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A B S T R A C T 
The goal of this doctoral thesis is to analyze and develop parameterization algorithms for 
2D and 3D shape optimization in the context of industrial aircraft aerodynamic design 
based on simulations with CFD. 
Aerodynamic shape optimization is an efficient tool that aims at reducing the cost of 
the process of aircraft design. A tool that is based on automatization of the search for 
the optimum shape. Key part of successful aerodynamic shape optimization is the use 
of appropriate parameterization method, a method that should guarantee the possibility 
of reaching optimum shape. 
The parameterization methods used in aerodynamic shape optimizations are still not 
ready for complex industrial applications, which are present on modern passenger aircrafts 
with swept cranked wings with winglets and engine pylons, fuselage-wing interactions etc. 
So there is a need for general parameterization method that applies on wide variety of 
different geometries.The Free-Form Deformation (FFD[1]) parameterization can, thanks 
to its geometry handling qualities, be the answer to this need. 
Adaptive parameterization should automatically modify parameterization grid (lattice) 
to get appropriate lattice in regions of interest. Such that will allow sufficient control 
of deformations of the object with respect to reaching optimum shape and fulfilling 
optimization constraints. First application is in the surface deformation. The other 
proposed goal is development of the FFD parameterization that can do both surface 
deformations and CFD mesh deformations, while enabling large object deformations and 
preserving the level of mesh quality during the process. 
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A B S T R A K T 
Cílem mé disertační práce je analyzovat a vyvinout parametrizační metodu pro 2D a 
3D tvarové optimalizace v kontextu průmyslového aerodynamického návrhu letounu za­
loženém na CFD simulacích. 
Aerodynamická tvarová optimalizace je efektivní nástroj, který si klade za cíl snížení nák­
ladů na návrh letounů. Nástroj založený na automatickém hledání optimálního tvaru. 
Klíčovou částí úspěšného optimalizačního procesu je použití vhodné parametrizační 
metody, metody schopné garantovat možnost dosažení optimálního tvaru. Parametriza­
ční metody obecně používané v oblasti aerodynamické tvarové optimalizace momentálně 
nejsou připravený na komplikované průmyslové aplikace vyskytující se u moderních do­
pravních letounů, které mají šípová zalomená křídla s winglety a motorovými gondolami, 
přechodové prvky spojující např. trup s křídlem atd.. Existuje tedy potřeba nalezení 
obecné parametrizační metody, která bude aplikovatelná na širokou škálu různých geo­
metrických tvarů. Free-Form Deformation (FFD[1]) parametrizace může, vzhledem ke 
svým schopnostem při zacházení s geometrií, být odpovědí na tuto potřebu. 
Adaptivní parametrizace by se měla být schopna automaticky přizpůsobit danému tvaru 
tak, aby byly její kontrolní body vhodně rozmístěny. Což umožní dostatečnou kontrolu 
deformací objektu, která zaručí možnost vytvoření optimálního tvaru objektu a splnění 
geometrických omezení. 
Primární aplikací takové parametrizační metody je deformace tvaru objektu. Dalším 
navrhovaným cílem je modifikace FFD parametrizační metody pro současné deformace 
tvaru objektu a CFD výpočetní sítě, umožňující velké deformace objektu při zachování 
kvality výpočetní sítě. 
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1 INTRODUCTION 

1.1 Overview 
The doctoral thesis is focused on development of Free-Form Deformation[l] parame­
terization method for deformation of shapes and C F D grids, used in the environment 
of shape optimization as an advanced tool for aircraft aerodynamic design. 

It is hard to imagine aerodynamic design of modern aircrafts without the use of 
C F D simulation methods. Their benefits are known for quite long time and they 
are widely used to supplement or even replace wind tunnel testing in aircraft de­
sign. As the progress of computer hardware power rapidly increases, it practically 
enables more and more detailed simulations to be performed. Availability of power­
ful computers is also one of the reasons for growing popularity of the aerodynamic 
shape optimization techniques which results in significant cost savings in design cy­
cle. However, because of the complexity of aerodynamic design problems, numerical 
shape optimizations still remain expensive tasks[2]. Therefore advanced optimiza­
tion strategies complemented with appropriately capable parameterization methods 
are needed. 

Parameterization methods[3] work either with description of the geometry or 
with description of the deformations of the geometry. The important aspect be­
ing how do they perform on complex shape configurations while using high-fidelity 
analysis tools like C F D . A suitable parameterization should be effective, easy to 
implement and provide analytical sensitivity derivatives of the of the model with 
respect to optimization variables. 

1.2 Motivation and Goals 

The parameterization defines possible object shapes and shape changes which are 
used as design variables during the optimization process. The number of param­
eters has major influence on the computational time cost, Andreoli[4] emphasized 
that presence of a large number of design variables can result in problems with 
convergence for most existing optimization algorithms. A parameterization method 
intended for use in wide variety of aeronautical applications needs to be flexible 
enough to produce optimal geometry without requirement of too many design vari­
ables. Since the designer may have a limited a priori knowledge of the design space 
an adaptive parameterization method would help the optimization performance in 
general. 

The F F D parameterization developed for computer graphics by Sederberg and 
Parry[l] is a method able to deform any object in any form of description and 
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topology (a contrast to C A D model representation of an object). There are many 
variations of F F D parameterization developed to further enhance its abilities[5, 6]. 

The goal of the thesis is to accurately resolve problems of shape optimization 
including geometric constraints with the focus on adaptivity with respect to the 
geometric features because it is a difficulty for F F D [7], including the approach [8] 
that is being applied here. 

The fact that the F F D parameterization can smoothly deform anything that is 
embedded within a lattice of control points[9] is a foundation for the second goal 
of the thesis. The development of F F D parameterization for both surface and C F D 
mesh deformations that brings simplification to the optimization process by using 
parameters of surface mesh description as optimization variables. 

Two of the design problems[10, 11] proposed by the A I A A discussion group pro­
vide the basis for an evaluation of used algorithms of F F D parameterization. The 
tests cover airfoil and wing design, and involve several challenges for parameteri­
zation such as geometric constraints and the possibility to test the convergence of 
design spaces. 

Goals 
• The primary goal is to develop and verify FFD[1] parameterization method 

in the context of aircraft design. A method that could automatically adapt 
the parameterization and that would be able to handle complex geometry 
deformations and demands on complicated geometrical constraints. 

• The secondary goal is to test the ability of F F D parameterization to deform 
C F D computational meshes. 

1.3 Thesis organization 

• Chapter 2 Current state-of-the-art 
• Chapter 3 Free-Form Deformation (FFD) parameterization 
• Chapter 4 Adaptive F F D parameterization with respect to geometry 
• Chapter 5 Adaptive F F D parameterization with respect to optimization 
• Chapter 6 F F D for C F D mesh deformation 
• Chapter 7 Outcomes of the doctoral thesis 
• The conclusions and are given in 8 
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2 C U R R E N T STATE-OF-THE-ART 

2.1 Introduction 
Current global situation highlights the role of shape optimization in the industrial 
aircraft design. Market competition forces the manufacturers to bring new and 
better designs in shortest time possible. It will be very hard if not impossible to 
fulfill the rising demands on development and operational cost reductions without 
the help of modern optimization tools. 

It is a use of optimization methods that should make the aircraft aerodynamic 
design process more effective and to explore potential of novel aircrafts concepts. 
Aerodynamic shape optimization is able to expose the areas for improvement which 
may not be revealed nor by intuition neither by experience [12]. Optimization tools 
that are used for aerodynamic shape optimization in aeronautical applications can 
be divided into several groups. They differ in used optimization methods, param­
eterization methods and flow solution techniques. Each one is more or less time 
consuming to use and is suitable for different phase of the aircraft design. Among 
all of them genetic and evolutionary algorithms are now most widely used in pre­
liminary design phase, followed by gradient-based methods and response surface 
methods. Thanks to recent implementation of adjoint sensitivity solution into some 
C F D solvers, the gradient-based optimizations are gaining popularity in technical 
praxis [13]. 

Flow solution methods are divided into several groups, which have their origin 
in historical development. From simple to complex, the solvers are: linear potential, 
nonlinear potential (adds nonlinearity), Eulerian (adds rotation) and Navier-Stokes 
solvers (adds viscous effects). As the complexity of the solver rises a more com­
plex physics is taken into account. Consequences are rising computational cost and 
unfortunately also decreasing credibility of the results. Progressive Navier-Stokes 
solvers, such as DES, LES and ultimately DNS, are improving this credibility issues, 
but they calculation cost is, for the purpose of aerodynamic shape optimization, still 
prohibitive. 
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Optimization loop is typically formed by: 

Mesh generat ion 

T 
Flow solut ion 

Cos t function and 
constraint evaluation 

Shape definition geometrical representation of the 
object or initial shape plus its change 

Mesh generation discretization of the geometry 
to computational mesh or modification of initial 
mesh 

Flow solution aerodynamic simulation of the flow 
field around the object (panel method, CFD) 

Cost function evaluation use of coefficients from 
flow solution to calculate the cost function value 

Optimization algorithm that is minimizing the cost 
function 

Fig. 2.1: Key processes 
Convergence? formulation of convergence of the of aerodynamic shape op-
solution that decides if the optimization algorithm timization 
should make another loop or if the optimum solu­
tion has been found 

>• Shape definition 

• Optimum goal of the optimization process 

A n example of the global optimization in conceptual design could be the com­
bination of genetic optimization algorithm with potential flow solver. As was used 
by A l i and Behdinan[14]. Such approach can analyze many very different kinds of 
parameters and find the best solution relatively fast. 

On the other side of design cycle, for fine-tuning of the details in local optimiza­
tion we can use gradient based (adjoint) optimization method with F F D parame­
terization and Navier-Stokes flow solution. As used by e.g. Samareh[15] 

2.2 Parameterization 
Very important part of optimization process is the parametric description of the 
object geometry. Parameterization influences computational cost of the optimization 
as well as the quality of its product. Parameterization defines possible object shapes 
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and shape changes by a set of parameters which are used as design variables during 
the optimization process. It is essential to use appropriate parameterization for each 
particular optimization task. 

According to Samareh[3] the successful parameterization process must: 
1. be automated 
2. provide consistent geometry changes across all disciplines 
3. provide sensitivity derivatives (preferably analytical) 
4. fit into the product development cycle times 
5. have a direct connection to the C A D system used for design 
6. produce a compact and effective set of design variables for the solution time 

to be feasible. 
Different parameterization methods use different amount of parameters for de­

scription of the object shape. The number of optimization parameters has major 
influence on the computational time cost. This stands for genetic and evolution­
ary methods as well as for R S M and gradient based optimizations. Exception is 
the adjoint approach for calculating the sensitivity gradients for the gradient-based 
optimization, where the computational time is not limited by the amount of param­
eters and can compute gradients of all parameters in a single adjoint calculation. 
Needless to say that not every kind of parameterization can provide analytical sen­
sitivity derivatives and only those methods that can guarantee constant topology 
of the geometry (surface mesh) can use finite difference approach to calculate the 
sensitivity derivatives[16]. The direct parameterization method that uses as many 
design parameters as there are nodes in the surface mesh of the object is prone 
to problems with smoothness of the surface, caused by the surface gradients. A 
piecewise polynomial interpolations, such as B-splines, may be cause wiggles in the 
deformed shapes when using larger number of design parameters[17]. 

There are two basic parameterization tactics, parameterization of object shape 
and parameterization of object deformations. Shape parameterization will give us 
required (optimal) shape from scratch (e.g. wing planform). Parameterization of 
sharp edges, creases and other un-smooth profiles could cause difficulties. Parame­
terization of deformations will give us required (optimal) shape from some starting 
shape (reference wing). Parameterization of deformation over sharp edges, creases 
and other un-smooth profiles remains smooth. 

The list of parameterization methods suitable for A E R O D Y N A M I C S H A P E 
OPTIMIZATION is quite long. Samareh[3] presents detailed overview of parame­
terization techniques. Some methods were specially developed for parameterization 
of airfoils (e.g. PARSEC) , they are often used even for wing parameterizations. 
Individual cross-sections of the wing are parameterized and interpolation of the ge­
ometry between them is used. This rather limits possible local shape modifications. 
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For complex 3D objects more sophisticated parameterization methods could be used. 

Common types of parameterization methods that are currently used for 
aerodynamic shape optimization. They can be generally divided into two groups: 
Methods that represent the shape of the object and methods that deform existing 
shapes 

Methods that represent the shape of the object 
Closed formulation approach 
Uses compact formulation for parameterization of shape (airfoil). Well known airfoils 
were created using N A C A 4-series function, P A R S E C method (see Fig. 2.2) devel­
oped for transonic airfoils by Sobieczky, describes the airfoil with smallest number 
of parameters possible. 

Fig. 2.2: Example of P A R S E C parameterization 

Polynomial and spline Using polynomial and spline parameterization of shape 
reduces number of parameters, often Bezier-Bernstein[18] and B-spline curves are 
used. Most universal is nonuniform rational B-spline (NURBS) [15, 19]. It was suc­
cessfully used in 3D simple models, however complex 3D models need many curves 
and surfaces parameterization that results in large number of control points and 
can cause irregular or wavy geometry. Polynomial and spline parameterization is 
very often integrated into C A D description of the geometry, while the C A D software 
uses several methods of interpolation and does things like calculating intersection 
and etcetera. So the description of the geometry is complicated and therefor rather 
un-practical to have C A D software included in shape optimization loop. 
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Methods that deform existing shapes 
Discrete approach 
This very simple parameterization method uses boundary (surface) nodes as pa­
rameters. Starting from given mesh (geometry) it is useful for deformation pa­
rameterization. This approach was compared to the P A R S E C and Hicks-Henne 
parameterization by Wu et al. [20] in the airfoil shape optimization task. Disadvan­
tages of this method are huge number of parameters and incapability to maintain 
smooth (manufacturable) surface shape. So some smoothing algorithm must be 
implemented. 

Analytical approach adds some shape function to baseline shape. For example 
Hicks-Henne used in[21, 22] and Chebyshev used by Carpentieri[23] basic functions 
can be used. These functions are smooth, so they cannot create sharp edges. This 
method is well suited for airfoil and wing parameterization. 

Radial basic functions (RBF) Method modifies discretized surface in volumetric 
spaces with radial basic functions. It was used for wing parameterization [24] and is 
described by Amoignon[25]. Parameterized surface is smooth. 

Free-Form Deformation (FFD) The FFD[1] embeds the object into parametric 
space built by lattice of control points and by modification of this lattice a defor­
mation is passed on the object. The parametric space is usually represented by 
Bernstein, Bezier, B-Spline or NURBS. 

The F F D parameterization, as an essential part of this thesis is fully described 
in dedicated chapter 3 
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2.3 Volume Mesh deformation techniques 
Mesh deformation is used to adjust existing computational mesh to changes in 
geometry[26, 27]. Thanks to this procedure it is not necessary to create new mesh 
every time the geometry is changed and therefore significantly speed up the opti­
mization process itself. The idea is to generate the computational mesh only once 
at the beginning. 

Quality of the mesh after morphing has to be checked and has to remain in 
acceptable tolerance [16]. Especially in the case of large shape deformation some 
morphing methods may not be able to maintain good quality mesh and completely 
new mesh may need to be generated every time the tolerance is exceeded. 

Mesh deformation techniques are mostly based on: spring analogy, Laplace equa­
tion methods or elliptic differential equation approach. Methods based on spring 
analogy are frequently used for their simplicity of implementation, on the other hand 
their lack of robustness makes them often un-practical. The techniques based on 
Laplace equation are most popular, thought they are effective only for small defor­
mation. Mesh deformation using R B F is described by Jakobsson and Amoignon[28]. 

Major part of present mesh morphing methods first deforms the surface boundary 
mesh and after that they try to repair the interior volume mesh. This can be done by 
moving, adding, reconnecting or deleting mesh nodes. A l l of these activities except 
moving the nodes result in mesh topology changes. This precludes direct use of 
previous flow field calculation during the optimization. Instead some kind of results 
interpolation, has to be used. This of course slows down the optimization process. 
Most of the existing techniques particularly for unstructured mesh deformations 
are computationally expensive or mathematically complicated for practical use in 
optimization. 

Nevertheless the elimination of mesh generation in every iteration is very com­
pelling. For this reason, morphing techniques have been implemented in a number 
of commercial software codes. (ANSA Sculptor[13]). 

Volume Mesh deformation characteristic case A n example of mesh deforma­
tion technique is the work of Hsu, Chang and Samareh[29], in which they presented 
method based on linear elastic finite element analysis that they implemented into 
N A S T R A N commercial F E M software. Proposed approach needs two steps in the 
finite element analysis. Firstly the mesh is deformed using homogenous material 
properties and after that re-deformed again, this time using inhomogeneous mate­
rial properties. 

Surface movements such as translation, rotation and cambering have been inves­
tigated. Two test cases were examined, 2D airfoil mesh and 3D aircraft mesh (see 
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Fig. 2.3). The deformed meshes show good quality verified visually and in the 2D 
case also by performed Navier-Stokes calculation. Great feature of this method is 
that connectivity of the elements during deformation stays intact and the deformed 
mesh has the same topology as the initial one. Deformation of 3D aircraft mesh of 
855 727 tetrahedral elements took about 170 minutes on Intel Xeon 3.06 GHz, 3GB 
R A M computer. 

Fig. 2.3: Example of 3D deformed mesh (Source:[29]) 
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3 F R E E - F O R M DEFORMATION (FFD) 

3.1 Introduction 
F F D parameterization method, an essential part of this work, is described here 
in detail. The F F D parameterization is rather complicated but also very power­
ful method. It was developed for computer graphics for morphing images (e.g. 
Boubekeur et al.[30]) and deforming models, first published by Sederberg and Parry[1] 
It is usually linked with polynomial and spline parameterization techniques [15, 8, 
31, 32, 31, 4, 33, 34]. It is ideal for parameterization of objects of high geometry 
complexity. F F D makes it possible to deform only part of the domain of interest 
while the rest of the geometry remains intact and the transition between deformed 
and undeformed parts is smooth. It belongs among the parameterization methods 
that deform existing shapes. 

3.2 Theoretical background 

The F F D algorithm embeds the model or models into parallelepiped lattice of control 
points and by modification of this lattice a deformation is passed on the model. The 
F F D treats the model as it is made of clear rubber that can be stretched, compressed, 
twisted, tapered or bent and yet preserves its topology. The F F D parameterization 
method can deform almost any type of geometrical model because its formulation is 
independent of the object's grid topology. It allows to deform truly arbitrary shapes 
with minimal set of variables. It can control surface continuity as well as volume 
preservation. The analytic sensitivities derivatives can be easily calculated for use 
in gradient-based optimization. The F F D can be used hierarchically to reach both 
local and global deformations. 

One of the most important aspects that defines the F F D is the representation 
of parametric volume. Initially Bernsteinfl, 35, 36] and Bezier[4, 32, 37, 38, 39, 40] 
polynomials, later B-Spline[41, 42, 36, 43, 44, 45, 34, 5, 46, 47, 48] and NURBS[7, 33, 
15, 8, 49] were used. The NURBS offers the best capabilities of handling complex 
geometry, for which it has also become the backbone of C A D . 

Because of all these advantages, the F F D is largely used in the field of geometric 
modeling[47, 50, 48], computer graphics[l, 35, 41, 43, 42, 45, 44, 51, 52, 53, 54, 55, 
56, 57], and more recently in medicine[7, 58, 59, 50, 46] for image registration. 

More importantly, the F F D has been used for aerodynamic shape optimizations 
of 2D[60] and 3D[61, 62] rotor blades, wings [33, 34, 4, 32, 37, 38, 39, 40, 15, 63, 64, 65, 
62], concept[49], Blended-Wing-Body[12] and supersonic[33, 62, 66] aircrafts, elbow 
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tube[67], sail[9], train[68] and car[5]. The capability of volume deformations makes 
the F F D suitable also for computational fluid dynamics grids deformations[49, 63, 9]. 
Further more the F F D can be conveniently used in aero-structural applications 
[33, 63, 9]. 

Use of the F F D parameterization method in either commercial software packages 
(ANSYS F L U E N T , ANSA) or in open-source code SU2[62] underlines its potential. 

The main drawback of the F F D is the necessity of use of parallelepiped 
lattice of control points [35, 36, 33, 6]. The parallelepiped lattice makes it 
difficult to control some geometrical constraints [6] that are useful in optimization 
(fixed edges, angles of attack). 

Various authors used such parametric volume representation (Bezier[38], B-
spline[60]), that allowed them to have trapezoidal lattice instead of parallelepiped. 
The biggest obstacle of using arbitrary lattice of control points in combination with 
NURBS volume representation is the embedding of an object into such lattice, be­
cause NURBS based F F D is defined in parallelepiped lattices only [7]. In general 
it is not possible to say that the solution of embedding of an object into non-
parallelepiped F F D NURBS lattice always exists. 

The limitation caused by parallelepiped lattice was approached by Coquillart [35] 
with Extended F F D which introduced lattices of arbitrary shapes and their combi­
nations. The difficulty with embedding step is solved by using Bezier representation 
of the parametric volume. Hsu, Hughes and Kaufmann[41] developed method called 
Direct Free-Form Deformation (DFFD), where the user directly manipulates the 
object points and the modification of the lattice of control points automatically 
computed by the modeling system. 

MacCraken and Joy[42] published another variant of F F D in which they use 
lattice of control points of arbitrary topology in order to enable the desired de­
formations. Their technique uses an extension of the Catmull-Clark subdivision 
methodology to refine the 3D lattice. Ono et al.[52] introduced F F D parameteriza­
tion method in which an automatic process hierarchically refines the initial bounding 
lattice to approximate the shape of the object. To achieve greater flexibility, Die 
and Fua[53] proposed Dirichlet F F D method, that place the control points into an 
arbitrary locations rather than on regular lattice. Kobayashi and Ootsubo[55] devel­
oped a variation of F F D called t -FFD to handle large-scale objects in more efficient 
way. t -FFD embeds the object into control mesh, which is constituted of a set of 
triangles with arbitrary topology and geometry. 

Samareh[15] presented F F D method suitable for 3D aerodynamic shape opti­
mization, which uses bivariate surface representation to reduce the number of design 
variables and to provide better control of surface shape changes. Song and Yang[56] 
published F F D with weighted T-spline, method that uses T-splines and T-junctions 
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to adapt the lattice to objects with arbitrary topology or complex shape. McDonnell 
and Qin[57] developed interactive points-based F F D for polygonal meshes. They use 
ellipsoidal radial basis functions as parametric volume representation, which does 
not require explicit construction of the F F D lattice. Duvigneau[38] introduced ap­
proach that adapts the F F D parameterization to a particular aerodynamic shape 
optimization. The adaption principle stands on modification of the mapping (em­
bedding) to minimize the ineffectiveness of the current parameterization. Sacharov, 
Surmann and Biermann[48] proposed another adaptive F F D method. In their ap­
proach the F F D lattice is automatically refined to decrease the approximation error 
during reverse engineering of the C A D / C A M data. 

As suggested by Sederbeg and Parry[1], Lamousin[7] and later used by Kenway et 
al.[63], several adjacent F F D lattices can be constructed around the complex object 
of interest. The only problem of this approach is only C° continuity preservation on 
the boundaries between F F D lattices which limits its application. 

Different parametric volume representations in F F D : 

A n important factor that influences the F F D abilities is the kind of parametric vol­
ume representation used. 

Bezier curves: Bezier parameterization was developed for automotive components 
drawings in 1960s and is currently widely used for representation of the shape 
in computer graphics and geometric modeling. The curve is geometrically 
defined, so the parameters have geometric meaning. 

Fig. 3.1: Example of Bezier curve 

advantages: 
• Bezier parameterization is efficient and accurate representation for shape 

optimization of simple curves[3] 
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• Has degree elevation property, that means that it can increase the degree 
of the curve without changing the shape of the curve. This enables the 
use of hierarchy of embedded parameterizations 

• Embedding is simple, only needs to solve linear equations 
disadvantages: 

• Bezier curves/patches can describe only smooth objects[4], for non-smooth 
objects they need to use very high order curves/patches (with danger of 
oscillation - higher degree increases round-off error - it is inefficient to 
compute high degree Bezier curve) or several curves/patches joined by 
some continuity condition C ^ C 1 , use of several glued patches destroys 
the degree elevation property. 

B-splines: B-splines are known since 19th century, B-spline is an abbreviation of 
basis spline. It is a piecewise polynomial function, 
advantages: 

• Allow high degree of locality and flexibility - low degree B-spline can 
accurately and efficiently represent complex shapes[3]. 

• Guaranteed continuity when any of its control points are moved, in con­
trast to, for example, Bezier splines [41] 

disadvantages: 
• Cannot accurately represent implicit conic section shapes[3]. 

Nonuniform rational B-splines (NURBS): NURBS are special form of B-spline 
can accurately represent very complex shapes 
advantages: 

• In comparison with B-Splines[50]: NURBS can allow nonuniform distri­
bution of control points and of the knot vector. Between moving control 
points and adjusting their weights, NURBS provide a much more flexible 
tool than uniform B-spline. 

• Complex geometry handling: include weights as extra degree of freedom 
(virtually changes the stiffness of the rubber) 

• Local nature of the deformations: changes in control point positions or 
weights affects only part of the object within the F F D lattice based on 
NURBS degree used. 

• Smoothness[33]: a NURBS curve of the order p, having no multiple inte­
rior knots, is p-2 differentiable. As a result, the NURBS representation 
was able to handle a complex deformation and still maintain smooth 
surface curvature. 
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• NURBS formulation is the most general free-form surface representation[15]. 
• It is invariant under linear transformation. A NURBS curve of the order 

p, having no multiple interior knots, is p-2 differentiable. The approxi­
mation is local in nature. 

• A NURBS curve is contained in the convex hull of its control points. The 
NURBS approximation is variation diminishing. 

• Fundamental advantage of NURBS-based FFD[49] is that a given ge­
ometry can be parameterized to machine accuracy provided the inverse 
mapping search is tightly converged. This remains true whether a geom­
etry is available in discrete form,such as in a surface triangulation, or in 
analytical form, such as with NURBS patches. Technically an entire wing 
can be twisted using only 8 control points, a difficult task for a B-spline 
surface parameterization. 

For the purpose of aerodynamic shape optimization of practical aeronautical 
tasks we need parameterization that gives the optimization strong control over pos­
sible shape deformations. It seems that the best way to do that is to use F F D 
based on NURBS [7] and develop a method that would resolve the biggest 
drawback of F F D parameterization and enable use of non-parallelepiped 
lattices adaptable to the shape of the object. That is described in section 4.2 
where a parameterization method is proposed in which the F F D is supplemented 
with RBF[28]. 
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3.3 FFD procedure: 
A l l the FFDs have the same basic procedure consisting of four main steps (Amoiralis[8]): 

1. Construction of parametric volume (Lattice of control points) 
2. Embedding the object within the volume 
3. Deformation of the parametric volume 
4. Evaluating the effect of the deformation on the embedded object 

Fig. 3.2: Basic principle of the use of F F D parameterization for deformation 

3.3.1 Construction of parametric volume (Lattice of control 
points): 

A ID, 2D or 3D lattice is constructed around/in the object that should be deformed. 
This defines parametric coordinate system. 

N U R B S definition 

Nodes of the lattice are used as control points to define NURBS volume (plane) that 
contains the object to be deformed. NURBS polynomials are defined in each lattice 
direction u, v, w. Constraints of polynomial degrees: 

1 < p < a,l < m< b,l < n< c (3.1) 
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where p,m,n define degree of the basic polynomial function in corresponding direc­
tion, a+1, b+1, c+1 are numbers of the control points in each direction. NURBS 
uses knot vectors, where 

U = (uo,Ui,...,uq),q = a+p+l (3.2) 

V = (UQ, ui,ur), r — b + m + 1 (3.3) 

W = (u0,ui,...,us),s — c + n + 1 (3.4) 

The equations are given just for x directions for now on, since the equations in other 
directions (dimensions) are formulated analogically. Values of U knot vector are 
calculated as 

/ 

II; 

0<i<p 

i — p p < i < (q — p — 1) 
(3.5) 

\ q — 2p (q — p — 1) < i < q / 

and unified with range of x coordinates of parametric u coordinate. This knot vector 
has p multiple identical members at the beginning and at the end. 

NURBS basic functions N are defined for every direction (u,v,w) of the para­
metric volume. N for u direction is calculated with standard recursive formula. 

Ni,P{u) 
U — Ui 

It, +p a; 
Nip-Au) i+p+l II 

II i+p+l 

Nifliu) 

Ui+l 

( \ 
1 Ui <U < Ui+i 

J 

•i\rj +i j P_i(u) (3.6) 

(3.7) 

\ 0 otherwise 

u is vector of Cartesian coordinates of geometry (points) that are to be embed­
ded, i is position in knot vector and uL, are coordinates in knot vector. 
The Cartesian coordinates of a geometry points within the 3D volume with para­
metric coordinates u,v,w are calculated using 

R(u) S ^ E ; = 0 S L o G f i f c i ^ f c ^ ( « ) ^ , m ( « ) ^ f c , n ( " ) 
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for x direction, In general R are Cartesian coordinates of a point in a parametric 
space (u,v,w), Pijk is a matrix of control points Cartesian coordinates (x,y,z) and 
Gijk is matrix of its weights. 
For 2D: 

S « = 0 S »G^P*Nhp(u)N, [u 
1 ] ^=^=0G^Nhp{u)Nhm{u) 1 • j 

For ID: 

R ( U ) ~ ZUGfNhp(u) ( 3 ' 1 0 ) 

Example: ID vertical control point movement results in vertical geometry point 
movement, new i/f point coordinate is calculated: 

s t p g r f f A U " ) , „ „ > 
= » w + E t „ c r / v , » ( 3 - n ) 

where is initial geometry y coordinate value and Pf is y coordinate of each control 
point. 

3.3.2 Embedding the object within the volume 

This step consist of identifying parametric coordinates that represents the object 
coordinates to be deformed. So an inverse problem needs to be solved in this step. 
That means to find such parametric coordinates u,v,w that their product R(u, v, w) 
would be equal to object(x, y, z) The form of R(u,v,w) of course depends on the 
parametric volume representation used. 

• While using Bezier the problem can be simplified to the solution of three linear 
equations. 

• B-spline representation generally requires numerical search technique such as 
Newton-Raphson method, but if the parametric and object coordinates are 
aligned, then thanks to the B-spline linear precision property the embedding 
operation vanishes [47, 48]. 

• In the NURBS parametric volume representation, due to the multiplicity 
of outer knots, the parametric coordinates have to be found by numerical 
search. The Octree algorithm[8], Golden section[7], Secant method or Newton-
Raphson methods are often used. Numerical search can be very costly if the 
object's description is large (big matrix of coordinates). 

Fortunately the embedding needs to be done only once at the beginning of the 
optimization. 
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3.3.3 Deformation of the parametric volume 

In this step the lattice of control points is changed or/and the weights are modified, 
if not the weights have values of 1. 

3.3.4 Evaluating the effect of the deformation on the em­
bedded object 

The deformed coordinates R are calculated using corresponding equation, for 3D 3.8. 

For the use of gradient-based optimization algorithms is necessary to derive the 
gradients of the F F D lattice control points that corresponds to adjoint sensitivities 
(gradients) on the object coordinates. 

for loop over every q of r object points: 
change in F F D lattice control points P x coordinates results in change in x object 
coordinates 

3.4 FFD gradients 

2D 

>Ax* (3.12) 

5R(uq) E? = 0 S5 = 0 G?. iV i i P (« ) iV J - j n ( U ) 
(3.13) 

for the adjoint sensitivities on the CL 
V c l / p <=> for all 5P 

5cL V c £ / P 5 P (3.14) 

5cL V c £ / R 5 R (3.15) 

for the adjoint sensitivities in x direction: 

5cL = s : <q=l 
ScL T,^UG¥PJJN^u)Nhm{u) 
5xq S f = 0 S J

b

= 0 G ' f i ^ , p ( « ) i V i , m ( M ) 
(3.16) 

for one F F D lattice control point coordinate 

5cL Xt=0Xb

j=0NiiP(u)Njtm(u) 5cL 

UUZ^GfjNi, p(u)Nh m(u)} 5xq 

(3.17) 
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similarly for the adjoint sensitivities in y direction: 

5Pf3

 13 q=lK^=^G%NitP{v)Njtm{v)}Syq ^ 

3D 

The equations for 3D are derived analogically to 2D. 

ScL r x v r . ^=0^=0Zj=0Nt,p(u)N3,m(u)Nk,M ,ScL 

u i j k ^ a = i { ^ a vb ™ nx AT / . A n 77X^7 T^T >YZ~ \6AM) 

spvk i j k ^ ^ ^ ^ ^ ^ ( t ; ) ^ , ™ ^ ) ^ ^ ) ^ ^ 

^ijk^q=l\^a spb V c ^ A J . f „ , ^ A J . f „ , ^ AT. („.,\>X~ \6-A1) 
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3.5 FFD geometry handling 
There are two ways to deform the geometry with NURBS-based F F D parameteri­
zation: 

• Displaced Lattice 
— — By displaced control point 

By displaced control point with weight = 0.5 

0.8 -

0.6 -

0 1 2 3 4 5 6 7 8 9 10 

Fig. 3.3: ID F F D two ways of deformation of a line 

• Displacement of the control points is used solely in majority of cases. It means 
just to modify member in corresponding equation 3.10. 

• Modification of the weight of the control points. Can be used in combination 
with control point displacement to achieve even higher control of the defor­
mation. It means to modify Pi and Gi members in corresponding equation 
3.10. 

3.5.1 F F D basic properties: 

The F F D parameterization, as described in section 3.2 has certain qualities: 
• Local control 
• Global control 
• Smoothness of the deformations 
• Complex geometry handling 
• Hierarchy of multiple FFDs 
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Local control 

Using F F D , it is also possible to deform only part of the geometry that is embedded 
within the F F D lattice while the rest of the geometry remains intact and the transi­
tion between deformed part in the lattice and undeformed parts outside the lattice 
is smooth if the outer shell (layer) of the F F D remains fixed see Fig. 3.4.Lattice in 
smaller area of airfoil is created to enable modification of geometry. This shows the 
possibility to deform only part of interest and the rest of complete geometry remains 
intact. Changes in control point positions or weights affects only part of the object 
in the region:(-Uj,u i + p +i), (VJ, Vj+m+i), (wk,u>fc+„+i) based on equation 3.2 inside the 
F F D lattice. So the size of the effected area is dependent on the discretization of 
the F F D lattice and NURBS degree see Fig. 3.8. 

A Initial geometry 
• Initial FFD lattice of control points 
• Deformed FFD lattice of control points 

Deformed geometry 

w Initial geometry 
• Initial FFD lattice of control points 
• Deformed FFD lattice of control points 

Deformed geometry 

Initial geometry 
• Initial FFD lattice of control points 
• Deformed FFD lattice of control points 

Deformed geometry 

- i *• • • v- w ^ 

w w w w v 
i i i i i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Fig. 3.4: Local deformation of airfoil using 2D F F D (Global and close-up view) 

The Fig. 3.5 shows a F F D lattice built over a wing tip area and the deformation 
caused by displacement of some control points. That illustrates case for aerodynamic 
shape optimization of wing tip for which the flow solution of the whole wing is 
needed. 
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Fig. 3.5: Local deformation of wing tip using 3D F F D (Global and close-up view) 

Global control 

Everything that is embedded into the F F D lattice can be deformed. F F D allows 
to deform whole objects of arbitrary shapes with minimal set of variables see Fig. 
3.6 and 3.7. Even one variable (lattice control point displacement in one direction) 
can control deformation of the whole object in one direction, see explanation in 
section 3.5.1. The minimal possible size of the F F D lattice (2 control points for 
each direction, that means 2 control points for ID, 4 for 2D and 8 for 3D) can 
be often un-practical because it constraints possible NURBS degrees (see equation 
3.1), which effects deformation smoothness. So in order to have 2nd NURBS degree 
there is a need to have at least 3 control points in each direction. 
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2 r 

x 

Fig. 3.6: Deformation of complicated 2D object with displacement of one F F D lattice 
control point 
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Smoothness of deformations 

The NURBS based F F D can ensure smoothness of deformations[33] by setting ap­
propriate NURBS degree. 

0.16 -

0.14 -

0.12 -

0.1 -

0.08 -

0.06 -

0.04 -

0.02 • 

o -
-0 .02 • 

— Initial geometry 

• Initial F F D lattice of control points 

• Deformed F F D lattice of control points 

— Deformed geometry N U R B S degree = 1 

Deformed geometry N U R B S degree = 2 

Deformed geometry N U R B S degree = 3 

Deformed geometry N U R B S degree = 4 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Fig. 3.8: NURBS degree influence on the deformed area 

2nd and higher degrees NURBS produce smooth deformation, obviously I s ' NURBS 
degree does not. Degree of NURBS defines degree of "shape", that is important for 
C F D analysis, because higher degree shapes have smooth derivatives that can con­
tribute to better flow solution precision. 

Complex geometry handling 

This attribute gave the F F D name, where Free-Form deformation really means that 
the method is able to deform any object in any form of description and topology. It 
is possible to deform very complicated object with the F F D , but the level of control 
over the deformations is related to the number of control points used. 
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Fig. 3.9: F F D parameterization of complex 3D object 

Hierarchy of multiple FFDs 

A number of independent or dependent FFDs can be used hierarchically to deal 
with specific parameterization tasks, to reach both local and global deformations. 
The basic examples are: 

• Several independent FFDs for parameterization of distinct areas. The defor­
mation process is than completely independent. 

• Several independent FFDs for parameterization of areas with some common 
parts of the geometry, so called overlapping F F D lattices (see Fig. 3.10). The 
deformation process is than usually driven by defined hierarchy. A simplified 

Fig. 3.10: Overlapping F F D lattices in 3D 

aircraft geometry is deformed using two F F D parameterizations. One for the 
wing and the other for fuselage, while their lattices are overlapped in the 
wing-fuselage region. 

• Several FFDs for parameterization of areas with some common parts of the 
geometry, where some F F D control points are defined as common for more 
FFDs and those control point displacements are the same (dependent FFDs). 
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• Hierarchy of independent or dependent FFDs in which one contains the other/s. 
Usually one F F D contains all of the geometry and drives the global deforma­
tions and the smaller FFDs takes care of local deformations in the areas of 
interest. 

• Adjacent F F D lattices [1, 7, 63], where the outer faces of adjacent FFDs are 
shared. Two adjacent F F D lattices are constructed so that they share one 
outer line or column of control points in 2D or one outer plane of control 
points in 3D. The deformations caused by displacement of common control 
point will result in deformation in geometries embedded in F F D lattices. This 
approach can guarantee only CO continuity[63]. As can be seen on Fig. 3.11 
the airfoil is not deformed smoothly on the boundary between the two lattices, 
nevertheless the continuity is preserved. 

Most of this require special care to guaranty smooth transitions, if the outer 
shells of the F F D lattices are not fixed. 
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3.6 Impact of the NURBS degree 
The influence of the NURBS degree on the regularity of shapes produced by opti­
mization and its impact on the convergence speed of the optimization is studied in 
the following parts. 

Behavior of the optimization with respect to the size of the F F D lattice was 
studied. Big parameterization can cause regularity issues such as wiggles. Wig­
gles created on the shape during the optimization can degrade mesh quality and 
prevent the flow solver to find a solution, slowing down gradient-based algorithms 
or eventually causing the optimization to stop. Wiggles can occur when increasing 
the number of design parameters even if parameterizations mostly produce smooth 
geometric changes. The reason is that the values of the parameters are driven by 
an optimization process trying to minimize a cost function[17], not to preserve the 
quality of a representation of the geometry. 

Starting geometry 
• Random lattice displacement 

Deformed geometry - different N U R B S degrees 

Fig. 3.12: Oscillation influenced by NURBS degree 

In order to illustrate the influence of the NURBS degree on oscillations, the 
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control points of a 2D F F D lattice deforming a straight line are randomly displaced. 
Fig. 3.12 shows the horizontal line deformed by F F D control points displacements 
using NURBS degree varying between 1 (blue) and 64 (red). 

Oscillations are visibly damped by increasing the NURBS degree. Similar results 
would be observed in 3D latices because 2D or 3D F F D use products of (ID) NURBS 
defined in each direction (see Equ. 3.8). 

The impact of the NURBS degree on the optimization is now illustrated by 
the resolution of two inverse geometric problems of design (see Fig. 3.13). Each 
problem is solved using several algorithms (Steepest descent, Conjugate gradient 
and Conjugate gradient with restart) in order to exhibit the major trends. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 3.13: Two examples of inverse design: towards a diamond-shaped airfoil (left) 
and towards a smooth airfoil (right). 

In one case the objective is to obtain a diamond like airfoil from the N A C A 0012 
geometry and in the other case the targeted airfoil is the R A E 2822. In both cases 
the square of the difference of coordinates between the airfoil being deformed and 
the targeted shape is minimized. 

Fig. 3.14 shows that the cost of the optimization rises when increasing the 
NURBS degree in the case where the target is the diamond shape. On the contrary, 
the cost of optimization is not affected by the NURBS degree when the initial and 
the target geometry, e.g. RAE2822, can be obtained by smooth shape transforma­
tions. This behavior of F F D may suggest that increasing the NURBS degree, which 
practically damps oscillations (see Fig. 3.12), will not affect the performance of the 
optimization, if we seek smooth shape solutions, which is the case in aeronautical 
applications. 
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Fig. 3.14: Cost of optimization dependency on the NURBS degree - towards a 
diamond-shaped airfoil (left) and towards a smooth airfoil (right). 

The influence of NURBS degree on aerodynamic shape optimization results is 
studied in section 3.7.1 for 2D and in section 4.3.3 for 3D. 
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3.7 FFD in aerodynamic shape optimization - 2D 
test case 

A n airfoil design case[69] proposed by the A I A A Discussion Group on Aerodynamic 
Design Optimization was proposed as an aerodynamic shape optimization bench­
mark case. As such it gives a practical testing platform for application of the F F D 
parameterization method for aerodynamic shape optimization. 

3.7.1 N A C A 0012 airfoil optimization 

The case description was communicated by the A I A A Aerodynamic Design Opti­
mization Discussion Group [10]. It consists in minimizing the drag of the symmetric 
N A C A 0012 airfoil in inviscid flow at M=0.85 with geometric constraints. 

min en 
D (3.22) 

subject to: y (x) > | / n a c a o o i 2 (a;) x e [0,1] 

The optimizations are carried out by gradient-based algorithm, namely the Se­
quential Quadratic Programming (SQP) from NLOPT[70] software package. 

Tab. 3.1: N A C A 0012 grid dependency study 

Nodes CL CD 
2826 0.0000 0.0395 
42556* 0.00096 0.0475 
168464 0.0016 0.0484 
670336 0.0018 0.0485 

grid used for optimization 

A set of unstructured meshes was generated with IcemCFD. The results com­
pared in Tab. 3.1 suggest that a grid independent solution requires more than 200,000 
nodes. The results of optimization are later cross-checked using the same set of grids. 

Geometry: Zero thickness trailing edge N A C A 0012 is used here. Defined as: 

y = ±0.6(0.2969Vx - 0.1260a; - 0.3516a;2 + 0.2843a;3 - 0.1036a;4) (3.23) 

where, x G [0,1]. The zero thickness trailing edge is achieved through a modification 
of the a;4 coefficient. 
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Fig. 3.15: N A C A 0012 mesh with 42556 nodes 

2 

Mesh: Unstructured meshes were generated and their results compared. 

Parameterization: 2D F F D lattice was constructed around the N A C A 0012 air­
foil geometry. For the purpose of optimization the movement of middle layer of F F D 
lattice control points was fixed, the upper layer control points displacements were 
used as optimization variables and the bottom layer displacements were mirroring 
the upper layer see Fig. 3.16 

• Optimization variables 

• F ixed F F D control points 

• Mirrored optimization variables 

• Optimization variables 

• F ixed F F D control points 

• Mirrored optimization variables 

• Optimization variables 

• F ixed F F D control points 

• Mirrored optimization variables 

4 f * • 
• • Sm% 

• 
i i 

9 

i 
9 ' • 
i i i 

• 
i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
x 

Fig. 3.16: Example of F F D parameterization setup for the case with 6 variables 

40 



Optimization results, effect of dimensionality: The study of Vassberg et 
al.[69] showed that this problem would be an excellent benchmark for parameteri-
zations (in 2D) and optimization strategies because the non-trivial optimal shape 
seems to be unique at Mach number 0.85. The tests carried out with F F D show 
similar trends as shown in Tab. 3.2 

Tab. 3.2: Results of NACA0012 optimization for different (FFD b ) lattices. 

No. c D o p t 

„a 
T 
l^opt 

costc 

Baseline 0.04750 0.00096 1 
3 0.03144 0.00125 23 
6 0.02132 0.00690 32 
11 0.01300 -0.02718 197 
21 0.01187 0.00059 239 
41 0.01138 0.00036 280 

a C F D grid size is 42556 nodes. 
b NURBS degree p = No. - 1. 
c Flow and adjoint solutions 
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Optimization iterations 

Fig. 3.17: N A C A : History of optimization for various number of design variables 
(maximum NURBS degree is used in all cases). Only the feasible steps are shown. 
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As can be observed in Tab. 3.2 as much as 41 parameters are needed to get close 
to final converged solution (the difference between 21 and 41 parameters is only 4%), 
which correspond to the claim that the case requires close to 40 design parameters 
to be solved [69]. 

0.08 

Fig. 3.18: N A C A 0012: Comparison of optimal shapes for various number of design 
variables and distributions of pressure coefficients. 

Mesh dependence analysis: Meshes from N A C A 0012 grid dependency study 
(Tab. 3.1) are deformed based on the design obtained with F F D and 41 design 
parameters (see Tab. 3.4). 
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Tab. 3.3: Optimized NACA0012 grid dependency study (* grid used for optimization 

Nodes CL CD 
2826 -2.892e-4 0.0346 
42556* 3.601e-4 0.0114 
168464 1.008e-3 0.0119 
670336 -4.721e-4 0.0119 

* grid used for optimization 

Tab. 3.4: Comparison of co o p t for different initial design variables in NACA0012 
optimization. 

X 0 X i x 2 

21 0.01187 0.01124 0.01408 
41 0.01138 0.01049 0.01027 

a C F D grid size is 42556 nodes. 
b NURBS degree p = N - 1. 

c X 0 = 0, X i = 0.25X o p t , X 2 = 0.75X o p t . 

Initial design parameters effect: Further tests included different initial guess 
for the design parameters located between X 0 = 0 and the solutions X o p < obtained 
with 21 or 41 parameters, see Tab. 3.4. It shows that the results are dependent on 
the starting point, a result that can depend on the optimizer N L O P T and needs to 
be investigated. 
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N U R B S degree effect 

This N A C A 0012 test case gives practical application to illustrate the influence of 
the NURBS degree (discussed earlier in 3.6) using an F F D with 6 lattice points and 
increasing the NURBS degree from 2 to 5, the maximum for this lattice. For the 
mesh used here (42556 nodes) the baseline airfoil shows a drag of 475 drag counts. 

Tab. 3.5: Influence of NURBS degree on the N A C A 0012 minimum drag obtained 
with 6 F F D parameters 

Degree ccopt cost CFD+adjoint 
2 0.0247 44 
3 0.0243 43 
4 0.0223 34 
5 0.0213 32 

Tab. 3.5 indicates that for this particular case increasing the NURBS degree not 
only improved the cost function but also accelerated convergence (Fig. 3.19). The 
sole increase of the NURBS degree with 6 parameters of design gives here a gain of 
10% compared to the maximum drag reduction (372 drag counts) that was obtained 
with a lattice of 41 points[71]. 

'1 2 3 4 5 6 7 8 9 10 
Optimization iterations 

Fig. 3.19: NURBS degree influence on the optimization of the NACA0012 airfoil 
with 6 parameters. 
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F F D N U R B S weights 

As mentioned in section 3.5, the weights in NURBS-based F F D can be used as ad­
ditional optimization variables. A n optimization of N A C A 0012 case with 3 control 
points displacements and their weights was performed. 

Tab. 3.6: NACA0012 optimization with F F D using weights 

No. ca

n cost6 

Baseline 0.04760 1 
3 0.03134 19 
3 + 3 weights 0.03049 14 
6 0.01711 42 
a solution on 42556 nodes grid 
b cost given as the sum of flow and adjoint computations. 

Tab. 3.6 shows that adding the 3 weights parameters led to almost 3 % decrease 
in drag in comparison to just 3 control point displacements parameters. Adding 
3 weights to 3 displacements gave 6 optimization parameters combined and if we 
compare the result to 6 control point displacements we see that using weights led 
to 78 % smaller decrease of drag. That means weights does not have the same 
power over control of deformations as displacements and that their use for general 
aerodynamic shape optimization cannot be recommended. 

On the other hand the use of weights does not require any modification to the 
parameterization and thus can be a possible way how to further improve the opti­
mizations in the cases where the F F D lattice cannot be altered. 

Deformation in two directions 

Displacements of control points in x direction were added to previously used y 
direction optimization variables to test influence of multi-direction deformations. 

The results in Tab. 3.7 shows that the the additional x displacements parameters 
gave worse results compared to pure y displacements with the same number of 
parameters (3y + 3x vs. 6y etc.). The addition of x displacements parameters 
gave worse results even than only y displacements despite of using twice the number 
of optimization parameters, with the exception of 3y + 3x case which gave better 
results than 3y, which is probably caused by the fact that using only 3y displacements 
is not enaugh and that the additional 3x displacements are beneficial even if not 
very effective. Clearly the use of only y direction displacements is more effective in 
2D airfoil aerodynamic shape optimization cases. 
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Tab. 3.7: NACA0012 optimization with F F D using displacements in x and y direc­
tions 

No. CDOPT 
cost6 

Baseline 0.04760 1 

3y 0.03134 19 
3y + 3x 0.02366 16 

6y 0.01711 42 
6y + 6x 0.01749 13 

n y 0.00641 144 
l l y + l l x 0.01412 15 
21y 0.00471 95 
21y + 21x 0.02103 12 

a solution on 42556 nodes grid 
b cost given as the sum of flow and adjoint computations. 

As in the case of weights the use of x direction displacements additional to the y 
direction displacements does not require any modification to the parameterization 
and thus can be a possible way how to further improve the optimizations in the 
cases where the F F D lattice cannot be altered. 
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4 ADAPTIVE FFD PARAMETERIZATION WITH 
RESPECT TO G E O M E T R Y 

4.1 Introduction 
The purpose of this work is to develop a parameterization based on Free-Form 
Deformation[l] in the context of aircraft design. One of the goals is adaptivity with 
respect to the geometric features because it is a difficulty for F F D [7], including the 
NURBS-based approach[8] that is being applied here. 

Practical aerodynamic shape optimizations often involves challenge in the form 
of complicated geometric constraints. One way of solving them is to add some 
penalty definition into the formulation of optimization cost function. That of course 
further stiffens the optimization process and can even lead to its failure. The other 
way is to have a parameterization that will be able to take care of some of the 
geometrical constraints, such as requirements of fixation of some part of the geometry 
(points, edges, sections). A n example is to keep constant the trailing edge of a wing 
undergoing an optimization[ll]. 

In aerodynamic shape optimization methods based on F F D have been applied 
to the design of rotor blades[60, 61], wings[33, 34, 4, 63, 64, 65], Blended-Wing-
Body[12] and supersonic[33, 62, 66] aircraft design. 

Fig. 4.1: A coarse F F D lattice. 

The standard parallelepiped lattice of control points is not well suited for more 
complicated geometry handling. The solution of this disadvantage is given in fol­
lowing section as well as study of various improvements. The goal is to map the 
geometry into the standard parallelepiped lattice of control points in such way that 
the mapped geometry fills the lattice as much as possible. So the control points 
positions are close to the surface of the geometry, thus enable its better control. 
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4.2 Coordinates transformation using RBF 
The F F D used here requires a parallelepiped lattice of control points[35, 36, 6]. 
Control of non-planar curves and other geometric constraints can thus become a 
difficult task[6]. This is the reason for using a Radial Basis Function (RBF) pa­
rameterization for coordinates transformation of the object, for example a wing or 
a highly cambered airfoil, that is parameterized by F F D - R B F : this transformation 
deforms the object that now "fills" the F F D lattice where embedding, an operation 
described below, and deformations are taking place. 

4.2.1 F F D - R B F parameterization procedure 

The F F D - R B F procedure consists of eight main steps: 
1. Construction of F F D parametric volume (FFD lattice of control points) 
2. Construction of R B F centers adapted to the object 
3. Construction of artificial F F D lattice 
4. Mapping of the object into the artificial F F D lattice 
5. Embedding the mapped (transformed) object within the F F D parametric vol­

ume 
6. Deformation of the parametric volume 
7. Evaluating the effect of the deformation on the embedded object 
8. Mapping the deformed object back into the real coordinates 

Construction of F F D parametric volume (FFD lattice of control points) 
This step is the same as in basic F F D parameterization (section 3.3.1). 

Construction of R B F centers adapted to the object The location of the 
R B F centers (Fig. 4.3a), the usual term that designates the vertices of the R B F 
equivalent to the F F D lattice, need not to be the same as the F F D lattice as Fig. 4.2a. 
The R B F lattice is adapted to the objects (wing) geometry. 

Construction of artificial F F D lattice Artificial F F D lattice is created just 
for the purpose of R B F coordinate transformation, this artificial F F D lattice has 
the same outer dimensions as the F F D lattice (the same box), and it has the same 
discretization (number of control points in all directions) as the R B F lattice (see 
Fig 4.4a). 

Mapping of the object into the artificial F F D lattice R B F parameterization 
algorithm[28] is used to map the geometry into the standard parallelepiped lattice of 
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control points. The mapping (transformation) matrix is based on difference between 
the locations of adapted R B F lattice centers 4.4b and the locations of articial F F D 
lattice 4.4a control points. This transformation matrix is then used to map the 
object into the F F D lattice. 

The wavy nature of R B F parameterization can cause problems in the sense that 
they map some points of the geometry outside the F F D lattice volume (see Fig. 4.3b). 
which is of-course unacceptable for the embedding step of the F F D . To solve this an 
iterative procedure was used, where the R B F control points nearest to the outside 
geometrical points are identified and their matrix of displacement modified until the 
complete geometry is well mapped inside the F F D lattice. This mapped geometry 
is then used by the F F D parameterization in the usual way. 

(a) Iso view (b) Top view 

Fig. 4.2: F F D lattice constructed around wing 

(a) RBF lattice constructed around wing (b) Wing geometry mapped by RBF into the FFD 
lattice -top view 

Fig. 4.3: R B F coordinate transformation example 
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The R B F lattice discretization does not need to be the same as the F F D lattice 
discretization. So denser lattice can be used with the prospect of qualitative im­
provement of the mapping. Analysis of influence number of R B F centers is given in 
section 4.2.2. 

(a) Artificial FFD lattice (b) Dense RBF lattice 

Fig. 4.4: Dense R B F coordinate transformation lattices 

(a) Basic FFD parameterization of wing (b) Wing geometry mapped by dense RBF into 
the FFD lattice 

Fig. 4.5: Comparison of basic F F D parameterization and F F D with dense R B F 
coordinate transformation 

Embedding the mapped (transformed) object within the F F D parametric 
volume This step is in the principle the same as in basic F F D parameterization 
(section 3.3.2). 
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Deformation of the parametric volume Again the same step as in basic F F D 
(section 3.3). In this step the lattice of control points is changed or/and the weights 
are modified. 

Evaluating the effect of the deformation on the embedded object Also 
this step is the same as in basic F F D (section 3.3). The deformed coordinates R are 
calculated using corresponding equation, for 3D 3.8. 

Mapping the deformed object back into the real coordinates The trans­
formation matrix used to map the object into the F F D lattice is now utilized to map 
the deformed geometry back into the real coordinates. 

4.2.2 Test case: W i n g trailing edge fixation 

This case comes from C R M wing optimization 4.3.1, which is described in following 
section. In this test case the trailing edge of the wing has to be fixed. That is es­
pecially challenging, because the wing is swept, cranked and twisted. Fulfillment of 
this geometrical constraint is quantified by fixation error, and tested up to unrealis-
tically severe conditions (deformations). The tests summarized in Tab. 4.1 indicate 
deviations on the trailing edge when the F F D control points in the vertical plane 
adjacent to the trailing edge are fixed and all other control points are displaced ver­
tically using random distributions. In principle this would forbid embedded points 
to move in that plane, but the coordinate transformation does not exactly place the 
trailing edge of the wing in this plane of the F F D lattice, causing errors. 

Random deformations raridef are defined as: 

random 
d e^ 11 random 11 ̂  ch 

where: 
random G [—1 : 1] (4.2) 

and 
ch = 7.5% of kink chord (4.3) 

The fixation error is defined in % as max norm deformation on trailing edge 
divided by maximum F F D deformation: 

Error = " " a n i ' " ' i T T T ft * 100 (4.4) 
max(\Azi\, \ A z 2 , | Azn\) 

max(\APiji\ \APij2\ 1 j • ••) \&Pijk\) 
Where Az\ is deformation of observed curve point and AP^i is deformation of 

F F D lattice control point. 
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The results, shown in the Tab. 4.1, are the averaged values of 20 random defor­
mations (normalized to have the same maximum amplitude) for R B F mapping of 
increasing sizes. Note that the number of R B F centers effects the R B F mapping 
abilities, a general conclusion can be stated that with increasing number of R B F 
centers the fixation error decreases. Dense R B F adaption lattice (see Fig. 4.4b) 
is constructed around the C R M wing using sections in span-wise direction, in the 
direction of minimal changes of the geometry. The denser the discretization of the 
R B F lattice is in this direction the smaller the fixation error. See section 4.3.3 that 
is giving results of deeper investigation of this phenomena. 

Tab. 4.1: Geometric constraint test: averaged errors on the 
fixation of the trailing edge under F F D 1 deformation. 

No. of R B F centers R B F lattice dimensions Error [%] 
0 2 - 39.92 
27 3x3x3 19.36 
64 4x4x4 15.40 
225 5x15x3 2.60 
384 6x16x4 1.87 

1 a = b = c = p = m = n = 2, N = 18 
2 no R B F coordinate transformation 
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4.3 FFD-RBF in aerodynamic shape optimization 
- 3D test cases 

It is essential to verify the F F D in 3D aeronautical applications, to evaluate poten­
tial of F F D parameterizations with R B F coordinate transformation and identify its 
possible limitations. To investigate its ability to handle complex geometry deforma­
tions and demands on complicated geometrical constraints. Three major test cases 
were selected for this demonstration. Aerodynamic shape optimization of C R M 
wing which is a testing platform for evaluation of C F D software in drag prediction 
workshops, transonic passenger aircraft wing optimization and aerodynamic shape 
optimization of commuter aircrafts landing gear nacelle which was suggested by 
Evektor company. 

4.3.1 C R M wing 

The case [11], suggested by the A I A A Aerodynamic Design Optimization Discussion 
Group, concerns the optimization of a transonic wing in viscous flow is an excellent 
testbed for testing FFDs many properties. 

The test case was designed to be as close to real wing for the passenger aircraft 
as possible and is quite restrictive. The use of F F D parameterization with R B F co­
ordinate transformation in this test case was published in the A I A A SciTech 2014 by 
Amoignon, Hradil and Navratil[71], which also contains relevant mesh dependency 
study. 

Geometry: The geometry specification is given by the A I A A Aerodynamic Design 
Optimization Discussion Group. It is based on NASAs Common Research Model 
(CRM) wing that was and in some modifications still is used in A I A A C F D Drag 
Prediction Workshops. 

Parameterization: Developed F F D - R B F parameterization is compared to basic 
F F D parameterization, both use the same F F D lattice. The basic F F D parameter­
ization of wing is presented in Fig. 4.7a and the F F D - R B F in Fig. 4.7b The F F D 
lattice has 9, 9, 3 control points in x, y, z directions. In total 243, from which 1 
is fixed in order to eliminate possible shift of the whole wing geometry. Maximal 
possible NURBS degree is used in all three directions. 

Mesh and C F D setup: Unstructured meshes consisting of tetrahedral elements 
were generated in ANSYS IcemCfd meshing software. Relatively coarse mesh (854184 
nodes was used). The Edge[72] C F D solver was used for simulation of inviscid 
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Fig. 4.6: Geometry of the C R M wing, top and back view 

M=0.88 flow. The calculations were done on 2 Intel Xeon E5-2690 processors hav­
ing 16 cores in total. 

Optimization Some of the constraints from the original case [11] were relaxed in 
order to untie the optimization algorithm to obtain bigger improvement in the cost 
function value. That would give clearer view of influence of different aspects of the 
parameterization. Moment and volume constraints were removed as well as fixation 
of trailing edge, and the equality lift constrained was changed to inequality. 

Optimization setup: 

min CD 

s.t. : cL > 0.5 (4.5) 
t {y) > 0.25 tcRM (y), for all span-wise positions y 

The optimizations are carried out by gradient-based algorithm, namely the Sequen­
tial Quadratic Programming (SQP) from NLPQLP[73] software package, the con­
vergence (stopping) criteria are: 
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(a) Basic FFD (b) FFD-RBF 

Fig. 4.7: Comparison of parameterizations of C R M wing geometry 

Fig. 4.8: Mesh of the C R M wing 

• desired final accuracy (relative difference between last two iterations) = le-5 
• maximum number of iterations (number of gradient calls) = 50 
• maximum number of function calls during the line search =10 
The gradients were obtained from adjoint solution calculated in Edge program. 
The C F D mesh deformations are done by standard Laplace method also in the 

program Edge, which adjusts the C F D grid to the deformed surface grid. In the 
case that the C F D mesh deformation fails and thus no C F D solution is obtained 
resulting in no C F value. The N L P Q L P optimizer then halves the step size in the 
line-search part until a valid mesh is obtained from the meshdeform (CF is obtained) 
or stopping criteria is reached. 

Results The Tab. 4.2 shows results of two optimization cases. The first uses 
basic F F D parameterization, the second uses R B F coordinate transformation to 
map the wing geometry into the F F D lattice. The R B F mapping procedure gave 
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Tab. 4.2: Comparison of C R M wing optimizations with different F F D parameteri-
zations 

F F D F F D - R B F 
c d baseline 0.017973 0.017973 
c d optimal 0.015079 0.012874 
CD reduction 16.1 % 28.4 % 
Cost in CFD+adjoint iterations 27 43 
Cost in C P U time 21 783 37 579 
Cost in real time 3h 47min 6h 31min 

approximately 12.3% better reduction in drag. That is caused by better control of 
the parameterization method over the shape deformations, since more control points 
are closer to the surface. 
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Optimization iterations 

Fig. 4.9: Comparison of optimization history, using basic F F D and F F D - R B F pa-
rameterizations 

The improved control over the deformations is probably behind the steep fall of 
the drag coefficient in Fig. 4.9. 

Fig. 4.10 shows comparison of resulting pressure coefficient distributions of ba­
sic F F D and F F D - R B F optimizations. Note that the basic F F D was not able to 
suppress shock waves as good as the F F D - R B F . 

Fig. 4.11 shows comparison of wing section shapes of initial wing geometry and 
wing optimized with basic F F D and F F D - R B F optimizations. 
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(a) Basic FFD (b) FFD-RBF 

Fig. 4.10: Comparison of pressure coefficient distribution on C R M wing 

Fig. 4.11: C R M wing section shapes (axis not in scale) 
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Both optimizations ended by reaching maximum number of function calls during 
the line search and that was caused be ever failing C F D mesh deformation proce­
dure. This issue is later addressed in chapter 6 by using F F D also for C F D mesh 
deformation. 

4.3.2 Passenger aircraft 

The issues with C R M wing C F D mesh deformation were a reason to continue on 
testing the F F D parameterization behavior on another test case. So for analysis of 
dimensionality of the optimization and NURBS degree influence on the optimization 
results a series of test were performed on transonic passenger aircraft. The aircrafts 
geometry comes from S A A B within a Clean-Sky project called O P T L A M , so all the 
results and plots are consider as confidential and therefore are presented in relative 
values and without scales. The goal is to optimize wing shape in order to decrease 
drag coefficient of the whole aircraft. 

Optimization Original optimization goal and constraints are: 

The optimization variables are the F F D lattice control point displacements. The 
optimizations are carried out by gradient-based algorithm, namely the Sequential 
Quadratic Programming (SQP) from NLPQLP[73] software package. The gradients 
were obtained from adjoint solution calculated in Edge program. The C F D volume 
mesh was deformed using Laplace mesh deformation tool in Edge program. 

Geometry: The geometry consists of fuselage and wing. The area for optimization 
is a major part of wing geometry, from the first "root" planar section till the wing 
tip. 

Parameterization: The F F D - R B F parameterization was used in all the tests. 
Similar setup of parameterization as in C R M wing case was used in first test which 
dealt with three different meshes. The root section of the F F D lattice was fixed in 
order to guarantee smooth transition between deformed and undeformed part of the 
wing. The R B F lattice adapted to the wing is depicted in Fig. 4.12. The second 
group of test was investigating the effect of dimensionality on the optimization 
results and the third the effect of NURBS degree. 

mm cp 
s.t. : = cL0 

> ^Oi n it i a] 

Fixed planform shape (only vertical movement allowed) 

(4.6) 
Vo 

58 



Fig. 4.12: R B F adapted lattice on the Passenger aircraft 

Mesh and C F D setup: Unstructured meshes consisting of tetrahedral elements 
were generated in ANSYS IcemCfd meshing software. Three meshes were generated, 
medium size mesh with 763 874 nodes was used in most of the tests. The Edge[72] 
C F D solver was used in Euler flow setup. 

Fig. 4.13: Mesh of the Passenger aircraft 
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Effect of C F D mesh size on the optimization 

216 parameters were used in this study of effect of C F D mesh size on the optimization 
results. Tab. 4.3 summarize the results. The baseline coefficients of different meshes 
are within 1% difference. The finer the mesh used the better are the results of the 
optimizations. 

Tab. 4.3: Results of passenger aircraft case optimization with 216 design 
variables on three meshes 

Mesh Case cDoPA%] CLopt[%\ Cmopt[%] Voopt[%] costa 

Coarse Baseline 99.50 100.01 99.84 100.00 1 
Coarse Optimized 34.81 99.85 96.76 99.99 83 
Medium b Baseline 100 100 100 100 1 
Medium Optimized 33.59 99.88 96.82 99.99 89 
Fine Baseline 100.67 100.01 99.98 100.00 1 
Fine Optimized 32.95 99.89 96.74 99.98 90 

a cost = C F D + adjoint (drag, lift) 
b reference case 

Effect of dimensionality 

The test were carried out with different F F D lattice sizes in x and y directions see 
Fig. 4.4. 

One of the conclusions is that increase in the number of parameters let to better 
results of the optimization as can be seen in Fig. 4.14. The other observation is that 
the number of parameters in span-wise direction has more pronounced effect than 
in stream-wise direction, at least for quite fine F F D lattices, see results for 408 and 
432 (the different number is caused by the fixed root section of the F F D lattice). 
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Tab. 4.4: Results of passenger aircraft wing optimization with varying 
number of variables on medium mesh. 

No. a b c CDopt[%] CLopt[%] cmoJ%] Voopt[%] cost0 

Baseline - - - 100 100 100 100 1 
30 4 2 2 48.97 99.98 97.71 100.00 113 
108 8 2 2 38.82 99.81 96.87 100.01 68 
216 8 8 2 33.59 99.88 96.82 99.99 89 
408 16 8 2 31.54 99.76 96.95 100.01 114 
432 8 16 2 30.44 100.11 96.81 99.99 131 

a cost = C F D + adjoint (drag lift) 

N U R B S degree influence on the optimization results 

Different N U R B S degree in stream-wise direction 108 variables used here. 
Maximum NURBS degree was used for the other directions. As can be seen the effect 
of NURBS degree in stream-wise direction on the optimization results is rather in­
conclusive.. The NURBS degree in stream-wise direction does not affect the reached 
minimum (the differences are considered in tolerance of the precision of the CFD), 
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see Tab. 4.5. What it affects is the number of iteration needed to reach the optimum, 
the higher the degree the faster the optimization convergence is (with the exception 
of NURBS degree = 6. 

Tab. 4.5: Results of passenger aircraft wing optimization with vary­
ing number of NURBS degree in stream-wise direction 

NURBS degree p cDoJ%] cLoJ%] cmoJ%] V0opt[%] costa 

Baseline 100 100 100 100 1 
2 37.81 99.96 97.04 99.93 95 
4 38.44 100.14 97.20 99.94 77 
6 37.76 99.89 96.94 99.98 83 
8 38.82 99.81 96.87 100.01 68 

cost = C F D + adjoint (drag, lift) 

Different N U R B S degree in stream-wise and span-wise direction 216 vari­
ables used here. This time NURBS degree varies both in stream-wise and span-wise 
direction. 

Tab. 4.6: Results of passenger aircraft wing optimization with varying 
number of NURBS degree in both stream-wise and span-wise directions 

NURBS degree p = m cDoJ%] cLoJ%] cmopt[%] V0opt[%] costa 

Baseline 100 100 100 100 1 
2 31.74 100.11 96.76 99.98 131 
4 31.37 100.09 96.80 99.99 119 
5 31.44 100.03 96.69 99.98 113 
6 31.97 100.11 96.88 100.00 108 
8 33.59 99.88 96.82 99.99 89 

a cost = C F D + adjoint (drag , lift) 

The table Tab. 4.6 gives similar conclusion as came out of the previous test. 
The NURBS degree does not affect the reached minimum, and with increase in the 
degree a slight acceleration of optimization convergence is obtained. 
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4.3.3 Complex geometrical constraints handling: EV-55 Out­
back landing gear nacelle aerodynamic shape opti­
mization 

The commuter aircraft landing gear nacelle optimization is an excellent test case 
for demonstrating the F F D - R B F parameterization. The ultimate goal was to de­
crease drag of the aircraft with "open" landing gear nacelle that would allow the 
use of smaller landing gear doors. A multi-point optimization in cruise and climb 
conditions subjected to geometrical constraints such as inner structure of landing 
gear nacelle and landing gear itself. Navier-Stokes calculations are needed in order 
to decrease viscous and pressure drag as the aircrafts cruise speed is well bellow 
transonic speeds where no wave drag exists and thus Euler flow solution will not be 
sufficient. The aircrafts geometry comes from Evektor, spol. s.r.o., so all the results 
and plots are consider as confidential and as such are presented in relative values 
and without scales. 

Geometry: Only part of the landing gear nacelle surface area was allowed for 
modification as the aircraft is already in late design phase. In the original state of 
the geometry the wheel was hidden inside closed landing gear nacelle. The Evektor 
company requested to minimize the negative effect of open landing gear nacelle that 
does not cover the wheel. 

Fig. 4.15: EV-55 Outback. Image downloaded from http: / /www.evektor .cz/ 
outback/fotogalerie.aspx 
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A hole was cut into the nacelle and cavity inside the landing gear nacelle was 
created to simulate the inner flow around the wheel, see Fig. 4.16. Only the yellow 
area, which consists of part of the surface of landing gear nacelle and the cavity, 
was subject of deformations. The surface of the aircraft (blue) as well as the wheel 
(green) were not to be deformed. 

(a) front view (b) side view 

Fig. 4.16: Transparent view of the landing gear nacelle 

Mesh and C F D setup Unstructured hybrid mesh consisting of tetrahedral el­
ements and prismatic layers was generated in ANSYS IcemCfd meshing software. 
Mesh with 2 328 907 nodes. The Edge [72] C F D solver was used in RANS setup with 
S-A turbulence model. 

Fig. 4.17: EV-55 Outback C F D mesh 
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Fig. 4.18: EV-55 Outback detail of mesh on the landing gear nacelle 

Parameterization The F F D - R B F parameterization was used on part of the ge­
ometry designed for deformation. A set of optimization cases were performed rang­
ing from 1 to 9 parameters. These parameters were as usual F F D control points 
displacements and they were located on the bottom side of the nacelle, see red point 
in Fig. 4.19. A l l the (green) points were frozen in order to fix the boundary curve 
that separates the deformable and undeformable 

Fig. 4.19: EV-55 Outback Parameterization example 
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(a) FFD lattice (b) RBF lattice (c) mapped geometry 

Fig. 4.20: F F D parameterization with R B F coordinate transformation processes 

Geometrical constrains fixation Only the yellow area Fig. 4.19 can be de­
formed, the boundary curve that surrounds it has to remain fixed. Fixation error 
was defined in order to quantitatively evaluate how precisely was the boundary 
between deformable and fixed geometry maintained. 

The F F D lattice was constructed around the deformable geometry (see Fig. 4.20a), 
R B F coordinate transformation (see Fig. 4.20b) was used to map the deformable 
surface into the F F D lattice (see Fig. 4.20c). The influence of number of R B F cen­
ters in x, y and z directions on the fixation error (equation 4.4) is given in Appendix 
A Fig. A . l to A.3. 

Comparison of fixation error with basic F F D parameterization and with opti­
mal F F D - R B F parameterization is given in Tab. 4.7, the use of R B F coordinate 
transformation gave 47,1 % improvement over the standard F F D parameterization. 
The fixation error is determined for quantitative evaluation of constraint handling, 
the quality of fixation of the non-deformable geometry is demanded by necessity of 
volume mesh deformation between each optimization iteration. In other words, if 
the parameterization fails to keep the geometry fixed in some tolerance the volume 
mesh deformation process will crash and the optimization would be stopped, with 
the use of F F D - R B F this had never happened. The number of R B F centers for 
coordinate transformation have influence on the value of fixation error and they 
should be adjusted for every new type of object to be optimized. 

Tab. 4.7: Boundary curve fixation error 

Error [%] 
F F D 53.4 
F F D - R B F 6.3 
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Aerodynamic shape optimization The gradient based optimization approach 
adopted in previous test was no longer an option, since adjoint of Navie-Stokes 
equations was not part of used version of Edge flow solver and calculation of gradients 
with finite differences was due to size of the mesh and slow character of C F D solution 
too expensive. Because of that a simplex optimization approach in NLOPT[70] 
optimization software package was used. Propagation of wall deformations to volume 
mesh was done by FOIs in-house software meshdeform. A set of 6 optimizations with 
different number of optimization variables was performed. 

CF = 0.7cD 1 + 0.3cD 2 (4.7) 

where CDI stands for drag coefficient in cruise conditions and cm for climb flight 
conditions. 

The original geometry with closed nacelle was also analyzed and compared to 
baseline (initial) geometry that should be optimized, where the baseline stands for 
the geometry with open landing gear nacelle. As expected the whole in the smooth 
surface and a cavity caused additional drag, the drag of the whole aircraft increased 
roughly by 6 %. That is a serious increase considering that the area of the closed 
nacelle generated only 1.4% of total drag in the original case (see Tab. 4.8). 

Tab. 4.8: EV-55 Outback closed nacelle C F according to area 

C F value portion [%] 
Wing 57.0 

Engine nacelle 11.6 
Fuselage 29.9 

Landing gear nacelle 1.4 

The shapes and pressure coefficient distributions for the baseline and with 6 
parameters optimized case are presented in Fig. 4.21 for cruise conditions and in 
Fig. 4.22 for climb conditions. Note the nacelle shape change (inflation) result of 
the optimization process. 
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Fig. 4.21: Comparison of initial (top) and optimal (bottom) shapes and pressure 
coefficient distribution in cruise conditions 

Fig. 4.22: Comparison of initial (top) and optimal (bottom) shapes and pressure 
coefficient distribution in climb conditions 
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The results of optimization of the open case are summarized in Tab. 4.9. Ap­
proximately 2 % decrease can be observed throughout all optimizations. 

Tab. 4.9: EV-55 Outback optimization results 

Parameters Improvement [%] 
baseline 

1 2.012 
2 2.015 
3 2.122 
4 2.051 
6 1.980 
9 2.129 
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5 ADAPTIVE FFD PARAMETERIZATION WITH 
RESPECT TO OPTIMIZATION 

5.1 Introduction 
Another kind of adaptivity of the parameterization is the adaptivity with respect to 
the optimization. That means that the parameterization is adapted (changed) dur­
ing the optimization process, usually after some criteria is reached. The motivation 
of such operation is to accelerate the optimization run, in other words to make it 
cost less in computational time. Acceleration of the optimization procedure in real 
time would be also valuable while shortening the design cycle time. 

Two different optimization acceleration methods were investigated on the tasks 
of aerodynamic shape optimization, Enrichment and Multi-grid. 

5.2 Enrichment 

Adaptive optimization approach called Enrichment is a method based on increase 
of the number of optimization parameters and their smart insertion into the F F D 
lattice. The enrichment procedure is tested on N A C A 0012 2D optimization case 
analyzed in section 3.7.1. A conclusion is that the case needs of large number of 
optimization parameters (see Tab. 3.2). 

5.2.1 Enrichment procedure 

The enrichment optimization procedure starts with coarse F F D lattice and runs in a 
loop. After the insertion criteria is met the F F D lattice is enriched in chosen section, 
the last geometry is embedded into the new F F D lattice and the loop repeats until 
the stopping criteria is met. 

Insertion criteria: Minimal decrease of relative function value between last two 
optimization iterations 

Choosing section for enrichment: The F F D lattice is locally refined at a loca­
tion that depends on the size of the area under the shape gradient (obtained by the 
adjoint flow solver). 
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Calculation of 

n-l 

A section {XPi+l •' 7, 
abs(gri+l) + abs(gr (5.1) 

i=l 

where x p is surface mesh point coordinate in x direction and gr is gradient in that 
surface point. So in the case of just one section enrichment a column of control 
points is added into the F F D lattice (see Fig. 5.1) where the area is largest (where 
the shape changes have biggest potential). 
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Fig. 5.1: One step of enrichment of F F D lattice based on Shape gradient 

Stopping criteria: 
• Maximum number of total optimization iterations 
• Minimal difference of optimization parameters between last two optimization 

iterations 
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One step enrichment test case 

A number of optimizations with regular initial F F D lattices are compared with 
the same F F D lattices enriched by one column of control points and with regular 
lattices of the same sizes. Maximal NURBS degree was used (in x direction) based 
on previous results in section 3.7.1. The insertion criteria was set to 0.02. The 
optimization finished after one of the optimization stopping criteria was met, the 
stopping criteria were: 30 optimization iterations or the difference of optimization 
parameters between last two optimization iterations was smaller than le-8. 

Tab. 5.1: Comparison of Enrichment (+1) and NACA0012 a optimization for a 
hierarchy of F F D lattices with max. NURBS degree6 

Regular Enriched Regular 
No. C D O P T 

costc No. C D O P T 
costc No. C D O P T 

costc 

Baseline 0.04750 1 - - - - - -

3 0.03144 23 3 + 1 0.03053 39 4 0.02964 16 
6 0.02132 32 6 + 1 0.01952 41 7 0.01526 37 
11 0.01300 197 11 + 1 0.01832 224 12 0.01246 64 
21 0.01187 239 21 + 1 0.01433 225 22 0.01123 185 

a C F D grid size is 42556 nodes. 
b NURBS degree p = N - 1. 
c Number of flow and adjoint flow solutions 

The result in Tab. 5.1 shows that the enrichment process did not fulfilled the 
expectations. In cases of small number of parameters (3 and 6) the addition of one 
more brought some improvement of the drag coefficient, but the comparison with 
regular F F D parameterization of the same number of elements (4 to 22 parameters) 
is not favorable at all in all analyzed cases. The regular F F D of the same size as 
the enriched was able to find better optimum and converged faster (see Fig. 5.2) 
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Fig. 5.2: Comparison of history of regular and enriched N A C A 0012 optimization 
using 3, 4 resp. 3 + 1 parameters 

After this failure of the enrichment approach, where even the one step did not 
lead to acceleration of the optimization process, no further tests were performed. 
A note must be made that the enrichment procedure is influenced by the insertion 
criteria which further complicates finding of one general beneficial setup for wide 
variety of cases. 
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5.3 FFD Multi-grid 
Multi-grid (Multilevel) methods were developed for solving differential equations 
using a hierarchy of discretization and are currently part of most C F D solvers 

Multi-grid approach for solving the optimization problem is based on hierarchy 
of C F D grids sharing the same parameterization. Using few levels (from coarse 
to fine) of C F D grids could lead to accelerated convergence of the optimization 
toward the optimal solution and thus increase the computational efficiency This 
assumption is based on the fact, that the C F D and adjoint solution is achieved at 
much lower computational cost on coarse grid than on fine one. Similarly to multi-
grid method in C F D a results (of the optimization) on the coarse grid is used to 
accelerate optimization convergence of fine grid. 

5.3.1 F F D Mul t i -gr id procedure: 

The Multi-grid (MG) principle was studied on the C R M wing case used previously 
for other optimization analysis in section 4.3.1. Here the same setup of the param­
eterization and optimization is used as in F F D - R B F case. 

Two meshes were selected, coarse mesh with 169 381 nodes and medium with 
854184 nodes. A significant differences can be observed in Tab. 5.2 between the 
results of coarse and medium mesh. The coarse mesh gave smaller of baseline 
shape and also the result of optimization is better than with medium mesh. The 
explanation is that the C F D solution on the coarse mesh is not grid independent 
and as shown in our publication in A I A A conference proceedings [71] a larger grid 
is necessary for reliable results. Nevertheless the reliability issue is not of concern, 
since the optimization on coarse mesh is performed just to give the optimization on 
the medium mesh a better initial design. 

Tab. 5.2: Results of C R M wing optimization on M = 0.88 
with 242 design variables using N L P Q L P using Laplace-
Spring on two meshes. 

Mesh Case c D o p t C-Lopt costa 

Coarse Baseline 0.01676 0.49969 -0.23313 1 
Coarse Optimized 0.01131 0.50209 -0.23876 52 
Medium Baseline 0.01797 0.49948 -0.23638 1 
Medium Optimized 0.01287 0.50194 -0.21874 43 

cost = C F D + adjoint (drag, lift) 
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Several multilevel cases were investigated in respect to different number of main 
iterations done on coarse mesh. The investigation revealed a problems with the 
transition between the two meshes. The optimal displacements of the coarse mesh 
were used as the initial guess for the medium mesh, but the initial deformation of 
the medium mesh failed in almost all the cases. Needless to say that the mesh 
deformations during the optimization on the coarse mesh were alright. 

One working case, which used 10 main optimization iterations on coarse mesh 
in the first step, is here presented.. Results of the this Multi-grid F F D optimization 
are given in Tab. 5.3. 

Tab. 5.3: Comparison of medium mesh optimization and multilevel optimization 
results 

Multi-grid Medium 
cD baseline 0.017973 0.017973 
cD optimal 0.013026 0.012874 
cD reduction 27.5 % 28.4 % 
Cost in C F D + adjoint iterations 35 Coarse + 34 Medium 43 
Cost in C P U time 36 158 37 579 
Cost in real time 7h 4min 6h 31min 

Comparison of the M G optimization with the medium mesh optimization shows 
that the M G gave 0.9 % worse CD and was 3.4 % faster in C P U time measurement 
and 8.4 % slower in real time. That disagreement in C P U and real time was caused 
by usage of 8 Intel Xeon E5-2690 cores for coarse mesh and 16 cores for medium 
mesh. The number of C P U cores is usually correlated to the size of the C F D mesh 
and is always trade-off between efficiency of the computational cluster usage and 
real time results availability. 

The Tab. 5.3 also shows that the cost in C F D + adjoint iterations is about the 
same for coarse and medium mesh in M G case and that the 34 iterations on medium 
mesh in M G case is lower than 43 in medium case, so some effect acceleration of 
the optimization on medium case is observed. Both M G medium mesh and medium 
optimizations ended by reaching maximum number of function calls during the line 
search and that was caused be ever failing C F D mesh deformation procedure. 

Fig. 5.3 shows the comparison of medium mesh optimization and M G optimiza­
tion convergence history. A deeper fall of the CD can be observed in the beginning 
of the M G case which then progresses towards the optimum, which was just above 
0.011 but was not reached since the M G algorithm stopped it after 10 main iter­
ations. Right after that a first CD value on the medium mesh was calculated (the 
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Fig. 5.3: Comparison of medium mesh optimization and M G optimization conver­
gence history 

peak in the red line at 11th iteration), note that the value of CD was much lower 
than the initial value of cp on the blue curve. 
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6 FFD FOR CFD MESH DEFORMATION 

6.1 Introduction 
The second proposed objective of the thesis is development of F F D parameterization 
for both surface deformations and C F D mesh deformations, while enabling large 
object deformations and preserving the level of mesh quality during the process. This 
approach will bring simplification to the optimization process by using parameters 
of surface mesh description as optimization variables, so there will be need neither 
for new mesh generation, nor for using another mesh morphing program. 

Mesh deformation is standard way of adjusting the computational mesh to 
changes in object shape during the optimization procedure, so there is no need to 
generate the C F D mesh again after every iteration as in the past. Laplace smooth­
ing in which large system of equations has to be solved is very common as well as 
spring analogy [74] method in which is each element edge represented by a spring 
with corresponding stiffness (also system of equations). Another approach to C F D 
mesh deformation is RBF[28] which is independent of the mesh connectivities unlike 
the above mentioned. 

The capability of smooth volume deformations makes F F D a suitable candidate 
for C F D mesh deformation[49, 63, 9] The F F D is independent of the mesh topology, 
so structured or unstructured meshes are deformed by the same algorithm as well 
as hybrid meshes. 

Motivation of using F F D parameterization for mesh deformation (other than 
problems with failing standard methods in previous cases) is in simplification of the 
optimization process. The object's shape (subject to the optimization cost function) 
will be deformed together with the volume mesh that surrounds it. Thanks to that 
the use of another mesh morphing program can be avoided. 

Tests in 2D and 3D, in comparison to standard methods, namely Laplace and 
Spring analogy were performed. Both Euler and RANS meshes were used. 

The C F D mesh deformation methods are evaluated with respect to: 
• Mesh quality after morphing focused on aspect ratio and skewness. 
• Cost of the deformation process with focus on the C P U time and storage 

demands of all parts of the process. 

6.2 Procedure: 

The general procedure for C F D mesh deformation with F F D is very similar to basic 
F F D procedure in section 3.3, the biggest difference is in the construction of the 
F F D lattice. 
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1. Usually a initial lattice of control points is constructed around the object 
(surface mesh) that is to be deformed. Then one or more layers of control 
points are added on that lattice. These additional layers defines how big part 
of the C F D mesh will be deformed (see Fig. 6.1). 

Fig. 6.1: F F D lattice for deformation of C F D mesh in N A C A 0012 case 

The lattice construction has a practical limitations (boundary surfaces, mul-
tisegment high lift devices) which limits the applicability of the method. 
A n example of such limit is depicted on Fig. 6.2, typical task would be to find 
new position of the flap and its angle of deflection, the deformation of C F D 
mesh with such F F D lattice would result in deformation of the airfoil as well, 
which is of course prohibited. Note also the typical narrow gap between the 
flap itself and the airfoil, a problem of most C F D mesh deformation tools that 
would be hardly overcome by the F F D . 
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Fig. 6.2: Example of practical limitations of F F D for C F D mesh deformations, in 
the task of flap position optimization 

2. The part of the C F D mesh that is located inside the F F D lattice is embedded 
within the parametric volume. 

3. The lattice is deformed. Preferably the control points of the initial lattice are 
displaced (as optimization variables), the additional layers of control points 
can be displaced to shift the majority of volume cell deformations further 
from the objects surface. The outer most layer of the F F D lattice has to be 
fixed in order to keep the transition between the deformed and undeformed 
volume mesh smooth. 

4. The deformed coordinates of the C F D mesh are calculated using corresponding 
equation, for 3D 3.8. 
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6.3 Numerical experiments: FFD vs. Standard 
methods 

The C F D mesh deformation capabilities of F F D parameterization is analyzed and 
compared to Laplace and Spring analogy standard methods in terms of quality of the 
deformed mesh and in terms of computational efficiency of the deformation process. 

6.3.1 Quality measure: 

Aspect ratio (Ar): 

It is the ratio between lengths of the longest and the shortest edge of a cell. The 
aspect ratio should be ideally equal to 1 to ensure accurate results. 

Here a measure that also takes into account the surface for tri elements and 
volume for tetra elements is taken, this measure is defined so that aspect ratio equal 
to 1 is the best ant equal to 0 worst. To many elements with too low aspect ratio 
can result in high interpolation error of the C F solution. 

Tri elements: 
- area\ 

) actual 

V / /optimal 

Tetra elements: 
(volume \ 
^ ~3 J actual Ar = 6.2 / volume \ v ' 

V r3 I optimal 

where the optimal (equilateral) triangle is a triangle inside the same circumcircle 
as the actual tri element and optimal tetra is a tetra circumscribed into the same 
circle as the actual tetra element, the lmax is the longest edge of the triangle and rc 

is circumscribed radius. 

Quad elements: the aspect ratio is the minimum of 8 ratios from 4 parallel­
ograms constructed from two vectors adjacent to each node. 

Ar = mini—-, — ) (6.3) 
a b a 

where the a, b are adjacent vector and the area A is calculated as 

A = a * b * sind(a) (6.4) 

where a is angle between the adjacent vectors. 
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Hexa elements: 
Ar 

lr. 
(6.5) 

where lmax is the longest edge and lmin is the shortest edge of the hexa element. 

Skewness (Sk): 

The skewness of a C F D mesh is a measure that indicates mesh quality and suitabil­
ity. Large skewness compromises the accuracy of the interpolated regions. 

Tri and tetra elements: 

optimal triangle area — triangle 
ok = ; ; (6.6) 

optimal triangle area 

where the optimal (equilateral) triangle is a triangle inside the same circumcircle 

Quad and Hexa elements: 

Sk = max Ctmax-90 9 0 - « „ 

90 ' 90 

where amax is an angle in a face or cell. 

(6.7) 

6.3.2 Quality evaluation plan: 

1. Visual inspection, that is to identify apparent errors in the mesh like inverted 
cells (see Fig. 6.3) or violated surface boundaries. 

0.56 0.562 0.564 0.566 0.568 0.57 0.572 0.574 0.576 0.578 

Fig. 6.3: Example of inverted cells in the area of airfoil trailing edge 
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2. Quality measurement calculation of skewness and aspect ratio of all mesh 
elements. 

3. Dual - software build in Edge that also checks correctness and quality of the 
mesh. The outcome of the program is not usable for C F D simulation in the case 
of finding bad elements. That gives definitive stop to any further simulations 
with that particular mesh, that is a very practical condition monitored during 
the optimization procedure. 

4. Influence of morphed mesh on C F D convergence and results is compared to 
convergence and results on meshes deformed with standard methods. The con­
vergence of the solution is also monitored during the optimization procedure 
to reveal possible mesh deformation related issues. 

6.3.3 2D meshes: 

A comparison of Laplace, Spring analogy and F F D methods for C F D mesh deforma­
tions is here demonstrated by a search for maximal rotation angle of airfoils. That 
is equivalent to increase of the angle of attack imposed to the far-field boundary 
condition. Results of C F D simulation of rotated airfoils and increased angle of at­
tack serves as ultimate quality evaluation. The rotation case was selected because 
it put demands both on aspect ratio and skewness of the deformed mesh elements. 
The meshdeform program in Edge was used to test the Laplace and Spring analogy 
performance. 

Test description 

The test is designed to keep increasing angle of attack until the dual program reports 
error or the meshdeform Edge program fails. That is done for Laplace, Spring 
analogy and F F D methods and for Euler and RANS meshes. The N A C A 0012 
Euler mesh is a mesh from section 3.7.1, the R A E 2822 RANS mesh comes from 
other part of publication by Amoignon, Hradil and Navratil[71] . 

Initial F F D lattice of control points with the dimensions 3x3 (see Fig. 6.4 green 
points) was generated in the vicinity of the airfoil. The rotation of the control points 
of the initial F F D lattice around the origin was used to deform the airfoils geometry 
with the standard F F D procedure. Laplace and Spring analogy deformations were 
performed in meshdeform program that requires initial C F D (undeformed) mesh 
and deformed boundary nodes (airfoil) to produce deformed C F D mesh. 

In the case of F F D method a one layer of control points was added on the initial 
lattice. The added outer layers was fixed, see red points in Fig. 6.4. 
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Fig. 6.4: Example of rotation of R A E 2822 C F D mesh with F F D 

Results 

The maximum achieved angle of mesh deformations by rotation are summarized in 
Tab. 6.1, note that the F F D method achieved much higher angles than the standard 
methods on both meshes. Visual inspection revealed nothing suspicious in the cases 
of Euler mesh (see Fig. B . l to B.6 in the Appendix B). That cannot be said about 
Fig. B.9 which exhibits elements that are violation surface of the airfoil close to 
trailing edge, nevertheless the dual program evaluation went throw and the Edge 
flow solver converged even with such mesh. Note that the spring analogy method 
failed completely to deform the RANS mesh. 

Tab. 6.1: Maximal angle of rotation 

Mesh Laplace Spring analogy F F D 
N A C A 0012 Euler 16° 34° 58° 
R A E 2822 RANS 25° failed 56° 

Tab. 6.2 shows worst calculated element aspect ratios and skewness for N A C A 
0012 and their comparison to the baseline undeformed mesh. Note that both skew-
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ness and aspect ratio of worst element of the deformed C F D grid is better using 
F F D than the standard methods in all comparable angles. 

Tab. 6.2: Maximal angle of rotation test, N A C A 0012 Euler mesh 

Angle [°] Method worst Sk worst Ar 
0 - 0.3355 0.5802 
16 Laplace 0.8868 0.1020 
16 Spring A . 0.6226 0.3661 
16 F F D 0.6120 0.3738 
34 Spring A . 0.9999 0.0015 
34 F F D 0.8836 0.1561 
58 F F D 0.9997 0.0029 

Tab. 6.3 shows worst calculated element aspect ratios and skewness for R A E 
2822 RANS mesh and their comparison to the baseline undeformed mesh, of which 
is very hard to tell any conclusion. Note that the results are very different from the 
ones obtained in the case of Euler grid, the difference is due to the extremely narrow 
first layer of the prismatic elements. 

Tab. 6.3: Maximal angle of rotation test, R A E 2822 RANS mesh 

Angle [°] Method worst Sk worst Ar 
0 - 0.9999 3.65e-4 
25 Laplace 0.9997 5.08e-4 
25 F F D 0.9993 6.17e-4 
56 F F D 0.9998 3.70e-4 

Tab. 6.4 shows results of the C F D solution in program Edge on N A C A 0012 
airfoil and their comparison to the baseline undeformed mesh under equivalent angle 
of attack (AoA). The same for R A E 2822 airfoil is presented in Tab. 6.5. 

The results are almost identical for all deformation methods, but they slightly 
differ from the undeformed mesh results under equivalent AoA. That is probably 
caused by not sufficient mesh quality, in other words the flow solution is still mesh 
dependent. Nevertheless the F F D exhibits good compliance with the results of 
standard methods which is what matters most. 
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Tab. 6.4: C F D results on deformed N A C A 0012 airfoil meshes 

Angle [°] Method CL CD c m 

16 AoA 1.71 0.51269 -0.83558 
16 Laplace 1.7161 0.56456 -0.96446 
16 Spring A . 1.7161 0.56456 -0.96446 
16 F F D 1.7124 0.56361 -0.96121 
34 AoA 0.92132 0.68432 -0.48773 
34 Spring A . 0.85098 0.59729 -0.57917 
34 F F D 0.84126 0.59522 -0.57695 
58 AoA 0.65013 1.00400 -0.54626 
58 F F D 0.66359 1.02280 -0.81761 

Tab. 6.5: C F D results on deformed R A E 2822 airfoil meshes 

Angle [°] Method CL CD c m 

25 AoA 1.0002 0.62982 -0.20859 
25 Laplace 0.9857 0.56017 -0.2836 
25 F F D 0.98319 0.56009 -0.22637 
56 AoA 0.72429 1.31500 -0.32782 
56 F F D 0.94493 1.23870 -0.07099 

6.3.4 3D meshes: 

Similarly to 2D tests, here a comparison of Laplace, Spring analogy and F F D meth­
ods for 3D C F D mesh deformations is demonstrated, this time by a search for 
maximal elevation of wing tip. That is defined to imitate bending of wing by aero­
dynamic forces, however quite unrealistically extreme for the purpose of testing of 
the C F D mesh deformation methods. The elevation case was selected because it 
put demands both on aspect ratio and skewness of the deformed 3D mesh elements. 
Again meshdeform program in Edge was used to test the Laplace and Spring analogy 
performance. 

Test description 

The test is designed to keep increasing elevation of control points in the wing tip 
area until the dual program reports error or the meshdeform Edge program fails. 
That is done for Laplace, Spring analogy and F F D methods and for Euler and RANS 
meshes. A highly swept wing geometry was used to create Euler mesh for testing, 
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the RANS mesh comes from C R M wing optimization done as a part of publication 
(Amoignon, Hradil, Navratil[71]). 

Initial F F D lattice of control points 3x3x3 (see Fig. 6.5 green points) was gen­
erated in the vicinity of the wing. The elevation of tip section control points (red 
points) of the initial F F D lattice was used to deform the wing geometry with the 
standard F F D procedure. Laplace and Spring analogy deformations were performed 
in meshdeform program that requires initial C F D (undeformed) mesh and deformed 
boundary nodes (airfoil) and produces deformed C F D mesh. 

In the case of F F D method a one layer of control points was added on the initial 
lattice in 5 of its sides, no layer was added in the wing root section direction to 
preserve symmetry plane. The added outer layers were fixed, see blue points in 
Fig. 6.10b. 

Fig. 6.5: Example of wing tip control points elevation and surface deformation for 
C F D mesh deformation tests 

The maximum achieved mesh deformations by elevation are summed in Tab. 6.6, 
note that on the Euler mesh the F F D method achieved one order higher elevation 
in comparison with Laplace method and 37% in comparison with Spring analogy 
method. The spring analogy method completely failed to deform the RANS mesh 
as happened previous in 2D tests. Visual inspection is very limited due to the com­
plexity of 3D mesh, nevertheless some cuts of meshes are presented in the Appendix 

Results 
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B (see Fig. B.10 to B.14). Note that it is almost impossible to distinguish between 
meshes deformed by different methods Fig. B.10, B . l l , B.13. 

Tab. 6.6: Maximal wing tip section control points elevation 

Mesh Laplace Spring analogy F F D 
Euler wing (half span = 35.73m) 2 m 12m 19m 
RANS C R M wing (half span = 3.77m) 0.3 m failed 4.2 m 

The extreme C F D mesh deformation managed by F F D method in the Euler case 
was achieved by elevation of the tip section control points by more than 50% of 
the half-span, it is important to say that however distorted the elements may be 
(see Fig. B.12) all the checking procedures were completed successfully and Edge 
was able to converge flow solution. That is also the case of RANS mesh, here were 
the tip section control points elevated by more than 110% and still the deformed 
mesh went through checks and C F D . Note the high change of the thickness of the 
prismatic layers between Fig. B.14 and Fig. B.13, which would compromise precision 
of the C F D solution. 

Tab. 6.7 shows number of elements that have worse aspect ration and skewness 
than 0.05 in Euler deformed meshes with different elevation of the tip section control 
points. 

Note that number of worst skewed elements has not increased. The spring anal­
ogy method deformed mesh had only 11 elements with lower aspect ration than the 
initial mesh in the case of elevation by 2m, which was slightly better than 31 with 
F F D and 63 with Laplace. 12m elevation gave us comparison of spring analogy and 
F F D , in which the spring analogy added 220 tapered elements, almost 6 times less 
than added the F F D method. In the case of 19m elevation with the F F D method 
the deformed mesh contained 6045 elements with aspect ratio lower than 0.05. 
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Tab. 6.7: Number of elements that have worse aspect ration and skewness than 0.05 
for deformed Euler meshes 

Elevation method Number of elements Number of elements 
[m] name with low Sk with low Ar 
0 - 5 696 
2 Laplace 5 759 
2 Spring A. 5 707 
2 F F D 5 727 

12 Spring A. 5 916 
12 F F D 5 1 978 
19 F F D 5 6 045 

Tab. 6.8 shows number of elements that have worse aspect ration and skewness 
than 0.05 in RANS deformed meshes with different elevation of the tip section 
control points. Here a number of worst skewed elements in the F F D deformed mesh 
has significantly increased only in the extreme elevation 4.2m case. The number 
of lowest aspect ration elements obtained in the meshes deformed with Laplace 
and F F D is very similar to the initial undeformed mesh, where the F F D method 
is slightly better. In the case of extreme 4.2m elevation with the F F D method the 
deformed mesh contained a huge number of 120 932 elements with aspect ratio lower 
than 0.05. 

Tab. 6.8: Maximal an, gle of rotation test, R A E 2822 RANS mesh 

Elevation method Number of element s Number of elements 
[m] name with low Sk with low Ar 
0 - 18 4 628 
0.3 Laplace 18 4 780 
0.3 F F D 18 4 706 
4.2 F F D 1251 120 932 

The extremely deformed meshes, especially RANS mesh, contain large number of 
poor quality elements, the maximal elevations were the last valid meshes reported 
by dual program in the search we must take them as such and judge the for the 
purpose of testing of the methods not for generating precise C F D results. 
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Tab. 6.9: C F D results on deformed highly swept wing Euler meshes 

Elevation [m] method CL CD cm 

2 Laplace 0.40635 0.02400 -0.31746 
2 Spring A . 0.40582 0.02393 -0.31704 
2 F F D 0.40518 0.02385 -0.31643 
12 Laplace 0.42849 0.03040 -0.33632 
12 F F D 0.42394 0.02975 -0.33176 
19 F F D 0.42942 0.03428 -0.33458 

Tab. 6.9 shows results of the C F D solution in program Edge on highly swept wing 
Euler mesh case. The same for C R M wing RANS mesh is presented in Tab. 6.10. 

Tab. 6.10: C F D results on deformed C R M wing RANS meshes 

Elevation [m] method CD cm 

0.3 Laplace 0.30288 0.01450 -0.08603 
0.3 F F D 0.30218 0.01449 -0.08549 
4.2 F F D 0.32159 0.02156 -0.06401 

The results of C F D calculations, obtained for the different C F D mesh deforma­
tion methods compared on the same elevation, deviates at most by 2% in Euler 
mesh cases and at most by 0.6% in RANS mesh cases. 

6.3.5 Efficiency: C P U time and memory demands: 

The computational efficiency of C F D mesh deformation method is an important 
factor that is also affecting the whole aerodynamic shape optimization process cost. 
In the case of C R M wing optimization (Tab. 4.2 in section 4.3.1) just the C F D 
mesh deformation needs approximately 32 % of the whole real time. 

C P U time: 

The C P U time is measured on deformations of 3D Euler and RANS meshes by using 
single C P U core. Each the deformation is repeated 5 times to suppress random 
effects that can occur as the procedures are conducted in Matlab environment. The 
standard deformation methods are again executed in meshdeform Edge package 
subprogram which is written in Fortran code, the F F D procedure is written in C 
code. 
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The F F D specifics is that the mesh needs to be first embedded into the F F D 
lattice which is a very expensive process, however that is needed only once. Tab. 6.11 
shows results of measurements of C P U time. In the case of Euler mesh a rough 
agreement between time of Laplace and F F D methods can be observed, the spring 
analogy being several times slower. The RANS mesh deformation compares only 
Laplace and F F D methods, since the spring analogy failed in the process, the Laplace 
method being slightly faster even if we do not include the time needed for embedding. 

Tab. 6.11: C P U time demands of different mesh deformation techniques 

Mesh Laplace Spring analogy F F D F F D embedding 

Fig. 6.6 shows dependency of C P U time demands on increasing elevation of the 
tip section control points that deforms the Euler mesh. Note that the embedding 
procedure time was included only at the first run, the following calculations of the 
deformation is not dependent on the amplitude of the elevation (as expected since 
the F F D does not depend on the mesh topology). The standard methods seems to 
be little sensitive to the elevation amplitude as well, that is probably caused by this 
specific deformation test and does not fully reflect the usual behavior. 

Euler (77k nodes) 7,1 s 56,9 s 
RANS (965k nodes) 42,6 s failed 

4,3 s 9,7 s 
51,0 s 166,5 s 

70 

60 -

50 -

03 
E 
=> 

Laplace 

Spring analogy 

FFD deformation 

20 

10 -

0 
0 2 4 6 

Elevation [m] 
8 10 12 

Fig. 6.6: C P U time demands for deformation of Euler mesh 
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Fig. 6.7 shows the same dependency on the RANS mesh. Again the F F D em­
bedding time is added only once and again the following deformations takes about 
the same time. The Laplace procedure is slightly faster in most of the tested defor­
mations. 

Fig. 6.7: C P U time demands for deformation of RANS mesh 

Parallelization: As stated above, all the test were calculated using single C P U 
core, that was done just for the comparison purposes. The F F D method is topology 
independent by definition, in other words it treats every point individually. That 
means that the parallelization of the deformation task is theoretically limited only 
by number of mesh nodes and it is very easy to implement the parallelization from 
the F F D point of view. That makes it appropriate for use on multi-core processors 
or on computer clusters. Translation of the code into e.g. C U D A code would enable 
further massive parallelization for the use on GPUs. 

Dependency of C P U mesh size on C P U time was analyzed for single C P U and 4 
C P U core processor in Matlab environment and is presented in Fig. 6.8. 

The parallel calculations using 4 CPUs were 3 times in faster average than the 
single C P U calculations, while the bigger the grid the more effective the use of 
multiple cores were (see Fig. 6.9). 
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Fig. 6.9: Efficiency of use of 4 CPUs with respect to C F D grid size 
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Memory demands: 

Procedure that is using meshdeform program from edge is operating with file (.bdis 
file) that contains information about surface nodes displacements, size of this file is 
used here for comparison of the demands of the F F D method. 

The only important file worth saving in the F F D method for C F D mesh deforma­
tion is the NURBS matrix that contains coordinates of the object in the parametric 
space, a result of the embedding of the object into the F F D lattice. The size of 
the matrix depends on the number of control points in x,y and z direction and on 
number of mesh nodes. 

Tab. 6.12: Memory demands of different mesh deformation techniques 

Mesh Nodes F F D lattice NURBS file .bdis file 
Euler 77k 7x7x7 27.8 M B 272 kB 
RANS 965k 11x10x5 352 M B 909 kB 

As can be seen in Tab. 6.12 the memory needed for NURBS matrix is huge in 
comparison to the .bdis file size. The NURBS file is 104.6 times bigger in the Euler 
mesh case and 396.5 times bigger in the case of RANS mesh. If we extrapolate the 
size of the RANS mesh to 50 million the NURBS file would probably need 18.2 GB 
of memory. 

6.4 3D Aerodynamic shape optimization using FFD 
for CFD mesh deformation 

The use of F F D parameterization for mesh deformation approach described above is 
used in C R M wing optimization test case 4.3.1, in which one of the conclusions was 
that the optimization stopped due to inability of the C F D mesh deformation tool to 
modify the C F D mesh around demanded surface shape. The case description allow 
shape deformations of the root section of the wing that is located in the symmetry 
plane of the wing. Since the optimization variables are vertical displacements of 
the control points no special care needs to be taken in the symmetry plane. The 
only modification to the C F D mesh deformation procedure is that no additional 
layer above the initial F F D that is constructed around the wing is created in the 
symmetry plane, that allows the C F D mesh nodes in that plane to slide freely 
without compromising the mesh quality. 
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6.4.1 Basic F F D 

Here a comparison of optimization cases with Laplace and F F D C F D mesh de­
formation approach on basic F F D parameterization without the R B F coordinate 
transformation is given. As can be seen on Fig. 6.10a only part of the whole C F D 
mesh that is located inside the F F D lattice (blue outer layer) is selected to be de­
formed, that can be seen on Fig. 6.10b which shows detail of the layout of the F F D 
lattice for C F D mesh deformation. The gap between the initial and outer layer 
defines how steep will the deformation of the mesh propagate from the displaced 
control points. The outer fixed layer of control points should be placed in the area 
where the elements are big with respect to the ones at the surface of the object. The 
gap is specific to each volume mesh, here a distance of one half span of the wing 
is used as most of the small elements are located close to the surface of the wing. 
That is true just for unstructured meshes, in the case of structured meshes tuning of 
the gap size can be advised. Only the black control points of the initial F F D lattice 
(constructed around the wing) are allowed do move. 

(a) Overview (b) Detail 

Fig. 6.10: F F D lattice layout for the C F D mesh deformation 

The use of F F D both for surface and C F D mesh deformation resulted in 7.4 % 
better results compared to F F D for surface and Laplace for C F D mesh, see Tab. 6.14. 
With the use of F F D the optimization stopped after reaching convergence criteria. 

Fig. 6.11 shows that the case with Laplace C F D mesh deformation was not able 
to get rid of shock waves as good as the case with F F D C F D mesh deformation. 
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Tab. 6.13: Comparison of C R M wing optimization results with different mesh de­
formation techniques 

Laplace F F D 
cD baseline 0.017973 0.017973 
cD optimal 0.015079 0.013748 
cD reduction 16.1 % 23.5 % 
Cost in CFD+adjoint iterations 27 24 

(a) Laplace (b) FFD 

Fig. 6.11: Comparison of pressure coefficient distributions on C R M wing - top view 

A huge difference can be observed in the resulting shape of the wing, see Fig. 6.12. 
The F F D allowed the optimizer to do much bigger deformations which led to odd 
wave created on the leading edge of the wing. That shape is probably caused by the 
use of basic F F D parameterization without the R B F mapping, that means that the 
optimizer had insufficient control over the deformations of the wing sections.. 
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Fig. 6.12: Comparison of C R M wing shapes initial with the use of Laplace (top) 
and F F D (bottom) C F D mesh deformation techniques 

Fig. 6.13 shows comparison of wing section shapes of initial wing geometry and 
wing optimized with basic F F D using Laplace and F F D C F D mesh deformation 
methods. Again the odd (wave-like)shape can be observed in some section shapes. 
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Fig. 6.13: C R M wing section shapes (axis not in scale) 

6.4.2 F F D with R B F coordinate transformation 

As illustrated above the optimizer is dependent on used parameterization, the R B F 
coordinate transformation described in section 4.2 was incorporated into the C F D 
mesh deformation procedure in order to allow the use of F F D - R B F for both surface 
and C F D mesh deformations. Fig. 6.14 shows only part of the whole initial C F D 
mesh (green points) that is located inside the F F D lattice (blue outer layer), Fig. 6.15 
depicts the F F D - R B F parameterization layout for the C F D mesh deformation and 
mesh nodes after the R B F coordinate transformation. Only the red control points 
of the initial parallelepiped F F D lattice are allowed do move. 
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Fig. 6.14: F F D - R B F lattice layout for the C F D mesh deformation, before R B F 
coordinate transformation 

Fig. 6.15: F F D - R B F lattice layout for the C F D mesh deformation, after R B F coor­
dinate transformation 
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With the use of F F D the optimization stopped after reaching prescribed max­
imum number of optimization iterations. The Fig. 6.16 shows that the optimizer 
was not able to fulfill the lift constraint and that it did most of the optimization 
iterations trying to reach it. 

Fig. 6.16: History of CD and CL during the optimization 

Tab. 6.14 shows that the optimum given as a result by the N L P Q L P software 
was 5.4 % worse compared to the optimum in the case with Laplace C F D mesh 
deformation tool. What is more interesting is that the results in the column named 
F F D - R B F violated CL that show the values for minimal CD, there the F F D - R B F 
case outperformed the Laplace case by 10.4 % producing better glide ratio (39 vs. 
43.1). 

Tab. 6.14: Comparison of C R M wing optimization results with different mesh de­
formation techniques 

Laplace F F D - R B F F F D - R B F violated cL 

CD baseline 0.017973 0.017973 0.017973 
CD optimal 0.012874 0.013832 0.010993 
CD reduction 28.4 % 23 % 38.8 % 
CL baseline 0.502438 0.499089 0.473289 
Glide ratio 39.0 36.1 43.1 
Cost in CFD+adjoint iterations 43 24 51 
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Regardless of the behavior of the optimization algorithm which is sensitive to 
various phenomena, the F F D - R B F showed its potential in its role of C F D mesh 
deformation tool. That is also illustrated in Fig. 6.17, note the distinctive difference 
in shape of the wing tips, which tells us that the F F D - R B F is capable of much bigger 
deformations. 

Fig. 6.17: Comparison of C R M wing: initial (top) optimized with the use of Laplace 
(middle) and F F D - R B F violated (bottom) C F D mesh deformation techniques 
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Fig. 6.18 shows comparison of wing section shapes of initial wing geometry and 
wing optimized with F F D - R B F using Laplace and F F D - R B F (violated) C F D mesh 
deformation methods. That again illustrates haw capable the F F D - R B F method is 
in achieving big C F D mesh deformations 

Fig. 6.18: C R M wing section shapes (axis not in scale) 
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7 OUTCOMES OF T H E DOCTORAL THESIS 
This chapter describes accomplished goals of the thesis and notable facts about 
developed parameterization method. 

7.1 Free-Form Deformation (FFD) parameteriza­
tion 

NURBS based F F D parameterization properties were identified and tested. The 
most important outcomes are: 

• Impact of NURBS degree: The NURBS degree affects FFDs geometry han­
dling characteristics. It was illustrated on straight line deformations and on 
inverse geometry optimization, where higher NURBS degree practically damps 
oscillations. The results of N A C A 0012 airfoil optimization shows that the in 
increasing the NURBS degree not only improved the cost function but also 
accelerated convergence. The acceleration of convergence was also observed in 
3D on passenger aircrafts wing optimization. 

• Dimensionality: A parametric study both on N A C A 0012 airfoil optimization 
and on passenger aircrafts wing optimization concluded that the bigger the 
number of parameters the better the results. Investigation of added weights 
and multi-directional displacements on N A C A 0012 airfoil showed that their 
use is not effective, but can be beneficial in the cases where the F F D lattice 
cannot be altered. 

7.2 Adaptive FFD parameterization with respect 
to geometry 

Adaptivity of the F F D parameterization to the geometry was achieved by using 
R B F coordinate transformation. The motivation was to enable better control of the 
deformations and thus further improve the optimum. The other motivation was to 
handle complex geometrical constraints imposed on the optimization problem. 

• The F F D - R B F greatly improves FFD's geometry handling capabilities, which 
was proven in to cases with complex geometrical constraints. In the case of 
C R M wing trailing edge fixation, and in the case of EV-55 Outback commuter 
plane nacelle boundary curve fixation. 

• The benefit of R B F mapping is also in the aerodynamic shape optimization 
behavior that profits from the improved geometry handling as was observed 
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in C R M wing optimization, as well as in the optimization of EV-55 Outback 
commuter aircrafts landing gear nacelle. 

7.3 Adaptive FFD parameterization with respect 
to optimization 

Adaptivity of developed parameterization method during the optimization process 
was investigated using Enrichment and Multi-grid methods. These test were aiming 
on acceleration of the aerodynamic shape optimization process. 

• The Enrichment procedure was inspected on N A C A 0012 test case, with the 
conclusion that the F F D parameterization is not sensitive on location of control 
points as on its quantity. 

• The benefits of using Multi-grid approach to the optimization of C R M wing is 
rather inconclusive. Some savings of C P U time were observed, but the effort 
to expose the acceleration properties of the Multi-grid was corrupted by failing 
C F D mesh deformation tool. 

7.4 FFD for CFD mesh deformations 

Free-Form Deformation parameterization method was used in the C F D mesh defor­
mation application. Unlike the standard methods which adjusts the volume mesh to 
the shape changes of the surface, the F F D was applied both to surface and volume 
mesh deformations simultaneously which is suitable for aerodynamic shape opti­
mization process. The smooth volume deformations capabilities of NURBS-based 
F F D method as well as its independency of the mesh topology makes it appropriate 
for C F D mesh deformations. 

• The F F D method was successfully tested on deformations by rotation in 2D 
and by bending in 3D on both Euler and RANS meshes. The F F D method 
surpassed the capabilities of Laplace and Spring analogy standard methods in 
all test in terms of maximal achievable deformation. 

• The qualitative comparison showed no deficiencies in visual evaluation, in cal­
culated aspect ratios and skewness. Obtained converged C F D flow solutions 
show almost identical results between the methods. 

• The tests of efficiency of the F F D method in terms of C P U time needed for 
the mesh deformation results are comparable to the results of Laplace method 
and faster than Spring analogy. The expensive embedding procedure is needed 
only once, the file that contains NURBS matrix (a result of the embedding) 
needs significant disk space ( 350MB for 1M node mesh). 
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• The test of use of the F F D method for C F D mesh deformation during the 
aerodynamic shape optimization process gave promising results. The F F D 
was capable of bigger deformations and found better optimum. The F F D en­
hanced by the R B F coordinate transformation enabled the optimizer to make 
bigger deformations that the standard methods and is therefore perspective 
for further development. 

• The time expensive embedding part of the F F D procedure can be parallelized. 

Possible future applications of F F D : The developed algorithms could be used 
in the field of aero-elasticity, for coupling C F D with F E M and during time dependent 
deformations. 
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8 CONCLUSIONS 
The doctoral thesis Adaptive parameterization for aerodynamic shape optimization 
in aeronautical applications is focused on practical problems of parameterization 
and its use in aerodynamic shape optimization in particular. 

As the primary goal of the thesis an adaptive F F D parameterization method for 
applications in the field of aircraft design was developed and verified. A method that 
could automatically adapt the original parameterization, and that would be able to 
handle complex geometry deformations and demands on complicated geometrical 
constraints. 

Developed Free-Form Deformation parameterization is capable of accurate em­
bedding of complex geometry in orthogonal lattices (with the use of R B F coordinate 
transformation), which was verified on 2D and 3D aerodynamic shape optimization 
cases. It is also competent of handling complicated constraints that are often nec­
essary in industrial applications. 

As the secondary goal, a technique based on F F D for deformations of C F D 
computational meshes was developed. The F F D is capable of required C F D mesh 
deformations, quality and effectivity of such use of the F F D was tested. The adap-
tivity to the geometry of the F F D - R B F was also incorporated into the C F D mesh 
deformation procedure and its benefits were proven on working aerodynamic shape 
optimization of wing. 

Developed F F D - R B F parameterization method was incorporated into autom­
atized environment for aerodynamic shape optimizations and is ready for use in 
aeronautical applications ranging from simple 2D airfoils to complex constrained 
3D surfaces. 
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APPENDIX B 

1 Deformed 2D CFD Euler meshes of N A C A 
0012 airfoil 

Fig. B . l : 16 degree mesh rotation with Laplace method 
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Fig. B.2: 16 degree mesh rotation with Spring analogy method 

Fig. B.3: 16 degree mesh rotation with F F D method 
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Fig. B.4: 34 degree mesh rotation with Spring analogy method 

Fig. B.5: 34 degree mesh rotation with F F D method 

Fig. B.6: 58 degree mesh rotation with F F D method 
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B.2 Deformed 2D CFD RANS meshes of R A E 
2822 airfoil 

Fig. B.7: 25 degree mesh rotation with Laplace method 

Fig. B.8: 25 degree mesh rotation with F F D method 

Fig. B.9: 56 degree mesh rotation with F F D method 
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B.3 Deformed 3D CFD Euler meshes of highly 
swept wing 

Fig. B.10: Comparison of deformed meshes in the case of 2m elevation of wing tip 
control points displacement with Laplace (top), Spring analogy (middle) and F F D 
(bottom) methods in back view of wing tip area 
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Fig. B . l l : Comparison of deformed meshes in the case of 12m elevation of wing 
tip control points displacement with Spring analogy (middle) and F F D (bottom) 
methods in back view of wing tip area 
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Fig. B.12: Deformed mesh in the case of 19m elevation of wing 
displacement with F F D method in back view of wing tip area 
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B.4 Deformed 3D CFD RANS C R M wing meshes 

Fig. B.13: Comparison of deformed meshes in the case of 0.3m elevation of wing tip 
control points displacement with Laplace (top) and F F D (bottom) methods in back 
view of wing tip area 
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