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9. ATTACHMENTS 

ATTACHMENT I 
 

Mathematical formulation 

 

The objective functions and endogenous restrictions have the following 
expressions: 

 

 

Subject to: 

 

 

Where  

 =Number of harvest units 

 = Harvest unit identifier 

 = Planning horizon 

 = The period 

 is a binary variable so that: 
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M ⋅ x ≤ A (5) 

M = A + B (6) 

where A: adjacency matrix; B: diagonal matrix in which the ith diagonal element bii is defined by bii=Ai·1 
(Ai is i-th row vector of adjacency matrix A); M: modified adjacency matrix; x: control vector for control 
variables xip; 1 is an (n × 1) unit vector. 

The objective function of optimization model is defined as:  

max𝑍𝑍 = � � 𝑣𝑣𝑖𝑖𝑖𝑖·𝑥𝑥𝑖𝑖𝑖𝑖
𝑃𝑃

𝑖𝑖 = 1

𝐼𝐼

𝑖𝑖 = 1
 (7) 

Java programming code for the model transferring to Gurobi 

package com.proforesters.solver; 
/** 
 * @author kaspar 
 * 
 */ 
import gurobi.GRB; 
import gurobi.GRBEnv; 
import gurobi.GRBException; 
import gurobi.GRBLinExpr; 
import gurobi.GRBModel; 
import gurobi.GRBVar; 

import com.esri.arcgis.geodatabase.IFeatureClass; 
import com.proforesters.optimal.OptimalExtension; 

public class ClearCutSystemSolver { 
 public static double[] getSolution (int [][] matrix, int periodCount, int deviation, double [] [] 
objectiveMatrix, int [] patches, IFeatureClass featureClass, int [][] timeHarvest, int gapTolerance) 
{ 

double [] results = new double [periodCount * matrix.length]; 

try{ 
GRBEnv env = new GRBEnv("mip1.log"); 
GRBModel model = new GRBModel(env); 
double gT = gapTolerance * 1000 
double doubleGapTolerance = gT/ 10000000; 
model.getEnv().set(GRB.DoubleParam.MIPGap,doubleGapTolerance); 
double decimalDeviation =((double)deviation)/100; 
int finalCountOfRow = matrix.length * periodCount + matrix.length 
+(2*periodCount − 2) + 1;  
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Appendix 

This appendix describes in detail the mathematical formulation of harvest scheduling model used in 
DSS Optimal and the way the model is transferred to the Gurobi software (Gurobi Optimization, Inc., 
Houston, TX, USA). 

Mathematical Formulation 

A FMA consisting of 𝐼𝐼 harvest units, each one with the homogenous structure indexed by 𝑖𝑖. As this 
is a unit-restricted model [13] each binary variable in the model represents specifically one proposed 
harvest unit designed for harvesting or not over the P planning period. 

Binary variables 𝑥𝑥 is indexed by the harvest unit identifier; 𝑖𝑖 = 1, … , 𝐼𝐼 and period 𝑝𝑝 = 1, … ,𝑃𝑃. 

=ipx  
1 if the unit i will be harvest in period p 

(1) 
0 in other cases 

One of these is that each unit can be cut just once per planned period. It can be generalized as:  

nix
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where n is the number of harvest units. 
A harvest volume is allowed to increase or decrease by 𝛼𝛼 from period to period. This can be expressed 

by the set of conditions regarding every pair of two consequential periods:  

(1 + 𝛼𝛼) �𝑣𝑣𝑖𝑖𝑖𝑖
𝐼𝐼

𝑖𝑖 = 1
𝑥𝑥𝑖𝑖𝑖𝑖 ≤ � 𝑣𝑣𝑖𝑖(𝑖𝑖 + 1)𝑥𝑥𝑖𝑖(𝑖𝑖 + 1)

𝐼𝐼

𝑖𝑖 = 1
,∀𝑝𝑝 = 1, … ,𝑃𝑃 (3) 

(1 − 𝛼𝛼) �𝑣𝑣𝑖𝑖(𝑖𝑖 − 1)𝑥𝑥𝑖𝑖(𝑖𝑖 − 1)

𝐼𝐼

𝑖𝑖 = 1
≥ � 𝑣𝑣𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖 = 1
𝑥𝑥𝑖𝑖𝑖𝑖,∀𝑝𝑝 = 1, … ,𝑃𝑃 (4) 

where 𝛼𝛼 is the fractional difference permitted in the harvest level between two consequential periods 𝑝𝑝 
and 𝑣𝑣𝑖𝑖𝑖𝑖 is the volume of the wood in the unit 𝑖𝑖 in the period 𝑝𝑝. 

Conditions that originate in the spatial relations between the harvest units can be set down using 
analytic algorithm [28]:  
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 is the coefficient of the objective function, such as HF or NPV 

 

The exogenous constraints have the following expressions: 

• Flow constraints: 

 

 Where: 

 is the fractional difference permitted in the flow level between two 
consequential period 

• Adjacency constrains: 

 

 

Where: 

= Adjacency matrix 

= Modified adjacency matrix 

= Control vector 

1 is an  unit vector 
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