
FACULTY OF MECHATRONICS,
INFORMATICS AND INTERDISCIPLINARY
STUDIES TUL

Master Thesis

Implementation of real-time digital signal
processing algorithms using STM32F7xx series
microcontrollers

Study programme: N 0 7 1 4 A 1 5 0 0 0 3 Mecha t ron i cs

Author: Muhammed Qagri KÜ9Ükalp

Thesis Supervisors: Ing. Miros lav Ho lada , Ph.D.

Inst i tu te o f In format ion Techno logy and Elect ronics

L iberec 2 0 2 4

FACULTY OF MECHATRONICS,
INFORMATICS AND INTERDISCIPLINARY
STUDIES TUL

Master Thesis Assignment Form

Implementation of real-time digital signal
processing algorithms using STM32F7xx series
microcontrollers

Rules for Elaboration:

1. Familiarize yourself with the STM32F7xx microcontroller. Focus on hardware support for

digital signal processing computations.

2. Design firmware that will process the digital signal from the ADC in real time and write the

results to the DA converter or send them to a higher-level system via a communication line.

3. Functionalities to be performed by this firmware are digital filtering (FIR and MR filters),

spectrum calculation, and simple recognition algorithms (DTMF detection).

4. Create a Matlab application that will be used as a graphical user interface for this firmware.

Its purpose will be to compute the parameters of data processing algorithms according to

the user specification and send them to the STM board via USB (CDC Virtual COM port)

interface. It will also display the data resulting from data processing performed by firmware.

5. Test the developed firmware and analyze its performance limits (maximum sampling and

data processing speeds). Make sure that your firmware fully utilizes the capabilities of the

processor used.

Name and surname:

Identification number:

Study programme:

Assigning department:

Academic year:

Muhammed Qagri Kuciikalp
M21000195

N0714A150003 Mecha t ron i cs

Inst i tu te o f In format ion Techno logy and Elect ronics

2 0 2 2 / 2 0 2 3

Scope of Graphic Work:

Scope of Report:

Thesis Form:

Thesis Language:

as n e e d e d by d o c u m e n t a t i o n

4 0 - 5 0 pages

p r in ted /e lec t ron ic

engl ish

List of Specialised Literature:

[1] Chassaing R.: Digital Signal Processing and Applications with the TMS320C6713 and

TMS320C6416 DSK, Wiley-IEEE Press, ISBN-13: 978-0470138663, 2008.

[2] Porat B.: A Course in Digital Signal Processing', John Wiley & Sons, 1997.

[3] Norris D.: Programming with Stm32 Getting Started with the Nucleo, McGraw-Hill

Education, ISBN: 978-1-26-003132-4, 2018

Thesis Supervisors: Ing. Miros lav Ho lada , Ph.D.

Inst i tu te o f In format ion Techno logy and Elect ronics

Date of Thesis Assignment: January 26, 2 0 2 3

Date of Thesis Submission: May 15, 2 0 2 4

L.S.

prof. Ing. Zdeněk Plíva, Ph.D.

Dean

doc . Dr. Ing. Jaros lav Hlava

study programme guarantor

Liberec January 26, 2023

D e c l a r a t i o n

I hereby cer t i f y , I, myself , have wr i t t en my master thes is as an

or iginal and p r imary w o r k using t h e l i terature l isted be low and

consu l t ing it w i t h my thes is superv isor and my thes is counsel lor .

I a c k n o w l e d g e tha t my master thes is is fu l ly g o v e r n e d by A c t

No. 121 /2000 Col l . , t h e Copyr igh t Ac t , in par t icu lar Ar t ic le 6 0 -

Schoo l Work .

I a c k n o w l e d g e tha t t h e Technica l Univers i ty o f L iberec d o e s not

in f r inge my c o p y r i g h t s by using my master thes is fo r internal pur

poses of t h e Technica l Univers i ty o f L iberec.

I am aware o f my ob l iga t ion t o in fo rm t h e Technica l Univers i ty o f

L iberec on hav ing used or g r a n t e d l icense t o use t h e resul ts o f my

mas te r thes is ; in such a case t h e Technica l Univers i ty o f L iberec

may require re imbursemen t o f t h e cos ts incur red fo r c rea t ing t h e

result up t o the i r ac tua l amoun t .

At t h e same t ime , I hones t ly dec lare tha t t h e tex t of t h e pr in ted

vers ion o f my master thes is is ident ica l w i t h t h e tex t o f t h e e lec

t ron ic vers ion up loaded in to t h e IS/STAG.

I a c k n o w l e d g e tha t t h e Technica l Univers i ty o f L iberec wil l make

my master thes is publ ic in a c c o r d a n c e w i t h paragraph 4 7 b

of Ac t No. 111/1998 Coll . , on Higher Educat ion Inst i tu t ions

and on A m e n d m e n t t o Other A c t s (the Higher Educat ion A c t) ,

as a m e n d e d .

I am aware o f t h e c o n s e q u e n c e s w h i c h may under t h e Higher

Educat ion Ac t result f r o m a b reach of th is dec la ra t ion .

May 14, 2 0 2 4 M u h a m m e d Cagr i Kucukalp

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to the individuals and

institutions who have played a significant role in completing my thesis. Their support and

contributions have been invaluable throughout this journey.

I am grateful to the numerous authors, researchers, and scholars whose work I have referenced

and consulted as part of my literature review. Their contributions have provided valuable insights

and knowledge that have shaped the foundation of my thesis. I express my sincere appreciation to

these individuals and the sources they have published.

Furthermore, I would like to thank T U L - Technical University of Liberec, specifically the

Faculty of Mechatronics, Informatics, and Interdisciplinary Studies Informatics. I am grateful

to the respected Dean, the Head of the Department, and all the staff for providing the necessary

resources and knowledge. The academic environment and the learning opportunities everyone offers

have been instrumental in my growth and development as a student.

I want to extend my heartfelt thanks to my parents, Recep Kiici ikalp and Ilknur Kiici ikalp, for

their unwavering love and encouragement. I also extend my gratitude to my sister, E l i f Kuciikalp,

my grandmother, Nermin Yi lmaz , and my friend, Ing. E lc in Toren, for their constant support and

motivation. Their belief in my abilities has been the driving force behind my accomplishments.

Last but certainly not least, I am deeply indebted to my guiding professor and thesis

supervisor, Ing. Miroslav Holada, Ph.D., for their unwavering support, continuous guidance, and

invaluable mentorship throughout my thesis journey. Their expertise, patience, and constant

encouragement have been pivotal in shaping the outcome of my research. I am truly grateful to all

the individuals and institutions mentioned above who have significantly completed my thesis. Their

contributions, whether big or small, have impacted my academic and personal growth.

ABSTRACT

This thesis details the design and implementation of firmware tailored for the STM32F7 series

microcontroller, focusing on efficiently processing digital signals acquired from an A D C (Analog-

to-Digital Converter). The firmware's primary objective is to process these signals in real-time, either

outputting them to a D A converter or transmitting them to a higher-level system via various

communication methods, including U S B (Universal Serial Bus) C D C (Communications Device

Class) Virtual C O M port. This work includes the development of digital filtering techniques using

FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters, execution of F F T (Fast

Fourier Transform) for spectrum analysis, and implementation of simple recognition algorithms such

as D T M F (Dual-Tone Multi-Frequency) detection.

A M A T L A B - b a s e d graphical user interface is also developed to interact seamlessly with the STM32

microcontroller via a U S B C D C Virtual C O M port, enabling real-time configuration and

visualization of signal processing parameters and results. The firmware architecture supports

comprehensive testing and performance analysis, providing insights into the microcontroller's

operational limits, efficiency, and scalability in handling real-world signal processing tasks. These

analyses demonstrate the capability of the STM32F7 microcontroller to meet the demands of

embedded D S P applications.

Keywords: Embedded D S P Firmware, STM32F7 Microcontroller, Real-Time Signal Processing,

U S B C D C Virtual C O M port.

ABSTRAKT

Tato diplomová práce popisuje návrh a implementaci firmwaru přizpůsobeného pro mikrokontroléry

řady STM32F7, se zaměřením na efektivní zpracování digitálních signálů získaných z A D C

(převodníku analogového signálu na digitální). Hlavním cílem firmwaru je zpracování těchto signálů

v reálném čase, buď jejich výstupem na D A převodník nebo jejich přenosem do vyššího systému

prostřednictvím různých komunikačních metod, včetně U S B (Univerzální Sériové Magistrály) C D C

(Třída Zařízení Komunikace) Virtuálního C O M portu. Tato práce zahrnuje vývoj technik digitálního

filtrování pomocí F IR (konečné impulzní odezvy) a IIR (nekonečné impulzní odezvy) filtrů,

provádění F F T (rychlé Fourierovy transformace) pro analýzu spektra a implementaci jednoduchých

algoritmů rozpoznávání, jako je detekce D T M F (dvoutónové vícefrekvenční).

Také bylo vyvinuto grafické uživatelské rozhraní založené na M A T L A B u pro bezproblémovou

interakci s mikrokontrolérem STM32 prostřednictvím U S B C D C virtuálního C O M portu, které

umožňuje konfiguraci a vizualizaci parametrů zpracování signálu v reálném čase a výsledků.

Architektura firmwaru podporuje komplexní testování a analýzu výkonu, která poskytuje přehled o

operačních limitech, efektivitě a škálovatelnosti mikrokontroléru při zvládání úkolů zpracování

signálů v reálném světě. Tyto analýzy demonstrují schopnost mikrokontroléru STM32F7 splnit

požadavky vestavěných D S P aplikací.

Klíčová slova: Firmware vestavěného DSP, Mikrokontrolér STM32F7, Zpracování signálů v

reálném čase, U S B C D C virtuální C O M port.

LIST OF CONTENTS

1. OBJECTIVE 1
1.1 Motivation A n d Scope 1
1.1.1 Motivation 1

1.1.2 Scope 2

2. L I T E R A T U R E REVIEW 4

3. T H E O R E T I C A L B A C K G R O U N D 5

3.1. Overview of STM32F7 Series Microcontroller 5
3.2. Principles of Analog to Digital Conversion (A D C) 6
3.3. Digital Filtering Techniques: FIR 9
3.3.1. STM32 Implementation of FIR Filters 10
3.4. Digital Filtering Techniques: IIR 12
3.4.1. STM32 Implementation of IIR Filters 13

3.5 Fast Fourier Transform (FFT) in Signal Analysis 14
3.5.1. STM32 Implementation of F F T 15

3.6. Real-Time Processing of D T M F Signals 18
3.6.1. STM32 Implementation of D T M F 21

4. M E T H O D O L O G Y A N D S Y S T E M I M P L E M E N T A T I O N 24
4.1. System Architecture and Design 24
4.2. Firmware and Software Development 27
4.3. Hardware Setup and Firmware Integration 28
4.4. System Interface and Data Analysis 31
4.4.1. Serial Communication Protocol and Data Format 31

4.4.2. M A T L A B Data Handling and Real-Time Analysis 32

4.4.3. Visualization and Performance Metrics 32

4.4.2. Data Visualization and Analysis 33

5. R E S U L T S A N D D I S C U S S I O N 37
5.1. Performance of Digital Filters 37

5.1.1. Efficacy of Infinite Impulse Response (FIR) Filters 38

5.1.2. Efficacy of Infinite Impulse Response (IIR) Filters 41

5.2 Efficacy of F F T Analysis 43
5.3 Real-Time D T M F Algorithm Performance 45
5.4. Performance Analysis of D S P Algorithms on S T M 3 2 Microcontrollers 48
5.4.1. Detailed Metrics and Comparisons 49
5.4.2. Discussion on Cycle Counts and Execution Times 52

6. R E F E R E N C E S 53

LIST OF FIGURES

Figure 1. N U C L E O - 1 4 4 Board with S T M 3 2 Microcontroller and interface connectors. [2] 5

Figure 2. P M O D Audio Module [6] 7

Figure 3. Schematic of Audio Signal Processing Circuit with A D C and D A C [10] 8

Figure 4. Fast Fourier Transform (FFT) Computational Graph. [18] 15

Figure 5. Block Diagram of the Goertzel Algorithm [21] 19

Figure 6. D T M F Frequency Table for Keypad Tones.[23] 20

Figure 7. Generation of the D T M F Tone for the Digit "5" Using 770 H z and 1336 H z

Frequencies. [18] 21

Figure 8. Workflow diagram of Matlab and STM32 D S P Operations 24

Figure 9.12S Data Transmission Format Showing Left and Right Channel Bit Alignments 14] 25

Figure 10. Graphical User Interface for DSP Application with Serial C O M Port Connection 26

Figure 11. Graphical User Interface for DSP Application 27

Figure 12. S A I Configuration on S T M 29

Figure 13.FIR Filter Output Graph 39

Figure 14. Filter Design Application 40

Figure 15.Magnitude And Phase Response of FIR Filter 40

Figure 16.IIR Filter Output Graph 41

Figure 17.FFT Magnitude Spectrum Graph 44

Figure 18. D T M F Magnitudes Graph 45

Figure 19. Time Domain Representation of a Resampled Digital Signal 46

Figure 20. Frequency Spectrum 47

Figure 21. Spectrogram with Hamming Window 47

LIST OF TABLES

Table 1. Comparison of Computational Complexity between D F T and F F T for Different Sample

Sizes [16] 14

Table 2. D T M F Tone Coefficients [22] 20

Table 3. F F T Performance Analysis 50

LIST OF SOURCE CODES

Source Code 1. S T M FIR Filter Processing by CIMSIS-Library (Courtesy: S T M script) 11

Source Code 2. arm_fir_f32 function by CIMSIS-Library (Courtesy: S T M script) 11

Source Code 3. S T M IIR Filter Processing by CIMSIS-Library (Courtesy: S T M script) 13

Source Code 4. S T M F F T Processing by CIMSIS-Library (Courtesy: S T M script) 16

Source Code 5. S T M D T M F Processing by CIMSIS-Library (Courtesy: S T M script) 23

Source Code 6. S T M Data transmit function from S T M to Matlab (Courtesy: S T M script) 34

Source Code 7. Matlab Data receive callback function from S T M to Matlab (Courtesy: M A T L A B

script) 34

Source Code 8. Matlab Read Data function (Courtesy: M A T L A B script) 35

1. OBJECTIVE

This thesis is dedicated to designing and developing advanced firmware for real-time digital

signal processing (DSP) using the STM32F767ZI microcontroller, known for its robust digital signal

computation capabilities. The core goal is to engineer firmware that efficiently processes signals from

an Analog to Digital Converter (A D C) , transforming them into formats that can be transmitted to

higher-level systems. This involves implementing sophisticated digital filtering techniques, including

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, and exploring the

integration of simple recognition algorithms such as D T F M (Dual-Tone Multi-Frequency) detection.

A critical component of this project is to establish an interactive interface between the S T M 3 2

microcontroller and a personal computer, utilizing M A T L A B . This interface wi l l leverage the U S B

C D C (Communications Device Class) Virtual C O M port to provide user-friendly access for

configuring D S P parameters, enhancing the system's adaptability and responsiveness to diverse

operational conditions.

Comprehensive testing and evaluation of the firmware are essential for this research, mainly

focusing on the STM32F767ZI microcontroller's configuration limits. This phase aims to optimize

the firmware according to the microcontroller's specifications and assess performance under these

constraints. This evaluation is crucial for providing insights into the system's efficacy in real-time

applications.

The foundational S T M code, central to this thesis, manages U A R T (Universal Asynchronous

Receiver/Transmitter), interrupts, and processes M A T L A B commands, which are vital for

developing the firmware. It covers essential aspects of digital signal processing, such as digital

filtering, gain control, and interactions with the S A I (Serial Audio Interface) for audio data

management. Interaction with the S A I (Serial Audio Interface) for audio data management.

1.1 Motivation And Scope

1.1.1 Motivation

In an era of rapid technological advancements, D S P emerges as a pivotal field, influencing various

sectors such as communications, control systems, multimedia, and consumer electronics. The essence

of D S P lies in its ability to manipulate vast streams of real-time data, highlighting the need for robust

and efficient microcontrollers. The STM32F7 series stands out among various options due to its

formidable processing capabilities and specialized support for D S P operations.

1

This research is driven by the transformative impact of D S P in practical scenarios and the

untapped potential of the STM32F767ZI microcontroller series. The primary aim is to exploit the full

capabilities of this microcontroller in D S P applications. The envisioned outcome is a comprehensive

firmware that processes digital signals in real-time and seamlessly relays processed data to more

complex systems, enhancing functionality and performance.

The implications of this research extend beyond its immediate Scope, offering benefits to various

groups:

1. Researchers: As a platform for testing theoretical D S P concepts or as a foundation for

developing more advanced systems.

2. Audio Engineers: Providing valuable tools for sound manipulation and analysis, which are

crucial in music production, broadcast engineering, and acoustics.

3. Software Developers: Facilitating the incorporation of D S P methodologies into diverse

software applications.

4. Educators in Related Fields: Assisting instructors in illustrating key computational concepts

through practical D S P applications.

Additionally, as envisioned by my supervisor, this program's application in an educational

setting underscores its importance. It introduces an innovative teaching methodology where students

can engage with D S P systems in real-time, effectively bridging the gap between theoretical

understanding and practical application. This hands-on experience is invaluable for students and

educators, enhancing comprehension of DSP and its relevance in various technological domains. This

thesis transcends the boundaries of a mere academic endeavor. It is a gateway to innovation,

education, and practical implementation in numerous fields. The development of this firmware and

its accompanying tools are set to contribute significantly to D S P and microcontroller technology,

paving new paths for research, development, and education.

1.1.2 Scope

The Scope of this thesis encompasses developing and implementing a real-time digital signal

processing (DSP) system using the STM32F767ZI microcontroller series. This endeavor aims to

explore and demonstrate the capabilities of this microcontroller in processing complex D S P tasks.

The focus areas and objectives of this research are outlined as follows:

2

1. Understanding the STM32F767ZI Microcontroller: The initial phase involves an in-depth

study of the STM32F767ZI microcontroller. This includes examining its architecture,

processing capabilities, and specific features that support D S P operations. A comprehensive

understanding of the hardware is crucial for optimizing the firmware design and

implementation.

2. Designing and Implementing DSP Firmware: This research aims to design firmware

capable of real-time processing digital signals from an Analog-to-Digital Converter (A D C) .

The firmware wi l l also be able to transmit the processed data to a Digital-to-Analog Converter

(DA) or a higher-level system through a communication interface. This includes

implementing functionalities like digital filtering (using FIR and IIR filters), spectrum

analysis, and basic signal recognition algorithms like dual-ton multi-frequency (DTMF)

detection.

3. Developing a M A T L A B Interface: A significant part of this project involves creating a

M A T L A B application to serve as a graphical user interface. This application w i l l compute

D S P algorithm parameters based on user specifications and facilitate the communication of

these parameters to the S T M 3 2 board via a U S B interface. Additionally, it w i l l display data

resulting from the D S P operations performed by the firmware.

4. Performance Analysis and Optimization: Testing the developed firmware's performance

limits is integral to this research. This includes determining the maximum achievable

sampling and data processing speeds and ensuring that the firmware leverages the full

potential of the STM32 microcontroller's processing capabilities.

5. Real-world Applications and Educational Use: Identifying potential real-world

applications for the developed system is crucial. Additionally, the project aims to demonstrate

how this system can be utilized in an educational context, providing a practical tool for

teaching D S P concepts.

This thesis, therefore, not only focuses on the technical aspects of D S P implementation but

also considers its practical applications and educational value. The project is designed to contribute

to the microcontroller-based D S P field and the broader technological education and application

context.

3

2. LITERATURE REVIEW
As I embark on my thesis journey, a foundational step is the comprehensive review of existing

literature and references. This process is crucial in shaping the research trajectory, providing

validation and insight into the complexities of Digital Signal Processing (DSP) with a focus on

M A T L A B applications and STM32 microcontrollers. The subsequent literature review addresses

pivotal questions and challenges inherent in the field, offering a structured approach to the research

objectives.

Key Questions and Challenges:

• DSP Algorithm Implementation: What are the optimal algorithms for effective DSP, and

how can they be efficiently implemented using M A T L A B and S T M 3 2 microcontrollers?

• M A T L A B ' s Integration in DSP: How does M A T L A B facilitate D S P applications,

particularly in algorithm development and data analysis?

• Utilization of STM32 Microcontrollers: What role do S T M 3 2 microcontrollers play in

DSP, and what are their capabilities and limitations?

• Real-Time Processing Challenges: How can real-time signal processing be achieved, and

what are its associated challenges?

• Hardware and Software Synchronization: How can the synchronization between hardware

(STM32) and software (M A T L A B) effectively manage for optimal D S P performance?

4

3. THEORETICAL BACKGROUND
3.1. Overview of STM32F7 Series Microcontroller

The STM32F7 series represents a robust family of microcontrollers developed by

STMicroelectronics, a leader in the semiconductor industry. This series, distinguished by its high-

performance A R M Cortex-M7 cores, offers an unparalleled balance of efficiency and power.

Engineered to meet the demanding requirements of sophisticated digital signal processing (DSP)

applications, the STM32F7 series is an exemplary choice for a wide range of embedded systems [1].

Figure 1. NUCLEO-144 Board with STM32 Microcontroller and interface connectors. [2]

Key Features and Architecture: The STM32F7 series is renowned for its A R M Cortex-M7

processor, which operates at speeds up to 216 M H z . This core is notable for its high-performance

and low-power operation, enabled by its advanced architecture and adaptive real-time A R T

Accelerator™ [3]. The Cortex-M7 core features a floating-point unit (FPU), enhancing the

microcontroller's capability to handle complex mathematical operations and D S P tasks, as depicted

in Figure 1. [2].

5

Memory and Storage: The STM32F7 series has up to 2 M B of flash memory and 512 K B of S R A M ,

facilitating extensive code storage and high-speed data processing. This series also supports external

memory interfaces, which enhances system design flexibility and scalability [4].

Connectivity and I/O Interfaces: The STM32F7 series excels in connectivity, incorporating diverse

communication interfaces such as U A R T / U S A R T , SPI, I2C, C A N , and U S B O T G with full-speed

and high-speed capabilities. The series is also well-equipped with extensive I/O ports and peripherals,

including A D C s , D A C s , timers, and GPIOs, addressing the varied needs of applications across

different domains [4].

Energy Efficiency and Power Management: Energy efficiency is paramount in the STM32F7

series, featuring multiple power-saving modes, including Sleep, Stop, and Standby. These modes are

designed to optimize power consumption without compromising system responsiveness, which is

crucial for applications requiring prolonged operational periods [4].

Development and Tool Support: STMicroelectronics provides comprehensive development

support for the STM32F7 series through tools like the STM32Cube software ecosystem. This

includes the Hardware Abstraction Layer (H A L) libraries, middleware components, and numerous

software examples. For this thesis, the STM32Cube's D S P library, optimized explicitly for the

STM32F7 series, plays a vital role in enhancing the efficiency of digital signal processing. This

library facilitates seamless integration from initial development stages to final deployment, offering

a collection of optimized D S P functions and algorithms. These resources prove indispensable in

streamlining the development of D S P applications, demonstrating practical effectiveness in D S P

tasks [4].

3.2. Principles of Analog to Digital Conversion (ADC)

In digital signal processing, particularly in systems that integrate S T M 3 2 microcontrollers with

peripheral modules like P M O D I2S2, the Analog Digital Conversion (A D C) process plays a pivotal

role. This process involves converting analog signals, such as audio inputs, into their digital

counterparts, effectively bridging the gap between analog and digital realms. The STM32F7 series

demonstrates proficiency in handling this conversion, utilizing the I2S interface to ensure a high-

quality data transfer from analog to digital format [5].

The A D C process within this system involves a well-coordinated interaction between the

STM32F767 microcontroller and the P M O D module. The P M O D I2S2, featuring the Cirrus CS5343

6

A D and CS4344 D A converters, is critical in this context (Figure 2) [6] Audio signals are captured

by the microcontroller through the I2S R X line and undergo digital processing. They are then output

via the I2S T X line, thus completing their journey from the analog to the digital domain and back [7].

12-Pin Pmod

Connector

Master/Slave

M o d e Select Audio Out (Line Out)

3.fl
.. - vcc • 3

i 7 n n - ' v o R E . u fl-

Audio In (Line In)

Figure 2. PMOD Audio Module [6]

A critical aspect of this process is understanding the electrical characteristics of the A D and

D A converters. Recognizing their different full-scale voltage ranges is essential, as this affects the

amplitude of the output signal relative to the input, particularly in a passthrough configuration. This

gain, a byproduct of the voltage range differences, is quantified through precise calculations,

highlighting the intricate nature of signal conversion in this system [8].

The A D C ' s capability to accurately capture input voltages, considering elements like voltage

dividers on the P M O D board, is validated through comprehensive testing. These tests ensure

adherence to datasheet specifications, confirming that the A D C avoids exceeding its clipping

threshold and maintains signal integrity within its 24-bit dynamic range. M A T L A B visualizations

further support these tests, offering a graphical representation of the signal's amplitude range and

showcasing the A D C ' s precision [9].

The full-scale analog voltage range of the A D and D A converters on the P M O D board differs,

affecting the output amplitude in a passthrough configuration. The CS5343 A D converter has a full-

scale input peak-to-peak range of 0.568 times Vcc , while the CS4344 D A converter has an output

peak-to-peak range of 0.65 times V c c . This variance results in a conversion gain. For instance, an

A D converter sampling at 0.5Vcc wi l l produce a digital value of approximately 4922289

((0.5*(30.568))*(2A24-1)). When passed through the D A converter, this value is converted back into

an analog signal, completing the digital-to-analog signal conversion cycle and illustrating the

amplitude difference due to the converters' varying voltage ranges.

7

MMEIMMMIC

-L- t"i - i - lov - L
- p lOOnF

I IOV 1% >

C 3
lOOnF
IOV

\ [X>1 1 M>1V 1

ADOirr S C L K >
A I X W J 1 R< K
A I X X T M C 1 . K t

M M / I O O * S « O K "

- L CM TP lov - L i
r lOOnF -1 - lOOnF

IOV I S 1 R l . IOV

l ,S|> 1

Figure 3. Schematic of Audio Signal Processing Circuit with ADC and DAC [10]

The schematic provided (Figure 3) [10] delineates the CS5343 analog-to-digital converter

(ADC) interface connected to an STM32 microcontroller, a crucial component in the digital signal

processing chain explored in this thesis. This A D C is instrumental in transducing the analog audio

input from the blue jack into a digital representation, employing an I2S interface for high-fidelity

data transfer. The schematic incorporates passive components that condition the audio signal,

ensuring a clean, noise-free conversion. The precision of this A D C , with its 24-bit resolution, is

central to capturing the nuanced acoustic information necessary for high-quality audio processing

tasks performed by the STM32. Considering the voltage divider on the P M O D board, the A / D

converter perceives the input voltage as halved. Tests with a precise 3.3V supply from the Analog

Discovery 2 U S B multitool showed that a 2 V amplitude input signal (4V peak-to-peak) is the

maximum before clipping occurs in the A / D converter. These findings align with the datasheet

specifications for the A / D converter's full-scale input range, confirming the system's ability to handle

input signals up to 2 V in amplitude without clipping. M A T L A B plots of passthrough sample data for

undipped and clipped signals reveal the effective utilization of the 24-bit sample range, further

substantiating the system's adeptness in A D C [6,10].

8

3.3. Digital Filtering Techniques: FIR

In digital signal processing (DSP), Finite Impulse Response (FIR) filters are highly regarded for their

stability and linear phase characteristics. Unlike Infinite Impulse Response (IIR) filters, F IR filters

rely solely on present and past inputs, devoid of feedback mechanisms. This section delves into

implementing FIR filters within D S P frameworks, focusing on STM32F7 series microcontrollers.

FIR filters are pivotal in D S P for isolating specific frequency bands and mitigating noise from signals.

Their digital nature allows for greater flexibility and configurability compared to analog filters,

facilitating adjustments in filter characteristics without needing physical component changes.

The shift towards digital filters, such as FIR, significantly reduces reliance on external hardware

components like resistors and capacitors, cutting manufacturing costs and boosting reliability.

Unaffected by environmental changes that impact analog filters, digital filters offer consistent

performance, making them a more stable and reliable choice for signal processing tasks.

The digital filter equations are based on the following essential transfer function shown in the

z domain [11]:

Y(z) = H(z)X(z), (1)

Where Y(z) is the filter output, X(z) is the filter input, and H(z) is the transfer function of the filter.
H(z) can be expanded as follows [11]:

_ ft(l)+K2)z1+-.+ft(n+l)z" Y (v m

K ' ~ a(l)+a(2)z- 1+-.+a(n+l)z-" K ' K '

A and b are coefficient sets, and z is a delay element. Differing fundamentally from its counterparts

with feedback mechanisms, the Finite Impulse Response (FIR) filter operates without relying on

feedback. This aspect can be understood by examining its transfer function, which, at its core, is

derived similarly to other filters. A notable distinction in the FIR filter's formulation is the

simplification of its coefficients, particularly with the 'a' coefficient being singular and assigned a

value of one (a(l) = 1). This simplification is evident when the output equation, y(t), is formulated in

the context of an FIR filter [11]:

b(l)x(k)+b(2)x(k-l)+--.+b(n+l)x(k-n)
y w - w - a (i)

For the FIR algorithm, the current output is generated based only on the current and previous inputs.

In effect, an FIR is a weighted sum operation. FIR filters have several advantages and drawbacks.

One of the main advantages is that FIR filters are inherently stable. This characteristic makes

9

designing FIR filters easier than designing IIR filters. In addition, FIR filters can provide linear phase

response, which may be necessary for some applications. Another essential advantage of FIR filters

is that they are more resistant to quantization noise in their coefficients. Replacing a(l)=l and C for

the b constants, the equation for the FIR filter is as follows [11]:

y(n) = COx(n) + C l x (n - l) + C2x(n-2) + C3x(n-3) + (4)

Y (n) is the most recent filter output, and x(n) is the most recent filter input. The filter does rely on

previous inputs, as shown by the terms x(n-l) , x(n-2), etc. The C x constants determine the filter

response and can be derived using many different algorithms, yielding different characteristics.

The first input, x (l) , is multiplied by CO. The output y (l) is as follows [11]:

y (l) = C0x(l) (5)

The x(l) input is saved for the next pass through the FIR algorithm. The second input, x(2), is

multiplied by CO, and the previous input, x (l) , is multiplied by C I . The output y(2) is as follows [11]:

y(2) = C0x(2) + C l x (l) (6)

x (l) The and x(2) inputs are saved for the following input, x(3), and so on. The order of an FIR filter

is equal to one less than the number of constants and indicates the degree of complexity and the

number of input samples that need to be stored. The higher the order, the better the characteristics of

the filter (sharper curve and flatter response in the non-attenuation region) [11,12].

3.3.1. STM32 Implementation of FIR Filters

A pivotal component of implementing Finite Impulse Response (FIR) filters in digital signal

processing (DSP) within the STM32 microcontroller environment is the arm_fir_f32 function. This

function, integral to the C M S I S (Cortex Microcontroller Software Interface Standard) D S P library,

is specifically tailored for the A R M Cortex-M processor series. This section delineates the role and

functionality of the arm_fir_f32 function as it is applied in the FIR filter implementation on an

STM32F7 series microcontroller [13].

void PerformFIR() {

static float32_t f i rOutput[BLOCK_SIZE];

10

float32_t *inputSignal;
inputSignal = (selectedChannel == 0) ? sample_L : sample_R; // Channel selection
arm_fir_f32(&S_FIR, inputSignal, firOutput, B L O C K _ S I Z E) ;
SendData2MTLB(ID_FIR, (uint8_t*)firOutput, B L O C K _ S I Z E) ;
}

Source Code 1. STM FIR Filter Processing by CIMSIS-Library

The arm_fir_f32 function is a processing function for the floating-point F IR filter. It is

designed to apply an FIR filter to an input data block and produce a corresponding output data block.

The function signature is as follows:

void arm_fir_f32(const arm_fir_instance_f32 *S,
const float32_t *pSrc,
float32_t *pDst,
uint32_t blockSize);

Source Code 2. arm_jir_j32 function by CIMSIS-Library

Parameters and Functionality [13]:

• S: This parameter points to an instance of the floating-point F IR filter structure. This structure

contains information about the filter's order, coefficients, and state buffer.

• pSrc: This represents the pointer to the block of input data. In a typical D S P application, this

could be a segment of a signal, such as an audio waveform or sensor data, that needs to be

processed.

• pDst: This is the pointer to the block of output data. It stores the filtered signal after the

application of the FIR filter.

• blockSize: This parameter specifies the number of samples to process. It determines the size

of the input and output data blocks.

The firOutput is an array where the filtered signal w i l l be stored and input-signal points to the

current input data. The function applies the FIR filter defined by S_FIR to the input signal and stores

the result in firOutput. In the provided source code, firOutput is an array storing the filtered signal.

The input-signal variable points to the current input data, and the function applies the FIR filter

defined by S_FIR to this input, storing the result in firOutput.

The arm_fir_f32 function is indispensable for D S P applications that demand fast and efficient

11

signal processing. Its capability to handle floating-point operations renders it particularly suitable for

precision-critical applications, such as audio signal processing and other real-time D S P tasks. The

use of floating-point arithmetic ensures a broad dynamic range and mitigates common issues

associated with fixed-point processing, like quantization errors and overflow, thereby enhancing the

fidelity and reliability of the D S P applications.

3.4. Digital Filtering Techniques: IIR

The IIR topology extends directly from this equation by moving the denominator of the expanded

H(z) to the left side of the equation [14,15]:

(a(l)+a(2)z-l+.. +a(n+l)z-n)Y(z) = (b(l)+b(2)z-l+.. +b(n+l)z-n)X(z) (7)

In the time domain, this equation appears as follows [14,15]:

a(l)y(k) + a(2)y(k -1)+.. +a(n+l)y(k -n) = b(l)x(k) + b(2)x(k -1)+.. +b(n+l)x(k -n) (8)

where y(k) represents the current filter output, x(k) represents the current input, y(k- l) represents the

previous output, x(k- l) represents the previous input, and so on. If this equation is solved for y(k)

[14,15]:

, _ b(l)x(k)+b(2)x(k-l)+ ...+b(n+l)x(k-n)-a(2)y(k-l)- ...-a(n+l)y(k-ri) Q

This equation shows that the IIR filter is a feedback system that generates the current output based

on the current and previous inputs and outputs. The IIR structure has unique advantages and

drawbacks. The main advantage of the IIR structure is that it provides a frequency response

comparable to an FIR filter of a higher order. This results in fewer calculations necessary to

implement the filter. IIR filters can suffer from instability because they rely on feedback. As a result,

they are more challenging to design, and special care must be taken to prevent an unstable system.

IIR filters may also have a non-linear phase response, making them inappropriate for some

applications where a linear phase is necessary. Finally, because they rely on past outputs, they tend

to be more sensitive to quantization noise, making them difficult to implement with 16-bit fixed point

hardware. Generally, 32-bit hardware is necessary for an IIR filter implementation. Digital IIR filters

reduce dependence on external components like resistors and capacitors, lowering production costs

and enhancing reliability. Unlike analog filters, whose performance might be impacted by

environmental changes, digital IIR filters maintain consistent functionality due to their algorithmic

basis. IIR filters are integral in D S P due to their recursive nature, which employs current and past

inputs and outputs. This characteristic enables IIR filters to replicate the behavior of analog filters
12

efficiently while retaining the advantages of digital processing. They are precious in scenarios where

filter stability and computational efficiency are paramount [15].

3.4.1. STM32 Implementation of IIR Filters

In the STM32 platform, the implementation of IIR filters involves initializing and processing the

filter structure and parameters through dedicated C M S I S library functions. The following conceptual

overview provides insight into how IIR filters can be integrated into S T M 3 2 applications:

Initialization of the Filter Structure: This step involves setting up the IIR filter's parameters,

including the order, coefficients, and state buffer. The initialization ensures the filter is correctly

configured to process the incoming signal according to the desired specifications.

Processing the Input Signal: Once the filter is initialized, the input signal is processed through the

filter. This process involves manipulating the input data based on the filter's characteristics, producing

an output that reflects the desired frequency response.

Handling the Filtered Output: The IIR filter process output is typically used for further processing

or analysis within the application. Depending on the application's specific requirements, this could

include data visualization, transmission, or storage tasks.

The S T M 3 2 microcontroller environment utilizes functions like arm_biquad_cascade_dfl_f32 for

IIR filter implementation, part of the C M S I S D S P library designed for A R M Cor tex-M processors.

Here is a sample implementation of an IIR filter in STM32:

void PerformlIRO {
float32_t *inputSignal = (selectedChannel == 0) ? sample_L : sample_R;
float32_t i i rOutput [BLOCK_SIZE];
arm_biquad_cascade_dfl_init_f32(&S_IIR, I I R _ O R D E R , iirCoeffs, iirState);
arm_biquad_cascade_dfl_f32(&S_IIR, inputSignal, iirOutput, B L O C K _ S I Z E) ;
SendData2MTLB(ID_IIR, (uint8_t*)iirOutput, B L O C K _ S I Z E) ;
}

Source Code 3. STM IIR Filter Processing by CIMSIS-Library

In this implementation, arm_biquad_cascade_dfl_f32 processes the input signal using the IIR

filter defined by S_IIR and stores the result in iirOutput.

Functionality of arm_biquad_cascade_df l_f32

• S: This parameter refers to an instance of the floating-point IIR filter structure containing

information about the filter's stages, coefficients, and state buffer.

• pSrc: Represents the pointer to the block of input data.

13

• pDst: Points to the output data block where the filtered signal is stored.

• blockSize: Specifies the number of samples to process per block.

The IIR filter's output is determined by its order and the coefficients defining its frequency

response.

3.5 Fast Fourier Transform (FFT) in Signal Analysis

The Fourier Transform, a fundamental concept in signal processing, interprets a signal in the

continuous time domain to discern its frequency composition. In practical applications, especially

those involving Analog-to-Digital Converters (A D C) , signals exist discretely, necessitating the

Discrete Fourier Transform (DFT). The Fast Fourier Transform (FFT), an algorithmic advancement,

mirrors the DFT's functionality but achieves the results with greater computational efficiency.

The operational essence of the F F T lies in its methodical breakdown of the input data array. It

systematically halves the data, progressing recursively until it attains a pair-wise format.

Commencing with these pairs, the F F T executes a 2-point transformation, employing these initial

results to advance to a 4-point F F T . This process iterates, utilizing the outcomes of each step (2-point,

4-point, etc.) to progress to the subsequent 8-point F F T , continuing in this manner until the N-point

F F T is accomplished [16]:

Contrasting the computational demands, the D F T typically requires N A 2 complex calculations

to output N data points. The F F T , however, streamlines this process significantly, requiring only

(N/2) x log2(N) complex calculations. This optimized calculation requirement of the F F T becomes

increasingly advantageous as the number of input points (N) escalates, solidifying its efficiency over

the traditional D F T , particularly for large datasets [16]:

N (number of input samples) 8 256 1024

D F T (complex calculations) 64 65536 1048576

F F T (complex calculations) 12 1024 5120

Table 1. Comparison of Computational Complexity between DFT and FFT for Different Sample Sizes [16]

The F F T allows for frequency analysis in a system and is an essential tool for any digital

signal processing (DSP) system. Traditionally implemented on dedicated D S P hardware, F F T

functionality is also available in DSP-enabled Microcontroller Units (MCUs) . These advanced M C U s

blend the specialized capabilities of DSPs with the adaptability of general-purpose programmable

microcontrollers, allowing embedded systems to perform F F T operations efficiently. This integration

provides a versatile platform for a wide range of applications, leveraging the power of F F T in more

14

flexible and integrated environments [16,17]:

Figure 4. Fast Fourier Transform (FFT) Computational Graph.[18]

In each phase of the F F T process, the count of complex data points remains consistent, illustrating

the intensive computational nature of this algorithm. For instance, whether it is a 2-point stage or a

4-point stage, the algorithm handles 32 data points in each. This characteristic of the F F T underscores

its computational intensity, particularly as the value of N , representing the number of data points,

increases. Moreover, the precision of calculations in the initial stages of the F F T is crucial, as any

inaccuracies or errors tend to amplify as the process progresses through subsequent stages. Therefore,

ensuring high accuracy in the early calculations is paramount for the optimal performance of the F F T

algorithm. This aspect highlights the need for meticulous implementation and execution of the FFT ,

especially in applications involving large datasets [18]:

3.5.1. STM32 Implementation of F F T

In the digital signal processing domain (DSP) within the S T M 3 2 microcontroller framework, the Fast

Fourier Transform (FFT) is pivotal in analyzing signal frequency components. Implementing F F T on

STM32 microcontrollers, mainly using the C M S I S D S P software library, exemplifies leveraging

advanced computational techniques in embedded systems. The following provides an insight into

how F F T is implemented in the S T M 3 2 environment, as demonstrated by the specific code utilized

in the application.

void PerformFFT() {

// Create the Hamming window

15

float32_t window [F F T _ L E N G T H] ;

createHammingWindow(window, F F T _ L E N G T H) ;

// Apply the window to the input signal

float32_t windowedSignal[FFT_LENGTH];

float32_t *input signal;

// Determine the input signal to process based on the selected channel

i f (selectedChannel == 0) {

inputSignal = sample_L; // Left channel

} else {

inputSignal = sample_R; // Right channel

}

// Windowing the signal to be processed

for(int i = 0; i < F F T _ L E N G T H ; i++) {

windowedSignal[i] = (float32_t)inputSignal[i] * window[i];

}

// Initialize the F F T instance

arm_rfft_fast_init_f32(&S,FFT_LENGTH);

// Perform the F F T operation on the windowed signal

arm_rfft_fast_f32(&S, windowedSignal, fftOutput, 0);

// Calculate the magnitude of the F F T

arm_cmplx_mag_f32(fftOutput, fftMagnitude, F F T _ L E N G T H / 2);

// Send the F F T magnitude data back to M A T L A B

SendData2MTLB(ID_FFT, (uint8_t*)fftMagnitude, F F T _ L E N G T H / 2);

}
Source Code 4. STM FFT Processing by CIMSIS-Library

Code Breakdown and Explanation:

1. Window Creation and Application:

• The PerformFFT() function initiates by creating a Hamming window, a method used

to reduce spectral leakage in F F T analysis. The window is generated by

createHammingWindow(window, F F T _ L E N G T H) ; where F F T _ L E N G T H

defines the size of the data set.

• The generated window is then applied to the input signal. This process involves

multiplying each data point in the input signal with the corresponding window

16

function value to minimize edge effects in the F F T analysis.

2. Signal Processing and F F T Execution:

• The function determines the input signal (sample_L for the left channel or sample_R

for the right channel) based on the selected channel (selectedChannel).

• Windowed signal data is prepared by applying the Hamming window to the input

signal.

. The arm_rfft_fast_init_D2(&S, F F T _ L E N G T H) ; call initializes the F F T process,

configuring the F F T length and setting up internal structures necessary for the

computation.

• The actual F F T computation on the windowed signal is performed by

arm_rfft_fast_f32(&S, windowedSignal, fftOutput, 0);, where the third parameter

indicates that a regular F F T (not inverse FFT) is to be computed.

3. Magnitude Calculation and Data Transmission:

• Post-FFT, the magnitude of each frequency component is calculated using

arm_cmplx_mag_f32(fftOutput, fftMagnitude, F F T _ L E N G T H 12);. This step

converts the complex F F T output into a real-valued magnitude spectrum.

• Finally, the F F T magnitude data is sent back to M A T L A B for further analysis or

visualization, facilitated by SendData2MTLB(ID_FFT, (uint8_t*)fftMagnitude,

F F T _ L E N G T H / 2) ; .

Understanding C M S I S D S P Library Functions:

> arm_rfft_fast_init_f32(): This function initializes the F F T algorithm instance, setting up

internal buffers and variables required for F F T computation. It considers the length of the

F F T to be processed, thereby optimizing subsequent computations.

Parameters:

• S (in/out): A pointer to the arm_rfft_fast_instance_f32 structure wi l l hold the F F T process

configuration.

• fftLen (in): The length of the real sequence for which the F F T is computed. This parameter

determines the size of the F F T computation and should be one of the supported lengths (32,

64, 128, 256, 512, 1024, 2048, 4096).

> arm_rfft_fast_f32(): The core function for performing the FFT. It takes the initialized F F T

instance the input data buffer, and computes the F F T , placing the output in the specified

buffer. The ifftFlag parameter determines whether a forward or inverse F F T is performed.

17

Flag to specify the operation type. A value of 0 indicates R F F T , and 1 indicates RIFFT.

Parameters:

• S (in): A pointer to the initialized arm_rfft_fast_instance_f32 structure containing the

configuration for the F F T .

• p (in): Pointer to the signal data input buffer.

• pOut (out): Pointer to the output buffer where the F F T result (IFFT, i f specified) w i l l be

stored.

• ifftFlag (in): Flag to specify the operation type. A value of 0 indicates R F F T , and 1 indicates

RIFFT.

> arm_cmplx_mag_f32(): After the F F T is performed, this function calculates the magnitude

of the complex F F T output, which is essential for analyzing the frequency spectrum of the

input signal.

Parameters:

• pSrc (in): Pointer to the input vector containing complex numbers (real and imaginary parts

interleaved).

• pDst (out): Pointer to the output vector where the magnitudes of the complex numbers w i l l

be stored.

• numSamples (in): Number of complex samples in the input vector.

3.6. Real-Time Processing of D T M F Signals

In embedded systems, where the interest often lies in identifying specific frequencies within an input

signal, the Goertzel Algorithm emerges as an instrumental tool. This algorithm excels in scenarios

where the frequencies of interest are predetermined, offering a streamlined and focused approach to

frequency detection [19,20].

A t its core, the Goertzel Algorithm is designed to detect the presence of a singular frequency

component within a signal. Its operational foundation can be likened to a two-pole IIR filter.

However, its theoretical underpinnings are closely tied to the principles of a single-bin output from

the Discrete Fourier Transform (DFT). This relationship with D F T allows the Goertzel Algorithm to

isolate and analyze a specified frequency within a signal efficiently [17].

The Mathematical Formulation of the Goertzel Algorithm

18

X(M)

Figure 5. Block Diagram of the Goertzel Algorithm [21]

1. Calculation of Qn: Qn = x(n) + 2cos (^) . Qn_± - Qn_2

Where:

• x(ri) represents the current input signal at time n.

• Qn is the output of the algorithm at time n.

• k is a constant determined by the targeted frequency.

• N is the total number of samples.

2. Magnitude Calculation: \yk(N)\ = Q2(N) + Q2(N -1)- 2cos (^) . Q(N) • Q(N~\)

This equation calculates the magnitude of the frequency component at the target frequency,

k, after processing N samples.

In the above equation, i f N is set to 205[1], then the value of k needs to be determined. The value of

this constant k also determines the tone we are trying to detect and is given by [18]:

k = N * f t o n e / f s (10)

Where: ftone = frequency of the tone

fs = sampling frequency.

Now we can calculate the value of the coefficient and obtain Table 2. [18]

2cos(27ik/N) (11)

A distinctive feature of the Goertzel Algorithm is its output validity, which is contingent on

processing a complete set of input samples. The output becomes meaningful and accurate only after

the algorithm processes Af input samples, where Af denotes the total count of inputs utilized [21].

19

This characteristic underscores the algorithm's efficacy in the real-time processing of a predetermined

number of required samples.

Frequency K Coefficient

697 18 1.703275

770 20 1.635585

852 22 1.562297

941 24 1.482867

1209 31 1.163138

1336 34 1.008835

1477 38 0.790074

1633 42 0.559454

Table 2. DTMF Tone Coefficients [22]

The Goertzel Algorithm's focused frequency detection makes it particularly suitable for

embedded systems that require real-time analysis of specific frequency components. Its ability to

isolate individual frequencies from a composite signal allows for efficient processing in applications

such as D T M F decoding, signal monitoring, and targeted frequency analysis in various industrial and

communication systems.

For instance, integrating the Goertzel Algorithm into STM32-based systems leverages the

microcontroller's D S P capabilities to perform precise and real-time frequency analysis. This

integration is critical in applications that demand high accuracy and efficiency in frequency detection,

such as in telecommunication systems and signal processing modules.

"High Group" frequencies [Hz]

N X
« 697
CD

' o

§ 770
o~
<D
L_ 4—

: o . 852
O

Ô
g 941
o

1209 1336 1477 1633

1 2 3 A (Row 1)

4 5 6 B (Row 2)

7 8 9 C (Row 3)

* 0 # D (Row 4)

(Column 1) (Column 2) (Column 3) (Column 4)

Figure 6. DTMF Frequency Table for Keypad Tones. [23]

D T M F tone generation is an easy problem that can be solved by stepping through constant SINE
20

tables and adding the tones together. For example, the "5" tone combines the Row 2 tone of 770 Hz

and the Column 2 tone of 1336 Hz , as shown.

770 Hz 1336 Hz "5"
Figure 7. Generation of the DTMF Tone for the Digit "5" Using 770 Hz and 1336 Hz Frequencies.[18]

Detecting D T M F signals necessitates a system's capability to discern both a row and a column tone,

distinguishing between actual D T M F tones and voice. The Goertzel Algorithm is a suitable method

for D T M F signal recognition due to its computational efficiency and non-reliance on historical input

data. This algorithm is adept at isolating specific frequencies, facilitating the decoding of D T M F

signals with promptness and accuracy.

These equations are tailored explicitly to detect D T M F signals. They should be included in

the signal processing logic of the firmware, especially in systems utilizing S T M 3 2 microcontrollers,

to handle real-time audio signal processing efficiently [24].

3.6.1. STM32 Implementation of D T M F

In signal processing within embedded systems, the STM32 microcontroller series is a potent platform

for implementing real-time Dual-Tone Multi-Frequency (D T M F) detection algorithms. The STM32's

processing power and internal architecture, complemented by its digital signal processing (DSP)

capabilities, make it an ideal candidate for executing computationally intensive tasks, such as D T M F

detection using the Goertzel Algorithm.

void detect DTMF(uint32_t blockSize) {

// Define a pointer to the input signal array

float32_t *input signal;

// Select the appropriate input signal based on the selected channel

inputSignal = (selectedChannel == 0) ? sample_L : sample_R;

// Compute the Goertzel coefficients for the D T M F frequencies

for (int i = 0; i < D T M F _ N U M _ F R E Q S ; i++) {

float32_t k = (0.5f + ((blockSize * dtmfFreqs[i]) / Fs));

21

goertzelCoeff[i] = 2 * arm_cos_f32((2 * M _ P I * k) / blockSize);

}

// Loop over each D T M F frequency to compute its power

for (int i = 0; i < D T M F _ N U M _ F R E Q S ; i++) {

// Initialize variables for the Goertzel algorithm

float32_t prevl = O.Of, prev2 = O.Of, total power = O.Of;

// Apply the Goertzel algorithm to the signal block

for (int j = 0; j < blockSize; j++) {

float32_t y = inputSignal[j] + goertzelCoeff[i] * prevl - prev2;

prev2 = prevl ;

prevl = y;

}

// Calculate the total power of this frequency

totalPower = prevl * prevl + prev2 * prev2 - goertzelCoeff[i] * prevl * prev2;

// Compare the power to a predefined threshold

i f (totalPower > T H R E S H O L D) {

// D T M F frequency detected, perform the necessary action

}
// Store the power values for further processing or transmission

dtmfPower[i] = totalPower;

}

// Use the D T M F power values for transmission to M A T L A B or another system

S e n d D a t a 2 M T L B (I D _ D T M F _ D E T E C T E D , (uint8_t*)dtmfPower, D T M F _ N U M _ F R E Q S) ;

}
Source Code 5. STM DTMF Processing by CIMSIS-Library

The Goertzel Algorithm, a D S P technique, is particularly effective in detecting specific frequency

components within a signal. It is commonly employed in D T M F detection due to its efficiency and

lower computational overhead than the Fast Fourier Transform (FFT). The S T M 3 2 series, with its

comprehensive suite of peripherals and hardware accelerators, allows for the seamless integration of

such algorithms to process and analyze audio signals in real-time.

22

The code snippet presented for detecting the D T M F function illustrates a practical approach

to D T M F detection on an STM32 microcontroller. This function is crafted to compute the power of

predefined D T M F frequencies within a signal block and identify the presence of D T M F tones based

on a threshold comparison.

The function delineates several vital steps:

1. Initialization begins by defining a pointer to an array holding the input signal. This pointer is

assigned to the appropriate channel data (sample_L or sample_R) based on user selection.

2. Coefficient Calculation: Util izing a loop, the function calculates the Goertzel coefficients for

each frequency of interest. The coefficient calculation involves an iterative computation of

the cosine function, arm_cos_f32, which is efficiently executed thanks to the STM32's

floating-point unit (FPU).

3. Power Computation: The function then enters another loop to apply the Goertzel Algorithm

to the signal block. It initializes the variables prevl and prev2 to store the intermediate values

required for the Goertzel calculation. Each input signal sample within this loop contributes to

computing the power for the current D T M F frequency.

4. Threshold Comparison: After computing the power for a frequency, the function compares it

against a predefined threshold. If the power exceeds this threshold, it suggests detecting a

D T M F tone, triggering the appropriate response within the system.

5. Data Storage and Transmission: The computed power values are stored for further analysis

or communication with other systems, such as M A T L A B , for visualization or additional

processing.

23

4. METHODOLOGY AND SYSTEM IMPLEMENTATION
4.1. System Architecture and Design

The architecture delineated in this thesis is specifically engineered for digital signal processing (DSP)

applications, utilizing S T M 3 2 microcontrollers combined with a M A T L A B interface to ensure

optimal performance, flexibility, and real-time processing capabilities. This system architecture

includes essential components such as the S T M 3 2 microcontroller and peripheral devices like

Analog-to-Digital Converters (ADCs) . These are augmented by a M A T L A B - b a s e d graphical user

interface (GUI) that enhances control and data visualization, as detailed in Figure 8.

Start: Begin DSP
Process

T

Initialize the system (Port L/0,ADC,Tlmers etc..)

Display GUI with DSP Operation Buttons

i-
User Selects DSP Operation and Send DSP Command

via serial

STM32 Receives Command

Conn mand
Valid?

Y E S

Execute DSP Operation [FFT,FIR,IIR,DTMF)
And Send Results Back to Matlab

Visaliie DSP Result in Matlab

Figure 8. Workflow diagram of Matlab and STM32 DSP Operations

24

Central to the system is the S T M 3 2 microcontroller, particularly chosen for its superior performance

traits within the STM32F7 series. This series is strategically selected for its exceptional high-

performance characteristics, crucial for meeting real-time D S P applications' rigorous demands.

Integrating a Floating-Point Unit (FPU) within the STM32F7 series significantly augments the

efficiency of executing complex D S P algorithms. The STM32F7 series, equipped with the Cortex -

M 7 processor, is renowned for its robust processing capabilities at a core clock frequency of 216

M H z . This processor's speed and advanced architectural features make it exceptionally well-suited

for demanding D S P tasks. The A D C s play a pivotal role in the system, converting analog signals into

a digital format for subsequent processing. These converters' meticulous configuration and proficient

utilization are paramount to maintaining signal integrity and achieving the desired real-time

performance.

In embedded audio processing, the system's architecture is meticulously orchestrated to align with

the Integrated Just-In-Time Sound (I-JITS) protocol, ensuring high-fidelity sound reproduction. The

configuration employs the STM32 microcontroller that operates at a core clock frequency of 216

M H z , independent of the I2S interface's Master Clock (M C L K) . The M C L K serves as the

cornerstone for audio signal synchronization, typically derived from an external crystal oscillator or

a phase-locked loop (PLL) circuit to meet the precise requirements of the analog-to-digital converters

(ADCs) within the audio codec.

I 1
rr jr i ruiJiJTJXj^

u ™ - " \ i u 1 n _

I 1 I 1
Left Channel D8ta Right Channel Data

Figure 9.12S Data Transmission Format Showing Left and Right Channel Bit Alignment.[14]

The M C L K is set distinctly from the microcontroller's operating frequency, tailored to facilitate a

sampling rate of 48 kHz , a standard in professional audio applications. This rate is achieved by

calibrating the M C L K to a suitable frequency that, when divided down through the I2S clock

management system, provides the exact bit clock (S C L K) and word select (L R C K) rates necessary

for seamless stereo audio streaming. A 2.8224 M H z M C L K in this implementation would be

inappropriate, as it aligns with the 44.1 k H z sampling rate commonly used for CD-quality audio.

25

Mliri Menu RAW FR OR FFT DTMF

MM* COM pom

Figure 10. Graphical User Interface for DSP Application with Serial COM Port Connection.

Figure 10 illustrates the M A T L A B - b a s e d G U I , which enables the user's ability to connect to the

device by selecting from available C O M ports, toggle between audio channels, and monitor the

results of D S P processes in a visual format. This interface empowers the user to interact with the

system dynamically, offering an enhanced user experience in real-time system management.

The M A T L A B interface is further extended to include dedicated tabs for Finite Impulse

Response (FIR), Infinite Impulse Response (IIR), Dual-Tone Multi-Frequency (DTMF) signaling,

and Fast Fourier Transform (FFT) analysis, each facilitating specialized signal processing functions.

The FIR tab, for instance, provides tools for generating and applying filter coefficients, visualizing

magnitude and phase responses, and sending filter configurations to the S T M 3 2 microcontroller.

Similarly, the IIR segment allows intricate filter design and real-time response observation. D T M F

and F F T tabs offer user-friendly interfaces for tone generation, detection, and spectral analysis,

contributing to a comprehensive D S P toolkit. The GUI's modular design ensures a seamless

workflow, enabling users to navigate between different D S P operations efficiently, enhancing the

interactive experience, and promoting practical exploration of D S P concepts.

26

Figure 11. Graphical User Interface for DSP Application

Figure 11 depicts the GUI's additional segments, showcasing the user's ability to interact with

various D S P functionalities. These include generating filter coefficients, transmitting filter data to

the hardware, and real-time audio loopback testing. This level of interaction exemplifies the GUI's

role as an essential facilitator in applying complex D S P algorithms within an educational or research

context.

4.2. Firmware and Software Development

In embedded systems, integrating firmware development for the STM32 microcontroller with

a M A T L A B Graphical User Interface (GUI) establishes a cohesive platform for executing real-time

digital signal processing (DSP). This section explores the complexities of developing firmware that

equips the STM32F7 series with sophisticated D S P functionalities, including digital filtering, spectral

analysis, and signal recognition.

The firmware capitalizes on the robust processing power of the STM32F7 series to efficiently

perform a range of D S P functions. A notable innovation in the firmware design is the protocol for

identifying incoming data types. This is facilitated by an identifier (ID), where IDs greater than

215,215 denote floating-point numbers, and lower values represent 32-bit unsigned integers. This

identification strategy optimizes handling varied data types, aligning them with the specific

computational demands of D S P operations.

A standardized block size for data packets has been adopted to improve system performance.
27

This measure addresses previous challenges associated with variable data sizes, which have led to

performance degradation and occasional system failures. Standardizing data packet size has enhanced

system stability and mitigated negative impacts on processing performance during increases in

sampling rates.

Concurrently, a M A T L A B G U I has been meticulously designed to manipulate and configure

the D S P algorithms executed on the microcontroller. V i a the U S B C D C virtual C O M port, the G U I

facilitates dynamic adjustments to D S P parameters that directly influence the microcontroller's real

time processing activities. The M A T L A B script's readDataSTM32 function exemplifies this

interaction, efficiently sorting and classifying data based on the ID. Additionally, the isReady utility

verifies data availability within the serial buffer, ensuring consistent and dependable data acquisition.

To further augment system performance, the firmware development incorporated the use of

the C M S I S D S P library. This strategic choice was influenced by empirical evidence demonstrating

its advantages in efficiency. Previous endeavors without this library had experienced noticeable

performance declines, particularly under conditions involving extensive buffer sizes, leading to

significant computational delays. The C M S I S D S P library, specifically optimized for the A R M

Cortex processor series, provides a suite of highly optimized signal processing functions that

markedly enhance D S P operations on the S T M 3 2 microcontroller. The adoption of this specialized

D S P library has proven essential for achieving the requisite performance levels in real-time signal

processing tasks.

4.3. Hardware Setup and Firmware Integration

In this thesis's development, the clock system's configuration in S T M 3 2 microcontrollers is

meticulously outlined, underscoring its critical role in ensuring optimal microcontroller operations

across various digital signal processing (DSP) tasks. This setup is paramount for achieving accurate

signal sampling, processing, and analysis, and it is pivotal in applications involving audio signal

modulation, data conversion, and real-time signal analysis.

The STM32's clock system configuration involves defining multiple clock sources and adjusting

various multiplexers and dividers to tailor the operational frequencies for different peripherals. This

process begins by selecting an appropriate external high-speed clock (HSE) source, set at 8 M H z ,

serving as the reference for the Phase-Locked Loop (PLL) , which multiplies the H S E to achieve the

higher frequencies required by the system

28

SAI A

Synchronizat ion Inputs

Basic Parameters

Audio Mode

Output Mode

Companding Mode

SAI SD Line Output Mode

Protocol Parameters

Protocol

Data Size

Number of Slots (only Even Values)

Clock Parameters

Master Clock Divider

Audio Frequency

Real Audio Frequency

Error between Selected

Advanced Parameters

Fifo Threshold

Output Drive

SAI B

Synchronizat ion Inputs

Basic Parameters

Audio Mode

Output Mode

Companding Mode

Protocol Parameters

Protocol

Data Size

Number of Slots (only Even Values)

Clock Parameters

Master Clock Divider

Audio Frequency

Real Audio Frequency

Error between Selected

Advanced Parameters

Fifo Threshold

Output Drive

Asynchronous

Master Transmit

Stereo

No companding mode

• riven

I2S Standard

24 Bits

2

Enabled

4-8 KHz

48.0 KHz

0.0 %

Empty

Disabled

Asynchronous

Master Receive

Stereo

No companding mode

I2S Standard

24 Bits

2

Enabled

48 KHz

48.0 KHz

0.0 %

Empty

Disabled

Figure 12. SAI Configuration on STM

Accurate configuration of the Phase-Locked Loop (PLL) is essential as it determines the core

operating frequency of the microcontroller. Specific multipliers (N), prescalers (P), and dividers (Q

and R) are carefully selected to produce the required internal clock speeds. The output of the P L L ,

referred to as P L L C L K , drives the S Y S C L K at 216 M H z , providing the necessary operational speed

for high-performance tasks.

This meticulous clock configuration for the I2S peripheral, which handles audio data, is crucial. The

I 2 S _ C K I N , derived from the PLLI2S , is adjusted to closely match the standard audio rate of 48 kHz .

Given the precision of modern digital systems and thorough calibration, the audio frequency

precision targets the standard 48 kHz , ensuring optimal audio processing without any deviations.

The accurately configured clock frequencies are essential for data acquisition and processing in real

time D S P applications. For example, the correct setup of I 2 S _ C K I N ensures that the audio data is

29

sampled and processed at the intended rate, which is crucial for maintaining audio integrity and

quality. The absence of frequency variation confirms the system's capability to handle precise audio

processing tasks, meeting the stringent performance and accuracy requirements in digital audio

applications. Moreover, integrating a meticulously configured hardware setup and specialized

firmware development is vital in effectively deploying embedded systems for real-time digital signal

processing. This section explores the nuanced processes involved in setting up the hardware and

integrating firmware that supports the execution of D S P algorithms, mainly focusing on enhancing

the functionality of Analog-to-Digital Converters (ADCs) and optimizing real-time processing tasks

such as Dual-Tone Multi-Frequency (DTMF) detection. The hardware configuration is vital in

preparing the microcontroller environment for precise operation. A n essential aspect of this setup is

configuring the timers, which serve as the heartbeat for tasks requiring strict timing, such as sampling

signals for DSP.

1. Prescaler (PSC - 16-bit value): The prescaler value is pivotal in scaling the input clock

frequency (f_clk) to a more manageable timer clock frequency. Timer Clock Frequency =

f_clk / (PSC + 1) utilizes the prescaler value to divide the clock frequency. The subtraction

by one accounts for the zero-based counting nature of the hardware timers. For instance, with

an f_clk of 21.6 M H z and a PSC of 21600, the resultant timer clock frequency would be 1

Hz , derived from 21.6 M H z / (21600 + 1).

2. Counter Mode: This setting dictates the count sequence of the timer. A n 'Up' configuration

signifies an ascending count from 0, instrumental in standard timing operations.

3. Counter Period (AutoReload Register - ARR): The counter period is crucial in defining the

upper limit of the timer count. Upon reaching this predefined value, the timer can trigger a

designated event or reset, creating a consistent time base for various operations. A n A R R

setting of 10000-1 implies a counting sequence up to 10000 before initiating the subsequent

action.

4. Auto-reload preload: This functionality allows a buffer register for the A R R , with 'Disable'

indicating a direct application of the A R R value, facilitating immediate changes to the timer's

behavior without needing a buffer phase.

5. Trigger Output (TRGO) Parameters: These parameters determine the specific event that

prompts the timer to emit a trigger signal. The 'Reset (U G bit from T I M x _ E G R) ' configuration

suggests the trigger is linked to the update generation event, typically utilized for counter

resets or register updates.

30

Calculating the Timer Overflow Time: The timer overflow time represents the duration for a full

count cycle, from 0 to the A R R value. The formula for calculating this time interval is (PSC + 1) x

(ARR + 1) / f_clk. Applying the given values, with an f_clk of 21.6 M H z , we get (21600 + 1) x

(10000 + 1) / 21.6 x 10A6. This calculation is essential for synchronizing the embedded system's

operations with the required precision for D S P tasks.

_ . (TimerPrescaler+l)(TimerPeriod+l) , , „ s
Duration = : (12)

TimerClock

4.4. System Interface and Data Analysis

This segment elucidates the interface intricacies between M A T L A B and S T M 3 2

microcontroller, which underpins the robust digital signal processing (DSP) framework delineated

herein. The intercommunication is facilitated by a high-throughput serial communication channel,

operating at an expedited baud rate of 2*115200. This rate is meticulously selected to accommodate

the high-bandwidth requirements essential for real-time D S P while maintaining the integrity and

fidelity of the data exchange.

4.4.1. Serial Communication Protocol and Data Format

The strategic implementation of the communication protocol is a testament to the system's efficiency.

SendData2MTLB within the S T M 3 2 firmware stands as a paradigm of this, adeptly packaging data

alongside its corresponding identifier before dispatching it over the C D C protocol via a micro-USB

connection. The data format is judiciously determined by the i D , which predicates the subsequent

processing routine, typically utilizing single floating-point precision to accommodate the rigorous

demands of D S P computations.

The S T M 3 2 firmware's DataReceive_MTLB_Callback function further exemplifies

meticulous data handling, where incoming data packets from M A T L A B are classified and directed

toward their designated D S P operations. This includes F F T computations, FIR and IIR filtering,

D T M F detection, and other signal processing tasks, each delineated by a unique ID and processed

accordingly.

31

4.4.2. M A T L A B Data Handling and Real-Time Analysis

The readDataSTM32 function epitomizes the data parsing intelligence of the system in Matlab. It

exhibits a protocol that waits for a sufficient data threshold before initiating the read operation, thus

ensuring that complete data packets are received. This function's adeptness at handling varying data

types and sizes is demonstrated by its conditional logic, which flexibly adapts its reading method

depending on the size of the received i D .

The G U I in Matlab serves as the port for real-time control and feedback. It allows dynamic

visualization of time-domain and frequency-domain analyses and provides immediate information

on the effects of user-set parameters on DSP processes executed by the S T M microcontroller. This

interaction is vital for time-sensitive applications such as audio signal processing, where user input

must be translated into instantly noticeable results.

4.4.3. Visualization and Performance Metrics

M A T L A B ' s prowess in data visualization is leveraged to its full potential, furnishing users with

sophisticated tools to interpret the results of D S P applications graphically. For instance, F F T data is

plotted to depict the signal's spectral content, while D T M F magnitudes are represented through a

lollipop graph, elucidating the nuances of the signal decoding process.

Including the isReady helper function in M A T L A B ' s code underscores the system's intelligent

data readiness check, precluding the processing of incomplete data sets, thus preserving the veracity

of the subsequent analysis.

Key Interfacing Strategies:

1. Serial Communication Protocol: The M A T L A B G U I employs a serial communication

protocol to send configuration commands to the S T M 3 2 microcontroller. These commands

include filter coefficients, sampling rates, and operation modes for various D S P

functionalities such as FIR, IIR, D T M F , and F F T processing.

2. Real-time Control and Feedback: The G U I allows users to observe the real-time effects of

parameter adjustments on the D S P processes. This feature is critical for applications requiring

immediate response, such as audio signal processing and adaptive filtering.

3. Data Reception and Parsing: M A T L A B scripts are adept at receiving and parsing data sent

from the STM32 microcontroller. The processed data, typically digital audio signals or

spectral analysis results, is decoded and prepared for visualization.

32

4.4.2. Data Visualization and Analysis

The M A T L A B environment offers powerful data visualization and analysis tools for interpreting

D S P application results.

Visualization Techniques:

1. Time-Domain Analysis: The G U I presents time-domain representations of signals,

showcasing variations in amplitude over time. This visualization is vital for assessing the

performance of filters and observing the effects of signal processing algorithms on audio

signals.

2. Frequency-Domain Analysis: F F T results and spectral content of processed signals are

displayed in the frequency domain. This analysis is crucial for identifying dominant frequency

components and evaluating the efficacy of frequency-based algorithms like D T M F decoding.

3. Filter Response Curves: The M A T L A B G U I graphically represents filter response curves,

including magnitude and phase responses. This feature aids in designing and verifying digital

filters, ensuring they meet the specified criteria.

The functions SendData2MTLB, DataReceive_MTLB_Callback, and readDataSTM32

play crucial roles in facilitating data transfer and processing between the S T M 3 2 microcontroller and

M A T L A B in a digital signal processing (DSP) system, as mentioned below. Here is a detailed

explanation of what each function does and how they contribute to data transfer and processing:

1. SendData2MTLB (STM32 Firmware)

Purpose: To send data from the STM32 microcontroller to M A T L A B .

Code:

int SendData2MTLB(uintl6_t i D , uint8_t * xData, uintl6_t nData_in_values)

{

// Memory Check: Ensure buffer size accommodates the sent data.

if((sizeof(buf_UART_TX)-4)<(nData_in_values*4)) return -2;

// Setting the status to indicate data is being sent.

s2m_Status=l;

// Data Packaging: Assigning the unique identifier and the number of data points.

((uintl6_t *) buf_UART_TX)[0] = i D ;

((uintl6_t *) b u f _ U A R T _ T X) [l] = nData_in_values;

// Data Copying: Copying the data into the buffer i f the data size is non-zero.

if(nData_in_values>0) memcpy(buf_UART_TX+l , xData, nData_in_values*4);

// Transmission: Sending the data using C D C protocol over a micro-USB connection.

33

CDC_Transmit_FS((uint8_t*) b u f _ U A R T _ T X , nData_in_values*4 + 4);

// Return 0 to indicate successful execution,

return 0;

}
Source Code 6. STM Data transmit function from STM to Matlab

Process:

• Data Packaging: The function starts by packaging the data with a unique identifier (ID) and

the number of data points (nData_in_values). This identifier is crucial as it helps M A T L A B

understand the data type received and how to process it.

• Memory Check: It checks i f the buffer size (buf_UART_TX) can accommodate the data to

be sent. If the buffer is too small, the function returns an error.

• Data Copying: If the data size is appropriate, the function copies the data into the buffer.

• Transmission: It uses the C D C (Communication Device Class) protocol over a micro-USB

connection to transmit the data to M A T L A B .

2. DataReceive_MTLB_Callback (STM32 Firmware)

Purpose: To handle and process data received from M A T L A B .

Code:

void DataReceive_MTLB_Callback(uintl6_t i D , uint32_t * xData, uintl6_t nData_in_values)

{

// Switch statement to handle different data types based on the i D .

switch(iD)

{

case ID_CCommand_SetFIR_Left: // ID for setting FIR filter parameters for L E F T channel

// Initialize the FIR filter for the left channel with the received parameters.

arm_fir_init_f32(&S_L_FIR, nData_in_values, (float *) xData, pState, BlockSize);

break;

}}
Source Code 7. Matlab Data receive callback function from STM to Matlab

Process:

• Data Classification: Upon receiving data, the function first classifies it based on the ID value.

Each iD corresponds to a specific D S P operation, such as F F T calculations, FIR/IIR filtering,

or D T M F detection.

34

• Data Routing: The function then routes the data to the appropriate processing routine. For

example, data meant for FIR filtering is directed to the FIR filter processing function.

• Action Execution: Depending on the iD, the function executes different actions. It might

initiate a D S P computation, adjust filter parameters, or perform other signal-processing tasks.

3. readDataSTM32 (M A T L A B Script)

Purpose: To read and process data sent from the STM32 microcontroller.

Code:

function [iD, nData, xData] = readDataSTM32(s)

try

i D = 0; nData = 0; xData = 0;

% Check i f at least 4 bytes (2 for i D and 2 for nData) are available

i f (s.NumBytesAvailable > 3)

i D = read(s, 1, "uintl6"); % Read the ID

nData = read(s, 1, "uintl6"); % Read the number of data points

i f nData == 0

return; % No data to read, exit the function

end

% Read the data based on the i D

i f i D > 2A15

i f isReady(s, nData)

xData = read(s, nData, "single"); % Read as single i f i D is large

end

else

i f isReady(s, nData)

xData = read(s, nData, "uint32"); % Read as uint32 for smaller i D

end

end

end

catch M E

disp(ME.message) % Display any caught errors

end

end

Source Code 8. Matlab Read Data function

35

Process:

• Data Availability Check: Initially, it checks i f enough data is available to read. This ensures

that M A T L A B does not attempt to read incomplete data packets.

• Reading Data: The function reads the iD and nData values first. The iD determines the type

and format of the data to be read.

• Conditional Data Reading: Depending on the value of iD, the function decides whether to

read the data as single precision floating-point ("single") or unsigned 32-bit integers

("uint32"). This flexibility allows the function to handle different types of data appropriately.

• Error Handling: The function includes error handling to catch and display any issues during

the data reading process.

Data Transfer Overview

• Data Sending (STM32 to M A T L A B) : The SendData2MTLB function in S T M 3 2 prepares

and sends data to M A T L A B . This data could be raw sensor readings, processed signals, or

other relevant D S P data.

• Data Reception and Processing (STM32): When M A T L A B sends commands or data back

to STM32, the DataReceive_MTLB_Callback function receives this data, identifies its

purpose based on the iD, and routes it for appropriate processing or action.

• Data Reading and Handling (MATLAB): M A T L A B , through the readDataSTM32

function, reads the data sent by STM32, interprets it based on the iD, and processes or

visualizes it as required.

36

5. RESULTS AND DISCUSSION
5.1. Performance of Digital Filters

In evaluating the performance of digital filters within the designed digital signal processing (DSP)

system, a critical aspect is computational efficiency, which is precisely the time required to process

a data block. This time, fundamentally related to the filter's ability to operate in real-time applications,

depends on several key parameters, as outlined below.

1. Sampling Rate and B L O C K S I Z E Impact:

Sampling Rate (Fs):

• The sampling rate, denoted as Fs, is essential in digital signal processing, defining the

frequency at which analog signals are converted to digital form. Its selection is crucial for

determining the temporal resolution of each sample.

• A n increase in Fs leads to a shorter duration per sample, influencing the time required to

process a given B L O C K S I Z E since the processing time for one data block is inversely

proportional to the sampling rate. This relationship is captured by the formula

B L O C K S I Z E :

• B L O C K S I Z E refers to the number of samples processed in a single batch. It is a fundamental

parameter in the computational framework of digital signal processing.

• A larger B L O C K S I Z E means more samples are processed in each operation, directly affecting

the computational load and the processing duration.

• The impact of B L O C K S I Z E on processing time can be expressed as Processing Time =

B L O C K S I Z E / Fs. This formula encapsulates the relationship between the number of samples

in a block and the sampling rate, offering a method to estimate the time required to process a

single block of data.

2. Processor Performance and Algorithm Efficiency:

• Microcontroller Attributes: The S T M 3 2 microcontroller, characterized by its C P U _ M H Z

and C Y C L E S _ P E R _ S E C O N D and its architectural nuances, notably the incorporation of

Cortex-M7 features conducive to D S P tasks, plays a pivotal role in algorithmic execution

efficiency. This efficiency is particularly pertinent in the context of digital signal-processing

algorithms.

37

• DSP Algorithm Complexity: The processing time is significantly influenced by the specific

D S P algorithms implemented, such as F F T (Fast Fourier Transform), FIR (Finite Impulse

Response), IIR (Infinite Impulse Response), and D T M F (Dual-Tone Multi-Frequency)

decoding. These algorithms, exemplified by arm_fir_f32, arm_biquad_cascade_dfl_f32,

and arm_rfft_fast_f32, impart varying computational demands.

3. Hardware Constraints and Capabilities:

• The S T M 3 2 microcontroller's hardware features, encompassing memory and peripheral

capabilities, are integral to its efficacy in D S P tasks. This includes configurations for the SAI

(Serial Audio Interface) for handling audio data and U A R T for serial communication, which

are pivotal in determining the microcontroller's D S P performance.

4. Code Execution Profiling:

• Profiling the execution of the D S P code on the S T M 3 2 is indispensable for an accurate

assessment of processing time. This involves analyzing functions like ProcessSamples,

HAL_SAI_RxCpltCallback, and HAL_SAI_TxHalfCpltCallback to quantify the time

required for processing each sample and aggregating it across the B L O C K S I Z E .

5. Real-Time Signal Processing Dynamics:

• Functions such as PerformFFT, PerformFIR, and detectDTMF underscore the system's

real-time processing prowess. The integration of D M A (Direct Memory Access) and

interrupts like HAL_SAI_RxCpltCallback and HAL_SAI_TxHalfCpltCallback fortifies

the system's ability to handle audio signals efficiently in real-time scenarios.

5.1.1. Efficacy of Infinite Impulse Response (FIR) Filters

The efficacy of FIR filters within the D S P framework is illustrated through time-domain output

graphs, which reveal the filter's capability to maintain the integrity of the signal's amplitude response

while handling real-time processing demands effectively. As depicted in Figure 13, the FIR filter

output demonstrates well-defined peaks that align with the expected periodic features of the input

signal, highlighting the filter's robustness in maintaining signal integrity without noticeable

overshoot or ringing effects. This stable and consistent response across time underscores the filter's

reliability and its alignment with design specifications, ensuring that the critical parts of the signal

are preserved without loss.

38

Figure 13.FIR Filter Output Graph

Temporal Characteristics and Amplitude Response The FIR filter's output, as depicted in Figure

13, exhibits well-defined peaks consistent with the input signal's expected periodic features. The

precise and sharp transitions between the peaks and troughs underscore the filter's robustness in

maintaining signal integrity without noticeable overshoot or ringing effects. Notably, the amplitude

levels across these peaks are uniform, indicating a stable and consistent response over time.

Filter Stability and Signal Fidelity The stability of the filter is essential for reliable performance

and is reflected in the steady baseline of the output signal, free from any unexpected variations. This

demonstrates the filter's reliability during continuous operation. The preservation of the signal's

original amplitude after processing indicates that the filter coefficients were selected correctly,

ensuring that the critical parts of the signal are maintained without loss.

Filter Design and Application The filter design was tailored to cater to specific application needs,

which, based on the observed output, included suppressing unwanted noise or interference while

preserving the integrity of the signal's primary frequency components. The performance captured in

the graph corroborates the filter's suitability for applications where signal clarity and precision are

paramount, such as in digital communication systems or audio processing. A user-friendly function,

GenerateFIRCoefficientsButton, embodies the interactive nature of the system. This function

prompts the user to select a filter type from a menu of standard filter designs, including 'lowpass',

'highpass', 'bandpass', and 'bandstop'. Subsequently, the user is requested to input critical filter

parameters such as sampling frequency, filter order, cutoff frequency, and for bandpass and bandstop

filters, the band frequencies.

39

This dialog-based approach ensures the filter design process is accessible and adjustable to diverse

user requirements.

H- x
Select a filter type:

low pass

high pass

bandpass

bandstop

I n p u t F i l t e r P a r a m e t e r s

E n t e r S a m p l i n g Frequ iancy {f-sy

• X

E n t e r F I R n i t e r O r d e r (N) :

E n t e r C utoff F req u e n c y (F_c) :

1E000

E n t e r B a n d F r e q u e n c i e s (F 1 . F2) f o r b a n d p a s s a n d
b a n d s t o p :

2 0 0 0 0 , 2 5 0 0 0

O K Cancel

Figure 14. Filter Design Application

The function diligently handles the user inputs, normalizing frequencies relative to the

Nyquist rate and validating input correctness to prevent errors. Upon confirmation of valid

parameters, the function employs the f i r l command to generate the filter coefficients corresponding

to the user's specifications.

Magnitude Fte&pan&ä of FIR Filter

Phase Response of FIR Filter

Frequency (Hz)

Figure 15.Magnitude And Phase Response of FIR Filter

Following the implementation and analysis of the Finite Impulse Response (FIR) filter, Figure

15 presents the frequency response of the designed filter, showcasing both the magnitude and phase

characteristics. The graphical representation serves as a quantitative validation of the filter's

performance metrics discussed previously.

40

Frequency Response Analysis

• Magnitude Response: The magnitude response of the FIR filter delineates the filter's ability

to attenuate or amplify different frequency components. The response is characterized by

peaks and notches, indicating the filter's passband and stopband regions. Such a response is

typical for a filter that selectively transmits specific frequencies while rejecting others,

aligning with the FIR filter's design goals.

• Phase Response: The phase response graph illustrates the phase shift introduced by the filter

across the frequency spectrum. The linear nature of the phase response across the operational

bandwidth suggests minimal signal distortion, an essential factor for applications where phase

linearity is critical.

5.1.2. Efficacy of Infinite Impulse Response (IIR) Filters

The exploration of the effectiveness of the Infinite Impulse Response (IIR) filter is a pivotal

component of this research, especially given its inherent complexity and utility in digital signal

processing. The following discussion delves into the performance analysis of the IIR filter,

emphasizing its frequency response, phase characteristics, and practical implications in real-world

scenarios, as depicted in the system output graph (Figure 16).

Figure 16.IIR Filter Output Graph

Frequency Response and Phase Characteristics

• The IIR filter's frequency response, as exhibited in Figure 16, is marked by its ability to

attenuate undesired frequencies while proficiently maintaining the desired signal components.
41

This attribute is particularly evident in the steep roll-off at the cutoff frequencies, highlighting

the filter's precision in isolating specific frequency bands. The frequency response graph

substantiates the filter's capability to effectively manage signal bandwidth, making it ideal for

applications such as audio equalization or spectral shaping in telecommunications.

• The phase response of the IIR filter merits attention, given its potential impact on signal

integrity. Unlike FIR filters, IIR filters often exhibit non-linear phase characteristics, which

can introduce phase distortion in the processed signal. However, the phase response in Figure

16 demonstrates a manageable phase variation within the operational frequency range. This

controlled phase behavior is a testament to the meticulous design and implementation of the

filter, ensuring minimal phase distortion in practical applications.

Stability and Computational Efficiency

• The inherent feedback mechanism of IIR filters poses a challenge regarding stability.

However, the research has successfully addressed this by carefully selecting filter coefficients

and a judicious design approach. The stability is evident in the smooth and consistent signal

output, devoid of oscillations or divergences that could indicate instability.

• A significant advantage of IIR filters, as demonstrated in this study, is their computational

efficiency. Due to the recursive nature of IIR filters, they often require fewer calculations than

FIR filters to achieve a similar frequency response. This efficiency makes IIR filters

particularly advantageous in resource-constrained environments or applications requiring

real-time processing.

Practical Applications and Limitations

• As analyzed, the IIR filter's performance lends itself well to various D S P applications,

especially where efficiency and compact filter structures are prioritized. The experimental

results show its suitability for dynamic range compression, active noise control, and other

real-time processing tasks.

• Despite the advantages, the non-linear phase response of IIR filters can be a limitation in

specific scenarios, such as in systems where phase linearity is crucial. This limitation

necessitates carefully assessing the application requirements before opting for an IIR filter.

42

5.2 Efficacy of F F T Analysis

Figure 17 under consideration exemplifies the practical application of Fast Fourier Transform (FFT)

analysis within the Digital Signal Processing (DSP) domain. The displayed F F T magnitude spectrum

demonstrates the algorithm's ability to discern the frequency components from a time-domain signal.

Figure 17 reveals a series of distinct peaks in the analysis, each corresponding to a fundamental

frequency within the signal under investigation. The magnitude of these peaks, measured on the y-

axis as the signal's power (P(f)), correlates with the amplitude of the respective frequency components

present in the original signal. The x-axis, representing frequency (Hz), delineates the spectrum over

which the signal's content is distributed.

The efficacy of the F F T algorithm is underscored by its capacity to resolve individual spectral

lines, which are indicative of the signal's harmonic structure. The clear separation of peaks within the

figure suggests a signal rich in harmonic content or possessing multiple frequency components. Such

a resolution is paramount in applications ranging from audio signal processing to analyzing

vibrational frequencies within mechanical systems.

In this particular analysis, the harmonics are uniformly spaced, a characteristic commonly

observed in signals with a periodic or quasi-periodic nature. The graphical representation allows for

immediate visual comprehension of the signal's spectral properties, enabling the identification of

dominant frequencies, harmonics, and potential noise within the system.

The figure validates the FFT's analytical prowess and is a testament to the signal's

characteristics. B y facilitating a transition from time-domain to frequency-domain analysis, the F F T

algorithm significantly enhances our understanding of the underlying phenomena governing the

behavior of complex signals. Incorporating such a figure within the academic discourse, specifically

in a thesis, provides empirical evidence of the algorithm's performance and crucial role in DSP. The

FFT's contribution to signal analysis is invaluable, offering an insightful perspective otherwise

obscured in the time-domain representation. The accompanying F F T analysis graph demonstrates the

precision with which the F F T algorithm extracts the frequency components from a signal. Peaks at

approximately 600 Hz , 700 Hz , and 800 Hz, with magnitudes as high as 0.018, confirm the presence

of solid frequency components, validating the signal's harmonic content and the FFT's resolution

capabilities. This figure underscores the analytical power of F F T in D S P and is crucial for

comprehending the frequency-domain characteristics of the signal.

43

In digital signal processing, the efficacy of the Fast Fourier Transform (FFT) is paramount. The

provided F F T magnitude spectrum graphically portrays this efficacy by mapping the time-domain

signal to its constituent frequencies. Notably, the spectrum is characterized by prominent peaks, each

indicative of a substantial frequency component inherent to the signal.

Several pivotal factors, including normalization, scaling, signal amplitude, and windowing, directly

influence the magnitudes of the peaks.

Frequency Spectrum

0.015

0.014

0.012

0.O1

^ 0003

0.006

0 004

0 002 L- J

I

500 550 600 650

Frequency (Hz)

00 750 aoo

Figure 17. FFT Magnitude Spectrum Graph

Normalization plays a crucial role in the interpretation of the F F T output. It adjusts the F F T values

to a standard scale, essential for comparing spectra or processing signals of varying lengths.

Inadequate normalization can result in misleadingly low or high values, thus skewing the perceived

energy at particular frequencies.

Scaling is another influential factor, especially when only a single side of the symmetric F F T

spectrum is presented. In such cases, the magnitude values are often doubled (except at 0 H z and the

Nyquist frequency) to account for the discarded harmful frequency components, thereby preserving

the total power of the signal.

The amplitude of the original signal directly affects the observed peak magnitudes. A signal

recorded with a higher amplitude wi l l naturally exhibit higher peaks in the F F T spectrum, assuming

all else remains constant.

Windowing is a technique used to minimize spectral leakage by tapering the edges of the signal

44

before performing the F F T . Different window functions can alter the peak magnitude to varying

extents. For instance, a Hamming window can attenuate the signal slightly, thus affecting the

magnitude of the F F T output. The choice of window function and its implementation can significantly

impact the precision of the frequency analysis.

5.3 Real-Time D T M F Algorithm Performance

In assessing the performance of the real-time D T M F detection algorithm, the results depicted in

Figure 18 indicate a successful implementation. The algorithm's capability to accurately discern the

D T M F tones in real-time is a testament to the robustness of the processing technique. As shown in

the plot, the magnitude peaks correspond to the frequencies characteristic of the D T M F signaling

standard.

DTMF Magnitudes

1

t - -
600 800 1000 1200 140Q 16 oo iaoo

Frequency (Hz)

Figure 18. DTMF Magnitudes Graph

The peak at around 941 Hz , consistent with the expected frequency for one of the D T M F tones,

confirms the algorithm's precision in a real-world scenario. The other markers, although subtler, align

with the harmonics and represent the dual-tone nature of the D T M F system, where each key press

results in a combination of two distinct frequencies - one from a low-frequency group and one from

a high-frequency group.

45

The implications of these findings are far-reaching. The algorithm's performance

demonstrates reliability in practical applications, such as automated telecommunication systems

where quick and accurate tone recognition is paramount. The ability to operate in real-time without

significant lag ensures that the system can be integrated into interactive voice response (IVR)

systems, aiding in the navigation of menus or security systems where access is granted through

numeric keypads.

The real-time processing and analysis of audio signals for D T M F decoding are highlighted in

this section, featuring the M A T L A B code responsible for the audio signal processing and

visualization. The code's function, ProcessButtonPushed, outlines a multifaceted process that

begins with the playback of the loaded audio file. The original signal is then visually represented in

the time domain on the GUI's axes, providing an immediate visual confirmation of the signal's

waveform (Figure 19).

Resampled Signal in Time Domain

Figure 19. Time Domain Representation of a Resampled Digital Signal.

The resampling of the audio signal to a standard frequency of 8 k H z ensures compatibility

with common telecommunication systems. A subsequent Fourier Transform translates the signal into

the frequency domain, where the algorithm assesses the magnitude of frequency components,

isolating the ones pertinent to D T M F signaling. The graphical representation of the frequency

spectrum (Figure 19) confirms the successful extraction of frequency data.

46

Frequency Spectrum

UU.lili.Li-,I.

Figure 20. Frequency Spectrum

With the aid of a Hamming window, a spectrogram of the resampled signal is generated

(Figure 20), offering a powerful visualization of the signal's frequency content over time. This step

is critical for understanding the temporal distribution of D T M F tones within the audio sample.

Figure 21. Spectrogram with Hamming Window

The D T M F decoding process divides the signal into 50 ms segments, conforming to the

typical length of D T M F tones in telecommunication signals. The algorithm identifies the presence of

47

http://UU.lili.Li-

D T M F frequencies within these segments through peak detection. The algorithm decodes the

corresponding keypad digits by matching these frequencies with the standard D T M F low and high-

frequency groups, as shown in Figure 21.

The M A T L A B G U I displays the decoded D T M F keys and their durations in a message box,

providing an intuitive readout of the analysis results. In cases where no D T M F tones are detected,

the algorithm alerts the user accordingly, ensuring transparency in the decoding process. The code's

effectiveness is showcased through its real-time processing capabilities, translating complex

numerical computations into accessible and actionable information. As implemented in M A T L A B ,

the methodology decodes D T M F tones and serves as an educational tool, demystifying the signal-

processing workflow for students and practitioners alike.

Figures 19,20, and 21 illustrate the steps detailed in this discussion, providing visual evidence

of the algorithm's efficacy. They capture the original signal in the time domain, the frequency

spectrum after resampling, and the spectrogram with a Hamming window. The integration of these

figures w i l l offer readers a comprehensive view of the algorithm's process and the resulting data

visualization.

5.4. Performance Analysis of DSP Algorithms on STM32 Microcontrollers

Measurement Methodology for DSP Algorithms

The evaluation of digital signal processing (DSP) algorithms on the STM32F767 M 7 microcontroller,

which operates at a frequency of 216 M H z , necessitates precise measurements of execution time and

cycle count. This section delineates the methodology utilized to ascertain these performance metrics,

which are crucial for gauging the efficiency of various algorithms such as Fast Fourier Transform

(FFT), Finite Impulse Response (FIR), and Infinite Impulse Response (IIR) filters within real-time

applications.

Timer Configuration for Accurate Measurements

The hardware timers embedded within the STM32F767 microcontroller are employed to accurately

measure the number of clock cycles required for the execution of an algorithm and the corresponding

execution time in milliseconds. Specifically, T IM5 is configured to operate in Internal Clock' mode,

which is optimized for high-resolution timing.

• Clock Source: Set to the internal clock.

• Mode: Configured to up-counting.

• Prescaler (PSC): Set to 0, ensuring that the timer increments on every processor clock cycle.

48

• Auto-reload Value (ARR): Configured to the maximum possible value to prevent premature

rollover during short measurements.

Methodology for Measuring Execution Time and Cycle Count:

1. Initialization: The timer is initialized and reset to zero before the commencement of the

D S P algorithm to ensure that timing commences precisely at the start of algorithm

execution.

2. Start of Measurement: The timer begins counting from zero concurrently with the start of

the D S P algorithm.

3. Execution of the Algorithm: The D S P algorithm executes the designated tasks, such as

F F T IIR, FIR, D T M F computation, or filter application.

4. End of Measurement: Upon completion of the algorithm, the timer value is captured

immediately, representing the total number of clock cycles consumed by the algorithm.

5. Calculation of Execution Time:

• Cycle Count: This is directly obtained from the timer as the number of cycles elapsed.

• Execution Time (ms): This is calculated by converting the cycle count to

milliseconds using the formula:

Duration Time (Ms) = (C y c l e C ° u n t) x 1000
v ' 216 000 000 '

• The formula considers the clock frequency to convert the cycle count into a duration

in milliseconds.

6. Data Transmission: The measured execution time and cycle count are subsequently

transmitted to a connected computing device by Matlab or displayed on a debugging

interface for further analysis. These metrics are vital for assessing the microcontroller's real

time performance capabilities in managing D S P tasks.

5.4.1. Detailed Metrics and Comparisons

The realm of embedded digital signal processing (DSP), evaluating the performance of algorithms

such as F F T (Fast Fourier Transform), F IR (Finite Impulse Response), IIR (Infinite Impulse

Response), and D T M F (Dual-Tone Multi-Frequency) detection, is essential to ensure efficiency and

functionality. This analysis focuses explicitly on execution time (measured in milliseconds) and cycle

count for each algorithm implemented on the STM32F7 series microcontrollers.

49

F F T Analysis:

The Fast Fourier Transform (FFT) algorithm's performance was evaluated under various data sizes

to determine its efficiency in transforming time-domain signals into their frequency components.

Execution time and cycle count were recorded for data sets of 256,512,1024, and 2048 points, which

are common in real-time spectrum analysis applications.

N (number of input samples) 256 512 1024 2048

F F T (Duration Time Ms) 0.1076 0.2229 0.4257 0.9721

F F T (Cycle Count) 23250 48140 91950 210000

Table 3. FFT Performance Analysis

• For 256 points, the F F T algorithm executed in approximately 0.1076 milliseconds, utilizing

about 23,250 cycles.

• For 512 points, it required 0.2229 milliseconds with a cycle count of 48,140.

• For 1024 points, the execution time was 0.4257 milliseconds, consuming 91,950 cycles.

• For 2048 points, the algorithm took 0.9721 milliseconds and used approximately 210,000

cycles.

These metrics underscore the FFT's scaling behavior with increasing data sizes, reflecting a nonlinear

increase in both time and cycles as the number of points doubles. Such performance is pivotal for

applications where timely data processing is paramount, ensuring that the microcontroller can handle

larger datasets efficiently, especially in environments with stringent time constraints.

This analysis not only demonstrates the STM32 microcontroller's capability to perform complex

computations swiftly but also aids in selecting the appropriate F F T length based on the specific

requirements of real-time applications, balancing between computational load and the resolution of

frequency analysis.

FIR Filter:

The Finite Impulse Response (FIR) filter's efficacy on STM32F7 series microcontrollers was

rigorously evaluated, focusing on computational performance across various filter complexities. This

analysis utilized a 50-tap FIR filter, a configuration chosen to balance response accuracy and

computational demand. The FIR filter, implemented in a real-time processing context, exemplifies

the microcontroller's capabilities in handling significant digital signal processing tasks efficiently.

50

FIR Filter Configuration and Performance Metrics:

• Filter Specifications: The FIR filter used in this assessment has 50 taps, significantly

influencing the computation complexity and resource utilization. The filter processes data

blocks of 1024 samples, indicative of substantial real-time data handling.

• FIR Coefficients: The coefficients of the FIR filter, designed to achieve the desired frequency

response, are stored in an array of 50 floating-point values. These coefficients dictate the

filter's behavior in attenuating or amplifying specific frequency components.

• Execution Metrics:

1. Computation Time: The processing required for a single block of 1024 samples was

measured at approximately 0.6521 milliseconds.

2. Cycle Count: The operation consumed about 140,800 cycles, reflecting the

computational intensity due to the high number of taps and the large block size.

IIR Filter:

Infinite Impulse Response (IIR) filters, distinguished by their recursive nature, generally demand

more computational resources than Finite Impulse Response (FIR) filters. This section evaluates the

performance of a low-order IIR filter implemented on the STM32F7 series microcontrollers.

IIR Filter Configuration and Execution Metrics:

• Filter Specifications: The evaluated IIR filter is a lst-order filter, which minimizes

computational overhead while providing essential frequency response characteristics. The

recursive nature of IIR filters involves feedback mechanisms, requiring careful handling to

maintain system stability.

• IIR Coefficients: The coefficients used in this IIR filter are derived from a biquadratic

(biquad) filter design, often used for its numerical stability and efficiency. The coefficients

are as follows:

• 60=0.0212, 61=0.0847, 62=0.1271, al=-1.4713, a2=1.1780 60=0.0212, 61=0.0847,

62=0.1271, al=-1.4713, a2=1.1780

Performance Metrics:

• Computation Time: The processing required for the IIR filter was measured at

approximately 0.06649 milliseconds for a block size typical of real-time processing

applications.

• Cycle Count: The operation consumed about 14,360 cycles, highlighting the efficiency of

the STM32F7 series in executing complex recursive algorithms quickly.

51

D T M F Detection:

The Dual-Tone Multi-Frequency (DTMF) decoding process is essential for telecommunications

applications, especially in systems such as interactive voice response (IVR) , where quick response

times are crucial. This section evaluates the performance of D T M F decoding implemented on the

STM32F7 series microcontrollers, focusing on its efficiency and capability to meet real-time

processing demands.

D T M F Decoding Configuration and Execution Metrics:

• Real-time Performance: The D T M F decoding operation, essential for detecting and

interpreting the keypad tones used in telecommunication systems, was rigorously tested to

measure its execution speed and resource consumption.

• Performance Metrics:

1. Computation Time: The D T M F decoding process was completed in approximately

1.8773 milliseconds. This rapid execution ensures that tone decoding can occur almost

instantaneously, facilitating user interactions without perceptible delays.

2. Cycle Count: The operation consumed about 405,510 cycles, indicating the

computational intensity required to decode the D T M F signals accurately and

efficiently.

5.4.2. Discussion on Cycle Counts and Execution Times

The cycle count and execution time directly indicate the microcontroller's performance under specific

D S P tasks. These metrics are crucial for developers aiming to optimize system resources and ensure

the responsiveness of real-time D S P applications. The STM32F7 series microcontroller showcases

robust capabilities in handling intensive D S P operations, attributed to its A R M Cortex-M7 processor

equipped with a high-speed floating-point unit (FPU).

The data shows that while FIR and IIR filters require more cycles due to their computational

complexity, especially in higher-order configurations, the STM32F7 manages these tasks efficiently,

leaving room for additional processes or power conservation strategies. Meanwhile, F F T and D T M F

algorithms demonstrate exceptional efficiency, aligning with the needs of applications requiring fast

response times and high throughput.

52

6. REFERENCES

[I] Jacko P, Kravets O. Spectral Analysis by S T M 3 2 Microcontroller of the Mixed Signal. 2019

I E E E International Conference on Modern Electrical and Energy Systems (MEES) , 2019, p. 342-5.

https://doi.org/10.1109/MEES.2019.8896545.

[2] FR] S T M 3 2 Nucleo-144 boards based on STMicro STM32H7 (STM32 H7) SoC with

480MHz Cortex-M7 M C U • Issue #19751 • MarlinFirmware/Marlin • GitHub - Online Store n.d.

https://superostmk.live/product_details/1372294.html (accessed May 14, 2024).

[3] Boorboor S, Khorsandi M . Development of a single-chip digital radiation spectrometer based

on A R M Cortex-M7 micro-controller unit. Nuclear Instruments and Methods in Physics Research

Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 2019;946:162685.

https://doi.Org/10.1016/j.nima.2019.162685.

[4] STM32F767ZI - High-performance and D S P with F P U , A r m Cortex-M7 M C U with 2 Mbytes

of Flash memory, 216 M H z C P U , Art Accelerator, L I cache, S D R A M , TFT , J P E G codec, D F S D M

STMicroelectronics n.d. https://www.st.com/en/microcontrollers-

microprocessors/stm32f767zi.html (accessed May 14, 2024).

[5] Ibrahim D . ARM-based Microcontroller Projects Using mbed. Newnes; 2019.

[6] Pmod I2S2: Stereo Audio Input and Output. Digilent n.d. https://digilent.com/shop/pmod-

i2s2-stereo-audio-input-and-output/ (accessed May 14, 2024).

[7] Mikulasek M , Masek P, Stusek M , Novak L , Mozny R, Hosek J. Optimizing the Switching

Speed of the Current Probe Util izing the F P G A for Input Signal Processing. 2021 13th International

Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) ,

2021, p. 174-81. https://doi.org/10.1109/ICUMT54235.2021.9631579.

[8] L o w TS, B i C. Design of A / D converters with hierarchic networks. I E E E Transactions on

Industrial Electronics 1996;43:184-91. https://doi.Org/10.l 109/41.481424.

[9] A D C Testing and Evaluation n.d. https://www.monolithicpower.com/en/analog-to-digital-

converters/adc-errors-and-compensation/adc-testing-and-evaluation (accessed M a y 14, 2024).

[10] P M O D I2S2. Audio D S P Lab 2020. https://audiodsplab.wordpress.com/pmod-i2s2/

(accessed M a y 14, 2024).

[II] Rader C M , Gold B . Digital filter design techniques in the frequency domain. Proc I E E E

1967;55:149-71. https://doi.org/10.1109/PROC.1967.5434.

[12] Digital filter. Wikipedia 2024.

[13] Marciniak T, Suder J, Podbucki K . Application of the Nucleo S T M 3 2 module in teaching

53

https://doi.org/10.1109/MEES.2019.8896545
https://superostmk.live/product_details/1372294.html
https://doi.Org/10.1016/j.nima.2019.162685
https://www.st.com/en/microcontrollers-
https://digilent.com/shop/pmod-
https://doi.org/10.1109/ICUMT54235.2021.9631579
https://doi.Org/10.l
https://www.monolithicpower.com/en/analog-to-digital-
https://audiodsplab.wordpress.com/pmod-i2s2/
https://doi.org/10.1109/PROC.1967.5434

microprocessor techniques in automatic control. P R Z E G L A D E L E K T R O T E C H N I C Z N Y

2022;1:247-50. https://doi.org/10.15199/48.2022.10.55.

[14] Larimore M , Treichler J, Johnson C. S H A R F : A n algorithm for adapting IIR digital filters.

I E E E Trans Acoust, Speech, Signal Process 1980;28:428-40.

https://doi.Org/10.l 109ATASSP. 1980.1163428.

[15] Thyagarajan K S . IIR Digital Filters. In: Thyagarajan K S , editor. Introduction to Digital Signal

Processing Using M A T L A B with Application to Digital Communications, Cham: Springer

International Publishing; 2019, p. 189-244. https://doi.org/10.1007/978-3-319-76029-2_6.

[16] Thyagarajan K S . Fast Fourier Transform. In: Thyagarajan K S , editor. Introduction to Digital

Signal Processing Using M A T L A B with Application to Digital Communications, Cham: Springer

International Publishing; 2019, p. 385-426. https://doi.org/10.1007/978-3-319-76029-2_9.

[17] Thyagarajan K S . Discrete Fourier Transform. In: Thyagarajan K S , editor. Introduction to

Digital Signal Processing Using M A T L A B with Application to Digital Communications, Cham:

Springer International Publishing; 2019, p. 151-88. https://doi.org/10.1007/978-3-319-76029-2_5.

[18] AN219: Using Microcontrollers in Digital Signal Processing Applications n.d.

[19] Koya A M , Sudha T, Kala L . Compressed Sensing: A n approach to real time D T M F signaling

system. 2013 International Conference on Control Communication and Computing (ICCC),

Thiruvananthapuram, India: I E E E ; 2013, p. 238-43. https://doi.org/10.1109/ICCC.2013.6731657.

[20] M i n Ju Park, Sang Jin Lee, Dal Hwan Yoon. Signal detection and analysis of D T M F receiver

with quick fourier transform. 30th Annual Conference of I E E E Industrial Electronics Society, 2004.

I E C O N 2004, vol . 3, Busan, South Korea: I E E E ; 2004, p. 2058-64.

https://doi.Org/10.l 109/JECON.2004.1432113.

[21] Satu M , Nur M . Classification of Dual-Tone Mul t i Frequency Tones using

Counterpropagation Neural Network. 2014.

[22] 7.3 D T M F D E T E C T I O N - VoIP Voice and Fax Signal Processing [Book] n.d.

https://www.oreilly.com/library/view/voip-voice-and/9780470227367/ch007-sec003.html (accessed

May 14, 2024).

[23] ahmedebeed555. Rotary Dia l Speed Dia l . Instructables n.d.

https://www.instructables.com/Rotary-Dial-Speed-Dial/ (accessed May 14, 2024).

[24] Thyagarajan K S . D S P in Communications. In: Thyagarajan K S , editor. Introduction to Digital

Signal Processing Using M A T L A B with Application to Digital Communications, Cham: Springer

International Publishing; 2019, p. 427-94. https://doi.org/10.1007/978-3-319-76029-2_10.

54

https://doi.org/10.15199/48.2022.10.55
https://doi.Org/10.l
https://doi.org/10.1007/978-3-319-76029-2_6
https://doi.org/10.1007/978-3-319-76029-2_9
https://doi.org/10.1007/978-3-319-76029-2_5
https://doi.org/10.1109/ICCC.2013.6731657
https://doi.Org/10.l
https://www.oreilly.com/library/view/voip-voice-and/9780470227367/ch007-sec003.html
https://www.instructables.com/Rotary-Dial-Speed-Dial/
https://doi.org/10.1007/978-3-319-76029-2_10

