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ABSTRACT
The goal of this doctoral thesis is to analyze and develop parameterization algorithms for
2D and 3D shape optimization in the context of industrial aircraft aerodynamic design
based on simulations with CFD.
Aerodynamic shape optimization is an efficient tool that aims at reducing the cost of
the process of aircraft design. A tool that is based on automatization of the search for
the optimum shape. Key part of successful aerodynamic shape optimization is the use
of appropriate parameterization method, a method that should guarantee the possibility
of reaching optimum shape.
The parameterization methods used in aerodynamic shape optimizations are still not
ready for complex industrial applications, which are present on modern passenger aircrafts
with swept cranked wings with winglets and engine pylons, fuselage-wing interactions etc.
So there is a need for general parameterization method that applies on wide variety of
different geometries.The Free-Form Deformation (FFD[1]) parameterization can, thanks
to its geometry handling qualities, be the answer to this need.
Adaptive parameterization should automatically modify parameterization grid (lattice)
to get appropriate lattice in regions of interest. Such that will allow sufficient control
of deformations of the object with respect to reaching optimum shape and fulfilling
optimization constraints. First application is in the surface deformation. The other
proposed goal is development of the FFD parameterization that can do both surface
deformations and CFD mesh deformations, while enabling large object deformations and
preserving the level of mesh quality during the process.
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ABSTRAKT
Cílem mé disertační práce je analyzovat a vyvinout parametrizační metodu pro 2D a
3D tvarové optimalizace v kontextu průmyslového aerodynamického návrhu letounu za-
loženém na CFD simulacích.
Aerodynamická tvarová optimalizace je efektivní nástroj, který si klade za cíl snížení nák-
ladů na návrh letounů. Nástroj založený na automatickém hledání optimálního tvaru.
Klíčovou částí úspěšného optimalizačního procesu je použití vhodné parametrizační
metody, metody schopné garantovat možnost dosažení optimálního tvaru. Parametriza-
ční metody obecně používané v oblasti aerodynamické tvarové optimalizace momentálně
nejsou připravený na komplikované průmyslové aplikace vyskytující se u moderních do-
pravních letounů, které mají šípová zalomená křídla s winglety a motorovými gondolami,
přechodové prvky spojující např. trup s křídlem atd.. Existuje tedy potřeba nalezení
obecné parametrizační metody, která bude aplikovatelná na širokou škálu různých geo-
metrických tvarů. Free-Form Deformation (FFD[1]) parametrizace může, vzhledem ke
svým schopnostem při zacházení s geometrií, být odpovědí na tuto potřebu.
Adaptivní parametrizace by se měla být schopna automaticky přizpůsobit danému tvaru
tak, aby byly její kontrolní body vhodně rozmístěny. Což umožní dostatečnou kontrolu
deformací objektu, která zaručí možnost vytvoření optimálního tvaru objektu a splnění
geometrických omezení.
Primární aplikací takové parametrizační metody je deformace tvaru objektu. Dalším
navrhovaným cílem je modifikace FFD parametrizační metody pro současné deformace
tvaru objektu a CFD výpočetní sítě, umož̊nující velké deformace objektu při zachování
kvality výpočetní sítě.
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1 INTRODUCTION

1.1 Overview
The doctoral thesis is focused on development of Free-Form Deformation[1] parame-
terization method for deformation of shapes and CFD grids, used in the environment
of shape optimization as an advanced tool for aircraft aerodynamic design.

It is hard to imagine aerodynamic design of modern aircrafts without the use of
CFD simulation methods. Their benefits are known for quite long time and they
are widely used to supplement or even replace wind tunnel testing in aircraft de-
sign. As the progress of computer hardware power rapidly increases, it practically
enables more and more detailed simulations to be performed. Availability of power-
ful computers is also one of the reasons for growing popularity of the aerodynamic
shape optimization techniques which results in significant cost savings in design cy-
cle. However, because of the complexity of aerodynamic design problems, numerical
shape optimizations still remain expensive tasks[2]. Therefore advanced optimiza-
tion strategies complemented with appropriately capable parameterization methods
are needed.

Parameterization methods[3] work either with description of the geometry or
with description of the deformations of the geometry. The important aspect be-
ing how do they perform on complex shape configurations while using high-fidelity
analysis tools like CFD. A suitable parameterization should be effective, easy to
implement and provide analytical sensitivity derivatives of the of the model with
respect to optimization variables.

1.2 Motivation and Goals
The parameterization defines possible object shapes and shape changes which are
used as design variables during the optimization process. The number of param-
eters has major influence on the computational time cost, Andreoli[4] emphasized
that presence of a large number of design variables can result in problems with
convergence for most existing optimization algorithms. A parameterization method
intended for use in wide variety of aeronautical applications needs to be flexible
enough to produce optimal geometry without requirement of too many design vari-
ables. Since the designer may have a limited a priori knowledge of the design space
an adaptive parameterization method would help the optimization performance in
general.

The FFD parameterization developed for computer graphics by Sederberg and
Parry[1] is a method able to deform any object in any form of description and
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topology (a contrast to CAD model representation of an object). There are many
variations of FFD parameterization developed to further enhance its abilities[5, 6].

The goal of the thesis is to accurately resolve problems of shape optimization
including geometric constraints with the focus on adaptivity with respect to the
geometric features because it is a difficulty for FFD[7], including the approach[8]
that is being applied here.

The fact that the FFD parameterization can smoothly deform anything that is
embedded within a lattice of control points[9] is a foundation for the second goal
of the thesis. The development of FFD parameterization for both surface and CFD
mesh deformations that brings simplification to the optimization process by using
parameters of surface mesh description as optimization variables.

Two of the design problems[10, 11] proposed by the AIAA discussion group pro-
vide the basis for an evaluation of used algorithms of FFD parameterization. The
tests cover airfoil and wing design, and involve several challenges for parameteri-
zation such as geometric constraints and the possibility to test the convergence of
design spaces.

Goals
• The primary goal is to develop and verify FFD[1] parameterization method

in the context of aircraft design. A method that could automatically adapt
the parameterization and that would be able to handle complex geometry
deformations and demands on complicated geometrical constraints.

• The secondary goal is to test the ability of FFD parameterization to deform
CFD computational meshes.

1.3 Thesis organization
• Chapter 2 Current state-of-the-art
• Chapter 3 Free-Form Deformation (FFD) parameterization
• Chapter 4 Adaptive FFD parameterization with respect to geometry
• Chapter 5 Adaptive FFD parameterization with respect to optimization
• Chapter 6 FFD for CFD mesh deformation
• Chapter 7 Outcomes of the doctoral thesis
• The conclusions and are given in 8
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2 CURRENT STATE-OF-THE-ART

2.1 Introduction
Current global situation highlights the role of shape optimization in the industrial
aircraft design. Market competition forces the manufacturers to bring new and
better designs in shortest time possible. It will be very hard if not impossible to
fulfill the rising demands on development and operational cost reductions without
the help of modern optimization tools.

It is a use of optimization methods that should make the aircraft aerodynamic
design process more effective and to explore potential of novel aircrafts concepts.
Aerodynamic shape optimization is able to expose the areas for improvement which
may not be revealed nor by intuition neither by experience[12]. Optimization tools
that are used for aerodynamic shape optimization in aeronautical applications can
be divided into several groups. They differ in used optimization methods, param-
eterization methods and flow solution techniques. Each one is more or less time
consuming to use and is suitable for different phase of the aircraft design. Among
all of them genetic and evolutionary algorithms are now most widely used in pre-
liminary design phase, followed by gradient-based methods and response surface
methods. Thanks to recent implementation of adjoint sensitivity solution into some
CFD solvers, the gradient-based optimizations are gaining popularity in technical
praxis[13].

Flow solution methods are divided into several groups, which have their origin
in historical development. From simple to complex, the solvers are: linear potential,
nonlinear potential (adds nonlinearity), Eulerian (adds rotation) and Navier-Stokes
solvers (adds viscous effects). As the complexity of the solver rises a more com-
plex physics is taken into account. Consequences are rising computational cost and
unfortunately also decreasing credibility of the results. Progressive Navier-Stokes
solvers, such as DES, LES and ultimately DNS, are improving this credibility issues,
but they calculation cost is, for the purpose of aerodynamic shape optimization, still
prohibitive.
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Fig. 2.1: Key processes
of aerodynamic shape op-
timization

Optimization loop is typically formed by:

• Shape definition geometrical representation of the
object or initial shape plus its change

• Mesh generation discretization of the geometry
to computational mesh or modification of initial
mesh

• Flow solution aerodynamic simulation of the flow
field around the object (panel method, CFD)

• Cost function evaluation use of coefficients from
flow solution to calculate the cost function value

• Optimization algorithm that is minimizing the cost
function

• Convergence? formulation of convergence of the
solution that decides if the optimization algorithm
should make another loop or if the optimum solu-
tion has been found

• Optimum goal of the optimization process

An example of the global optimization in conceptual design could be the com-
bination of genetic optimization algorithm with potential flow solver. As was used
by Ali and Behdinan[14]. Such approach can analyze many very different kinds of
parameters and find the best solution relatively fast.

On the other side of design cycle, for fine-tuning of the details in local optimiza-
tion we can use gradient based (adjoint) optimization method with FFD parame-
terization and Navier-Stokes flow solution. As used by e.g. Samareh[15]

2.2 Parameterization
Very important part of optimization process is the parametric description of the
object geometry. Parameterization influences computational cost of the optimization
as well as the quality of its product. Parameterization defines possible object shapes
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and shape changes by a set of parameters which are used as design variables during
the optimization process. It is essential to use appropriate parameterization for each
particular optimization task.

According to Samareh[3] the successful parameterization process must:
1. be automated
2. provide consistent geometry changes across all disciplines
3. provide sensitivity derivatives (preferably analytical)
4. fit into the product development cycle times
5. have a direct connection to the CAD system used for design
6. produce a compact and effective set of design variables for the solution time

to be feasible.
Different parameterization methods use different amount of parameters for de-

scription of the object shape. The number of optimization parameters has major
influence on the computational time cost. This stands for genetic and evolution-
ary methods as well as for RSM and gradient based optimizations. Exception is
the adjoint approach for calculating the sensitivity gradients for the gradient-based
optimization, where the computational time is not limited by the amount of param-
eters and can compute gradients of all parameters in a single adjoint calculation.
Needless to say that not every kind of parameterization can provide analytical sen-
sitivity derivatives and only those methods that can guarantee constant topology
of the geometry (surface mesh) can use finite difference approach to calculate the
sensitivity derivatives[16]. The direct parameterization method that uses as many
design parameters as there are nodes in the surface mesh of the object is prone
to problems with smoothness of the surface, caused by the surface gradients. A
piecewise polynomial interpolations, such as B-splines, may be cause wiggles in the
deformed shapes when using larger number of design parameters[17].

There are two basic parameterization tactics, parameterization of object shape
and parameterization of object deformations. Shape parameterization will give us
required (optimal) shape from scratch (e.g. wing planform). Parameterization of
sharp edges, creases and other un-smooth profiles could cause difficulties. Parame-
terization of deformations will give us required (optimal) shape from some starting
shape (reference wing). Parameterization of deformation over sharp edges, creases
and other un-smooth profiles remains smooth.

The list of parameterization methods suitable for AERODYNAMIC SHAPE
OPTIMIZATION is quite long. Samareh[3] presents detailed overview of parame-
terization techniques. Some methods were specially developed for parameterization
of airfoils (e.g. PARSEC), they are often used even for wing parameterizations.
Individual cross-sections of the wing are parameterized and interpolation of the ge-
ometry between them is used. This rather limits possible local shape modifications.
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For complex 3D objects more sophisticated parameterization methods could be used.

Common types of parameterization methods that are currently used for
aerodynamic shape optimization. They can be generally divided into two groups:
Methods that represent the shape of the object and methods that deform existing
shapes

Methods that represent the shape of the object
Closed formulation approach
Uses compact formulation for parameterization of shape (airfoil). Well known airfoils
were created using NACA 4-series function, PARSEC method (see Fig. 2.2) devel-
oped for transonic airfoils by Sobieczky, describes the airfoil with smallest number
of parameters possible.

Fig. 2.2: Example of PARSEC parameterization

Polynomial and spline Using polynomial and spline parameterization of shape
reduces number of parameters, often Bezier-Bernstein[18] and B-spline curves are
used. Most universal is nonuniform rational B-spline (NURBS)[15, 19]. It was suc-
cessfully used in 3D simple models, however complex 3D models need many curves
and surfaces parameterization that results in large number of control points and
can cause irregular or wavy geometry. Polynomial and spline parameterization is
very often integrated into CAD description of the geometry, while the CAD software
uses several methods of interpolation and does things like calculating intersection
and etcetera. So the description of the geometry is complicated and therefor rather
un-practical to have CAD software included in shape optimization loop.
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Methods that deform existing shapes
Discrete approach
This very simple parameterization method uses boundary (surface) nodes as pa-
rameters. Starting from given mesh (geometry) it is useful for deformation pa-
rameterization. This approach was compared to the PARSEC and Hicks-Henne
parameterization by Wu et al.[20] in the airfoil shape optimization task. Disadvan-
tages of this method are huge number of parameters and incapability to maintain
smooth (manufacturable) surface shape. So some smoothing algorithm must be
implemented.

Analytical approach adds some shape function to baseline shape. For example
Hicks-Henne used in[21, 22] and Chebyshev used by Carpentieri[23] basic functions
can be used. These functions are smooth, so they cannot create sharp edges. This
method is well suited for airfoil and wing parameterization.

Radial basic functions (RBF) Method modifies discretized surface in volumetric
spaces with radial basic functions. It was used for wing parameterization[24] and is
described by Amoignon[25]. Parameterized surface is smooth.

Free-Form Deformation (FFD) The FFD[1] embeds the object into parametric
space built by lattice of control points and by modification of this lattice a defor-
mation is passed on the object. The parametric space is usually represented by
Bernstein, Bézier, B-Spline or NURBS.

The FFD parameterization, as an essential part of this thesis is fully described
in dedicated chapter 3
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2.3 Volume Mesh deformation techniques
Mesh deformation is used to adjust existing computational mesh to changes in
geometry[26, 27]. Thanks to this procedure it is not necessary to create new mesh
every time the geometry is changed and therefore significantly speed up the opti-
mization process itself. The idea is to generate the computational mesh only once
at the beginning.

Quality of the mesh after morphing has to be checked and has to remain in
acceptable tolerance[16]. Especially in the case of large shape deformation some
morphing methods may not be able to maintain good quality mesh and completely
new mesh may need to be generated every time the tolerance is exceeded.

Mesh deformation techniques are mostly based on: spring analogy, Laplace equa-
tion methods or elliptic differential equation approach. Methods based on spring
analogy are frequently used for their simplicity of implementation, on the other hand
their lack of robustness makes them often un-practical. The techniques based on
Laplace equation are most popular, thought they are effective only for small defor-
mation. Mesh deformation using RBF is described by Jakobsson and Amoignon[28].

Major part of present mesh morphing methods first deforms the surface boundary
mesh and after that they try to repair the interior volume mesh. This can be done by
moving, adding, reconnecting or deleting mesh nodes. All of these activities except
moving the nodes result in mesh topology changes. This precludes direct use of
previous flow field calculation during the optimization. Instead some kind of results
interpolation, has to be used. This of course slows down the optimization process.
Most of the existing techniques particularly for unstructured mesh deformations
are computationally expensive or mathematically complicated for practical use in
optimization.

Nevertheless the elimination of mesh generation in every iteration is very com-
pelling. For this reason, morphing techniques have been implemented in a number
of commercial software codes. (ANSA Sculptor[13]).

Volume Mesh deformation characteristic case An example of mesh deforma-
tion technique is the work of Hsu, Chang and Samareh[29], in which they presented
method based on linear elastic finite element analysis that they implemented into
NASTRAN commercial FEM software. Proposed approach needs two steps in the
finite element analysis. Firstly the mesh is deformed using homogenous material
properties and after that re-deformed again, this time using inhomogeneous mate-
rial properties.

Surface movements such as translation, rotation and cambering have been inves-
tigated. Two test cases were examined, 2D airfoil mesh and 3D aircraft mesh (see
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Fig. 2.3). The deformed meshes show good quality verified visually and in the 2D
case also by performed Navier-Stokes calculation. Great feature of this method is
that connectivity of the elements during deformation stays intact and the deformed
mesh has the same topology as the initial one. Deformation of 3D aircraft mesh of
855 727 tetrahedral elements took about 170 minutes on Intel Xeon 3.06 GHz, 3GB
RAM computer.

Fig. 2.3: Example of 3D deformed mesh (Source:[29])
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3 FREE-FORM DEFORMATION (FFD)

3.1 Introduction
FFD parameterization method, an essential part of this work, is described here
in detail. The FFD parameterization is rather complicated but also very power-
ful method. It was developed for computer graphics for morphing images (e.g.
Boubekeur et al.[30]) and deforming models, first published by Sederberg and Parry[1].
It is usually linked with polynomial and spline parameterization techniques [15, 8,
31, 32, 31, 4, 33, 34]. It is ideal for parameterization of objects of high geometry
complexity. FFD makes it possible to deform only part of the domain of interest
while the rest of the geometry remains intact and the transition between deformed
and undeformed parts is smooth. It belongs among the parameterization methods
that deform existing shapes.

3.2 Theoretical background
The FFD algorithm embeds the model or models into parallelepiped lattice of control
points and by modification of this lattice a deformation is passed on the model. The
FFD treats the model as it is made of clear rubber that can be stretched, compressed,
twisted, tapered or bent and yet preserves its topology. The FFD parameterization
method can deform almost any type of geometrical model because its formulation is
independent of the object’s grid topology. It allows to deform truly arbitrary shapes
with minimal set of variables. It can control surface continuity as well as volume
preservation. The analytic sensitivities derivatives can be easily calculated for use
in gradient-based optimization. The FFD can be used hierarchically to reach both
local and global deformations.

One of the most important aspects that defines the FFD is the representation
of parametric volume. Initially Bernstein[1, 35, 36] and Bézier[4, 32, 37, 38, 39, 40]
polynomials, later B-Spline[41, 42, 36, 43, 44, 45, 34, 5, 46, 47, 48] and NURBS[7, 33,
15, 8, 49] were used. The NURBS offers the best capabilities of handling complex
geometry, for which it has also become the backbone of CAD.

Because of all these advantages, the FFD is largely used in the field of geometric
modeling[47, 50, 48], computer graphics[1, 35, 41, 43, 42, 45, 44, 51, 52, 53, 54, 55,
56, 57], and more recently in medicine[7, 58, 59, 50, 46] for image registration.

More importantly, the FFD has been used for aerodynamic shape optimizations
of 2D[60] and 3D[61, 62] rotor blades, wings [33, 34, 4, 32, 37, 38, 39, 40, 15, 63, 64, 65,
62], concept[49], Blended-Wing-Body[12] and supersonic[33, 62, 66] aircrafts, elbow
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tube[67], sail[9], train[68] and car[5]. The capability of volume deformations makes
the FFD suitable also for computational fluid dynamics grids deformations[49, 63, 9].
Further more the FFD can be conveniently used in aero-structural applications
[33, 63, 9].

Use of the FFD parameterization method in either commercial software packages
(ANSYS FLUENT, ANSA) or in open-source code 𝑆𝑈2[62] underlines its potential.

The main drawback of the FFD is the necessity of use of parallelepiped
lattice of control points [35, 36, 33, 6]. The parallelepiped lattice makes it
difficult to control some geometrical constraints [6] that are useful in optimization
(fixed edges, angles of attack).

Various authors used such parametric volume representation (Bézier[38], B-
spline[60]), that allowed them to have trapezoidal lattice instead of parallelepiped.
The biggest obstacle of using arbitrary lattice of control points in combination with
NURBS volume representation is the embedding of an object into such lattice, be-
cause NURBS based FFD is defined in parallelepiped lattices only [7]. In general
it is not possible to say that the solution of embedding of an object into non-
parallelepiped FFD NURBS lattice always exists.

The limitation caused by parallelepiped lattice was approached by Coquillart[35]
with Extended FFD which introduced lattices of arbitrary shapes and their combi-
nations. The difficulty with embedding step is solved by using Bézier representation
of the parametric volume. Hsu, Hughes and Kaufmann[41] developed method called
Direct Free-Form Deformation (DFFD), where the user directly manipulates the
object points and the modification of the lattice of control points automatically
computed by the modeling system.

MacCraken and Joy[42] published another variant of FFD in which they use
lattice of control points of arbitrary topology in order to enable the desired de-
formations. Their technique uses an extension of the Catmull-Clark subdivision
methodology to refine the 3D lattice. Ono et al.[52] introduced FFD parameteriza-
tion method in which an automatic process hierarchically refines the initial bounding
lattice to approximate the shape of the object. To achieve greater flexibility, Ilic
and Fua[53] proposed Dirichlet FFD method, that place the control points into an
arbitrary locations rather than on regular lattice. Kobayashi and Ootsubo[55] devel-
oped a variation of FFD called t-FFD to handle large-scale objects in more efficient
way. t-FFD embeds the object into control mesh, which is constituted of a set of
triangles with arbitrary topology and geometry.

Samareh[15] presented FFD method suitable for 3D aerodynamic shape opti-
mization, which uses bivariate surface representation to reduce the number of design
variables and to provide better control of surface shape changes. Song and Yang[56]
published FFD with weighted T-spline, method that uses T-splines and T-junctions
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to adapt the lattice to objects with arbitrary topology or complex shape. McDonnell
and Qin[57] developed interactive points-based FFD for polygonal meshes. They use
ellipsoidal radial basis functions as parametric volume representation, which does
not require explicit construction of the FFD lattice. Duvigneau[38] introduced ap-
proach that adapts the FFD parameterization to a particular aerodynamic shape
optimization. The adaption principle stands on modification of the mapping (em-
bedding) to minimize the ineffectiveness of the current parameterization. Sacharov,
Surmann and Biermann[48] proposed another adaptive FFD method. In their ap-
proach the FFD lattice is automatically refined to decrease the approximation error
during reverse engineering of the CAD/CAM data.

As suggested by Sederbeg and Parry[1], Lamousin[7] and later used by Kenway et
al.[63], several adjacent FFD lattices can be constructed around the complex object
of interest. The only problem of this approach is only 𝐶0 continuity preservation on
the boundaries between FFD lattices which limits its application.

Different parametric volume representations in FFD:

An important factor that influences the FFD abilities is the kind of parametric vol-
ume representation used.

Bézier curves: Bézier parameterization was developed for automotive components
drawings in 1960s and is currently widely used for representation of the shape
in computer graphics and geometric modeling. The curve is geometrically
defined, so the parameters have geometric meaning.

Fig. 3.1: Example of Bézier curve

advantages:
• Bézier parameterization is efficient and accurate representation for shape

optimization of simple curves[3]
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• Has degree elevation property, that means that it can increase the degree
of the curve without changing the shape of the curve. This enables the
use of hierarchy of embedded parameterizations

• Embedding is simple, only needs to solve linear equations
disadvantages:

• Bézier curves/patches can describe only smooth objects[4], for non-smooth
objects they need to use very high order curves/patches (with danger of
oscillation - higher degree increases round-off error - it is inefficient to
compute high degree Bézier curve) or several curves/patches joined by
some continuity condition 𝐶0, 𝐶1, use of several glued patches destroys
the degree elevation property.

B-splines: B-splines are known since 19𝑡ℎ century, B-spline is an abbreviation of
basis spline. It is a piecewise polynomial function.
advantages:

• Allow high degree of locality and flexibility - low degree B-spline can
accurately and efficiently represent complex shapes[3].

• Guaranteed continuity when any of its control points are moved, in con-
trast to, for example, Bézier splines[41]

disadvantages:
• Cannot accurately represent implicit conic section shapes[3].

Nonuniform rational B-splines (NURBS): NURBS are special form of B-spline
can accurately represent very complex shapes
advantages:

• In comparison with B-Splines[50]: NURBS can allow nonuniform distri-
bution of control points and of the knot vector. Between moving control
points and adjusting their weights, NURBS provide a much more flexible
tool than uniform B-spline.

• Complex geometry handling: include weights as extra degree of freedom
(virtually changes the stiffness of the rubber)

• Local nature of the deformations: changes in control point positions or
weights affects only part of the object within the FFD lattice based on
NURBS degree used.

• Smoothness[33]: a NURBS curve of the order p, having no multiple inte-
rior knots, is p-2 differentiable. As a result, the NURBS representation
was able to handle a complex deformation and still maintain smooth
surface curvature.
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• NURBS formulation is the most general free-form surface representation[15].
• It is invariant under linear transformation. A NURBS curve of the order

p, having no multiple interior knots, is p-2 differentiable. The approxi-
mation is local in nature.

• A NURBS curve is contained in the convex hull of its control points. The
NURBS approximation is variation diminishing.

• Fundamental advantage of NURBS-based FFD[49] is that a given ge-
ometry can be parameterized to machine accuracy provided the inverse
mapping search is tightly converged. This remains true whether a geom-
etry is available in discrete form,such as in a surface triangulation, or in
analytical form, such as with NURBS patches. Technically an entire wing
can be twisted using only 8 control points, a difficult task for a B-spline
surface parameterization.

For the purpose of aerodynamic shape optimization of practical aeronautical
tasks we need parameterization that gives the optimization strong control over pos-
sible shape deformations. It seems that the best way to do that is to use FFD
based on NURBS[7] and develop a method that would resolve the biggest
drawback of FFD parameterization and enable use of non-parallelepiped
lattices adaptable to the shape of the object. That is described in section 4.2
where a parameterization method is proposed in which the FFD is supplemented
with RBF[28].
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3.3 FFD procedure:
All the FFDs have the same basic procedure consisting of four main steps (Amoiralis[8]):

1. Construction of parametric volume (Lattice of control points)
2. Embedding the object within the volume
3. Deformation of the parametric volume
4. Evaluating the effect of the deformation on the embedded object
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Initial FFD lattice of control points

Deformed FFD lattice of control points

Deformed geometry

Fig. 3.2: Basic principle of the use of FFD parameterization for deformation

3.3.1 Construction of parametric volume (Lattice of control
points):

A 1D, 2D or 3D lattice is constructed around/in the object that should be deformed.
This defines parametric coordinate system.

NURBS definition

Nodes of the lattice are used as control points to define NURBS volume (plane) that
contains the object to be deformed. NURBS polynomials are defined in each lattice
direction u, v, w. Constraints of polynomial degrees:

1 ≤ p ≤ a, 1 ≤ m ≤ b, 1 ≤ n ≤ c (3.1)
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where p,m,n define degree of the basic polynomial function in corresponding direc-
tion, a+1, b+1, c+1 are numbers of the control points in each direction. NURBS
uses knot vectors, where

U = (𝑢0, 𝑢1, ..., 𝑢𝑞), 𝑞 = 𝑎 + 𝑝 + 1 (3.2)

V = (𝑢0, 𝑢1, ..., 𝑢𝑟), 𝑟 = 𝑏 + 𝑚 + 1 (3.3)

W = (𝑢0, 𝑢1, ..., 𝑢𝑠), 𝑠 = 𝑐 + 𝑛 + 1 (3.4)

The equations are given just for x directions for now on, since the equations in other
directions (dimensions) are formulated analogically. Values of U knot vector are
calculated as

𝑢𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ≤ 𝑖 ≤ 𝑝

𝑖 − 𝑝 𝑝 < 𝑖 ≤ (𝑞 − 𝑝 − 1)

𝑞 − 2𝑝 (𝑞 − 𝑝 − 1) < 𝑖 ≤ 𝑞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.5)

and unified with range of x coordinates of parametric u coordinate. This knot vector
has p multiple identical members at the beginning and at the end.

NURBS basic functions N are defined for every direction (u,v,w) of the para-
metric volume. N for u direction is calculated with standard recursive formula.

𝑁𝑖,𝑝(𝑢) = 𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖

𝑁𝑖,𝑝−1(𝑢) + 𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) (3.6)

𝑁𝑖,0(𝑢) =

⎛⎜⎜⎜⎜⎜⎝
1 𝑢𝑖 ≤ 𝑢 < 𝑢𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⎞⎟⎟⎟⎟⎟⎠ (3.7)

u is vector of Cartesian coordinates of geometry (points) that are to be embed-
ded, i is position in knot vector and 𝑢𝑖.. are coordinates in knot vector.
The Cartesian coordinates of a geometry points within the 3D volume with para-
metric coordinates u,v,w are calculated using

𝑅(𝑢) =
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝐺
𝑥
𝑖𝑗𝑘𝑃 𝑥

𝑖𝑗𝑘𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)𝑁𝑘,𝑛(𝑢)
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝐺
𝑥
𝑖𝑗𝑘𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)𝑁𝑘,𝑛(𝑢) (3.8)
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for x direction, In general R are Cartesian coordinates of a point in a parametric
space (u,v,w), P𝑖𝑗𝑘 is a matrix of control points Cartesian coordinates (x,y,z) and
G𝑖𝑗𝑘 is matrix of its weights.
For 2D:

𝑅(𝑢) =
Σ𝑎

𝑖=0Σ𝑏
𝑗=0𝐺

𝑥
𝑖𝑗𝑃

𝑥
𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)

Σ𝑎
𝑖=0Σ𝑏

𝑗=0𝐺
𝑥
𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢) (3.9)

For 1D:
𝑅(𝑢) = Σ𝑎

𝑖=0𝐺
𝑥
𝑖 𝑃 𝑥

𝑖 𝑁𝑖,𝑝(𝑢)
Σ𝑎

𝑖=0𝐺
𝑥
𝑖 𝑁𝑖,𝑝(𝑢) (3.10)

Example: 1D vertical control point movement results in vertical geometry point
movement, new 𝑦𝑓 point coordinate is calculated:

𝑦𝑓 (𝑣) = 𝑦0(𝑣) + Σ𝑎
𝑖=0𝐺

𝑦
𝑖 𝑃 𝑦

𝑖 𝑁𝑖,𝑝(𝑣)
Σ𝑎

𝑖=0𝐺
𝑦
𝑖 𝑁𝑖,𝑝(𝑣) (3.11)

where 𝑦0 is initial geometry y coordinate value and 𝑃 𝑦
𝑖 is y coordinate of each control

point.

3.3.2 Embedding the object within the volume
This step consist of identifying parametric coordinates that represents the object
coordinates to be deformed. So an inverse problem needs to be solved in this step.
That means to find such parametric coordinates u,v,w that their product 𝑅(𝑢, 𝑣, 𝑤)
would be equal to 𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦, 𝑧) The form of R(u,v,w) of course depends on the
parametric volume representation used.

• While using Bézier the problem can be simplified to the solution of three linear
equations.

• B-spline representation generally requires numerical search technique such as
Newton-Raphson method, but if the parametric and object coordinates are
aligned, then thanks to the B-spline linear precision property the embedding
operation vanishes [47, 48].

• In the NURBS parametric volume representation, due to the multiplicity
of outer knots, the parametric coordinates have to be found by numerical
search. The Octree algorithm[8], Golden section[7], Secant method or Newton-
Raphson methods are often used. Numerical search can be very costly if the
object’s description is large (big matrix of coordinates).

Fortunately the embedding needs to be done only once at the beginning of the
optimization.

26



3.3.3 Deformation of the parametric volume
In this step the lattice of control points is changed or/and the weights are modified,
if not the weights have values of 1.

3.3.4 Evaluating the effect of the deformation on the em-
bedded object

The deformed coordinates R are calculated using corresponding equation, for 3D 3.8.

3.4 FFD gradients
For the use of gradient-based optimization algorithms is necessary to derive the
gradients of the FFD lattice control points that corresponds to adjoint sensitivities
(gradients) on the object coordinates.

2D

for loop over every 𝑞𝑡ℎ of r object points:
change in FFD lattice control points P x coordinates results in change in x object
coordinates

ΔP𝑥
𝑞 − > Δ𝑥𝑥

𝑞 (3.12)

𝛿𝑅(𝑢𝑞) =
Σ𝑎

𝑖=0Σ𝑏
𝑗=0𝐺

𝑥
𝑖𝑗𝛿𝑃 𝑥

𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)
Σ𝑎

𝑖=0Σ𝑏
𝑗=0𝐺

𝑥
𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢) (3.13)

for the adjoint sensitivities on the 𝑐𝐿

∇𝑐𝐿/P <=> for all 𝛿P
𝛿𝑐𝐿 = ∇𝑐𝑇

𝐿/P𝛿P (3.14)

𝛿𝑐𝐿 = ∇𝑐𝑇
𝐿/R𝛿R (3.15)

for the adjoint sensitivities in x direction:

𝛿𝑐𝐿 = Σ𝑟
𝑞=1

𝛿𝑐𝐿

𝛿𝑥𝑞

Σ𝑎
𝑖=0Σ𝑏

𝑗=0𝐺
𝑥
𝑖𝑗𝛿𝑃 𝑥

𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)
Σ𝑎

𝑖=0Σ𝑏
𝑗=0𝐺

𝑥
𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢) (3.16)

for one FFD lattice control point coordinate

𝛿𝑐𝐿

𝛿𝑃 𝑥
𝑖𝑗

= 𝐺𝑥
𝑖𝑗Σ𝑟

𝑞=1(
Σ𝑎

𝑖=0Σ𝑏
𝑗=0𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)

Σ𝑎
𝑖=0Σ𝑏

𝑗=0𝐺
𝑥
𝑖𝑗𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢))𝛿𝑐𝐿

𝛿𝑥𝑞

(3.17)
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similarly for the adjoint sensitivities in y direction:

𝛿𝑐𝐿

𝛿𝑃 𝑦
𝑖𝑗

= 𝐺𝑦
𝑖𝑗Σ𝑟

𝑞=1(
Σ𝑎

𝑖=0Σ𝑏
𝑗=0𝑁𝑖,𝑝(𝑣)𝑁𝑗,𝑚(𝑣)

Σ𝑎
𝑖=0Σ𝑏

𝑗=0𝐺
𝑦
𝑖𝑗𝑁𝑖,𝑝(𝑣)𝑁𝑗,𝑚(𝑣))𝛿𝑐𝐿

𝛿𝑦𝑞

(3.18)

3D

The equations for 3D are derived analogically to 2D.

𝛿𝑐𝐿

𝛿𝑃 𝑥
𝑖𝑗𝑘

= 𝐺𝑥
𝑖𝑗𝑘Σ𝑟

𝑞=1(
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)𝑁𝑘,𝑛(𝑢)
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝐺
𝑥
𝑖𝑗𝑘𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑚(𝑢)𝑁𝑘,𝑛(𝑢))𝛿𝑐𝐿

𝛿𝑥𝑞

(3.19)

𝛿𝑐𝐿

𝛿𝑃 𝑦
𝑖𝑗𝑘

= 𝐺𝑦
𝑖𝑗𝑘Σ𝑟

𝑞=1(
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝑁𝑖,𝑝(𝑣)𝑁𝑗,𝑚(𝑣)𝑁𝑘,𝑛(𝑣)
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝐺
𝑦
𝑖𝑗𝑘𝑁𝑖,𝑝(𝑣)𝑁𝑗,𝑚(𝑣)𝑁𝑘,𝑛(𝑣))𝛿𝑐𝐿

𝛿𝑦𝑞

(3.20)

𝛿𝑐𝐿

𝛿𝑃 𝑧
𝑖𝑗𝑘

= 𝐺𝑧
𝑖𝑗𝑘Σ𝑟

𝑞=1(
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝑁𝑖,𝑝(𝑤)𝑁𝑗,𝑚(𝑤)𝑁𝑘,𝑛(𝑤)
Σ𝑎

𝑖=0Σ𝑏
𝑗=0Σ𝑐

𝑘=0𝐺
𝑧
𝑖𝑗𝑘𝑁𝑖,𝑝(𝑤)𝑁𝑗,𝑚(𝑤)𝑁𝑘,𝑛(𝑤))𝛿𝑐𝐿

𝛿𝑧𝑞

(3.21)
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3.5 FFD geometry handling
There are two ways to deform the geometry with NURBS-based FFD parameteri-
zation:
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By displaced control point

By displaced control point with weight = 0.5

Fig. 3.3: 1D FFD two ways of deformation of a line

• Displacement of the control points is used solely in majority of cases. It means
just to modify 𝑃𝑖 member in corresponding equation 3.10.

• Modification of the weight of the control points. Can be used in combination
with control point displacement to achieve even higher control of the defor-
mation. It means to modify 𝑃𝑖 and 𝐺𝑖 members in corresponding equation
3.10.

3.5.1 FFD basic properties:
The FFD parameterization, as described in section 3.2 has certain qualities:

• Local control
• Global control
• Smoothness of the deformations
• Complex geometry handling
• Hierarchy of multiple FFDs
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Local control

Using FFD, it is also possible to deform only part of the geometry that is embedded
within the FFD lattice while the rest of the geometry remains intact and the transi-
tion between deformed part in the lattice and undeformed parts outside the lattice
is smooth if the outer shell (layer) of the FFD remains fixed see Fig. 3.4.Lattice in
smaller area of airfoil is created to enable modification of geometry. This shows the
possibility to deform only part of interest and the rest of complete geometry remains
intact. Changes in control point positions or weights affects only part of the object
in the region:(𝑢𝑖, 𝑢𝑖+𝑝+1), (𝑣𝑗, 𝑣𝑗+𝑚+1), (𝑤𝑘, 𝑤𝑘+𝑛+1)based on equation 3.2 inside the
FFD lattice. So the size of the effected area is dependent on the discretization of
the FFD lattice and NURBS degree see Fig. 3.8.
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Fig. 3.4: Local deformation of airfoil using 2D FFD (Global and close-up view)

The Fig. 3.5 shows a FFD lattice built over a wing tip area and the deformation
caused by displacement of some control points. That illustrates case for aerodynamic
shape optimization of wing tip for which the flow solution of the whole wing is
needed.
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Fig. 3.5: Local deformation of wing tip using 3D FFD (Global and close-up view)

Global control

Everything that is embedded into the FFD lattice can be deformed. FFD allows
to deform whole objects of arbitrary shapes with minimal set of variables see Fig.
3.6 and 3.7. Even one variable (lattice control point displacement in one direction)
can control deformation of the whole object in one direction, see explanation in
section 3.5.1. The minimal possible size of the FFD lattice (2 control points for
each direction, that means 2 control points for 1D, 4 for 2D and 8 for 3D) can
be often un-practical because it constraints possible NURBS degrees (see equation
3.1), which effects deformation smoothness. So in order to have 2𝑛𝑑 NURBS degree
there is a need to have at least 3 control points in each direction.
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Fig. 3.6: Deformation of complicated 2D object with displacement of one FFD lattice
control point

(a) Initial geometry (b) Deformed geometry

Fig. 3.7: Deformation of complicated 3D object with displacement of one FFD lattice
control point
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Smoothness of deformations

The NURBS based FFD can ensure smoothness of deformations[33] by setting ap-
propriate NURBS degree.
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Fig. 3.8: NURBS degree influence on the deformed area

2𝑛𝑑 and higher degrees NURBS produce smooth deformation, obviously 1𝑠𝑡 NURBS
degree does not. Degree of NURBS defines degree of "shape", that is important for
CFD analysis, because higher degree shapes have smooth derivatives that can con-
tribute to better flow solution precision.

Complex geometry handling

This attribute gave the FFD name, where Free-Form deformation really means that
the method is able to deform any object in any form of description and topology. It
is possible to deform very complicated object with the FFD, but the level of control
over the deformations is related to the number of control points used.
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Fig. 3.9: FFD parameterization of complex 3D object

Hierarchy of multiple FFDs

A number of independent or dependent FFDs can be used hierarchically to deal
with specific parameterization tasks, to reach both local and global deformations.
The basic examples are:

• Several independent FFDs for parameterization of distinct areas. The defor-
mation process is than completely independent.

• Several independent FFDs for parameterization of areas with some common
parts of the geometry, so called overlapping FFD lattices (see Fig. 3.10). The
deformation process is than usually driven by defined hierarchy. A simplified

Fig. 3.10: Overlapping FFD lattices in 3D

aircraft geometry is deformed using two FFD parameterizations. One for the
wing and the other for fuselage, while their lattices are overlapped in the
wing-fuselage region.

• Several FFDs for parameterization of areas with some common parts of the
geometry, where some FFD control points are defined as common for more
FFDs and those control point displacements are the same (dependent FFDs).
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• Hierarchy of independent or dependent FFDs in which one contains the other/s.
Usually one FFD contains all of the geometry and drives the global deforma-
tions and the smaller FFDs takes care of local deformations in the areas of
interest.

• Adjacent FFD lattices [1, 7, 63], where the outer faces of adjacent FFDs are
shared. Two adjacent FFD lattices are constructed so that they share one
outer line or column of control points in 2D or one outer plane of control
points in 3D. The deformations caused by displacement of common control
point will result in deformation in geometries embedded in FFD lattices. This
approach can guarantee only C0 continuity[63]. As can be seen on Fig. 3.11
the airfoil is not deformed smoothly on the boundary between the two lattices,
nevertheless the continuity is preserved.
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Fig. 3.11: Deformation of RAE 2822 airfoil with two adjacent FFD lattices

Most of this require special care to guaranty smooth transitions, if the outer
shells of the FFD lattices are not fixed.
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3.6 Impact of the NURBS degree
The influence of the NURBS degree on the regularity of shapes produced by opti-
mization and its impact on the convergence speed of the optimization is studied in
the following parts.

Behavior of the optimization with respect to the size of the FFD lattice was
studied. Big parameterization can cause regularity issues such as wiggles. Wig-
gles created on the shape during the optimization can degrade mesh quality and
prevent the flow solver to find a solution, slowing down gradient-based algorithms
or eventually causing the optimization to stop. Wiggles can occur when increasing
the number of design parameters even if parameterizations mostly produce smooth
geometric changes. The reason is that the values of the parameters are driven by
an optimization process trying to minimize a cost function[17], not to preserve the
quality of a representation of the geometry.

 

 

Starting geometry

Random lattice displacement

Deformed geometry − different NURBS degrees

Fig. 3.12: Oscillation influenced by NURBS degree

In order to illustrate the influence of the NURBS degree on oscillations, the
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control points of a 2D FFD lattice deforming a straight line are randomly displaced.
Fig. 3.12 shows the horizontal line deformed by FFD control points displacements
using NURBS degree varying between 1 (blue) and 64 (red).

Oscillations are visibly damped by increasing the NURBS degree. Similar results
would be observed in 3D latices because 2D or 3D FFD use products of (1D) NURBS
defined in each direction (see Equ. 3.8).

The impact of the NURBS degree on the optimization is now illustrated by
the resolution of two inverse geometric problems of design (see Fig. 3.13). Each
problem is solved using several algorithms (Steepest descent, Conjugate gradient
and Conjugate gradient with restart) in order to exhibit the major trends.
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Fig. 3.13: Two examples of inverse design: towards a diamond-shaped airfoil (left)
and towards a smooth airfoil (right).

In one case the objective is to obtain a diamond like airfoil from the NACA 0012
geometry and in the other case the targeted airfoil is the RAE 2822. In both cases
the square of the difference of coordinates between the airfoil being deformed and
the targeted shape is minimized.

Fig. 3.14 shows that the cost of the optimization rises when increasing the
NURBS degree in the case where the target is the diamond shape. On the contrary,
the cost of optimization is not affected by the NURBS degree when the initial and
the target geometry, e.g. RAE2822, can be obtained by smooth shape transforma-
tions. This behavior of FFD may suggest that increasing the NURBS degree, which
practically damps oscillations (see Fig. 3.12), will not affect the performance of the
optimization, if we seek smooth shape solutions, which is the case in aeronautical
applications.
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Fig. 3.14: Cost of optimization dependency on the NURBS degree - towards a
diamond-shaped airfoil (left) and towards a smooth airfoil (right).

The influence of NURBS degree on aerodynamic shape optimization results is
studied in section 3.7.1 for 2D and in section 4.3.3 for 3D.
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3.7 FFD in aerodynamic shape optimization - 2D
test case

An airfoil design case[69] proposed by the AIAA Discussion Group on Aerodynamic
Design Optimization was proposed as an aerodynamic shape optimization bench-
mark case. As such it gives a practical testing platform for application of the FFD
parameterization method for aerodynamic shape optimization.

3.7.1 NACA 0012 airfoil optimization
The case description was communicated by the AIAA Aerodynamic Design Opti-
mization Discussion Group [10]. It consists in minimizing the drag of the symmetric
NACA 0012 airfoil in inviscid flow at M=0.85 with geometric constraints.

min 𝑐𝐷

subject to: 𝑦 (𝑥) ≥ 𝑦NACA0012 (𝑥) 𝑥 ∈ [0, 1]
(3.22)

The optimizations are carried out by gradient-based algorithm, namely the Se-
quential Quadratic Programming (SQP) from NLOPT[70] software package.

Tab. 3.1: NACA 0012 grid dependency study

Nodes 𝑐𝐿 𝑐𝐷

2826 0.0000 0.0395
42556* 0.00096 0.0475
168464 0.0016 0.0484
670336 0.0018 0.0485

* grid used for optimization

A set of unstructured meshes was generated with IcemCFD. The results com-
pared in Tab. 3.1 suggest that a grid independent solution requires more than 200,000
nodes. The results of optimization are later cross-checked using the same set of grids.

Geometry: Zero thickness trailing edge NACA 0012 is used here. Defined as:

𝑦 = ±0.6(0.2969
√

𝑥 − 0.1260𝑥 − 0.3516𝑥2 + 0.2843𝑥3 − 0.1036𝑥4) (3.23)

where, 𝑥 ∈ [0, 1]. The zero thickness trailing edge is achieved through a modification
of the 𝑥4 coefficient.
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Fig. 3.15: NACA 0012 mesh with 42556 nodes

Mesh: Unstructured meshes were generated and their results compared.

Parameterization: 2D FFD lattice was constructed around the NACA 0012 air-
foil geometry. For the purpose of optimization the movement of middle layer of FFD
lattice control points was fixed, the upper layer control points displacements were
used as optimization variables and the bottom layer displacements were mirroring
the upper layer see Fig. 3.16
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Fig. 3.16: Example of FFD parameterization setup for the case with 6 variables
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Optimization results, effect of dimensionality: The study of Vassberg et
al.[69] showed that this problem would be an excellent benchmark for parameteri-
zations (in 2D) and optimization strategies because the non-trivial optimal shape
seems to be unique at Mach number 0.85. The tests carried out with FFD show
similar trends as shown in Tab. 3.2

Tab. 3.2: Results of NACA0012 optimization for different (FFD𝑏) lattices.

No. 𝑐𝐷𝑜𝑝𝑡 𝑐𝑎
𝐿𝑜𝑝𝑡

cost𝑐

Baseline 0.04750 0.00096 1
3 0.03144 0.00125 23
6 0.02132 0.00690 32
11 0.01300 -0.02718 197
21 0.01187 0.00059 239
41 0.01138 0.00036 280

𝑎 CFD grid size is 42556 nodes.
𝑏 NURBS degree 𝑝 = No. − 1.
𝑐 Flow and adjoint solutions
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Fig. 3.17: NACA: History of optimization for various number of design variables
(maximum NURBS degree is used in all cases). Only the feasible steps are shown.
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As can be observed in Tab. 3.2 as much as 41 parameters are needed to get close
to final converged solution (the difference between 21 and 41 parameters is only 4%),
which correspond to the claim that the case requires close to 40 design parameters
to be solved[69].
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Fig. 3.18: NACA 0012: Comparison of optimal shapes for various number of design
variables and distributions of pressure coefficients.

Mesh dependence analysis: Meshes from NACA 0012 grid dependency study
(Tab. 3.1) are deformed based on the design obtained with FFD and 41 design
parameters (see Tab. 3.4).
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Tab. 3.3: Optimized NACA0012 grid dependency study (* grid used for optimization

Nodes 𝑐𝐿 𝑐𝐷

2826 -2.892e-4 0.0346
42556* 3.601e-4 0.0114
168464 1.008e-3 0.0119
670336 -4.721e-4 0.0119

* grid used for optimization

Tab. 3.4: Comparison of 𝑐𝐷𝑜𝑝𝑡 for different initial design variables in NACA0012
optimization.

X0 X1 X2

21 0.01187 0.01124 0.01408
41 0.01138 0.01049 0.01027
𝑎 CFD grid size is 42556 nodes.
𝑏 NURBS degree 𝑝 = N − 1.

𝑐 X0 = 0, X1 = 0.25X𝑜𝑝𝑡, X2 = 0.75X𝑜𝑝𝑡.

Initial design parameters effect: Further tests included different initial guess
for the design parameters located between X0 = 0 and the solutions X𝑜𝑝𝑡 obtained
with 21 or 41 parameters, see Tab. 3.4. It shows that the results are dependent on
the starting point, a result that can depend on the optimizer NLOPT and needs to
be investigated.
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NURBS degree effect

This NACA 0012 test case gives practical application to illustrate the influence of
the NURBS degree (discussed earlier in 3.6) using an FFD with 6 lattice points and
increasing the NURBS degree from 2 to 5, the maximum for this lattice. For the
mesh used here (42556 nodes) the baseline airfoil shows a drag of 475 drag counts.

Tab. 3.5: Influence of NURBS degree on the NACA 0012 minimum drag obtained
with 6 FFD parameters

Degree 𝑐𝐷𝑜𝑝𝑡 cost CFD+adjoint
2 0.0247 44
3 0.0243 43
4 0.0223 34
5 0.0213 32

Tab. 3.5 indicates that for this particular case increasing the NURBS degree not
only improved the cost function but also accelerated convergence (Fig. 3.19). The
sole increase of the NURBS degree with 6 parameters of design gives here a gain of
10% compared to the maximum drag reduction (372 drag counts) that was obtained
with a lattice of 41 points[71].
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Fig. 3.19: NURBS degree influence on the optimization of the NACA0012 airfoil
with 6 parameters.
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FFD NURBS weights

As mentioned in section 3.5, the weights in NURBS-based FFD can be used as ad-
ditional optimization variables. An optimization of NACA 0012 case with 3 control
points displacements and their weights was performed.

Tab. 3.6: NACA0012 optimization with FFD using weights

𝑁𝑜. 𝑐𝑎
𝐷𝑜𝑝𝑡

cost𝑏

Baseline 0.04760 1
3 0.03134 19
3 + 3 weights 0.03049 14
6 0.01711 42
𝑎 solution on 42556 nodes grid
𝑏 cost given as the sum of flow and adjoint computations.

Tab. 3.6 shows that adding the 3 weights parameters led to almost 3 % decrease
in drag in comparison to just 3 control point displacements parameters. Adding
3 weights to 3 displacements gave 6 optimization parameters combined and if we
compare the result to 6 control point displacements we see that using weights led
to 78 % smaller decrease of drag. That means weights does not have the same
power over control of deformations as displacements and that their use for general
aerodynamic shape optimization cannot be recommended.

On the other hand the use of weights does not require any modification to the
parameterization and thus can be a possible way how to further improve the opti-
mizations in the cases where the FFD lattice cannot be altered.

Deformation in two directions

Displacements of control points in x direction were added to previously used y
direction optimization variables to test influence of multi-direction deformations.

The results in Tab. 3.7 shows that the the additional x displacements parameters
gave worse results compared to pure y displacements with the same number of
parameters (3y + 3x vs. 6y etc.). The addition of x displacements parameters
gave worse results even than only y displacements despite of using twice the number
of optimization parameters, with the exception of 3y + 3x case which gave better
results than 3y, which is probably caused by the fact that using only 3y displacements
is not enaugh and that the additional 3x displacements are beneficial even if not
very effective. Clearly the use of only y direction displacements is more effective in
2D airfoil aerodynamic shape optimization cases.
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Tab. 3.7: NACA0012 optimization with FFD using displacements in x and y direc-
tions

𝑁𝑜. 𝑐𝑎
𝐷𝑜𝑝𝑡

cost𝑏

Baseline 0.04760 1
3y 0.03134 19
3y + 3x 0.02366 16
6y 0.01711 42
6y + 6x 0.01749 13
11y 0.00641 144
11y + 11x 0.01412 15
21y 0.00471 95
21y + 21x 0.02103 12

𝑎 solution on 42556 nodes grid
𝑏 cost given as the sum of flow and adjoint computations.

As in the case of weights the use of x direction displacements additional to the y
direction displacements does not require any modification to the parameterization
and thus can be a possible way how to further improve the optimizations in the
cases where the FFD lattice cannot be altered.

46



4 ADAPTIVE FFD PARAMETERIZATION WITH
RESPECT TO GEOMETRY

4.1 Introduction
The purpose of this work is to develop a parameterization based on Free-Form
Deformation[1] in the context of aircraft design. One of the goals is adaptivity with
respect to the geometric features because it is a difficulty for FFD[7], including the
NURBS-based approach[8] that is being applied here.

Practical aerodynamic shape optimizations often involves challenge in the form
of complicated geometric constraints. One way of solving them is to add some
penalty definition into the formulation of optimization cost function. That of course
further stiffens the optimization process and can even lead to its failure. The other
way is to have a parameterization that will be able to take care of some of the
geometrical constraints, such as requirements of fixation of some part of the geometry
(points, edges, sections). An example is to keep constant the trailing edge of a wing
undergoing an optimization[11].

In aerodynamic shape optimization methods based on FFD have been applied
to the design of rotor blades[60, 61], wings[33, 34, 4, 63, 64, 65], Blended-Wing-
Body[12] and supersonic[33, 62, 66] aircraft design.
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Fig. 4.1: A coarse FFD lattice.

The standard parallelepiped lattice of control points is not well suited for more
complicated geometry handling. The solution of this disadvantage is given in fol-
lowing section as well as study of various improvements. The goal is to map the
geometry into the standard parallelepiped lattice of control points in such way that
the mapped geometry fills the lattice as much as possible. So the control points
positions are close to the surface of the geometry, thus enable its better control.
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4.2 Coordinates transformation using RBF
The FFD used here requires a parallelepiped lattice of control points[35, 36, 6].
Control of non-planar curves and other geometric constraints can thus become a
difficult task[6]. This is the reason for using a Radial Basis Function (RBF) pa-
rameterization for coordinates transformation of the object, for example a wing or
a highly cambered airfoil, that is parameterized by FFD-RBF: this transformation
deforms the object that now “fills” the FFD lattice where embedding, an operation
described below, and deformations are taking place.

4.2.1 FFD-RBF parameterization procedure
The FFD-RBF procedure consists of eight main steps:

1. Construction of FFD parametric volume (FFD lattice of control points)
2. Construction of RBF centers adapted to the object
3. Construction of artificial FFD lattice
4. Mapping of the object into the artificial FFD lattice
5. Embedding the mapped (transformed) object within the FFD parametric vol-

ume
6. Deformation of the parametric volume
7. Evaluating the effect of the deformation on the embedded object
8. Mapping the deformed object back into the real coordinates

Construction of FFD parametric volume (FFD lattice of control points)
This step is the same as in basic FFD parameterization (section 3.3.1).

Construction of RBF centers adapted to the object The location of the
RBF centers (Fig. 4.3a), the usual term that designates the vertices of the RBF
equivalent to the FFD lattice, need not to be the same as the FFD lattice as Fig. 4.2a.
The RBF lattice is adapted to the objects (wing) geometry.

Construction of artificial FFD lattice Artificial FFD lattice is created just
for the purpose of RBF coordinate transformation, this artificial FFD lattice has
the same outer dimensions as the FFD lattice (the same box), and it has the same
discretization (number of control points in all directions) as the RBF lattice (see
Fig 4.4a).

Mapping of the object into the artificial FFD lattice RBF parameterization
algorithm[28] is used to map the geometry into the standard parallelepiped lattice of

48



control points. The mapping (transformation) matrix is based on difference between
the locations of adapted RBF lattice centers 4.4b and the locations of articial FFD
lattice 4.4a control points. This transformation matrix is then used to map the
object into the FFD lattice.

The wavy nature of RBF parameterization can cause problems in the sense that
they map some points of the geometry outside the FFD lattice volume (see Fig. 4.3b),
which is of-course unacceptable for the embedding step of the FFD. To solve this an
iterative procedure was used, where the RBF control points nearest to the outside
geometrical points are identified and their matrix of displacement modified until the
complete geometry is well mapped inside the FFD lattice. This mapped geometry
is then used by the FFD parameterization in the usual way.

(a) Iso view
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(b) Top view

Fig. 4.2: FFD lattice constructed around wing

(a) RBF lattice constructed around wing (b) Wing geometry mapped by RBF into the FFD
lattice -top view

Fig. 4.3: RBF coordinate transformation example
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The RBF lattice discretization does not need to be the same as the FFD lattice
discretization. So denser lattice can be used with the prospect of qualitative im-
provement of the mapping. Analysis of influence number of RBF centers is given in
section 4.2.2.

(a) Artificial FFD lattice (b) Dense RBF lattice

Fig. 4.4: Dense RBF coordinate transformation lattices
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(a) Basic FFD parameterization of wing (b) Wing geometry mapped by dense RBF into
the FFD lattice

Fig. 4.5: Comparison of basic FFD parameterization and FFD with dense RBF
coordinate transformation

Embedding the mapped (transformed) object within the FFD parametric
volume This step is in the principle the same as in basic FFD parameterization
(section 3.3.2).
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Deformation of the parametric volume Again the same step as in basic FFD
(section 3.3). In this step the lattice of control points is changed or/and the weights
are modified.

Evaluating the effect of the deformation on the embedded object Also
this step is the same as in basic FFD (section 3.3). The deformed coordinates R are
calculated using corresponding equation, for 3D 3.8.

Mapping the deformed object back into the real coordinates The trans-
formation matrix used to map the object into the FFD lattice is now utilized to map
the deformed geometry back into the real coordinates.

4.2.2 Test case: Wing trailing edge fixation
This case comes from CRM wing optimization 4.3.1, which is described in following
section. In this test case the trailing edge of the wing has to be fixed. That is es-
pecially challenging, because the wing is swept, cranked and twisted. Fulfillment of
this geometrical constraint is quantified by fixation error, and tested up to unrealis-
tically severe conditions (deformations). The tests summarized in Tab. 4.1 indicate
deviations on the trailing edge when the FFD control points in the vertical plane
adjacent to the trailing edge are fixed and all other control points are displaced ver-
tically using random distributions. In principle this would forbid embedded points
to move in that plane, but the coordinate transformation does not exactly place the
trailing edge of the wing in this plane of the FFD lattice, causing errors.

Random deformations 𝑟𝑎𝑛𝑑𝑒𝑓 are defined as:

𝑟𝑎𝑛𝑑𝑒𝑓 = 𝑟𝑎𝑛𝑑𝑜𝑚

‖𝑟𝑎𝑛𝑑𝑜𝑚‖∞ 𝑐ℎ
(4.1)

where:
𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [−1 : 1] (4.2)

and
𝑐ℎ = 7.5% of kink chord (4.3)

The fixation error is defined in % as max norm deformation on trailing edge
divided by maximum FFD deformation:

𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(|Δ𝑧1|, |Δ𝑧2|, ..., |Δ𝑧𝑛|)
𝑚𝑎𝑥(|Δ𝑃𝑖𝑗1|, |Δ𝑃𝑖𝑗2|, ..., |Δ𝑃𝑖𝑗𝑘|) * 100 (4.4)

Where Δ𝑧1 is deformation of observed curve point and Δ𝑃𝑖𝑗1 is deformation of
FFD lattice control point.
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The results, shown in the Tab. 4.1, are the averaged values of 20 random defor-
mations (normalized to have the same maximum amplitude) for RBF mapping of
increasing sizes. Note that the number of RBF centers effects the RBF mapping
abilities, a general conclusion can be stated that with increasing number of RBF
centers the fixation error decreases. Dense RBF adaption lattice (see Fig. 4.4b)
is constructed around the CRM wing using sections in span-wise direction, in the
direction of minimal changes of the geometry. The denser the discretization of the
RBF lattice is in this direction the smaller the fixation error. See section 4.3.3 that
is giving results of deeper investigation of this phenomena.

Tab. 4.1: Geometric constraint test: averaged errors on the
fixation of the trailing edge under FFD1 deformation.

No. of RBF centers RBF lattice dimensions Error [%]
02 - 39.92
27 3x3x3 19.36
64 4x4x4 15.40
225 5x15x3 2.60
384 6x16x4 1.87

1 a = b = c = p = m = n = 2, N = 18
2 no RBF coordinate transformation
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4.3 FFD-RBF in aerodynamic shape optimization
- 3D test cases

It is essential to verify the FFD in 3D aeronautical applications, to evaluate poten-
tial of FFD parameterizations with RBF coordinate transformation and identify its
possible limitations. To investigate its ability to handle complex geometry deforma-
tions and demands on complicated geometrical constraints. Three major test cases
were selected for this demonstration. Aerodynamic shape optimization of CRM
wing which is a testing platform for evaluation of CFD software in drag prediction
workshops, transonic passenger aircraft wing optimization and aerodynamic shape
optimization of commuter aircrafts landing gear nacelle which was suggested by
Evektor company.

4.3.1 CRM wing
The case [11], suggested by the AIAA Aerodynamic Design Optimization Discussion
Group, concerns the optimization of a transonic wing in viscous flow is an excellent
testbed for testing FFDs many properties.

The test case was designed to be as close to real wing for the passenger aircraft
as possible and is quite restrictive. The use of FFD parameterization with RBF co-
ordinate transformation in this test case was published in the AIAA SciTech 2014 by
Amoignon, Hradil and Navratil[71], which also contains relevant mesh dependency
study.

Geometry: The geometry specification is given by the AIAA Aerodynamic Design
Optimization Discussion Group. It is based on NASAs Common Research Model
(CRM) wing that was and in some modifications still is used in AIAA CFD Drag
Prediction Workshops.

Parameterization: Developed FFD-RBF parameterization is compared to basic
FFD parameterization, both use the same FFD lattice. The basic FFD parameter-
ization of wing is presented in Fig. 4.7a and the FFD-RBF in Fig. 4.7b The FFD
lattice has 9, 9, 3 control points in x, y, z directions. In total 243, from which 1
is fixed in order to eliminate possible shift of the whole wing geometry. Maximal
possible NURBS degree is used in all three directions.

Mesh and CFD setup: Unstructured meshes consisting of tetrahedral elements
were generated in ANSYS IcemCfd meshing software. Relatively coarse mesh (854184
nodes was used). The Edge[72] CFD solver was used for simulation of inviscid
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Fig. 4.6: Geometry of the CRM wing, top and back view

M=0.88 flow. The calculations were done on 2 Intel Xeon E5-2690 processors hav-
ing 16 cores in total.

Optimization Some of the constraints from the original case [11] were relaxed in
order to untie the optimization algorithm to obtain bigger improvement in the cost
function value. That would give clearer view of influence of different aspects of the
parameterization. Moment and volume constraints were removed as well as fixation
of trailing edge, and the equality lift constrained was changed to inequality.

Optimization setup:

min 𝑐𝐷

𝑠.𝑡. : 𝑐𝐿 ≥ 0.5
𝑡 (𝑦) ≥ 0.25 𝑡CRM (𝑦) , for all span-wise positions 𝑦

(4.5)

The optimizations are carried out by gradient-based algorithm, namely the Sequen-
tial Quadratic Programming (SQP) from NLPQLP[73] software package, the con-
vergence (stopping) criteria are:
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(a) Basic FFD (b) FFD-RBF

Fig. 4.7: Comparison of parameterizations of CRM wing geometry

Fig. 4.8: Mesh of the CRM wing

• desired final accuracy (relative difference between last two iterations) = 1e-5
• maximum number of iterations (number of gradient calls) = 50
• maximum number of function calls during the line search = 10
The gradients were obtained from adjoint solution calculated in Edge program.
The CFD mesh deformations are done by standard Laplace method also in the

program Edge, which adjusts the CFD grid to the deformed surface grid. In the
case that the CFD mesh deformation fails and thus no CFD solution is obtained
resulting in no CF value. The NLPQLP optimizer then halves the step size in the
line-search part until a valid mesh is obtained from the meshdeform (CF is obtained)
or stopping criteria is reached.

Results The Tab. 4.2 shows results of two optimization cases. The first uses
basic FFD parameterization, the second uses RBF coordinate transformation to
map the wing geometry into the FFD lattice. The RBF mapping procedure gave
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Tab. 4.2: Comparison of CRM wing optimizations with different FFD parameteri-
zations

FFD FFD-RBF
𝑐𝐷 baseline 0.017973 0.017973
𝑐𝐷 optimal 0.015079 0.012874
𝑐𝐷 reduction 16.1 % 28.4 %
Cost in CFD+adjoint iterations 27 43
Cost in CPU time 21 783 37 579
Cost in real time 3h 47min 6h 31min

approximately 12.3% better reduction in drag. That is caused by better control of
the parameterization method over the shape deformations, since more control points
are closer to the surface.
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Fig. 4.9: Comparison of optimization history, using basic FFD and FFD-RBF pa-
rameterizations

The improved control over the deformations is probably behind the steep fall of
the drag coefficient in Fig. 4.9.

Fig. 4.10 shows comparison of resulting pressure coefficient distributions of ba-
sic FFD and FFD-RBF optimizations. Note that the basic FFD was not able to
suppress shock waves as good as the FFD-RBF.

Fig. 4.11 shows comparison of wing section shapes of initial wing geometry and
wing optimized with basic FFD and FFD-RBF optimizations.
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(a) Basic FFD (b) FFD-RBF

Fig. 4.10: Comparison of pressure coefficient distribution on CRM wing
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Fig. 4.11: CRM wing section shapes (axis not in scale)
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Both optimizations ended by reaching maximum number of function calls during
the line search and that was caused be ever failing CFD mesh deformation proce-
dure. This issue is later addressed in chapter 6 by using FFD also for CFD mesh
deformation.

4.3.2 Passenger aircraft
The issues with CRM wing CFD mesh deformation were a reason to continue on
testing the FFD parameterization behavior on another test case. So for analysis of
dimensionality of the optimization and NURBS degree influence on the optimization
results a series of test were performed on transonic passenger aircraft. The aircrafts
geometry comes from SAAB within a Clean-Sky project called OPTLAM, so all the
results and plots are consider as confidential and therefore are presented in relative
values and without scales. The goal is to optimize wing shape in order to decrease
drag coefficient of the whole aircraft.

Optimization Original optimization goal and constraints are:

min 𝑐𝐷

𝑠.𝑡. : 𝑐𝐿 = 𝑐𝐿0

𝑉 𝑜 ≥ 𝑉 𝑜Initial

Fixed planform shape (only vertical movement allowed)

(4.6)

The optimization variables are the FFD lattice control point displacements. The
optimizations are carried out by gradient-based algorithm, namely the Sequential
Quadratic Programming (SQP) from NLPQLP[73] software package. The gradients
were obtained from adjoint solution calculated in Edge program. The CFD volume
mesh was deformed using Laplace mesh deformation tool in Edge program.

Geometry: The geometry consists of fuselage and wing. The area for optimization
is a major part of wing geometry, from the first "root" planar section till the wing
tip.

Parameterization: The FFD-RBF parameterization was used in all the tests.
Similar setup of parameterization as in CRM wing case was used in first test which
dealt with three different meshes. The root section of the FFD lattice was fixed in
order to guarantee smooth transition between deformed and undeformed part of the
wing. The RBF lattice adapted to the wing is depicted in Fig. 4.12. The second
group of test was investigating the effect of dimensionality on the optimization
results and the third the effect of NURBS degree.
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Fig. 4.12: RBF adapted lattice on the Passenger aircraft

Mesh and CFD setup: Unstructured meshes consisting of tetrahedral elements
were generated in ANSYS IcemCfd meshing software. Three meshes were generated,
medium size mesh with 763 874 nodes was used in most of the tests. The Edge[72]
CFD solver was used in Euler flow setup.

Fig. 4.13: Mesh of the Passenger aircraft
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Effect of CFD mesh size on the optimization

216 parameters were used in this study of effect of CFD mesh size on the optimization
results. Tab. 4.3 summarize the results. The baseline coefficients of different meshes
are within 1% difference. The finer the mesh used the better are the results of the
optimizations.

Tab. 4.3: Results of passenger aircraft case optimization with 216 design
variables on three meshes

Mesh Case 𝑐𝐷𝑜𝑝𝑡 [%] 𝑐𝐿𝑜𝑝𝑡 [%] 𝑐𝑚𝑜𝑝𝑡 [%] 𝑉 𝑜𝑜𝑝𝑡[%] cost𝑎

Coarse Baseline 99.50 100.01 99.84 100.00 1
Coarse Optimized 34.81 99.85 96.76 99.99 83
Medium 𝑏 Baseline 100 100 100 100 1
Medium Optimized 33.59 99.88 96.82 99.99 89
Fine Baseline 100.67 100.01 99.98 100.00 1
Fine Optimized 32.95 99.89 96.74 99.98 90
a cost = CFD + adjoint (drag, lift)
b reference case

Effect of dimensionality

The test were carried out with different FFD lattice sizes in x and y directions see
Fig. 4.4.

One of the conclusions is that increase in the number of parameters let to better
results of the optimization as can be seen in Fig. 4.14. The other observation is that
the number of parameters in span-wise direction has more pronounced effect than
in stream-wise direction, at least for quite fine FFD lattices, see results for 408 and
432 (the different number is caused by the fixed root section of the FFD lattice).
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Tab. 4.4: Results of passenger aircraft wing optimization with varying
number of variables on medium mesh.

No. 𝑎 𝑏 𝑐 𝑐𝐷𝑜𝑝𝑡 [%] 𝑐𝐿𝑜𝑝𝑡 [%] 𝑐𝑚𝑜𝑝𝑡 [%] 𝑉 𝑜𝑜𝑝𝑡[%] cost𝑎

Baseline - - - 100 100 100 100 1
30 4 2 2 48.97 99.98 97.71 100.00 113
108 8 2 2 38.82 99.81 96.87 100.01 68
216 8 8 2 33.59 99.88 96.82 99.99 89
408 16 8 2 31.54 99.76 96.95 100.01 114
432 8 16 2 30.44 100.11 96.81 99.99 131
a cost = CFD + adjoint (drag, lift)
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Fig. 4.14: Comparison of optimization history, using different number of parameters

NURBS degree influence on the optimization results

Different NURBS degree in stream-wise direction 108 variables used here.
Maximum NURBS degree was used for the other directions. As can be seen the effect
of NURBS degree in stream-wise direction on the optimization results is rather in-
conclusive.. The NURBS degree in stream-wise direction does not affect the reached
minimum (the differences are considered in tolerance of the precision of the CFD),
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see Tab. 4.5. What it affects is the number of iteration needed to reach the optimum,
the higher the degree the faster the optimization convergence is (with the exception
of NURBS degree = 6.

Tab. 4.5: Results of passenger aircraft wing optimization with vary-
ing number of NURBS degree in stream-wise direction

NURBS degree 𝑝 𝑐𝐷𝑜𝑝𝑡 [%] 𝑐𝐿𝑜𝑝𝑡 [%] 𝑐𝑚𝑜𝑝𝑡 [%] 𝑉 𝑜𝑜𝑝𝑡[%] cost𝑎

Baseline 100 100 100 100 1
2 37.81 99.96 97.04 99.93 95
4 38.44 100.14 97.20 99.94 77
6 37.76 99.89 96.94 99.98 83
8 38.82 99.81 96.87 100.01 68
a cost = CFD + adjoint (drag, lift)

Different NURBS degree in stream-wise and span-wise direction 216 vari-
ables used here. This time NURBS degree varies both in stream-wise and span-wise
direction.

Tab. 4.6: Results of passenger aircraft wing optimization with varying
number of NURBS degree in both stream-wise and span-wise directions

NURBS degree 𝑝 = 𝑚 𝑐𝐷𝑜𝑝𝑡 [%] 𝑐𝐿𝑜𝑝𝑡 [%] 𝑐𝑚𝑜𝑝𝑡 [%] 𝑉 𝑜𝑜𝑝𝑡[%] cost𝑎

Baseline 100 100 100 100 1
2 31.74 100.11 96.76 99.98 131
4 31.37 100.09 96.80 99.99 119
5 31.44 100.03 96.69 99.98 113
6 31.97 100.11 96.88 100.00 108
8 33.59 99.88 96.82 99.99 89
a cost = CFD + adjoint (drag, lift)

The table Tab. 4.6 gives similar conclusion as came out of the previous test.
The NURBS degree does not affect the reached minimum, and with increase in the
degree a slight acceleration of optimization convergence is obtained.
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4.3.3 Complex geometrical constraints handling: EV-55 Out-
back landing gear nacelle aerodynamic shape opti-
mization

The commuter aircraft landing gear nacelle optimization is an excellent test case
for demonstrating the FFD-RBF parameterization. The ultimate goal was to de-
crease drag of the aircraft with "open" landing gear nacelle that would allow the
use of smaller landing gear doors. A multi-point optimization in cruise and climb
conditions subjected to geometrical constraints such as inner structure of landing
gear nacelle and landing gear itself. Navier-Stokes calculations are needed in order
to decrease viscous and pressure drag as the aircrafts cruise speed is well bellow
transonic speeds where no wave drag exists and thus Euler flow solution will not be
sufficient. The aircrafts geometry comes from Evektor, spol. s.r.o., so all the results
and plots are consider as confidential and as such are presented in relative values
and without scales.

Geometry: Only part of the landing gear nacelle surface area was allowed for
modification as the aircraft is already in late design phase. In the original state of
the geometry the wheel was hidden inside closed landing gear nacelle. The Evektor
company requested to minimize the negative effect of open landing gear nacelle that
does not cover the wheel.

Fig. 4.15: EV-55 Outback. Image downloaded from http://www.evektor.cz/
outback/fotogalerie.aspx
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A hole was cut into the nacelle and cavity inside the landing gear nacelle was
created to simulate the inner flow around the wheel, see Fig. 4.16. Only the yellow
area, which consists of part of the surface of landing gear nacelle and the cavity,
was subject of deformations. The surface of the aircraft (blue) as well as the wheel
(green) were not to be deformed.

(a) front view (b) side view

Fig. 4.16: Transparent view of the landing gear nacelle

Mesh and CFD setup Unstructured hybrid mesh consisting of tetrahedral el-
ements and prismatic layers was generated in ANSYS IcemCfd meshing software.
Mesh with 2 328 907 nodes. The Edge[72] CFD solver was used in RANS setup with
S-A turbulence model.

Fig. 4.17: EV-55 Outback CFD mesh
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Fig. 4.18: EV-55 Outback detail of mesh on the landing gear nacelle

Parameterization The FFD-RBF parameterization was used on part of the ge-
ometry designed for deformation. A set of optimization cases were performed rang-
ing from 1 to 9 parameters. These parameters were as usual FFD control points
displacements and they were located on the bottom side of the nacelle, see red point
in Fig. 4.19. All the (green) points were frozen in order to fix the boundary curve
that separates the deformable and undeformable areas.

Fig. 4.19: EV-55 Outback Parameterization example
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(a) FFD lattice (b) RBF lattice (c) mapped geometry

Fig. 4.20: FFD parameterization with RBF coordinate transformation processes

Geometrical constrains fixation Only the yellow area Fig. 4.19 can be de-
formed, the boundary curve that surrounds it has to remain fixed. Fixation error
was defined in order to quantitatively evaluate how precisely was the boundary
between deformable and fixed geometry maintained.

The FFD lattice was constructed around the deformable geometry (see Fig. 4.20a),
RBF coordinate transformation (see Fig. 4.20b) was used to map the deformable
surface into the FFD lattice (see Fig. 4.20c). The influence of number of RBF cen-
ters in x, y and z directions on the fixation error (equation 4.4) is given in Appendix
A Fig. A.1 to A.3.

Comparison of fixation error with basic FFD parameterization and with opti-
mal FFD-RBF parameterization is given in Tab. 4.7, the use of RBF coordinate
transformation gave 47,1 % improvement over the standard FFD parameterization.
The fixation error is determined for quantitative evaluation of constraint handling,
the quality of fixation of the non-deformable geometry is demanded by necessity of
volume mesh deformation between each optimization iteration. In other words, if
the parameterization fails to keep the geometry fixed in some tolerance the volume
mesh deformation process will crash and the optimization would be stopped, with
the use of FFD-RBF this had never happened. The number of RBF centers for
coordinate transformation have influence on the value of fixation error and they
should be adjusted for every new type of object to be optimized.

Tab. 4.7: Boundary curve fixation error

Error [%]
FFD 53.4
FFD-RBF 6.3
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Aerodynamic shape optimization The gradient based optimization approach
adopted in previous test was no longer an option, since adjoint of Navie-Stokes
equations was not part of used version of Edge flow solver and calculation of gradients
with finite differences was due to size of the mesh and slow character of CFD solution
too expensive. Because of that a simplex optimization approach in NLOPT[70]
optimization software package was used. Propagation of wall deformations to volume
mesh was done by FOIs in-house software meshdeform. A set of 6 optimizations with
different number of optimization variables was performed.

𝐶𝐹 = 0.7𝑐𝐷1 + 0.3𝑐𝐷2 (4.7)

where 𝑐𝐷1 stands for drag coefficient in cruise conditions and 𝑐𝐷2 for climb flight
conditions.

The original geometry with closed nacelle was also analyzed and compared to
baseline (initial) geometry that should be optimized, where the baseline stands for
the geometry with open landing gear nacelle. As expected the whole in the smooth
surface and a cavity caused additional drag, the drag of the whole aircraft increased
roughly by 6 %. That is a serious increase considering that the area of the closed
nacelle generated only 1.4% of total drag in the original case (see Tab. 4.8).

Tab. 4.8: EV-55 Outback closed nacelle CF according to area

CF value portion [%]
Wing 57.0

Engine nacelle 11.6
Fuselage 29.9

Landing gear nacelle 1.4

The shapes and pressure coefficient distributions for the baseline and with 6
parameters optimized case are presented in Fig. 4.21 for cruise conditions and in
Fig. 4.22 for climb conditions. Note the nacelle shape change (inflation) result of
the optimization process.
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Fig. 4.21: Comparison of initial (top) and optimal (bottom) shapes and pressure
coefficient distribution in cruise conditions

Fig. 4.22: Comparison of initial (top) and optimal (bottom) shapes and pressure
coefficient distribution in climb conditions
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The results of optimization of the open case are summarized in Tab. 4.9. Ap-
proximately 2 % decrease can be observed throughout all optimizations.

Tab. 4.9: EV-55 Outback optimization results

Parameters Improvement [%]
baseline -

1 2.012
2 2.015
3 2.122
4 2.051
6 1.980
9 2.129
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5 ADAPTIVE FFD PARAMETERIZATION WITH
RESPECT TO OPTIMIZATION

5.1 Introduction
Another kind of adaptivity of the parameterization is the adaptivity with respect to
the optimization. That means that the parameterization is adapted (changed) dur-
ing the optimization process, usually after some criteria is reached. The motivation
of such operation is to accelerate the optimization run, in other words to make it
cost less in computational time. Acceleration of the optimization procedure in real
time would be also valuable while shortening the design cycle time.

Two different optimization acceleration methods were investigated on the tasks
of aerodynamic shape optimization, Enrichment and Multi-grid.

5.2 Enrichment
Adaptive optimization approach called Enrichment is a method based on increase
of the number of optimization parameters and their smart insertion into the FFD
lattice. The enrichment procedure is tested on NACA 0012 2D optimization case
analyzed in section 3.7.1. A conclusion is that the case needs of large number of
optimization parameters (see Tab. 3.2).

5.2.1 Enrichment procedure
The enrichment optimization procedure starts with coarse FFD lattice and runs in a
loop. After the insertion criteria is met the FFD lattice is enriched in chosen section,
the last geometry is embedded into the new FFD lattice and the loop repeats until
the stopping criteria is met.

Insertion criteria: Minimal decrease of relative function value between last two
optimization iterations

Choosing section for enrichment: The FFD lattice is locally refined at a loca-
tion that depends on the size of the area under the shape gradient (obtained by the
adjoint flow solver).
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Calculation of area:

𝐴𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑛−1∑︁
𝑖=1

(𝑥𝑝𝑖+1 − 𝑥𝑝𝑖
)𝑎𝑏𝑠(𝑔𝑟𝑖+1) + 𝑎𝑏𝑠(𝑔𝑟𝑖

)
2 (5.1)

where 𝑥𝑝 is surface mesh point coordinate in x direction and 𝑔𝑟 is gradient in that
surface point. So in the case of just one section enrichment a column of control
points is added into the FFD lattice (see Fig. 5.1) where the area is largest (where
the shape changes have biggest potential).
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Fig. 5.1: One step of enrichment of FFD lattice based on Shape gradient

Stopping criteria:
• Maximum number of total optimization iterations
• Minimal difference of optimization parameters between last two optimization

iterations
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One step enrichment test case

A number of optimizations with regular initial FFD lattices are compared with
the same FFD lattices enriched by one column of control points and with regular
lattices of the same sizes. Maximal NURBS degree was used (in x direction) based
on previous results in section 3.7.1. The insertion criteria was set to 0.02. The
optimization finished after one of the optimization stopping criteria was met, the
stopping criteria were: 30 optimization iterations or the difference of optimization
parameters between last two optimization iterations was smaller than 1e-8.

Tab. 5.1: Comparison of Enrichment (+1) and NACA0012𝑎 optimization for a
hierarchy of FFD lattices with max. NURBS degree𝑏

Regular Enriched Regular
No. 𝑐𝐷𝑜𝑝𝑡 cost𝑐 No. 𝑐𝐷𝑜𝑝𝑡 cost𝑐 No. 𝑐𝐷𝑜𝑝𝑡 cost𝑐

Baseline 0.04750 1 - - - - - -
3 0.03144 23 3 + 1 0.03053 39 4 0.02964 16
6 0.02132 32 6 + 1 0.01952 41 7 0.01526 37
11 0.01300 197 11 + 1 0.01832 224 12 0.01246 64
21 0.01187 239 21 + 1 0.01433 225 22 0.01123 185

a CFD grid size is 42556 nodes.
b NURBS degree 𝑝 = N − 1.
c Number of flow and adjoint flow solutions

The result in Tab. 5.1 shows that the enrichment process did not fulfilled the
expectations. In cases of small number of parameters (3 and 6) the addition of one
more brought some improvement of the drag coefficient, but the comparison with
regular FFD parameterization of the same number of elements (4 to 22 parameters)
is not favorable at all in all analyzed cases. The regular FFD of the same size as
the enriched was able to find better optimum and converged faster (see Fig. 5.2)
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Fig. 5.2: Comparison of history of regular and enriched NACA 0012 optimization
using 3, 4 resp. 3 + 1 parameters

After this failure of the enrichment approach, where even the one step did not
lead to acceleration of the optimization process, no further tests were performed.
A note must be made that the enrichment procedure is influenced by the insertion
criteria which further complicates finding of one general beneficial setup for wide
variety of cases.
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5.3 FFD Multi-grid
Multi-grid (Multilevel) methods were developed for solving differential equations
using a hierarchy of discretization and are currently part of most CFD solvers

Multi-grid approach for solving the optimization problem is based on hierarchy
of CFD grids sharing the same parameterization. Using few levels (from coarse
to fine) of CFD grids could lead to accelerated convergence of the optimization
toward the optimal solution and thus increase the computational efficiency. This
assumption is based on the fact, that the CFD and adjoint solution is achieved at
much lower computational cost on coarse grid than on fine one. Similarly to multi-
grid method in CFD a results (of the optimization) on the coarse grid is used to
accelerate optimization convergence of fine grid.

5.3.1 FFD Multi-grid procedure:
The Multi-grid (MG) principle was studied on the CRM wing case used previously
for other optimization analysis in section 4.3.1. Here the same setup of the param-
eterization and optimization is used as in FFD-RBF case.

Two meshes were selected, coarse mesh with 169 381 nodes and medium with
854184 nodes. A significant differences can be observed in Tab. 5.2 between the
results of coarse and medium mesh. The coarse mesh gave smaller 𝑐𝐷 of baseline
shape and also the result of optimization is better than with medium mesh. The
explanation is that the CFD solution on the coarse mesh is not grid independent
and as shown in our publication in AIAA conference proceedings[71] a larger grid
is necessary for reliable results. Nevertheless the reliability issue is not of concern,
since the optimization on coarse mesh is performed just to give the optimization on
the medium mesh a better initial design.

Tab. 5.2: Results of CRM wing optimization on M = 0.88
with 242 design variables using NLPQLP using Laplace-
Spring on two meshes.

Mesh Case 𝑐𝐷𝑜𝑝𝑡 𝑐𝐿𝑜𝑝𝑡 cost𝑎

Coarse Baseline 0.01676 0.49969 -0.23313 1
Coarse Optimized 0.01131 0.50209 -0.23876 52
Medium Baseline 0.01797 0.49948 -0.23638 1
Medium Optimized 0.01287 0.50194 -0.21874 43
a cost = CFD + adjoint (drag, lift)
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Several multilevel cases were investigated in respect to different number of main
iterations done on coarse mesh. The investigation revealed a problems with the
transition between the two meshes. The optimal displacements of the coarse mesh
were used as the initial guess for the medium mesh, but the initial deformation of
the medium mesh failed in almost all the cases. Needless to say that the mesh
deformations during the optimization on the coarse mesh were alright.

One working case, which used 10 main optimization iterations on coarse mesh
in the first step, is here presented.. Results of the this Multi-grid FFD optimization
are given in Tab. 5.3.

Tab. 5.3: Comparison of medium mesh optimization and multilevel optimization
results

Multi-grid Medium
𝑐𝐷 baseline 0.017973 0.017973
𝑐𝐷 optimal 0.013026 0.012874
𝑐𝐷 reduction 27.5 % 28.4 %
Cost in CFD + adjoint iterations 35 Coarse + 34 Medium 43
Cost in CPU time 36 158 37 579
Cost in real time 7h 4min 6h 31min

Comparison of the MG optimization with the medium mesh optimization shows
that the MG gave 0.9 % worse 𝑐𝐷 and was 3.4 % faster in CPU time measurement
and 8.4 % slower in real time. That disagreement in CPU and real time was caused
by usage of 8 Intel Xeon E5-2690 cores for coarse mesh and 16 cores for medium
mesh. The number of CPU cores is usually correlated to the size of the CFD mesh
and is always trade-off between efficiency of the computational cluster usage and
real time results availability.

The Tab. 5.3 also shows that the cost in CFD + adjoint iterations is about the
same for coarse and medium mesh in MG case and that the 34 iterations on medium
mesh in MG case is lower than 43 in medium case, so some effect acceleration of
the optimization on medium case is observed. Both MG medium mesh and medium
optimizations ended by reaching maximum number of function calls during the line
search and that was caused be ever failing CFD mesh deformation procedure.

Fig. 5.3 shows the comparison of medium mesh optimization and MG optimiza-
tion convergence history. A deeper fall of the 𝑐𝐷 can be observed in the beginning
of the MG case which then progresses towards the optimum, which was just above
0.011 but was not reached since the MG algorithm stopped it after 10 main iter-
ations. Right after that a first 𝑐𝐷 value on the medium mesh was calculated (the
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Fig. 5.3: Comparison of medium mesh optimization and MG optimization conver-
gence history

peak in the red line at 11𝑡ℎ iteration), note that the value of 𝑐𝐷 was much lower
than the initial value of 𝑐𝐷 on the blue curve.
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6 FFD FOR CFD MESH DEFORMATION

6.1 Introduction
The second proposed objective of the thesis is development of FFD parameterization
for both surface deformations and CFD mesh deformations, while enabling large
object deformations and preserving the level of mesh quality during the process. This
approach will bring simplification to the optimization process by using parameters
of surface mesh description as optimization variables, so there will be need neither
for new mesh generation, nor for using another mesh morphing program.

Mesh deformation is standard way of adjusting the computational mesh to
changes in object shape during the optimization procedure, so there is no need to
generate the CFD mesh again after every iteration as in the past. Laplace smooth-
ing in which large system of equations has to be solved is very common as well as
spring analogy [74] method in which is each element edge represented by a spring
with corresponding stiffness (also system of equations). Another approach to CFD
mesh deformation is RBF[28] which is independent of the mesh connectivities unlike
the above mentioned.

The capability of smooth volume deformations makes FFD a suitable candidate
for CFD mesh deformation[49, 63, 9] The FFD is independent of the mesh topology,
so structured or unstructured meshes are deformed by the same algorithm as well
as hybrid meshes.

Motivation of using FFD parameterization for mesh deformation (other than
problems with failing standard methods in previous cases) is in simplification of the
optimization process. The object’s shape (subject to the optimization cost function)
will be deformed together with the volume mesh that surrounds it. Thanks to that
the use of another mesh morphing program can be avoided.

Tests in 2D and 3D, in comparison to standard methods, namely Laplace and
Spring analogy were performed. Both Euler and RANS meshes were used.

The CFD mesh deformation methods are evaluated with respect to:
• Mesh quality after morphing focused on aspect ratio and skewness.
• Cost of the deformation process with focus on the CPU time and storage

demands of all parts of the process.

6.2 Procedure:
The general procedure for CFD mesh deformation with FFD is very similar to basic
FFD procedure in section 3.3, the biggest difference is in the construction of the
FFD lattice.
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1. Usually a initial lattice of control points is constructed around the object
(surface mesh) that is to be deformed. Then one or more layers of control
points are added on that lattice. These additional layers defines how big part
of the CFD mesh will be deformed (see Fig. 6.1).

Fig. 6.1: FFD lattice for deformation of CFD mesh in NACA 0012 case

The lattice construction has a practical limitations (boundary surfaces, mul-
tisegment high lift devices) which limits the applicability of the method.
An example of such limit is depicted on Fig. 6.2, typical task would be to find
new position of the flap and its angle of deflection, the deformation of CFD
mesh with such FFD lattice would result in deformation of the airfoil as well,
which is of course prohibited. Note also the typical narrow gap between the
flap itself and the airfoil, a problem of most CFD mesh deformation tools that
would be hardly overcome by the FFD.
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Fig. 6.2: Example of practical limitations of FFD for CFD mesh deformations, in
the task of flap position optimization

2. The part of the CFD mesh that is located inside the FFD lattice is embedded
within the parametric volume.

3. The lattice is deformed. Preferably the control points of the initial lattice are
displaced (as optimization variables), the additional layers of control points
can be displaced to shift the majority of volume cell deformations further
from the objects surface. The outer most layer of the FFD lattice has to be
fixed in order to keep the transition between the deformed and undeformed
volume mesh smooth.

4. The deformed coordinates of the CFD mesh are calculated using corresponding
equation, for 3D 3.8.
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6.3 Numerical experiments: FFD vs. Standard
methods

The CFD mesh deformation capabilities of FFD parameterization is analyzed and
compared to Laplace and Spring analogy standard methods in terms of quality of the
deformed mesh and in terms of computational efficiency of the deformation process.

6.3.1 Quality measure:
Aspect ratio (Ar):

It is the ratio between lengths of the longest and the shortest edge of a cell. The
aspect ratio should be ideally equal to 1 to ensure accurate results.

Here a measure that also takes into account the surface for tri elements and
volume for tetra elements is taken, this measure is defined so that aspect ratio equal
to 1 is the best ant equal to 0 worst. To many elements with too low aspect ratio
can result in high interpolation error of the CF solution.

Tri elements:
𝐴𝑟 =

(area
𝑙𝑚𝑎𝑥

)𝑎𝑐𝑡𝑢𝑎𝑙

(area
𝑙𝑚𝑎𝑥

)𝑜𝑝𝑡𝑖𝑚𝑎𝑙

(6.1)

Tetra elements:

𝐴𝑟 =
(volume

𝑟3
𝑐

)𝑎𝑐𝑡𝑢𝑎𝑙

(volume
𝑟3

𝑐
)𝑜𝑝𝑡𝑖𝑚𝑎𝑙

(6.2)

where the optimal (equilateral) triangle is a triangle inside the same circumcircle
as the actual tri element and optimal tetra is a tetra circumscribed into the same
circle as the actual tetra element, the 𝑙𝑚𝑎𝑥 is the longest edge of the triangle and 𝑟𝑐

is circumscribed radius.

Quad elements: the aspect ratio is the minimum of 8 ratios from 4 parallel-
ograms constructed from two vectors adjacent to each node.

𝐴𝑟 = 𝑚𝑖𝑛(𝐴1

𝑎
,
𝐴1

𝑏
, ...,

𝐴4

𝑎
) (6.3)

where the 𝑎, 𝑏 are adjacent vector and the area 𝐴 is calculated as

𝐴 = 𝑎 * 𝑏 * 𝑠𝑖𝑛𝑑(𝛼) (6.4)

where 𝛼 is angle between the adjacent vectors.
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Hexa elements:
𝐴𝑟 = 𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥

(6.5)

where 𝑙𝑚𝑎𝑥 is the longest edge and 𝑙𝑚𝑖𝑛 is the shortest edge of the hexa element.

Skewness (Sk):

The skewness of a CFD mesh is a measure that indicates mesh quality and suitabil-
ity. Large skewness compromises the accuracy of the interpolated regions.

Tri and tetra elements:

𝑆𝑘 = optimal triangle area − triangle area
optimal triangle area (6.6)

where the optimal (equilateral) triangle is a triangle inside the same circumcircle

Quad and Hexa elements:

𝑆𝑘 = 𝑚𝑎𝑥
[︁

𝛼𝑚𝑎𝑥−90
90 , 90−𝛼𝑚𝑖𝑛

90

]︁
(6.7)

where 𝛼𝑚𝑎𝑥 is an angle in a face or cell.

6.3.2 Quality evaluation plan:
1. Visual inspection, that is to identify apparent errors in the mesh like inverted

cells (see Fig. 6.3) or violated surface boundaries.

Fig. 6.3: Example of inverted cells in the area of airfoil trailing edge

81



2. Quality measurement calculation of skewness and aspect ratio of all mesh
elements.

3. Dual - software build in Edge that also checks correctness and quality of the
mesh. The outcome of the program is not usable for CFD simulation in the case
of finding bad elements. That gives definitive stop to any further simulations
with that particular mesh, that is a very practical condition monitored during
the optimization procedure.

4. Influence of morphed mesh on CFD convergence and results is compared to
convergence and results on meshes deformed with standard methods. The con-
vergence of the solution is also monitored during the optimization procedure
to reveal possible mesh deformation related issues.

6.3.3 2D meshes:
A comparison of Laplace, Spring analogy and FFD methods for CFD mesh deforma-
tions is here demonstrated by a search for maximal rotation angle of airfoils. That
is equivalent to increase of the angle of attack imposed to the far-field boundary
condition. Results of CFD simulation of rotated airfoils and increased angle of at-
tack serves as ultimate quality evaluation. The rotation case was selected because
it put demands both on aspect ratio and skewness of the deformed mesh elements.
The meshdeform program in Edge was used to test the Laplace and Spring analogy
performance.

Test description

The test is designed to keep increasing angle of attack until the dual program reports
error or the meshdeform Edge program fails. That is done for Laplace, Spring
analogy and FFD methods and for Euler and RANS meshes. The NACA 0012
Euler mesh is a mesh from section 3.7.1, the RAE 2822 RANS mesh comes from
other part of publication by Amoignon, Hradil and Navratil[71] .

Initial FFD lattice of control points with the dimensions 3x3 (see Fig. 6.4 green
points) was generated in the vicinity of the airfoil. The rotation of the control points
of the initial FFD lattice around the origin was used to deform the airfoils geometry
with the standard FFD procedure. Laplace and Spring analogy deformations were
performed in meshdeform program that requires initial CFD (undeformed) mesh
and deformed boundary nodes (airfoil) to produce deformed CFD mesh.

In the case of FFD method a one layer of control points was added on the initial
lattice. The added outer layers was fixed, see red points in Fig. 6.4.
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Fig. 6.4: Example of rotation of RAE 2822 CFD mesh with FFD

Results

The maximum achieved angle of mesh deformations by rotation are summarized in
Tab. 6.1, note that the FFD method achieved much higher angles than the standard
methods on both meshes. Visual inspection revealed nothing suspicious in the cases
of Euler mesh (see Fig. B.1 to B.6 in the Appendix B). That cannot be said about
Fig. B.9 which exhibits elements that are violation surface of the airfoil close to
trailing edge, nevertheless the dual program evaluation went throw and the Edge
flow solver converged even with such mesh. Note that the spring analogy method
failed completely to deform the RANS mesh.

Tab. 6.1: Maximal angle of rotation

Mesh Laplace Spring analogy FFD
NACA 0012 Euler 16° 34° 58°
RAE 2822 RANS 25° failed 56°

Tab. 6.2 shows worst calculated element aspect ratios and skewness for NACA
0012 and their comparison to the baseline undeformed mesh. Note that both skew-
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ness and aspect ratio of worst element of the deformed CFD grid is better using
FFD than the standard methods in all comparable angles.

Tab. 6.2: Maximal angle of rotation test, NACA 0012 Euler mesh

Angle [∘] Method worst Sk worst Ar
0 - 0.3355 0.5802
16 Laplace 0.8868 0.1020
16 Spring A. 0.6226 0.3661
16 FFD 0.6120 0.3738
34 Spring A. 0.9999 0.0015
34 FFD 0.8836 0.1561
58 FFD 0.9997 0.0029

Tab. 6.3 shows worst calculated element aspect ratios and skewness for RAE
2822 RANS mesh and their comparison to the baseline undeformed mesh, of which
is very hard to tell any conclusion. Note that the results are very different from the
ones obtained in the case of Euler grid, the difference is due to the extremely narrow
first layer of the prismatic elements.

Tab. 6.3: Maximal angle of rotation test, RAE 2822 RANS mesh

Angle [∘] Method worst Sk worst Ar
0 - 0.9999 3.65e-4
25 Laplace 0.9997 5.08e-4
25 FFD 0.9993 6.17e-4
56 FFD 0.9998 3.70e-4

Tab. 6.4 shows results of the CFD solution in program Edge on NACA 0012
airfoil and their comparison to the baseline undeformed mesh under equivalent angle
of attack (AoA). The same for RAE 2822 airfoil is presented in Tab. 6.5.

The results are almost identical for all deformation methods, but they slightly
differ from the undeformed mesh results under equivalent AoA. That is probably
caused by not sufficient mesh quality, in other words the flow solution is still mesh
dependent. Nevertheless the FFD exhibits good compliance with the results of
standard methods which is what matters most.
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Tab. 6.4: CFD results on deformed NACA 0012 airfoil meshes

Angle [∘] Method 𝑐𝐿 𝑐𝐷 𝑐𝑚

16 AoA 1.71 0.51269 -0.83558
16 Laplace 1.7161 0.56456 -0.96446
16 Spring A. 1.7161 0.56456 -0.96446
16 FFD 1.7124 0.56361 -0.96121
34 AoA 0.92132 0.68432 -0.48773
34 Spring A. 0.85098 0.59729 -0.57917
34 FFD 0.84126 0.59522 -0.57695
58 AoA 0.65013 1.00400 -0.54626
58 FFD 0.66359 1.02280 -0.81761

Tab. 6.5: CFD results on deformed RAE 2822 airfoil meshes

Angle [∘] Method 𝑐𝐿 𝑐𝐷 𝑐𝑚

25 AoA 1.0002 0.62982 -0.20859
25 Laplace 0.9857 0.56017 -0.2836
25 FFD 0.98319 0.56009 -0.22637
56 AoA 0.72429 1.31500 -0.32782
56 FFD 0.94493 1.23870 -0.07099

6.3.4 3D meshes:
Similarly to 2D tests, here a comparison of Laplace, Spring analogy and FFD meth-
ods for 3D CFD mesh deformations is demonstrated, this time by a search for
maximal elevation of wing tip. That is defined to imitate bending of wing by aero-
dynamic forces, however quite unrealistically extreme for the purpose of testing of
the CFD mesh deformation methods. The elevation case was selected because it
put demands both on aspect ratio and skewness of the deformed 3D mesh elements.
Again meshdeform program in Edge was used to test the Laplace and Spring analogy
performance.

Test description

The test is designed to keep increasing elevation of control points in the wing tip
area until the dual program reports error or the meshdeform Edge program fails.
That is done for Laplace, Spring analogy and FFD methods and for Euler and RANS
meshes. A highly swept wing geometry was used to create Euler mesh for testing,
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the RANS mesh comes from CRM wing optimization done as a part of publication
(Amoignon, Hradil, Navratil[71]).

Initial FFD lattice of control points 3x3x3 (see Fig. 6.5 green points) was gen-
erated in the vicinity of the wing. The elevation of tip section control points (red
points) of the initial FFD lattice was used to deform the wing geometry with the
standard FFD procedure. Laplace and Spring analogy deformations were performed
in meshdeform program that requires initial CFD (undeformed) mesh and deformed
boundary nodes (airfoil) and produces deformed CFD mesh.

In the case of FFD method a one layer of control points was added on the initial
lattice in 5 of its sides, no layer was added in the wing root section direction to
preserve symmetry plane. The added outer layers were fixed, see blue points in
Fig. 6.10b.

Fig. 6.5: Example of wing tip control points elevation and surface deformation for
CFD mesh deformation tests

Results

The maximum achieved mesh deformations by elevation are summed in Tab. 6.6,
note that on the Euler mesh the FFD method achieved one order higher elevation
in comparison with Laplace method and 37% in comparison with Spring analogy
method. The spring analogy method completely failed to deform the RANS mesh
as happened previous in 2D tests. Visual inspection is very limited due to the com-
plexity of 3D mesh, nevertheless some cuts of meshes are presented in the Appendix
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B (see Fig. B.10 to B.14). Note that it is almost impossible to distinguish between
meshes deformed by different methods Fig. B.10, B.11, B.13.

Tab. 6.6: Maximal wing tip section control points elevation

Mesh Laplace Spring analogy FFD
Euler wing (half span = 35.73m) 2 m 12 m 19 m
RANS CRM wing (half span = 3.77m) 0.3 m failed 4.2 m

The extreme CFD mesh deformation managed by FFD method in the Euler case
was achieved by elevation of the tip section control points by more than 50% of
the half-span, it is important to say that however distorted the elements may be
(see Fig. B.12) all the checking procedures were completed successfully and Edge
was able to converge flow solution. That is also the case of RANS mesh, here were
the tip section control points elevated by more than 110% and still the deformed
mesh went through checks and CFD. Note the high change of the thickness of the
prismatic layers between Fig. B.14 and Fig. B.13, which would compromise precision
of the CFD solution.

Tab. 6.7 shows number of elements that have worse aspect ration and skewness
than 0.05 in Euler deformed meshes with different elevation of the tip section control
points.

Note that number of worst skewed elements has not increased. The spring anal-
ogy method deformed mesh had only 11 elements with lower aspect ration than the
initial mesh in the case of elevation by 2m, which was slightly better than 31 with
FFD and 63 with Laplace. 12m elevation gave us comparison of spring analogy and
FFD, in which the spring analogy added 220 tapered elements, almost 6 times less
than added the FFD method. In the case of 19m elevation with the FFD method
the deformed mesh contained 6045 elements with aspect ratio lower than 0.05.
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Tab. 6.7: Number of elements that have worse aspect ration and skewness than 0.05
for deformed Euler meshes

Elevation method Number of elements Number of elements
[𝑚] name with low Sk with low Ar
0 - 5 696
2 Laplace 5 759
2 Spring A. 5 707
2 FFD 5 727
12 Spring A. 5 916
12 FFD 5 1 978
19 FFD 5 6 045

Tab. 6.8 shows number of elements that have worse aspect ration and skewness
than 0.05 in RANS deformed meshes with different elevation of the tip section
control points. Here a number of worst skewed elements in the FFD deformed mesh
has significantly increased only in the extreme elevation 4.2m case. The number
of lowest aspect ration elements obtained in the meshes deformed with Laplace
and FFD is very similar to the initial undeformed mesh, where the FFD method
is slightly better. In the case of extreme 4.2m elevation with the FFD method the
deformed mesh contained a huge number of 120 932 elements with aspect ratio lower
than 0.05.

Tab. 6.8: Maximal angle of rotation test, RAE 2822 RANS mesh

Elevation method Number of elements Number of elements
[𝑚] name with low Sk with low Ar
0 - 18 4 628
0.3 Laplace 18 4 780
0.3 FFD 18 4 706
4.2 FFD 1251 120 932

The extremely deformed meshes, especially RANS mesh, contain large number of
poor quality elements, the maximal elevations were the last valid meshes reported
by dual program in the search we must take them as such and judge the for the
purpose of testing of the methods not for generating precise CFD results.
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Tab. 6.9: CFD results on deformed highly swept wing Euler meshes

Elevation [m] method 𝑐𝐿 𝑐𝐷 𝑐𝑚

2 Laplace 0.40635 0.02400 -0.31746
2 Spring A. 0.40582 0.02393 -0.31704
2 FFD 0.40518 0.02385 -0.31643
12 Laplace 0.42849 0.03040 -0.33632
12 FFD 0.42394 0.02975 -0.33176
19 FFD 0.42942 0.03428 -0.33458

Tab. 6.9 shows results of the CFD solution in program Edge on highly swept wing
Euler mesh case. The same for CRM wing RANS mesh is presented in Tab. 6.10.

Tab. 6.10: CFD results on deformed CRM wing RANS meshes

Elevation [m] method 𝑐𝐿 𝑐𝐷 𝑐𝑚

0.3 Laplace 0.30288 0.01450 -0.08603
0.3 FFD 0.30218 0.01449 -0.08549
4.2 FFD 0.32159 0.02156 -0.06401

The results of CFD calculations, obtained for the different CFD mesh deforma-
tion methods compared on the same elevation, deviates at most by 2% in Euler
mesh cases and at most by 0.6% in RANS mesh cases.

6.3.5 Efficiency: CPU time and memory demands:
The computational efficiency of CFD mesh deformation method is an important
factor that is also affecting the whole aerodynamic shape optimization process cost.
In the case of CRM wing optimization (Tab. 4.2 in section 4.3.1) just the CFD
mesh deformation needs approximately 32 % of the whole real time.

CPU time:

The CPU time is measured on deformations of 3D Euler and RANS meshes by using
single CPU core. Each the deformation is repeated 5 times to suppress random
effects that can occur as the procedures are conducted in Matlab environment. The
standard deformation methods are again executed in meshdeform Edge package
subprogram which is written in Fortran code, the FFD procedure is written in C
code.
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The FFD specifics is that the mesh needs to be first embedded into the FFD
lattice which is a very expensive process, however that is needed only once. Tab. 6.11
shows results of measurements of CPU time. In the case of Euler mesh a rough
agreement between time of Laplace and FFD methods can be observed, the spring
analogy being several times slower. The RANS mesh deformation compares only
Laplace and FFD methods, since the spring analogy failed in the process, the Laplace
method being slightly faster even if we do not include the time needed for embedding.

Tab. 6.11: CPU time demands of different mesh deformation techniques

Mesh Laplace Spring analogy FFD FFD embedding
Euler (77k nodes) 7,1 s 56,9 s 4,3 s 9,7 s
RANS (965k nodes) 42,6 s failed 51,0 s 166,5 s

Fig. 6.6 shows dependency of CPU time demands on increasing elevation of the
tip section control points that deforms the Euler mesh. Note that the embedding
procedure time was included only at the first run, the following calculations of the
deformation is not dependent on the amplitude of the elevation (as expected since
the FFD does not depend on the mesh topology). The standard methods seems to
be little sensitive to the elevation amplitude as well, that is probably caused by this
specific deformation test and does not fully reflect the usual behavior.
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Fig. 6.6: CPU time demands for deformation of Euler mesh
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Fig. 6.7 shows the same dependency on the RANS mesh. Again the FFD em-
bedding time is added only once and again the following deformations takes about
the same time. The Laplace procedure is slightly faster in most of the tested defor-
mations.
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Fig. 6.7: CPU time demands for deformation of RANS mesh

Parallelization: As stated above, all the test were calculated using single CPU
core, that was done just for the comparison purposes. The FFD method is topology
independent by definition, in other words it treats every point individually. That
means that the parallelization of the deformation task is theoretically limited only
by number of mesh nodes and it is very easy to implement the parallelization from
the FFD point of view. That makes it appropriate for use on multi-core processors
or on computer clusters. Translation of the code into e.g. CUDA code would enable
further massive parallelization for the use on GPUs.

Dependency of CPU mesh size on CPU time was analyzed for single CPU and 4
CPU core processor in Matlab environment and is presented in Fig. 6.8.

The parallel calculations using 4 CPUs were 3 times in faster average than the
single CPU calculations, while the bigger the grid the more effective the use of
multiple cores were (see Fig. 6.9).
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Fig. 6.8: Comparison of Single and parallel deformation time dependency on CFD
grid size
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Memory demands:

Procedure that is using meshdeform program from edge is operating with file (.bdis
file) that contains information about surface nodes displacements, size of this file is
used here for comparison of the demands of the FFD method.

The only important file worth saving in the FFD method for CFD mesh deforma-
tion is the NURBS matrix that contains coordinates of the object in the parametric
space, a result of the embedding of the object into the FFD lattice. The size of
the matrix depends on the number of control points in x,y and z direction and on
number of mesh nodes.

Tab. 6.12: Memory demands of different mesh deformation techniques

Mesh Nodes FFD lattice NURBS file .bdis file
Euler 77k 7x7x7 27.8 MB 272 kB
RANS 965k 11x10x5 352 MB 909 kB

As can be seen in Tab. 6.12 the memory needed for NURBS matrix is huge in
comparison to the .bdis file size. The NURBS file is 104.6 times bigger in the Euler
mesh case and 396.5 times bigger in the case of RANS mesh. If we extrapolate the
size of the RANS mesh to 50 million the NURBS file would probably need 18.2 GB
of memory.

6.4 3D Aerodynamic shape optimization using FFD
for CFD mesh deformation

The use of FFD parameterization for mesh deformation approach described above is
used in CRM wing optimization test case 4.3.1, in which one of the conclusions was
that the optimization stopped due to inability of the CFD mesh deformation tool to
modify the CFD mesh around demanded surface shape. The case description allow
shape deformations of the root section of the wing that is located in the symmetry
plane of the wing. Since the optimization variables are vertical displacements of
the control points no special care needs to be taken in the symmetry plane. The
only modification to the CFD mesh deformation procedure is that no additional
layer above the initial FFD that is constructed around the wing is created in the
symmetry plane, that allows the CFD mesh nodes in that plane to slide freely
without compromising the mesh quality.
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6.4.1 Basic FFD
Here a comparison of optimization cases with Laplace and FFD CFD mesh de-
formation approach on basic FFD parameterization without the RBF coordinate
transformation is given. As can be seen on Fig. 6.10a only part of the whole CFD
mesh that is located inside the FFD lattice (blue outer layer) is selected to be de-
formed, that can be seen on Fig. 6.10b which shows detail of the layout of the FFD
lattice for CFD mesh deformation. The gap between the initial and outer layer
defines how steep will the deformation of the mesh propagate from the displaced
control points. The outer fixed layer of control points should be placed in the area
where the elements are big with respect to the ones at the surface of the object. The
gap is specific to each volume mesh, here a distance of one half span of the wing
is used as most of the small elements are located close to the surface of the wing.
That is true just for unstructured meshes, in the case of structured meshes tuning of
the gap size can be advised. Only the black control points of the initial FFD lattice
(constructed around the wing) are allowed do move.

(a) Overview (b) Detail

Fig. 6.10: FFD lattice layout for the CFD mesh deformation

The use of FFD both for surface and CFD mesh deformation resulted in 7.4 %
better results compared to FFD for surface and Laplace for CFD mesh, see Tab. 6.14.
With the use of FFD the optimization stopped after reaching convergence criteria.

Fig. 6.11 shows that the case with Laplace CFD mesh deformation was not able
to get rid of shock waves as good as the case with FFD CFD mesh deformation.
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Tab. 6.13: Comparison of CRM wing optimization results with different mesh de-
formation techniques

Laplace FFD
𝑐𝐷 baseline 0.017973 0.017973
𝑐𝐷 optimal 0.015079 0.013748
𝑐𝐷 reduction 16.1 % 23.5 %
Cost in CFD+adjoint iterations 27 24

(a) Laplace (b) FFD

Fig. 6.11: Comparison of pressure coefficient distributions on CRM wing - top view

A huge difference can be observed in the resulting shape of the wing, see Fig. 6.12.
The FFD allowed the optimizer to do much bigger deformations which led to odd
wave created on the leading edge of the wing. That shape is probably caused by the
use of basic FFD parameterization without the RBF mapping, that means that the
optimizer had insufficient control over the deformations of the wing sections..
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Fig. 6.12: Comparison of CRM wing shapes initial with the use of Laplace (top)
and FFD (bottom) CFD mesh deformation techniques

Fig. 6.13 shows comparison of wing section shapes of initial wing geometry and
wing optimized with basic FFD using Laplace and FFD CFD mesh deformation
methods. Again the odd (wave-like)shape can be observed in some section shapes.
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Fig. 6.13: CRM wing section shapes (axis not in scale)

6.4.2 FFD with RBF coordinate transformation
As illustrated above the optimizer is dependent on used parameterization, the RBF
coordinate transformation described in section 4.2 was incorporated into the CFD
mesh deformation procedure in order to allow the use of FFD-RBF for both surface
and CFD mesh deformations. Fig. 6.14 shows only part of the whole initial CFD
mesh (green points) that is located inside the FFD lattice (blue outer layer), Fig. 6.15
depicts the FFD-RBF parameterization layout for the CFD mesh deformation and
mesh nodes after the RBF coordinate transformation. Only the red control points
of the initial parallelepiped FFD lattice are allowed do move.

97



Fig. 6.14: FFD-RBF lattice layout for the CFD mesh deformation, before RBF
coordinate transformation

Fig. 6.15: FFD-RBF lattice layout for the CFD mesh deformation, after RBF coor-
dinate transformation
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With the use of FFD the optimization stopped after reaching prescribed max-
imum number of optimization iterations. The Fig. 6.16 shows that the optimizer
was not able to fulfill the lift constraint and that it did most of the optimization
iterations trying to reach it.
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Fig. 6.16: History of 𝑐𝐷 and 𝑐𝐿 during the optimization

Tab. 6.14 shows that the optimum given as a result by the NLPQLP software
was 5.4 % worse compared to the optimum in the case with Laplace CFD mesh
deformation tool. What is more interesting is that the results in the column named
FFD-RBF violated 𝑐𝐿 that show the values for minimal 𝑐𝐷, there the FFD-RBF
case outperformed the Laplace case by 10.4 % producing better glide ratio (39 vs.
43.1).

Tab. 6.14: Comparison of CRM wing optimization results with different mesh de-
formation techniques

Laplace FFD-RBF FFD-RBF violated 𝑐𝐿

𝑐𝐷 baseline 0.017973 0.017973 0.017973
𝑐𝐷 optimal 0.012874 0.013832 0.010993
𝑐𝐷 reduction 28.4 % 23 % 38.8 %
𝑐𝐿 baseline 0.502438 0.499089 0.473289
Glide ratio 39.0 36.1 43.1
Cost in CFD+adjoint iterations 43 24 51
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Regardless of the behavior of the optimization algorithm which is sensitive to
various phenomena, the FFD-RBF showed its potential in its role of CFD mesh
deformation tool. That is also illustrated in Fig. 6.17, note the distinctive difference
in shape of the wing tips, which tells us that the FFD-RBF is capable of much bigger
deformations.

Fig. 6.17: Comparison of CRM wing: initial (top) optimized with the use of Laplace
(middle) and FFD-RBF violated 𝑐𝐿 (bottom) CFD mesh deformation techniques
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Fig. 6.18 shows comparison of wing section shapes of initial wing geometry and
wing optimized with FFD-RBF using Laplace and FFD-RBF (violated) CFD mesh
deformation methods. That again illustrates haw capable the FFD-RBF method is
in achieving big CFD mesh deformations
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Fig. 6.18: CRM wing section shapes (axis not in scale)
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7 OUTCOMES OF THE DOCTORAL THESIS
This chapter describes accomplished goals of the thesis and notable facts about
developed parameterization method.

7.1 Free-Form Deformation (FFD) parameteriza-
tion

NURBS based FFD parameterization properties were identified and tested. The
most important outcomes are:

• Impact of NURBS degree: The NURBS degree affects FFDs geometry han-
dling characteristics. It was illustrated on straight line deformations and on
inverse geometry optimization, where higher NURBS degree practically damps
oscillations. The results of NACA 0012 airfoil optimization shows that the in
increasing the NURBS degree not only improved the cost function but also
accelerated convergence. The acceleration of convergence was also observed in
3D on passenger aircrafts wing optimization.

• Dimensionality: A parametric study both on NACA 0012 airfoil optimization
and on passenger aircrafts wing optimization concluded that the bigger the
number of parameters the better the results. Investigation of added weights
and multi-directional displacements on NACA 0012 airfoil showed that their
use is not effective, but can be beneficial in the cases where the FFD lattice
cannot be altered.

7.2 Adaptive FFD parameterization with respect
to geometry

Adaptivity of the FFD parameterization to the geometry was achieved by using
RBF coordinate transformation. The motivation was to enable better control of the
deformations and thus further improve the optimum. The other motivation was to
handle complex geometrical constraints imposed on the optimization problem.

• The FFD-RBF greatly improves FFD’s geometry handling capabilities, which
was proven in to cases with complex geometrical constraints. In the case of
CRM wing trailing edge fixation, and in the case of EV-55 Outback commuter
plane nacelle boundary curve fixation.

• The benefit of RBF mapping is also in the aerodynamic shape optimization
behavior that profits from the improved geometry handling as was observed
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in CRM wing optimization. as well as in the optimization of EV-55 Outback
commuter aircrafts landing gear nacelle.

7.3 Adaptive FFD parameterization with respect
to optimization

Adaptivity of developed parameterization method during the optimization process
was investigated using Enrichment and Multi-grid methods. These test were aiming
on acceleration of the aerodynamic shape optimization process.

• The Enrichment procedure was inspected on NACA 0012 test case, with the
conclusion that the FFD parameterization is not sensitive on location of control
points as on its quantity.

• The benefits of using Multi-grid approach to the optimization of CRM wing is
rather inconclusive. Some savings of CPU time were observed, but the effort
to expose the acceleration properties of the Multi-grid was corrupted by failing
CFD mesh deformation tool.

7.4 FFD for CFD mesh deformations
Free-Form Deformation parameterization method was used in the CFD mesh defor-
mation application. Unlike the standard methods which adjusts the volume mesh to
the shape changes of the surface, the FFD was applied both to surface and volume
mesh deformations simultaneously which is suitable for aerodynamic shape opti-
mization process. The smooth volume deformations capabilities of NURBS-based
FFD method as well as its independency of the mesh topology makes it appropriate
for CFD mesh deformations.

• The FFD method was successfully tested on deformations by rotation in 2D
and by bending in 3D on both Euler and RANS meshes. The FFD method
surpassed the capabilities of Laplace and Spring analogy standard methods in
all test in terms of maximal achievable deformation.

• The qualitative comparison showed no deficiencies in visual evaluation, in cal-
culated aspect ratios and skewness. Obtained converged CFD flow solutions
show almost identical results between the methods.

• The tests of efficiency of the FFD method in terms of CPU time needed for
the mesh deformation results are comparable to the results of Laplace method
and faster than Spring analogy. The expensive embedding procedure is needed
only once, the file that contains NURBS matrix (a result of the embedding)
needs significant disk space ( 350MB for 1M node mesh).
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• The test of use of the FFD method for CFD mesh deformation during the
aerodynamic shape optimization process gave promising results. The FFD
was capable of bigger deformations and found better optimum. The FFD en-
hanced by the RBF coordinate transformation enabled the optimizer to make
bigger deformations that the standard methods and is therefore perspective
for further development.

• The time expensive embedding part of the FFD procedure can be parallelized.

Possible future applications of FFD: The developed algorithms could be used
in the field of aero-elasticity, for coupling CFD with FEM and during time dependent
deformations.
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8 CONCLUSIONS
The doctoral thesis Adaptive parameterization for aerodynamic shape optimization
in aeronautical applications is focused on practical problems of parameterization
and its use in aerodynamic shape optimization in particular.

As the primary goal of the thesis an adaptive FFD parameterization method for
applications in the field of aircraft design was developed and verified. A method that
could automatically adapt the original parameterization, and that would be able to
handle complex geometry deformations and demands on complicated geometrical
constraints.

Developed Free-Form Deformation parameterization is capable of accurate em-
bedding of complex geometry in orthogonal lattices (with the use of RBF coordinate
transformation), which was verified on 2D and 3D aerodynamic shape optimization
cases. It is also competent of handling complicated constraints that are often nec-
essary in industrial applications.

As the secondary goal, a technique based on FFD for deformations of CFD
computational meshes was developed. The FFD is capable of required CFD mesh
deformations, quality and effectivity of such use of the FFD was tested. The adap-
tivity to the geometry of the FFD-RBF was also incorporated into the CFD mesh
deformation procedure and its benefits were proven on working aerodynamic shape
optimization of wing.

Developed FFD-RBF parameterization method was incorporated into autom-
atized environment for aerodynamic shape optimizations and is ready for use in
aeronautical applications ranging from simple 2D airfoils to complex constrained
3D surfaces.
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A APPENDIX A

A.1 Influence of number of RBF centers in x, y
and z directions on the fixation error
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Fig. A.1: Influence of number of RBF parameterization on fixation error in x dirrec-
tion
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Fig. A.2: Influence of number of RBF parameterization on fixation error in y dirrec-
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B APPENDIX B

B.1 Deformed 2D CFD Euler meshes of NACA
0012 airfoil

Fig. B.1: 16 degree mesh rotation with Laplace method

Fig. B.2: 16 degree mesh rotation with Spring analogy method

Fig. B.3: 16 degree mesh rotation with FFD method
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Fig. B.4: 34 degree mesh rotation with Spring analogy method

Fig. B.5: 34 degree mesh rotation with FFD method

Fig. B.6: 58 degree mesh rotation with FFD method
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B.2 Deformed 2D CFD RANS meshes of RAE
2822 airfoil

Fig. B.7: 25 degree mesh rotation with Laplace method

Fig. B.8: 25 degree mesh rotation with FFD method

Fig. B.9: 56 degree mesh rotation with FFD method
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B.3 Deformed 3D CFD Euler meshes of highly
swept wing

Fig. B.10: Comparison of deformed meshes in the case of 2m elevation of wing tip
control points displacement with Laplace (top), Spring analogy (middle) and FFD
(bottom) methods in back view of wing tip area
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Fig. B.11: Comparison of deformed meshes in the case of 12m elevation of wing
tip control points displacement with Spring analogy (middle) and FFD (bottom)
methods in back view of wing tip area
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Fig. B.12: Deformed mesh in the case of 19m elevation of wing tip control points
displacement with FFD method in back view of wing tip area
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B.4 Deformed 3D CFD RANS CRM wing meshes

Fig. B.13: Comparison of deformed meshes in the case of 0.3m elevation of wing tip
control points displacement with Laplace (top) and FFD (bottom) methods in back
view of wing tip area
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Fig. B.14: Deformed mesh in the case of 4.2m elevation of wing tip control points
displacement with FFD method in back view of wing tip area
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