BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

MIDDLEWARE FOR TESTOS PLATFORM

MIDDLEWARE PRO PLATFORMU TESTOS

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR RADIM CERVINKA
AUTOR PRACE
SUPERVISOR Ing. ALES SMRCKA, Ph.D.

VEDOUCI PRACE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Master's Thesis Specification |||||\|\|2|L|ﬂ!|||||||\|

Student: Cervinka Radim, Bc.
Programme: Information Technology

Field of Information Technology Security
study:

Title: Middleware for Testos Framework
Category: Software analysis and testing
Assignment:

1. Get familiar with tools for communication of software systems. Study current
implementations of Publish/Subscribe protocols for message passing (e.g. MQTT, AMQP,
DDS).

2. Analyse requirements for communication of tools implemented in Testos framework. Design
the solution for message passing between 2 and more communication nodes. Designed
middleware should automatically adapt to current parameters of communication channel.

3. Implement the designed middleware. Implement adaptors for the middleware in C/C++ and
Python languages.

4. Verify the basic functionality using automated tests. Measure the performance of the
middleware.

Recommended literature:

e Tanabe K., Tanabe Y., Hagiya M. (2020) Model-Based Testing for MQTT Applications. In:
Virvou M., Nakagawa H., C. Jain L. (eds) Knowledge-Based Software Engineering: 2020.
JCKBSE 2020. Learning and Analytics in Intelligent Systems, vol 19. Springer, Cham.
https://doi.org/10.1007/978-3-030-53949-8_5

e OASIS. MQTT Standard pro zasilani zprav pro loT. https://mqtt.org/

¢ Advanced Message Queuing Protocol. https://www.amqp.org/

e OMG. Data Distribution Service. https://www.omg.org/omg-dds-portal/

Requirements for the semestral defence:

¢ The first two steps.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Smrcka Ales, Ing., Ph.D.
Head of Department: ~ Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021

Approval date: January 15, 2021

Master's Thesis Specification/23497/2020/xcervi21 Page 1/1

Abstract

This goal of this thesis is to create a communication bus for the Testos platform, which
enables the tools to communicate and utilize each other’s services. The thesis consists
of a research of current Publish-Subscribe protocols and solutions. It also outlines the
requirements for a communication bus that fits the Testos platform’s needs and proposes
solutions that satisfy them.

As a part of the research, there were 3 message-oriented software solutions explored -
MQTT, DDS and AMQP. The examination of each solution was focused on the communi-
cation model and main features. The MQTT protocol was chosen as the starting point of
the bus implementation. The thesis also specifies how to extend the protocol in order to
satisfy the requirements.

Main MQTT extensions proposed by this project include an introduction of a manage-
ment of request life cycle on top of the MQTT message delivery and the request/response
mechanism. The protocol was also expanded by ability to pack messages into a BULK
packet to decrease the needed network resources.

The result is a Testos Bus, which is based on a modified and expanded version of
MQTT, that includes a broker implementation as well as implementation of client libraries
for Python and C++. Testos Bus satisfies all mandatory requirements, which is verified by
automated tests.

Abstrakt

Cilem této prace je vytvorit komunikac¢ni sbérnici pro platformu Testos, coz umozni nastro-
jum platformy spolu komunikovat a vyuzivat navzajem svoje sluzby. V textu jsou prozk-
oum8na soucasna reseni a protokoly zalozené na modelu Publish-Subscribe. Déle také prace
specifikuje pozadavky na komunikac¢ni sbérnici vyhovujici potrebam platformy Testos a také
navrhuje Teseni pro splnéni danych pozadavki.

V ramci vyzkumu byly prozkouméany tii reseni - MQTT, DDS a AMQP. Prizkum
kazdého Teseni byl zaméfen na zpiisob komunikace a hlavni funkéni prvky. Jako startovaci
bod implementace sbérnice byl vybran protokol MQTT. Tato prace také specifikuje jak
tento protokol rozsitit, aby byly splnény pozadavky na sbérnici.

Mezi stézejni rozsiteni navrhnuté v ramci této prace patii management zivotniho cyklu
pozadavkil rozsirujici zptsob dorucovani zprav a mechanismus zasilani pozadavka stan-
dardu MQTT. Protokol byl také rozsiren o moznost shlukovani zprav do BULK paketu za
ucelem snizeni mnozstvi potfebnych sitovych zdroju.

Vysledkem je Testos Bus, ktery je postaveny na upraveném a rozsifeném protokolu
MQTT, ktery zahrunuje implementaci brokeru a klientskych knihoven pro Python a C++-.
Testos Bus naplnuje vSechny povinné pozadavky platformy, coz ovéruji automatické testy.

Keywords

Communication bus, communication middleware, messaging, MQTT protocol, publish-
subscribe pattern, request management.

Klicova slova

Komunika¢ni middleware, komunikacni sbérnice, management pozadavku, MQTT protokol,
Publish-Subscribe model, zasilani zprav.

Reference

CERVINKA, Radim. Middleware for Testos platform. Brno, 2021. Master’s thesis. Brno

University of Technology, Faculty of Information Technology. Supervisor Ing. Ales Sm-
r¢ka, Ph.D.

Rozsireny abstrakt

Platforma Testos se sklada z nastroji napomahajici automatizaci testovani, které miize
probihat na rtiznach irovnich, od jednotkového testovani po testovani uzivatelského rozhrani
a akceptacni testy. V soucasnou chvili jsou nastroje odkazani na znalost lokace ostatnich
nastroju, aby s nimi mohly komunikovat. Cilem této préice je vytvorit komunikacni sbér-
nici, kterd by komunikaci zjednudusila. Jeji prinos je znatelny napriklad v situaci, kdy
generator testovaci sady potfebuje provést naroény matematicky vypocet. Namisto nut-
nosti implementace této funkcionality v daném generatoru je mozné vyuzit jiz existujici
nastroj platformy, ktery je délany na dané vypocty a vysledku dosdéhne mnohem rychleji.
Generatoru testovaci sady pak staci se pres dotdzat o vysledek problému kolegy a sam
dorudi vyslednou sadu testovacich pripada v kratsim case.

V ramci této prace bylo potieba definovat jednotlivé pozadavky platformy, mezi které
naptiklad pati{ moznost zasilani pozadavki a sprava jejich zivotnich cykla véetné schop-
nosti doruceni odpovédi, moznost odlozeni doruceni zprav v pripadé absence prijemce,
moznost zrusit bézici pozadavek, moznost oznaceni komunikace jako prioritni anebo schop-
nosti propojit vice instanci sbérnic a moznost komunikace s klientskymi uzly na sousednich
instancich sbérnice.

Na zékladé téchto pozadavku byly prozkoumény nékteré existujici protokoly a Teseni
pouzivajici Publish-Subscribe protokol, ktery umoznuje komunikovat pomoci tzv. témat,
ke kterym se jednotlivé sluzby prihlasi jako odbératelé zprav a pozadavkid. Producen-
tim ruznych zprav a pozadavka pak jen staci poslat sbérnici zpravu se speicfikovanym
tématem a sbérnice se sama postard o doruceni dat spravnym odbératelim. V této praci
vénuji pozornost trem existujicim resenim - MQTT, DDS a AMQP. U kazdého teSeni bylo
potfeba zjistit, jakym zpusobem probihd komunikace a jaké funkcionality nabizi, aby pak
slo nasledné posoudit, které pozadavky platformy reSeni splnuje a jak snadné je dané reseni
upravit nebo rozsitit tak, aby splnilo pozadavky, které nespliuje samo o sobe. Z vyse
zminénych reseni byl vybran protokol MQTT, ktery byl nejméné komplexni, pokryval
vyrazné mnozstvi pozadavku a bylo velmi jednoduché jednotlivé funkcionality upravit, vy-
pustit anebo pridat néco tplné nového.

Upravy protokolu MQTT zahrnovaly zjednoduseni nebo vypusténi nékterych kontrol-
nich pakett, pfidani nékterych poli (napf. prepinaé priority, prepina¢ pro odliseni poza-
davki a odpovédi od béznych zprav), pridani novych typu zprav, jako treba typ BULK
slouzici k zabaleni vice zprav do jedné. Ke shlukovini zprav do BULKu dochézi ve chvili,
kdy frekvence odchozich zprav prekroc¢i uréitou mez. Pri prekroceni meze nedochazi k odesi-
lani zprav, ale v rdmci kratkého casového okna jsou zpravy seskupovany do jedné zpravy
typu BULK, ktera je odeslana po uplynuti daného ¢asového okna. Tento pTistup slouzi
k uspore sitovych zdroju na tkor prodlouzeni doby ziskdni odpovédi maximéalné o délku
trvani ¢asového okna. Déle broker ziskal schopnost ulozit zpravy, pozadavky a odpovédi
v pripadé, ze zadny piijemce neni dostupny (prozatim je uklada do hlavni paméti). Brokery
je také mozné propojit do plné propojené sité. Sousedi si mezi sebou preposilaji komunikaci
a zajistuji tim jednotlivym klienttim moznost komunikovat s klienty a sluzbami pripojenymi
na sousedni broker.

Vysledna sbérnice jménem Testos Bus zajistuje vSechny povinné pozadavky sbérnice.
Sklada se z brokeru implementovaného v jazyce C# a dvou klientskych knihoven pro C++
a Python. Tyto dva jazyky byly vybrany, protoze drtiva vétSina nastroju platformy Testos
jsou implementovany pravé v téchto dvou jazycich. Implementace je doprovozena auto-
matickymi testy ovérujici zdkladni funkcionalitu a splnéni povinnych pozadavkt. Cilem
vykonnostnich experimentii bylo ozkouset rezijni zabér sbérnice na komunikaci jedné ko-

munikujici dvojice rychle generujici mnoho pozadavki a na komunikaci mnoha soubéznych
konverzaci, kde je generovani 10 pozadavku za vtefinu.

Experimenty ukazaly, ze v pripadé 200 soubéznych konverzaci mezi klienty (10 poza-
davki za vtefinu) je latence ziskdni odpovédi pod 15 ms na lokélni siti. V pripadé jedné
osamocené konverzace prokazovala sbérnice minimalni dopad rezie do rychlosti zhruba
64 zprav za vtefinu (latence pod 5 ms), pii prekroceni rychlosti 100 pozadavku za vtefinu
byl dopad rezie zna¢ny (latence okolo 100 ms), ale dobrou zpréavou bylo, ze sbérnice komu-
nikaci ustala bez selhani.

Zavér také zminuje mnoho moznosti pro budouci vyvoj sbérnice, jako naptiklad zave-
deni autentizace a autorizace, zpracovavani zaznamu logovanych brokerem pomoci log
serveru, dynamickou implementaci shlukovani zprav do BULKu pomoci méreni odezvy
komunikac¢niho kandalu véetné dynamického nastavovani parametra shlukovani nebo imple-
mentace detekce vyskytu komunikujicich klient na stejném pristroji a nasledné predavani
komunikace pomoci hlavni paméti.

Middleware for Testos platform

Declaration

I hereby declare that this master’s thesis was prepared as an original work by the author
under the supervision of Mr. Ales Smrcka. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Radim Cervinka
May 17, 2021

Acknowledgements

I would like to thank my supervisor, Mr. Ales Smrcka, for the supervision, time and effort
he invested in me when I was working on this thesis. This thesis would not have been
finished without him.

Contents

1 Introduction 3
2 Platform Description and Bus Requirements 4
2.1 Mandatory Requirements L. 4
2.1.1 Messaging and Requests L. 4

2.1.2 Bus Instance Connection)

2.1.3 Client Libraries 6

2.1.4 Logging 6

2.1.5 Specifiable Limit of Connected Clients to Bus Instance 6

2.1.6 Control of Memory Capacity Limit 6

2.2 Optional Requirements 7
2.2.1 Authentication and Authorization 7

2.2.2 Communication Integrity and Privacy 7

2.2.3 Service Load Balancing 7

2.2.4 Monitoring 7

3 Communication Basis for the Bus 8
3.1 Publish-Subscribe Pattern oL 8
3.1.1 Message Filtering L 8

3.1.2 Advantages of Publisher-Subscribe Pattern 9

3.2 Message-Oriented Middleware Solutions 9
3.2.1 MQTT . . . e 9

3.2.2 Data Distribution Service o 0oL 12

3.2.3 Advanced Message Queuing Protocol v1.0 14

4 Possible Requirement Satisfaction Solutions 16
4.1 Requests e 16
4.2 Bulk Messaging L e 17
4.3 Bus Instance Bridgingo oL L 18
4.4 Message Priority Lo 19
4.5 Subscriber Load Balancing, 19
4.5.1 Load Balancing Strategies 20

4.6 Logging e 20
4.7 Authentication and Authorization. 20

5 Implementation and Evaluation 21
5.1 Testos Bus Features L o 21
5.1.1 Communication Model oL 21

5.1.2 Messaging 22

5.1.3 Request/Response Pattern 22
5.1.4 Bus Instance Connection, 23
5.1.5 Message Bulking L 23

5.2 Communication Protocol Messages 23
5.2.1 Message Format L L o 24
5.2.2 Variable Length Integer and String Encoding 24
5.2.3 CONNECT and CONNACK Messages oo oo oo . 24
5.2.4 PUBLISH Message oo v i i i e e 25
5.2.5 MSGACK MeSSage . - . . v v v v v v i it e e e e 26
52.6 REQACK Messageo i i i i 26
5.2.7 BULK Message i 27
5.2.8 SUBSCRIBE and SUBACK Messages 27
5.2.9 UNSUBSCRIBE and UNSUBACK Messages 28
5.2.10 PINGREQ and PINGRESP Messages 28
5.2.11 DISCONNECT Message v v v i v i i oo 29

5.3 Broker e 30
5.3.1 Configurable Broker Parameters 30
5.3.2 Bus Instance Interconnection L. 31
5.3.3 Client Connection 31
5.3.4 Subscription and Unsubscription 31
5.3.5 Messaging 32
5.3.6 Message Storage 32
5.3.7 Logging e 33

5.4 Client Libraries 33
5.4.1 Client Components 33
5.4.2 Client Creation and Connection 34
5.4.3 Subscribing and Unsubscribing L. 35
5.4.4 Publishing Messages o 37
5.4.5 Receiving Responses to Requests 38
5.4.6 Canceling Requests 39
5.4.7 Disconnection L 39

5.5 Automated tests L 40
5.6 Performance testing L 40
6 Conclusion 43
Bibliography 44

Chapter 1

Introduction

This thesis explores the topic of using a software to facilitate easy communication among
independent components of the Testos platform such as databases, data generators, servers,
individual tools and services. The software would enable each component to use services
provided by other components to finish its tasks faster. A good example is a test set
generator that sometimes needs to solve some complicated math problems in order to
generate the set. It could use the new communication tool to contact a platform component
designed for solving given math problems very fast in order to get the result faster than
computing it itself.

Current communication middleware solutions already offer superb performance, scal-
ability and many features, configurations and options, how to utilize them, but some of
them are relatively complex and take a significant amount of time to learn how to deploy
or how to incorporate them into programs in order to make them communicate with each
other. On the other hand, solutions with less complexity usually do not offer features that
are crucial for specific use cases.

The goal is to create a lightweight communication bus that satisfies requirements and
needs of the platform by adopting an existing approach and adding features that are not
part of that particular solution or model. It is also substantial to offer client libraries
that are easy to use in applications so that the development time is spent more on feature
development rather than communication interface.

This thesis consists of five other chapters. Chapter 2 specifies and describes the bus
requirements that emerged from the needs of the platform. The following chapter, Chapter
3 explores the Publish-Subscribe pattern and its applications as a communication basis for
the Testos Bus. Chapter 4 explores adjustments of the MQTT protocol needed to perform
to satisfy the requirements identified in Chapter 2 Chapter 5 describes the implemented
broker and client libraries. Whole thesis is enclosed with Chapter 6 which contains a short
conclusion.

Chapter 2

Platform Description and Bus
Requirements

Testos (Test Tool Set) platform [11] supports the automation of software testing. Tools
within the platform combine different levels of testing (from unit to acceptance testing)
with various categories of testing, such as model-based testing, requirement-based testing,
GUI testing, data-based testing, and execution-based testing with dynamic analysis.

The purpose of the communication bus is to enable easy access to available services
for Testos tools and clients that would like to use them. The client setup and connection
should not be complex because it is substantial not to waste developer’s time on connecting
to a platform that should help to automate and ease the testing process.

This chapter specifies requirements mandatory and optional for satisfaction of basic
needs of the platform. They are defined in separate paragraphs and in most cases the de-
scription is accompanied by an explanation why the requirement is important or what is
achieved by fulfilling it. Most of them are functional and connected to data transfer or
security, the rest covers requirements essential e.g. for serviceability of the bus (Subsection
2.1.4 and 2.2.4).

2.1 Mandatory Requirements

Requirements in the following subsections are essential so that the Bus is able to satisfy
basic needs of the Testos platform. Most of the requirements are functional apart from
those specified in Subsections 2.1.3, 2.1.4, 2.1.5, and 2.1.6.

2.1.1 Messaging and Requests

The primary function of a communication bus is enabling exchange of messages between
the connected clients. This should be implemented via the Publish-Subscribe pattern in
order to mitigate the need of knowing the precise location of a service a client wants to use.
There is a Section 3.1 explaining what the Publish-Subscribe pattern is and what are its
advantages.

Request Management

Another fundamental requirement for the Testos bus is clients’ ability to send requests as
a specific message. The bus should offer a mechanism that ensures the request publisher

receives a response for its request from the request topic subscriber that received and
processed the request. The bus should also inform the request publisher about an error
that occurred during request handling, processing, or computation of a result.

Waiting for Topic Subscriber Availability

It should be possible to mark a message or request so that the bus waits with its delivery
when there is no subscriber available at the moment instead of dropping the message or
request.

Binary Priority of Messages

There should be a possibility to mark a message or request as priority communication and
it should be handled prior to the non-priority messages or requests. Two levels of priority
are sufficient - regular and priority messages and requests.

Request Timeout

It is important to be able to specify the timeout or expiration period for requests so the bus
can cancel the request (and delete it if the request is waiting for an available subscriber)
after expiration and inform the request publisher that the timeout occurred.

Request Cancel

Clients should be able to cancel their ongoing requests even before a timeout occurs (if any
timeout was specified). This is very useful in situations when the response computation
takes longer than a few seconds and the publisher does not require the result anymore (e.g.
some kind of error occurred on the publisher’s side, it got canceled by a person managing
the publishing client, etc.).

Sending Bulks of Messages and Requests

It is also important for the platform that clients can publish messages and requests in bulk
due to overload or performance parameters of the communication link. Sending a bulk of
messages benefits from reduction of overhead needed for message transfer.

2.1.2 Bus Instance Connection

The bus instances will be able to accommodate a limited number of connected clients and
it is important to be able to connect multiple bus instances in order to scale the number
of clients connected to the bus and communicating with each other. It is also possible that
different services will run on various bus instances.

The interconnection is very useful in the following situation: A research group develops
a new tool that helps with automated testing. To incorporate and utilize it via other
existing Testos bus instances, it would need to be instantiated on every single one of them.
This way the researches create their own bus instance, connect their services, tools, and
devices and then connect their bus instance to other existing ones (or a network of those),
which enables everyone to use the newly developed tool and also the institution has access
to other institutions’ tools and services.

2.1.3 Client Libraries

The bus implementation should also offer client libraries so that it is possible to easily
develop new tools and services that can use the features of the bus. The libraries will
provide support for Python and C++. Python is very popular high-level language with
programming beginners as well as scientists that work with artificial neural networks, image
processing do data mining or need some automation scripts. The choice to support C+—+
was made because it is also very popular, but mainly because it facilitates creation of high-
performance solutions. Another important factor was that most of current Testos tools are
written in these two languages.

2.1.4 Logging

The bus instance needs to be serviceable in order to be usable in the real world. The base
feature that helps with fault identification is logging. The instance should log various events
such as:

« successful receiving, storing, restoring and delivering request response to request pub-
lisher,

e canceling request by its publisher,

« successful receiving, storing, restoring and delivering message to subscribers,
e error occurring during request handling or message delivery,

o successful /unsuccessful subscription and subscription cancel,

o successful /unsuccessful connection and disconnection,

o successful /unsuccessful authentication,

e unauthorized action performed,

o or discarding messages due to overload.

2.1.5 Specifiable Limit of Connected Clients to Bus Instance

As mentioned earlier, the bus instance is able to hold a limited amount of connected clients,
that amount should be specifiable when running the bus instance, the administrator will
be able to limit this threshold according to the computational power that will be available.
After the limit is reached, the instance will decline new connections and if connected to other
instance, it can provide such information so the client connect to the neighbor instance.

2.1.6 Control of Memory Capacity Limit

While running the service, it is possible that the memory capacity will be full and it will
not be possible to store or process more messages or requests (e.g. when waiting for an
available subscriber). This situation should be handled by the bus and also the bus should
take in consideration priority messages and requests, those should not be dropped in case
there is a possibility to drop non-prioritized messages or requests. Plain messages could
be dropped prior to requests and responses. Memory capacity limit can be specified as
a parameter that can be changed during runtime.

2.2 Optional Requirements

Following requirements describe features, that are important but not essential in order to
use the Bus as a communication mediator in the Testos platform. These features might
be satisfied in future development. Requirement described in Subsection 2.2.3 is function,
those in Subsection 2.2.2 and 2.2.4 are non-functional.

2.2.1 Authentication and Authorization

In order to be able to check the identities of bus instances and individual clients, the bus
requires a mechanism that clients will use to authenticate against the bus and also to
authenticate the bus against the clients.

The clients’ ability to use various bus features should be conditioned by each client’s
authorization to use such features or topics. This is important to restrict access to bus
configuration, logs, or monitoring for most users, but also be able to enable access to such
features or data for clients privileged by the bus administrator.

2.2.2 Communication Integrity and Privacy

Clients using Testos Bus for communication exchange and request handling might transmit
sensitive data in the message payloads. Also receiving manipulated data is critical for
the platform reliability. The Bus should provide mechanisms to ensure communication
integrity and privacy.

2.2.3 Service Load Balancing

When offering a service, it is very beneficial to deploy multiple instances of the same service.
The Bus should offer a mechanism that enables clients to publish messages and requests
that arrive at only one instance, that is not currently busy with computation related to
a different request.

2.2.4 Monitoring

When running an instance of the Bus, it is important for the instance operator to be able
to monitor the state of the Bus. It should be possible to use some user interface to check
following pieces of information:

o connected clients and how much traffic they transmit via the instance,

e what topics are being used and which clients are subscribed to them,

e how many messages and how much data was transferred via given topics
« contents of message storage,

e or instance up-time.

Chapter 3

Communication Basis for the Bus

This chapter explores the Publish-Subscribe pattern and message-oriented middleware so-
lutions in order to find a foundation on top of which it is possible to build the Testos Bus.
First we look at the Publish-Subscribe principals and why it is beneficial to use in the TBus.
After that we look at modern and popular middleware solutions, describe their communica-
tion approach and also their pros and cons which play an important role in deciding which
protocol to implement in the TBus.

3.1 Publish-Subscribe Pattern

The publish-subscribe pattern (PubSub pattern for short) [14] offers a mechanism which
enables senders of messages to communicate without the need of knowing the message
recipients. The messages are categorized into classes, the sender (called publisher) simply
publishes a message and it is delivered to every receiver (called subscriber) that is interested
in receiving given class of messages, the interest is shown by subscription to given class of
messages.

3.1.1 Message Filtering

Messages are being filtered in order to determine which subscribers should receive them.
This can be performed by two common filtering approaches - topic-based and content-based.

Topic-based Filtering

This approach uses classes called topics. A topic is specified by a string with a hierarchical
structure. The publishers are responsible for topic creation and also for specification to
which topic a published message belongs. The subscribers subscribe to topics in order to
received messages published to given topic. Given the hierarchical structure it is usually
possible to use some kind of a wildcard in order to specify a group of topics with a common
trait.

Content-based Filtering

Content-based filtering uses attribute or message content constraints defined by the sub-
scribers in order to determine, who is interested in a message. As we can see here, the roles
of message classification switched, in this approach it is the subscriber who is responsible,
whereas the publisher is responsible for message classification in the topic-based approach.

3.1.2 Advantages of Publisher-Subscribe Pattern

The PubSub pattern has two main advantages against the traditional client-server archi-
tecture [10]. One of them is decoupling in three dimensions:

¢ space decoupling - publisher and subscriber don’t need to know each other’s location
(e.g. IP adress and port number) in order to exchange messages,

e time decoupling - publisher and subscriber don’t need to run at the same time,
if we want to be able to transit messages between them, we just need to implement
some kind of storage on the wait so that the message can wait for the subscriber to
come online,

e synchronization decoupling - operations on both sides don’t need to be interrupted
during publishing or receiving.

The second main advantage is scalability. The operations on the message broker can
be parallelized, it is also benefitial to use message caching and intelligent message rout-
ing. Scaling up to millions of connections is still challenging but possible via broker node
clustering and load balancing.

Testos platform benefits from this pattern because it is very simple to connect a new
application and use all available services only based on knowledge of available topics and
the message formats. It is very easy to add more services instances, the clients do not need
to know which one to choose or how many are available, the topology can be very dynamic
without noticeable impact on the clients.

3.2 Message-Oriented Middleware Solutions

This section describes three popular solutions of message-oriented middleware - MQTT,
Data Distribution Service (DDS) and Advanced Message Queuing Protocol (AMQP). Every
solution’s subsection describes its basic principles and features, mainly focused on commu-
nitation. It also contains a subsection shortly describing advantages and disadvantages of
using given solutions as a Testos Bus implementation foundation.

3.2.1 MQTT

The MQTT [3][12] is an OASIS [4] standard messaging protocol for the Internet of Things
(IoT), it implements the PubSub pattern. It was designed to be lightweight, the aim was to
make MQTT clients very small, require minimal resources and network bandwidth so it can
be effectively used by a server as well as an IoT device. The communication between client
devices and cloud is bi-directional, supports 3 QoS levels and also works over unreliable
networks, because it supports storing session information (e.g. which topics is the client
subscribed to) or last topic message, which eases the reconnection of the client, the client
does not need to subscribe again to topics in which it is interested in and also does not
miss the last important message for given topic (e.g. latest status update of a sensor).
The standard also does not omit authentication, authorization and secure communication
options, which the standard describes as non-normative. This subsection was adapted based
on information from the MQTT standard [12].

Architecture and Communication

The architecture of MQTT network is very simple, it consists of a broker and clients.
The broker is a central piece of the network, it accepts new connections, subscriptions, it
processes published messages and sends them to clients that subscribed to the message’s
topic. Client simply connects to the broker and if that succeeds, it can use SUBSCRIBE
message in order to subscribe to one or more topics. Clients can also publish messages using
PUBLISH message, that is used to transfer the message from a publisher to the broker and
also from the broker to all subscribers.

It is also possible to create a persistent session between a broker and a client. It can
be set up via the Clean Start flag in the CONNECT message. If the flag is set to 1, both
sides delete any existing session information and start a new one. If the flag is set to O,
then the broker stores all client’s subscriptions and all new undelivered messages with QoS
level 1 or 2. The client also stores messages undelivered to the broker with QoS level 1 or 2.
Upon reconnection, the broker continues the previous session if there are any data stored
(and the flag is set to 0). This feature eases the reconnection process which is beneficial for
lightweight clients, because the client does not need to subscribe again to all the topics it
is interested in. This approach also saves the bandwidth between the client and the broker.

Topics

Topics are UTF-8 encoded strings that create a hierarchy using the forward slash (‘/’
U+002F) as a level separator. Topic must contain at least 1 character, it is case sensitive
and permits usage of spaces.

MQTT topics have an advantage that they don’t need to be declared before you publish
to them, which increases flexibility and enables easier usage of the wildcards. The wild-
cards are usable only when subscribing There is a single-level wildcard - the plus sign (‘+’
U+002B). It matches one topic level, such as home/first_floor/+/temp would match
temperature topics of all rooms in the first floor. There is also a multi-level wildcard
- the number sign (‘#’ U+0023). This one matches any number of topic levels, e.g.
home/first_floor/# would match topics such as home/first_floor/living_room/temp,
home/first_floor/kitchen/smoke_detector or home/first_floor/motion_sensor.

MQTT also offers a special group of topics that are excluded from the wildcard match-
ing. Those topics start with the dollar sign - (‘8 U40024). The standard states that
the server (broker) should prevent clients from using these topics to exchange messages
with other clients. This gives opportunity to implementations to use such topics for other
purposes, e.g. the $SYS/ prefix is being widely adopted for topics for server-specific infor-
mation exchange, control API etc.

Quality of Service

MQTT defines 3 QoS levels for message transfer - level 0, 1 and 2. Level 0 (also called at
most once delivery) only offers a delivery according to the capabilities of the underlying
network. There is no response from the receiver and no retry effort from the sender, on this
level, the messages arrive either once or not at all.

Level 1 (also called at least once delivery) guarantees that the message arrives at the least
once to the receiver. The messages get acknowledged with a PUBACK message. It is possi-
ble that the sender retries to send the message before it receives the acknowledgement, then
it is possible that the receiver can obtain multiple copies of the same message. Duplicate

10

messages are recognizable by the DUP flag in the message header, the original has this flag
set to 0, duplicates have it set to 1.

Level 2 (also called ezactly once delivery) ensures that the message arrives exactly ones.
It is the highest level of Quality of serviec and it is valuable in situations, when loss nor
duplication is acceptable. It uses a 4-way mechanism using PUBLISH, PUBREC, PUBREL
and PUBCOMP messages respectively. Only after these messages are exchanged, both sides
can consider the message as delivered and the sender can discard all stored information.

Quality of Service is always applied between two communicating sides. Clients cannot
define QoS for the whole delivery, they can only define QoS level for their communication
with the broker. They define QoS of published messages on the way from the publisher
to the broker and also QoS level of given subscriptions, the level with which the broker
will deliver messages to them. It is not possible to set up a QoS level for the topic, once
the message leaves the client and arrives at the broker, the QoS level of message delivery
between the broker and topic subscribers is defined by their individual subscriptions. It
is possible that one client publishes a message with the QoS level 2, but one subscriber is
receiving messages from given topic with QoS level 0, another one with QoS level 1 and
others with QoS level 2, all according to which level they defined during the subscription
process.

Request-Response Mechanism

Request management is a very important requirement of the Testos Bus. In version 5,
the MQTT offers a very simple mechanism to send a request and receive an answer for
that request. Publisher can use the Response Topic field in the PUBLISH message in
order to specify topic name that it listens to for a response. The message can also contain
a Correlation Data field that helps with matching a response to its request. The client
that received the request now knows to which to send the response, it is also important to
add the correlation data if it was specified in the request. This mechanism is too simple to
satisfy all request-related requirements of the Bus, but this concept is a good foundation
to build on.

Retained message

MQTT offers a mechanism of a retained message. It is specified by a RETAIN flag in
a normal PUBLISH message and what is does is that the broker stores this message as
kind of a “last known good value” for the topic it is published to. The broker saves only
the last one for given topic and the retained message is also sent to a new subscriber after
a successful subscription. This feature is very useful in situation when the topic transmits
messages that serve as a status update or status report since every new subscriber can
immediately get the last known status of the publisher (e.g. a temperature sensor).

Shared subscriptions

The standard version 5 offers a new type of a subscription that can be associated with
multiple connections. This type of subscription delivers the message only to one of the sub-
scribers, not all of them, which performs the client load balancing. It differs from a reg-
ular subscription via the topic filter format, which is $share/{ShareName}/{filter}.
The string always stars with $share indicating that this not a regular subscription. Then
it is followed by ShareName that serves as kind of a group identifier, a message arrives only

11

to one member of the group. The ShareName must not contain the characters /’, ‘+’ nor
‘#’. The last part of the shared subscription topic filter string is the filter part, it represents
the topic filter that a client would use in order to subscribe to the same topic regularly. It
is possible to use regular subscription as well as the shared one to subscribe to the same
topic. The broker sends a copy of a published message to each regularly-subscribed client
as well as to one client from each shared subscription group.

MQTT as a Testos Bus Foundation

MQTT is missing a lot of features that are required from the Testos Bus, on the other
hand it is a very straight-forward implementation of the PubSub pattern and it is very
simple to build additional features upon it. Centralized architecture based on a broker is
instrumental in moving a lot of logic and computational requirements away from clients
which makes a big contribution to building lightweight and easy-to-use client libraries that
promise simplicity for the programmers developing clients and applications using the Bus.
MQTT is also frequently a part of research for the past few years, which offers a base of
research papers, articles and implementations from which it is possible to adapt ideas in
order to extend the MQTT standard in order to satisfy the requirements.

3.2.2 Data Distribution Service

The Data Distribution Service (DDS) is a middleware protocol and API standard [7] from
the Object Management Group (OMG) [5]. It is capable of connecting system compo-
nents of businesses as well as mission-critical Internet of Things applications. It uses
a Data-Centric Publish-Subscribe (DCPS) model which implements the PubSub pattern
using messages that also include the contextual information a receiver needs in order to
understand the received data. When using a more traditional approach that is message-
centric, the programmer writes code that sends messages, but when using the data-centric
middleware, the code is written to specify how and when to share the data and the DDS
directly implements data sharing that is controlled, managed and secure. It also offers
a discovery protocol to help the programmers find other communication participants and
ease the development with this plug-and-play feature.

Communication

Every communication is conceptually restricted by domain. Components can only com-
municate with other components within the same domain which is identified by a unique
integer ID. To communicate within a domain, the application has to create a DomainPar-
ticipant. It is possible to create multiple DomainParticipants within a single application in
order to create components to communicate across multiple domains. DDS uses Topics as
a communication medium for message exchange. A Topic has a unique identifier, quality
of service setting and a type which defines what kind of data is being sent. An application
has to create a Publishers and Subscribers that are connected to one DomainParticipant.
Publisher and Subscriber are connected to DataWriters and DataReaders, which are al-
ways dependent on a single Topic and are used for sending and receiving data. The class
association is shown in Figure 3.1. This subsection was adapted from [9].

12

DomainParticipant

1 1 1
0..n 0..n 0..n
Publisher Topic Subscriber
1 1 1 1
0..n 0..n
0..n 0..n
DataWriter DataReader

Figure 3.1: DDS communication classes association.

Global Data Space

This subsection was adapted from [6].DDS has a special approach to store and access
data, it has a global data space. For the client application, the data space seems to be
a local memory that is accessed via API. In reality, reading and writing to the storage
sends appropriate messages to update the correct store on remote nodes. This illusion of
a global data storage gives freedom to programmers of one global storage, but on the inside
utilizes the benefits of decentralized storage such as lower impact of a node on the whole
infrastructure or performance of individual nodes.

Discovery protocol

DDS defines a discovery protocol that helps to find relevant Participants and Endpoints,
DDS also relies on this mechanism in order to establish communication between according
DataWriters and DataReaders. This functionality is described and adapted from [13].
The protocol splits into two independent ones - Participant Discovery Protocol (PDP) and
Endpoint Discovery Protocol (EDP). The first one (PDP) specifies how the Participants
discover each other in the network. Once they do discover each other, they use EDP
to exchange information about the Endpoint they contain. The discovery information is
accessible to the user through build-in topics, basically what happens is there are few pre-
defined Topics with build-in DataWriters and DataReaders, which are used to announce
and consume the presence and assigned quality of service of the local DDS Participant and
other entities such as DataWriters and DataReaders.

DDS as a Testos Bus Foundation

One of the main advantage of DDS is the data-centricity and the fact that the topics and
messages have pre-defined scheme of transferred data. This would help to keep the format
correct, the resource would not be wasted on rejection of transferred data. On the other
hand, a topic needs to be declared before the communication can occur, which limits the flex-
ibility of communication, it also prevents the clients from using subscriptions with wildcards.
Also DDS offers quite complex features that are not necessary in order to satisfy the Testos
Bus requirements. It would also be more complicated in comparison to MQTT to build new
features upon the DDS such as request management or waiting for subscriber availability.

13

3.2.3 Advanced Message Queuing Protocol v1.0

The Advanced Message Queuing Protocol (AMQP) [1] is an OASIS [4] open standard appli-
cation layer protocol [8]. This section describes the version 1.0, which is the latest, previous
version of AMQP significantly differ from this version, version 1.0 offers a different commu-
nication approach. AMQP is a wire-level protocol, which means that it describes the format
of data sent across the network as a stream of bytes. It was designed as a general-purpose
messaging standard. It provides a control flow for the message-oriented communication, it
also provides message delivery guarantees at most once, at least once and exactly once as
well as authentication and encryption based on TLS and SASL. It is dependent on a reliable
transport layer protocol such as TCP. This section was adapted from [8].

Architecture and Communication

The architecture of an AMQP network is quite straight-forward, it consists of nodes that
are encapsulated within a container, containers can hold multiple nodes. An example of
a container could be a client application or a broker, within these we could find nodes such
as producers, consumers and queues.

In the AMQP network, there are two basic types of data units that travel through
the infrastructure - frames and messages. Frames travel between containers and their pur-
pose is to establish, end and support communication (such as parameter negotiation) and
to transfer messages. Frames consist of three parts - a fixed length frame header (8 bytes),
a variable length extended header and a variable length frame body. Messages carry appli-
cation data, they travel between nodes and are encapsulated in frames with the Transfer
performative. One such frame may encapsulate multiple messages as long as the frame
size does not exceed the negotiated maximum frame size. An annotated message consists
of header, footer, annotations and a bare message, which consists of standard properties,
application properties and opaque binary application data. Nodes are responsible for safe
storage and delivery of messages, this responsibility is transferred between the nodes as
the message travels through the network.

Two containers are connected with an AMQP connection, which is a full-duplex ordered
sequence of frames. This connection is divided into sessions, the number of sessions is ne-
gotiated during connection establishment. Session consists of two channels, one is outgoing
and the second one is incoming. Each frame contains a channel number which makes it
possible to multiplex multiple sessions into one sequence of frames that is transferred over
the connection between containers. Links are unidirectional and they serve as a commu-
nication medium for messages between individual nodes. They are attached to a node at
a terminus, which can be a source or a target. A message can travel over a link only if they
meet the entry criteria at the source terminus, where filtering happens. Links are attached
to sessions in order to communicate with nodes outside of the source node container.

AMQP as a Testos Bus Foundation

The AMQP advantage is that it is general-purpose and it fits a wide variety of use cases,
adaptations and extensions. Another benefit it could bring as a building stone of the Testos
bus is using the message queue paradigm, because every message is consumed by just one
receiver. On the other hand this potential benefit limits the possibility to deliver messages
to multiple subscribers as the PubSub pattern does, this feature would have to be built upon
the AMQP protocol. There are more disadvantages to using AMQP as a foundation stone

14

of the Testos bus, the queues and links have to be established prior to the message transfer.
PubSub pattern is much more flexible, for example MQTT topics don’t need any special
prior declaration and it is possible to use wildcards when subscribing to a topic, which covers
multiple even yet unknown topic names. Message queues also store messages until they are
consumed, which blocks other messages from the queue to be delivered. The Testos bus
should be able to postpone message delivery when the receiver is not available and deliver
other messages instead. And finally, AMQP communication links and connections are more
complex than for example MQTT and it would be much harder to build new things upon
that as well as it could be more complex to use the bus for the client developers in order
to properly use the AMQP architecture advantages that its complexity brings.

15

Chapter 4

Possible Requirement Satisfaction
Solutions

In this chapter it is elaborated how to satisfy particular Bus requirements. These ideas
and solutions build upon the MQTT, which was chosen because it offers a centralized
architecture enabling a creation of easy-to-use and lightweight client libraries and a very
straight-forward implementation of the PubSub pattern that is easy to build upon and does
not contain extra unnecessary features that could not be cut out.

4.1 Requests

Probably the biggest and most important requirement for the Testos bus is the request
management. As described earlier, MQTT offers a very simple request /response mechanism
in its control message PUBLISH, the client is able to add a field with a topic name, to which
the request receiver should send the response. This mechanism alone does not provide any
way to wait for a subscriber to join the request topic in case when there is no subscriber
subscribed (the only way to somehow store a message/request is to use the retain flag),
the request has no timeout and it is not possible to cancel the request by the client that
send the request (e.g. when the result is no longer needed). The MQTT broker does not
provide any additional request management, it does not know the request state and treats
messages with specified Response topic field the same way as it would treat any other
message.

In order to be able to satisfy such requirements, the broker needs to some kind of request
life cycle in order to know, what is the state of a request and what actions can it perform in
that state. The life cycle should include request’s transfer to the request topic subscriber,
response transfer from the request receiver to the response sender and should also cover
states when the request is stored in order to wait for any client to subscribe to the request
topic.

Following life cycle pictured in Figure 4.1 represents proposed request life cycle that
should cover all request related requirements. The middle horizontal line of states (from
the new state to the answer delivered state) shows the most straightforward use case of
a request. A client publishes to the bus, the bus delivers the request to a service (a client
subscribed to the request topic), the service creates a response, which it published to the re-
sponse topic and the bus delivers the response to the client, which published the request.

16

cancel request

cancelled | €

cancel request

store answer
restore answer

cancel request cancel request

request : request answer
send request q d send request to service deli q aqt send answer to bus d deliver answer answer
10 bus manage elivered to manage to dlient deli
. elivered
by bus service by bus

error occured on the service

no client waiting for the answer

no available service wrong format of request answer

error during storing error during storing

Figure 4.1: Finite state machine representing the request life cycle.

answer
not
delivered

request
not
delivered

A request or a response for that request can be stored when the given message (a request
or a response) was received by the bus, it can also be restored from the storage when the bus
is able to deliver the message to its recipient. A request can also end up in a request not
delivered or a answer not delivered state which can occur in case that the request does not
specify to be stored in case there is no client able to receive and respond to that request.
A request can be canceled until the life cycle has ended. The model also counts with
the possible of an error occurrence.

4.2 Bulk Messaging

Sending messages in bulks can be accomplished by introducing a new type of a message,
let’s call it BULK. The BULK message would be very simple, it just needs a unique message
type value and an information how long the whole message is, for which the fixed MQTT
header can be used. There is a 4-bit header field for specifying the message type and there
are 15 types already specified in the standard, which means that there is still one free value
to assign to the BULK message. The payload will be made of individual encoded messages.
Included message do not need to be changed, their type and length can again be read after
parsing its fixed header.

It is possible to base the bulking strategy on a premise that sending a single big message
means a lower load on the network resources than multiple smaller messages transferring
the same amount of application data. This is because TCP acknowledges every successfully
transferred packet, sending less messages containing more data each result in less acknowl-
edgements sent over the network. The resource load difference is expressed by inequation

CT'G/LU + C'O N * C’T‘CL'UJ + C10
>
ts N %t

(4.1)

where:

17

Chraw 18 the capacity of transmitted raw application,

e (), is the capacity of overhead data added in order to transfer the application data,
e 14 is the duration of data transfer,

e and N is the number of transmitted messages in a bulk.

The left side of the inequation represents the bit rate needed to transfer single smaller
message. The right side represents the bit rate needed to transfer a bulk message containing
N smaller messages in the payload. In our case the extra data overhead (C,) is TCP ACK
packet size, which is 66 B. Consider following variable values as an example:

o Craw =100 B,
e C, =66 B, which is the TCP ACK packet size,
e tg =10 ms,
e and N = 3.
Transferring messages of size 100 B packed in a bulk of 3 messages results in

100 B + 66 B 3 %100 B+ 66 B
10 ms 3 * 10 ms

(4.2)

which results to 16600 B/s > 12200 B/s, where bulking proves to use less network resources.
The difference would be even greater if we counted the data packet headers’ size into
the overhead (C,).

The disadvantage of bulking is that the messages are not sent right away when they are
ready, but they are gathered during a time period - a bulk window. This means that those
messages are delivered with a delay, therefore the bulk window should be reasonable small.

The proposed method measures how much traffic is generated on the output. When
a certain threshold is reached, the bulking mode is enabled, which means that all outgoing
messages are not sent right away, but gathered and concatenated into a BULK message
during a bulk window. When the time period passes, gathered BULK message is sent.
The threshold triggering the bulking mode and the length of the bulking window can be
static values, which results in a communication adapting to rate of outgoing messages. It is
possible to use time periods when the rate of outgoing messages is lower and utilize them to
measure RTT of a PING message and calculate the threshold and the bulking window length
in order to achieve a configurable amount of network load resource reduction. The Testos
Bus implements the bulking approach using static values for the threshold and the bulking
window length.

4.3 Bus Instance Bridging

Architecture of the MQTT specified by the standard is based on a broker, to which all
the clients are connected. The standard does not describe any way of connecting brokers in
a network in order to create decentralized bus instance network. The instances would need
to share what subscriptions they manage. There are several possible architectures of such
network of instances. There are research papers on this topic such as [15] that experiments
with linear and star topology. The linear topology is a series of connected brokers, each

18

broker has 2 neighbors, only the first and the last one in the series have just one. The star
topology has 1 broker in the middle and all the other brokers are connected to the middle
one. Both topologies need to know about all broker locations in case their neighbor is not
available so they can reconnect. In case of the linear topology that would mean trying to
connect to the next broker in the series (neighbor of the unavailable neighbor), in case of
the star topology that would mean choosing new middle broker. In both cases the locations
of the brokers can be ordered so that it is possible to choose the replacement for the missing
one. The linear topology has the advantage that the nodes have similar flow rate (the middle
node in the star topology way more burdened than the other nodes) and it requires less
reconnections after node failure.

Another possible approach would be creating a Full-Mesh network where every instance
is connected to each other. Instances would offer their subscriptions as well as a list of
their neighbors, the list will be used in order to find new neighbors a new instances is not
connected to, yet. This architecture would grant the best resistance to node failure, on
the other hand each broker would need to check its own subscription sets as well as each
neighbor’s with every published message, because it would need to determine, if the message
should travel to neighbors or not. A variation could be that all published messages are
automatically send to neighbors, this would mean generating more traffic, but message
processing would be faster.

An important question arises about the message and request management - who will be
responsible? The most straight-forward proposal would be that messages and requests will
be managed and stored by the broker which received the message directly from the client
and the other brokers will only care about forwarding them.

4.4 Message Priority

Binary message and request priority can be simply specified by a flag in the variable header
of the PUBLISH message.

4.5 Subscriber Load Balancing

The idea behind the load balancing requirement is that you can have multiple services that
can perform certain task, let’s use a simple example: you can have multiple optimized SMT
solvers that provide it’s services for the platform, they all subscribe to the same topic (e.g.
org/testos/smt_solving), in that situation your client connects to the bus and publishes
an SMT formula to the org/testos/smt_solving topic, it does not care who performs
the calculations, it only cares about the result. The load balancing here would provide
the possibility to choose one of the subscribers that is not busy at the moment (because
there would be multiple publishing clients using the SMT solving services of the platform)
and sends the request only to that one particular client, which will compute a result and
send back the response.

This functionality usage would require special type of topic, which the bus treats in way
that it only forwards published messages or request only to one of the subscribers (which
is different than the general publish-subscribe approach), or a message type or field that
indicates a load balanced message that should be delivered only to one of the subscribers
regardless of the topic. In both cases it is bus’ responsibility to determine the receiver based
on an implemented scheduling strategy, the request receiver does not need to check with

19

other subscribers whether it is the only one who received the request, because that would
be against the very basic idea and advantage of the Publish-Subscribe pattern.

MQTT already offers Shared subscriptions in version 5 that satisfy this requirement,
however it supports combinations of regular and shared subscriptions to the same topic
as well as multiple shared subscription groups within a same topic. However the standard
does not specify which load balancing strategy to use.

4.5.1 Load Balancing Strategies

The selection of a subscriber to deliver the request to could be done in a few different
ways. The most basic one would be having a list of them (e.g. ordered by the time they
subscribed) and send the request to the subscriber, which joined the given topic first and is
not busy. This approach would burden clients at the top of the list much more often than
the ones at the bottom.

The unbalanced usage of subscribers from the previous method could be mitigated by
using again a list of subscribers, but this time it would cycle through the list and always
choose the next subscribed client, that is not busy. The client to receive the request could
also been chosen randomly from a pool of subscribers (again that are not busy).

A little more interesting approach would be keeping a record of an average response
time of each subscriber. This would allow us to choose the fastest client, that is not busy.
The advantage would be potential decrease of response time for the client that published
the request, but tracking an average response time of subscribers does not take into account
that different requests could take completely different time to compute on the same client
(e.g. formula satisfiability). This method also requires more computation to be done by
the bus.

4.6 Logging

Logging is understandably not part of the MQTT standard since this topic is part of
development areas such as serviceability of a product. It is possible to store and maintain
the logs by the server which is logging its activity, but this creates more load for the server.
Better approach is to send all logs to a log server. The log server is responsible for collecting
and storing the logs and is also able to offer additional features such as searching and
filtering. There are several open-source solutions, one of them is Graylog [2]. Graylog is
a log management tool that consists of a log processor which collects the logs, a web Ul for
users to be able to search for logs, a MongoDB to store configurations and other metadata,
and an ElasticSearch which stores all the logs processes queries.

4.7 Authentication and Authorization

These two requirements can be satisfied with a modern approach of a web token. Client
authenticates once against a server and receives a token that is from now on included
in requests that the client makes against the MQTT broker without the need of using
credentials. The token can be sent in the CONNECT message in the password field.

20

Chapter 5

Implementation and Evaluation

This chapter contains a description of the Testos Bus solution. This is the best chapter
to get information about how various quirks and features of this middleware were actually
implemented. The first section contains a general description and explanation of how
individual TBus features work. The next section consists of a declaration of format for
every message type used in the TBus. The chapter than continues with an elaboration of
broker and client implementations. The chapter is ended with information on how the TBus
was tested and what were the results of performance experiments.

5.1 Testos Bus Features

This section brings a high-level overview and explanation of individual TBus features, which
provides context for the following sections that discuss specific parts of the solution such
as the broker or the client libraries. The section unfolds the communication model, it
explains how the messaging and the request/response pattern works, how to interconnect
TBus instances or what specific strategy does the TBus use to bundle messages together
in a BULK.

5.1.1 Communication Model

The communication is implemented very similarly to the MQTT protocol. The basic ar-
chitecture consists of a central component called broker. The broker provides all the bus
functionality such as subscription, communication forwarding or storing undelivered mes-
sages. Other communication participants are the clients. A more complex architecture can
be set up when connecting brokers into a network, which is in more detail described in
Subsection 5.1.4.

All communicating client connect to the broker via TCP. Right after the TCP connection
is established, the client should send a CONNECT message and receive a CONNACK
message (see 5.2.3). This message exchange confirms the connection and helps establish
the keepAlive interval, which is a time period during which any data need to be sent
via the connection (it is being kept alive by PINGREQ and PINGRESP messages, see
5.2.10), otherwise it is considered inactive and is ended with a DISCONNECT message (see
5.2.11). A connection is expected to be gracefully ended with a DISCONNECT message in
both cases of normal and abnormal disconnection.

After successful CONNECT/CONNACK exchange, it is possible to send or receive
PUBLISH messages. In order to receive messages, it is mandatory to subscribe to a topic

21

using a topic filter. The topic hierarchy is the same as MQTT’s, it is possible to divide
each level by the forward slash ‘/’, so it is possible to create structured topics such as
org/testos/solvers/smt_solving. The topic filter used during subscription can contain
the MQTT’s multi-level ‘#’ wildcard at its end. This wildcard is matching the rest of
the topic name. For example, the topic filter org/testos/solvers/# matches following
topics:

e org/testos/solvers/smt_solver,
e org/testos/solvers/sat_solver/next_combination
e or org/testos/solvers/,
but does not match topics like:
e org/company/solvers/smt_solver
e or org/testos/data_generators/db_gen.

The MQTT single-level wildcard (specified with a ‘4’ sign) was not adopted, because there
is no need for such topic subscriptions in the Testos platform.

In order to stop receiving messages with a previously subscribed topic filter, clients can
unsubscribe from that topic filter via the UNSUBSCRIBE message (see 5.2.9).

5.1.2 Messaging

As previously stated, sending messages to other connected clients can be performed via
the PUBLISH message (see 5.2.4). Every PUBLISH message can be sent as a priority or
non-priority (normal) communication. The priority messages are being process and sent by
the broker prior to non-priority ones. Messages are always accompanied by a topic name,
which cannot contain the ‘#’ wildcard and is used to identify subscribed clients that should
receive the message. This receiver resolution is performed by the broker based on stored
topic filters associated with particular client connections.

The broker is able to store the message in case it is not able to deliver it to any subscriber.
The message is either sent to someone upon their subscription to a topic filter, that matches
message’s topic, or is deleted when message’s specified timeout period ends.

5.1.3 Request/Response Pattern

It is possible to utilize PUBLISH messages to send requests and receive responses for these
messages. The request life cycle can be seen in Figure 4.1. As all publish messages,
the request can have a timeout (which means it can also be stored) and it could be marked
as a priority communication. The broker manages the request based on a packetld property
of the PUBLISH message and a client’s ID. It adds a responseDestination property when
delivering it to subscribers. The subscriber computes and returns a response that uses
properties from the received PUBLISH message such as priority or response destination.

The request publisher can cancel a request before the response is delivered by using
the REQACK message. Stored requests are also canceled when the broker receives a CON-
NECT message with a set CleanStart flag. The cancel is delivered all the way to the request
receiver, which does not send a response when the response computation is completed and
it received a cancel method.

22

5.1.4 Bus Instance Connection

It is possible to connect multiple brokers into a network in order to use services of a client
connect to a different broker. This connection happens when starting the broker and
using --neighbor-ip and --neighbor-port arguments. The starting broker attempts to
create a connection with the neighbor via CONNECT and CONNACK messages. If it was
successful, the CONNACK message might use the serverReference property to share other
broker locations in the network. The starting broker then attempts to connect to all other
neighbors in the list in order to create a full-mesh network.

Being connected to at least one neighbor means a change in messaging behaviour, be-
cause now the connected clients are able to communicate with client connected to a different
broker. When a normal message arrives at a broker, it tries to deliver it to its subscribers
and also forwards it to all neighbors. If it fails and the message has a timeout specified,
the message is stored. If a neighbor succeeds delivering the message to at least one sub-
scriber, it notifies the broker with a MSGACK (see 5.2.5), which makes the broker delete
the message from its storage.

When it comes to request management, the management responsibilities lies on the bro-
ker that received the request from one of its clients. When a broker receives a request, first
it tries to deliver it to one of its other clients. If that is not possible, it forwards the re-
quest to all neighbors. Neighbor uses a REQACK message (see 5.2.6) in order to notify
the broker that the request was delivered to at least one subscriber. The broker managing
the request changed the request state and waits for a response. The response is routed back
via the responseDestination property in the PUBLISH message, because it was prefixed by
the broker’s ID (which is a <ip address>:<port> string).

Subscribing to a broker in a broker network results in the SUBSCRIBE message for-
warded to every broker in the network. When a broker receives a SUBSCRIBE message
from a neighbor, it looks up all messages with a topic that matches the subscription. If it
finds any, it sends it to the broker.

5.1.5 Message Bulking

Implemented message bulking takes place on the way from client to the broker and also
between brokers. The Testos Bus implements a bulking strategy described in 4.2 using
a fixed threshold and fixed bulking window width. Bulking mode is enabled when average
time period of 10 last outgoing messages is lower than the fixed predefined threshold of
10 milliseconds. When the bulking mode is enabled, outgoing messages are not sent right
away, but they are encoded and concatenated during a fixed bulking window, which lasts
50 milliseconds. After the window ends, concatenated messages are packed into a BULK
message (see 5.2.7) and sent to the broker).

5.2 Communication Protocol Messages

Testos Bus communication protocol (TBus protocol for short) is heavily based on MQTT
v5.0, but it was customized and simplified to be even less complex. Protocol for the Testos
Bus and MQTT are not compatible, since the message format slightly changed. This section
introduces individual protocol messages, that the protocol offers.

23

5.2.1 Message Format

Similarly to the MQTT control packets, the Testos Bus messages consist of a fixed header,
variable header, properties and a payload (in this order). Every message starts with
the fixed header which is the only mandatory part. It is comprised of a Message Type
(4 most significant bits of the first byte), Flags field (4 least significant bits of the first
byte) and Remaining Length field. Remaining Length states how many bytes after the fixed
header are part of the current message. The method of encoding such values is described
in Subsection 5.2.2. The fixed header is visualized in Listing 5.1.

7 6 5 4 3 2 1 0

——————————— e e T T
byte 1 | Message Type | Flags |
——————————— s e o S
byte 2 | Remaining Length

——————————— s e T

Listing 5.1: Fixed Header

The other three parts of the message are optional and their presence and content depend
on the message type. Variable header usually contains some mandatory field which is
specific for given type. Properties contain predefined property pairs (type and value). Each
message defines which property presence is valid or not. At the beginning of properties there
is a byte length of the properties part encoded as a variable length integer.

5.2.2 Variable Length Integer and String Encoding

Variable length integer is encoded as a wariable length integer - this format uses 7 least
significant bits of a byte to encode the value, most significant bit is used as indicator,
if we should include the next byte while decoding, those 7 least significant bits from all
participating bytes are concatenated in order to get the original value.

Strings are utf-8 encoded in a way that they start with its byte length encoded as
a variable length integer, followed by the encoded string value. This is a slight difference
from the way MQTT encodes its strings, MQTT restricts the length of the encoded string
value to 65535 bytes in order to be able to encode the length into 2 bytes. TBus protocol way
of encoding does not restrict the length of the string value, which means that this could be
also used as a way of encoding PUBLISH payloads if authors of the communicating clients
agree on using these string encode/decode functions provided by the client libraries.

5.2.3 CONNECT and CONNACK Messages

These messages serve as a medium to establish the connection and exchenge the connection
parameters. The CONNECT message has a Message Type of value 1. It uses two flags
- CleanStart (bit 0) and BrokerConnect (bit 1). When set, the flag CleanStart indicates,
that in case the broker has any responses stored, the client does not wish to receive them.
The broker deletes stored responses and marks corresponding requests as canceled. The sec-
ond flag is used when the broker is connecting to its neighbor. The neighbor then knows
that the incoming connection does not belong to a client and informs the other broker about
its neighbors, so that the connection initiating broker can connect to other participants in
the broker network in order to create a full-mesh network.

24

The CONNECT message fixed header is followed by a variable header with a keepAlive
value, which is a 2 byte unsigned short integer, which declares a period of time, in which
the broker needs to receive any kind of TBus message (can be filled in with PINGREQ
messages, see Subsection 5.2.10), otherwise it sends a DISCONNECT message with code 141
= KeepAlive Timeout and ends the connection. MQTT CONNECT properties were omitted,
because they specify functionality that is not used in TBus protocol. Good example is
the Maximum Packet Size, which is much more needed in systems working over UDP (such
as real-time systems) or those having connected client with limited resources. Neither of
those are relevant in Testos Bus, which is operating over TCP and it is not expected to work
with client with limited resources (such as IoT devices). The payload is an encoded string
which contains the client ID. The MQTT CONNECT feature called Last Will was also
omitted, because it does not add any valuable information for the Testos Bus participants.

The broker expect a CONNECT message right after the TCP connection is established.
If it is not sent in a short time period, the broker ends the connection.

The CONNACK message uses a Message Type of value 2 and its flags are not unused.
The variable header contains a byte representing the ConnectReasonCode (individual values
are described in Table 5.1). CONNACK properties can provide more debugging information
in case of unsuccessful connection via the reason string property. Also when the CONNACK
reacts to a CONNECT message from a neighbor (the message has set the BrokerConnect
flag), the serverReference property is used to forward a list of other neighbors in the broker
network. The CONNACK message has no payload.

Value | Code Name Description

0 Success States a successful subscription.

1-127 Reserved

128 Unspecified Error | An unspecified error occurred while processing of subscrip-

tion request.

129 Malformed Received CONNECT message did not have correct format.
Packet

130 Reserved

131 Client Limit | The broker has reached a configured limit or concurrent
Reached client connections.

132 Connection ID | Active connection with the same client ID already exists.
Already In Use

Table 5.1: Connect Reason Codes

5.2.4 PUBLISH Message

This message’s purpose is to exchange data between clients. It offers a possibility to send
a regular one-way message, a request, for which it expects a response, which is the third
kind of this type of messages. The PUBLISH messages utilize a Message Type value of 3.
It uses 3 following flags:

o a Request Flag (bit 0), which marks the message as a request, which means that
the broker will manage it as one,

o a Priority Flag (bit 1) - marks a priority communication that should be handled and
stored prior to non-priority communication

25

o and a Response Flag (bit 2), this flag marks it as a response to an existing request
(based on the packet ID), setting both the Request Flag and a Response Flag is
a protocol error.

In case the PUBLISH message is not a response, the variable header contains a topic
name (without the wildcard) that is used to identify which subscribers should receive
the message. The PUBLISH properties contain:

e a 4-byte unsigned integer Timeout which specifies for how long the message is stored
in case it could not be delivered to a single subscriber,

e a string ResponseDestination that accompanies the request and response messages in
order to be able to route the response to the request publisher (it contains its identifier
added by the broker),

e a 2-byte unsigned short integer Packetld which identifies the request and response
together in connection with the ResponseDestination that is the client’s identifier.

The payload contains raw data that is being delivered.

In comparison to the MQTT’s PUBLISH control packet, it does not use MQTT’s flags
DUP, QoS level nor Retain. Since it does not use QoS levels, there are no duplicates being
sent (and also no reason to specify any QoS level). It also omits the MQTT’s Retain feature,
it is not expected that it would be valuable, because the primary aim of the Testos Bus is
usage of Request/Response for which it offers better request management.

5.2.5 MSGACK Message

The MSGACK message is a new message type that has no equivalent in the MQTT protocol.
Its purpose is to acknowledge message delivery between neighbors. It is used in a situation,
when a broker receives a normal message from a client and it is not able to deliver to any
of its other clients. It then stores the message based on the Timeout property. After that,
it adds a Packetld to the message and sends it to all of its neighbors. If a neighbor was
able to deliver the message to at least one client, it sends back a MSGACK in order to
communicate, that the first broker can delete the message from its storage, because there
was someone, that received the message. This message uses a Message Type equal to 4,
it has no variable header nor payload. It uses two properties in order to identify given
message:

e a 2-byte unsigned integer Messageld, which is provided by the first broker

e and a string containing a topic name.

5.2.6 REQACK Message

The REQACK message is an another one newly introduced message type. It is utilized
to update a request status. The neighbors use it in order to notify a broker managing
a request that a request was delivered or canceled. The broker can also notifies the request
publisher that their request was removed from the storage (in case of a full storage and
the request being selected as a victim). The client uses this message type This message
utilizes a Message Type value of 5, it has no flags nor payload. The properties contain:

e a 2-byte unsigned short integer Packetld,

26

o a byte RequestState code, that determines the new state of the request (used values
can be seen in Table 5.2),

e a string ResponseDestination that contains the request publisher’s identifier,

e and a string containing a topic name, which is used when delivering a cancel to
the subscribers.

Value | Code Name Description

0-1 Reserved

2 Request Deliv- | Inform neighbor that the request was delivered to at least one
ered subscriber.

3-5 Reserved

6 Canceled Inform the message receiver that the request was canceled by

its publisher.

7-9 Reserved

10 Deleted From | Inform the request publisher that the request was selected as
Storage a victim and delete when the storage was filled up.

Table 5.2: Request State Codes used in REQACK messages

5.2.7 BULK Message

The BULK message uses a Message Type value 6 and the flags are not used. The Remaining
Length value is followed by individual encoded messages which is this message’s payload.
It does not use any properties or variable header, which makes the BULK very simple do
encode and decode. This message type cannot be found in the MQTT protocol, it adds
a new functionality to the TBus protocol, enabling it to pack more messages together in
order to save network resources.

5.2.8 SUBSCRIBE and SUBACK Messages

The SUBSCRIBE message is used to subscribe with a topic filter in order to receive messages
with a topic that corresponds to given topic filter. It uses a Message Type value 8. Flags
field in the fixed header are not used. The variable header contains a 2-byte packet identifier.
It does not use any properties, which were omitted from the MQTT SUBSCRIBE control
packet, because MQTT’s subscribe property Subscribe Identifier belongs to a feature which
was not included in the TBus protocol, because it was not considered as bringing value in
comparison with the complexity increase when including such feature.

TBus protocol also does not use MQTT’s Subscription Options, because they are used
to specify features omitted in the TBus protocol, such as QoS. TBus protocol does not
acknowledge received PUBLISH messages (as MQTT does in different way on QoS level 1
and 2) which is an equivalent to MQTT’s QoS 0. This decision was made based on two main
reasons - the first one is that the TBus protocol operates over TCP which provides reliable
delivery and the second one is a future extension of communication capabilities by adding
a communication acceleration via the main memory, which would be used in situation when
the communicating clients are running on the same machine, where extra acknowledging
would be slowing the communication down. The payload contains a topic filter encoded as
a string with a method described in Subsection 5.2.2.

27

The SUBACK message is a response to a previous SUBSCRIBE message in order to
communicate whether the subscription was successful or not (and potentially what went
wrong). It uses a Message Type value 9, the flags are not being used. The variable header
consists of a packet identifier, its value is the same as the packet identifier in the SUB-
SCRIBE in order to identify which subscription attempt it acknowledges. There is a pos-
sibility to use a property Reason string in order to provide more specific description of an
issue and help diagnose the problem in case of unsuccessful subscription. SUBACK payload
contains a SubscriptionReasonCode, 2-byte value that determines if the subscription was
successful or not. Reason codes adopted from MQTT can be found in Table 5.3.

Value Code Name Description

0 Success States a successful subscription.

0-127 Reserved

128 Unspecified Error | An unspecified error occurred while processing of subscrip-

tion request.

129-142 Reserved

143 Invalid Topic Fil- | The topic format was not correct - it contained the # wild-
ter card at an incorrect position.

Table 5.3: Subscription Reason Codes

5.2.9 UNSUBSCRIBE and UNSUBACK Messages

The UNSUBSCRIBE and UNSUBACK message formats are the same as SUBSCRIBE
and SUBACK messages, their purpose is to unsubscribe the client from given topic filter.
UNSUBSCRIBE message uses the Message Type value 10 and UNSUBACK uses Message
Type value 11. The topic filter specified in the SUBSCRIBE message payload needs to
match exactly the topic filter, that the client subscribed to earlier. The UNSUBACK
reason codes can be found in Table 5.4.

Value | Code Name Description

0 Success States a successful subscription.

1-16 Reserved

17 No Subscription | Returned when the client tries to unsubscribe from a topic
Existed filter that it wasn’t subscribed to.

18-127 Reserved

128 Unspecified Error | An unspecified error occurred while processing of subscrip-

tion request.

Table 5.4: Unsubscription Reason Codes

5.2.10 PINGREQ and PINGRESP Messages

Both PINGREQ (= ping request, shown in Listing 5.2) and PINGRESP (= ping response,
shown in Listing 5.3) messages consist of just a fixed header, that states the Message
Type (PINGREQ uses value 12 and PINGRESP uses value 13). The flags are empty and
the Remaining Length is set to 0 in both of them. These messages are used to notify and
check whether the connection participants are responsive. The broker ends a connection if

28

there is no incoming message (PINGREQ or) from the side, that initiated the connection,
for a period of time, which was agreed on during connection establishment (the keepAlive
value). The PINGRESP is expected to be sent immediately, so the connection initiator
(a client or a neighbor broker) ends the connection if it does not receive a PINGRESP
messages in a small predefined time period of 5 seconds. The connection initiator sends
the PINGREQ message with a period equal to a half of the agreed keepAlive interval.

o

s e B et I e

Listing 5.3: PINGRESP message

5.2.11 DISCONNECT Message

The DISCONNECT message is used in order to properly close the connection. It uses
a Message Type of value 14, it does not use any flags nor payload. The variable header
contains a DisconnectReasonCode - a 2-byte value (individual codes can be found in Table
5.5. The properties can contains a string Reason, which can provide more information in
case of a abnormal disconnection.

Value Code Name Description
0 Normal Discon- | Sent when a client wants to disconnect without an occur-
nection rence of any outstanding situation.
1-16 Reserved
17 No Subscription | Returned when the client tries to unsubscribe from a topic
Existed filter that it wasn’t subscribed to.
18-127 Reserved
128 Unspecified Error | An unspecified error occurred.
129-140 Reserved
141 KeepAliveTimeout| Sent when one of the communicating sides did not respond
during an agreed time period.
Table 5.5: Disconnection Reason Codes

29

5.3 Broker

The broker was implemented in the C# language. It is a multi-threaded application that
uses asynchronous callbacks to accept new connections or receive and process incoming data.
It manages connected clients and their subscriptions, it also forwards incoming messages to
clients that subscribed for given topics. It is able to store PUBLISH messages in case there
is no available client willing to receive them. The broker also manages ongoing requests life
cycle. It is possible to connect brokers into a full-mesh network providing the possibility to
communicate with clients that are connected to a different broker.

5.3.1 Configurable Broker Parameters

The broker offers a small amount of configuration possibilities:

e parameters ——-ip and --port specifying the broker’s IP address and port number
(default values are 127.0.0.1 for the address and 5035 for the port number),

e parameters —-neighbor-ip and --neighbor-port, that can be used to connect to
a neighbor broker (needs a value for both or none),

e parameter —-client-limit, which limits the maximum number of client that can
concurrently connect to the broker instance,

e and a parameter -—log-level, which determines the minimal level of log entries that
are being logged.

The log levels can be seen in Table 5.6 from the most verbose to no logs at all. The client
limit does not count in connections to neighbors.

Value Description
ALL CLI value to see all types of entries. It is the same as using the TRACE
level.

TRACE | Provides very detailed information that could be useful when debugging.
Selecting this output level is the same as selecting the ALL level.

DEBUG | Contains a slightly more detailed information than the INFO level, useful
for developer when debugging or working on the TBus.

INFO This level gives a generally useful information of what is going on the broker,
the entries should be understandable for everyone understanding how the bus
should work from a product perspective.

WARN | A level for entries signaling a potential issue. No harm was done and
the TBus works without any limitation.

ERROR | Used when an error occurred, some functionality might be not available or
working correctly.

FATAL | Level suitable for entries logged while the TBus stops working completely.
NONE Does not output any log entries.

Table 5.6: Logging Levels

30

5.3.2 Bus Instance Interconnection

A broker connects to a neighbor based on the -—-neighbor-ip and --neighbor-port CLI
arguments. In order to differ the connection from a client connection, it sets the Bro-
kerConnect flag in the CONNECT message. Every time a neighbor accepts a connection
from a broker, it sends back CONNACK with a serverReference property. The value is
a string of concatenated <broker ip>:<port> pairs that are delimited with a semicolon *;’.
The broker initiating the connection then parses this list of broker addresses and ports and
attempts to connect to each of them.

Every connection with a neighbor is associated with a separate output queue of mes-
sages. This queue is operated by a separate thread, that takes care of dequeueing messages
and sending them to the neighbor. When sending the messages, bulking can occur. Bulking
is performed the same way as described in Subsection 5.1.5, measuring time periods between
last 10 enqueued messages and packing them together during a 50 millisecond window into
a BULK message.

5.3.3 Client Connection

When the broker is done connecting to the broker network, it is ready to accept a new con-
nections. It does that via asynchronous function BeginAccept (from System.Net.Sockets)
that uses a provided callback function NewConnectionCallback to take care of the new in-
coming connection. The NewConnectionCallback function receives the CONNECT message
and attempts to create a new Connection in the ConnectionManager. The result is then
sent back. If the creation failed, the TCP connection is ended. It it succeeded, the broker
accepts data via asynchronous function BeginReceive (again from System.Net.Sockets). Ac-
cepting a connection initiated by other broker has the same approach, but the Connection
object contains a isNeighbor variable set to true in order to differentiate it from a client
connection when processing incoming messages.

The ProcessIncomingMessage function is used as a callback when accepting data from
a connection. First, this function reads a fixed header from a socket associated with the con-
nection - it reads two bytes, which help determine type of the message, and then read byte
after byte until it read the whole RemainingLength part of the fixed header. If the remain-
ing length of the header is greater than 0, the rest of the message is read from the socket.
The end of reading the whole message is notified via a MessageEvent to allow another mes-
sage to be read. When the whole message content is received, the raw messages is parsed
and then processed.

5.3.4 Subscription and Unsubscription

To process a SUBSCRIBE message, the broker tries to add the topic filter and client
pair into the SubscriptionManager. Result of this operation determines the reason code
in the SUBACK message sent back to the subscribing client. The broker also looks up all
stored messages (regular messages and requests), whose topic matches the newly subscribed
topic filter. These messages are sent to the client.

If the broker has at least one neighbor, the SUBSCRIBE message is also forwarded to
all neighbors. Receiving a SUBSCRIBE message from a neighbor is processed differently,
no new subscription is registered, but the broker responds to the neighbor with stored
messages (regular ones and requests)

31

UNSUBSCRIBE messages are handled similarly, the broker attempts to remove the topic
filter from the SubscriptionManager. Result of this operation determines the reason code in
the UNSUBACK message. UNSUBSCRIBE messages are not forwarded to any neighbor.

5.3.5 Messaging

When a PUBLISH message is received, it is not processed right way, but pushed into
a Publish Message Queue that is responsible for processing all incoming PUBLISH messages.
The broker instance manages a separate thread that is responsible for removing PUBLISH
messages one by one from the queue and processing them. The Publish Message Queue
internally consists of two separate queues, one is a priority queue and the second is a regular
queue. Messages enqueued to the priority queue (based on the PriorityFlag in the PUBLISH
message fixed header) are processed before all regular communication.

All other types of messages are processed right away without any queue or prioritization.
The PUBLISH message is the only one being queued and prioritized, because it is expected
to be a dominating majority of traffic. Other types of messages are expected to be a very
small fraction of incoming traffic that does not require any further management or ordering.

When processing a PUBLISH message, the broker uses the topic name specified in
the messages to identify subscribers, that should receive it. In situation when there is
no subscriber to deliver the message to, the messages with specified timeout are stored
via the StorageManager. Those messages are removed from storage and sent when a client
subscribes with a topic filter matching the topic name associated with the stored message.

If the PUBLISH message is a request, the broker also creates a Request object, stores
and manages request information via the RequestManager. The request is uniquely identi-
fied by publisher’s client ID and message packet ID values. Requests are stored (in case of
specified timeout and unsuccessful first delivery) and delivered upon other client’s subscrip-
tion to a matching topic same way a regular PUBLISH message is with a small difference
of updating the Request status in the RequestManager.

If the PUBLISH message is a response, it uses responseDestination property in order to
deliver it to a specific client based on the client ID. If the client is not available, the response
is stored. Stored responses are not removed from storage and delivered upon subscription,
but upon connection of a client with a client ID that matched the responseDestination
value.

When a message arrives from a neighbor, the broker uses MSGACK and REQACK
messages according to 5.1.4 in order to share the fact that the message was delivered. All
requests are managed by a broker where the request originated.

5.3.6 Message Storage

The message storage is implemented to store messages as objects in the main memory.
Default maximum limit of stored messages is 500. This limit can be changed during runtime
by connecting according to the TBus Protocol and sending a PUBLISH message with a topic
$memoryLimit and payload containing the new limit value. This value should be a string
(e.g. “1024”) that is encoded according to the algorithm in Subsection 5.2.2, it is possible
to do this with the EncodeString function available as a part of client libraries.

32

5.3.7 Logging

Logging is printed into the standard output via the Logger class. It is divided into levels in
order to offer different granularity. These levels are described in Table 5.6. It is possible to
specify a level with which the broker outputs log entries via the -—log-level CLI argument
described in Subsection 5.3.1.

5.4 Client Libraries

As stated in the Chapter 2 that describes the requirements, this solution aims at imple-
menting client libraries for C+4 and Python languages. The libraries are implemented to
be as simple as possible, resulting in few precise functionalities that are can be used very
similarly to each other compared between the two language implementations. This section
starts with a description of the client architecture which is followed by an explanation of
how each functionality, that is offered to the user, works and how to use it. Because the be-
havior is the same, each offered functionality will be described together for both languages.
The description will also contain a demonstration of usage in both C++ and Python.

5.4.1 Client Components

All the ability to communicate via Teston Bus is offered the user via single TBusClient class.
An instatiated client utilizes multiple threads, each has individual background functionality
to perform - listening for incoming messages, sending out outgoing PUBLISH messages,
pinging the broker and processing incoming requests. There is also a set of functions to
encode and decode data. These functions are heavily used by the client to parse or encode
transmitted data, but they can also be used by the user to ease the payload creation or
processing. More about user usage of these functions can be found in Subsection 5.4.4.

The listener thread simply receives a message by receiving fixed header first and the rest
of the message second based on the remaining length specified in the header. After that it at-
tempts to parse the data and performs the action based on the received message. Receiving
a CONNACK, REQACK, SUBACK or UNSUBACK results in noting that the acknowl-
edgement arrived (if it was expected), hand over message contents and notifying a condition
variable to communicate that the acknowledgement was successfully received. PUBLISH
messages are processed based on the type. Requests are put to a queue, that is consumed
and processed by the request processor thread. Responses are handed over to the client (in
case it expects such response) and a condition variable is notified. Normal messages are
just used as an argument for a callback that was provided by the user when subscribing to
given topic, value returned by the callback is ignored since not being a request means that
message publisher does not expect a response.

The sender thread consumes a queue of PUBLISH messages. The reason why this thread
only operates PUBLISH messages is that they are expected to be an overwhelming majority
of outgoing traffic. Other message types are sent directly from client methods without going
through a queue. Based on a client’s attribute bulkMode it either just sends a dequeued
message or starts bulking. Bulking consists of concatenating dequeued messages during
the bulking time period. When the period ends, concatenated messages are completed
with a fixed header containing the BULK message type and the remaining length value.
The completed BULK message is sent afterwards. The decision whether to bulk or not is
made when a message is enqueued. Call client’s special publish enqueue function measures

33

time periods since the last message was enqueued. These time periods are kept for 10 last
messages. Every enqueue also includes averaging last 10 periods, which is then compared
to a threshold of 10 milliseconds. If the average is lower then the threshold, bulking mode
is set until the average increases over the threshold value.

Another important thread is the request processor thread which consumes a queue of
incoming requests. These requests are enqueued to this particular queue by the sender
thread while processing PUBLISH messages. After the request processor dequeues a request,
it uses the request payload as an argument for a callback, that was registered by the user
during topic subscription. When the callback returns, the thread checks the request status
in case the client received a request cancel from another client that sent that given request,
which would lead to simply ignoring the request result and moving on to the next request.
If not, the value returned by the callback is sent back as a response using metadata from
the request message.

There is also a thread responsible for pinging the broker (via PINGREQ message) in
order to make sure that the broker does not close the connection as a result of inactivity.
Secondary effect of this thread is also that the client makes sure the broker is responding
based on received PINGRESP. The interval used for the pinging is a half of the keepAlive
interval specified when connecting to the broker.

Lastly, threads are also used when working with timers, which are used for example
for tracking whether a sent request timed out. Python offers a built-in threading. Timer
whereas the C++ library incorporates a simple timer implementation, that was written
by Shalitha Suranga [16] and was just slightly adjusted. This timer creates a detached
thread that sleeps for given time interval. After the thread wakes up, it check whether
the timer was canceled, if it wasn’t, it uses a callback provided during timer instantiation.
The callback modifies request state to reflect that it timed out.

5.4.2 Client Creation and Connection

The client can be instantiated with three arguments - a string containing client identifier,
a string containing IP address of the broker the user will be interacting with, and a port
number, on which the broker accepts new connections. There are two optional boolean pa-
rameters. First one controls whether the client should print output log messages. The de-
fault is that logging is not printed out. Error messages are printed to stderr regardless
the parameter value. The second optional parameter enables or disables the bulking fea-
ture. The default value is that the bulking is enabled.

The connection can be done with a method connectToBroker() that accepts two argu-
ments, the first one is a cleanStart boolean (with a default value set to true) and the second
one is an unsigned integer keepAlive (with a default value equal to 60). Setting cleanStart
makes the client forget any previously sent requests, which means you cannot retrieve their
status or response. The keepAlive specifies a period (in seconds) in which both sides need
to receive any message (or a PINGREQ / PINGRESP) in order to not end the connection
due to unavailability. The client sends a PINGREQ message every time a half of this time
interval passes.

The connectToBroker() method performs a connection to the broker, it also awaits
a CONNACK for a small predefined time period (5 seconds). It also starts the threads
that are respomnsible for receiving, sending and processing messages. After a successful
connection, it starts up the thread responsible for periodic pinging the broker. In case of any

34

unsuccessful event (unsuccessful socket creation or TCP connection, timed out CONNACK
or not receiving a Success reason code), the function raises a appropriate exception.

Python Example

client creation with disabled logging and enabled bulking
client = TBusClient("python_client_id", "192.168.0.173", 5035)
client.connect_to_broker(clean_start=True, keep_alive=180)

client creation with enabled logging and disabled bulking
client = TBusClient("python_client_id", "192.168.0.173", 5035, True, False)
client.connect_to_broker(clean_start=True, keep_alive=180)

C++ Example

// client creation with disabled logging and enabled bulking
TBusClient client ("cpp_client_id", "192.168.0.173", 5035);
client.connectToBroker (true, 20);

// client creation with enabled logging and disabled bulking
TBusClient client ("cpp_client_id", "192.168.0.173", 5035, true, false);
client.connectToBroker (true, 20);

5.4.3 Subscribing and Unsubscribing

For subscription the user needs two things - a string containing a topic filter, that will
identify messages that the client is interested in, and a callback function that the client will
use to process incoming requests and normal messages. The callback receives an unchanged
payload from the request message. If the user expects to process requests on given topic,
the callback must return bytes representing a response payload, which will be appended
to the response message without any further change by the client library. The user is
expected to handle message payload decoding and response encoding on his own. However,
the library provides following encode and decode functions that could be used if you are
sure that the other side uses them too:

encode2Bytes() / decode2Bytes() - encodes/decodes a ushort in 2 bytes,
+ encode4Bytes() / decode4Bytes() - encodes/decodes a uint in 4 bytes,

o encodeVarLenInt() / decodeVarLenInt () - encodes/decodes a variable length inte-
ger in variable number of bytes (described in Subsection 5.2.2)

o and encodeString() / decodeString() - encodes/decodes a string (also described
in Subsection 5.2.2).

The most useful functions are probably the ones operating on a string. Usage of these
function is not mandatory, but it could help when transferring data that can be easily
represented e.g. as a string or an integer.

35

In the Python library, the callback is a function that will receive PUBLISH message
payload as bytes. In case of requests, the callback should also return bytes. All encode and
decode functions can be found in the messaging.py module.

In the C++ library, the callback type must be void (*callback) (ReceivedMessagex)
- they receive an argument, which is a pointer to a simple structure ReceivedMessage, which
offers following methods:

e vector<unsigned char> getPayload() retrieves the payload of the incoming PUB-
LISH message,

o string getTopic() retrieves the topic which was a part of the PUBLISH message,
which could make it easier to create a single callback function processing message
payloads from multiple topics,

e void setResponse(vector<unsigned char> data) - sets a payload, that will be
included by the client in the response PUBLISH message

o and vector<unsigned char> getResponse() which is called after the callback re-
turns if the incoming PUBLISH message was a request.

class ReceivedMessage {
std::vector<unsigned char> payload;
std::string topic;
std::vector<unsigned char> response;

public:

ReceivedMessage(std: :vector<unsigned char>, std::string);
std: :vector<unsigned char> getPayload();
std: :string getTopic();
void setResponse(std::vector<unsigned char> data);
std::vector<unsigned char> getResponse();

};

If a SUBACK with a code indicating success is received, topic and callback are saved
among active subscriptions. If the broker does not send a response within a certain period
of time (coded as 5 seconds) or the subscription was not successful, an exception is raised.

Python Subscription Example

def cb(data):
number_as_str, byte_len = decode_string(data)
number = int(number_as_str)
return encode_string(number*3)

def main():
client = TBusClient("python_client_id", "192.168.0.173", 5035)
client.connect_to_broker ()
client.subscribe("tripleValue", cb)

36

C++ Subscription Example

void Cb(ReceivedMessage *msg) {
vector<unsigned char> payload = msg->getPayload();
int len;
string data~= decodeString(payload, &len);
int res = stoi(data) * 3; // calculate result
msg->setResponse (encodeString(to_string(res)));

int main() {
TBusClient client ("cpp_client", "192.168.0.173", 5035);
client.connectToBroker();
client.subscribe("tripleValue", *Cb);

Unsubscription requires only a topic filter, upon broker timeout or obtaining an unsuc-
cessful code an exception is raised.

Python Unsubscription Example

client.unsubscribe("tripleValue")

C++ Unsubscription Example

client.unsubscribe("tripleValue");

5.4.4 Publishing Messages

For sending messages, the client offers two methods to perform this tasks for the user -
publishMessage () and publishRequest (). Both methods take two mandatory arguments
- a string with a topic name (it cannot contain the '#’ wildcard) and a payload (expecting
bytes in Python and vector<unsigned char> in C++). The methods also take two optional
arguments - a boolean priority flag and a timeout. Default value for the priority flag is False
and for timeout it is 0. Not specifying any timeout value for a normal message means that
the broker will try to deliver the message to the subscribers, if there aren’t any, the message
will not be stored in the broker storage. Not specifying any timeout for a request results in
the request being sent with a very low predefined timeout value (same as when waiting for
a CONNACK or SUBACK, which is 5 seconds). The user should always add some timeout
to requests in order to prevent unnecessary request timeout due to longer processing time
on the other client which computes the response. The publishRequest () also notes down
an ongoing request and starts a timer that takes care of the situation, when the given
request times out. There is also a difference in return values, method publishMessage ()
does not return anything whereas publishRequest () returns request’s packet ID.

37

Python Publish Example
payload = encode_string("test_payload")

publish a~message

client.publish_message("test_topic", payload, False, 20)

publish a~request

request_id = client.publish_request("test_topic", payload, True, 60)

C++ Publish Example
vector<unsigned char> payload = encodeString("42");

// publish a~message

client.publishMessage("test_topic", payload, False, 20);

// publish a~request

ushort requestId = client.publishRequest("test_topic", payload, True, 60);

5.4.5 Receiving Responses to Requests

In order to get the result of a request, the user must use the awaitAndProcessResponse ()
method. This method takes two arguments, one of them is the packet ID, which identifies
a specific request, and the second one is a callback. The method returns whatever is returned
from the callback, since it is used to process the response payload. If the request timed out
or was deleted from the broker storage (as a victim when the storage capacity was reached),
the method raises an according exception. In Python, the callback should be a function,
that takes one argument, which is the raw response payload as bytes. In C++, the function
callback argument is again a raw response payload as a vector<unsigned char>.

Python Receive Response Example

def cb_req_pub(data):
numstr, len = decode_string(data)
return numstr

def main():
client = TBusClient("python_client_id", "192.168.0.173", 5035)
client.connect_to_broker ()
payload = encode_string("test_payload")
publish a~request
request_id = client.publish_request("test_topic", payload, True, 60)
await response
request_result = client.await_and_process_response(request_id, cb_req_pub)

38

C++ Receive Response Example

int CallbackPub(vector<unsigned char> response) {
int len;
string data~= decodeString(response, &len);
return stoi(data);

int main() {
TBusClient client ("cpp_client", "192.168.0.173", 5035);
client.connectToBroker () ;
vector<unsigned char> payload = encodeString("42");
// publish a~request
ushort requestlId = client.publishRequest("test_topic", payload, True, 60);
// await response
int requestResult = client.awaitAndProcessResponse(requestId, *CallbackPub);

5.4.6 Canceling Requests

The user is able to cancel requests which it sent out, but did not get a response for, yet.
Basic use case could be that the program using Testos Bus sent a request that takes longer
to process and the program does not need the response anymore. The client method only
requires a packet ID of a request that was sent out. The method takes care of sending
a REQACK message with proper reason code to the broker and marking the request as
canceled.

Python Cancel Example

client.cancel_request(request_id)

C++ Cancel Example

client.cancelRequest(requestId);

5.4.7 Disconnection

Disconnection si performed by method that takes two optional argument, a reason code
and a string containing a reason for the disconnection. This reason might help people
identify what happened when going through the logs. Default usage for the user is calling
the method without specifying arguments, which results in normal peaceful disconnection.
The user also can specify the code and reason in order to identify disconnection after an
error occurs. Disconnection results in all client threads being stopped and joined. The client
also looses all subscriptions.

39

Python Disconnection Example

normal disconnection
client.disconnect ()

abnormal disconnection
client.disconnect (DisconnectReasonCode.IMPLEMENTATION _SPECIFIC_ERROR,
"failed connection to database")

C++ Disconnection Example

// normal disconnection
client.disconnect();

// abnormal disconnection
client.disconnect (DisconnectReasonCode: : IMPLEMENTATION _SPECIFIC_ERROR,
"failed connection to database")

5.5 Automated tests

The solution also contains automated end-to-end tests validating satisfaction of the basic
mandatory requirement specified in the Section 2.1. The tests make sure it is possible to
perform basic operations via client libraries and a running broker instance. The Table 5.7
shows a list of requirements and which test cases cover them. The tests check that it is
possible to use a feature in a happy path scenario or that an incorrect usage is detected and
not permitted. They also check that it is possible to communicate with clients connected
to different brokers in the broker network. Single test runs on a separate broker instance so
that the test result is not affected by previous tests. Each test scenario is performed with
a C++ publisher-subscriber pair and also a Python publisher-subscriber pair.

5.6 Performance testing

Performance testing was aimed to explore the influence of the overhead of a single TBus
instance on the communication speed and response time. The testing was conducted on
a single computer running the broker and all of the clients, which limits the computation
capabilities, but reduces network transfer delay. In order to focus purely on the middle-
ware’s overhead and for example not on request payload computation when sending requests
via TBus, the experiments were conducted using the simplest publisher and subscriber pairs
possible. The subscriber just returns whatever payload it receives in the request. The pub-
lisher sends out requests with an encoded string test in certain intervals and also has
a thread that is checking if the response returned and how long it took to receive it.
There were two experiments conducted. The first was about exploring how the TBus
behaves when you have a single publisher-subscriber pair that generates traffic in very small
intervals. It was performed by sending a block of messages, after which the speed increased.

40

Requirement Corresponding Test Case

messaging /happy_ path__two_ subs.sh
messaging /happy_ path_ wildcard__sub.sh
messaging/multiple_subs_on__client.sh
subscription/invalid_ filter_sub.sh
subscription/invalid_ filter__unsub.sh
subscription/sub__twice.sh
subscription/sub__unsub__happy_ path.sh

Messaging from 2.1.1 subscription/unsub_ without_ previous_sub.sh
requests/happy_ path.sh
Request Management from 2.1.1 requests/wildcard__sub.sh

request__storing/store_ request.sh
Waiting for Message Receiver from 2.1.1 | request_storing/store_ response.sh

Request Timeout from 2.1.1 requests/timeout.sh
Request Cancel from 2.1.1 requests/request__cancel.sh
Message Priority from 2.1.1 requests/request__priority.sh
Bulking from 2.1.1 requests/bulking.sh

messaging /subs__on__different_ nodes.sh

messaging /wildcard__sub__ different_ node.sh
requests/happy__path_sub_on_ different_node.sh
requests/wildcard__sub_on_ different_ node.sh
request__storing/store_request__sub_on__ different_ node.sh
Bus Instance Connection from 2.1.2 request_ storing/store_response sub_on_ different_ node.sh

Limit of Connected Clients from 2.1.5 connection/limit__of connected_ clients.sh

Control of Memory Capacity from 2.1.6 | request_storing/storage capacity.sh

Table 5.7: Mapping of requirements to automated test cases.

The Table 5.8 shows that the latency significantly increases when the requests are pro-
duced faster than 64 messages per second. The bulking explains the delay when it was
enabled, because when collecting messages into a bulk during a 50 ms window increases
the latency in order to save network resources. We can also see that disabling bulking when
using the C++ client also suffers from a significant latency increase when passing the speed
of 64 messages per second.

The curious column is the one containing values for a case when the Python clients were
used in combination with disabled bulking, because we don’t see any significant latency
during the whole process. I believe that the numbers were affected by Python’s overall
performance and I believe that the client was not able to produce requests that fast. All
other data could suffer from client’s inability to produce requests fast enough, but that
particular case I believe it had a serious impact on the results. The good thing is that
the TBus was able to withstand such traffic generated in a single publisher-subscriber pair.

The second experiment was meant to explore what happens when multiple publisher-
subscriber pairs communicate via the TBus at the same time. Each publisher used separate
topic to communicate with exactly one separate subscriber. Also each publisher was pro-
ducing 10 messages per second.

First attempt at connecting multiple subscribers and publishers showed a flaw that
taking care of a new connection has a significant influence on messages being delayed

41

client library used C++ Python

bulking enabled disabled enabled disabled
2 messages/sec 2.8157 ms 2.2712 ms 3.8853 ms | 3.0776 ms
4 messages/sec 0.7799 ms 0.9591 ms 3.0137 ms | 2.4576 ms
8 messages/sec 0.9335 ms 0.9290 ms 3.0141 ms | 1.9542 ms
16 messages/sec 0.9564 ms 1.0919 ms 3.0136 ms | 2.0971 ms
32 messages/sec 1.0638 ms 1.0347 ms 2.9905 ms | 2.0929 ms
64 messages/sec 0.8916 ms 0.9536 ms 2.9046 ms | 2.0126 ms
128 messages/sec 52.0214 ms 38.374 ms 29.9026 ms | 1.8388 ms
256 messages/sec 77.5221 ms 35.173 ms 75.7054 ms | 1.6265 ms
512 messages/sec 77.6337 ms 30.991 ms 68.5393 ms | 2.0159 ms
1024 messages/sec 75.1017 ms 34.660 ms 58.6613 ms | 2.1736 ms
~2048 messages/sec 27.6548 ms | 66.6631 ms | 62.5354 ms | 3.7976 ms
~4096 messages/sec 61.9949 ms | 53.5614 ms | 96.3299 ms | 2.5598 ms
~8192 messages/sec 98.5921 ms | 39.0048 ms 92.87 ms 2.8644 ms
~16384 messages/sec 114.7219 ms | 28.0954 ms 90.72 ms 2.8456 ms
~33333 messages/sec 247726 ms | 31.6303 ms | 82.7191 ms | 1.3552 ms
~66666 messages/sec 161.1337 ms | 61.9033 ms | 94.6853 ms | 1.2160 ms
~142900 messages/sec 155.0267 ms | 94.4913 ms | 103.5409 ms | 1.2013 ms
~333333 messages/sec 148.9574 ms | 120.6753 ms | 134.5862 ms | 1.2749 ms
~1000000 messages/sec || 138.0919 ms | 122.5201 ms 96.44 ms 2.2854 ms

Table 5.8: The average latency of requests produced at certain speeds.

and overall costs the operation is not easy for the bus to cope with in case there are
multiple new clients connecting at the same time. The second attempt included slower client
connection with certain time periods between each connection. The number of concurrently
communicating pairs was gradually increased up to a number of roughly 250 pairs, when
the timeouts started to occur more frequently. As a result of this behavior, it was more
reasonable to try 200 concurrently communicating pairs. The period between a request
message being sent and receiving the result payload was measured. The results in Table
5.9 show that in every case the TBus was able to provide a response for a request faster

than speed in which the requests were produced.

client library used C++ Python
bulking enabled | disabled enabled disabled
average latency 4.4007 ms | 8.032 ms | 12.0666 ms | 6.1445 ms

Table 5.9: The average latency of request while 200 pub-sub pairs concurrently communi-

cate.

42

Chapter 6

Conclusion

This thesis’s goal was to create a middleware that would serve as a communication bus
for the Testos platform. I needed to define requirements and needs of the platform, then
I explored few popular message-oriented middleware solutions and chose MQTT as a basis
for the Testos Bus. The MQTT protocol was simplified, modified and extended in order to
fulfill the needs of the platform. Than I implemented the modified version of the protocol
including two client libraries for Python and C++.

After the implementation was finished, the Testos Bus was tested via automated tests
and experimented with in order to discover performance abilities and limitations of the so-
lution, which showed that the Testos Bus is able to withstand few thousand requests at once
and its overhead does not significantly prolong the communication when a single publisher
produces around 60 requests per second. The middleware overhead also does not signifi-
cantly delay the communication when there are 200 publisher-subscriber pairs exchanging
a small number of requests per second.

There is a lot of possibilities for future development. First of all, it is possible to imple-
ment optional requirements of the Testos platform such as authentication and authorization,
service load balancing or monitoring. It would be very useful to hook up the broker to a log
server in order to make storing and searching for log information much easier. Second of all,
the bulking strategy implementation can be more dynamic, using periods of time without
high traffic to measure the network connection status in order to select more appropriate
threshold and bulking window with in order to save the resources and also reduce the delay
of obtaining a response caused by collection of messages into a bulk. It is also possible to
modify client libraries so that they can have separate requests queues for each individual
subscription. Lastly, there is an opportunity to add an ability to detect a subscriber situ-
ated on the same machine in order to exchange messages with it via the main memory to
increase the communication speed.

43

Bibliography

[1] AMQP Jonline]. [cit. 2021-01-06]. Available at: https://amgp.org/.

[2] Industry Leading Log Management | Graylog [online]. [cit. 2021-01-16]. Available at:
https://www.graylog.org/.

[8] MQTT - The Standard for IoT Messaging [online|. [cit. 2020-12-15]. Available at:
https://mqtt.org/.

[4] OASIS Open [online]. [cit. 2019-12-15]. Available at: https://www.oasis-open.org/.

[5] OMG | Object Management Group [online]. [cit. 2021-01-09]. Available at:
https://www.omg.org/.

[6] What is DDS? [online]. [cit. 2021-01-09]. Available at:
https://www.dds-foundation.org/what-is-dds-3/.

[7] What’s in the DDS Standard? [online]. [cit. 2021-01-09]. Available at:
https://www.dds-foundation.org/omg-dds-standard/.

[8] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 [online], 29.
october 2012 [cit. 2021-01-06]. Available at:
http://docs.oasis-open.org/amqp/core/v1.0/os/amgp-core-complete-v1.0-os.pdf.

[9] Data Distribution Service (DDS): Version 1.4 [online], 10. april 2015 [cit. 2021-01-09].
Available at: https://www.omg.org/spec/DDS/1.4/PDF.

[10] Publish & Subscribe - MQTT Essentials: Part 2 [online]. January 2015 [cit.
2020-12-28]. Available at:
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/.

[11] Testos Platform [online]. 2018 [cit. 2020-12-29]. Available at: http://www.testos.org.

[12] MQTT Version 5.0 [online], 7. march 2019 [cit. 2020-12-13]. Available at:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

[13] The Real-time Publish-Subscribe Protocol DDS Interoperability Wire Protocol
(DDSI-RTPS) Specification [online], 3. april 2019 [cit. 2021-01-09]. Available at:
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF.

[14] Publish—subscribe pattern - Wikipedia [online]. December 2020 [cit. 2020-12-28].
Available at: https://en.wikipedia.org/wiki/Publish’%E2%80%93subscribe_pattern.

44

https://amqp.org/
https://www.graylog.org/
https://mqtt.org/
https://www.oasis-open.org/
https://www.omg.org/
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/omg-dds-standard/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://www.omg.org/spec/DDS/1.4/PDF
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
http://www.testos.org
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

[15] ScHMITT, A., CARLIER, F. and RENAULT, V. Data Exchange with the MQTT
Protocol: Dynamic Bridge Approach. In: 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring). 2019, p. 1-5. DOL:
10.1109/VTCSpring.2019.8746333.

[16] SURANGA, S. Timercpp. Available at: https://github.com/99x/timercpp.

45

https://github.com/99x/timercpp

	Introduction
	Platform Description and Bus Requirements
	Mandatory Requirements
	Messaging and Requests
	Bus Instance Connection
	Client Libraries
	Logging
	Specifiable Limit of Connected Clients to Bus Instance
	Control of Memory Capacity Limit

	Optional Requirements
	Authentication and Authorization
	Communication Integrity and Privacy
	Service Load Balancing
	Monitoring

	Communication Basis for the Bus
	Publish-Subscribe Pattern
	Message Filtering
	Advantages of Publisher-Subscribe Pattern

	Message-Oriented Middleware Solutions
	MQTT
	Data Distribution Service
	Advanced Message Queuing Protocol v1.0

	Possible Requirement Satisfaction Solutions
	Requests
	Bulk Messaging
	Bus Instance Bridging
	Message Priority
	Subscriber Load Balancing
	Load Balancing Strategies

	Logging
	Authentication and Authorization

	Implementation and Evaluation
	Testos Bus Features
	Communication Model
	Messaging
	Request/Response Pattern
	Bus Instance Connection
	Message Bulking

	Communication Protocol Messages
	Message Format
	Variable Length Integer and String Encoding
	CONNECT and CONNACK Messages
	PUBLISH Message
	MSGACK Message
	REQACK Message
	BULK Message
	SUBSCRIBE and SUBACK Messages
	UNSUBSCRIBE and UNSUBACK Messages
	PINGREQ and PINGRESP Messages
	DISCONNECT Message

	Broker
	Configurable Broker Parameters
	Bus Instance Interconnection
	Client Connection
	Subscription and Unsubscription
	Messaging
	Message Storage
	Logging

	Client Libraries
	Client Components
	Client Creation and Connection
	Subscribing and Unsubscribing
	Publishing Messages
	Receiving Responses to Requests
	Canceling Requests
	Disconnection

	Automated tests
	Performance testing

	Conclusion
	Bibliography

