig.
6.3 (e)) is rather increasing after the base value of the slot height and width, especially
with the large slot area. But at the base value of the width and height, the torque ripple
has the lowest value. After this point, it starts to very slightly increase. Finally, as the
size of the slot area increases, the value of the flux density in the air-gap (Fig. 6.3 (h))
increases substantially. At the base value of height and width, the flux density stabilizes

and remains more or less constant. The reason behind this is that the
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Fig. 6.3: Results of sensitivity analysis for the function of: Torque (a), Output power (b),
Electromagnetic efficiency (c), Power factor (d), Torque ripple (e), Phase current (f), Total
losses (g), Fundamental component of the flux density in the air-gap (h), Current density

(i) and Linear current density of stator slot (j) on normalized value of input variable.
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air-gap flux density value shown in the graph is calculated as the radial fundamental
component of the air-gap flux density. So, the flux density distribution in the air-gap
is slightly different in a small slot width and a large slot width. The magnitude of the
flux density is, however, approximately the same. Mainly, the shape of the distribution
changes. So when the air-gap flux density curve is converted to the radial fundamental
component of the air-gap flux density, the value may be different. Which can be seen
in the graph directly. But overall, the height and width of the slot is well designed.
Changing them would either make a small improvement or a large deterioration in the

overall performance of the machine.

Based on the results of the sensitivity analysis, it was concluded that the perfor-
mance of the machine could be significantly improved. It was also found that the overall

performance of the machine is mainly influenced by 4 parameters:

Active length of the machine,

« Number of stator conductors,

Depth of rotor slits,
« Width of rotor slits.

The other parameters had either very little effect or changing them would degrade the
performance of the machine. The behaviour and possible poor consequences for machine
performance for these parameters are justified above. In addition, the exclusion of these
parameters will make the whole process of creating a surrogate model easier and faster.
And potentially, with fewer parameters, its accuracy will increase. This is also sufficient

for the demonstration and optimization of the case study IM with a solid rotor.

6.3 Design of experiments and output evaluations

From the obtained results of the sensitivity analysis in section 6.2, four main input pa-
rameters were selected as the most influential to the performance of the machine. These
four parameters were then used later for the initial training data of the surrogate model.
However, in order to make the machine optimization more efficient, the limit of the
range of values of these parameters has been narrowed. The limit was chosen to take
into account the final highest possible performance of the machine, the lowest possible
cost of the machine, the feasibility of the machine in terms of construction, and possibly
to simplify the function between input and output of the simulation, given in Fig. 6.3.

Newly set limits for selected input parameters are shown in Table 6.2.
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Tabel 6.2: Narrowed selection of input parameters and their normalized narrowed range

of values for the surrogate model of the case study IM with a solid rotor.

Input parameters Unit Mininum Maximum
Active length of the machine % 75 150
Number of stator conductors % 65.71 134.29
Depth of rotor slits % 75 175
Width of rotor slits % 30 135

A suitable sampling scheme also had to be selected to generate the initial training
data. For the case study machine with a solid rotor, Box-Behnken sampling scheme
was chosen. The reason for the decision was that this sampling scheme is suitable for
this type of machine and a very convenient toolbox for Python exists that can easily
generate this scheme. The name of this toolbox is pyDOE2, where DOE stands for
design of experiments. As stated on the official website [154], this toolbox is created
for the construction of suitable experimental designs. But the most interesting feature
of this toolbox is that it can effectively reduce the total number of all points in the

sampling scheme. This will be explained later.

Before the actual sampling scheme was created, it had to be determined how and
into how many samples the input parameters would be divided. It was concluded
that based on the sensitivity analysis results in Fig. 6.2 and newly set range limits
for input parameters, all input parameters were divided into five samples that are
evenly distributed across their whole range. In this case, five samples should be a
sufficient number to cover the entire function between any input and output parameter.
With five samples and four input parameters, the total number of all input parameter
combinations for the sampling scheme is 5 = 625. These input parameters were
entered into the pyDOE2 toolbox, which generated a matrix of all possible combina-
tions of input parameters. This matrix had a size of 625 x 4. Thus, 625 simulations
had to be performed to generate the initial training data for the surrogate model.
However, the great advantage of the pyDO2 toolbox is that it can reduce this total
number so that the sampling scheme covers statistically as large an area as possible
for all possible combinations of input parameters. Reduction of the total number of all
possible combinations is only possible by an integer. So the number could be reduced
by e.g. 2 or 3. The total number would be 625/2 = 313 and 625/3 = 208. So the total
number of simulations needed for the initial training data would be 2-3 times smaller.
However, note that this function does not guarantee that the total reduced number will
statistically cover all possible combinations for the input parameters. So this step is

more or less trial and error. And during the initial construction of the surrogate model,
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it may happen that a new sampling scheme with a higher number of total points has to
be generated. The function for reducing the total number of sampling scheme will not
be discussed further in this work. Publication [154] shows the principles on which this

function works and its nature in terms of statistics.

For the case study machine with a solid rotor, it was concluded that the best
sampling scheme is 5* = 625, without any reduction. This conclusion was reached by
trial and error, where the sampling scheme was altered based on the initial surrogate
model and its observed accuracy. The initial sampling scheme will not be presented in
this work because it is too long and can be easily created. The procedure for creating a
sampling scheme using the pyDOE2 toolbox and a detailed description of all the toolbox

functions is given in [156].

With the established sampling scheme, all 625 simulations were performed. The type
of used simulation was already described, where each simulation took about 3 —4 hours.
In total, all simulations ran for approximately one week. This may seem like a long time,
but after the construction of the surrogate model, the optimization of the machine design
is very fast. After all simulations were completed, all relevant machine performance data
was saved in an excel file. This collection of all stored machine performance data with
predefined combinations of input parameters formed the initial training data for the

surrogate model.

6.4 Construction of surrogate model

To create a surrogate model, it is essential to choose the right machine learning
technique to create it. There are many machine learning functions, where some have
been listed in Chapter 3 under Section 3.2.3. For this work, the Radial basis function

(RBF) was chosen from all possible machine learning techniques.

According to [157], the RBF is a method that interpolates scattered data sets in k-
dimensional space, in general. This approach is convenient especially for a higher di-
mension k£ > 2, as the conversion to and order data set, for example using tessellation,
is computationally very expensive. The RBF interpolation is not separable and is based
on distance of two points, where it leads to a solution of a Linear system of equations.
Nevertheless, because of the scattered and un-ordered data, RBF is computationally more
expensive. On the other hand, RBF offers very interesting applications at an acceptable
computational cost, as for example solution of partial differential equations, image re-
construction, neural networks and more. However, to select the correct interpolation

technique, it is necessary to know whether the datasets are ordered or un-ordered. The
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data sets can be classified as follows:

« Un-ordered

— Scattered
— Clustered

e Ordered

— Unstructured

— Structured
« Non-regular
« Semi-regular

« Regular

Based on these data classifications, the correct RBF method is selected. The RBF
interpolation is then based, as stated above, on computing the distance of two points in

the £ - dimensional space and defined by a function:

Fla) = 3 Aplllas =yl = > Ase0) 6.

r=|lz =],

where ); are weights coefficients to be computed and ((r) are the corresponding basis

functions, which can be written in the following linear systems:
Az =1, (6.2)

where A is interpolation matrix containing radial functions, z is a vector of coefficients
and b is a vector of values. Due to some stability issues, usually a polynomial P (z) of a
degree k is added to the form:

M

f(x) = Nl — ) + Pu(X) (6.3)

For practical use, the linear polynomial, which is simple to use, is widely used in many

applications. So the RBF interpolation function has form:

M M
f(x) =Y Nelllz —agl)) + a’wi+ a9 = Y Np(r) +a’wi+ a9 (64)
j=1 j=1

i=1,., M

However, this is a general RBF interpolation function. In fact, the RBF is additionally

divided into two main groups:
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« Global

« Local

The two main groups differ in solvability and stability. The global group interpolates
the data set in its entirety. While the local group focuses mainly on interpolation in
specific locations of the data. For this work, the RBF function in the framework of global
interpolation and more precisely the Thin-plate spline (TPS) was chosen. As it is stated in
[158], TPS are on of the most used technique in RBF interpolation. It is due to excellent
interpolation properties, the physical motivation (minimization of a bending energy),
the computational efficiency, the ease of implementation, and the mathematical theory
is fully understood. A disadvantage is that the locality of the transformation cannot
be controlled except by specifying additionally landmarks, which is lengthy and time-
consuming. But it is fully sufficient for use in this work and the drawback of this method

does not affect the surrogate model result much. The shape of this function is as follows:

o(r) = r?logr (6.5)

This function is then substituted into the formula 6.4. For the reasons mentioned
above TPS is suitable for many engineering applications including surrogate modeling.
For further information regarding the RBF interpolation method and TPS, the publica-
tions [159] - [163] provide extensive theory, application procedure, and other practical

applications.

With the selected RBF interpolation technique, a surrogate model was created, again
using the programming language Python. There are several Python libraries that can
create a surrogate model using RBF functions, or in some cases even initial training data
as in the publication [164]. For the purpose of this work, the very well known SciPy
library was chosen, which mainly used for mathematics, science and engineering [165].
It additionaly, includes RBF interpolation and even TPS with other methods such as
cubic or Gaussian [166]. Its use is very easy. Several input matrices are inserted into the
function, where the output is the approximated function for the given inputs. But it is
advisable to change the range of all values, both input and output, in the way that they
all have the same range. After all, it is not simple to interpolate some data, where one
set of data ranges from 1 to 10 and the other set of data ranges from 3000 to 9000. In this
case, the input matrices are the data from the initial training, where all data have been
converted so that the range of all values is up to 1000. In practice, the input parameters of
the machine (active length, number of conductors in the stator, rotor slit depth and rotor
slit width) and, in addition, one output parameter of the simulation (torque, power factor,
efficiency, etc.) are always inserted into this function. The surrogate model is therefore

created separately for each output of the machine simulation, where the input machine
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parameters are always the same. However, it is not necessary to create a surrogate model
for each output parameter of the simulation, as some of these parameters are linked to
each other. The output power of the machine for the example directly increases with
torque, since the machine was considered to have a stator speed; from the magnitude
of the power factor, the magnitude of the current, current density and linear current
density can be estimated; and from the magnitude of the electromagnetic efficiency, it
can be discerned whether the overall losses of the machine are higher or lower. By this
logic, not all the parameters used in the sensitivity analysis in Fig. 6.3 were used, but

their selection was further narrowed down to the following five parameters:
+ Torque,

« Torque ripple,

Power factor,

Electromagnetic efficiency,
« Fundamental component of the flux density in the air-gap.

This further reduces the complexity of optimizing the machine design, which is pos-
sibly a desirable feature. For each of these parameters, using the machine input parame-
ters, surrogate models were created, but with only 90% of the initial training data, which
serves as training data. The reason is to establish the initial accuracy of all surrogate
models, using the remaining 10% of the data, which serves as verification data. This will
be explained later. The method of selecting verification data was completely random. In
some cases, these data can be selected evenly from the entire volume of initial training
data or by using a special algorithm. It depends on the application and experience in
working with the surrogate model. At this point, all the machine input parameters from
the defined training data (active length, number of stator conductors, rotor slit depth and
rotor slit width) were taken and inserted into the already established surrogate models
which returned the approximated output values. The same process was repeated for the
remaining verification data. At this point, two sets of data were available. One where
the approximated values were directly used in the creation of the surrogate models and
the other where they were completely excluded in the creation of the surrogate models.
Data that was not used in the creation of the surrogate model then creates a certain error
that is always present. In this part, the Pearson’s R coefficient was used to determine
the accuracy of all surrogate models, which determines how strong the linear associa-
tion between two sets of data is. Its calculation was again performed in Python using
the SciPy library. Its use and calculation is shown in [167]. In this case, the two sets of
data were approximated output values from surrogate models and output values from

simulations from the initial training data, both for training data and for the remaining
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verification data. Based on all the results obtained, graphs were plotted for all the se-
lected machine output parameters, where the y-axis was the surrogate model output
values and the x-axis was the simulation output values taken from the initial training
data. Correspondence Pearson’s R coefficients were given for each plot for both training

and verification data. These graphs are shown in Fig. 6.4.

Pearson R - training: 1.0; verification: 0.9999986 Pearson R - training: 1.0; verification: 0.9999962
1000
= e  Surrogate model . e  Surrogate model
. Z; 750 o  Verification data 5 o  Verification data
Zg 500 PE
- 25 600
£ 250 &=
g “ 400
200 400 600 800 1000 400 500 600 700 800 900 1000
Torque - simulated results (-) Power factor - simulated results (-)
(a) (b)
Pearson R - training: 1.0; verification: 0.9999998 <00 Pearson R - training: 1.0; verification: 0.9999619

D e  Surrogate model
< £600 o  Verification data

e  Surrogate model

o  Verification data

& =
) £ 400
g & £ 200
; n
& 200 400 600 800 1000 100 200 300 400 500 600 700 800
Electromagnetic efficiency - simulated results (-) Torque ripple - simulated results (-)
(c)

Pearson R - training: 1.0; verification: 0.9999993

1000

e  Surrogate model

300 o  Verification data

Bradfft -

surrogate model (-)
=4

300 400 500 600 700 800 900 1000
Bradfft - simulated results (-)

(e)
Fig. 6.4: Determination of the accuracy of the constructed surrogate models using train-
ing and validation data for Torque (a), Power factor (b), Electromagnetic efficiency (c),

Torque ripple (d), and Fundamental component of the flux density in the air-gap (e).

From all plotted graphs, it can be seen that the surrogate model for each output
parameter does not have practically any error at all. Which means that no point on
the blue curve deviates from the linear dependence and the Pearson’s R coefficient is
equal to 1. Which is very good and means the surrogate models themselves don’t create
any error. For verification data, the situation is slightly different. Here the Person’s R
coefficient is less than one, indicating that some points deviate from linear dependence,

even if it doesn’t seem like it at first glance. But even though Pearson’s R coefficient is
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less than one, it is very close to this value for each parameter. This was expected because
the surrogate model cannot predict the value of the parameter accurately and always
creates an error compared to real or simulated values. After all, it is an interpolation
of values. But that doesn’t change the fact that all surrogate models are very accurate.
However, if the values of Pearson’s R coefficients were much less than 1 for the example
of 0.8 — 0.95, the surrogate model would only be accurate within the average. And this
is not desirable for the accurate determination of the output parameter, in that case
the surrogate model would be unsuitable for such application. To possibly increase the
accuracy of the surrogate model, in that case, it would have to be necessary to use a
different combination for the sampling scheme or completely use a different sampling
scheme.

To accurately determine the error between the approximated value and the sim-
ulated value of all output parameters, for both training and verification data of all
surrogate models, several graphs were created. Each graph shows the dependence of
the relative error of a given output parameter, referenced to the value of the surrogate
model output, to each sample of each input parameter. So this means that each graph
contains 4 subplots, where each subplot has the relative error of that parameter on the
y-axis and all samples for that input parameter on the x-axis. Thus, the relative errors

for each output parameter are shown in Fig. 6.5 - 6.9.

In all plots, it is proved that all the approximated output of the surrogate models for
the training data is equal to zero. The individual highest relative errors are for: Torque
(Fig. 6.5) 1.5%, Power factor (Fig. 6.6) 0.4%, Electromagnetic efficiency (Fig. 6.7) 0.06%,
Torque ripple (Fig. 6.8) 1.5%, and fundamental component of the flux density in the air-
gap (Fig. 6.9) 0.5%. So in the result, the highest relative error of the surrogate models is
around 1.5%, which is a very good result. This largest relative error may have been due
to the smaller number of input parameter samples or poorer local approximation that
is characteristic of TPS interpolation, as mentioned above. But some error will always
be present in a surrogate model and if it is around 1% then such a surrogate model
can be considered very accurate. In this case, it is not even necessary to do additional
simulations at the locations with the highest relative error and add the subsequent results
to the initial training data or using adaptive sampling. At this point, all surrogate models,
in terms of maximum possible relative error, were ready to be used for machine design
optimization. But before the optimization, several graphs were plotted showing how and
by how much the performance of the machine could potentially be increased. Which in
some cases is important if the ranges and sampling of input parameters have been done

correctly.
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Fig. 6.5: The dependence of relative torque error of the surrogate models on samples of:
Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c), and Number

of stator conductors (d).
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Number of stator conductors (d).
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slit depth (b), Rotor slit width (c), and Number of stator conductors (d).

To determine the possible increase and improvement of the overall machine perfor-
mance, several graphs were created directly from all the initial training data. All values
for the selected simulation output parameter were plotted on the y-axis and all samples
for the given machine input parameter were plotted on the x-axis. So again subplots
have been created for all machine input parameters. This is essentially a sensitivity
analysis of the machine that was presented in section 6.2. Except that here it shows the
potential increase in machine performance with the following optimization that will
be discussed later. And in addition, the simulation results are affected by all possible
sample combinations of machine input parameters. These graphs are shown in Fig. 6.10
- 6.14.

The machine torque (Fig. 6.10) can be increased up to approximately 13 Nm. It can
be seen in the graphs that the machine achieves the highest torque with large rotor slit
depths, narrow rotor slit width, and small number of stator conductors. This is in accor-
dance with the results of the sensitivity analysis. But, as the active length of the machine
increases, the torque should also increase. However, the machine has the highest torque
in the second sample of the active machine length. This is due to the saturation of the
machine, which is shown in Fig. 6.14. For the initial sampling of the active length of the
machine and the number of stator conductors, certain samples were selected. However,

this leads to a much higher saturation of the machine at certain combinations, with flux
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densities up to 1.27" in the air-gap. Which can be seen in the graphs, where as the active
length of the machine increases the saturation of the machine decreases and as the num-
ber of stator conductors decreases the saturation increases. But for the depth and width
of the rotor slits, the saturation is almost the same over their entire range. To maintain
the recommended air-gap flux density of 0.7 — 0.9 T, some combination of active ma-
chine length and number of stator conductors must be maintained. This is not respected
here, but the following optimization will take this recommended limit into account. For
the rest of the graphs, the same rules apply as for the sensitivity analysis. That is, with
increasing active length of the machine, deeper and narrower rotor slits, and increasing
number of stator conductors, the overall power factor (Fig. 6.11) of the machine im-
proves. The power factor of the machine is able to reach a value of up to 0.55. The same
rules applies for electromagnetic efficiency of the machine (Fig. 6.12). For torque ripple
(Fig. 6.13), the situation is different. As the active length of the machine increases, the
torque ripple decreases. As the active length of the machine increases, the torque ripple
decreases, which is consistent with the predictions and previous results. But it increases
considerably with higher rotor slit depth. This is due to some combination of machine
input parameters and the largest contributor is the low number of stator conductors.
Which can also be seen in the graph. As the width of the rotor slits decreases, the torque
ripple decreases, which is expected. The highest value of torque ripple is 140%, which

is unacceptable and must be reduced as much as possible during optimization.
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Fig. 6.10: The torque dependence on samples of: Active length of the machine (a), Rotor
slit depth (b), Rotor slit width (c), and Number of stator conductors (d) for all values from

initial training data.
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Fig. 6.11: The power factor dependence on samples of: Active length of the machine
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values from initial training data.
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Fig. 6.12: The electromagnetic efficiency dependence on samples of: Active length of the
machine (a), Rotor slit depth (b), Rotor slit width (c), and Number of stator conductors

(d) for all values from initial training data.
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Fig. 6.13: The torque ripple dependence on samples of: Active length of the machine
(a), Rotor slit depth (b), Rotor slit width (c), and Number of stator conductors (d) for all

values from initial training data.
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Fig. 6.14: The fundamental component of flux density in the air-gap dependence on
samples of: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),

and Number of stator conductors (d) for all values from initial training data.
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Finally, the relationships and correlations between the individual machine parame-
ters were calculated within the display of the above graphs. This is mainly to determine
how much the parameters are affected by each other and if one parameter increases
or decreases with another. For these purposes, Pearson’s R and covariance coefficients
were used. Pearson’s R coefficient is already known from use on the surrogate model.
The covariance is very similar and its principle is to find a linear relationship between
two sets of data. Unlike Pearson’s R coefficient, its value has no limit. Both parameters

were calculated in Python based on the procedure described in [167].

Table 6.3 shows how the output parameters of the machine simulation have a strong
linear relationship with each other. Thus, Pearson’s R coefficient was applied here and
only to the training data on the surrogate models. On the diagonal of the table values it
can be seen that the values are equal to 1. In other words, the corresponding parameters
grow linearly, which is logical. The other values then take values between —1 and 1,
indicating the strength of the linear relationship between the parameters. This means
that, for example, the flux density in the air gap has a relatively strong relationship
with the machine torque, as its value is close to 1. So as the flux density in the air
gap increases, the machine torque also increases. This hypothesis has been confirmed
above. In another example, as the electromagnetic efficiency increases, the value of the
flux density in the air gap decreases. The value of the coefficient in this case is close to
—1. And it can also be seen that the size of the torque has very little effect on the size
of the torque ripple. Which means that the value of Pearson’s R coeflicient is close to 0.
The same rules apply to the other parameters, the difference is that the values of their

Pearson’s R coeflicients differ.

The same procedure was done for the surrogate model verification data. The only
difference is that the values in the table are different because the total number of data
was lower than in the previous case. The values for the verification data are given in

Table 6.4 and are for verification purposes only.

Tabel 6.3: Determination of the strength of the linear relationship between machine

output parameters using Pearson’s R coeflicient for training data.

Parameter Torque | Power factor | Efficiency | Torque ripple | Flux density
Torque 1.00000 -0.42254 -0.55627 0.09109 0.88363
Power factor -0.42254 1.00000 0.78518 -0.70816 -0.62358
Efficiency -0.55627 0.78518 1.00000 -0.62803 -0.72316
Torque ripple 0.09109 -0.70816 -0.62803 1.00000 0.27485
Flux density 0.88363 -0.62358 -0.72316 0.27485 1.00000
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Tabel 6.4: Determination of the strength of the linear relationship between machine

output parameters using Pearson’s R coeflicient for verification data.

Parameter Torque | Power factor | Efficiency | Torque ripple | Flux density
Torque 1.00000 -0.47624 -0.59543 0.01499 0.90144
Power factor -0.47624 1.00000 0.74772 -0.66132 -0.62154
Efficiency -0.59543 0.74772 1.00000 -0.55425 -0.73721
Torque ripple 0.01499 -0.66113 -0.55425 1.00000 0.20215
Flux density 0.90144 -0.62154 -0.73721 0.20215 1.00000

The last two tables show the correlation between input and output parameters of
the machine, for all initial training data. Table 6.5 shows the values for the strength of
the linear coupling between input and output parameters, where Table 6.6 shows the
values for the linear coupling between input and output parameters. Both tables show
statistically the same value, only the scale of their values differs. So this means that if
some parameters calculated using the coefficient for Pearson’s R will have a very similar
number (where the numbers differ most far beyond the decimal point) the coefficient
for covariance can detect this difference much better. Otherwise, essentially the same
rules for coefficient values apply as in previous tables. So for example, if the number of
stator conductors increases, the torque decreases. Or that, the depth of the rotor slits

has almost no effect on the torque ripple. And the torque ripple increases as the width

Tabel 6.5: Determination of the strength of the linear relationship between machine

input and output parameters using Pearson’s R coeflicient for all data.

Parameter Torque | Power factor | Efficiency | Torque ripple | Flux density
Active length -0.36817 0.39138 0.47482 -0.19413 -0.69470
Slit depth 0.16693 0.26876 0.03490 -0.00904 -0.02006
Slit width -0.16499 -0.45290 -0.20946 0.63171 -0.00998
Conductors -0.84592 0.38221 0.42500 -0.17095 -0.69226

Tabel 6.6: Determination of the linear relationship between machine input and output

parameters using covariance coefficient for all data.

Parameter Torque | Power factor | Efficiency | Torque ripple | Flux density
Active length | -13852.083 10588.077 15164.026 -3358.571 -22393.131
Slit depth 7177.716 8309.431 1273.875 -178.809 -739.135
Slit width -9656.481 -19059.112 | -10405.883 17000.433 -500.342
Conductors | -31827.353 10339.975 13573.282 -2957.608 -22314.730
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of the rotor slits increases. These tables therefore serve for a deeper analysis of the
machine behaviour in terms of statistics and the possible discovery of relationships

between individual parameters that were not found in the sensitivity analysis.

Based on all the results obtained, it was concluded that the surrogate models for the
case study machine are applicable for this type of application and very accurate. The
surrogate models were therefore ready for further use to optimize the machine design.
The next chapter will discuss the use of surrogate models for machine optimization as

well as active learning of surrogate models.
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7 Optimization of the case study induction machine
with a solid rotor using surrogate model and active

learning of surrogate model

7.1 Selecting a suitable optimization algorithm for a case study

machine with a solid rotor

To optimize the machine design, it was necessary to select the proper optimization
algorithm. For the purpose of optimization of the design of the case study induction
machine with a solid rotor, there are many suitable optimization algorithms such as
stochastic algorithms [168], evolutionary algorithms [169], genetic algorithms [170],
particle swarm optimization [171], and others. Hence, there are many optimization
algorithms for optimizing engineering problems, each with different characteristics.
Based on the large selection of optimization algorithms, either a Python script could be
created to optimize the machine for this work, or there was the option of using existing

programs that use one of the above optimization algorithms.

For the purposes of this master thesis the SymSpace program was chosen. Developed
at the Linz center of mechatronics (LCM), it is a tool not only for the calculation and
optimization of electrical machines, but also for other engineering, mathematical and
physical purposes. It is essentially an integration platform that can connect multiple
external programs to communicate with each other and automate their processes and
tasks. With Optimizer, which is part of SymSpace, it can optimize any machine design or
other problem with multi-objective optimization. In Publication [172], the developers of
the program show its advantages and the method of acceleration of the calculation and
optimization of the PMSM design. So the main advantage of SymSpace and Optimizer
is that it can automate the process and optimization of machine design. Moreover, the
optimization algorithm in this program is very well fine-tuned. In case of creating a
custom optimization script, debugging it could be complicated and take a longer time.
For the purpose of this master thesis, it is not necessary to create an optimization
script, but rather to find the best machine design using a surrogate model with the help
of any optimization algorithm. The disadvantage of this program, however, is that it
is designed to optimize machine design using FEM-based programs. The program is
designed in such a way that it takes longer to run each individual calculation, due to
FEA analysis. So finding the best machine design for optimization takes longer for each
calculation. But the surrogate model is an approximated function, so the calculation of
each machine design is instantaneous. For this reason, optimizing the machine design

using SymSpace and Optimizer using surrogate models is much slower than using an
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optimization script. As mentioned for the purposes of this work, this is not an important
characteristic. More information regarding SymSpace and Optimizer, including their

features and capabilities, is provided in [173] and [174].

The Optimizer itself does not contain only one optimization algorithm, but has multi-
ple options to choose from, in order to make efficient optimization. Its main optimization
algorithm, is MOEA, which is further divided into:

« DECMO - differential evolution-based, the co-evolutionary multi-objective opti-

mization algorithm [175]
« SPEA2 - the strength Pareto evolutionary algorithm [176]
« NSGA-II - the non-dominated sorting genetic algorithm [177], [178]

In this work, the DECMO was used for the optimization of the machine.

Since Optimizer has slower calculations of each machine design during optimiza-
tion, it was convenient to save all surrogate models in a pickle file created with Python.
According to [179], pickle file is used for serializing and de-serializing Python object
structures, also called marshalling or flattening. Serialization refers to the process of
converting an object in memory to a byte stream that can be stored on disk or sent over
anetwork. Later on, this character stream can then be retrieved and de-serialized back to
a Python object. However, Pickle file is not compressed file. Pickle file is in fact useful in
application where some degree of persistency of data is required. So basically, if python
program is in some state, this state can be saved to a file on disk. For this reason, pickle
file is very useful in machine learning algorithms, where they can be saved without the
need of training them each time all over again. In the case of this work, all surrogate
models were saved in pickle file, which decreased time in overall optimization of the

machine design. The [180] shows full documentation and use in Python.

7.2 Optimization process of the case studies with a solid rotor

The first step of the optimization process, was to create a SymSpace file that contained

all needed input parameters and other constants. The inputs therefore include:

Active length of the machine,

« Number of stator conductors,

Rotor slits depth,

Rotor slits width,
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« Other constant values of machine geometry and coefficients,
« Base values of output parameters of the machine.

The first four parameters were already declared and described and they change dur-
ing optimization. The last two, however, serve as a basis for calculating the price of the
machine and converting the calculated output parameters to a per unit system. Thus,
do not change during optimization. The reason for converting calculated machine out-
put parameters to a per unit system is that it is much easier to see which parameter is
improving or deteriorating with each calculated design during optimization. As a re-
sult, this means that the given graphs in optimization can be imaginatively divided into
four quadrants, where one quadrant lead to optimal machine designs and the remaining
ones lead to deterioration in overall machine performance, therefore to worse machine
designs. The base values for converting the output values to a per unit system were
considered from Chapter 5 of Table 5.1. In addition, the previously mentioned pickle
file, which includes all surrogate models, was imported to SymSpace and used to calcu-
late the output parameters. In this way it is possible to calculate the output parameters
of the machine and its price instantly. All machine output parameters that SymSpace

calculates, both their absolute value and the value in the per unit system, are:
+ Torque,

« Power factor,

Electromagnetic efficiency,
« Torque ripple,
« Fundamental component of the flux density in the air-gap,

Price of the machine.

The graphical environment of SymSpace including the created input and output
parameters of the calculated machine and ready for optimization of machine design is
shown in Fig. 7.1.

The created SymSpace file was then imported into Optimizer, where it was necessary
to define settings for the optimization. The first step was to specify constraints for input
parameters of the machine. Based on the selected constraints and possibly the given
input parameter step, the Optimizer evaluates how many combinations they have. Thus,
in some cases, it can reveal the total length of the optimization. The constraints for
the input parameters, with their step and all possible number of combinations, are then
listed in Table 7.1. If the step value is 0, it means that the step is not defined.
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Fig. 7.1: Demonstration of the SymSpace graphical environment and the created input

and output parameters of the calculated case study machine.

Tabel 7.1: Determination of input parameter constraints including their step and pos-

sible combinations during optimization.

Parameter Min Step Max Combinations
Active length 120 0 240 00
Slit depth 9 0 21 00
Slit width 0.6 0 2.7 00
Conductors 23 1 47 25
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As for the next step, the optimization objectives had to be determined during the op-
timization setup. This is for the reason to determine which calculated output parameter
of the machine should have its value maximized, minimized or left unchanged by the
Optimizer. In addition, the Optimizer can consider all output parameters together when
optimizing. So it tries to find the optimal balance between them. For initial optimization,
it is not necessary to set constraints on the output parameters of the machine. This can
be done when it is finished, which will be explained later. All optimization objectives
and constraints on machine output parameters are listed in Table 7.2. Table 7.3 shows

the names of all output parameters in the Optimizer.

Tabel 7.2: Determination of optimization objectives and output parameter constraints

in per unit system for the initial optimization.

Parameter Objective Min constraint Max constraint
Torque MAX - -
Power factor MAX - -
Electromagnetic efficiency MAX - -
Torque ripple MIN - -
Flux density in the air-gap NONE - -
Price of the machine NONE - -

Tabel 7.3: Naming of machine output parameters, their absolute value and their value

in per unit system, in Optimizer.

Parameter Per unit system Absolute values
Torque Tavg PU Tavg
Power factor PF PU PF
Electromagnetic efficiency EF PU EF
Torque ripple Tripple PU Tripple
Flux density in the air-gap Bradfft PU Bradfft
Price of the machine price PU price

The optimizer is then set up to use the DECMO optimization algorithm as discussed
in the previous section. When the Optimizer was started, the individual machine calcu-
lations were performed sequentially. This is because this type of optimization is faster as
it involves instantaneous calculations. When the number of Pareto fronts was sufficient,
the optimization was stopped. All suitable Pareto fronts from the optimization were
subsequently extracted from the Optimizer and the selected samples from it used for re-
evaluation in Ansys maxwell. From the obtained recalculated simulation results, Python

was used to determine how large the deviation was between the surrogate model values
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and the simulations. Accordingly, either new surrogate models were created and reused
for the new optimization or the final machine designs were calculated. This process is
therefore iterative and is an active learning of surrogate models. Diagram in the Fig. 7.2
shows whole workflow of optimization of the case study machine with active learning
of the surrogate models, which was described above. Normally the number of iterations
is around 2 to 3, but it can vary based on the application. In the next section, the results
of the first optimization of the machine and the possible re-training of surrogate models
will be presented. In the next section, the results of the first optimization of the machine

and the possible re-learning of surrogate models will be presented.

SymSpace + Optimizer Python script

Initial input
parameters

y

‘(Pickle file]‘

| K

Change input
parameters

Add new samples
to training data

Enough pareto
fronts

Are surrogate
models accurate
enough

Get all pareto
front values of
machine designs

Ansys maxwell

Fig. 7.2: Block diagram for the process of machine design optimization using surrogate

model and its active learning.
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7.3 Results of the first optimization of the case study machine

with a solid rotor

Since the objective of the optimization for the case study machine is not specified in the
assignment of this thesis, three states of final designs were considered for the machine

during optimization:
« Design with the highest possible electromagnetic efficiency,
« Design with the highest possible torque,

+ Design with the lowest possible price of the machine considering the highest

possible torque.

The initial optimization then took about a day. The total number of calculated
entries was around 200,000 of which there were approximately 10,000 Pareto fronts in
total. This means that only 5% of the input geometries meet the condition specified
in the setup. Due to the speed of calculation of the individual optimization entry, the
total number of all calculated entries is relatively low. This is also due to the fact that
Optimizer has a problem with storing a large number of computed entries, since it is
made for conventional optimization with FEM-based calculations, where much fewer
entries are assumed. Conventional optimization can often only compute around 5,000
entries, and the total duration is in the range of weeks to months, where the speed of
computation depends very much on the computer setup or computing server setup.
Optimization using the surrogate model can be run even on a weaker computer setup.
Thus, it can be seen that machine optimization using surrogate models is much faster
compared to conventional optimization. But despite the relatively small number of
total calculated inputs, it is in fact more than enough to optimize the machine. For a
case study machine this is absolutely sufficient and as previously stated Optimizer has

a very well tuned optimization algorithm.

The initial optimization for the main optimization objectives of the machine without
any constraints displayed in a per unit system is shown in Fig. 7.3. Dark blue dots indi-
cate values for Pareto fronts, while light blue dots indicate optimization inputs that do
not satisfy the optimization conditions. A value equal to 1 in the graphs indicates the
original values of the machine output parameters. So, it can be seen that if the value for
torque, electromagnetic efficiency and power factor is higher than 1, it is an improve-
ment in machine performance. For the torque ripple it is the opposite, the desired value
is less than 1. It is clear that there is not much room for improvement for electromag-
netic efficiency and power factor. Although the difference does not seem to be too big

in the result it can greatly affect the performance of the machine. On the other hand,
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Fig. 7.3: Initial optimization results for the main optimization objectives of the case

study machine without any constraints in Optimizer, displayed in a per unit system.
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there can be a significant improvement in torque and torque ripple. Both parameters
will therefore be most evident in the final analysis of the optimized machine. The price
of the machine then indicates by how much the price can be reduced compared to
the original design, which can be taken into account for possible serial production.
The price of the original machine design was valued at approximately 295 euros. It
can be seen that a significant part of Pareto fronts is below the price of the original
machine design. So a reduction in the price of the machine can be achieved despite the
improvement in its output parameters. The same graphs, but with output parameters

presented in absolute values, are listed in the appendix.

Fig. 7.4 shows the distribution of input parameters and their number of uses in the
Optimizer during initial optimization. This is only a confirmation of the previously
defined theory and the results obtained so far with the sensitivity analysis of the
machine. Nevertheless, some conclusions can also be drawn for machine performance
and optimization behavior. It would be expected that the Optimizer would try to
increase the active length of the machine to increase torque and efficiency, instead it
mainly uses the lowest limit of the active length of the machine. This parameter is
therefore strongly influenced by the optimization objective to reduce the price. With
a small active machine length, it tries to increase the machine torque by using a small
number of stator conductors which increases the overall saturation of the machine.
The depth of the rotor slits here satisfies the predetermined hypotheses, but tries to
go to both extremes when optimizing the width of the rotor slits. The left extreme
limit focuses mainly on increasing the overall performance of the machine, while the
right limit focuses on reducing the price of the machine. Thus, when the price of
the machine is included in the optimization, some predefined hypotheses may not be

directly applicable here because of it.

However, the whole optimization was done without any constraints on the output
parameters, which greatly affects the saturation of the machine. With the small active
length of the machine and the low number of stator conductors, there is a large over-
saturation of the machine. This can be seen in Fig. 7.5, where the graphs show the
dependence of the flux density in the air-gap on each of the other output parameters.
In this case, the output parameters are given in absolute values. Graphs showing these
values in the per unit system are provided in the appendix. Here, the parameters in abso-
lute values better reveal whether the magnitude of the flux density in the air-gap meets
a previously defined range. The flux density in the air-gap here reaches values of up to
1.3T" which significantly exceeds the recommended limit. For this reason, it is necessary

to apply a constraints to these results for the output parameters of the machine.
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Fig. 7.5: The flux density in the air-gap as a function of other output parameters in the

initial optimization results of the machine without any constraints in Optimizer.

Another advantage of Optimizer is that it can filter out existing results, which is
exactly the case needed here. Basically, it is just a matter of duplicating an existing op-
timization and changing the constraints on the output parameters. New constraints of
the output parameters in per unit system for the optimization is shown in Table 7.4. For
torque, power factor, electromagnetic efficiency and torque ripple, the limits are obvi-
ous as they improve the performance of the machine. The limit for the flux density in
the air-gap is based on recommended values, while the price is again without limits as
it is not a very important factor and the Optimizer could potentially filter out machine
designs that are significant and could meet the predefined condition. When the dupli-

cated optimization is started, the existing results are opened, where those members of
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the Pareto front that previously met the optimization conditions are now shown as not
meeting the conditions. Thus, there is no need to run a new optimization, which is the

point of this step.

Tabel 7.4: Determination of optimization objectives and output parameter constraints

in per unit system for the results of the initial optimization.

Parameter Objective Min constraint Max constraint
Torque MAX 1 00

Power factor MAX 1 o0
Electromagnetic efficiency MAX 1 00
Torque ripple MIN 0 1

Flux density in the air-gap NONE 0.923 1.187

Price of the machine NONE - -

With the defined constraints on the output parameters, the total number of Pareto
fronts was reduced from 15,000 to 875. Which is a significant reduction in all possible
usable machine designs and accounts for only 0.4375% of all the calculated combina-
tions. The reduced Optimizer results presented in the per unit system are shown in Fig.
7.6. It can be seen that despite the reduction in the total number of optimization results,
there are still many machine designs that show significantly better performance than the
original machine design. This reduction is mainly due to the saturation in the machine,
which was also significantly reduced, as can be seen in Fig. 7.7. All limits of the machine
output parameters presented in absolute values obtained from the reduced optimization
results are given in Table 7.5. It is possible to see a significant improvement in the torque
or torque ripple of the machine. However, it depends on the combination of input pa-
rameters that determine which output parameter of the machine will be most affected.
What matters most is the trade-off between the input and output parameters. The rest
of the obtained results of the initial optimization in the Optimizer, whether displayed in

absolute values or per unit of the system, are shown in the appendix.

Tabel 7.5: Limits of machine output parameter values in absolute values obtained from

reduced results of the initial optimization in the Optimizer.

Parameter Unit Min value Max value
Torque Nm 4.256 11.166
Power factor — 0.437 0.563
Electromagnetic efficiency % 69.215 76.368
Torque ripple % 10.763 27.470
Flux density in the air-gap T 0.7 0.9
Price of the machine € 280.38 318.07
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Fig. 7.7: The flux density in the air-gap as a function of other output parameters in the

initial optimization results of the machine with defined constraints in Optimizer.

At this point, it was necessary to verify the results of the surrogate models from
the optimization using FEM-based re-evaluation. It was therefore essential to select
appropriate samples from the optimization results that were used for re-evaluation.
As discussed in Chapter 3, it is possible to approach the selection of samples from the
optimization results in multiple ways. In the case of this work, samples of machine
designs were selected in a way that agrees with the 3 states of the machine declared at
the very beginning of this section. This way it can be verified how accurate the surrogate
models are in these desired locations. Based on each machine state, 50 samples were
selected from the optimization results and re-evaluated using FEM simulations. The

total number of re-evaluated results is therefore 150, where the total simulation time
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took about a day and a half. The process of verifying the surrogate models is exactly the
same as in Chapter 6, Section 6.4. But, the accuracy of the surrogate models was tested

separately for each machine state.

To determine the accuracy of the surrogate models, existing learning data and newly
obtained corresponding re-evaluated verification data were used, where comparison
between them, considering the machine has the highest electromagnetic efficiency, is
shown in Fig. 7.8. It is clear that the results of the surrogate models and their verification
after optimization show less accuracy than in the case of their initial construction in
Chapter 6. This is of course due to a different combination of verification data. However,
based on the Pearson’s R coefficient for the torque and flux density in the air-gap, it can
be seen that the surrogate models are relatively accurate in these output parameters. The
power factor and torque ripple have a smaller coefficient value and thus become more
inaccurate, whereas the electromagnetic efficiency itself, which is the main concern of
optimization, has even a negative coefficient value. The reason for the smaller values
of Pearson’s R coefficients is that these machine output parameters were evaluated by
surrogate models at their outer limit. This was expected, since the evaluated output
parameters of surrogate models usually fail at their limit and are inaccurate. Therefore,
Pearson’s R coefficient for the torque and flux density in the air-gap has a high value
because their values were not evaluated at the limit of the surrogate models but at their
midpoint. A negative Pearson’s R value of the electromagnetic efficiency coefficient of

the machine means that the obtained verification values are lower than those evaluated.

The Pearson’s R coefficient is therefore not very reliable for revealing the accuracy of
the surrogate models and serves only as guideline value. The verification data are mainly
concentrated in a small part of the results of the surrogate models training data. This
means that even the Pearson’s R coefficient itself was computed on this small section and
not over the entire range of the surrogate model. Therefore, the torque and flux density
in the air-gap of the machine has a high coefficient value since their results are more
spread out. A much better indicator for determining the accuracy of surrogate models
is to establish the relative error between the evaluated surrogate model results and the
verification results of FEM calculations. This way, the overall range of relative errors of
all surrogate models is obtained, which will help identify whether the surrogate models
need to be actively taught further. Graphs showing the relative error as a function of
the input parameter will not be shown here. These are the same graphs as in Chapter 6,
but in this case, there would be far more. They are therefore listed in the appendix. As a
substitute, a table showing the total range of errors for all the output parameters of the
surrogate models is provided in Table 7.6. The flux density in the air-gap and torque have

quite a small relative deviation, which is desirable. The power factor and electromagnetic
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efficiency already have a much higher deviation and the estimated values of the torque

ripple are essentially inaccurate. So the surrogate models fail here.
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Fig. 7.8: Verification of the accuracy of the surrogate models using the results obtained
from the initial optimization, where the verification samples are oriented to the highest
possible electromagnetic efficiency of the machine for Torque (a), Power factor (b), Elec-
tromagnetic efficiency (c), Torque ripple (d), and Fundamental component of the flux

density in the air-gap (e).

Tabel 7.6: Errors of the surrogate model results after re-evaluation of the initial opti-

mization results with respect to the highest electromagnetic efficiency of the machine.

Parameter Unit Min error Max error
Torque % -1.652 1.700
Power factor % -0.467 3.785
Electromagnetic efficiency % 2.261 3.761
Torque ripple % -7.856 -33.327
Flux density in the air-gap % 0.236 -0.722
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The same procedure was consequently applied to the remaining 2 machine states.
Verification of the accuracy of the surrogate models with verification samples for the
highest machine torque is shown in Fig. 7.9. It can be seen from the graphs that the
evaluated machine output parameters using surrogate models are more accurate here
than in the previous case. Even the machine torque, which was the main objective
of the optimization, was very well evaluated by the surrogate models. However, the
electromagnetic efficiency of the machine again has a negative Pearson’s coefficient
value. This indicates again that the validation data has a lower value than those
evaluated by the surrogate model. Overall, the surrogate models are more accurate, in
this case, as evidenced by Table 1, which shows the range of deviation of all machine
output parameters is given in Table 7.7. However, the torque ripple again has a very

large deviation. So surrogate models have failed here again.

It remains to verify the last considered state of the machine, where the machine has
lowest price with highest possible torque. In this case, the state of the machine is not
considered in its outer limits, so surrogate models should be much more accurate in this
case. This assumption is confirmed in Fig. 7.10. The values of Pearson’s R coefficients
are highest here, even for the electromagnetic efficiency of the machine, where the
value of the coefficient here is not negative. But their values indicate that the surrogate
models are rather accurate on average. Which is not wanted and as stated the coefficient
value should be as close to 1 as possible. However, the deviations of the surrogate
models are not very large in this case, as shown in Table 1. Output parameters such as
torque, power factor and machine flux density in the air-gap of the machine have even

the lowest deviation of all cases. But again the evaluated torque ripple fails here.

Based on the results obtained from the verification of all surrogate models for all 3
machine states, it can be concluded that the surrogate models are relatively accurate.
However, they could be even more accurate and the evaluation of the ripple moment
failed in any case. So in this case it is advisable to further learn surrogate models and
perform the machine optimization again. The training of the surrogate models was es-
sentially done in this case by taking all 150 verification samples and embedding them
all into the existing surrogate model learning data. With the new learning data, new
surrogate models were created and subsequently stored in pickle files. The process of
the second optimization was then the same as here and its results are presented in the

following section.
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Fig. 7.9: Verification of the accuracy of the surrogate models using the results obtained
from the initial optimization, where the verification samples are oriented to the highest
possible torque of the machine for Torque (a), Power factor (b), Electromagnetic effi-

ciency (c), Torque ripple (d), and Fundamental component of the flux density in the
air-gap (e).

Tabel 7.7: Errors of the surrogate model results after re-evaluation of the initial opti-

mization results with respect to the highest torque of the machine.

Parameter Unit Min error Max error
Torque %o 1.194 -1.275
Power factor % 1.349 -1.611
Electromagnetic efficiency % -0.310 2.515
Torque ripple % 1.284 -20.740
Flux density in the air-gap % 0.268 -0.424
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Fig. 7.10: Verification of the accuracy of the surrogate models using the results obtained
from the initial optimization, where the verification samples are oriented to the lowest
price of the machine with respect to the highest torque of the machine for Torque (a),
Power factor (b), Electromagnetic efficiency (c), Torque ripple (d), and Fundamental com-

ponent of the flux density in the air-gap (e).

Tabel 7.8: Errors of the surrogate model results after re-evaluation of the initial opti-
mization results with respect to the lowest price of the machine considering the highest

possible torque of the machine.

Parameter Unit Min error Max error
Torque % 0.385 -0.570
Power factor % 0.511 -1.606
Electromagnetic efficiency % 0.320 2.826
Torque ripple % 2.534 -18.844
Flux density in the air-gap % -0.189 0.278
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7.4 Results of the second optimization of the case study machine

with a solid rotor

The process of the second optimization is basically the same as the initial one, that is,
some steps and results in this section will be skipped. All the important results that
will not be presented here, either from the optimizations or from the verification of the
accuracy of the surrogate models, will be presented in the appendix. That being said,
the second optimization took about a day and the total number of calculated entries
was again around 200,000 of which there were approximately only 8,700 Pareto fronts
in total. So in this case the total number of suitable machine designs is considerably
lower at around 4.35%. With the defined constraints on the output parameters, the total
number of Pareto fronts was additionally reduced to approximately 725, corresponding
to only 0.3625% of all calculated combinations. Hence, it can be seen that further
learning of surrogate models has reduced the total number of possible machine designs

in its optimization.

The results of the second optimization, with defined constraints and displayed in per
unit system, are shown in Fig. 7.11. The course of the results of the second optimization
is basically the same as in the initial one. This is confirmed in Fig. 7.12, where the values
for the absolute value of the flux density in the air-gap are given. More important, how-
ever, are the outer limits to which optimization has reached. Table 7.9 shows the outer
limits of the optimization results with already defined limits of the output parameters.
The outer limits for torque and torque ripple are here almost the same. For electromag-
netic efficiency and power factor, this minimal change in the outer limit is relatively
significant, as the machine does not have much room for improvement for these two pa-
rameters. Therefore, it can be observed that further learning of the surrogate models will
indeed affect the optimization results and possibly reduce the achievable extreme limits
of those output parameters that were too out of line with the results of the surrogate

models in the previous optimization when verifying the accuracy.

Tabel 7.9: Limits of machine output parameter values in absolute values obtained from

reduced results of the second optimization in the Optimizer.

Parameter Unit Min value Max value
Torque Nm 4.255 11.140
Power factor — 0.438 0.554
Electromagnetic efficiency % 69.044 74.960
Torque ripple % 11.624 27.115
Flux density in the air-gap T 0.7 0.9
Price of the machine € 280.40 324.51
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Fig. 7.11: Second optimization results for the main optimization objectives of the case

study machine with defined constraints in Optimizer, displayed in a per unit system.
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Fig. 7.12: The flux density in the air-gap as a function of other output parameters in the

second optimization results of the machine with defined constraints in Optimizer.

Verification of the accuracy of the surrogate models after the second optimization
was again performed for 3 machine states, where a total of 150 corresponding samples
were calculated as verification data. It took about a day and a half to calculate all the
samples again. To verify the accuracy of the surrogate models themselves, Fig. 7.13
shows a comparison of the evaluated values of the surrogate models and the verification
data, for the machine state considering the highest possible electromagnetic efficiency.
Pearson’s R coefficients of the output parameters have a significantly higher value
in this case and are much closer to the value of 1 which is desired. Except for the
electromagnetic efficiency of the machine itself, whose values again reach the outer

limit of the surrogate models and the result is actually somewhat lower, as indicated by

138



the verification data. Therefore, the coefficient here is again negative, but more close to
1 than in the previous case. That the surrogate models are considerably more accurate
in this state is shown in Table 7.10, which shows their deviations. The deviation of
all evaluated output parameters has been reduced by up to several percent and the
deviation of the torque ripple has been even reduced by up to 20%. Consequently, apart
from the torque ripple, the evaluated output parameters of the surrogate models are

quite accurate. However, the torque ripple does not show such a large deviation.

A comparison of the accuracy of the surrogate models in terms of the highest possi-
ble machine torque is shown in Fig. 7.14. For this machine state, the output parameters
have very good value of Pearson’s R coefficients without any output parameter having
a negative coefficient. This is an indication of their high accuracy. However, in order to
make the models as accurate as possible, the value of the coefficients should ideally be
closest to the 1 (as for example 0.9999). But their lower value is due to the small scatter
of the verification samples, which was explained in the previous section. Nevertheless,
the deviations of the surrogate models are very small, as shown in Table 7.11. For
most output parameters the deviation is around 1%, which is a very good result and
a significant improvement over the initial optimization. The torque ripple deviation is

only 5% smaller, which is not such a dramatic improvement.

In the last state of the machine, verification of the accuracy of the surrogate models,
it could be considered that here again the models will have the best results as they
are not at their outer limits. This is partially confirmed in Fig. 7.15, which shows
the accuracy of the surrogate models. Here the Pearson’s R coefficients of the output
parameters have by far the best values close to 1. For this machine state, surrogate
models are very accurate. The opposite situation is observed for the electromagnetic
efficiency of the machine, where it has a smaller coefficient value than in the case of the
original optimization. But this is not as important as the deviation of surrogate models.
The deviation of the surrogate models for this machine state is given in Table 7.12,
where the deviation of the output parameters is again around 1%. With the exception

of torque ripple, which has a deviation of around 12%.

From the obtained results of the accuracy verification of surrogate models, the av-
erage deviation of most output parameters is around 1 — 2%. For the torque ripple, the
deviation is around 10 — 15%. Such a high deviation is most likely due to insufficient
sampling of the input parameter when creating the initial learning data for all models.
Therefore, if the overall deviation were to be reduced, the total number of input param-
eter samples would have to be increased to e.g. 7 or more. However, it is possible that

with further learning of the surrogate models, the deviation would be greatly reduced.
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Fig. 7.13: Verification of the accuracy of the surrogate models using the results obtained
from the second optimization, where the verification samples are oriented to the high-
est possible electromagnetic efficiency of the machine for Torque (a), Power factor (b),
Electromagnetic efficiency (c), Torque ripple (d), and Fundamental component of the flux

density in the air-gap (e).

Tabel 7.10: Errors of the surrogate model results after re-evaluation of the second opti-

mization results with respect to the highest electromagnetic efficiency of the machine.

Parameter Unit Min error Max error
Torque % -0.791 1.314
Power factor % -0.138 2.055
Electromagnetic efficiency % -0.050 2.755
Torque ripple % 0.940 -12.511
Flux density in the air-gap % -0.265 0.300
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Fig. 7.14: Verification of the accuracy of the surrogate models using the results ob-
tained from the second optimization, where the verification samples are oriented to the
highest possible torque of the machine for Torque (a), Power factor (b), Electromagnetic

efficiency (c), Torque ripple (d), and Fundamental component of the flux density in the
air-gap (e).

Tabel 7.11: Errors of the surrogate model results after re-evaluation of the second opti-

mization results with respect to the highest torque of the machine.

Parameter Unit Min error Max error
Torque % -0.512 0.676
Power factor % 0.573 -1.245
Electromagnetic efficiency % -0.157 0.951
Torque ripple % 5.091 -15.611
Flux density in the air-gap % -0.129 0.213
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Fig. 7.15: Verification of the accuracy of the surrogate models using the results obtained
from the second optimization, where the verification samples are oriented to the low-
est price of the machine with respect to the highest torque of the machine for Torque
(a), Power factor (b), Electromagnetic efficiency (c), Torque ripple (d), and Fundamental

component of the flux density in the air-gap (e).

Tabel 7.12: Errors of the surrogate model results after re-evaluation of the second opti-
mization results with respect to the lowest price of the machine considering the highest

possible torque of the machine.

Parameter Unit Min error Max error
Torque % -0.352 0.499
Power factor % 0.354 -1.274
Electromagnetic efficiency % -0.088 1.369
Torque ripple % 6.096 -11.818
Flux density in the air-gap % -0.042 0.314
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Except for the evaluated torque ripple, surrogate models are very accurate. At this
point, it would be reasonable to continue to learn surrogate models to make them even
more accurate, but it would be the same process as so far. Moreover, the deviation of
the results in surrogate models will be always present. The goal of this work is not
to make the surrogate models as accurate as possible, but rather to introduce them,
show how to work with them, and use them to optimise the design of the case study
electrical machine with a solid rotor. Therefore, it was decided at this point that, despite
the high deviations of the evaluated torque ripple, the final optimized machine designs
were selected that respect the 3 machine states determined in the first optimization.
A comparison of the original design and the optimized case study machine designs is
shown in Fig. 7.16. It can be observed that the width of the rotor slits is much narrower
in each optimized design. The same is true for the depth of the rotor slits, which are
much deeper. This is in accordance with the pre-established theory and the results

obtained from the sensitivity analysis.

A comparison of all input parameters of all machine designs, including their prices,
is shown in Fig. 7.13. It is interesting that the design of the machine with the highest
possible electromagnetic efficiency, apart from the depth and width of the rotor slits,
has almost the same other parameters as the original design. The situation is different
in the case of designing a machine with the highest possible torque, where all input
parameters are significantly varied to achieve the highest possible torque. However,
the final values of the input parameters are influenced by the optimization objective
with the reduction of the machine price. If this optimization objective were not applied,
the active length of the machine would be considerably higher. Finally, the design of
the machine with the lowest cost but with respect to the highest achievable torque is
presented. Here, the active length of the machine is reduced considerably in order to
reduce the price as much as possible. However, despite the low active machine length,
the other input parameters are adjusted from optimization to have better machine
performance than the original machine design. As a bonus is also a lower price of the
machine, which at first glance may not be that much lower than the original design, but

in series production it would make a big difference.

Finally, the evaluated output parameters of the surrogate models were compared
with the simulated values to show their deviation, for all optimized machine designs. In
terms of designing a machine with the highest possible electromagnetic efficiency, the
following differences are listed in Table 7.14. The deviations are a bit higher, especially
for power factor and electromagnetic efficiency, where they are around 2%. The torque
ripple has a deviation of up to 8.5%. Torque and flux density in the air-gap has a very

small deviation which is good. Surrogate models are therefore not as accurate for this
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machine condition, but are still usable. The situation is different when it comes to
designing a machine with the highest possible torque. All machine output parameters,
except torque ripple, have a deviation below 1%. This is very good and desirable.
Surrogate models are very accurate in these cases. In the last machine design, all
deviations of all output parameters are below 1%. Thus, in this case it is a perfect match
between the evaluated and simulated results. Even the torque ripple has a very small

deviation. This is to be expected, as the machine was not optimized at its outer limits.

Overall, it is here confirmed that the surrogate models have good accuracy, except
for some cases of output parameters where the deviations are larger. However, this could
be improved either by further surrogate model learning or by creating a completely new
sampling scheme for the initial surrogate model learning. But that is not the aim of
this work. In addition to the newly calculated machine designs, it has also been shown
that optimization using surrogate models is considerably shorter than conventional op-
timization. If the total net time to find the optimal machine design is calculated, with
the assumption that for this particular procedure the sensitivity analysis took approxi-
mately one week, the calculation of the initial learning data for the surrogate models also
took one week, each subsequent optimization took one day, and the final verification of
the results of each optimization took approximately one and a half a day. That makes
19 days in total to find all 3 suitable machine designs. For comparison, if conventional
optimization was used and the total number of designs computed during optimization
was considered to be 5,000, considering 10 parallel computations at a time (which were
also performed in this work), where one computation of machine design took approxi-
mately 3 hours, the total time required for all computations during optimization would
be approximately 2 months. So the time gain is over one month. Nevertheless, it is not
guaranteed that conventional optimization would find these machine designs and could
lead to overall worse variants. Moreover, out of a total of 5,000 calculated samples, there
would be far fewer suitable Pareto fronts than if surrogate models were used. Moreover,
optimization using surrogate models is capable of calculating up to 200,000 or much
more machine designs. This is a great advantage. While the advantage of conventional
optimization is that the computed designs have accurate results, it takes much longer. If
further learning of surrogate models were considered, let’s assume two more iterations,
the total time to find the optimal machine designs would be 24 days. The time gain is
still over one month, and it is highly likely that the results obtained after optimization
would have considerably less deviation. In the case of an electrical machine with a solid
rotor, optimization using surrogate models is therefore highly advantageous. The next
chapter will deal with electromagnetic analysis and comparison of all optimized machine

designs with the original one.
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Fig. 7.16: Comparison of the original machine design (a) with optimized machine de-
signs focusing on: the highest possible electromagnetic efficiency (b), the highest possi-
ble torque (c) and the lowest machine price respecting the highest achievable torque (d).

Tabel 7.13: Comparison of input parameters and machine price with the original de-
sign and optimized machine designs respecting the highest possible electromagnetic ef-
ficiency, the highest possible torque and the lowest machine price with respect to the
highest possible torque.

Parameter Unit  Original Efficiency Torque Price
Active length of the machine ~ mm 160 159.03 199.35 127.73
Number of stator conductors — 35 31 23 37

Rotor slit depth mm 12 19.256 21 20.782
Rotor slit widht mm 2 1.159 0.6 0.875
Price of the machine € 295.13 294.84 309.75 282.51
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Tabel 7.14: Comparison of the evaluated values of the surrogate models with the simu-
lated values of the machine after the optimization considering the highest possible elec-

tromagnetic efficiency.

Parameter Surrogate model Simulation Deviation [%]
Torque [Nm] 7.259 7.237 0.303
Power factor [—] 0.523 0.513 1.912
Electromagnetic efficiency [%] 74.960 72.948 2.684
Torque ripple [%] 18.892 20.511 -8.570
Flux density in the air-gap [1'] 0.829 0.831 -0.241

Tabel 7.15: Comparison of the evaluated values of the surrogate models with the sim-

ulated values of the machine after the optimization considering the highest possible

torque.
Parameter Surrogate model Simulation Deviation [%]
Torque [Nm] 11.140 11.168 -0.251
Power factor [—] 0.515 0.512 0.583
Electromagnetic efficiency [%] 73.359 73.558 -0.271
Torque ripple [%] 12.329 12.983 -5.305
Flux density in the air-gap [1'] 0.888 0.890 -0.225

Tabel 7.16: Comparison of the evaluated values of the surrogate models with the simu-
lated values of the machine after the optimization considering the lowest price with the

respect to the highest possible torque.

Parameter Surrogate model Simulation Deviation [%]
Torque [Nm] 6.608 6.634 -0.393
Power factor [—] 0.501 0.503 -0.399
Electromagnetic efficiency [%] 72.355 72.329 0.036
Torque ripple [%] 17.845 17.898 -0.297
Flux density in the air-gap [1'] 0.886 0.886 0.012
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8 Electromagnetic analysis of optimized designs of

case study IM with solid rotors

The electromagnetic analysis of the optimized case study machine designs is exactly the
same as in Chapter 5. Of course, it is made for each machine design separately. For
simplicity, the individual optimized designs, according to their selected states, will be

referred to as:
« Original design - Initial design of the case study machine

+ Design 1 - Optimized machine design that has the highest possible electromag-

netic efficiency
 Design 2 - Optimized machine design that has the highest possible torque

« Design 3 - Optimized machine design that has the lowest possible cost with re-

spect to the highest torque

The first characteristic is Torque vs. Speed and is shown in Fig. 8.1. It remains true
for all machine designs that the starting torque is high. This means that all designs have
high rotor impedance. However, it can be seen that each optimized machine design
shows better performance than the original machine design. So Design 3 has a better
torque curve in the working area than the original design, but its starting torque is
almost the same. Design 2 has a better torque curve than design 3, but in the working
area the machines have almost the same torque course. Design 3, however, has the best
possible torque curve of all the designs, including the working area of the machine. But
it does not exhibit the same torque as the original induction machine with a squirrel
cage at its rated speed, the parameters of which are given in Chapter 4. However, its

performance is closest to that of the original machine.

In this case, the characteristics from Fig. 5.2 and Fig. 5.3 in Chapter 5 have been split
into multiple graphs. This is for better clarity and reading from the graphs. Otherwise,
there would be up to 12 curves in one graph, which would be very cluttered. The
first characteristic in Fig. 8.2 shows the dependence of the electromagnetic efficiency
on the output power. Here, again, it can be seen that all optimised machine designs
have higher achievable machine output power. The highest available power is for:
Design 3 1325 W, Design 2 1480 W and Design 1 2180 IV, compared to the original
design which has a maximum output power of 860 WW. Design 3 is therefore capable of
achieving more than twice the output power of the original machine design. In terms of
electromagnetic efficiency, all optimised designs are again better. Design 3 achieves the

highest electromagnetic efficiency of approximately 73.44%, but almost follows the
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Fig. 8.1: Torque-speed characteristics of the original and optimized designs of the IM
with an axially slitted solid rotor.
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Fig. 8.2: Electromagnetic efficiency vs. Output power characteristics of the original and

optimized designs of the IM with an axially slitted solid rotor.

efficiency curve of design 2, which is optimized to have the highest efficiency at the
selected speed. The highest efficiency of Design 2 is approximately 74.1 %. However,
the highest efficiency is achieved by design 1, where it reaches an efficiency of up to

75.05 %. This efficiency is achieved at a higher output power of the machine. From
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the values obtained, it seems that design 1 achieves the highest possible value of
electromagnetic efficiency of the machine. Compared to the original machine design,
which had a peak electromagnetic efficiency value of around 68.32 %, this is an increase

of up to 7 % for design 1 machines.

Another characteristic in Fig. 8.3 is the dependence of the phase current on the
output power. It can be seen here that the phase current has increased considerably
in the case of the optimized machine designs. Hence, this means that the current and
linear current density of the stator slot has also considerably increased. Design 3 and
design 2 have more or less the same phase current pattern of the curve, where the only
thing that changes is the highest value at higher output power of the machine. For
design 3, the highest value of phase current is approximately 4.934 A and for design
2 is approximately 5.216 A. More or less, the phase current values of both machine
designs are not that high compared to the original machine design. But the situation
with design 1 is very different. Its phase current values are more than double those of
the original machine design and the phase current is even higher as the output power
increases. For comparison, the highest phase current value of the original machine
design at its highest output power is 3.471 A, where design 1 has a phase current value
of 7.949 A at its highest output power. This therefore means much higher values of

current and linear current density in the stator slot for design 1. Thus, for design 1,
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Fig. 8.3: Phase current vs. Output power characteristics of the original and optimized

designs of the IM with an axially slitted solid rotor.

a suitable machine operating point would have to be selected or the stator winding
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temperature could be very high.

The last characteristic for this type of graph is given in Fig. 8.4, which shows the
dependence of the power factor on the output power of the machine. It can be seen here
that the maximum power factor value is approximately the same for all machine designs.
The main difference is in achieving the maximum power factor value at different values
of the machine output power. The original design achieves a maximum power factor of
0.615, design 3 0.668, design 2 0.674, and design 1 0.641. The highest power factor value
is therefore achieved by design 2. The highest possible achievable value of the machine

is therefore around this power factor value.
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Fig. 8.4: Power factor vs. Output power characteristics of the original and optimized

designs of the IM with an axially slitted solid rotor.

The machine losses for all designs are also listed here. The characteristic in Fig. 8.5
shows the dependence of the stator core losses on the output power. Optimized ma-
chine designs have an basically linear course of this type of losses with increasing out-
put power. On the other hand, the losses in the original machine design decrease with
output power. Design 3 has the lowest losses in the stator core, while design 1 has the
highest losses. The characteristic in Fig. 8.6 shows the dependence of rotor losses on
output power. All machine designs are then found to have a quadratic distribution of
rotor losses with increasing machine output power. Here, the original machine design
achieves the lowest rotor losses, while design 1 achieves the highest. The last charac-
teristic is shown in Fig. 8.7, which represents the dependence of the losses in the stator

winding on the output power. All machine designs again have a quadratic loss profile
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with increasing output power, as in the previous case. Again, the original machine de-
sign has the lowest losses and design 1 has the highest. Most losses are concentrated for

all machine designs in the rotor, which is expected.
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Fig. 8.5: Stator core losses vs. Output power characteristics of the original and optimized

designs of the IM with an axially slitted solid rotor.
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Fig. 8.6: Rotor losses vs. Output power characteristics of the original and optimized

designs of the IM with an axially slitted solid rotor.
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Fig. 8.7: Stator winding losses vs. Output power characteristics of the original and

optimized designs of the IM with an axially slitted solid rotor.

As a further comparison, all machine designs were calculated at the assumed
constant speed of 1322rpm, or at the operating point of the machine. All the given

machine performance values are given in Table 8.1.

Tabel 8.1: Performance of analyzed original and optimized designes of the case study

IM with an axially slitted solid rotor at the selected operating point.

Parameter Unit Performance

Original Design1 Design2 Design 3

Torque Nm 4.231 11.168 7.237 6.634
Torque ripple % 28.562 12.983 20.511 17.898
Speed rpm 1322 1322 1322 1322

Output power |44 585.8 1546.1 1001.8 918.4
Phase current (rms) A 2.609 5.681 3.677 3.481

Power factor 0.432 0.512 0.513 0.503
Electromagnetic efficiency 69.32 73.56 72.95 72.33
Air-gap flux density 0.737 0.890 0.831 0.886

63.58 86.97 66.44 55.68
136.25 328.10 212.79 193.96
59.43 140.74 92.29 101.72

Stator core losses

Rotor losses

=S =SS 3R

Stator winding losses
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Based on the values obtained, it can be seen how much better the optimized machine
designs perform. It is clear that design 1 is superior to all other designs in torque, torque
ripple and output power. It even has the highest electromagnetic efficiency despite the
fact that design 2 should have it. This is due to the inaccuracy and error of surrogate
models, which will always be present. This error could be reduced by further iterations
of active learning of surrogate models. For the purposes of this work, however, it is not
necessary to have such accurate surrogate models and thus these results are sufficient
enough. It can be seen that the power factor of the optimized machine designs is
approximately the same at this operating point, but is noticeably higher compared to
the original machine design. Here it can also be seen that the machine is more saturated
in the optimized designs compared to the original machine design. The distribution of
losses also corresponds to those shown in the previous graphs. The original design has
the lowest losses and design 1 has the highest losses. Overall, the optimized design 1
of the case study IM with a solid rotor shows the best possible results. At its operating
point, it even achieves the same output power as the original machine with a squirrel

cage.

To further verify the results, the flux density distributions throughout the whole ma-
chine were displayed. The distribution of the flux density throughout the whole machine
for all machine designs is shown in Fig. 8.8. Here it is confirmed that all optimized ma-
chine designs have higher saturation than the original machine design. Design 1 (Fig.
8.8 (c)) and Design 3 (Fig. 8.8 (d)) have the highest saturation. Which is again confirmed
from the Table 8.1.
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Fig. 8.8: Distribution of magnetic flux density in the whole machine with a solid rotor

for: Original design (a), Design 2 (b), Design 1 (c), Design 3 (d).
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Conclusion

This Master’s thesis deals with the electromagnetic analysis and modeling of a solid
rotor induction machine. Today, more and more electric machines with solid rotors
are used in industry, especially in the area and applications that require high speeds.
The high-speed electrical machines with solid rotors provide at a higher speed high
efficiency, great mechanical properties, mechanical robustness, they require less space
due to no need for an additional gearbox, have better electromagnetic parameters and
are energy efficient with less impact on economics and ecology, compared to the con-
ventional induction machine with a squirrel cage and gearbox. Right now, several types
of electrical machines with solid rotors exist, for example permanent magnet brushless
machines, indcution machines, synchronnous reluctance machines and others. Overall,
the most used type of high-speed electrical machines with solid rotors are induction
machines. Their main advantage is the price, mostly simple geometry and production,
the robustness of the solid rotor, great mechanical properties, great resistance to high
temperatures and high efficiency and great electromagnetic performance at a higher
speed. Of course, they have some disadvantages such as lower power, high rotor loss
and others. But the advantages of this machine outweigh the disadvantages. For this
type of electrical machine with solid rotors exists several types of solid rotors and
applications. For rotor types, for example, they are smooth rotors, slitted rotors or with
a squirrel cage rotors. The use of high-speed electrical machines with solid rotors in the
application is for example in turbomolecular pumps, gas compressors, microturbines
and others. The first chapter provides all the detailed information regarding all the

things described above.

The second chapter dealt mainly with the possibilities of calculating electrical induc-
tion machines with solid rotors. In the first section, possible analytical methods were
described and discussed. However, as stated here, all analytical methods are either very
complex with a focus on one specific type of rotor (often smooth), or use simplifications
and empirical formulas, which often reduce the accuracy of the calculation compared
to the measured values. It is also stated why this is the case with the given practical
examples. The next section presents another possibility of calculation and design
of electrical machines with solid rotors. And these are FEM programs with modern
numerical methods. To calculate the machine, a 3D simulation in FEM programs was
first considered because it captures all 3D aspects of the electromagnetic model. If
the simulation is set up correctly, it gives the best results compared to the measured
one. However, as mentioned, 3D simulation is extremely time consuming and requires
the necessary amount of experience with this simulation. Therefore, another type of

simulation was proposed, namely 2D. The problem with this type of simulation is that
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it does not include all 3D aspects of a real machine, such as end regions of the solid
rotor. Thus, the simulation results are not valid and are over-optimistic. For this reason,
correction end-effect factors were proposed, which includes the effect of the end-region
and the curvature of the rotor currents at these ends. This section deals with problems
with 2D simulations of electrical machines with solid rotors, the introduction of
correction end-effect factors and their comparison, and the use of correction end-effect

factors in the simulation.

The third chapter mainly dealt with surrogate modelling and its general theory.
Surrogate modeling is basically an approximation of the dependencies between the
input and output dependencies of a system, where surrogate models are created based
on these relationships. In other words, surrogate models could be described as statistical
models that are built using a given approximation function from machine-learned data.
In this thesis, it was stated that there are several approximation functions as the basis
of surrogate models, where each function has its given application. These models then
predict the output values of the system based on the input parameters. As a result,
this greatly speeds up the calculation of such system’s output parameters, where their
evaluation is essentially instantaneous. This is best used in optimization, where the
combination of surrogate models and the optimization algorithm can achieve significant
time gains compared to conventional optimization, which is usually performed using
FEM analysis. However, the disadvantage of using surrogate models is that they are
only suitable for systems that have few input parameters, that is, around 10. The
surrogate modeling process consists of 4 main steps, including sampling, output
evaluations, surrogate model construction, and active learning of surrogate models.
The use of surrogate models, which include medical, electronics, mechanical and other
applications, was also presented in this paper. Hence, it is also suitable for electrical

machine with solid rotor.

The fouth chapter, deals with the used electrical machine with a solid rotor and its
subsequent simulation in 2D using a correction end-effect factor. As a case study ma-
chine, a 3-phase induction machine with a squirrel cage was used. Here, the rotor was
replaced with an axially slitted solid rotor. The main goal was to analyze the machines
using a correction end-effect factor and a possible comparison of their performance
with the original machine. For the analysis, 3 programs were used: python, Ansys
maxwell and FreeCAD. This chapter additionally contains all the necessary information
on stator and rotor geometries, the algorithm of the python script and the reasons why

these programs were used, or the general settings of the programs.

The fifth chapter deals with the achieved results from simulations of both machines.
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The first is the torque-speed characteristic in Fig. 5.1, which shows that the machine fail
indisputably compared to the original machine. In the next characteristics in Fig. 5.2,
was shown Efficiency, Phase current and Power factor vs Output power characteristics
of the electrical machine with the axially slitted solid rotor. The machine achieved a
maximum output power of 860 W. The machine reached the maximal output power
at higher slips, as expected. However, the machine did not reach the output power
of the original machine. Overall it could not reach the electromagnetic parameters
of the original machine, as expected. Losses vs output power characteristics was
shown in Fig. 5.3. Finally, an operating point was selected for the machine, which
was then used for further use in creating a surrogate model for the machine. The total
machine performance at this operating point was shown in Table 5.1. Additionally, the
distribution of magnetic flux density in the whole machine is shown in Fig. 5.4 at the

given operating point in steady-state.

After electromagnetic analysis of the selected induction machine with solid rotor,
surrogate modeling was applied to this machine, which is described in sixth chatper.
This operation consisted of several steps, where the first step was the determination
of the total number of input parameters of the machine. The total number of input
parameters was set to 8, which meets the condition for the recommended value of
maximum input parameters for surrogate modeling. All machine input parameters are
listed in section 6.1. Based on the selected input parameters, their maximum possible
limit range was also determined, which would be beneficial for improving the overall
performance of the machine. Using all input parameters and their specified limit ranges,
a sensitivity analysis of the machine was performed. From the sensitivity analysis,
it was found that the performance of the machine can be increased significantly, but
also some input parameters can be discarded for surrogate modelling as they have
either very little or no effect on the performance of the machine or they are perfectly
designed in their original form. Thus, the total number of input parameters has been
reduced from 8 to 4, which will greatly simplify surrogate modeling. The results of
the sensitivity analysis are shown in Fig. 6.3. Subsequently, a sampling scheme was
chosen to serve as the basis for the learning data of the surrogate models. Here, the
Box-Behnken scheme was chosen, where the total number of learning samples was
determined to be 625. Each sample took approximately 3-4 hours to calculate using
FEM-based analysis. The last step was to create the surrogate models for the case study
machine itself. This involved selecting the correct approximation function that would
correctly approximate the values obtained from the initial learning data. The Radial
basis function proved to be the best choice for approximating the learning data. The
Radial basis function approximation works on the base of the spline function, which has

a great advantage and can be used for many applications. As it turned out the Radial
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basis function is a good choice for this machine case and the surrogate models created
showed very high accuracy. The rest of the chapter then deals with the surrogate

models created, their accuracy and the possible achievable performance of the machine.

The seventh chapter focused on machine optimization. For optimization, SymSpace
and Optimizer were chosen, which have very good optimization properties and are very
well tuned. They even contain up to 3 optimization algorithms to choose from. Their
advantage is therefore easy use of them. For machine optimization, 3 machine designs
were considered which include: the design with the highest possible electromagnetic
efficiency of the machine, the design with the highest possible machine torque and the
design with the lowest machine cost considering the highest possible machine torque.
The machine optimization took approximately one day and approximately 200,000
machine designs were calculated, of which only 10,000 were Pareto queues. The Pareto
fronts were further reduced to approximately 875 to meet appropriate output limits. The
results of the first optimization are shown in Fig. 7.6 and Fig. 7.7. Further in the chapter,
the accuracy of the surrogate models was verified, where 150 verification samples were
computed and took approximately a day and a half to compute. These samples were
used to investigate the outliers of the surrogate models, where the models were found
to be relatively accurate, but further learning was appropriate. So a second and final
optimization of the machine was done, which also took about a day and the optimization
calculated about 200,000 machine designs. The number of Pareto fronts was around
8,700 and were further reduced to 725. The results of the second optimization were
presented in Fig. 7.11 and Fig. 7.12. After calculating another 150 validation samples
and using them to verify the accuracy of the surrogate models, it was concluded that
the surrogate models have very good accuracy except for the torque ripple. However,
the torque ripple could be further improved by further learning of the surrogate model
or by developing a new sampling scheme. The optimized machine designs were shown
in Fig. 7.16, where for each machine design the differences between the surrogate
model values and the simulated values are shown in Table 7.14 - Table 7.16. It has also
been shown that optimization using surrogate models significantly reduces the time
required for machine optimization compared to conventional optimization. In this case,
the optimization took approximately 19 days whereas a conventional optimization

with a much smaller number of total computed machine designs would take two months.

Finally, an electromagnetic analysis of the optimized machine designs was per-
formed in Chapter eight, where the results were compared with the original machine
design. The process of electromagnetic analysis was the same as in the fifth chapter,
but for each machine design separately. The whole electromagnetic analysis showed

that all three optimized machines have better performance than the original machine
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design, which was expected. However, it turned out that the best machine design was
the one that had the highest achievable machine torque. In some aspects, in terms of
performance, it even came close to the original machine with a squirrel cage. However,

despite this, it has worse parameters and considerably more slip, which was expected.

In conclusion, surrogate modeling is a very suitable method for optimizing an elec-
trical machine with a solid rotor, since this type of machine has a small number of input
parameters. If surrogate models are used correctly it is possible to achive their high
accuracy. It is also possible to considerably improve machine performance using opti-
mization with the combination of surrogate models in a much shorter period of time,

than with conventional optimization.
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List of symbols and abbreviations

Symbol Description Unit
B, Constant (real number) dependent on the space harmonic  [m ]
Aj Weights coefficients [—]
Lo Permeability of vacuum [Hm™!]
Ly Relative permeability of material -]
1 Permeability of a material [Hm™ Y]
Vave Average value of higher harmonic component [-]
v Number of a space harmonic [-]
Pe Cylindrical shell region resistivity [©2]
Per End region resistivity (]
o Electrical conductivity of a material [Sm™1]
OCorr Corrected conductivity of the solid rotor material
T Pole pitch [m]
Tpv Average pole pitch of the stator slot harmonic fields [m]
© Basis function [—]
Vs Phase shift of total machine impedance measured at sta- [°]
tor terminals
©Or Phase shift of total rotor impedance [°]
v, Phase flux linkage [Wh]
Q Mechanical angular velocity of the rotor [rads™!]
W, Ws Angular frequency of the stator field [rads™!]
Wy Angular frequency of the rotor fields [rads™"]
Wy Angular frequency of the penetrating field [rads™!]
A Interpolation matrix containing radial functions [—]
B Saturation value of magnetic field flux density [17]
B Magnetic flux density (1]
b Vector of values [—]
Cr Damping of the rotor [N -m
rad—1]
C Constant determining type of material used for end-rings [-]
c Adaptation coeflicient [-]
cosp Power factor [-]
COSpy Power factor of the rotor [-]
Doyt Outer diameter of the rotor without the thicker layer of [m]
the copper coating
Dy, Inner diameter of the rotor [m]
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Symbol Description Unit
D, Outer rotor diameter [m]
dey Thickness of the copper coat [m]
d Penetration depth of magnetic field [m]
Ei(s) Electromotive force (slip dependent) (V]
f Supply frequency [Hz]
f(z) General radial basis function [—]
Hy Peak value of the sinusoidal applied surface field strength  [Am™!]
H Magnetic field strenght [Am™!]
Hg, Height of rotor slits [m]
Hgot Height of stator slots [m]
1y Magnetizing current [A]
I Stator phase input current [A]
J Current density [Am 2]
1 Secondary current in the rotor frame [A]
In Stator peak current [A]
kAo Slip-correction factor by Aho [-]
ker Complex corrective end-effect factor [-]
kokelly Corrective end-effect factor by O’Kelly [-]
kpan Slip-correction factor [-]
kry=1 Corrective end-effect factor for fundamental field for ra- [-]
dial grooves by Russell
kg Corrective end-effect factor for higher harmonic fields [-]
for radial grooves by Russell
kR eq Average equivalent corrective end-effect factor for radial [-]
grooves by Russell
krn Corrective end-effect factor by Russell-Northworthy
KRussell Corrective end-effect factor by Russell [-]
kRrussellM Modified corrective end-effect factor by Russell [-]
Frickey Corrective end-effect factor by Trickey [-]
Kot Total correction factor for the solid rotor [-]
Ky Correction factor for a thicker part of the copper coat [-]
Fwooltey Corrective end-effect factor by Woolley [-]
Kvee Corrective end-effect factor by Yee [-]
k, Corrective end-effect factor for a smooth solid rotor [-]
k General corrective end-effect factor [-]
Ly Magnetizing inductance (Stator inductance) [H]
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Symbol Description Unit
loap Length of the air gap [m]
L, Whole rotor length [m]
L Length of the active part of the rotor [m]
l Half of the active stator-pack length [m]
lend Length of the rotor end beyond the active stator pack [m]
{Fe Distance between the radial grooves [m]
Mytech Mechanical friction moment of the solid rotor [Nm]
m Number of phases [-]
Ni(s), Lo Leakage inductance expressed in the rotor frame (slip de- [H]
pendent)
N, Number of stator conductors [—]
Ng Synchronous rotational speed [rpm]
n Rotational speed of the rotor [rpm]
Py(z) Polynomial added to radial basis function [—]
Ptech Mechanical friction losses of the solid rotor (W]
Py Active power of the high-speed IM with solid rotor (W]
P Pole pair number [-]
Q1 Number of stator slots [-]
Q- Number of rotor bars/slits [-]
Qu Reactive power of the high-speed IM with solid rotor [Var]
R Stator phase resistance [Q]
Ry (s) Equivalent resistance expressed in the rotor frame (slip [{?]
dependent)
Riotet Resistive part of the total calculated machine impedance [{?]
R, Resistance of the solid rotor [Q]
Ry act Resistance of the active part of the solid rotor (2]
Ryer Resistance of the rotor end regions [€2]
Tave Average rotor radius [m]
s Slip of the rotor [-]
Ste Apparent power of the high-speed IM with solid rotor [V A]
Tem(s) Electromagnetic torque (slip dependent) [Nm]
tov Thickness of the copper coat at the rotor end regions [m]
Vi Stator phase input voltage (V]
Wit Width of rotor slits [m]
Wslot Width of stator slits [m]
Woy Lenght of the copper coat at the rotor end region [m]



Symbol Description Unit
Xiotef Reactance part of the total calculated machine impedance [2]
Xioter Measured reactance error at stator terminals (]
Xiact Reactance of the active part of the solid rotor [Q]
Xier Reactance of the rotor end regions (2]
x Vector of coeflicients [—]
Yslit Slit depth [m]
Z5(s) Impedance of the solid rotor (slip dependent) [Q]
Ze ot Impedance of machine calculated with two-dimensional [2]
approach with end factor resistivity correction
Zsix Corrected solid rotor impedance (2]
Zmeas.tot Total machine impedance measured at stator terminals (]
Zy Total impedance of the solid rotor [Q]
Zop(5) Impedance of the solid rotor parallel to magnetizing in- [{2]
ductance (slip dependent)
Zer End region thickness [m]
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Abbreviations

Description

CAD
CPM
EGR
FEA
FEM
FFT
GUI
HM
IEP
IFEP
IM
MEA
MEE
MOEA
NiMH
PMBM
PMSM
SRM
Syn. RM
RBF
TPS

Computer-aided design

Claw pole machine(s)

Exhaust gas recirculation

Finite element analysis

Finite element method

Fast Fourier transformation

Graphical user interface

Homopolar machine(s)

Integrated electric propulsion
Integrated full electric propulsion
Induction machine(s)

More electric aircraft

More electric engine

Multi-objective evolutionary algorithms
Nickel-metal hydride

Permanent magnet brushless machine(s)
Permanent magnet synchronnous machine(s)
Switch reluctance machine(s)
Synchronous reluctance machine(s)
Radial basis function

Thin-plate spline
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Appendix A - Overview of all correction end-effect factors

Tabel A1: Overview of all end-effect correction factors for a solid rotor

solid rotor

Description End-effect factor formula Conductivity correction | Reference
. , D \?
Trickey’s end-effect 1+ ( m)
. P D, S
correction factor for a KTrickey = 5|7 Din = Dy — 2ygut OCorr = Krickey - O [5]
solid rotor 1— n
D,
Yee’s end-effect al, (1 + coth (aLr>)
correction factor for a Eyee 2 L a= Kl Ocorr = Kyee O [7]
solid rotor aL, [ 1+ coth (a§r>) -2 T
Woolley’s end-eff 1 2 PLs
oolley’s end-effect kwootey = | = | @1 + 1/ Q7 + 4k - tanh ,
. 2 D,
correction factor for a Ocorr = Kwoolley * O (8]
solid rotor ( + kl) tanh ( PL: ) ky = ZerPe
Dr Yslit Per
O’Kelly’s end-effect I
correction factor for a kokeny = I T Tave Ocorr = Kokelly * O [107]




Description

End-effect factor formula

Conductivity correction

Reference

Frequency dependent

Yee’s end-effect

981

Ocorr = Kyee - O 7
correction factor for a ~ corr ee 7]
solid rotor -
a:_a/\:\/j'wr'ﬂ'o-772 a? +
Tp
Russell’s end-effect
ion £ P 27, L, _
correction factor for a krussel = 1 — 7 tanh 5 OCorr = KRussell * O [10]
solid rotor T v
) , 7l
Modified Russell’s tanh (_S)
end-effect correction Frussellnt = 1 — T_Il’ ; p 0Corr = KRussell,M = O [109]
factor for a solid rotor 7o (1 + tanh (E> tanh (
Tp
End-effect correction
factor for a solid smooth 27 1
. k,=1+=2 Oconr = — - O [23]
rotor with a copper w L k2

coating
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Description End-effect factor formula Conductivity correction | Reference
Russell-Northworthy’s
i deeffect I ] tanh (0.5, L)
correction end-effec =1- ,
RN 0.503,L [1 + ktanh(0.58, L)tanh(3,wey )]
factor for a copper Ocorr = krn + 0 [23]
. 1.2(t0v — dCu) T
coating of a smooth kk=1+ ———, B, =v—
: dcu Tp
solid rotor
End-effect correction
: 1 1
factor for a solid rotor E=1+C (a—1 = =
: : : ‘ * (a >7 “ kRussell 27, L OCorr = ke 4 [22]: [29]
with a high-conductive 1 — —Ltanh | —
) mL 27,
end rings
2. Apey
kr,—1=1— T tanh ror ,
) ’ T ey 2.7
End-effect correction l
factor for a solid rotor kr,=1— 2'&tanh T ey , Ocorr = kRyeq - O [22], [43]
. . 7 . lFeV 2 Tpv
with a radial grooves
Tp kry=1+ kg,
Tpr = — kR,eq i —

VCL’UE 2
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Tabel A2: Overview of all slip correction factors for a solid rotor

Description Slip correction end-effect factor formula Total correction factor Reference
Slip correction end-effect factor L n\* i bk (108]
by' Aho Aho — TL_S tot — Aho
Slip correction end-effect factor 3
kpan =1 — ¢~ w' kot = k - kpan [109]

by Pyrhonen, Aho, Nerg




Appendix B - Material data for stator sheet

Typical data for SURA® M470-50A

T W/kg VA/kg A/m W/kg W/kg W/kg
at50Hz at50Hz  at50Hz  at 100Hz at200Hz ot 400 Hz

0,1 0,03 0,10 52 0,13 0,19 0,52
0,2 0,12 0,28 68 0,42 0,76 1,98
0,3 0,25 0,49 77 0,78 1,58 4,16
0,4 0,42 0,72 84 1,21 2,62 6,90
0,5 0,61 0,98 91 1,71 3,86 10,3
0,6 0,82 1,27 98 2,26 5,29 14,3
0,7 1,05 1,59 106 2,86 6,94 19,2
0,8 1,30 1,94 114 3,59 8,86 542
0,9 1,57 2,34 124 4,30 11,2 32,3
1,0 1,87 2,79 136 5,22 13,7 40,6
1,1 2,21 3,34 1152 6,04 16,6 50,4
1,2 2,59 4,02 178 7,29 19,9 61,7
1,3 3,01 4,97 224 8,32 23,7 74,6
1,4 8,53 6,65 326 9,72 28,1 89,9
1,5 4,13 11,2 630 11,4 32,7 105
1,6 4,78 27,6 1612

1,7 5,39 74,2 3963

1,8 5,82 163 7773

Lloss at 1.5 T, 50 Hz, W/kg 4,13

Lloss at 1.0 T, 50 Hz, W/kg 1,87

Anisotropy of loss, % 6

Magnetic polarization at 50 Hz

H=2500 A/m, T 1,63

H = 5000 A/m, T 1,71

H = 10000 A/m, T 1,83

Coercivity (DC), A/m 85

Relative permeability at 1.5 T 1600

Resistivity, pQcm 33

Yield strength, N/mm? 250

Tensile strength, N/mm?2 390

Young's modulus, RD, N/mm? 210000

Young's modulus, TD, N/mm? 220000

Hardness HV5 (VPN) 120

RD represents the rolling direction -
TD represents the transverse direction Coge nt
Values for yield strength (0.2 % proof strength)

and tensile strength are given for the rolling direction
Values for the transverse direction are approximately 5% higher October 2008

Surahammars Bruks AB

Fig. B1: Typical material data for M470-50A.
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Appendix C - The rest of the results from the sensitivity

analysis simulations of the case study machine

—o— Active length Active length
—o— End region g End region
©o— Conductors :/ Conductors
o— Air-gap length _’§ Air-gap length
—e— Slit depth ,% Slit depth
—o— Slit width = Slit width
—e— Stator slot width é\“ Stator slot width
—e— Stator slot height Stator slot height
0 0 100 200 300 400 0 0 100 200 300 400
Normalized input variable (%) Normalized input variable (%)
(a) - (b)
— 120 - -
= —o— Active length 240 Active length
: 100 —o0— End region f\; 200 End region
'; <0 ©o— Conductors 7’ Conductors
% o—  Air-gap length '; 160 Air-gap length
g 60 —eo— Slit depth _f 120 Slit depth
:: 40 —o— Slit width g S0 Slit width
g —e— Stator slot width ~ Stator slot width
% 20 —e— Stator slot height 40 Stator slot height
0 0 100 200 300 400 0 0 100 200 300 400
Normalized input variable (%) Normalized input variable (%)
—250 (©) )
G —o— Active length 2000 Active length
—o— End region 1750 End region
o— Conductors 1500 Conductors
o— Air-gap length 1250 Air-gap length
—o— Slit depth ,_>< 1000 Slit depth
—o— Slit width 750 Slit width
—eo— Stator slot width 500 Stator slot width
—eo— Stator slot height 250 Stator slot height
0 0
0 100 200 300 400 0 100 200 300 400

Normalized input variable (%)

(e)

Normalized input variable (%)

()

Fig. C1: Rest of the results of sensitivity analysis for the function of: Apparent power
(a), Input power (b), Stator core losses (c), Rotor losses (d), Stator winding losses (e), and
product of current density and linear current density of the stator slot (f) on normalized

value of input variable.
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Appendix D - The rest of the results from the initial op-

timization of the case study machine in Optimizer
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Fig. D1: The flux density in the air-gap as a function of other output parameters in

the initial optimization results of the machine without any constraints in Optimizer,

displayed in per unit system.
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Fig. D2: Initial optimization results for the main optimization objectives of the case

study machine without any constraints in Optimizer.
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Fig. D3: Distribution of input parameters and their number of uses in the Optimizer in

the initial optimization with defined constrains.
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Fig. D4: Initial optimization results for the main optimization objectives of the case

study machine with defined constraints in Optimizer.
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Fig. D5: The flux density in the air-gap as a function of other output parameters in

the initial optimization results of the machine with defined constraints in Optimizer,

displayed in per unit system.

195



Appendix E - The rest of the results from the second

optimization of the case study machine in Optimizer
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Fig. E1: The flux density in the air-gap as a function of other output parameters in the

second optimization results of the machine without any constraints in Optimizer.
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Fig. E2: The flux density in the air-gap as a function of other output parameters in

the second optimization results of the machine without any constraints in Optimizer,

displayed in per unit system.
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Fig. E3: Second optimization results for the main optimization objectives of the case

study machine without any constraints in Optimizer.
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Fig. E4: Second optimization results for the main optimization objectives of the case
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201



number of values
o
o
8

120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 24(
activeLength /

9 10 1" 12 13 14 15 16 17 18 19 20 21
slitDepth /

0 : - - - - - - - - - : - :
06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
slitWidth /

4000 - H cbesessschosessschassscsdsesesasisssessitsasasestsasese - ERUUURNE SUUR SRR USRS SRR SO S SO

N ~ w w
o o o o
=3 o o o
=3 =3 1=} 1=

number of values

1000

500 (OO0 UV SO W ——

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
conductors /

Fig. E7: Distribution of input parameters and their number of uses in the Optimizer in

the second optimization with defined constrains.

202



17 1,7
16 16
15 15
14 14
2 13 3 13
112 112
[RE g1
B ®
ERR ERR
% 10 ’é 1,0
Wog Yoo
o «
08 08
07 07
06 06
05 05
050 075 100 125 150 175 200 225 250 275 300 05 06 07 08 09 10 1,1 12
RESULT: Tavg_PU/ (MAX) RESULT: PF_PU/ (MAX)
17 17
16 16
15 15
14 14
é 13 a 13
12 112
g 12 g
B T
a & 11
rt 10 5 10
? ?
Wog wog
o " @ v
08 08
07 07
06 06
05 05
00 01 02 03 04 05 06 07 08 09 10 11 025 050 075 100 125 150 175 200 225 250 275 300
RESULT: EF_PU/ (MAX) RESULT: Tripple_PU / (MIN)
17
16
15
14

Now

ESULT: Bradfi_PU /
> 2

09
08

@

07
06

05

0,950 0,975

1,000 1,025 1,050
RESULT: price_PU / (MIN)

1,075

1,100

Fig. E8: The flux density in the air-gap as a function of other output parameters in

the second optimization results of the machine with defined constraints in Optimizer,

displayed in per unit system.

203



Appendix F - All data used to determine the accuracy of

surrogate models after the initial optimization in Opti-

mizer
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Fig. F1: Dependence of the relative torque error of surrogate models on the input pa-
rameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the highest possible electromagnetic

efficiency of the machine from the initial optimization.
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Fig. F2: Dependence of the relative power factor error of surrogate models on the input
parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the highest possible electromagnetic

efficiency of the machine from the initial optimization.
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Fig. F3: Dependence of the relative electromagnetic efficiency error of surrogate models
on the input parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor
slit width (c), and Number of stator conductors (d), considering the highest possible

electromagnetic efficiency of the machine from the initial optimization.
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Fig. F4: Dependence of the relative torque ripple error of surrogate models on the input
parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the highest possible electromagnetic

efficiency of the machine from the initial optimization.
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Fig. F5: Dependence of the relative flux density in the air-gap error of surrogate models
on the input parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor
slit width (c), and Number of stator conductors (d), considering the highest possible

electromagnetic efficiency of the machine from the initial optimization.
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Fig. F6: Dependence of the relative torque error of surrogate models on the input pa-
rameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the highest possible torque of the ma-

chine from the initial optimization.
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Fig. F7: Dependence of the relative power factor error of surrogate models on the input
parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width
(c), and Number of stator conductors (d), considering the highest possible torque of the

machine from the initial optimization.
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Fig. F8: Dependence of the relative electromagnetic efficiency error of surrogate models
on the input parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor
slit width (c), and Number of stator conductors (d), considering the highest possible

torque of the machine from the initial optimization.
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Fig. F9: Dependence of the relative torque ripple error of surrogate models on the input
parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width
(c), and Number of stator conductors (d), considering the highest possible torque of the

machine from the initial optimization.
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Fig. F10: Dependence of the relative flux density in the air-gap error of surrogate models
on the input parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor
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torque of the machine from the initial optimization.

0.45 . 0.45 )

g 0.301 o g 0.30 8 .

S5 015§ = 015 't s

%‘3_/ 0.00 % X X X X %‘i/ 0.001 % X X X .§<

Z 8 -0.151 1 Z 2 —0.15 R

% g —0.30 !!: X Surrogate model % 2 —0.301 x Surrogate model * .f::.

~ _0.4618 “ e Verification data |~ _838 e Verification data o% °* t

a 120 140 160 180 200 220 240 e 9 11 13 15 17 19 21
Active length of the machine (mm) Depth of rotor slits (mm)
(a) (b)
0.45 0.45

© 030 - $0.30 !

S 015/ & o g 015 ¥

S 0.001 % 8y X X xS 0.00f % X X X X

$5-015/5 , & £ 5015 i

E27 e £ 2

% B _030 .‘. a.r X Surrogatc n]odol % @ _030 X Slll‘l‘Og&tC HlOdCl ! ::

~ —0.45 j T3 o  Verification data |~  —0-49] e Verification data | 8 Py

—0.60 . —0.60 =
6 09 1.2 15 1.8 2.1 24 2. 5
06 09 1.2 15 1.8 2.1 24 27 23 27 31 35 39 43 47
Width of rotor slits (mm) Number of stator conductors (-)

(c) (d)

Fig. F11: Dependence of the relative torque error of surrogate models on the input pa-
rameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the lowest price of the machine with

respect to the highest torque of the machine from the initial optimization.
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Fig. F12: Dependence of the relative power factor error of surrogate models on the input
parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the lowest price of the machine with
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Fig. F13: Dependence of the relative efficiency error of surrogate models on the input
parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the lowest price of the machine with

respect to the highest torque of the machine from the initial optimization.
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Fig. F14: Dependence of the relative torque ripple error of surrogate models on the input
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Fig. F15: Dependence of the relative flux density in the air-gap error of surrogate models
on the input parameter size: Active length of the machine (a), Rotor slit depth (b), Rotor
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Appendix G - All data used to determine the accuracy of

surrogate models after the second optimization in Op-

timizer
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Fig. G1: Dependence of the relative torque error of surrogate models on the input pa-
rameter size: Active length of the machine (a), Rotor slit depth (b), Rotor slit width (c),
and Number of stator conductors (d), considering the highest possible electromagnetic

efficiency of the machine from the second optimization.
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Fig. G2: Dependence of the relative power factor error of surrogate models on the input
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efficiency of the machine from the second optimization.
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