
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

MIDDLEWARE FORTESTOS PLATFORM
MIDDLEWARE PRO PLATFORMU TESTOS

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR RADIM ČERVINKA
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Master's Thesis Specification |||||||||||||||||||||||||
23497

Student: Červinka Radim, Be.
Programme: Information Technology
Field of Information Technology Security
study:
Title: Middleware for Testos Framework
Category: Software analysis and testing
Assignment:

1. Get familiar with tools for communication of software systems. Study current
implementations of Publish/Subscribe protocols for message passing (e.g. MQTT, AMQP,
DDS).

2. Analyse requirements for communication of tools implemented in Testos framework. Design
the solution for message passing between 2 and more communication nodes. Designed
middleware should automatically adapt to current parameters of communication channel.

3. Implement the designed middleware. Implement adaptors for the middleware in C/C++ and
Python languages.

4. Verify the basic functionality using automated tests. Measure the performance of the
middleware.

Recommended literature:
• Tanabe K., Tanabe Y., Hagiya M. (2020) Model-Based Testing for MQTT Applications. In:

Virvou M., Nakagawa H., C. Jain L. (eds) Knowledge-Based Software Engineering: 2020.
JCKBSE 2020. Learning and Analytics in Intelligent Systems, vol 19. Springer, Cham.
https://doi.Org/10.1007/978-3-030-53949-8_5

• OASIS. MQTT Standard pro zasílání zpráv pro loT. https://mqtt.org/
• Advanced Message Queuing Protocol, https://www.amqp.org/
• OMG. Data Distribution Service, https://www.omg.org/omg-dds-portal/

Requirements for the semestral defence:
• The first two steps.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Smrčka Aleš, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: January 15, 2021

Master's Thesis Specification/23497/2020/xcervi21 Page 1/1

https://doi.Org/1
https://mqtt.org/
https://www.amqp.org/
https://www.omg.org/omg-dds-portal/
https://www.fit.vut.cz/study/theses/

Abstract
This goal of this thesis is to create a communicat ion bus for the Testos platform, which
enables the tools to communicate and uti l ize each other's services. The thesis consists
of a research of current Publish-Subscribe protocols and solutions. It also outlines the
requirements for a communicat ion bus that fits the Testos platform's needs and proposes
solutions that satisfy them.

A s a part of the research, there were 3 message-oriented software solutions explored -
M Q T T , D D S and A M Q P . The examinat ion of each solution was focused on the communi­
cation model and main features. The M Q T T protocol was chosen as the start ing point of
the bus implementation. The thesis also specifies how to extend the protocol in order to
satisfy the requirements.

M a i n M Q T T extensions proposed by this project include an introduct ion of a manage­
ment of request life cycle on top of the M Q T T message delivery and the request/response
mechanism. The protocol was also expanded by abi l i ty to pack messages into a B U L K
packet to decrease the needed network resources.

The result is a Testos Bus , which is based on a modified and expanded version of
M Q T T , that includes a broker implementat ion as well as implementat ion of client libraries
for P y t h o n and C + + . Testos Bus satisfies a l l mandatory requirements, which is verified by
automated tests.

Abstrakt
Cílem t é t o p r á c e je vy tvo ř i t k o m u n i k a č n í sběrnic i pro platformu Testos, což u m o ž n í n á s t r o ­
j ů m platformy spolu komunikovat a využ íva t n a v z á j e m svoje služby. V textu jsou prozk-
oum8na s o u č a s n á řešení a protokoly za ložené na modelu Publish-Subscribe. Dá le t a k é p ráce
specifikuje p o ž a d a v k y na k o m u n i k a č n í sběrnic i vyhovuj íc í p o t ř e b á m platformy Testos a t aké
navrhuje řešení pro sp lnění d a n ý c h p o ž a d a v k ů .

V r á m c i v ý z k u m u byly p r o z k o u m á n y t ř i řešení - M Q T T , D D S a A M Q P . P r ů z k u m
k a ž d é h o řešení by l z a m ě ř e n na z p ů s o b komunikace a h l avn í funkční prvky. Jako s t a r tovac í
bod implementace sbě rn ice by l v y b r á n protokol M Q T T . Tato p r á c e t a k é specifikuje jak
tento protokol rozšíř i t , aby byly sp lněny p o ž a d a v k y na sběrnic i .

M e z i s těžejní rozš í ření n a v r h n u t é v r á m c i t é t o p r á c e p a t ř í management ž ivo tn ího cyk lu
p o ž a d a v k ů rozšiřující z p ů s o b doručován í zp ráv a mechanismus zas í lání p o ž a d a v k ů stan­
dardu M Q T T . Pro toko l by l t a k é rozš í řen o m o ž n o s t sh lukování z p r á v do B U L K paketu za
úče lem snížení m n o ž s t v í p o t ř e b n ý c h síťových zdro jů .

Výs ledkem je Testos Bus, k t e r ý je p o s t a v e n ý na u p r a v e n é m a rozš í řeném protokolu
M Q T T , k t e r ý zahrunuje implementaci brokeru a k l ien t ských knihoven pro P y t h o n a C + + .
Testos Bus nap lňu je všechny p o v i n n é p o ž a d a v k y platformy, což ověřují a u t o m a t i c k é testy.

Keywords
Communica t ion bus, communicat ion middleware, messaging, M Q T T protocol, publish-
subscribe pattern, request management.

Klíčová slova
K o m u n i k a č n í middleware, k o m u n i k a č n í sběrn ice , management p o ž a d a v k ů , M Q T T protokol,
Publish-Subscribe model, zas í lání zpráv .

Reference
Č E R V I N K A , R a d i m . Middleware for Testos platform. Brno , 2021. Master 's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. Aleš Sm­
rčka, P h . D .

Rozšířený abstrakt
Plat forma Testos se sk l ádá z n á s t r o j ů n a p o m á h a j í c í automatizaci t e s tován í , k t e r é m ů ž e
p r o b í h a t na r ů z n á c h úrovních , od j e d n o t k o v é h o t e s tován í po t e s tován í už iva te l ského r o z h r a n í
a a k c e p t a č n í testy. V současnou chvíli jsou n á s t r o j e o d k á z á n i na znalost lokace o s t a t n í c h
ná s t ro jů , aby s n i m i mohly komunikovat. C í l em t é t o p r á c e je vy tvo ř i t k o m u n i k a č n í sběr­
nici , k t e r á by komunikaci z jednuduš i la . Jej í p ř ínos je z n a t e l n ý n a p ř í k l a d v situaci, kdy
ge ne rá to r tes tovac í sady p o t ř e b u j e provés t n á r o č n ý m a t e m a t i c k ý v ý p o č e t . N a m í s t o nut­
nosti implementace t é t o funkcionality v d a n é m g e n e r á t o r u je m o ž n é využ í t j iž existuj ící
ná s t ro j platformy, k t e r ý je dě l aný na d a n é v ý p o č t y a výs l edku d o s á h n e mnohem rychleji.
G e n e r á t o r u t es tovac í sady pak s t ač í se p řes d o t á z a t o výs ledek p r o b l é m u kolegy a s á m
doruč í výs l ednou sadu tes tovacích p ř í p a d ů v k r a t š í m čase.

V r á m c i t é t o p r á c e bylo p o t ř e b a definovat j edno t l ivé p o ž a d a v k y platformy, mezi k t e ré
n a p ř í k l a d p a t ř í m o ž n o s t zas í lání p o ž a d a v k ů a sp ráva jejich ž ivotn ích cyklů vče tně schop­
nosti do ručen í odpověd i , m o ž n o s t odložení do ručen í z p r á v v p ř í p a d ě absence př í jemce,
m o ž n o s t zruš i t běžící požadavek , m o ž n o s t označen í komunikace jako p r io r i t n í anebo schop­
nosti propojit více in s t anc í sbě rn i c a m o ž n o s t komunikace s k l i en t skými uzly na sousedních
ins tanc ích sběrn ice .

N a zák l adě t ěch to p o ž a d a v k ů byly p r o z k o u m á n y n ě k t e r é existuj ící protokoly a řešení
používaj ící Publish-Subscribe protokol, k t e r ý umožňu je komunikovat p o m o c í tzv. t é m a t ,
ke k t e r ý m se j edno t l ivé s lužby př ih lás í jako o d b ě r a t e l é z p r á v a p o ž a d a v k ů . Producen­
t ů m různých z p r á v a p o ž a d a v k ů pak jen s tač í poslat sběrnic i z p r á v u se speicf ikovaným
t é m a t e m a sbě rn ice se sama p o s t a r á o do ručen í dat s p r á v n ý m o d b ě r a t e l ů m . V t é t o p rác i
věnuji pozornost t ř e m exis tu j íc ím ře šen ím - M Q T T , D D S a A M Q P . U k a ž d é h o řešení bylo
p o t ř e b a zjistit, j a k ý m z p ů s o b e m p r o b í h á komunikace a j aké funkcionality nabíz í , aby pak
šlo n á s l e d n ě posoudit, k t e r é p o ž a d a v k y platformy řešení splňuje a jak s n a d n é je d a n é řešení
upravit nebo rozšíř i t tak, aby splnilo požadavky , k t e r é nesplňuje samo o sobe. Z výše
zmíněných řešení by l v y b r á n protokol M Q T T , k t e r ý b y l ne jméně komplexn í , pok rýva l
v ý r a z n é m n o ž s t v í p o ž a d a v k ů a bylo velmi j e d n o d u c h é j edno t l ivé funkcionality upravit , vy­
pustit anebo p ř i d a t něco ú p l n ě nového.

Ú p r a v y protokolu M Q T T zahrnovaly z j ednodušen í nebo v y p u š t ě n í n ě k t e r ý c h kontrol­
ních p a k e t ů , p ř i d á n í n ě k t e r ý c h polí (nap ř . p ř e p í n a č priority, p ř e p í n a č pro odl išení poža­
d a v k ů a o d p o v ě d í od běžných z p r á v) , p ř i d á n í nových t y p ů zpráv , jako t ř e b a typ B U L K
sloužící k zaba len í více z p r á v do j e d n é . K e sh lukování zp ráv do B U L K u docház í ve chvíli,
kdy frekvence odchozích z p r á v p řek roč í u r č i t o u mez. P ř i p ř ek ročen í meze nedocház í k odesí­
lání zpráv , ale v r á m c i k r á t k é h o časového okna jsou z p r á v y seskupovány do j e d n é z p r á v y
typu B U L K , k t e r á je odes l ána po u p l y n u t í d a n é h o časového okna. Tento p ř í s t u p slouží
k ú s p o ř e síťových zd ro jů na úkor p rod loužen í doby z ískání odpověd i m a x i m á l n ě o dé lku
t r v á n í časového okna. Dá le broker získal schopnost uloži t zprávy, p o ž a d a v k y a odpověd i
v p ř í p a d ě , že ž á d n ý př í j emce nen í d o s t u p n ý (p r o z a t í m je u k l á d á do h l avn í p a m ě t i) . Brokery
je t a k é m o ž n é propojit do p lně p r o p o j e n é s í tě . Sousedi si mezi sebou přepos í la j í komunikaci
a zajišťují t í m j e d n o t l i v ý m k l i e n t ů m m o ž n o s t komunikovat s klienty a s l u žb ami p ř i p o j e n ý m i
na sousedn í broker.

Výs ledná sběrn ice j m é n e m Testos Bus zajišťuje všechny p o v i n n é p o ž a d a v k y sběrn ice .
Sk ládá se z brokeru i m p l e m e n t o v a n é h o v jazyce C # a dvou k l ien tských knihoven pro C + +
a P y t h o n . T y t o dva j azyky byly vybrány , p r o t o ž e d r t i v á vě t š ina n á s t r o j ů platformy Testos
jsou i m p l e m e n t o v á n y p rávě v t ě c h t o dvou jazyc ích . Implementace je doprovozena auto­
m a t i c k ý m i testy ověřující z á k l a d n í funkcionalitu a sp lněn í pov inných p o ž a d a v k ů . Cí lem
v ý k o n n o s t n í c h e x p e r i m e n t ů bylo ozkoušet režijní z á b ě r sběrn ice na komunikaci j e d n é ko-

munikuj íc í dvojice rychle generuj ící mnoho p o ž a d a v k ů a na komunikaci mnoha souběžných
konverzací , kde je generování 10 p o ž a d a v k ů za v te ř inu .

Exper imenty ukázaly , že v p ř í p a d ě 200 souběžných konverzac í mezi klienty (10 poža­
d a v k ů za v t e ř inu) je latence z ískání odpověd i pod 15 ms na lokální s í t i . V p ř í p a d ě j e d n é
o s a m o c e n é konverzace prokazovala sbě rn ice m i n i m á l n í dopad režie do rychlosti zhruba
64 z p r á v za v t e ř i nu (latence pod 5 ms), př i p ř ek ročen í rychlosti 100 p o ž a d a v k ů za v t e ř i nu
by l dopad režie značný (latence okolo 100 ms), ale dobrou zp rávou bylo, že sběrn ice komu­
nikaci u s t á l a bez se lhání .

Závěr t a k é zmiňuje mnoho m o ž n o s t í pro b u d o u c í vývoj sběrn ice , jako n a p ř í k l a d zave­
den í autentizace a autorizace, zpracováván í z á z n a m ů logovaných brokerem p o m o c í log
serveru, dynamickou implementaci sh lukování zp ráv do B U L K u p o m o c í m ě ř e n í odezvy
k o m u n i k a č n í h o k a n á l u vče tně d y n a m i c k é h o n a s t av o v án í p a r a m e t r ů sh lukování nebo imple­
mentace detekce v ý s k y t u komunikuj íc ích k l ien tů na s t e j ném př í s t ro j i a ná s l edné p ř e d á v á n í
komunikace p o m o c í h l avn í p a m ě t i .

Middleware for Testos platform

Declaration
I hereby declare that this master's thesis was prepared as an original work by the author
under the supervision of M r . Ales Smrcka. I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

R a d i m Č e r v i n k a
M a y 17, 2021

Acknowledgements
I would like to thank my supervisor, M r . Aleš Smrčka , for the supervision, t ime and effort
he invested in me when I was working on this thesis. Th is thesis would not have been
finished without h im.

Contents

1 Introduction 3

2 Plat form Description and Bus Requirements 4
2.1 Manda tory Requirements 4

2.1.1 Messaging and Requests 4
2.1.2 Bus Instance Connect ion 5
2.1.3 Client Libraries 6
2.1.4 Logging 6
2.1.5 Specifiable L i m i t of Connected Clients to Bus Instance 6
2.1.6 Cont ro l of Memory Capaci ty L i m i t 6

2.2 Opt iona l Requirements 7
2.2.1 Authent ica t ion and Author iza t ion 7
2.2.2 Communica t ion Integrity and Pr ivacy 7
2.2.3 Service L o a d Balancing 7
2.2.4 Moni to r ing 7

3 Communicat ion Basis for the Bus 8
3.1 Publish-Subscribe Pat tern 8

3.1.1 Message F i l t e r ing 8
3.1.2 Advantages of Publisher-Subscribe Pa t te rn 9

3.2 Message-Oriented Middleware Solutions 9
3.2.1 M Q T T 9
3.2.2 D a t a Dis t r ibu t ion Service 12
3.2.3 Advanced Message Queuing Pro toco l v l . O 14

4 Possible Requirement Satisfaction Solutions 16
4.1 Requests 16
4.2 B u l k Messaging 17
4.3 Bus Instance Br idg ing 18
4.4 Message Pr io r i ty 19
4.5 Subscriber Load Balancing 19

4.5.1 L o a d Balanc ing Strategies 20
4.6 Logging 20
4.7 Authent icat ion and Author iza t ion 20

5 Implementation and Evaluation 21
5.1 Testos Bus Features 21

5.1.1 Communica t ion M o d e l 21

1

5.1.2 Messaging 22
5.1.3 Request/Response Pat tern 22
5.1.4 Bus Instance Connect ion 23
5.1.5 Message B u l k i n g 23

5.2 Communica t ion Pro toco l Messages 23
5.2.1 Message Format 24
5.2.2 Variable Length Integer and Str ing Encoding 24
5.2.3 C O N N E C T and C O N N A C K Messages 24
5.2.4 P U B L I S H Message 25
5.2.5 M S G A C K Message 26
5.2.6 R E Q A C K Message 26
5.2.7 B U L K Message 27
5.2.8 S U B S C R I B E and S U B A C K Messages 27
5.2.9 U N S U B S C R I B E and U N S U B A C K Messages 28
5.2.10 P I N G R E Q and P I N G R E S P Messages 28
5.2.11 D I S C O N N E C T Message 29

5.3 Broker 30
5.3.1 Configurable Broker Parameters 30
5.3.2 Bus Instance Interconnection 31
5.3.3 Client Connect ion 31
5.3.4 Subscript ion and Unsubscr ipt ion 31
5.3.5 Messaging 32
5.3.6 Message Storage 32
5.3.7 Logging 33

5.4 Client Libraries 33
5.4.1 Client Components 33
5.4.2 Client Creat ion and Connect ion 34
5.4.3 Subscribing and Unsubscr ibing 35
5.4.4 Publ i sh ing Messages 37
5.4.5 Receiving Responses to Requests 38
5.4.6 Cancel ing Requests 39
5.4.7 Disconnection 39

5.5 Automated tests 40

5.6 Performance testing 40

6 Conclusion 43

Bibl iography 44

2

Chapter 1

Introduction

This thesis explores the topic of using a software to facilitate easy communicat ion among
independent components of the Testos platform such as databases, data generators, servers,
ind iv idua l tools and services. The software would enable each component to use services
provided by other components to finish its tasks faster. A good example is a test set
generator that sometimes needs to solve some complicated ma th problems i n order to
generate the set. It could use the new communicat ion tool to contact a platform component
designed for solving given ma th problems very fast i n order to get the result faster than
computing it itself.

Current communicat ion middleware solutions already offer superb performance, scal­
abi l i ty and many features, configurations and options, how to uti l ize them, but some of
them are relatively complex and take a significant amount of t ime to learn how to deploy
or how to incorporate them into programs i n order to make them communicate w i th each
other. O n the other hand, solutions wi th less complexity usually do not offer features that
are crucial for specific use cases.

The goal is to create a lightweight communicat ion bus that satisfies requirements and
needs of the platform by adopting an existing approach and adding features that are not
part of that part icular solution or model . It is also substantial to offer client libraries
that are easy to use i n applications so that the development t ime is spent more on feature
development rather than communicat ion interface.

This thesis consists of five other chapters. Chapter 2 specifies and describes the bus
requirements that emerged from the needs of the platform. The following chapter, Chapter
3 explores the Publish-Subscribe pattern and its applications as a communicat ion basis for
the Testos Bus . Chapter 4 explores adjustments of the M Q T T protocol needed to perform
to satisfy the requirements identified i n Chapter 2 Chapter 5 describes the implemented
broker and client libraries. Whole thesis is enclosed wi th Chapter 6 which contains a short
conclusion.

3

Chapter 2

Platform Description and Bus
Requirements

Testos (Test Too l Set) platform [11] supports the automation of software testing. Tools
w i th in the platform combine different levels of testing (from unit to acceptance testing)
wi th various categories of testing, such as model-based testing, requirement-based testing,
G U I testing, data-based testing, and execution-based testing wi th dynamic analysis.

The purpose of the communicat ion bus is to enable easy access to available services
for Testos tools and clients that would like to use them. The client setup and connection
should not be complex because it is substantial not to waste developer's t ime on connecting
to a platform that should help to automate and ease the testing process.

This chapter specifies requirements mandatory and optional for satisfaction of basic
needs of the platform. They are defined i n separate paragraphs and i n most cases the de­
scription is accompanied by an explanation why the requirement is important or what is
achieved by fulfilling i t . Mos t of them are functional and connected to data transfer or
security, the rest covers requirements essential e.g. for serviceability of the bus (Subsection
2.1.4 and 2.2.4).

2.1 Mandatory Requirements

Requirements i n the following subsections are essential so that the Bus is able to satisfy
basic needs of the Testos platform. Most of the requirements are functional apart from
those specified i n Subsections 2.1.3, 2.1.4, 2.1.5, and 2.1.6.

2.1.1 M e s s a g i n g a n d Requests

The pr imary function of a communicat ion bus is enabling exchange of messages between
the connected clients. Th is should be implemented v ia the Publish-Subscribe pattern in
order to mitigate the need of knowing the precise location of a service a client wants to use.
There is a Section 3.1 explaining what the Publish-Subscribe pattern is and what are its
advantages.

Request Management

Another fundamental requirement for the Testos bus is clients' abi l i ty to send requests as
a specific message. The bus should offer a mechanism that ensures the request publisher

4

receives a response for its request from the request topic subscriber that received and
processed the request. The bus should also inform the request publisher about an error
that occurred during request handling, processing, or computat ion of a result.

Wait ing for Topic Subscriber Availability

It should be possible to mark a message or request so that the bus waits w i th its delivery
when there is no subscriber available at the moment instead of dropping the message or
request.

Binary Prior i ty of Messages

There should be a possibil i ty to mark a message or request as pr ior i ty communicat ion and
it should be handled prior to the non-priority messages or requests. Two levels of pr ior i ty
are sufficient - regular and prior i ty messages and requests.

Request Timeout

It is important to be able to specify the timeout or expirat ion period for requests so the bus
can cancel the request (and delete it i f the request is wai t ing for an available subscriber)
after expirat ion and inform the request publisher that the timeout occurred.

Request Cancel

Clients should be able to cancel their ongoing requests even before a timeout occurs (if any
timeout was specified). This is very useful i n situations when the response computat ion
takes longer than a few seconds and the publisher does not require the result anymore (e.g.
some k ind of error occurred on the publisher's side, it got canceled by a person managing
the publishing client, etc.).

Sending Bulks of Messages and Requests

It is also important for the platform that clients can publ ish messages and requests in bulk
due to overload or performance parameters of the communicat ion l ink. Sending a bulk of
messages benefits from reduction of overhead needed for message transfer.

2.1.2 B u s Instance C o n n e c t i o n

The bus instances w i l l be able to accommodate a l imi ted number of connected clients and
it is important to be able to connect mult iple bus instances i n order to scale the number
of clients connected to the bus and communicat ing wi th each other. It is also possible that
different services w i l l run on various bus instances.

The interconnection is very useful i n the following si tuation: A research group develops
a new tool that helps wi th automated testing. To incorporate and uti l ize it v i a other
existing Testos bus instances, it would need to be instantiated on every single one of them.
This way the researches create their own bus instance, connect their services, tools, and
devices and then connect their bus instance to other existing ones (or a network of those),
which enables everyone to use the newly developed tool and also the inst i tut ion has access
to other inst i tut ions ' tools and services.

5

2.1.3 C l i e n t L i b r a r i e s

The bus implementat ion should also offer client libraries so that it is possible to easily
develop new tools and services that can use the features of the bus. The libraries w i l l
provide support for P y t h o n and C + + . P y t h o n is very popular high-level language wi th
programming beginners as well as scientists that work wi th artificial neural networks, image
processing do data min ing or need some automation scripts. The choice to support C + +
was made because it is also very popular, but mainly because it facilitates creation of high-
performance solutions. Another important factor was that most of current Testos tools are
wri t ten i n these two languages.

2.1.4 L o g g i n g

The bus instance needs to be serviceable i n order to be usable i n the real world. The base
feature that helps w i th fault identification is logging. The instance should log various events
such as:

• successful receiving, storing, restoring and delivering request response to request pub­
lisher,

• canceling request by its publisher,

• successful receiving, storing, restoring and delivering message to subscribers,

• error occurring during request handling or message delivery,

• successful/unsuccessful subscription and subscription cancel,

• successful/unsuccessful connection and disconnection,

• successful/unsuccessful authentication,

• unauthorized action performed,

• or discarding messages due to overload.

2.1.5 Specif iable L i m i t of C o n n e c t e d C l i en t s to B u s Instance

A s mentioned earlier, the bus instance is able to hold a l imi ted amount of connected clients,
that amount should be specifiable when running the bus instance, the administrator w i l l
be able to l imi t this threshold according to the computat ional power that w i l l be available.
After the l imi t is reached, the instance w i l l decline new connections and i f connected to other
instance, it can provide such information so the client connect to the neighbor instance.

2.1.6 C o n t r o l of M e m o r y C a p a c i t y L i m i t

W h i l e running the service, it is possible that the memory capacity w i l l be full and it w i l l
not be possible to store or process more messages or requests (e.g. when wait ing for an
available subscriber). Th is si tuation should be handled by the bus and also the bus should
take in consideration prior i ty messages and requests, those should not be dropped i n case
there is a possibil i ty to drop non-priori t ized messages or requests. P l a i n messages could
be dropped prior to requests and responses. Memory capacity l imi t can be specified as
a parameter that can be changed during runtime.

G

2.2 Optional Requirements

Following requirements describe features, that are important but not essential in order to
use the Bus as a communicat ion mediator i n the Testos platform. These features might
be satisfied i n future development. Requirement described in Subsection 2.2.3 is function,
those i n Subsection 2.2.2 and 2.2.4 are non-functional.

2.2.1 A u t h e n t i c a t i o n a n d A u t h o r i z a t i o n

In order to be able to check the identities of bus instances and ind iv idua l clients, the bus
requires a mechanism that clients w i l l use to authenticate against the bus and also to
authenticate the bus against the clients.

The clients' abi l i ty to use various bus features should be conditioned by each client's
authorization to use such features or topics. Th i s is important to restrict access to bus
configuration, logs, or monitor ing for most users, but also be able to enable access to such
features or data for clients privileged by the bus administrator.

2.2.2 C o m m u n i c a t i o n Integri ty a n d P r i v a c y

Clients using Testos Bus for communicat ion exchange and request handling might transmit
sensitive data i n the message pay loads. A l so receiving manipulated data is cr i t ica l for
the platform reliabili ty. The Bus should provide mechanisms to ensure communicat ion
integrity and privacy.

2.2.3 Service L o a d B a l a n c i n g

W h e n offering a service, it is very beneficial to deploy mult iple instances of the same service.
The Bus should offer a mechanism that enables clients to publish messages and requests
that arrive at only one instance, that is not currently busy wi th computat ion related to
a different request.

2.2.4 M o n i t o r i n g

W h e n running an instance of the Bus, it is important for the instance operator to be able
to monitor the state of the Bus . It should be possible to use some user interface to check
following pieces of information:

• connected clients and how much traffic they transmit v i a the instance,

• what topics are being used and which clients are subscribed to them,

• how many messages and how much data was transferred v i a given topics

• contents of message storage,

• or instance up-time.

7

Chapter 3

Communication Basis for the Bus

This chapter explores the Publish-Subscribe pattern and message-oriented middleware so­
lutions i n order to find a foundation on top of which it is possible to bu i ld the Testos Bus.
Fi rs t we look at the Publish-Subscribe principals and why it is beneficial to use i n the T B u s .
After that we look at modern and popular middleware solutions, describe their communica­
t ion approach and also their pros and cons which play an important role i n deciding which
protocol to implement i n the T B u s .

3.1 Publish-Subscribe Pattern

The publish-subscribe pattern {PubSub pattern for short) [14] offers a mechanism which
enables senders of messages to communicate without the need of knowing the message
recipients. The messages are categorized into classes, the sender (called publisher) s imply
publishes a message and it is delivered to every receiver (called subscriber) that is interested
in receiving given class of messages, the interest is shown by subscription to given class of
messages.

3.1.1 Message F i l t e r i n g

Messages are being filtered i n order to determine which subscribers should receive them.
This can be performed by two common filtering approaches - topic-based and content-based.

Topic-based Fi l tering

This approach uses classes called topics. A topic is specified by a str ing w i t h a hierarchical
structure. The publishers are responsible for topic creation and also for specification to
which topic a published message belongs. The subscribers subscribe to topics in order to
received messages published to given topic. G i v e n the hierarchical structure it is usually
possible to use some k ind of a wi ldcard i n order to specify a group of topics w i th a common
trait .

Content-based Fi l ter ing

Content-based filtering uses attr ibute or message content constraints defined by the sub­
scribers i n order to determine, who is interested i n a message. A s we can see here, the roles
of message classification switched, in this approach it is the subscriber who is responsible,
whereas the publisher is responsible for message classification i n the topic-based approach.

8

3.1.2 A d v a n t a g e s of P u b l i s h e r - S u b s c r i b e P a t t e r n

The P u b S u b pattern has two main advantages against the t radi t ional client-server archi­
tecture [10]. One of them is decoupling i n three dimensions:

• space decoupling - publisher and subscriber don't need to know each other's location
(e.g. IP adress and port number) i n order to exchange messages,

• time decoupling - publisher and subscriber don't need to run at the same time,
if we want to be able to transit messages between them, we just need to implement
some k ind of storage on the wait so that the message can wait for the subscriber to
come online,

• synchronization decoupling - operations on both sides don't need to be interrupted
during publishing or receiving.

The second main advantage is scalability. The operations on the message broker can
be parallelized, it is also benefitial to use message caching and intelligent message rout­
ing. Scaling up to mil l ions of connections is s t i l l challenging but possible v i a broker node
clustering and load balancing.

Testos platform benefits from this pattern because it is very simple to connect a new
application and use a l l available services only based on knowledge of available topics and
the message formats. It is very easy to add more services instances, the clients do not need
to know which one to choose or how many are available, the topology can be very dynamic
without noticeable impact on the clients.

3.2 Message-Oriented Middleware Solutions

This section describes three popular solutions of message-oriented middleware - M Q T T ,
D a t a Dis t r ibu t ion Service (D D S) and Advanced Message Queuing Pro toco l (A M Q P) . Every
solution's subsection describes its basic principles and features, mainly focused on commu-
nitat ion. It also contains a subsection shortly describing advantages and disadvantages of
using given solutions as a Testos Bus implementat ion foundation.

3.2.1 M Q T T

The M Q T T [3] [12] is an O A S I S [4] standard messaging protocol for the Internet of Things
(IoT), it implements the P u b S u b pattern. It was designed to be lightweight, the a i m was to
make M Q T T clients very small , require min ima l resources and network bandwidth so it can
be effectively used by a server as well as an IoT device. The communicat ion between client
devices and cloud is bi-directional, supports 3 QoS levels and also works over unreliable
networks, because it supports storing session information (e.g. which topics is the client
subscribed to) or last topic message, which eases the reconnection of the client, the client
does not need to subscribe again to topics in which it is interested i n and also does not
miss the last important message for given topic (e.g. latest status update of a sensor).
The standard also does not omit authentication, authorizat ion and secure communicat ion
options, which the standard describes as non-normative. Th is subsection was adapted based
on information from the M Q T T standard [12].

9

Architecture and Communicat ion

The architecture of M Q T T network is very simple, it consists of a broker and clients.
The broker is a central piece of the network, it accepts new connections, subscriptions, it
processes published messages and sends them to clients that subscribed to the message's
topic. Client s imply connects to the broker and i f that succeeds, it can use S U B S C R I B E
message i n order to subscribe to one or more topics. Clients can also publ ish messages using
P U B L I S H message, that is used to transfer the message from a publisher to the broker and
also from the broker to a l l subscribers.

It is also possible to create a persistent session between a broker and a client. It can
be set up v i a the Clean Start flag in the C O N N E C T message. If the flag is set to 1, bo th
sides delete any existing session information and start a new one. If the flag is set to 0,
then the broker stores a l l client's subscriptions and a l l new undelivered messages wi th QoS
level 1 or 2. The client also stores messages undelivered to the broker w i th QoS level 1 or 2.
U p o n reconnection, the broker continues the previous session i f there are any data stored
(and the flag is set to 0). This feature eases the reconnection process which is beneficial for
lightweight clients, because the client does not need to subscribe again to a l l the topics it
is interested in . Th is approach also saves the bandwidth between the client and the broker.

Topics

Topics are U T F - 8 encoded strings that create a hierarchy using the forward slash (' / '
U+002F) as a level separator. Topic must contain at least 1 character, it is case sensitive
and permits usage of spaces.

M Q T T topics have an advantage that they don't need to be declared before you publ ish
to them, which increases flexibil i ty and enables easier usage of the wildcards. The wi ld ­
cards are usable only when subscribing There is a single-level wi ldcard - the plus sign ('+'
U + 0 0 2 B) . It matches one topic level, such as home/first_floor/+/temp would match
temperature topics of a l l rooms i n the first floor. There is also a mult i- level wi ldcard
- the number sign ('#' U+0023). This one matches any number of topic levels, e.g.
home/f irst _ f l o o r / # would match topics such as home/f irst_floor/living_room/temp,
home/first_floor/kitchen/smoke_detector or home/first_floor/motion_sensor.

M Q T T also offers a special group of topics that are excluded from the wi ldcard match­
ing. Those topics start w i th the dollar sign - ('$' U+0024). The standard states that
the server (broker) should prevent clients from using these topics to exchange messages
wi th other clients. Th is gives opportuni ty to implementations to use such topics for other
purposes, e.g. the $SYS/ prefix is being widely adopted for topics for server-specific infor­
mat ion exchange, control A P I etc.

Quality of Service

M Q T T defines 3 QoS levels for message transfer - level 0, 1 and 2. Level 0 (also called at
most once delivery) only offers a delivery according to the capabilities of the underlying
network. There is no response from the receiver and no retry effort from the sender, on this
level, the messages arrive either once or not at a l l .

Level 1 (also called at least once delivery) guarantees that the message arrives at the least
once to the receiver. The messages get acknowledged w i t h a P U B A C K message. It is possi­
ble that the sender retries to send the message before it receives the acknowledgement, then
it is possible that the receiver can obtain mult iple copies of the same message. Duplicate

10

messages are recognizable by the D U P flag i n the message header, the original has this flag
set to 0, duplicates have it set to 1.

Level 2 (also called exactly once delivery) ensures that the message arrives exactly ones.
It is the highest level of Qua l i ty of serviec and it is valuable in situations, when loss nor
duplicat ion is acceptable. It uses a 4-way mechanism using P U B L I S H , P U B R E C , P U B R E L
and P U B C O M P messages respectively. O n l y after these messages are exchanged, both sides
can consider the message as delivered and the sender can discard a l l stored information.

Qual i ty of Service is always applied between two communicat ing sides. Clients cannot
define QoS for the whole delivery, they can only define QoS level for their communicat ion
wi th the broker. They define QoS of published messages on the way from the publisher
to the broker and also QoS level of given subscriptions, the level w i t h which the broker
w i l l deliver messages to them. It is not possible to set up a QoS level for the topic, once
the message leaves the client and arrives at the broker, the QoS level of message delivery
between the broker and topic subscribers is defined by their ind iv idua l subscriptions. It
is possible that one client publishes a message wi th the QoS level 2, but one subscriber is
receiving messages from given topic w i th QoS level 0, another one wi th QoS level 1 and
others w i t h QoS level 2, a l l according to which level they defined dur ing the subscription
process.

Request-Response Mechanism

Request management is a very important requirement of the Testos Bus . In version 5,
the M Q T T offers a very simple mechanism to send a request and receive an answer for
that request. Publ isher can use the Response Topic field in the P U B L I S H message in
order to specify topic name that it listens to for a response. The message can also contain
a Correlation Data field that helps w i th matching a response to its request. The client
that received the request now knows to which to send the response, it is also important to
add the correlation data i f it was specified in the request. Th is mechanism is too simple to
satisfy a l l request-related requirements of the Bus, but this concept is a good foundation
to bu i ld on.

Retained message

M Q T T offers a mechanism of a retained message. It is specified by a R E T A I N flag in
a normal P U B L I S H message and what is does is that the broker stores this message as
k ind of a "last known good value" for the topic it is published to. The broker saves only
the last one for given topic and the retained message is also sent to a new subscriber after
a successful subscription. Th is feature is very useful in si tuation when the topic transmits
messages that serve as a status update or status report since every new subscriber can
immediately get the last known status of the publisher (e.g. a temperature sensor).

Shared subscriptions

The standard version 5 offers a new type of a subscription that can be associated wi th
mult iple connections. Th is type of subscription delivers the message only to one of the sub­
scribers, not a l l of them, which performs the client load balancing. It differs from a reg­
ular subscription v i a the topic filter format, which is $share/{ShareName}/{filter}.
The string always stars w i th $share indicat ing that this not a regular subscription. Then
it is followed by ShareName that serves as k ind of a group identifier, a message arrives only

11

to one member of the group. The ShareName must not contain the characters ' / ' , ' + ' nor
The last part of the shared subscription topic filter string is the filter part, it represents

the topic filter that a client would use i n order to subscribe to the same topic regularly. It
is possible to use regular subscription as well as the shared one to subscribe to the same
topic. The broker sends a copy of a published message to each regularly-subscribed client
as well as to one client from each shared subscription group.

M Q T T as a Testos Bus Foundation

M Q T T is missing a lot of features that are required from the Testos Bus, on the other
hand it is a very straight-forward implementat ion of the P u b S u b pattern and it is very
simple to bu i ld addi t ional features upon it . Central ized architecture based on a broker is
instrumental in moving a lot of logic and computat ional requirements away from clients
which makes a big contr ibut ion to bui ld ing lightweight and easy-to-use client libraries that
promise s implic i ty for the programmers developing clients and applications using the Bus .
M Q T T is also frequently a part of research for the past few years, which offers a base of
research papers, articles and implementations from which it is possible to adapt ideas in
order to extend the M Q T T standard in order to satisfy the requirements.

3.2.2 D a t a D i s t r i b u t i o n Service

The D a t a Dis t r ibu t ion Service (D D S) is a middleware protocol and A P I standard [7] from
the Object Management Group (O M G) [5]. It is capable of connecting system compo­
nents of businesses as well as mission-cri t ical Internet of Things applications. It uses
a Data-Centr ic Publish-Subscribe (D C P S) model which implements the P u b S u b pattern
using messages that also include the contextual information a receiver needs in order to
understand the received data. W h e n using a more t radi t ional approach that is message-
centric, the programmer writes code that sends messages, but when using the data-centric
middleware, the code is wri t ten to specify how and when to share the data and the D D S
directly implements data sharing that is controlled, managed and secure. It also offers
a discovery protocol to help the programmers find other communicat ion participants and
ease the development w i th this plug-and-play feature.

Communicat ion

Every communicat ion is conceptually restricted by domain. Components can only com­
municate w i th other components wi th in the same domain which is identified by a unique
integer I D . To communicate wi th in a domain, the appl icat ion has to create a DomainPar-
ticipant. It is possible to create mult iple DomainPar t ic ipants wi th in a single applicat ion in
order to create components to communicate across mult iple domains. D D S uses Topics as
a communicat ion medium for message exchange. A Topic has a unique identifier, quali ty
of service setting and a type which defines what k ind of data is being sent. A n applicat ion
has to create a Publishers and Subscribers that are connected to one DomainPar t ic ipant .
Publisher and Subscriber are connected to DataWriters and DataReaders, which are al­
ways dependent on a single Topic and are used for sending and receiving data. The class
association is shown i n Figure 3.1. Th is subsection was adapted from [9].

12

Figure 3.1: D D S communicat ion classes association.

Global D a t a Space

This subsection was adapted from [6] . D D S has a special approach to store and access
data, it has a global data space. For the client application, the data space seems to be
a local memory that is accessed v ia A P I . In reality, reading and wr i t ing to the storage
sends appropriate messages to update the correct store on remote nodes. This i l lusion of
a global data storage gives freedom to programmers of one global storage, but on the inside
utilizes the benefits of decentralized storage such as lower impact of a node on the whole
infrastructure or performance of ind iv idua l nodes.

Discovery protocol

D D S defines a discovery protocol that helps to find relevant Part icipants and Endpoints ,
D D S also relies on this mechanism i n order to establish communicat ion between according
DataWri ters and DataReaders. Th is functionality is described and adapted from [13].
The protocol splits into two independent ones - Par t ic ipant Discovery Pro toco l (P D P) and
Endpoint Discovery Pro toco l (E D P) . The first one (P D P) specifies how the Part icipants
discover each other i n the network. Once they do discover each other, they use E D P
to exchange information about the Endpoin t they contain. The discovery information is
accessible to the user through bui ld- in topics, basically what happens is there are few pre­
defined Topics w i th bui ld- in DataWri ters and DataReaders, which are used to announce
and consume the presence and assigned quali ty of service of the local D D S Par t ic ipant and
other entities such as DataWri ters and DataReaders.

D D S as a Testos Bus Foundation

One of the ma in advantage of D D S is the data-centricity and the fact that the topics and
messages have pre-defined scheme of transferred data. Th is would help to keep the format
correct, the resource would not be wasted on rejection of transferred data. O n the other
hand, a topic needs to be declared before the communicat ion can occur, which l imits the flex­
ib i l i ty of communicat ion, it also prevents the clients from using subscriptions wi th wildcards.
Also D D S offers quite complex features that are not necessary in order to satisfy the Testos
Bus requirements. It would also be more complicated in comparison to M Q T T to bu i ld new
features upon the D D S such as request management or wait ing for subscriber availability.

13

3.2.3 A d v a n c e d Message Q u e u i n g P r o t o c o l v l . O

The Advanced Message Queuing Pro toco l (A M Q P) [1] is an O A S I S [4] open standard appli­
cation layer protocol [8]. Th is section describes the version 1.0, which is the latest, previous
version of A M Q P significantly differ from this version, version 1.0 offers a different commu­
nication approach. A M Q P is a wire-level protocol, which means that it describes the format
of data sent across the network as a stream of bytes. It was designed as a general-purpose
messaging standard. It provides a control flow for the message-oriented communication, it
also provides message delivery guarantees at most once, at least once and exactly once as
well as authentication and encryption based on T L S and S A S L . It is dependent on a reliable
transport layer protocol such as T C P . This section was adapted from [8].

Architecture and Communicat ion

The architecture of an A M Q P network is quite straight-forward, it consists of nodes that
are encapsulated wi th in a container, containers can hold mult iple nodes. A n example of
a container could be a client appl icat ion or a broker, wi th in these we could find nodes such
as producers, consumers and queues.

In the A M Q P network, there are two basic types of data units that travel through
the infrastructure - frames and messages. Frames travel between containers and their pur­
pose is to establish, end and support communicat ion (such as parameter negotiation) and
to transfer messages. Frames consist of three parts - a fixed length frame header (8 bytes),
a variable length extended header and a variable length frame body. Messages carry appli­
cation data, they travel between nodes and are encapsulated in frames w i t h the Transfer
performative. One such frame may encapsulate mult iple messages as long as the frame
size does not exceed the negotiated m a x i m u m frame size. A n annotated message consists
of header, footer, annotations and a bare message, which consists of standard properties,
application properties and opaque binary applicat ion data. Nodes are responsible for safe
storage and delivery of messages, this responsibility is transferred between the nodes as
the message travels through the network.

Two containers are connected wi th an A M Q P connection, which is a full-duplex ordered
sequence of frames. This connection is d ivided into sessions, the number of sessions is ne­
gotiated during connection establishment. Session consists of two channels, one is outgoing
and the second one is incoming. E a c h frame contains a channel number which makes it
possible to mult iplex mult iple sessions into one sequence of frames that is transferred over
the connection between containers. Links are unidirect ional and they serve as a commu­
nication medium for messages between ind iv idua l nodes. They are attached to a node at
a terminus, which can be a source or a target. A message can travel over a l ink only i f they
meet the entry criteria at the source terminus, where filtering happens. L inks are attached
to sessions i n order to communicate wi th nodes outside of the source node container.

A M Q P as a Testos Bus Foundation

The A M Q P advantage is that it is general-purpose and it fits a wide variety of use cases,
adaptations and extensions. Another benefit it could br ing as a bui ld ing stone of the Testos
bus is using the message queue paradigm, because every message is consumed by just one
receiver. O n the other hand this potential benefit l imits the possibil i ty to deliver messages
to mult iple subscribers as the P u b S u b pattern does, this feature would have to be buil t upon
the A M Q P protocol. There are more disadvantages to using A M Q P as a foundation stone

14

of the Testos bus, the queues and links have to be established prior to the message transfer.
PubSub pattern is much more flexible, for example M Q T T topics don't need any special
prior declaration and it is possible to use wildcards when subscribing to a topic, which covers
mult iple even yet unknown topic names. Message queues also store messages un t i l they are
consumed, which blocks other messages from the queue to be delivered. The Testos bus
should be able to postpone message delivery when the receiver is not available and deliver
other messages instead. A n d finally, A M Q P communicat ion links and connections are more
complex than for example M Q T T and it would be much harder to bu i ld new things upon
that as well as it could be more complex to use the bus for the client developers i n order
to properly use the A M Q P architecture advantages that its complexity brings.

15

Chapter 4

Possible Requirement Satisfaction
Solutions

In this chapter it is elaborated how to satisfy part icular Bus requirements. These ideas
and solutions bu i ld upon the M Q T T , which was chosen because it offers a centralized
architecture enabling a creation of easy-to-use and lightweight client libraries and a very
straight-forward implementat ion of the PubSub pattern that is easy to bu i ld upon and does
not contain extra unnecessary features that could not be cut out.

4.1 Requests

Probably the biggest and most important requirement for the Testos bus is the request
management. A s described earlier, M Q T T offers a very simple request/response mechanism
in its control message P U B L I S H , the client is able to add a field w i th a topic name, to which
the request receiver should send the response. This mechanism alone does not provide any
way to wait for a subscriber to jo in the request topic i n case when there is no subscriber
subscribed (the only way to somehow store a message/request is to use the retain flag),
the request has no timeout and it is not possible to cancel the request by the client that
send the request (e.g. when the result is no longer needed). The M Q T T broker does not
provide any addi t ional request management, it does not know the request state and treats
messages wi th specified Response topic field the same way as it would treat any other
message.

In order to be able to satisfy such requirements, the broker needs to some k ind of request
life cycle i n order to know, what is the state of a request and what actions can it perform in
that state. The life cycle should include request's transfer to the request topic subscriber,
response transfer from the request receiver to the response sender and should also cover
states when the request is stored in order to wait for any client to subscribe to the request
topic.

Fol lowing life cycle pictured in Figure 4.1 represents proposed request life cycle that
should cover a l l request related requirements. The middle horizontal line of states (from
the new state to the answer delivered state) shows the most straightforward use case of
a request. A client publishes to the bus, the bus delivers the request to a service (a client
subscribed to the request topic), the service creates a response, which it published to the re­
sponse topic and the bus delivers the response to the client, which published the request.

16

Figure 4.1: F in i te state machine representing the request life cycle.

A request or a response for that request can be stored when the given message (a request
or a response) was received by the bus, it can also be restored from the storage when the bus
is able to deliver the message to its recipient. A request can also end up i n a request not
delivered or a answer not delivered state which can occur i n case that the request does not
specify to be stored i n case there is no client able to receive and respond to that request.
A request can be canceled unt i l the life cycle has ended. The model also counts w i th
the possible of an error occurrence.

4.2 Bu lk Messaging

Sending messages i n bulks can be accomplished by introducing a new type of a message,
let's cal l it B U L K . The B U L K message would be very simple, it just needs a unique message
type value and an information how long the whole message is, for which the fixed M Q T T
header can be used. There is a 4-bit header field for specifying the message type and there
are 15 types already specified in the standard, which means that there is s t i l l one free value
to assign to the B U L K message. The pay load w i l l be made of ind iv idua l encoded messages.
Included message do not need to be changed, their type and length can again be read after
parsing its fixed header.

It is possible to base the bulk ing strategy on a premise that sending a single big message
means a lower load on the network resources than mult iple smaller messages transferring
the same amount of applicat ion data. Th is is because T C P acknowledges every successfully
transferred packet, sending less messages containing more data each result i n less acknowl­
edgements sent over the network. The resource load difference is expressed by inequation

Craw + Co N * Craw + CQ (4 1)
is ^ N*ts

 [' '

where:

17

• C r a w is the capacity of transmit ted raw applicat ion,

• C0 is the capacity of overhead data added i n order to transfer the applicat ion data,

• ts is the durat ion of data transfer,

• and ./V is the number of t ransmit ted messages in a bulk.

The left side of the inequation represents the bit rate needed to transfer single smaller
message. The right side represents the bit rate needed to transfer a bulk message containing
./V smaller messages i n the payload. In our case the extra data overhead (C 0) is T C P A C K
packet size, which is 66 B . Consider following variable values as an example:

. C r a w = 100B,

• C0 = 66 B , which is the T C P A C K packet size,

• ts = 10 ms,

. and N = 3.

Transferring messages of size 100 B packed i n a bulk of 3 messages results i n

which results to 16600 B / s > 12200 B / s , where bulk ing proves to use less network resources.
The difference would be even greater if we counted the data packet headers' size into
the overhead (C G) .

The disadvantage of bulk ing is that the messages are not sent right away when they are
ready, but they are gathered during a t ime period - a bulk window. This means that those
messages are delivered wi th a delay, therefore the bulk window should be reasonable small .

The proposed method measures how much traffic is generated on the output. W h e n
a certain threshold is reached, the bulk ing mode is enabled, which means that a l l outgoing
messages are not sent right away, but gathered and concatenated into a B U L K message
during a bulk window. W h e n the t ime period passes, gathered B U L K message is sent.
The threshold triggering the bulk ing mode and the length of the bulk ing window can be
static values, which results in a communicat ion adapting to rate of outgoing messages. It is
possible to use t ime periods when the rate of outgoing messages is lower and uti l ize them to
measure R T T of a P I N G message and calculate the threshold and the bulk ing window length
i n order to achieve a configurable amount of network load resource reduction. The Testos
Bus implements the bulk ing approach using static values for the threshold and the bulking
window length.

4.3 Bus Instance Bridging

Architecture of the M Q T T specified by the standard is based on a broker, to which a l l
the clients are connected. The standard does not describe any way of connecting brokers in
a network in order to create decentralized bus instance network. The instances would need
to share what subscriptions they manage. There are several possible architectures of such
network of instances. There are research papers on this topic such as [15] that experiments
wi th linear and star topology. The linear topology is a series of connected brokers, each

100 B + 66 B

10 ms >
3 * 100 B + 66 B

3 * 10 ms
(4.2)

18

broker has 2 neighbors, only the first and the last one in the series have just one. The star
topology has 1 broker i n the middle and a l l the other brokers are connected to the middle
one. B o t h topologies need to know about a l l broker locations in case their neighbor is not
available so they can reconnect. In case of the linear topology that would mean t ry ing to
connect to the next broker in the series (neighbor of the unavailable neighbor), in case of
the star topology that would mean choosing new middle broker. In both cases the locations
of the brokers can be ordered so that it is possible to choose the replacement for the missing
one. The linear topology has the advantage that the nodes have similar flow rate (the middle
node i n the star topology way more burdened than the other nodes) and it requires less
reconnections after node failure.

Another possible approach would be creating a Fu l l -Mesh network where every instance
is connected to each other. Instances would offer their subscriptions as well as a list of
their neighbors, the list w i l l be used i n order to find new neighbors a new instances is not
connected to, yet. Th is architecture would grant the best resistance to node failure, on
the other hand each broker would need to check its own subscription sets as well as each
neighbor's w i th every published message, because it would need to determine, i f the message
should travel to neighbors or not. A variat ion could be that a l l published messages are
automatical ly send to neighbors, this would mean generating more traffic, but message
processing would be faster.

A n important question arises about the message and request management - who w i l l be
responsible? The most straight-forward proposal would be that messages and requests w i l l
be managed and stored by the broker which received the message direct ly from the client
and the other brokers w i l l only care about forwarding them.

4.4 Message Prior i ty

B i n a r y message and request pr ior i ty can be s imply specified by a flag i n the variable header
of the P U B L I S H message.

4.5 Subscriber Load Balancing

The idea behind the load balancing requirement is that you can have mult iple services that
can perform certain task, let's use a simple example: you can have mult iple opt imized S M T
solvers that provide it 's services for the platform, they a l l subscribe to the same topic (e.g.
org/testos/smt_solving), i n that si tuation your client connects to the bus and publishes
an S M T formula to the org/testos/smt_solving topic, it does not care who performs
the calculations, it only cares about the result. T h e load balancing here would provide
the possibil i ty to choose one of the subscribers that is not busy at the moment (because
there would be mult iple publishing clients using the S M T solving services of the platform)
and sends the request only to that one part icular client, which w i l l compute a result and
send back the response.

This functionality usage would require special type of topic, which the bus treats i n way
that it only forwards published messages or request only to one of the subscribers (which
is different than the general publish-subscribe approach), or a message type or field that
indicates a load balanced message that should be delivered only to one of the subscribers
regardless of the topic. In both cases it is bus' responsibility to determine the receiver based
on an implemented scheduling strategy, the request receiver does not need to check wi th

19

other subscribers whether it is the only one who received the request, because that would
be against the very basic idea and advantage of the Publish-Subscribe pattern.

M Q T T already offers Shared subscriptions i n version 5 that satisfy this requirement,
however it supports combinations of regular and shared subscriptions to the same topic
as well as mult iple shared subscription groups wi th in a same topic. However the standard
does not specify which load balancing strategy to use.

4.5.1 L o a d B a l a n c i n g Strategies

The selection of a subscriber to deliver the request to could be done i n a few different
ways. The most basic one would be having a list of them (e.g. ordered by the t ime they
subscribed) and send the request to the subscriber, which joined the given topic first and is
not busy. This approach would burden clients at the top of the list much more often than
the ones at the bot tom.

The unbalanced usage of subscribers from the previous method could be mit igated by
using again a list of subscribers, but this t ime it would cycle through the list and always
choose the next subscribed client, that is not busy. The client to receive the request could
also been chosen randomly from a poo l of subscribers (again that are not busy).

A l i t t le more interesting approach would be keeping a record of an average response
t ime of each subscriber. This would allow us to choose the fastest client, that is not busy.
The advantage would be potential decrease of response t ime for the client that published
the request, but t racking an average response t ime of subscribers does not take into account
that different requests could take completely different t ime to compute on the same client
(e.g. formula satisfiability). Th is method also requires more computat ion to be done by
the bus.

4.6 Logging

Logging is understandably not part of the M Q T T standard since this topic is part of
development areas such as serviceability of a product. It is possible to store and mainta in
the logs by the server which is logging its activity, but this creates more load for the server.
Better approach is to send a l l logs to a log server. The log server is responsible for collecting
and storing the logs and is also able to offer addi t ional features such as searching and
filtering. There are several open-source solutions, one of them is Gray log [2]. Gray log is
a log management tool that consists of a log processor which collects the logs, a web U I for
users to be able to search for logs, a M o n g o D B to store configurations and other metadata,
and an Elast icSearch which stores a l l the logs processes queries.

4.7 Authentication and Authorization

These two requirements can be satisfied wi th a modern approach of a web token. Client
authenticates once against a server and receives a token that is from now on included
i n requests that the client makes against the M Q T T broker without the need of using
credentials. The token can be sent i n the C O N N E C T message i n the password field.

20

Chapter 5

Implementation and Evaluation

This chapter contains a description of the Testos Bus solution. This is the best chapter
to get information about how various quirks and features of this middleware were actually
implemented. The first section contains a general description and explanation of how
ind iv idua l T B u s features work. The next section consists of a declaration of format for
every message type used i n the T B u s . The chapter than continues w i th an elaboration of
broker and client implementations. The chapter is ended wi th information on how the T B u s
was tested and what were the results of performance experiments.

5.1 Testos Bus Features

This section brings a high-level overview and explanation of ind iv idua l T B u s features, which
provides context for the following sections that discuss specific parts of the solution such
as the broker or the client libraries. The section unfolds the communicat ion model, it
explains how the messaging and the request/response pattern works, how to interconnect
T B u s instances or what specific strategy does the T B u s use to bundle messages together
in a B U L K .

5.1.1 C o m m u n i c a t i o n M o d e l

The communicat ion is implemented very s imilar ly to the M Q T T protocol. The basic ar­
chitecture consists of a central component called broker. The broker provides a l l the bus
functionality such as subscription, communicat ion forwarding or storing undelivered mes­
sages. Other communicat ion participants are the clients. A more complex architecture can
be set up when connecting brokers into a network, which is i n more detai l described in
Subsection 5.1.4.

A l l communicat ing client connect to the broker v i a T C P . Right after the T C P connection
is established, the client should send a C O N N E C T message and receive a C O N N A C K
message (see 5.2.3). Th is message exchange confirms the connection and helps establish
the keep Alive interval, which is a t ime period dur ing which any data need to be sent
v i a the connection (it is being kept alive by P I N G R E Q and P I N G R E S P messages, see
5.2.10) , otherwise it is considered inactive and is ended wi th a D I S C O N N E C T message (see
5.2.11) . A connection is expected to be gracefully ended wi th a D I S C O N N E C T message in
both cases of normal and abnormal disconnection.

After successful C O N N E C T / C O N N A C K exchange, it is possible to send or receive
P U B L I S H messages. In order to receive messages, it is mandatory to subscribe to a topic

21

using a topic filter. The topic hierarchy is the same as M Q T T ' s , it is possible to divide
each level by the forward slash ' / ' , so it is possible to create structured topics such as
org/testos/solvers/smt_solving. The topic filter used during subscription can contain
the M Q T T ' s mult i- level '# ' wi ldcard at its end. Th is wi ldcard is matching the rest of
the topic name. For example, the topic filter org/testos/solvers/# matches following
topics:

• org/testos/solvers/smt_solver,

• org/testos/solvers/sat_solver/next_combination

• or org/testos/solvers/,

but does not match topics like:

• org/company/solvers/smt_solver

• or org/testos/data_generators/db_gen.

The M Q T T single-level wi ldcard (specified wi th a '+ ' sign) was not adopted, because there
is no need for such topic subscriptions i n the Testos platform.

In order to stop receiving messages wi th a previously subscribed topic filter, clients can
unsubscribe from that topic filter v i a the U N S U B S C R I B E message (see 5.2.9).

5.1.2 M e s s a g i n g

A s previously stated, sending messages to other connected clients can be performed v ia
the P U B L I S H message (see 5.2.4). Every P U B L I S H message can be sent as a pr ior i ty or
non-priority (normal) communicat ion. The pr ior i ty messages are being process and sent by
the broker prior to non-priority ones. Messages are always accompanied by a topic name,
which cannot contain the '# ' wi ldcard and is used to identify subscribed clients that should
receive the message. This receiver resolution is performed by the broker based on stored
topic filters associated wi th part icular client connections.

The broker is able to store the message i n case it is not able to deliver it to any subscriber.
The message is either sent to someone upon their subscription to a topic filter, that matches
message's topic, or is deleted when message's specified timeout per iod ends.

5.1.3 R e q u e s t / R e s p o n s e P a t t e r n

It is possible to uti l ize P U B L I S H messages to send requests and receive responses for these
messages. The request life cycle can be seen i n Figure 4.1. A s a l l publish messages,
the request can have a timeout (which means it can also be stored) and it could be marked
as a pr ior i ty communicat ion. The broker manages the request based on a packetld property
of the P U B L I S H message and a client's I D . It adds a responseDestination property when
delivering it to subscribers. The subscriber computes and returns a response that uses
properties from the received P U B L I S H message such as pr ior i ty or response destination.

The request publisher can cancel a request before the response is delivered by using
the R E Q A C K message. Stored requests are also canceled when the broker receives a C O N ­
N E C T message wi th a set CleanStart flag. The cancel is delivered a l l the way to the request
receiver, which does not send a response when the response computat ion is completed and
it received a cancel method.

22

5.1.4 B u s Instance C o n n e c t i o n

It is possible to connect mult iple brokers into a network in order to use services of a client
connect to a different broker. Th is connection happens when start ing the broker and
using —neighbor-ip and —neighbor-port arguments. The start ing broker attempts to
create a connection wi th the neighbor v i a C O N N E C T and C O N N A C K messages. If it was
successful, the C O N N A C K message might use the serverReference property to share other
broker locations in the network. The start ing broker then attempts to connect to a l l other
neighbors i n the list i n order to create a full-mesh network.

Being connected to at least one neighbor means a change i n messaging behaviour, be­
cause now the connected clients are able to communicate w i th client connected to a different
broker. W h e n a normal message arrives at a broker, it tries to deliver it to its subscribers
and also forwards it to a l l neighbors. If it fails and the message has a timeout specified,
the message is stored. If a neighbor succeeds delivering the message to at least one sub­
scriber, it notifies the broker w i th a M S G A C K (see 5.2.5), which makes the broker delete
the message from its storage.

W h e n it comes to request management, the management responsibilities lies on the bro­
ker that received the request from one of its clients. W h e n a broker receives a request, first
it tries to deliver it to one of its other clients. If that is not possible, it forwards the re­
quest to a l l neighbors. Neighbor uses a R E Q A C K message (see 5.2.6) i n order to notify
the broker that the request was delivered to at least one subscriber. The broker managing
the request changed the request state and waits for a response. The response is routed back
v ia the responseDestination property i n the P U B L I S H message, because it was prefixed by
the broker's I D (which is a <ip address>: <port> string).

Subscribing to a broker i n a broker network results in the S U B S C R I B E message for­
warded to every broker i n the network. W h e n a broker receives a S U B S C R I B E message
from a neighbor, it looks up a l l messages wi th a topic that matches the subscription. If it
finds any, it sends it to the broker.

5.1.5 Message B u l k i n g

Implemented message bulk ing takes place on the way from client to the broker and also
between brokers. The Testos Bus implements a bulk ing strategy described in 4.2 using
a fixed threshold and fixed bulk ing window wid th . B u l k i n g mode is enabled when average
t ime period of 10 last outgoing messages is lower than the fixed predefined threshold of
10 milliseconds. W h e n the bulking mode is enabled, outgoing messages are not sent right
away, but they are encoded and concatenated during a fixed bulk ing window, which lasts
50 milliseconds. After the window ends, concatenated messages are packed into a B U L K
message (see 5.2.7) and sent to the broker).

5.2 Communication Protocol Messages

Testos Bus communicat ion protocol (T B u s protocol for short) is heavily based on M Q T T
v5.0, but it was customized and simplified to be even less complex. P ro toco l for the Testos
Bus and M Q T T are not compatible, since the message format slightly changed. This section
introduces ind iv idua l protocol messages, that the protocol offers.

23

5.2.1 Message F o r m a t

Similar ly to the M Q T T control packets, the Testos Bus messages consist of a fixed header,
variable header, properties and a payload (in this order). Every message starts w i th
the fixed header which is the only mandatory part. It is comprised of a Message Type
(4 most significant bits of the first byte), Flags field (4 least significant bits of the first
byte) and Remaining Length field. Remain ing Length states how many bytes after the fixed
header are part of the current message. The method of encoding such values is described
in Subsection 5.2.2. The fixed header is visualized in L i s t ing 5.1.

7 6 5 4 3 2 1 0
+ + + + + + + + +

I Message Type | Flags |
+ + + + + + + + +

I Remaining Length |
+ + + + + + + + +

Lis t ing 5.1: F i x e d Header

The other three parts of the message are optional and their presence and content depend
on the message type. Variable header usually contains some mandatory field which is
specific for given type. Properties contain predefined property pairs (type and value). Each
message defines which property presence is val id or not. A t the beginning of properties there
is a byte length of the properties part encoded as a variable length integer.

5.2.2 V a r i a b l e L e n g t h Integer a n d S t r i n g E n c o d i n g

Variable length integer is encoded as a variable length integer - this format uses 7 least
significant bits of a byte to encode the value, most significant bit is used as indicator,
if we should include the next byte while decoding, those 7 least significant bits from a l l
part icipat ing bytes are concatenated i n order to get the original value.

Strings are utf-8 encoded in a way that they start w i th its byte length encoded as
a variable length integer, followed by the encoded str ing value. This is a slight difference
from the way M Q T T encodes its strings, M Q T T restricts the length of the encoded string
value to 65535 bytes i n order to be able to encode the length into 2 bytes. T B u s protocol way
of encoding does not restrict the length of the string value, which means that this could be
also used as a way of encoding P U B L I S H payloads i f authors of the communicat ing clients
agree on using these string encode/decode functions provided by the client libraries.

5.2.3 C O N N E C T a n d C O N N A C K Messages

These messages serve as a medium to establish the connection and exchenge the connection
parameters. The C O N N E C T message has a Message T y p e of value 1. It uses two flags
- CleanStart (bit 0) and BrokerConnect (bit 1). W h e n set, the flag CleanStart indicates,
that in case the broker has any responses stored, the client does not wish to receive them.
The broker deletes stored responses and marks corresponding requests as canceled. The sec­
ond flag is used when the broker is connecting to its neighbor. The neighbor then knows
that the incoming connection does not belong to a client and informs the other broker about
its neighbors, so that the connection in i t ia t ing broker can connect to other participants in
the broker network i n order to create a full-mesh network.

byte 1

byte 2 . . .

24

The C O N N E C T message fixed header is followed by a variable header wi th a keepAlive
value, which is a 2 byte unsigned short integer, which declares a period of time, i n which
the broker needs to receive any k ind of T B u s message (can be filled i n w i t h P I N G R E Q
messages, see Subsection 5.2.10), otherwise it sends a D I S C O N N E C T message wi th code 141
= KeepAliveTimeout and ends the connection. M Q T T C O N N E C T properties were omitted,
because they specify functionality that is not used i n T B u s protocol. G o o d example is
the M a x i m u m Packet Size, which is much more needed i n systems working over U D P (such
as real-time systems) or those having connected client w i t h l imi ted resources. Neither of
those are relevant i n Testos Bus, which is operating over T C P and it is not expected to work
wi th client w i th l imi ted resources (such as IoT devices). The payload is an encoded string
which contains the client I D . The M Q T T C O N N E C T feature called Last W i l l was also
omitted, because it does not add any valuable information for the Testos Bus participants.

The broker expect a C O N N E C T message right after the T C P connection is established.
If it is not sent i n a short t ime period, the broker ends the connection.

The C O N N A C K message uses a Message Type of value 2 and its flags are not unused.
The variable header contains a byte representing the ConnectReasonCode (individual values
are described in Table 5.1). C O N N A C K properties can provide more debugging information
in case of unsuccessful connection v ia the reason string property. Also when the C O N N A C K
reacts to a C O N N E C T message from a neighbor (the message has set the BrokerConnect
flag), the serverReference property is used to forward a list of other neighbors in the broker
network. The C O N N A C K message has no payload.

Value Code Name Descript ion
0 Success States a successful subscription.
1-127 Reserved
128 Unspecified Er ro r A n unspecified error occurred while processing of subscrip­

t ion request.
129 Malformed

Packet
Received C O N N E C T message d id not have correct format.

130 Reserved
131 Client L i m i t The broker has reached a configured l imi t or concurrent

Reached client connections.
132 Connect ion I D

Al ready In Use
Act ive connection wi th the same client I D already exists.

Table 5.1: Connect Reason Codes

5.2.4 P U B L I S H Message

This message's purpose is to exchange data between clients. It offers a possibil i ty to send
a regular one-way message, a request, for which it expects a response, which is the th i rd
k ind of this type of messages. The P U B L I S H messages uti l ize a Message Type value of 3.
It uses 3 following flags:

• a Request F l a g (bit 0), which marks the message as a request, which means that
the broker w i l l manage it as one,

• a P r io r i t y F l a g (bit 1) - marks a pr ior i ty communicat ion that should be handled and
stored prior to non-priori ty communicat ion

25

• and a Response F l a g (bit 2), this flag marks it as a response to an existing request
(based on the packet ID) , setting both the Request F l a g and a Response F l a g is
a protocol error.

In case the P U B L I S H message is not a response, the variable header contains a topic
name (without the wildcard) that is used to identify which subscribers should receive
the message. The P U B L I S H properties contain:

• a 4-byte unsigned integer Timeout which specifies for how long the message is stored
in case it could not be delivered to a single subscriber,

• a str ing ResponseDestination that accompanies the request and response messages in
order to be able to route the response to the request publisher (it contains its identifier
added by the broker),

• a 2-byte unsigned short integer Packetld which identifies the request and response
together i n connection wi th the ResponseDestination that is the client's identifier.

The payload contains raw data that is being delivered.
In comparison to the M Q T T ' s P U B L I S H control packet, it does not use M Q T T ' s flags

DUP, QoS level nor Retain. Since it does not use QoS levels, there are no duplicates being
sent (and also no reason to specify any QoS level). It also omits the M Q T T ' s Retain feature,
it is not expected that it would be valuable, because the pr imary a im of the Testos Bus is
usage of Request/Response for which it offers better request management.

5.2.5 M S G A C K Message

The M S G A C K message is a new message type that has no equivalent in the M Q T T protocol.
Its purpose is to acknowledge message delivery between neighbors. It is used i n a si tuation,
when a broker receives a normal message from a client and it is not able to deliver to any
of its other clients. It then stores the message based on the Timeout property. After that,
it adds a Packetld to the message and sends it to a l l of its neighbors. If a neighbor was
able to deliver the message to at least one client, it sends back a M S G A C K i n order to
communicate, that the first broker can delete the message from its storage, because there
was someone, that received the message. This message uses a Message Type equal to 4,
it has no variable header nor payload. It uses two properties in order to identify given
message:

• a 2-byte unsigned integer Messageld, which is provided by the first broker

• and a string containing a topic name.

5.2.6 R E Q A C K Message

The R E Q A C K message is an another one newly introduced message type. It is ut i l ized
to update a request status. The neighbors use it i n order to notify a broker managing
a request that a request was delivered or canceled. The broker can also notifies the request
publisher that their request was removed from the storage (in case of a full storage and
the request being selected as a v ic t im) . The client uses this message type This message
utilizes a Message T y p e value of 5, it has no flags nor payload. The properties contain:

• a 2-byte unsigned short integer Packetld,

26

• a byte RequestState code, that determines the new state of the request (used values
can be seen i n Table 5.2),

• a string ResponseDestination that contains the request publisher's identifier,

• and a string containing a topic name, which is used when delivering a cancel to
the subscribers.

Value Code Name Descript ion
0-1 Reserved
2 Request Del iv­ Inform neighbor that the request was delivered to at least one

ered subscriber.
3-5 Reserved
6 Canceled Inform the message receiver that the request was canceled by

its publisher.
7-9 Reserved
10 Deleted F r o m Inform the request publisher that the request was selected as

Storage a v i c t i m and delete when the storage was filled up.

Table 5.2: Request State Codes used in R E Q A C K messages

5.2.7 B U L K Message

The B U L K message uses a Message Type value 6 and the flags are not used. The Remaining
Length value is followed by ind iv idua l encoded messages which is this message's payload.
It does not use any properties or variable header, which makes the B U L K very simple do
encode and decode. This message type cannot be found i n the M Q T T protocol, it adds
a new functionality to the T B u s protocol, enabling it to pack more messages together in
order to save network resources.

5.2.8 S U B S C R I B E a n d S U B A C K Messages

The S U B S C R I B E message is used to subscribe w i th a topic filter i n order to receive messages
wi th a topic that corresponds to given topic filter. It uses a Message Type value 8. Flags
field i n the fixed header are not used. The variable header contains a 2-byte packet identifier.
It does not use any properties, which were omit ted from the M Q T T S U B S C R I B E control
packet, because M Q T T ' s subscribe property Subscribe Identifier belongs to a feature which
was not included in the T B u s protocol, because it was not considered as br inging value in
comparison wi th the complexity increase when including such feature.

T B u s protocol also does not use M Q T T ' s Subscription Options, because they are used
to specify features omit ted i n the T B u s protocol, such as QoS. T B u s protocol does not
acknowledge received P U B L I S H messages (as M Q T T does i n different way on QoS level 1
and 2) which is an equivalent to M Q T T ' s QoS 0. Th is decision was made based on two main
reasons - the first one is that the T B u s protocol operates over T C P which provides reliable
delivery and the second one is a future extension of communicat ion capabilities by adding
a communicat ion acceleration v i a the main memory, which would be used in si tuation when
the communicat ing clients are running on the same machine, where extra acknowledging
would be slowing the communicat ion down. The payload contains a topic filter encoded as
a string wi th a method described in Subsection 5.2.2.

27

The S U B A C K message is a response to a previous S U B S C R I B E message in order to
communicate whether the subscription was successful or not (and potential ly what went
wrong). It uses a Message Type value 9, the flags are not being used. T h e variable header
consists of a packet identifier, its value is the same as the packet identifier i n the S U B ­
S C R I B E i n order to identify which subscription attempt it acknowledges. There is a pos­
sibi l i ty to use a property Reason string i n order to provide more specific description of an
issue and help diagnose the problem in case of unsuccessful subscription. S U B A C K payload
contains a SubscriptionReasonCode, 2-byte value that determines i f the subscription was
successful or not. Reason codes adopted from M Q T T can be found in Table 5.3.

Value Code Name Descr ipt ion
0 Success States a successful subscription.
0-127 Reserved
128 Unspecified Er ro r A n unspecified error occurred while processing of subscrip­

t ion request.
129-142 Reserved
143 Invalid Topic F i l ­ The topic format was not correct - it contained the # wi ld ­

ter card at an incorrect posit ion.

Table 5.3: Subscript ion Reason Codes

5.2.9 U N S U B S C R I B E a n d U N S U B A C K Messages

The U N S U B S C R I B E and U N S U B A C K message formats are the same as S U B S C R I B E
and S U B A C K messages, their purpose is to unsubscribe the client from given topic filter.
U N S U B S C R I B E message uses the Message Type value 10 and U N S U B A C K uses Message
Type value 11. The topic filter specified i n the S U B S C R I B E message payload needs to
match exactly the topic filter, that the client subscribed to earlier. The U N S U B A C K
reason codes can be found i n Table 5.4.

Value Code Name Descript ion
0 Success States a successful subscription.
1-16 Reserved
17 N o Subscript ion Returned when the client tries to unsubscribe from a topic

Exis ted filter that it wasn't subscribed to.
18-127 Reserved
128 Unspecified Er ro r A n unspecified error occurred while processing of subscrip­

t ion request.

Table 5.4: Unsubscr ipt ion Reason Codes

5.2.10 P I N G R E Q a n d P I N G R E S P Messages

B o t h P I N G R E Q (= ping request, shown in L i s t i ng 5.2) and P I N G R E S P (= ping response,
shown i n L i s t ing 5.3) messages consist of just a fixed header, that states the Message
Type (P I N G R E Q uses value 12 and P I N G R E S P uses value 13). The flags are empty and
the Remain ing Length is set to 0 i n both of them. These messages are used to notify and
check whether the connection participants are responsive. The broker ends a connection i f

28

there is no incoming message (P I N G R E Q or) from the side, that ini t ia ted the connection,
for a period of time, which was agreed on during connection establishment (the keepAlive
value). The P I N G R E S P is expected to be sent immediately, so the connection ini t iator
(a client or a neighbor broker) ends the connection if it does not receive a P I N G R E S P
messages i n a smal l predefined t ime period of 5 seconds. The connection ini t ia tor sends
the P I N G R E Q message wi th a period equal to a half of the agreed keepAlive interval.

7 6 5 4 3 2 1 0

byte 1 | 1 1 0 0 I 0 I
+ + + + + + + + +

byte 2 | 0 I

Lis t ing 5.2: P I N G R E Q message

7 6 5 4 3 2 1 0
+ + + + + + + + +

byte 1 | 1 1 0 1 I 0 I
+ + + + + + + + +

byte 2 | 0 I

Lis t ing 5.3: P I N G R E S P message

5.2.11 D I S C O N N E C T Message

The D I S C O N N E C T message is used in order to properly close the connection. It uses
a Message Type of value 14, it does not use any flags nor payload. The variable header
contains a DisconnectReasonCode - a 2-byte value (individual codes can be found i n Table
5.5. The properties can contains a string Reason, which can provide more information in
case of a abnormal disconnection.

Value Code Name Descr ipt ion
0 N o r m a l Discon­ Sent when a client wants to disconnect without an occur­

nection rence of any outstanding situation.
1-16 Reserved
17 N o Subscript ion Returned when the client tries to unsubscribe from a topic

Exis ted filter that it wasn't subscribed to.
18-127 Reserved
128 Unspecified Er ro r A n unspecified error occurred.
129-140 Reserved
141 KeepAl iveTimeou t Sent when one of the communicat ing sides d id not respond

during an agreed t ime period.

Table 5.5: Disconnection Reason Codes

29

5.3 Broker

The broker was implemented i n the C # language. It is a multi-threaded applicat ion that
uses asynchronous callbacks to accept new connections or receive and process incoming data.
It manages connected clients and their subscriptions, it also forwards incoming messages to
clients that subscribed for given topics. It is able to store P U B L I S H messages i n case there
is no available client wi l l ing to receive them. The broker also manages ongoing requests life
cycle. It is possible to connect brokers into a full-mesh network providing the possibil i ty to
communicate w i t h clients that are connected to a different broker.

5.3.1 C o n f i g u r a b l e B r o k e r P a r a m e t e r s

The broker offers a smal l amount of configuration possibilities:

• parameters — i p and —port specifying the broker's I P address and port number
(default values are 127.0.0.1 for the address and 5035 for the port number),

• parameters —neighbor-ip and —neighbor-port, that can be used to connect to
a neighbor broker (needs a value for both or none),

• parameter — c l i e n t - l i m i t , which l imits the m a x i m u m number of client that can
concurrently connect to the broker instance,

• and a parameter — l o g - l e v e l , which determines the min ima l level of log entries that
are being logged.

The log levels can be seen i n Table 5.6 from the most verbose to no logs at a l l . The client
l imi t does not count in connections to neighbors.

Value Descr ipt ion
A L L C L I value to see a l l types of entries. It is the same as using the T R A C E

level.
T R A C E Provides very detailed information that could be useful when debugging.

Selecting this output level is the same as selecting the A L L level.
D E B U G Contains a slightly more detailed information than the I N F O level, useful

for developer when debugging or working on the T B u s .
I N F O This level gives a generally useful information of what is going on the broker,

the entries should be understandable for everyone understanding how the bus
should work from a product perspective.

W A R N A level for entries signaling a potential issue. N o harm was done and
the T B u s works without any l imi ta t ion .

E R R O R Used when an error occurred, some functionality might be not available or
working correctly.

F A T A L Level suitable for entries logged while the T B u s stops working completely.
N O N E Does not output any log entries.

Table 5.6: Logging Levels

30

5.3.2 B u s Instance Interconnect ion

A broker connects to a neighbor based on the —neighbor-ip and —neighbor-port C L I
arguments. In order to differ the connection from a client connection, it sets the Bro-
kerConnect flag in the C O N N E C T message. Every t ime a neighbor accepts a connection
from a broker, it sends back C O N N A C K w i t h a serverReference property. The value is
a string of concatenated <broker ip>: <port> pairs that are del imited wi th a semicolon
The broker in i t ia t ing the connection then parses this list of broker addresses and ports and
attempts to connect to each of them.

Every connection wi th a neighbor is associated wi th a separate output queue of mes­
sages. Th is queue is operated by a separate thread, that takes care of dequeueing messages
and sending them to the neighbor. W h e n sending the messages, bulk ing can occur. B u l k i n g
is performed the same way as described in Subsection 5.1.5, measuring t ime periods between
last 10 enqueued messages and packing them together during a 50 mill isecond window into
a B U L K message.

5.3.3 C l i e n t C o n n e c t i o n

W h e n the broker is done connecting to the broker network, it is ready to accept a new con­
nections. It does that v i a asynchronous function BeginAccept (from System.Net.Sockets)
that uses a provided callback function NewConnectionCallback to take care of the new in­
coming connection. The NewConnectionCallback function receives the C O N N E C T message
and attempts to create a new Connection i n the ConnectionManager. The result is then
sent back. If the creation failed, the T C P connection is ended. It it succeeded, the broker
accepts data v i a asynchronous function BeginReceive (again from System.Net.Sockets). A c ­
cepting a connection ini t ia ted by other broker has the same approach, but the Connection
object contains a isNeighbor variable set to true in order to differentiate it from a client
connection when processing incoming messages.

The ProcessIncomingMessage function is used as a callback when accepting data from
a connection. F i rs t , this function reads a fixed header from a socket associated wi th the con­
nection - it reads two bytes, which help determine type of the message, and then read byte
after byte unt i l it read the whole RemainingLength part of the fixed header. If the remain­
ing length of the header is greater than 0, the rest of the message is read from the socket.
The end of reading the whole message is notified v i a a MessageEvent to allow another mes­
sage to be read. W h e n the whole message content is received, the raw messages is parsed
and then processed.

5.3.4 S u b s c r i p t i o n a n d U n s u b s c r i p t i o n

To process a S U B S C R I B E message, the broker tries to add the topic filter and client
pair into the SubscriptionManager. Result of this operation determines the reason code
in the S U B A C K message sent back to the subscribing client. The broker also looks up a l l
stored messages (regular messages and requests), whose topic matches the newly subscribed
topic filter. These messages are sent to the client.

If the broker has at least one neighbor, the S U B S C R I B E message is also forwarded to
al l neighbors. Receiving a S U B S C R I B E message from a neighbor is processed differently,
no new subscription is registered, but the broker responds to the neighbor w i t h stored
messages (regular ones and requests)

31

U N S U B S C R I B E messages are handled similarly, the broker attempts to remove the topic
filter from the SubscriptionManager. Result of this operation determines the reason code in
the U N S U B A C K message. U N S U B S C R I B E messages are not forwarded to any neighbor.

5.3.5 M e s s a g i n g

W h e n a P U B L I S H message is received, it is not processed right way, but pushed into
a Publish Message Queue that is responsible for processing a l l incoming P U B L I S H messages.
The broker instance manages a separate thread that is responsible for removing P U B L I S H
messages one by one from the queue and processing them. The Publish Message Queue
internally consists of two separate queues, one is a pr ior i ty queue and the second is a regular
queue. Messages enqueued to the pr ior i ty queue (based on the PriorityFlag i n the P U B L I S H
message fixed header) are processed before a l l regular communicat ion.

A l l other types of messages are processed right away without any queue or pr ior i t izat ion.
The P U B L I S H message is the only one being queued and priori t ized, because it is expected
to be a dominat ing majority of traffic. Other types of messages are expected to be a very
small fraction of incoming traffic that does not require any further management or ordering.

W h e n processing a P U B L I S H message, the broker uses the topic name specified in
the messages to identify subscribers, that should receive i t . In si tuation when there is
no subscriber to deliver the message to, the messages wi th specified timeout are stored
v i a the StorageManager. Those messages are removed from storage and sent when a client
subscribes w i t h a topic filter matching the topic name associated wi th the stored message.

If the P U B L I S H message is a request, the broker also creates a Request object, stores
and manages request information v i a the RequestManager. The request is uniquely identi­
fied by publisher's client I D and message packet I D values. Requests are stored (in case of
specified timeout and unsuccessful first delivery) and delivered upon other client's subscrip­
t ion to a matching topic same way a regular P U B L I S H message is w i t h a smal l difference
of updat ing the Request status i n the RequestManager.

If the P U B L I S H message is a response, it uses responseDestination property in order to
deliver it to a specific client based on the client I D . If the client is not available, the response
is stored. Stored responses are not removed from storage and delivered upon subscription,
but upon connection of a client w i th a client I D that matched the responseDestination
value.

W h e n a message arrives from a neighbor, the broker uses M S G A C K and R E Q A C K
messages according to 5.1.4 i n order to share the fact that the message was delivered. A l l
requests are managed by a broker where the request originated.

5.3.6 Message Storage

The message storage is implemented to store messages as objects i n the main memory.
Default m a x i m u m l imi t of stored messages is 500. This l imi t can be changed during runtime
by connecting according to the T B u s Pro toco l and sending a P U B L I S H message wi th a topic
$memoryLimit and payload containing the new l imi t value. This value should be a string
(e.g. "1024") that is encoded according to the a lgori thm i n Subsection 5.2.2, it is possible
to do this w i th the EncodeString function available as a part of client libraries.

32

5.3.7 L o g g i n g

Logging is printed into the standard output v ia the Logger class. It is d ivided into levels in
order to offer different granularity. These levels are described i n Table 5.6. It is possible to
specify a level w i th which the broker outputs log entries v ia the — l o g - l e v e l C L I argument
described i n Subsection 5.3.1.

5.4 Client Libraries

A s stated i n the Chapter 2 that describes the requirements, this solution aims at imple­
menting client libraries for C + + and P y t h o n languages. The libraries are implemented to
be as simple as possible, resulting in few precise functionalities that are can be used very
s imilar ly to each other compared between the two language implementations. This section
starts w i th a description of the client architecture which is followed by an explanation of
how each functionality, that is offered to the user, works and how to use i t . Because the be­
havior is the same, each offered functionality w i l l be described together for both languages.
The description w i l l also contain a demonstration of usage i n both C + + and Py thon .

5.4.1 C l i e n t C o m p o n e n t s

A l l the abi l i ty to communicate v i a Teston Bus is offered the user v ia single TBusClient class.
A n instatiated client utilizes mult iple threads, each has ind iv idua l background functionality
to perform - listening for incoming messages, sending out outgoing P U B L I S H messages,
pinging the broker and processing incoming requests. There is also a set of functions to
encode and decode data. These functions are heavily used by the client to parse or encode
transmit ted data, but they can also be used by the user to ease the payload creation or
processing. More about user usage of these functions can be found i n Subsection 5.4.4.

The listener thread s imply receives a message by receiving fixed header first and the rest
of the message second based on the remaining length specified i n the header. After that it at­
tempts to parse the data and performs the act ion based on the received message. Receiving
a C O N N A C K , R E Q A C K , S U B A C K or U N S U B A C K results in noting that the acknowl­
edgement arrived (if it was expected), hand over message contents and notifying a condit ion
variable to communicate that the acknowledgement was successfully received. P U B L I S H
messages are processed based on the type. Requests are put to a queue, that is consumed
and processed by the request processor thread. Responses are handed over to the client (in
case it expects such response) and a condit ion variable is notified. N o r m a l messages are
just used as an argument for a callback that was provided by the user when subscribing to
given topic, value returned by the callback is ignored since not being a request means that
message publisher does not expect a response.

The sender thread consumes a queue of P U B L I S H messages. The reason why this thread
only operates P U B L I S H messages is that they are expected to be an overwhelming majority
of outgoing traffic. Other message types are sent directly from client methods without going
through a queue. Based on a client's at tr ibute bulkMode it either just sends a dequeued
message or starts bulking. B u l k i n g consists of concatenating dequeued messages during
the bulk ing t ime period. W h e n the period ends, concatenated messages are completed
wi th a fixed header containing the B U L K message type and the remaining length value.
The completed B U L K message is sent afterwards. The decision whether to bulk or not is
made when a message is enqueued. C a l l client's special publ ish enqueue function measures

33

t ime periods since the last message was enqueued. These t ime periods are kept for 10 last
messages. Every enqueue also includes averaging last 10 periods, which is then compared
to a threshold of 10 milliseconds. If the average is lower then the threshold, bulk ing mode
is set un t i l the average increases over the threshold value.

Another important thread is the request processor thread which consumes a queue of
incoming requests. These requests are enqueued to this part icular queue by the sender
thread while processing P U B L I S H messages. After the request processor dequeues a request,
it uses the request payload as an argument for a callback, that was registered by the user
during topic subscription. W h e n the callback returns, the thread checks the request status
in case the client received a request cancel from another client that sent that given request,
which would lead to s imply ignoring the request result and moving on to the next request.
If not, the value returned by the callback is sent back as a response using metadata from
the request message.

There is also a thread responsible for pinging the broker (via P I N G R E Q message) in
order to make sure that the broker does not close the connection as a result of inactivity.
Secondary effect of this thread is also that the client makes sure the broker is responding
based on received P I N G R E S P . The interval used for the pinging is a half of the keepAlive
interval specified when connecting to the broker.

Lastly, threads are also used when working wi th timers, which are used for example
for t racking whether a sent request t imed out. P y t h o n offers a bui l t - in threading. Timer
whereas the C + + l ibrary incorporates a simple t imer implementation, that was wri t ten
by Shal i tha Suranga [16] and was just slightly adjusted. This t imer creates a detached
thread that sleeps for given t ime interval. After the thread wakes up, it check whether
the t imer was canceled, i f it wasn't, it uses a callback provided during t imer instantiation.
The callback modifies request state to reflect that it t imed out.

5.4.2 C l i e n t C r e a t i o n a n d C o n n e c t i o n

The client can be instantiated wi th three arguments - a string containing client identifier,
a string containing IP address of the broker the user w i l l be interacting wi th , and a port
number, on which the broker accepts new connections. There are two optional boolean pa­
rameters. F i r s t one controls whether the client should print output log messages. The de­
fault is that logging is not printed out. E r ro r messages are printed to stderr regardless
the parameter value. The second optional parameter enables or disables the bulk ing fea­
ture. The default value is that the bulk ing is enabled.

The connection can be done wi th a method connectToBroker() that accepts two argu­
ments, the first one is a cleanStart boolean (with a default value set to true) and the second
one is an unsigned integer keepAlive (with a default value equal to 60). Setting cleanStart
makes the client forget any previously sent requests, which means you cannot retrieve their
status or response. The keepAlive specifies a period (in seconds) i n which both sides need
to receive any message (or a P I N G R E Q / P I N G R E S P) in order to not end the connection
due to unavailability. The client sends a P I N G R E Q message every t ime a half of this time
interval passes.

The connectToBroker() method performs a connection to the broker, it also awaits
a C O N N A C K for a smal l predefined t ime per iod (5 seconds). It also starts the threads
that are responsible for receiving, sending and processing messages. After a successful
connection, it starts up the thread responsible for periodic pinging the broker. In case of any

34

unsuccessful event (unsuccessful socket creation or T C P connection, t imed out C O N N A C K
or not receiving a Success reason code), the function raises a appropriate exception.

P y t h o n Example

cli e n t creation with disabled logging and enabled bulking
client = TBusClient("python_client_id", "192.168.0.173", 5035)
client.connect_to_broker(clean_start=True, keep_alive=180)

cli e n t creation with enabled logging and disabled bulking
client = TBusClient("python_client_id", "192.168.0.173", 5035, True, False)
client.connect_to_broker(clean_start=True, keep_alive=180)

C + + Example

// cl i e n t creation with disabled logging and enabled bulking
TBusClient c l i e n t ("cpp_client_id", "192.168.0.173", 5035);
client.connectToBroker(true, 20);

// cl i e n t creation with enabled logging and disabled bulking
TBusClient c l i e n t ("cpp_client_id", "192.168.0.173", 5035, true, f a l s e) ;
client.connectToBroker(true, 20);

5.4.3 S u b s c r i b i n g a n d U n s u b s c r i b i n g

For subscription the user needs two things - a str ing containing a topic filter, that w i l l
identify messages that the client is interested in , and a callback function that the client w i l l
use to process incoming requests and normal messages. T h e callback receives an unchanged
payload from the request message. If the user expects to process requests on given topic,
the callback must return bytes representing a response payload, which w i l l be appended
to the response message without any further change by the client l ibrary. The user is
expected to handle message payload decoding and response encoding on his own. However,
the l ibrary provides following encode and decode functions that could be used if you are
sure that the other side uses them too:

• encode2Bytes () / decode2Bytes () - encodes/decodes a ushort i n 2 bytes,

• encode4Bytes() / decode4Bytes() - encodes/decodes a uint i n 4 bytes,

• encodeVarLenlnt () / decodeVarLenlnt ()-encodes/decodes a variable length inte­
ger in variable number of bytes (described in Subsection 5.2.2)

• and encodeStringO / decodeStringO - encodes/decodes a string (also described
in Subsection 5.2.2).

The most useful functions are probably the ones operating on a string. Usage of these
function is not mandatory, but it could help when transferring data that can be easily
represented e.g. string or an integer.

35

In the P y t h o n library, the callback is a function that w i l l receive P U B L I S H message
payload as bytes. In case of requests, the callback should also return bytes. A l l encode and
decode functions can be found in the messaging.py module.

In the C + + library, the callback type must be void (*callback) (ReceivedMessage*)
- they receive an argument, which is a pointer to a simple structure ReceivedMessage, which
offers following methods:

• vector<unsigned char> getPayloadO retrieves the payload of the incoming P U B ­
L I S H message,

• string getTopicO retrieves the topic which was a part of the P U B L I S H message,
which could make it easier to create a single callback function processing message
pay loads from mult iple topics,

• void setResponse (vector<unsigned char> data) - sets a payload, that w i l l be
included by the client i n the response P U B L I S H message

• and vector<unsigned char> getResponse() which is called after the callback re­
turns if the incoming P U B L I S H message was a request.

class ReceivedMessage {
std::vector<unsigned char> payload;
std::string topic;
std::vector<unsigned char> response;

public:
ReceivedMessage(std::vector<unsigned char>, std::string);
std::vector<unsigned char> getPayloadO;
std: :string getTopicO ;
void setResponse(std::vector<unsigned char> data);
std::vector<unsigned char> getResponse();

};

If a S U B A C K w i t h a code indicat ing success is received, topic and callback are saved
among active subscriptions. If the broker does not send a response wi th in a certain period
of t ime (coded as 5 seconds) or the subscription was not successful, an exception is raised.

P y t h o n Subscription Example

def cb(data):
number_as_str, byte_len = decode_string(data)
number = int(number_as_str)
return encode_string(number*3)

def main():
client = TBusClient("python_client_id", "192.168.0.173", 5035)
client.connect_to_broker()
client.subscribe("tripleValue", cb)

36

CH—h Subscription Example

void Cb(ReceivedMessage *msg) {
vector<unsigned char> payload = msg->getPayload();

int len;
string data-= decodeString(payload, &len);
int res = stoi(data) * 3; // calculate result
msg->setResponse(encodeString(to_string(res)));

}

int main() {
TBusClient cl i e n t ("cpp_client", "192.168.0.173", 5035);
client.connectToBroker();
client.subscribe("tripleValue", *Cb);

}

Unsubscript ion requires only a topic filter, upon broker timeout or obtaining an unsuc­
cessful code an exception is raised.

Python Unsubscription Example

client.unsubscribe("tripleValue")

CH—h Unsubscription Example

client.unsubscribe("tripleValue");

5.4.4 P u b l i s h i n g Messages

For sending messages, the client offers two methods to perform this tasks for the user -
publishMessage () and publishRequest () . B o t h methods take two mandatory arguments
- a string wi th a topic name (it cannot contain the '# ' wildcard) and a payload (expecting
bytes in P y t h o n and vector-<unsigned char> in C++). The methods also take two optional
arguments - a boolean pr ior i ty flag and a timeout. Default value for the prior i ty flag is False
and for timeout it is 0. Not specifying any timeout value for a normal message means that
the broker w i l l t ry to deliver the message to the subscribers, i f there aren't any, the message
w i l l not be stored in the broker storage. Not specifying any timeout for a request results in
the request being sent w i th a very low predefined timeout value (same as when wai t ing for
a C O N N A C K or S U B A C K , which is 5 seconds). The user should always add some timeout
to requests i n order to prevent unnecessary request timeout due to longer processing time
on the other client which computes the response. The publishRequest () also notes down
an ongoing request and starts a t imer that takes care of the situation, when the given
request times out. There is also a difference in return values, method publishMessage ()
does not return anything whereas publishRequest () returns request's packet ID .

37

P y t h o n Publ i sh Example

payload = encode_string("test_payload")

publish a~message
client.publish_message("test_topic", payload, False, 20)
publish a~request
request_id = client.publish_request("test_topic", payload, True, 60)

C + + Publ i sh Example

vector<unsigned char> payload = encodeString("42");

// publish a~message
client.publishMessage("test_topic", payload, False, 20);
// publish a~request
ushort requestld = client.publishRequest("test_topic", payload, True, 60);

5.4.5 R e c e i v i n g Responses to Requests

In order to get the result of a request, the user must use the awaitAndProcessResponse ()
method. This method takes two arguments, one of them is the packet I D , which identifies
a specific request, and the second one is a callback. The method returns whatever is returned
from the callback, since it is used to process the response payload. If the request t imed out
or was deleted from the broker storage (as a v i c t i m when the storage capacity was reached),
the method raises an according exception. In Py thon , the callback should be a function,
that takes one argument, which is the raw response payload as bytes. In C + + , the function
callback argument is again a raw response payload as a vector^unsigned char>.

P y t h o n Receive Response Example

def cb_req_pub(data):
numstr, len = decode_string(data)
return numstr

def main():
client = TBusClient("python_client_id", "192.168.0.173", 5035)
client.connect_to_broker()
payload = encode_string("test_payload")
publish a~request
request_id = client.publish_request("test_topic", payload, True, 60)
await response
request_result = client.await_and_process_response(request_id, cb_req_pub)

38

CH—h Receive Response Example

int CallbackPub(vector<unsigned char> response) {
int len;
string data-= decodeString(response, &len);
return stoi(data);

}

int main() {
TBusClient cl i e n t ("cpp_client", "192.168.0.173", 5035);
client.connectToBroker();
vector<unsigned char> payload = encodeString("42");
// publish a~request
ushort requestld = client.publishRequest("test_topic", payload, True, 60);
// await response
int requestResult = client.awaitAndProcessResponse(requestId, *CallbackPub);

}

5.4.6 C a n c e l i n g Reques t s

The user is able to cancel requests which it sent out, but d id not get a response for, yet.
Basic use case could be that the program using Testos Bus sent a request that takes longer
to process and the program does not need the response anymore. The client method only
requires a packet I D of a request that was sent out. The method takes care of sending
a R E Q A C K message wi th proper reason code to the broker and marking the request as
canceled.

P y t h o n Cancel Example

client.cancel_request(request_id)

CH—h Cancel Example

client.cancelRequest(requestld);

5.4.7 D i s c o n n e c t i o n

Disconnection si performed by method that takes two optional argument, a reason code
and a string containing a reason for the disconnection. This reason might help people
identify what happened when going through the logs. Default usage for the user is call ing
the method without specifying arguments, which results in normal peaceful disconnection.
The user also can specify the code and reason i n order to identify disconnection after an
error occurs. Disconnection results i n a l l client threads being stopped and joined. The client
also looses a l l subscriptions.

39

P y t h o n Disconnection Example

normal disconnection
client.disconnect()

abnormal disconnection
client.disconnect(DisconnectReasonCode.IMPLEMENTATI0N_SPECIFIC_ERR0R,

" f a i l e d connection to database")

C-\—h Disconnection Example

// normal disconnection
client.disconnect();

// abnormal disconnection
client.disconnect(DisconnectReasonCode::IMPLEMENTATI0N_SPECIFIC_ERR0R,

" f a i l e d connection to database")

5.5 Automated tests

The solution also contains automated end-to-end tests validating satisfaction of the basic
mandatory requirement specified i n the Section 2.1. The tests make sure it is possible to
perform basic operations v ia client libraries and a running broker instance. The Table 5.7
shows a list of requirements and which test cases cover them. The tests check that it is
possible to use a feature in a happy path scenario or that an incorrect usage is detected and
not permit ted. They also check that it is possible to communicate w i th clients connected
to different brokers in the broker network. Single test runs on a separate broker instance so
that the test result is not affected by previous tests. E a c h test scenario is performed wi th
a C + + publisher-subscriber pair and also a P y t h o n publisher-subscriber pair.

5.6 Performance testing

Performance testing was aimed to explore the influence of the overhead of a single T B u s
instance on the communicat ion speed and response t ime. The testing was conducted on
a single computer running the broker and a l l of the clients, which l imits the computat ion
capabilities, but reduces network transfer delay. In order to focus purely on the middle­
ware's overhead and for example not on request payload computat ion when sending requests
v i a T B u s , the experiments were conducted using the simplest publisher and subscriber pairs
possible. The subscriber just returns whatever payload it receives i n the request. The pub­
lisher sends out requests w i t h an encoded str ing test in certain intervals and also has
a thread that is checking i f the response returned and how long it took to receive it.

There were two experiments conducted. The first was about exploring how the T B u s
behaves when you have a single publisher-subscriber pair that generates traffic i n very small
intervals. It was performed by sending a block of messages, after which the speed increased.

40

Requirement Corresponding Test Case

Messaging from 2.1.1

messaging/happy_path_two_subs .sh
messag ing /happy_pa th_wi ldcard_sub .sh
messaging / mult ip le_subs_on_c l ien t . sh
subscription / inva l id_f i l t e r_sub .sh
subscription / inva l id_f i l te r_unsub. sh
subscription / sub_twice.sh
subscription / sub_unsub_happy_pa th . sh
subscription / unsub_wi thout_prev ious_sub .sh

Request Management from 2.1.1
requests/happy_path.sh
requests / wi ldcard_sub .sh

Wai t i ng for Message Receiver from 2.1.1
request_storing/store_request.sh
request_st oring / store_response. sh

Request Timeout from 2.1.1 requests/timeout .sh
Request Cancel from 2.1.1 requests / request_cancel.sh
Message P r io r i ty from 2.1.1 requests / request_priority.sh
B u l k i n g from 2.1.1 requests/bulking.sh

Bus Instance Connect ion from 2.1.2

messaging / subs_on_different_nodes. sh
messaging/wildcard_sub_different_node.sh
requests /happy_path_sub_on_different_node.sh
requests / wi ldcard_sub_on_dif ferent_node.sh
request_storing/store_request_sub_on_different_node.sh
request_storing/store_response_sub_on_different_node.sh

L i m i t of Connected Clients from 2.1.5 connect ion/ l imi t_of_connected_cl ients .sh
Con t ro l of Memory Capaci ty from 2.1.6 request_storing / storage_capacity.sh

Table 5.7: M a p p i n g of requirements to automated test cases.

The Table 5.8 shows that the latency significantly increases when the requests are pro­
duced faster than 64 messages per second. The bulk ing explains the delay when it was
enabled, because when collecting messages into a bulk during a 50 ms window increases
the latency i n order to save network resources. We can also see that disabling bulk ing when
using the C + + client also suffers from a significant latency increase when passing the speed
of 64 messages per second.

The curious column is the one containing values for a case when the P y t h o n clients were
used i n combinat ion w i t h disabled bulking, because we don't see any significant latency
during the whole process. I believe that the numbers were affected by Python ' s overall
performance and I believe that the client was not able to produce requests that fast. A l l
other data could suffer from client's inabi l i ty to produce requests fast enough, but that
part icular case I believe it had a serious impact on the results. The good th ing is that
the T B u s was able to withstand such traffic generated i n a single publisher-subscriber pair.

The second experiment was meant to explore what happens when mult iple publisher-
subscriber pairs communicate v i a the T B u s at the same t ime. E a c h publisher used separate
topic to communicate w i th exactly one separate subscriber. A l so each publisher was pro­
ducing 10 messages per second.

Fi rs t attempt at connecting mult iple subscribers and publishers showed a flaw that
taking care of a new connection has a significant influence on messages being delayed

41

client l ibrary used C + + P y t h o n
bulk ing enabled disabled enabled disabled
2 messages/sec 2.8157 ms 2.2712 ms 3.8853 ms 3.0776 ms
4 messages/sec 0.7799 ms 0.9591 ms 3.0137 ms 2.4576 ms
8 messages/sec 0.9335 ms 0.9290 ms 3.0141 ms 1.9542 ms
16 messages/sec 0.9564 ms 1.0919 ms 3.0136 ms 2.0971 ms
32 messages/sec 1.0638 ms 1.0347 ms 2.9905 ms 2.0929 ms
64 messages/sec 0.8916 ms 0.9536 ms 2.9046 ms 2.0126 ms
128 messages/sec 52.0214 ms 38.374 ms 29.9026 ms 1.8388 ms
256 messages/sec 77.5221 ms 35.173 ms 75.7054 ms 1.6265 ms
512 messages/sec 77.6337 ms 30.991 ms 68.5393 ms 2.0159 ms
1024 messages/sec 75.1017 ms 34.660 ms 58.6613 ms 2.1736 ms
-2048 messages/sec 27.6548 ms 66.6631 ms 62.5354 ms 3.7976 ms
-4096 messages/sec 61.9949 ms 53.5614 ms 96.3299 ms 2.5598 ms
-8192 messages/sec 98.5921 ms 39.0048 ms 92.87 ms 2.8644 ms
-16384 messages/sec 114.7219 ms 28.0954 ms 90.72 ms 2.8456 ms
-33333 messages/sec 24.7726 ms 31.6303 ms 82.7191 ms 1.3552 ms
-66666 messages/sec 161.1337 ms 61.9033 ms 94.6853 ms 1.2160 ms
-142900 messages/sec 155.0267 ms 94.4913 ms 103.5409 ms 1.2013 ms
-333333 messages/sec 148.9574 ms 120.6753 ms 134.5862 ms 1.2749 ms
-1000000 messages/sec 138.0919 ms 122.5201 ms 96.44 ms 2.2854 ms

Table 5.8: The average latency of requests produced at certain speeds.

and overall costs the operation is not easy for the bus to cope wi th i n case there are
mult iple new clients connecting at the same t ime. The second attempt included slower client
connection wi th certain t ime periods between each connection. The number of concurrently
communicat ing pairs was gradually increased up to a number of roughly 250 pairs, when
the timeouts started to occur more frequently. A s a result of this behavior, it was more
reasonable to t ry 200 concurrently communicat ing pairs. The period between a request
message being sent and receiving the result payload was measured. The results in Table
5.9 show that in every case the T B u s was able to provide a response for a request faster
than speed i n which the requests were produced.

client l ibrary used C + + P y t h o n
bulk ing enabled disabled enabled disabled

average latency 4.4007 ms 8.032 ms 12.0666 ms 6.1445 ms

Table 5.9: The average latency of request while 200 pub-sub pairs concurrently communi­
cate.

42

Chapter 6

Conclusion

This thesis's goal was to create a middleware that would serve as a communicat ion bus
for the Testos platform. I needed to define requirements and needs of the platform, then
I explored few popular message-oriented middleware solutions and chose M Q T T as a basis
for the Testos Bus . The M Q T T protocol was simplified, modified and extended i n order to
fulfill the needs of the platform. T h a n I implemented the modified version of the protocol
including two client libraries for P y t h o n and C + + .

After the implementat ion was finished, the Testos Bus was tested v i a automated tests
and experimented wi th i n order to discover performance abilities and l imitat ions of the so­
lut ion, which showed that the Testos Bus is able to withstand few thousand requests at once
and its overhead does not significantly prolong the communicat ion when a single publisher
produces around 60 requests per second. The middleware overhead also does not signifi­
cantly delay the communicat ion when there are 200 publisher-subscriber pairs exchanging
a smal l number of requests per second.

There is a lot of possibilities for future development. F i r s t of a l l , it is possible to imple­
ment opt ional requirements of the Testos platform such as authentication and authorization,
service load balancing or monitoring. It would be very useful to hook up the broker to a log
server in order to make storing and searching for log information much easier. Second of a l l ,
the bulk ing strategy implementat ion can be more dynamic, using periods of t ime without
high traffic to measure the network connection status i n order to select more appropriate
threshold and bulk ing window wi th i n order to save the resources and also reduce the delay
of obtaining a response caused by collection of messages into a bulk. It is also possible to
modify client libraries so that they can have separate requests queues for each ind iv idua l
subscription. Lastly, there is an opportuni ty to add an abi l i ty to detect a subscriber situ­
ated on the same machine in order to exchange messages w i t h it v i a the main memory to
increase the communicat ion speed.

43

Bibliography

[1] AMQP [online], [cit. 2021-01-06]. Available at: https://amqp.org/.

[2] Industry Leading Log Management / Graylog [online], [cit. 2021-01-16]. Available at:
https: / / www.graylog.org/.

[3] MQTT - The Standard for IoT Messaging [online], [cit. 2020-12-15]. Available at:
https: //mqtt.org/.

[4] OA SIS Open [online], [cit. 2019-12-15]. Available at: https://www.oasis-open.org/.

[5] OMG j Object Management Group [online], [cit. 2021-01-09]. Available at:
https: / / www.omg.org/.

[6] What is DDS? [online], [cit. 2021-01-09]. Available at:
https: //www.dds-foundation.org/what-is-dds-3/.

[7] What's in the DDS Standard? [online], [cit. 2021-01-09]. Available at:
https: //www.dds-foundation.org/omg-dds-standard/.

[8] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 [online], 29.
October 2012 [cit. 2021-01-06]. Available at:
http: //docs.oasis-open.org/amqp/core/vl.O/os/amqp-core-complete-vl.O-os.pdf.

[9] Data Distribution Service (DDS): Version 1.4 [online], 10. apr i l 2015 [cit. 2021-01-09].
Available at: https://www.omg.org/spec/DDS/1.4/PDF.

[10] Publish & Subscribe - MQTT Essentials: Part 2 [online]. January 2015 [cit.
2020-12-28]. Available at:
https://www.hi vemq.com/blog/mqtt-essentials-part2-publish-subscribe/.

[11] Testos Platform [online]. 2018 [cit. 2020-12-29]. Available at: http://www.testos.org.

[12] MQTT Version 5.0 [online], 7. march 2019 [cit. 2020-12-13]. Available at:
https: //docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

[13] The Real-time Publish-Subscribe Protocol DDS Interoperability Wire Protocol
(DDSI-RTPS) Specification [online], 3. apr i l 2019 [cit. 2021-01-09]. Available at:
https: //www.omg.org/spec/DDSI-RTPS/2.3/PDF.

[14] Publish-subscribe pattern - Wikipedia [online]. December 2020 [cit. 2020-12-28].
Available at: https: //en.wikipedia.org/wiki/Publish7oE27o807o93subscribe_pattern.

44

https://amqp.org/
http://www.graylog.org/
https://www.oasis-open.org/
http://www.omg.org/
http://www.dds-foundation.org/what-is-dds-3/
http://www.dds-foundation.org/omg-dds-standard/
http://oasis-open.org/amqp/
https://www.omg.org/spec/DDS/1.4/PDF
https://www.hi
http://vemq.com/blog/mqtt-essentials-part2-publish-
http://www.testos.org
http://open.org/mqtt/mqtt/v5
http://www.omg.org/spec/DDSI-RTPS/2.3/PDF
http://wikipedia.org/wiki/Publish7oE27o807o93subscribe_pattern

[15] S C H M I T T , A . , C A R L I E R , F . and R E N A U L T , V . D a t a Exchange w i t h the M Q T T
Pro tocol : Dynamic Bridge Approach . In: 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring). 2019, p. 1-5. D O I :
10.1109/VTCSpring.2019.8746333.

[16] S U R A N G A , S. Timercpp. Available at: ht tps: / /gi thub.com/99x / t imercpp.

45

https://github.com/99x/timercpp

