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ABSTRAKT 

Předmětem této práce je polohově orientovaná analýza v kontextu optimalizace 

mobilních sítí. Popisuje nástroj pro odhadování základních parametrů sítě na místech s 

neznámými parametry sítě na základě databáze RTR NetTest. Je zde stručně představena 

oblast velkých dat, strojového učení a shrnutí o konceptu a funkcionalitě aplikace 

NetTest. Práce ukazuje a porovnává skupinu regresních metod na základě jejich 

komplexnosti a vhodnosti pro vytvoření map odhadovaných parametrů sítě. Po jejich 

důkladné 1D analýze je IDW a GPR analyzováno ve 2D a využito pro vytvoření skupiny 

map odhadu parametrů sítě. Je posouzena i jejich přesnost na základě referenčního měřeni 

aplikací NetTest. 

KLÍČOVÁ SLOVA 

GPR, IDW, Mapa pokrytí, Regrese, RTR-NetTest 

 

 

ABSTRACT 

This thesis deals with the location aware analytics in the context of mobile network 

performance optimization. A tool which estimates initial network parameters in the 

location with unknown network performance based on RTR NetTest measurements 

database is presented. The thesis briefly introduces the topic of big data and machine 

learning and gives an overview of NetTest application concept and functionality. A set of 

regression methods is presented and their complexity and suitability for the purposes of 

coverage maps creation is compared. After their thorough 1D analysis, IDW and GPR are 

analysed in 2D and used to create a set of estimation maps of network parameters. 

Evaluation of their accuracy is made based on reference measurements using NetTest 

application. 

KEYWORDS 

Coverage Map, GPR, IDW, Regression, RTR-NetTest 
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ROZŠÍŘENÝ ABSTRAKT 

 

S narůstajícími nároky na bezdrátové sítě, jejich spolehlivost, schopnost reagovat a 

pracovat, je pro operátory sítí velmi důležité rychle a spolehlivě navázat spojení mezi 

uživatelským zařízením a sítí bez nežádoucího přetěžování sítě s vhodným přidělením 

zdrojů. Tato práce prezentuje základ pro řešení, které odhaduje základní parametry sítě 

uživatelského zařízení a vytváří mapy odhadovaného chování parametrů sítě na základě 

strojového učení s využitím regresních metod. 

Práce stručně shrnuje téma velkých dat, historii umělé inteligence a strojového učení. 

Jsou zde vysvětleny základní parametry posuzované při popisu souborů velkých dat a 

techniky používané při práci s velkými databázemi. 

Je shrnuta celá procedura vedoucí k vytvoření map odhadovaného pokrytí parametry 

mobilních sítí a zároveň jsou uvedeny hlavní výzvy vyvstávající při práci s dostupnými 

daty, zahrnující hustotu proměření oblasti Rakouska, změny v zatížení sítě nebo limitace 

tarifu uživatele. 

Práce rovněž obsahuje popis a funkcionalitu aplikace RTR NetTest, která slouží jako 

hlavní zdroj vstupních dat pro odhad parametrů sítě. Po popisu obsluhy aplikace a 

uživatelského rozhraní je popsána procedura RMBT testování a jsou detailně 

vizualizovány možnosti zobrazení výsledků měření na stránce databáze RTR. Na základě 

předchozích informací je oblast zahrnující měření rozdělena do několika kategorií. 

Výsledky měření jsou jako veřejně přístupná data dostupná na zmíněné stránce a jsou 

detailně popsána. Následně je představen další zdroj dat. 

Důkladná analýza několika regresních metod je uvedena a doplněna o jejich 

teoretické pozadí, dále o skupinu vyhodnocovacích metod, včetně střední průměrné 

chyby, která je použita pro posouzení přesnosti a komplexnosti každé z regresních metod. 

Po jejich důkladné 1D analýze jsou inversní váhování vzdálenosti a Gaussova směsná 

regrese analyzovány ve 2D a jsou použity pro vytvoření skupiny map odhadů parametrů 

sítě v místech, pro která nejsou dostupná referenční měření. Jejich přesnost je posouzena 

na základě referenčních měření využívajících NetTest aplikaci a na základě statistické 

distribuce dat. 

V závěru jsou posouzeny informace prezentované v této práci a jsou shrnuty 

nejdůležitější poznatky a závěry. Rovněž je zde poskytnut základ pro možnosti rozšíření 

této práce. 
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INTRODUCTION 

With the increasing demands on the wireless networks, aspecially their reliability, 

responsiveness and performance, it is crucial for the network operators to quickly and 

reliably establish the connection of the user’s device to the network, without needlessly 

overloading it. This Master’s Thesis presents the basics for the machine learning solution 

utilizing several regression methods, which estimate the initial network parameters of the 

user’s device and create maps of the estimated behaviour for the network performance 

parameters. 

The thesis briefly introduces the topic of big data, history of artificial intelligence 

and machine learning. The basic parameters evaluated when describing big sets of data 

are explained and techniques utilized while working with large databases are listed. 

The overview of the whole procedure leading to the creation of maps of the estimated 

mobile network’s parameters is described as well as the main challenges arisen from the 

available data, including coverage of measurements, changes in network traffic or user’s 

tariff limitation. 

Also, the thesis includes the description of the interface, functionality and concept 

of the mobile application RTR NetTest (netztest), which serves as the main source of 

input data for the network’s parameters estimation. First, the application’s operability and 

user interface are described. Then the RMBT testing process is presented and the 

visualization possibilities on the RTR’s website are depicted in detail. Based on the 

previous information, the area of measurements is divided into several categories. The 

open-data available on the website from all measurements are being presented in detail 

and the second source of input data is being explained. 

A thorough analysis of several regression methods is complemented by their 

theoretical background. A set of evaluation methods utilizing several metrics such as 

mean average error are used to assess the accuracy of each regression as well as their 

complexity. After their thorough 1D analysis, inverse distance weighting and Gaussian 

process regression are analysed in 2D and are used to create a set of estimation maps of 

network parameters in the locations for which there are no reference measurements. Their 

accuracy is evaluated from the point of view of the performed reference measurements 

using NetTest application and the analysis of the statistical distribution of the data. 

The summary evaluates the information presented in the thesis, pinpoints 

the findings and sums up the objective. Also, it offers a foundation for the possible 

extension of the work. 
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1 MACHINE LEARNING & BIG DATA 

In this chapter, a theoretical framework for the used data science methods is discussed. 

Differences between different machine learning algorithms are outlined and their 

suitability for the tasks involved is presented complemented by introduction to the topic 

of big data. 

AI & MACHINE LEARNING 

One of the most discussed and developed topics within scientific community as well as 

among public is artificial intelligence (AI) and the ways to utilize it for our benefit. The 

topic fascinates and scares everyone who starts to think about it, whether humanity is 

capable of controlling the machines more intelligent than humans or whether the 

machines will rise against us, as is the main topic of many popular movies. Luckily, there 

is no need to create a complex-thinking AI to utilize the benefits it offers. Machine 

learning, a sub-field of AI, presents itself as a safe, reliable and tested approach for 

problem-solving in wide variety of industrial fields. The concept of machine learning has 

been developed in the 1970’s, but the utilization lacked computer power [1]. Over the 

past decades, the machine learning was enabled because the performance and 

computation capabilities of computers advanced to the state, where complex calculations 

are being done quickly, reliably and without investing large sums of money into hardware. 

In the 1990’s the first applications were created, that not only analysed the data, but 

learned from them by drawing conclusions [2]. In 1997, the AI called Deep Blue from 

IBM company astonished the public, when it managed to defeat Garry Kasparov, the 

world champion, in six-game match of chess [3]. Today, countless facial recognition 

software tools, autonomous search engines, sorting algorithms and bots playing computer 

games better than any human [4] are being developed to gain knowledge and skills, that 

for human alone would be impossible. 

Machine learning is a special kind of artificial intelligence, which processes a set of 

data to acquire results and then uses these results to improve its own algorithm. Its main 

benefits include relatively low computation complexity and direct problem assignment, 

and therefore is utilized for optimization purposes across all industries. Machine learning 

techniques enable performance prediction, failure pre-detection when utilized 

as a diagnostic tool and offer improvement of workload distribution. For this thesis, some 

machine learning algorithms are considered as a tool for performance prediction of user 

device in the location with unknown network parameters. 

SUPERVISED LEARNING 

Algorithms which utilize data with their corresponding labels, also called truth values, 

are categorized as supervised learning methods. A supervised learning algorithm accepts 

a set of data called the training data as input and produces a model which can be used for 

classifying new examples as output. After the training process, data without labels can be 

input into the algorithm which returns the labels as output. Ideally, the algorithm would 

be able to generalize and interpolate reasonably even unseen data. The problem of finding 

a compromise between adjusting the data too specifically based on trained data and 

predicting very generally is called the bias-variance trade-off. [5] 
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An algorithm has high bias when it perfected its accuracy for the data it was trained 

on, yet when given different data set, it scores poorly. An opposite, equally undesired 

phenomena is high variance. It occurs when the algorithm makes too general guesses. 

The balance between variance and bias can be solved by providing an adjustable 

parameter or choosing an algorithm which finds the balance itself. Complexity of the 

classification function is also to be considered. Simple function may be more suitable for 

usages with lower amounts of data whereas a more complex function requires a sizeable 

data set while delivering lower variance.  

For example, the authors of [6] created a methodology to label locations using 

location-based social media photos. The algorithm utilizes several machine learning 

techniques combined with neural network system to choose representative photos for 

each point on the map. The classification is then realized by chosen group of people, 

combining crowdsourcing with machine learning algorithms with human-factor decision 

making. 

Neural networks have seen a rapid development in the recent years and have enabled 

whole new economies to emerge. Their subset, Deep Neural Networks (DNN) can be 

used to extract multiple layers of information from raw input and are commonly used by 

companies like Tesla in autonomous cars software. Although autonomous cars are seeing 

fast advancements and are predicted to become common soon, even a massive dataset 

of approximately billion hours of video footage taken from Tesla cars cannot make it 

universally safe and reliable in unknown roads. An initiative named DeepTest has been 

successful to systematically test DNN-driven vehicle software detecting erroneous 

behaviours that could potentially lead to fatalities using automatically generated test cases 

simulating real world conditions like rain, fog and different lighting conditions. [7] 

For this thesis, some machine learning algorithms are considered as a tool for 

performance prediction of user device in the location with unknown network parameters. 

UNSUPERVISED LEARNING 

Also called clustering or cluster analysis is a group of techniques which aim to find the 

relations within the data without the training part discussed above. Real world data often 

come without labels, but machine learning is still able to extract valuable information 

from it. The aim of clustering is to process the data while finding natural clusters. Clusters 

should be sets of points which are similar to each point within their cluster and dissimilar 

to points from different clusters. Their similarity is determined by a similarity measure 

which has to be chosen appropriately to the problem at hand. An important feature of 

cluster analysis is its capability to discover patterns in data without providing explicitly 

what the algorithm should distinguish.  

Anomaly detection is an exemplary application of such method. A density-based 

clustering method has been found effective in network intrusion detection. It’s main 

advantage over other machine learning approaches such as neural networks and support 

vector machine was the ability to discover new, previously unknown attacks on the 

network. [8] The team utilized a combination of density-based and grid-based high 

dimensional clustering called fpMAFIA and was found to be 95% successful in covering 

data with appropriate values of parameters and was proven to scale linearly with the size 

of the input data.  
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BIG DATA  

Discussed machine learning have been successfully used performing complex tasks. It 

wouldn’t be the case if the input data sets were not appropriately large and diverse. Big 

data together with advancement in computational processing power are the reason 

machine learning is universally successful.  

The world’s capacity to store information is increasing by 23% every year while it’s 

general-purpose computing capacity is growing by 58% annually. The amount of data 

stored in 2007 was 2.9 × 1020 bytes [9]. It is predicted, that by 2020, 1.7 megabytes of 

new information will be created every second per person [10] and that around a third of 

all data will be processed through the cloud. Sadly, nowadays less than 0.5 % of available 

data is being analysed. This fact is caused by insufficiently effective and inaccessible 

computational methods for large-scale data processing, unwillingness of companies to 

invest into often costly data-analysis tools and lack of experts in the field. Yet, the 

situation is starting to change. 

The storable data capacity should come in pair with the ability to process it and 

extract valuable information from it. Companies like Netflix, Amazon, Google and 

Facebook were the pioneers in analysing such immense amounts of data which naturally 

meant they had to develop their own technologies to process it. Google originally came 

with the MapReduce approach which allowed it to process data in distributed and parallel 

manner, which later was reimplemented and open-sourced by Apache [11]. In order to 

filter the noise and take advantage of it fully, the desired characteristics for the datasets 

have been clearly defined.  

BIG DATA - CHARACTERISTICS  

Each set of big data can be reassured by the three basic “V” characteristics [12]. First one 

is “Volume”, which represents the size of the data, which presents itself as one of the 

leading challenges for storage and processing. “Variety” refers to the spread of distinct 

formats of the data, which may come from many different sources in many different 

forms. The presented challenge is to structure or organize the data in a logical way. 

“Velocity” describes the speed, at which the data can be analysed and reviewed. This also 

addresses the rate of change of the data, whether by acquiring the new data or by dumping 

the outdated ones. Additionally, another “V’s” can be added depending on the 

requirements. “Value” represents the usefulness of the data corresponding to decision 

making of the algorithm, “Veracity” refers to the trustworthiness of the data sources, 

“Volatility” refers to the time period for which the data is valid, “Validity” refers to the 

accuracy of the data for reaching the desired goal and “Variability” refers to the 

differences in data structures caused by different origins of the data. The last measure for 

big data is “Complexity” referring to the volume of effect on the system due to the small 

change in data due to inner linking in the data [13] [14]. 

There is a number of commonly used techniques to reduce the complexity of working 

with large databases of data by reducing the computation times or speeding filtering 

algorithms [15]. The first technique is “Association”. By finding links and correlations 

within the data, it is possible to predict whether and how that data will be used. It may 

also be valuable to store the associated data together. “Classification” technique sorts the 

data into categories or groups depending on the desired parameter (type, size, time) to 

speed up the searching process in the future. “Generic algorithms” are non-specific 
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applications, that pre-process the data or dump the corrupted files. “Machine learning” 

software allows to draw conclusions from own results and optimize own decision-making 

capabilities. “Regression analysis” analyses the data depending on some of its aspects, 

draws conclusions and creates predictions based on the difference in variables based on 

the aspect’s change. “Sentiment analysis” optimizes the system based on the feedback 

form the user. “Social network” analysis sorts the results into nodes and creates ties 

between the correlated ones. There are many platforms available for the big-data storage, 

mining, processing and analysis, yet for the purpose of this thesis the data are acquired 

from open-data applications (RTR NetTest) and are being stored locally. 

BIG DATA - STORAGE OPTIONS 

For data storage and processing, most companies have to choose between two primary 

options that are widely available. These are own servers and cloud computing option. The 

choice between them is depending on the specific application. The most impactful aspects 

are operation and acquisition costs, level to which the company is willing to invest into 

the new technology and the value obtained.  

In case of the hardware solution, the choice of platform, system and 

storage/processing data format are fully up to the project crew. The costs of this solution 

mainly include power consumption and maintenance. The scalability depends on the 

chosen system and architecture. Horizontal scaling distributes the workload across many 

devices (servers, computers, etc.) and has almost infinite scalability, whereas vertical 

scaling focuses all computation power on a single device by investing into more powerful 

components [16]. 

The Cloud solution on the other hand presents a zero-maintenance system on the 

remote server, from which the user can buy storage space and computing power. Such 

solutions consist of a storage (Google cloud services, Microsoft Azure, Amazon S3) and 

several supporting software or frameworks. The most widely available programming 

framework for Big Data is HADOOP [17]. It is available as an open-source, it supports 

distributed computing environment which is robust against node failures, as well as it is 

supported by Big Data Cloud Solutions such as Microsoft Azure or Amazon S3. 

MapReduce is a programming tool of HADOOP capable of processing large numbers of 

datasets [11]. There are several MapReduce-based tools, which further improve 

computing capabilities of the Big Data system. MapReduce is widely applicated in cloud 

systems since it is highly scalable, open-source solution. 

There are several data store types, which are optimized for Big Data storage and 

analytics, each excelling in different aspect. Document-oriented store is designed to work 

with larger groups of documents in different formats such as JSON, XML or MS Word. 

Document oriented stores are also called row formats. Column-oriented formats store the 

data in columns, sorted in the same fashion, depending on their properties. Graph database 

stores data with relation to each other in graph-like fashion with nodes, peaks etc. 

Key-value databases store the data based on the chosen key values. These systems are 

designed to operate large databases. 
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2 FUNDATION OF THE THESIS 

In this chapter the basic overview of this thesis is presented. It includes an extended 

introduction to the process of determining the coverage maps, followed by the impacting 

factors of crowdsourced data, that are affecting the final results. Following these initial 

remarks, the basic theory of depicted regression methods is presented and their 

applications on the (noisy) sine function are displayed. The definition of the mean average 

error is provided, since it serves as a basic metric for the evaluation and comparison of 

the methods. This serves as a baseline for the subsequent chapters.  

2.1 INITIAL REMARKS 

This chapter deals with the basic principals that are presented in this thesis. It gives 

an overview of the project and presents the most impactful factors of the crowdsourcing 

data. 

2.1.1 DIPLOMA THESIS OUTLINE 

The main goal of the proposed thesis is to create a tool, that is able to predict the 

parameters of the network and therefore be used for the network optimisation purposes. 

Based on previous measurements taken at the locations with known coordinates, the 

realized tool should establish an accurate prediction of network parameters in the location 

for which the measurements do not exist in the form of performance map. The objective 

of this thesis is to predict the network performance parameters of the user’s mobile LTE 

device (the majority of analysis of the utilized methods is carried out on the Reference 

Signal Received Power (RSRP) measurements due to its independency of tariff 

limitation).  

For this purpose, several methods of regression are used and compared against each 

other to obtain the most reliable result. The basic theory of the chosen methods is briefly 

described in the following Chapter 2.2. A number of algorithms, that are based on these 

various regressions are all implemented in MATLAB. 

There are two main sources of input data for the thesis (see Chapter 3). First one is a 

crowdsource based database containing the reports of RTR-NetTest measurements [18]. 

It is an Internet connection speed test provided by RTR with open data results. 

The database with 4G measurement results for the year of 2018 is trimmed to the Vienna 

city area (to reduce the computation power demands and to ensure as densely measured 

area as possible) and divided based on the operator. This data set serves as a base for the 

creation of estimated coverage maps of various network parameters. Also, the RTR-

NetTest measurement tool is used to generate self-measured database, which serves as an 

evaluation matric for the resulting map and additionally as the comparison of regression’s 

behaviour in the open-air area vs. the city area. 

The second source of data is a set of 9 measurements of network parameters taken 

on the route through the centre of Vienna as an example of drive test measurements. These 

measurements were acquired by using the NEMO system and were provided 

by TU Vienna. The main utilization of these data is 1D analysis of the various regressions 
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and therefore reducing the regression to 1D problem. The data were acquired on foot, 

with specialized measurement equipment (NEMO Keysight). The measurement data are 

in a series, specified by time as well as by GPS coordinates compared to the 

crowdsource-based database from RTR, which does not have the consistently spaced time 

intervals between the measurements. 

The 1D analysis (see Chapter 4) of chosen regressions, including linear interpolation, 

exponential smoothing (extended by other smoothing techniques), inverse distance 

weighting (IDW), random forest and Gaussian process regression (GPR), serves as a 

baseline to determine the most suitable methods for 2D utilization of the given data 

regression. The parameters of each method are described and optimized for objectives of 

this thesis. The methods are compared against each other in terms of their mean average 

error (MAE) metric (see Chapter 2.3), complexity and computational-demand 

characteristics. 

The further regression evaluation and parameter optimization is realized as the 2D 

analysis of chosen methods (see Chapter 5) on NEMO measurement data, as well as 

self-made RTR database. To create the unbiased regressions, the latitude and longitude 

coordinates of every point were transformed into metres using the adjusted Heaviside 

formula, since the same difference in latitude and longitude does not create the same 

difference in metres (see Chapter 5.1). The regression methods chosen for 2D analysis 

(GPR and IDW) are then shown and compared based on the different parameters.  

The distributions of RSRP, downlink throughput and uplink throughput within the 

considered measurements were shown and compared to the corresponding Gaussian 

distribution to assess, whether the data distributions are similar to the Gaussian, since 

GPR is optimized to predict normally distributed data. 

Using the error metric, the minimum evenly distributed measurements per area, 

which ensure minimal margin of error, was derived. The chosen prediction methods are 

utilized to create performance maps using the data sources utilized in this thesis. The 

validity of the performance maps is discussed. 

The filtered RTR measurement samples cover the area of approximately 

8.8524 × 18.6676 km over the central part of Vienna. The database consists of 17322 

measurements. 4315 were realized in H3 network, 8176 measurements were realized in 

T-Mobile network and 4831 measurements in A1 network. All considered measurements 

are within LTE technology. 

The network parameters considered in this thesis are: 

Download speed (DL), which is the rate of data volume over time flowing in the 

direction towards the end device. Downlink throughput, defined as the maximum 

achievable download speed, is the metric describing the current network state at the given 

coordinates. 

Upload speed (UL) and uplink throughput are defined in the same way as download, 

only referring to the flow of data out of the end device. 

Reference Signal Received Power (RSRP) is the average power measurement value 

in dBm of the reference signal received by the device, measured over the whole 

bandwidth. 
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2.1.2 CROWSOURCED DATA IMPACTING FACTORS 

Several challenges arise during the data gathering, processing and postprocessing, which 

may infect the crowdsourced data that are used as a base for creating network’s 

parameters coverage maps. These may come from several sources which may include the 

measurement of input data, different locations of these measurements and therefore the 

changing signal strength connected to the diversity in the network’s operator coverage 

and many others. Some of these problems and factors impacting the results together with 

their brief discussion are presented in this chapter. 

Coverage of measurements – There is only a limited amount of input data based on 

the number of tests in the available database. These tests do not cover every location that 

may be of interest within the scope of this project since the measurements are not evenly 

distributed in space. Creating a spatial regression requires several reliable measurement 

results per area to assure correctness of the result, regardless of the regression’s type. 

GPS accuracy – The accuracy of GPS coordinates varies based on both user’s 

location and user’s device. The user’s location affects GPS accuracy especially at the 

locations with signal dampening objects, which create shadowing, e.g. high building 

surroundings, underground or thick walls (indoor positioning problem). The user’s device 

may affect the accuracy in terms of settings (high/low accuracy). Also, the older device 

models may have less precise positioning systems implemented. The GPS accuracy of 

the modern devices is approximately 4 m. 

User’s Tariff limitation – The tariff provided by the Internet provider is limited 

based on what the user wants to pay for. This results into a different data rate speeds 

across the spectrum of obtained test and needs to be taken into consideration while 

working with crowdsource data. Since we do not have the information about the user’s 

tariff’s terms, we may only assume if the measured speed is lower/higher due to the tariff 

limitation or due to other conditions.  

User’s device limitation – The device used for the test measurement may be just as 

limiting as the tariff factor. The device type, age, its operation system and configuration 

may resolve into limiting the performance and therefore it has to be taken into 

consideration when working with crowdsource data. 

Changing traffic over time – The Internet traffic changes depending on the time of 

a day. To demonstrate the big variety and high slope of changes the Figure 2-1 is 

presented. It shows the changes of the sum of total data rate of VIX (Vienna Internet 

eXchange [19]) during the day (Figure 2-1 top) and during a week (Figure 2-1 middle). 

Therefore, the data (e.g. connection speed) acquired during the busy hours may be 

devaluated in comparison to the data acquired during the quiet hours. Another factor is 

the change over one-year intervals. Every year the network load increases (see Figure 2-1 

bottom). Therefore, the data acquired long time ago should not be randomly mixed with 

the newest data without taking this fact into consideration. Also, this factor may be a 

problem when evaluating the precision of the created coverage map, especially in case 

the data used for it are remote in time (e.g. 1-2 years old) and are being compared to 

newly measured data. (Within the Figure 2-1, all times are in UTC, dated for year 2018.) 
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Figure 2-1       Traffic Over Time  (Top - Daily Traffic, Middle - Weekly Traffic, Bottom - Yearly 

Traffic) [19] 

Bandwidth utilisation of each Internet provider – Every Internet provider uses its 

spectrum in a different way depending on their priorities. Therefore, the measurements 

may be affected and may vary from provider to provider. To assure the accuracy of the 

coverage map, the providers should be treated separately, the input data should be divided 

based on the operator instead of merging all operators into one data input. 

Signal coverage across different geographic locations – As explained in 

Chapter 3, the geographical structure of Austria is more complicated in comparison with 

some other countries (e.g. Czech Republic), therefore it is not covered entirely. For those 

locations, where the signal strength may be weak or not available at all, there are only a 

few measurements, or no measurements exist there.  

User Location while taking the test – may be yet another factor devaluating the 

result of a measurement. If the user is in a space, where the signal strength is blocked (e.g. 

underground, lift) the result of the test’s measurement may be less reliable due to this 

factor. To get the best test results, the open space with no signal blocking is needed, but 

this is not a demand that is always possible to keep. 

The technology used (EDGE/GSM, UMTS, LTE) – With a different technology 

comes a different speed of transmission. This factor can be taken into account quite easily 

as the statistics of how many devices use what technology are available and as each test 

carries an information about the used technology. To make the process simpler only the 

LTE measurements are taken into account. On the other hand, using only LTE 

measurements reduces the number of available input data. 

Connection type - In case of using LAN during the performance of test, which is 
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used to obtain the input data, the quality of the LAN router needs to be taken into 

consideration as well as when using WLAN. In case of WLAN the distance between the 

measuring device and the router needs to be considered as well. Since there is no 

information about this within the test results, this becomes to be one of the reasons why 

only the mobile LTE based measurements are used for finding the solution to coverage 

maps.  

Reason why the test was taken – RTR NetTest is a tool for evaluation network 

parameters which is not connected to any other application and has to be accessed 

individually or must be running on loop, which utilizes large amounts of data (e.g. Tutela 

implements their network parameters measuring software on background of various 

applications and games to gain more samples over time without user participation, their 

test takes less amount of data than RTR [20]). Therefore, the users utilizing the RTR test 

are doing so after receiving an impulse for such action. There are various reasons why a 

user utilizes the connectivity test, sometimes it is to gain information, but most frequently 

to confirm the bad or decaying connectivity. Another reason to take the test may be to 

evaluate the network or new devices on the side of the operator (e.g. NetTest is used by 

operators as a tool for drive tests, which may have a better connectivity etc. than common 

user’s connectivity services). All these tests are saved within one database in the same 

fashion. 

2.2 REGRESIONS – BASIC THEORY 

In this chapter, the regression methods used within the scope of this thesis are introduced 

and the basic theory used is explained. For better visualization and clarification of various 

parameters, the implementation of these regression methods is presented on a sine 

function. 

2.2.1 LINEAR INTERPOLATION 

The linear interpolation (LI) is one of the simplest interpolation methods in terms of its 

implementation difficulty and complexity. On the other hand, it may derive worse results 

in terms of its accuracy in comparison to some more sophisticated methods, in cases 

where the trend is non-linear. The results of this interpolation method may be sufficient 

in some implementations, especially in cases where precise function values are of less 

importance than the computation demands. 

It is based on establishing unknown value points from the set of known points. The 

new points are derived geometrically by connecting two adjacent points in plane by the 

straight line. All points, but the original ones, realizing this connection line are therefore 

the interpolated points. The interpolation of the set of data is then considered as a linear 

interpolation of each two nearest points in plane, assuming the function connecting the 

neighbouring points is purely linear. See Figure 2-2, presenting a simple example of linear 

interpolation applied to one period of sinus function (the range from 0 to 2π 

(approximately 6.283)). The interpolation is realized by selecting a value (sample) at 

every whole number and applying the interpolation function to them. 
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Figure 2-2       Linear Interpolation of Sine Function 

This method it therefore suitable only for application with low demands on accuracy, 

especially in cases where the slope of input function is changing rapidly (faster than its 

“sampling”), for example in the cases where the input data is changing dynamically 

around its mean or for the functions where the peak values are important. The basic 

formula for deriving the value f(x) of linear interpolation at desired point x is shown in 

Equation 2.1 [21]: 

𝑓(𝑥) =  
𝑥 − 𝑥1

𝑥2 − 𝑥1
∙ 𝑓(𝑥2) +

𝑥2 − 𝑥

𝑥2 − 𝑥1
∙ 𝑓(𝑥1) (2.1) 

where 𝑓(𝑥) is the function value at point 𝑥, and 𝑥1 and 𝑥2 are the previously known 

points. 

Based on the definition of linear interpolation, it is clear that this method is meant 

for one dimensional application. In case of two spatial dimensions, linear interpolation 

becomes a bilinear interpolation.  The base of this method is to apply the linear (one 

dimensional) interpolation first in one direction and after that to apply it in the other 

direction. Therefore, the outcome of the method is not linear, but the product of two linear 

interpolations [22].  

The use of this method was first documented in 300 BC and was used over the whole 

known history e.g. in astronomy and mathematics. Later, in 20th century, the method was 

implemented and used in computer graphics [23]. 

2.2.2 EXPONENTIAL SMOOTHING 

Exponential smoothing (ES) [24] is a technique for smoothing time series sample-by-

sample, which was first developed in 1957 by C. E. Holt and widely used ever since. 

Compared to the other regressions, exponential smoothing does not create new data 

points. The algorithm weights past observations with decreasing weight over time and, 

based on the chosen parameters, assigns the new point as a combination of new value and 

the value from the past. The name exponential refers to the exponentially decreasing 

weight of the sample points from the past on the current sample. This technique is utilized 

to neglect high-frequency noise, meaning it can be used as a first-order impulse response 
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low-pass filter. There are several implementations of exponential smoothing in practical 

use. 

The simplest implementation of exponential smoothing is called exponential moving 

average and can be expressed as: 

𝑠0 = 𝑥0 
(2.2) 

𝑠𝑖 = 𝛼 ∙ 𝑥𝑖 + (1 − 𝛼) ∙ 𝑠𝑖−1 

Where 𝑠𝑖 is a predicted value and 𝑥𝑖 is the measured value at time 𝑖, 𝛼 is the smoothing 

parameter from the interval 〈0; 1〉. The smaller the 𝛼, the smaller is the weight of the new 

sample. In Figure 2-3, simple exponential smoothing of noisy sinus function with two 

different values of alpha are shown. The figure shows, that for 𝛼 = 0.2 the trend is 

smoothed, and the noise is supressed, but the signal is delayed. With 𝛼 = 0.8, the 

smoothing and the noise cancelation is visibly smaller (signal copies the original more 

reliably), but so is the delay. Therefore, the utilization of this method is possible in 

applications, where the delay is acceptable, otherwise it is necessary to find similar 

method of noise cancelation, which does not cause the delay. 

 

Figure 2-3       Single Exponential Smoothing of Sine Function 

More advanced exponential smoothening method, called double exponential 

smoothening is used to neglect the undesired trend in data. This technique applies the 

filter on the data and then once again on itself with secondary parameter 𝛽. The previous 

equation changes to Equation 2.3 and 2.4: 

𝑠0 = 𝑥0, 

(2.3) 

𝑠1 = 𝑥1, 𝑏1 = 𝑥1 − 𝑥0 

𝑠𝑖 = 𝛼 ∙ 𝑥𝑖 + (1 − 𝛼) ∙ (𝑠𝑖−1 + 𝑏𝑖−1) 

𝑏𝑖 = 𝛽 ∙ (𝑠𝑖 − 𝑠𝑖−1) + (1 − 𝛽) ∙ 𝑏𝑖−1 (2.4) 

where 𝑠𝑖 estimates the new value and 𝑏𝑖 estimates the trend of the data. 𝛼 and 𝛽 are the 

weighting parameters of the regression, both from the interval 〈0; 1〉. Figure 2-4 shows 

the comparison of single exponential smoothing with parameter 𝛼 = 0.2 and double 

exponential smoothing with parameters 𝛼 = 0.2, 𝛽 = 0.8 applied to the noisy sine 

signal. The figure shows, that the time delay is neglected thanks to the secondary 
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smoothening application. On the other hand, the resulting signal is less smooth. 

 

Figure 2-4       Comparison of Single and Double Exponential Smoothing 

2.2.3 SYMMETRIC SMOOTHING METHODS 

There is a number of other methods to smooth the data, which compensate for the 

exponential smoothening’s downside of considering only the left side of the data (past 

results). Such methods operate with smoothing kernel moving across the data, calculating 

weighted mean based on the kernel shape and window size. It is important to remember, 

that the window is centred around the considered sample only if its size is odd. 

The basic and frequently utilized solution is windowed moving average, for which 

the kernel function has constant height over the whole window, resulting in calculated 

mean over several neighbouring samples for the considered sample. The simple formula 

for odd window sized moving average per sample is: 

𝑠𝑖 =
1

𝑁
∑ 𝑥

𝑖−
𝑁−1

2
+𝑘

𝑁

𝑘=0

 (2.5) 

Where 𝑁 is the window size, 𝑠𝑖 is the prediction sample and 𝑥𝑖 is the current original 

sample. Another implementation for smoothing is triangular kernel smoothing utilizing 

triangle-shaped window, Gaussian kernel smoothing or smoothing using Savitzky-Golay 

filter. The effect of window size on the resulting smoothing for moving average is shown 

in Figure 2-5 (left), where it is visible that with the increased window size, the estimation 

is smoother, yet on the other hand the peaks are significantly reduced. By comparing the 

graph to exponential smoothing results, there is no shift of samples within those methods. 

The comparison of moving average, smoothing using Gaussian kernel and smoothing 

using Savitzky-Golay filter is shown in Figure 2-5 (right), where the window size was set 

to 19 samples to minimize both noise and peak reduction (see Chapter 2.3). Savitzky-

Golay approximation reacts more dynamically to the changes within the data (when the 

noise affects several subsequent samples in the same way) than both Gaussian and moving 

average. 
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Figure 2-5       Comparison of Smoothing functions - Sine Example 

2.2.4 INVERSE DISTANCE WEIGHTING 

Inverse distance weighted (IDW) interpolation is a regression method applicable in 

multidimensional space, which determines cell values using an inversely weighted 

combination of a set of sample points. The surface being interpolated should be that of a 

location dependent variable. The weight is a function of inverse distance raised to the 

mathematical power, thus reference data closest to the considered point in grid have the 

highest impact on the resulting value. The algorithm includes option of choosing the 

maximum radius above which it stops considering the neighbouring cells. [25] [26] 

The basic formula for IDW is shown in Equation 2.6: 

𝑧𝑖 =
∑ 𝑧𝑘 ∙ (

1

𝑤𝑖,𝑘
)

𝑝
𝑛
𝑖=1

∑ (
1

𝑤𝑖,𝑘
)

𝑝
𝑛
𝑖=1

 (2.6) 

𝑤𝑖,𝑘 = |𝑥𝑖 − 𝑥𝑘|  

Where 𝑧𝑖 is the desired quantity approximation at coordinates 𝑥𝑖, 𝑧𝑘 is the quantity of kth 

reference symbol at coordinates 𝑥𝑘, 𝑤𝑖,𝑘 is the Euclidian distance between 𝑥𝑖 and 𝑥𝑘 and 

𝑝 is the power parameter. 

Determining the optimal values for each parameter is depending on the application 

IDW is used for, since it is not based on any physical principle. Later in this thesis, radius 

and power parameter are optimized in 1D to match the behaviour of the trend. The 

optimization algorithm is chosen in a way to minimize the mean absolute error of the 

regression. 

One downside of this technique is that at reference points, the regression returns the 

value equal to the value of that reference point (zero distance equals infinite weight), 

therefore in case of having several reference points affected by noise in close proximity, 

the regression will fluctuate between those points and will not return reliable output. 

Therefore, before applying IDW into spatial coordinates, the data will first be filtered for 
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noise suppression using a different technique. 

Choosing the appropriate power parameter is bread and butter of this technique, from 

which the two extreme situations can arise. When power parameter is too high, only the 

closest point “attracts” the regression curve while all other values are significantly smaller 

due to inverse weight to the power of “high number”. When power parameter is too small, 

the further points “drag” the regression to the mean value between the closest data points. 

Figure 2-6 presents two such cases. When approximating the sinus function, the high-

power parameter value (p = 20) causes the regression to hold its value around every 

reference point. If the parameter is small (p = 1), the value drops between the reference 

points heavily towards the mean. The balanced choice of power parameter (p = 2) keeps 

the approximation between the reference points smoother and less drawn to the function’s 

mean. 

 

Figure 2-6       IDW of Sine Function 

If the radius parameter is chosen to be infinite, in relatively distant locations from closest 

reference points (based on power parameter chosen), the value of each point will approach 

the mean value of all reference points. 

In practice, IDW is utilized in a variety of scientific fields varying from geostatic 

predictions to applications in computer science.  [27] utilizes IDW as a rainfall 

distribution prediction method. The method has been evaluated as suitable with high 

(0.95) correlation coefficient values. [28] utilizes IDW for the array of 3D imaging 

sensors with adaptive power parameter, significantly improving the interpolation 

accuracy of the system. 

2.2.5 RANDOM FOREST 

Random forest (RF) is a supervised machine learning algorithm utilized as both 

classification and regression problems, which builds a “forest” of decision trees and from 

such forest chooses the most probable outcome. Each decision tree works as a classifier, 

independently solving tasks for each regression point and then from the set of results, the 

method chooses the most probable one [29] [30] [31].  
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The decision tree works in such fashion, that it creates a tree-like mesh with the best 

attributes at the root of the tree and by analysing all training questions (reference point 

decisions), it creates leaf nodes in all branches of the tree. With the increasing number of 

the trees the regression gets more accurate, but also more demanding in terms of 

computation power. On the other hand, it is proven that the accuracy stops increasing 

after a certain threshold of trees is implemented, varying for each specific problem that 

the regression is applied to. See Figure 2-7, where an example of random forest algorithm 

is applied to a sine function, while changing the number of decision trees (126 samples 

are used as a training data, grid divided into 126 equidistantly distributed points). The 

difference between the regression based on 1 and 10 trees is significantly higher than the 

difference between 10 and 100 trees. (For more complex functions the number of trees 

would need to be higher than for sine function which serves as a simple example.) 

 

Figure 2-7       Sine Example of Random Forest (1, 10 and 100 trees) 

The most influential parameter of the regression is the number of training points. See 

Figure 2-8, where an example of random forest algorithm is applied to a sine function, 

while changing the number of input training data (100 %, 50 %, 30 % and 20 % 

of samples, grid divided into 126 equidistantly distributed points). The difference 

between the regression based on 20 % and 30 % of training data is significantly higher 

than the difference between 50 % and 100 %. While the smaller number of trees (in 

Figure 2-7 only 1 tree) does not change the regression significantly, the smaller number 

of input training data derives from the input (sine) function significantly (see 20 % line 

in Figure 2-8).  
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Figure 2-8       Sine Example of Random Forest  (100%, 50%, 30% and 20% of training data) 

2.2.6 GAUSSIAN PROCESS REGRESSION 

The Gaussian process regression (GPR) is a widely used technique used in machine 

learning with highly positive results. The objective is to assign probability density 

functions (pdf) with Gaussian distribution to characterize the behaviour of the examined 

quantity. The process can be described as calculation of the unknown point from the 

training data based on their similarity. The calculations become much less complex 

thanks to Gaussian probability function’s characteristic as it turns out. To describe the 

machine learning process using Gaussian regression, first the Gaussian process must be 

modelled [32] [33].  

Let’s assume, that the function 𝑓(𝒙) behaves as a Gaussian process and 𝒙 refers to 

the vector of variables. Function 𝑓(𝒙) can also be expressed using a vector of weights 

𝒘 as 𝑓(𝒙) = 𝒙𝑇 ∙ 𝒘. The mean 𝒎(𝒙) of the function can be expressed as 

𝒎(𝒙) = 𝑬{𝒇(𝒙)}, (2.7) 

Where 𝑬{𝑓(𝒙)} is the expectation of 𝑓(𝒙). The covariance function of the variable 𝒙 has 

the form of 

𝒌(𝒙, 𝒙′) = 𝑬{(𝒇(𝒙) − 𝒎(𝒙))(𝒇(𝒙′) − 𝒎(𝒙′))}, (2.8) 

Where 𝒙′ refers to the transpose of 𝒙.and the Gaussian process can then be written as 

𝒇(𝒙) ~ 𝓖𝓟(𝒎(𝒙), 𝒌(𝒙, 𝒙′)). (2.9) 

The joint probability density function of N random variables 𝑓(𝑥𝑖), 𝑖 = 1, … , 𝑁, 

combined into random vector 𝒇 = (𝑓(𝑥1) … 𝑓(𝑥𝑁)) gives joint probability density 

function in form of 

𝒑(𝒇) =
𝟏

√(𝟐 ∙ 𝝅)𝑵 ∙ 𝐝𝐞𝐭(𝑪)
∙ 𝒆−

𝟏

𝟐
(𝒇−𝒎)𝑻∙𝑪−𝟏∙(𝒇−𝒎), (2.10) 

where 𝑑𝑒𝑡(𝑪) stands for determinant of the matrix 𝑪, 𝑪−1stands for inverse of the matrix 

𝑪. Mean 𝒎 can be expressed as: 
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𝒎 = 𝑬{𝒇} = (𝒎(𝒙𝟏) … 𝒎(𝒙𝒏))
𝑻

, (2.11) 

and  

𝑪 = 𝒄𝒐𝒗{𝒇} = [
𝒌(𝒙𝟏, 𝒙𝟏) … 𝒌(𝒙𝟏, 𝒙𝑵)

… … …
𝒌(𝒙𝑵, 𝒙𝟏) … 𝒌(𝒙𝑵, 𝒙𝑵)

]. 
 

(2.12) 

The above can be written in short as 

𝒇~𝓝(𝒎, 𝑪). (2.13) 

The probability distribution described above sets basic requirements for the variable 

behaviour in Gaussian regression method. 

To realize a Gaussian process regression, training data are needed to create a 

“knowledge basis” for the system. Training data consist of measured (noisy) parameters 

at known locations with unknown, statistically independent error 𝜺. That error has 

(assumed) zero mean, variance 𝜎𝑒
2 and can be written as 

𝜺~𝓝(𝟎, 𝝈𝒆
𝟐 ∙ 𝑰𝑵). (2.14) 

𝑰𝑵 stand for identity matrix of dimension N. Therefore, it can be written, that 

𝒚 = 𝒇 + 𝜺 (2.15) 

and the training data set 𝒟 can be expressed as 

𝓓 = {(𝒙𝒊, 𝒚𝒊), 𝒊 = 𝟏, … , 𝑵} = (𝑿, 𝒚), (2.16) 

where 

𝑿 = (𝒙𝟏, … , 𝒙𝑵). (2.17) 

We also define likelihood, as the pdf (probability density function) of the event factored 

over the results of the training set as 

𝒑(𝒚|𝑿, 𝒘) =  𝓝(𝑿𝑻 ∙ 𝒘, 𝝈𝒆
𝟐 ∙ 𝑰𝑵), (2.18) 

Where 𝑝(𝒚|𝑿, 𝒘) stands for the conditional probability density function and 𝑿𝑇stand for 

transposed matrix 𝑿. The weight vector has the Gaussian distribution 𝒘~𝒩(𝟎, 𝑪𝑤), 
where 𝑪𝑤 is the covariance matrix of the weights. For the prediction, the value of 𝑓(𝑥∗) 

will be calculated at the location 𝑥∗ using the training data set 𝒟. Using Bayesian 

interference theory, it is possible to create posterior (or predictive) pdf based on Bayes’ 

rule [34]. The Gaussian posterior is a joint pdf with mean  

𝒘̅ =
𝟏

𝝈𝒆
𝟐

∙ 𝒙∗
𝑻 ∙ 𝑨−𝟏 ∙ 𝑿 ∙ 𝒚 

 

(2.19) 

and covariance matrix 𝑨−1, where 

𝑨 = 𝝈𝒆
𝟐 ∙ 𝑿 ∙ 𝑿𝑻 + 𝑪𝒘

−𝟏 (2.20) 

in the form of 

𝒑(𝒘|𝑿, 𝒚) =  𝓝(𝒘̅, 𝑨−𝟏). (2.21) 

The predictive distribution for 𝒇∗ is given by the average output of all possible linear 

models of the Gaussian posterior and is Gaussian as well. 
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𝒑(𝒇∗|𝒙∗, 𝑿, 𝒚) =  𝓝 (
𝟏

𝝈𝒆
𝟐

∙ 𝒙∗
𝑻 ∙ 𝑨−𝟏 ∙ 𝑿 ∙ 𝒚, 𝒙∗

𝑻 ∙ 𝑨−𝟏 ∙ 𝒙∗
 ). 

 

(2.22) 

It is also possible to express the vector of test outputs 𝒇∗using training data without noise, 

correlation and cross-correlation matrices as (considering zero mean of the input) 

[
𝒇 

𝒇∗
] ~𝓝 (𝟎, [

𝑪(𝑿, 𝑿) 𝑪(𝑿, 𝑿∗)

𝑪(𝑿∗, 𝑿) 𝑪(𝑿∗, 𝑿∗)
]). 

 

(2.23) 

and using training data with noise, correlation and cross-correlation matrices as 

[
𝒚 

𝒇∗
] ~𝓝 (𝟎, [

𝑪(𝑿, 𝑿) + 𝝈𝒆
𝟐 ∙ 𝑰 𝑪(𝑿, 𝑿∗)

𝑪(𝑿∗, 𝑿) 𝑪(𝑿∗, 𝑿∗)
]). 

 

(2.24) 

There are several ways to implement the Gaussian process regression. The whole process 

is well explained in the sources [32] [35] [36], including detailed implementations and 

types.  

Gaussian process regression works as a linear smoother of the data, since by finding 

the maximum likelihood (even in the coordinates with noisy reference data), the process 

supresses the noise. With this in mind, there are several key parameters of the GPR which 

define the behaviour of the regression. The following parameters are implemented in 

Matlab while creating a GPR model, which can be implemented and optimized exactly to 

match the problem at hand [37]. There are several key parameters and functions 

influencing the model. Parameter ‘Sigma’ refers to the noise standard deviation of the 

signal and training symbols, influencing the regression by representing the noise 

influence on the signal. Its value is optimized by Matlab during the regression. 

Kernel function (or covariance function) is utilized as projection of training points 

into the input space. The parameters of kernel function define the shape of the regression 

around each training point as well as between them. There is a number of predefined 

functions as ‘KernelFunction’ including squared exponential kernel (default), exponential 

kernel, Matern kernel or rational quadratic kernel. Also, the kernel function can be user-

defined. It is possible to change the standard deviation and the characteristic length of the 

kernel function using ’KernelParameters’. Figure 2-9 shows the GPR applied to the three 

samples (marked by black X in all following graphs) with different kernel functions. The 

differences between kernels are apparent. Squared exponential kernel strongly holds onto 

the current trend within the data, whereas exponential kernel requires higher density of 

samples to significantly react due to the high reliability on Euclidian distance between 

samples. The remaining kernel functions have slightly different shapes and slopes. The 

choice of the kernel function influences the regression in the areas with high density of 

reference points only slightly, yet with increasing distance from reference points the 

choice of kernel function plays significant role. 
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Figure 2-9       Kernel Function Comparison on Low Sample Input (GPR) 

Basis function defines the space, into which the problem is projected. It is possible to 

choose empty basis ‘none’, which does not hold any information for the predictor, which 

will then always lead to zero or explicitly defined value. Choosing the basis function as 

‘constant’ calculates the global trend in data as a constant value derived from the training 

data. With constant basis the GPR regression returns outputs similar to the IDW. Linear 

basis ‘linear’ assumes linear trend in data, projecting the results further from the training 

points onto linear space (inclined line in 1D, inclined surface in 2D). ‘pureQuadratic’ 

basis function assumes quadratic projection surface. It is possible to define and implement 

own basis function to the regression. The initial value can be specified using parameter 

‘Beta’. See Figure 2-10 for basis function comparison on low input sample example. 

There, the ‘constant’ basis draws the regression towards the average value of the input 

samples and stays constant. The ‘linear’ basis finds the linear trend within the data and 

holds its slope along the whole range. The ‘none’ basis approximates the values between 

input data points as nicely as ‘pureQuadratic’ basis, but outside of the range of input 

samples it inclines to the zero value, whereas the ‘pureQuadratic’ basis holds its trend. 

 

Figure 2-10     Basis Function Comparison on Low Sample Input (GPR) 
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The method to estimate the parameters of the GPR training symbols ‘FitMethod’ can 

influence the outcomes. If no estimation is selected (‘none’), the input parameter values 

will be considered as output. Exact process regression (‘exact’) fully utilizes algorithm 

on all the training data samples. ‘sd’ option is utilized for regression, where the number 

of observations is high, therefore the algorithm considers only the subset of the closest 

observations to estimate the value at each training data point. For a subset of regressors 

approximation ‘sr’, the kernel function is approximated using a reduced number of 

training symbols. Fully independent conditional approximation ‘fic’ returns the most 

accurate results on the cost of highly increased complexity.  

The prediction is realized either using all training symbols or by selecting a subset 

of training symbols in case of a large number of input data (to significantly reduce the 

computational complexity). The available reduced methods are Block Coordinate 

descent, Subset of Datapoints or Regressors or Fully Independent Conditional 

approximation. 

2.3 MEAN ABSOLUTE ERROR 

Mean Absolute Error (MAE) is used to evaluate the precision of utilized regressions 

within the scope of this thesis. Other considered methods for this thesis were MSE (Mean 

Square Error) and RMSE (Root Mean Square Error). MAE is utilized, since it preserves 

the unit, whereas MSE returns the second power of it, and is easier to interpret than 

RMSE, which is a square root of the sum of squared absolute errors. The formula for 

calculating MAE is: 

𝑀𝐴𝐸 =
1

𝑁
∙ ∑ |𝑥𝑖 − 𝑠𝑖|

𝑁

i=1

 2.25 

where 𝑁 is the total number of samples, 𝑥𝑖 is the ith reference sample and 𝑠𝑖 is ith 

regression sample. 

Based on the definitions of utilized regressions (see Chapter 2.2), it is obvious that 

some regressions (e.g. LI and IDW) have the value of error = 0 [unit] for the input sample 

point (see Figure 2-11). This is caused by the fact, that the value of regression at that point 

is the same as the input data point. Therefore, to evaluate the precision of a regression, it 

is necessary to distinguish two methods of implementing the MAE calculation. One for 

those cases, where the regression value is equal to the input sample value and the other 

for those cases, where these two values are not equal. Both these methods are limited by 

the number of input data samples.  



 22 

 

Figure 2-11     Sine Function Regressions 

First way how to implement the MAE calculation (MAE1) is to calculate the value of 

MAE for each point of the regression related to each value of input data points. This 

method is suitable for those regressions, where the value of input data and regression data 

is not equal (e.g. GPR and RF). If these values equal (e.g. IDW, LI), the unfair treatment 

towards such a regression is introduced in relation towards the other regression types. If 

the set of input data points equals the set of regression-based points, the overall MAE 

would be 0 (see Figure 2-12, left). If the input data set equals in e.g. 20 % of the data 

samples, the MAE would have 20 % advantage when compared to the other regression 

types and therefore their comparison would not be accurate. 

The second way of MAE calculation (MAE2) is suitable for methods where the value 

of input data and regression data is equal (e.g. IDW and LI). It calculates the value of 

MAE while ignoring the values on reference data coordinates (see Figure 2-12, right). 

This fact limits the utilization possibilities of this approach based on the amount of data 

that are considered as reference data. If 100 % of the considered points for the regression 

are also the reference data, removing all reference data coordinates from the calculation 

leaves empty set for MAE2 calculation. High (relative) density of reference data limit the 

accuracy of the method. See Figure 2-13 for the algorithm describing both types of MAE 

calculation. 

  

Figure 2-12     Comparison of MAE1 (left) and MAE2 (right) 
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Figure 2-13     MAE Calculation Approaches (MAE1, MAE2) 

The algorithm randomly chooses samples from the input data based on the selected 

random generator seed and selected percentage of data. The chosen samples are 

considered reference points and the regression is realized with the original time as a grid. 

MAE1 is calculated across all data points. The mask is derived from the randomly chosen 

permutation of samples and its complement is used to create new time basis with 

corresponding parameter. The algorithm applies the mask complement on the previously 

realized regression. MAE2 is calculated from the reduced (new) parameter and reduced 

regression result, therefore it does not consider the reference points. 
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3 DATA SOURCES 

In this chapter the two primary sources of data are presented and evaluated. First, 

RTR-Netztest application, testing procedure and test results are presented, followed by 

an overview of NEMO by Keysight tool. The RTR-Netztest provides a crowdsource-

based database while NEMO system is an exact (drive) testing tool. 

Drive-testing describes classic testing, when a test attendant operates a testing 

equipment and measures the network parameters at the defined time and space, either 

statically, while walking or driving. The results of drive test are always accurate (if done 

properly) but they offer the information only in time and space when/where the 

measurement was realized. 

Crowdsourcing is a technique, which utilizes the data provided by “the crowd”. Vast 

databases of data gathered via data-mining application (in our case RTR NetzTest) 

provides the test results with high diversity (spatial, temporal and qualitative). Using such 

database to determine the parameters offers savings of time, effort and money for the 

measurement realization and equipment maintenance in exchange for more demanding 

data processing. 

3.1 RTR-NETZTEST 

In this chapter the RTR-NetTest tool is described. It is the tool used as a main source of 

crowdsourced data that are later processed. This chapter includes the application 

overview, its possibilities, settings, viewing option, RMBT test procedure, test outcomes 

and divides the set of locations based on the test availability and results. 

3.1.1 APPLICATION PROPERTIES AND INTERFACE 

The RTR-NetTest (officially Netztest in German) is an open-data tool provided by RTR 

(Austrian Regulator Authority for Broadcasting and Telecommunications) to inform a 

user about service qualities in terms of his internet connection. It gives information 

including current upload, download, ping, signal strength, background data transmission, 

IP address, location etc. Also, it enables the user to access the previous measurement 

statistics, map views and overall summary characterizing the connection characteristics 

provided by operator. All the measured data are stored within the RTR’s database [18]. 

The RTR-NetTest may be downloaded for free as an application in Google Play 

Store as an Android-App in version 2.2, which is available for devices with Android 4.0 

("Ice Cream Sandwich") or above. The iOS-App may be downloaded from Apple iTunes-

Store and is available for devices with iOS 7.0 or above. The test is also available in web 

browser version for devices with other mobile operating systems or while using desktop 

computers. The example of the Android-App version design is shown in Figure 3-1. 
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Figure 3-1       RTR-Netztest Android Design  – Home Screen (Left), Ongoing Test (Middle) and 

Test Result (Right); Screenshot from the RTR-NetTest Android-App 

The home screen (see Figure 3-1, left) gives the information about network’s ID (internet 

connection, mobile data/WLAN), current data transmission (upload and download), IP 

address, location etc. Also, it enables the user to access the menu. In menu, History of 

user’s measurement can be found, followed by Map of all measurements of all users and 

Statistics. In both Maps and Statistics, the user may filter the displayed data based on his 

interest. Menu includes Help, Information and Settings buttons as well. The “START” 

button is located at the bottom of the screen to enable the test procedure to start. When 

pressed, the application does everything on its own without any interaction from the user 

needed. First, the application runs speed tests (see Figure 3-1, middle), then it runs a 

Quality of Service (QoS) tests. Once all tests are completed the results are shown in the 

detailed test results tables (example of one of the result tables is shown in Figure 3-1, 

right). 

The Android-App requires several permissions from the device including device’s 

location to gain the GPS coordinates of the device and for the devices with Android 8.1 

and above to gain the WLAN identifiers SSID (Service Set Identifier), BSSID (Basic 

Service Set Identifier). Additional permissions include telephone status and identity to be 

able to recognize the dual SIM devices, Google service configuration to read 

configuration data for the presentation of Google maps used in the overall result part of 

the app, battery access to prevent the phone from turning into sleeping mode during the 

test and to grant full network access and access to Wi-Fi connections in order to set the 

network’s parameters. Disabling any of these permissions could resolve in reduction of 

the app’s functionality. 
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3.1.2 RMBT TEST PROCESS 

The following chapter describes the testing process of the RTR NetTest application called 

RTR Multithreaded Broadband Test (RMBT). The description of the testing process is 

important to understand the functionality of the algorithm, which is the core aspect of the 

whole application. 

The test itself is supposed to gain a precise measurement of several quantities over 

the whole available bandwidth of current connection by transferring a multiple parallel 

data streams over separate Transmission Control Protocol (TCP) connections within a 

specific time span. The data for each of the multiple parallel data stream are generated 

with high entropy and are not allowed to be compressed during the stream. To prevent 

most of the possible conflicts with firewalls and proxy servers the TLS (Transport Layer 

Security) connection is used. The test procedure may be described in 7 steps. These steps 

are processed one by one and do not overlap. See Figure 3-2. 

 

Figure 3-2       RMBT Test Process Diagram 

Step 1: Initialization begins with the client sending a request, trying to connect to 

the control server which is acknowledged by the control server and responded with 

connection establishment information. The client sends then a test request to the control 

server. The control server selects the RMBT server for testing, generates and sends the 

token consisting of unique ID, time information of the test and HMAC key identifying 

the user to the RMBT server, and sends it to the user along with additional test parameters. 

The client then opens a number of TCP connections to the RMBT server using the token. 

Step 2: Downlink pre-test is used to ensure proper internet connection to the RMBT 

server. The pre-test estimates bandwidth, which determines the number of parallel 

connections. The client requests a data block consisting of random data with high entropy 

which is then sent by the server. The client sends another request after receiving the whole 

data block. In case the time of the test did not run out, the server sends another block of 

double the size of the previous one. The whole data block will be sent even after the time 

of the test has ran out. In case less than four data blocks were sent during pre-test, all 

connections except one are terminated and the downlink test will be carried out only using 

the remaining link. 

Step 3: Latency test consists of client sending pings to the server, which are 

responded by the RMBT. Both sides measure the time between sending and receiving the 

ping message. 

During Step 4: Downlink RMBT all established connections in Step 1 are being used 

to receive data blocks of the same size by the client until the time runs out and the last 
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chunk is received. The downlink data rate is then calculated according to time information 

and the number of chunks received. 

Step 5: Uplink pre-test proceeds similarly to the Step 2, only with the RMBT server 

as the receiver and the client as the sender. Either the connections remain opened after 

Step 4, or the new ones are being established. Each sent block’s size is double compared 

to the previous one. The established connections remain open for the Step 6. 

Step 6: Uplink RMBT test operates analogous to the downlink RMBT. The client 

sends packets of data to the server until the test time runs out, after which the termination 

byte is sent signalling the end of the test. During the test the server additionally sends the 

time information about the received data and after receiving the termination byte the time 

information about the whole test is sent to the client. 

Step 7: Finalization consists of the client sending the measured data to the control 

server, where all the measurements are being stored. 

After the test is finished the measured values are displayed within the application (or 

the browser depending on the measuring platform). The user may display all his 

measurements in the app history to compare the progress over time and/or display the 

history and statistics of all users. This option will be described in the following chapter 

in detail. 

3.1.3 MAPS, STATISTICS AND TEST’S EVALUATION 

The RTR-NetTest allows users to display measured results in statistics manner as well as 

in map view. In this chapter the possible filters provided by the app are described and 

presented by set of maps and app snips, widened by the statistics views. Based on this, 

further evaluation of the application and extent of the current measurement possibilities 

will be provided. 

The map view consists of four basic display options. These are heat maps (sum of 

several measurements taken in a small geographical area), points (either one measurement 

or a combination of measurements taken at the same GPS position), cadastral 

communities and automatic (points at high zoom level, heatmap at low zoom level). All 

of them have the same map key (separate for each of measured quantities), which is a 

colour scale from red through yellow to green (standing for highest value). The map views 

options are extended by large view/small view to change the map window size, 

plus/minus buttons to bring points closer/farther from the user and list of base maps, 

including OpenStreetMap, Basemap.at (standard, high dpi, grey and satellite option) and 

Bing Maps to allow the user to choose the map style and quality that is desired. For 

visualisation see Figure 3-3. The accuracy of the viewed result depends on devices 

participating in the test and the location determining technology which it uses. These may 

be GPS (the most accurate), determining through the network (WLAN or mobile, only 

rough results) or via IP address (may not be very useful). 
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Figure 3-3       Different Map View Options (Heat Map – left, Points – middle, Cadastral 

Communities – right) [18] 

The main filter division of the map view is based on the quantity of interest. These are 

upload, download, ping and signal. Each of them is then divided based on the measuring 

platform into mobile, WLAN (app), browser and “all” (standing for the combination of 

all previously named platforms). The measurements form outside Austria are shown as 

well. There is an option of selecting the operator of interest between A1 AT, Hutchison 

Drei, T-Mobile AT and all network operators measured. The choice between 2G, 3G or 

4G network generations is present with option of displaying all measurements or their 

combinations. Further, the filter may be specified by a time range for the last day, week, 

1, 3 or 6 months, 1, 2, 4 or 8 years. The last quantity that may be used to specify the 

viewed search is median and percentile (quantil).  

The value of median represents the value of the middle results regardless of the result 

values [38], in other words the value of median has the same number of results greater 

than itself and smaller than itself. A percentile indicates a number of percent for which 

that percentage of results fall below that number. For example, 20 % percentile means the 

result is higher than 20 % of all results [39]. The application includes 20 and 80 percentile 

options. This is shown in Figure 3-4, Figure 3-5 and Figure 3-6, where the comparison of 

measured results with a different percentile is captured in the form of statistic view. With 

higher amount of “worse” results the average uplink/downlink speed decreases.  
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Figure 3-4       Comparison of Statistics - Percentile 20 % 

 

Figure 3-5       Comparison of Statistics - Percentile 50 % 

 

Figure 3-6       Comparison of Statistics - Percentile 80 % 

It is important to mention, that neither the percentile indicator nor the filter’s possibilities 

capture the quality of coverage by specific operator or the quality of their network 

capabilities. The required data do not include some crucial information e.g. user’s tariff 

limitation (maximum download/upload speed that is paid for). Also, the connection speed 

may be affected by other factors than network itself e.g. device capabilities (device with 

a particularly good/bad throughput), technology of connection (2G, 3G, 4G) or user’s 

location. Any higher amount of measurements in a specific place with particularly good 

(e.g. roof top) of bad (e.g. basement) reception conditions may influence the final results. 

The statistics view allows the user to use the same filters as the maps do – the data 

may be filtered by the type (mobile, WLAN, browser), time span (including amount of 

time and the possibility of adding the end date), technology (2G, 3G, 4G, mixed), quantile 

and location accuracy. In addition, the filters allow to choose the operators based on their 

country of origin (e.g. Austria) and the region in it (see Figure 3-4, where in the header 

the filter is set for operators from Austria and region of Vienna). The filter may also 

display the statistics based on the device, which is used for the test from which the map 

of measurements done by the same device type may be gained. Additionally, the filters 
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offer the option of advanced search, where each value may be even more thoroughly 

specified and may be set to a fixed data range that is the most convenient for the user. 

These settings may also be displayed in the form of histogram with user defined step size 

and limits from which the set of involved test results may be found (see Figure 3-7, where 

the filter is set the same as for Figure 3-4, specialized for Samsung Galaxy S8, 3 months 

span).  

 

Figure 3-7       Histogram Viewing Mode 

In Figure 3-8, the statistics show top 6 devices used for the test in last 3 months (the same 

filter setting as for Figure 3-4). Based on these statistics it is possible to assume that users 

with more expensive and newer-model devices (e.g. Samsung Galaxy S8, S7 phones or 

later iPhones) also pay for more expensive data tariffs, since their download/upload is 

higher than the one of the users with less expensive or older devices (e.g. Galaxy S5 

statistics (with same filter applied) state 35 Mbps for download, 38 Mbps for upload). 

Also, these devices have a better throughput and therefore are less limiting during the 

measurement. Additionally, the device settings and software version may have influence 

on the test result. This may present one of the challenges later in this thesis. 

 

Figure 3-8       Top 6 Devices Statistics 

To describe the measurement coverage of Austria the Figure 3-9 is used. It captures the 

map of Austria with results of the mobile download measurements during the period of 

three months displayed on it. The result is shown for 4G connection and for all local 

network providers. The areas with high population density have a greater amount of 

measurements than areas with lower population density. This especially holds for the 

areas around the big cities (e.g. Vienna and Graz). Also, the areas around the main 

transport routes (e.g. highways and railroads) are thoroughly measured. This trend may 

be for example explained by frequent measurements taken by the operators and can be 

seen in Figure 3-10 (the same filters as for Figure 3-4). A similar trend can be observed 

in detail of the main Austrian cities. In the detail capturing Vienna (see Figure 3-10) the 

traffic connections and mainly populated areas have a bigger amount of measurements. 

On the other hand, the mountain areas (e.g. the Alps) are due to lower population density 
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rarely measured, have lower network coverage quality and are mostly not displayed in 

the maps/statistics due to the percentile filter, which does not allow to display 20 % of 

the “worst” measurements. The tests from locations with no service cannot be finished 

and therefore cannot be stored on the server nor displayed.  

 

Figure 3-9       Measurement Coverage of Austria 

  

Figure 3-10     Measurement Coverage Demonstration (Left - Innsbruck and Alps, Right - Vienna 

and Main Rotes) 

Based on the analysis above the areas may be divided into 5 categories depending on the 

amount of measurements per area unit. These categories are characterized below: 

City areas – areas characterized by high density of measurements, where the vast 

majority of tests is realized via 4G LTE due to high density of user devices. The user 

devices are modern, new models which support newest technologies and highest 

connection speeds. The connection speed in these areas is not limited by general signal 

quality or user device, but by network load, tariff limitation or measurement location 

(open-space, underground tunnel or elevator). The network load may vary depending on 
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the time of the day, local events (sport matches, concerts) etc. 

Rural and town areas – areas with significantly smaller density of measurements 

than city areas, but still containing a significant number of measurements in populated 

areas. The network coverage is weaker than in city areas but 4G is still available. There 

is lower network load. User devices tend to be older by average, therefore number of 

measurements via older technologies is higher. The connection speed is limited by user 

device capability and tariff limitation. 

Main communication routes – areas with locally frequent measurements along the 

path, either a road or railroad. The network coverage depends strongly on the location, 

but due to the frequency of the measurements the connection speed is known along the 

path, probably due to measurements performed by the operator. Using the knowledge of 

the connection capabilities along the road, it might be possible to calculate the connection 

speed in the nearby areas. 

Flatland unpopulated areas – areas with no or almost no measurements with the 

exception of communication routes, with unknown signal strength or network 

capabilities. Some technologies (LTE) may not be available in these areas. Due to the 

lack of signal obstructions, it is possible to calculate the network connection speed based 

on the network quality on nearby road or in nearby town. The signal behaves similarly in 

all directions. There is a possibility of ensuring additional measurements. 

Highland, forested areas – areas with no or almost no measurements with the 

exception of communication routes, with unknown signal strength or network 

capabilities. Some technologies (LTE) may not be available in these areas. Due to the 

presence of various natural obstructions, it may be impossible to accurately predict the 

network quality in these areas.  

This characteristic is supported by the officially published coverage maps of all 

previously mentioned Austrian providers (see Figure 3-11, Figure 3-12 and Figure 3-13). 

 

Figure 3-11     Drei Austria - Map of LTE Coverage (LTE - up to 150 Mbps) [40] 
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Figure 3-12     T-Mobile AT - Map of Coverage [41] 

 

 

Figure 3-13     A1 Austria - Map of Coverage [42] 
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3.1.4 TEST OUTCOME DATA 

As a result of RTR-NetTest measurement the set of data is acquired. In this chapter, the 

type, definition and form of these data will be presented. 

The RTR Multithreaded Broadband Test is capable of measuring a large number of 

quantities, which are saved and available in the application on the client’s device, online 

on the webpage of RTR and as Open Data available for download. Among the variety of 

measured parameters, only the most important and impactful data for this thesis will be 

presented and described. The most important parameters measured by the test are speed 

of download, which is the speed of transferring data to user’s device from another device 

[43], speed of upload, which is the speed at which the data are being transferred from the 

user’s device to another device, ping or latency, which in our case means the delay 

between the time of sending a message to the server and the time of receiving a response 

signal strength [44], which is a power of the signal measured at the user’s device, in case 

of RTR test referring to RSSI or RSRP measurement [45]. The signal strength for mobile 

phones usually ranges from -30 dBm to -110 dBm [46]. All measured parameters and 

their descriptions can be found on the NetTest website [18] with full test reports. Also, 

the website presents the way the results can be requested either in CSV format most 

commonly used in Microsoft Excel, or as JSON (JavaScript Object Notation) Open Data 

format. There are two categories of test output, where the first one consists of a single 

string or a number and the other one as an array of multiple variables (for example data 

volume over time). The chosen single value results are shown and described in Table 1. 

Table 1     Chosen Single Value Results 

Parameter Description Type Example 

open_test_uuid The unique identification of the 

test 

String "O10b9e95c-

d47a-4328-b2ff-

82ef24c8e6fe" 

model Type of the used device String “Sony Xperia 

Tablet Z LTE” 

platform Platform on which the test was 

run 

String “Android” 

network_type Type of the network during test String “MOBILE” 

cat_technology Category of the technology 

used during test 

String “3G” 

time UTC date and time of the start 

of the test 

String "2013-07-15 

01:56" 

country_location Country where the test was run String “AT” 

lat Latitude of the device’s 

position 

Numeric 48.2029025 

long Longitude of the device’s 

position  

Numeric 16.3967842 
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loc_accuracy Estimation of the positioning 

accuracy 

Numeric 5356 

signal_strength Estimated signal strength 

during the measurement in 

dBm 

Numeric -55 

download_kbit Estimated download speed in 

kbps 

Numeric 6904 

upload_kbit Estimated upload speed in kbps Numeric 712 

distance Distance that the user moved 

during the course of the 

measurement in meters 

Numeric 667.16 

 

The second category of the measurements presents the information about variables that 

changed over the duration of the test. The arrays are in JSON Array format to comply 

with the international standards. Table 2 highlights the array-type results of the 

measurement important for this thesis. The results are available thread wise (per 

established TCP connection during testing) and as a total. 

Table 2     Array-Type Results of the Measurement 

Name  Explanation Subarrays Subarray’s meaning 

download Data about 

downloaded 

bytes during the 

test  

time_elapsed Time elapsed since the beginning of 

the test 

bytes_total sum of bytes transferred since the 

start of the test 

upload Data about 

uploaded bytes 

during the test 

time_elapsed Time elapsed since the beginning of 

the test 

bytes_total sum of bytes transferred since the 

start of the test 

signal Information 

about the 

measured signal 

strength during 

the test 

time_elapsed Time elapsed since the beginning of 

the test 

cat_technology Category of the technology used 

during test (“4G”) 

signal_strength Estimated signal strength during the 

measurement in dBm 

lte_rsrq Signal quality in dB in case of LTE 

network 

lte_rsrp Signal strength in dBm in case of 

LTE network 
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cell_info_4G Additional information in case of 

LTE network (band, cell identity 

etc.) 

location Information 

about device’s 

location 

throughout the 

test 

time_elapsed  Time elapsed since the beginning of 

the test 

loc_accuracy Estimation of the positioning 

accuracy 

long Longitude 

lat Latitude 

altitude Altitude (height above sea level) in 

meters 

speed Current speed in meters per second 

bearing Direction in which the device is 

moving in degrees, relative to the 

true north 

 

As a part of the test, Quality of Service (QoS) measurements are also realized to establish, 

whether the connection supports various services. “Voice over IP” test checks whether 

the VoIP connection is possible. It is supported only for Android version of the 

application. “Unmodified content” test checks, whether the content (picture) downloaded 

from the server is identical to the content on the server. The test is unsuccessful if the data 

on the device differs from the original data. “Web page” test tests, whether and how fast 

the content of the website is downloaded and viewed on the user device. “Transparent 

connection” test checks, whether the connection between the client and server is direct, 

or whether the intervening entity (e.g. proxy) changes the request (filters or alters the 

data). “DNS” test checks whether the website addresses are successfully converted into 

addresses using DNS system (Domain Name System). “TCP” test checks whether the 

connection is possible using special TCP ports. “UDP” test checks whether the 

connection is possible using special UDP ports. 

The test offers more detailed version of the test measuring additional quantities. 

These quantities are not important to this thesis therefore their specification is not 

discussed here. 

Within the scope of the open-data the source code of the test is available online [18]. 

Other sources of crowdsource-based data 

Aside from RTR-Netztest, other open-data speed test’s results are available for analysis 

within the university resources but are not focused on Austria. All of them are based on 

the same software as Netztest, which was formerly developed by Alladin [47], then owned 

by Specure, now Martes-Specure [48]. These open-data tests are operated by regulatory 

bodies from across the Europe and include for example AKOS from Slovenia (AKOS 

Test Net [49]), RATEL from Serbia (RATEL NetTest [50]) or ILR from Luxemburg 

(checkmynet [51]). 
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3.2 NEMO FROM KEYSIGHT  

In this chapter the Keysight NEMO system is presented. The measurement setup, 

possibilities and available data are described, and the challenges discussed. The algorithm 

matching results of two separate measurements is shown and discussed. 

3.2.1 NEMO SYSTEM OVERVIEW 

The Nemo from Keysight is a complete setup for measurement and benchmarking various 

wireless technologies, including the option of real-time, indoor and outdoor 

measurements. The set-up is capable of testing and recording any desired drive-test 

measurements and the user experience for various applications and parameters. Besides 

the usual testing metrices including uplink, downlink, ping etc. the system features 

include the possibility to measure e.g. voice quality, email processing, YouTube 

streaming, http data transfer, SMS and MMS messaging, HTML browsing, audio quality 

tests etc. [52]. 

The measurement set-up consists of a backpack carrying the whole system, including 

up to 8 measuring devices and USB batteries (see Figure 3-14). The system may be 

operated for up to 10 hours. The typically used slave devices within the measurement set-

up are e.g. Samsung Galaxy S9 or S8 cell phones, all being operated by a single master 

device. The master device, e.g. tablet, is used to send commands via Bluetooth connection 

to the measuring units. The results of the tests are then uploaded to FTP/HTTP server 

from the master unit or downloaded directly from the slave units [53]. 

 

Figure 3-14     NEMO Measuring Kit [53] 

The data collected by the system may be later analysed using Keysight’s Nemo post-

processing tools or their downloaded version may be processed locally, depending on the 

user’s needs and requirements. The primary measurement may be obtained as open ASCII 

file format and may be then converted into required data format for further processing 

(e.g. .mat format). 
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3.2.2 AVAILABLE DATA 

The available data include the records of nine repetitions of network performance 

measurement in the centre of Vienna. For these measurements, the identity information 

of the operator is not available. The data are stored in .mat format and are structured in 

the structure of structures. The system conducts several types of measurements 

independently, saving all quantities separately. The resulting measured parameters 

correspond to immediate values of the measured quantity. The individual measurements 

consist of the following measurements: Application List (APPLIST), Packet Channel 

Information (PCHI), Media Access Control (MAC) layer throughput (MACRATE), 

MAC layer throughput uplink (MACRATEU), Physical Downlink Shared Channel 

(PDSCH), Physical Uplink Shared Channel (PUSCH), Data Rate (DRATE), Packet Link 

Adaptation Info for Downlink (PLAID), Packet Link Adaptation Info for Uplink 

(PLAIU), Channel Information (CHI), Random Access Channel Information (RACHI), 

Cell Measurement (CELLMEAS), Multiple Input Multiple Output (MIMO) measurement 

(MIMOMEAS), Transmitter (TX) Power Control (TXPC), Carrier per Interference (CI), 

Timing Advance (TAD), Data Connection Attempt (DAA), Channel Quality Indicator 

(CQI), Peer-to-Peer Protocol Layer Throughput (PPPRATE), Radio Link Control Layer 

Throughput (RLCRATE), External Application Launch (APP), and Global Navigation 

System information (GPS). Each measurement is available as a structure, containing a 

number of arrays with measured quantities. Table 3 contains the list of quantities of 

interest for this thesis. 

Table 3     List of selected outputs of NEMO measurement 

Measurement Quantity 

name 

Relevance Description 

GPS long Geographic 

longitude 

Accurate to 10-6 longitude 

degrees 

GPS lat Geographic latitude Accurate to 10-6 longitude 

degrees 

GPS times Timestamp of GPS 

coordinates 

Corresponding time 

information to GPS 

coordinates, irregular 

intervals varying from 0.5 to 

38 s with mean 1 s, accurate 

to 10-3 s 

CELLMEAS RSRP RSRP value Accurate to 0.1 dBm 

CELLMEAS RSRQ RSRQ value Accurate to 0.1 dBm 

CELLMEAS RSSI RSSI value Accurate to 0.1 dBm 

CELLMEAS times Timestamp of 

CELLMEAS 

values 

Corresponding time 

information to CELLMEAS 

values, irregular intervals 

varying from 0.916 to 10.2 s 

with mean 1.016 s, accurate 
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to 10-3 s 

DRATE DLrate Application layer 

downlink data rate 

In bits per second 

DRATE times Timestamp of 

DRATE values 

Corresponding time 

information to DRATE 

values, irregular intervals 

varying from 0.45 to 0.66 s, 

accurate to 10-3 s 

 

The table shows, that the individual measurements function independently and to match 

a value from CELLMEAS measurement to a GPS coordinates, it is necessary to find a 

way to synchronize the time axes (see Figure 3-15). Assuming that all measurements 

started at the same moment and since the intervals between samples are short, it is 

possible to find the closest time values for such matching. Also, the GPS measurements 

are taken less frequently than CELLMEAS measurements (24337 RSRP samples over all 

9 measurements), resulting in reduced number of 2D CELLMEAS samples (11518) 

compared to 1D. Alternatively, it is possible to interpolate the nearest GPS times to find 

the corresponding GPS coordinates for every CELLMEAS value, yet since the density of 

samples is sufficiently high, this approach was not implemented. 

 

Figure 3-15     Time to GPS Matching Algorithm 

The algorithm shown above matches RSRP (or other selected quantity) values from 

CELLMEAS measurement to GPS measurement by comparing times of each 

measurement's sample (function “getRSRPxy”). For every time sample from GPS 

measurement (first for loop) the algorithm checks all time samples from CELLMEAS 

measurement (second for loop) and iteratively finds the closest samples from each 

measurement. With each iteration of successfully finding new closest value, RSRP value 

corresponding to the new closest sample from CELLMEAS measurement is assigned to 
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the current GPS measurement. Additionally, the algorithm checks for duplicate 

LATTITUDE-LONGITUDE pairs and in case of the repeated measurement at the same 

coordinates, leaves only the first entry. In practice, this step removes a few samples at the 

beginning of the measurement, when the measurement setup is being finalized with 

already running NEMO system while staying at the same GPS position. As the result, to 

every unique GPS (latitude, longitude) sample is assigned a single RSRP value with time 

information, resulting into 11518 samples over all 9 measurements.  
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4 1D ANALYSIS 

In this chapter the utilization of several regression methods onto a presented input data is 

described. Each of the regression methods was implemented in Matlab and later 

compared to the original dataset. At the end of the chapter the mutual comparison is 

discussed and evaluated for purposes of 2D regression utilization. 

4.1 INPUT DATA 

For the purpose of comparing the individual methods, each of the regressions was first 

based on the time domain measurements rather than location-based measurements to 

reduce the problem to a single dimension (1D). The evaluation of the methods in time 

dimension provides the information in the whole range of the axis. The data were 

measured using Keysight NEMO [52] devices on the route through the centre of Vienna 

and were provided by the TU Vienna. In order to get enough data points, the same test 

was taken repeatedly while measuring the required parameters along the same path 

through the centre of Vienna, resulting in 9 repetitions of the test. For example, all 

measurements of RSRP in a single graph are shown in Figure 4-1, one measurement of 

RSRP is shown in Figure 4-2. 

 

Figure 4-1       Projection of 9 Input Measurements 

 

Figure 4-2       Projection of Single Input Measurement 
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The normalization from 0 to 1 for the time axis was made for each measurement to 

synchronize the start and the end of the timeline due to variations in the duration of the 

measurements while the path remained the same. Although this procedure resolves the 

varying length of the test duration problem, it does not suppress all the distortions in the 

data. For example, the data were acquired while walking along the approximately the 

same route nine times. However, slight differences in the path, together with the changing 

speed of the walker during the test caused some shifts in between the individual tests. See 

Figure 4-3, capturing the shift of RSRP measurement between measurements number 2 

and 9. The maximum RSRP is shifted by approximately 0.05 of normalized time from 

each other. The difference between RSRP level at t = 0.1 is 11.6 dBm (Measurement 2, 

RSRP = -80.7 dBm and measurement 9 RSRP = -92.3 dBm). 

 

Figure 4-3       Example of the Shift between Measurements 

These distortions could not be removed without further processing and adjusting the data, 

which could not be done without compromising the data information. Therefore, the 

measurement data fusion does not give any other information than the average 

information in a specific part of the test (e.g. in the middle of the route/time which the 

test took). In this case this fact is not a concern, since the fusion of the measurements in 

1D is only done to gain more data samples so that more regression realizations can be 

created. Applying the regression to each measurement realization results in gaining more 

reliable error matric by averaging the resulting calculated errors. These distortion matters 

do not apply to the 2D regression solutions, where neither the speed of the walker nor the 

changes in the route are relevant due to its GPS-only dependency and time variance 

independency. Each measurement consists of over 2500 input samples (see Table 4 for 

the number of samples in CELLMEAS measurement for RSRP). 

Table 4     Number of RSRP Samples per Measurement 

Meas. 

Number 
1 2 3 4 5 6 7 8 9 

Number 

of Samples 
2532 2724 2739 2757 2620 2837 2543 2816 2769 
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4.2 1D REGRESSION BASIS 

There are two available bases for 1D regression. The first option is to analyse the data in 

time, the other is by considering the distance between the measured samples. The 

comparison of the two methods, both in basic and normalized form, are evaluated within 

this chapter. As the best-fitting result, the normalized time option is used for 1D analysis. 

It is easily implemented, since each measurement (and sample) already contains a time 

stamp, from which the basis is easily derived. To find the distance basis, recalculation 

from latitude and longitude data to distance in meters is required.  

The recalculation from lat/long information to distance has several widely known 

solutions. The first and the easiest to implement is calculating Pythagorian or Euclidian 

distance between the samples. This solution offers fast and easy recalculation but 

introduces an error since it does not account for the spherical surface of the Earth. 

Haversine [54] formula is a method used to calculate the distance on a sphere. Vincenty’s 

formula [55] is an advanced, iterative method used in geodesy to measure the distance 

between two points on a spheroid. 

The chosen solution for the recalculation is the Haversine formula with spherical 

parameters adjusted to Austrian (Viennese) geographical position. The latitude of Vienna 

is 48.2 degrees north with approximately 200 meters above sea level, resulting in local 

Earth radius of 𝑟 = 6366.5 km. These parameters overcome the fact, that Earth is an 

ellipsoid by considering the parameters above and limiting the method’s accuracy to 

latitude-wise similar locations. The Haversine formula for distance between point 1 and 

point 2 is shown in Equation 4.1: 

𝑑 = 2 ∙ 𝑟 ∙ arcsin (√𝑠𝑖𝑛2 (
𝜑1 − 𝜑2

2
) + 𝑐𝑜𝑠(𝜑1) ∙ 𝑐𝑜𝑠(𝜑2) ∙ 𝑠𝑖𝑛2 (

𝜆1 − 𝜆2

2
)) 4.1 

Where 𝜑
1
 and 𝜑

2
 refer to the latitude point 1 and point 2 in degrees and 𝜆1 and 𝜆2 refer 

to the longitude of point 1 and point 2 in degrees. The implemented algorithm for distance 

basis calculation takes latitude and longitude arrays as input and returns corresponding 

arrays containing distances between the neighbouring samples, as well as cumulative 

distance between each sample and the current one. First value in both distance and 

cumulative distance arrays are 0. The algorithm then iteratively calculates the Haversine 

distance from latitude and longitude coordinates of the current and previous samples until 

all distances are calculated. The cumulative distance 𝑐𝑑 is a sum of all previous Haversine 

distances, as shown in Equation 4.2: 

𝑐𝑑𝑖 = ∑ 𝑑𝑘

𝑖

𝑘=1

 4.2 

Figure 4-4 (left) shows the comparison of measurement 1 and measurement 9 with 

distance basis. Due to the varying noise and path of the two measurements, the length of 

the measurements significantly varies (3.87 km in measurement 1 and 3.10 km in 

measurement 9), resulting in over 20 % distance difference between the two 

measurements. Normalizing the distance using rescaling function, which is implemented 

in Matlab, is shown in Figure 4-4 (right). This method compensates the length variation, 

but introduces the bias within the axis, as clearly seen between 0.3 and 0.4 x-axis values. 
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This bias is randomly increased and decreased based on the varying noise strength and 

differences in paths between individual measurements, yielding uncertain results. 

 

Figure 4-4       Example of Distance Basis 

The second solution for 1D basis is plotting the data in time, while setting the first time 

sample to zero. This solution is shown in Figure 4-5 (left) and clearly introduces the same 

error as the distance base, although on the smaller scale (the difference in duration is 

119 seconds between the two measurements, resulting in 8 % of time difference). Figure 

4-5 (right) shows the measurements on the normalized time axis. The figure shows the 

smallest distortions between the measurements, as the time variations within the 

measurements were almost uniformly spread throughout the duration of each 

measurement. 

 

Figure 4-5       Example of Time Basis 

After comparing the four possible solutions for x-axis in 1D comparison, normalized time 

is considered for the rest of this chapter as the method with the highest concurrency of 

the measured quantity across the whole range of the axis. 
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4.3 1D REGRESSIONS 

In this chapter a set of regression methods used to predict the data values in the time 

intervals for which there are no measurements available is presented. This process is 

realized as a 1D utilization of regression methods, that are to be evaluated and the results 

of their performance serves as a base for 2D utilization, leading to the creation of 2D 

coverage maps of network parameters.  

The introduction to each method and its basic theory may be found in Chapter 2.2, 

followed by Chapter 2.3, where the MAE definition and calculation is introduced. MAE 

serves as a basic metric of evaluation of the performance and comparison of all the 

methods. This evaluation is to be found at the end of this Chapter. 

4.3.1 LINEAR INTERPOLATION 

As stated in Chapter 2.2, the linear interpolation is based on establishing the unknown 

value points from the set of known points geometrically by connecting two adjacent 

points in plane by the straight line, as “connect the dots” algorithm. 

This technique itself does not predict any additional points outside of the input data 

range. There is a built-in function for linear interpolation implemented in Matlab called 

interp1(). This function interpolates all original points and then stops. The prediction was 

then implemented as an algorithm considering the last known point as the constant 

prediction value. The practical utilization of this extension is to ensure the same vector 

length at the output as the input grid. See Figure 4-6 for an example of linear interpolation 

applied to a training data while the amount of input data was changing – input data 

thinning (100 %, 10 % and 1 %).  

 

Figure 4-6       LI - Input Data Thinning 

To evaluate the method, MAE calculation is utilized in the same manner as described 

in Chapter 2.3. Linear interpolation has the same value of regression points as are the 

values of training samples, therefore the MAE2 approach of calculation is used to 

evaluate this method. In Figure 4-7, the comparison of MAE1 and MAE2 may be found. 

With the increasing number of input samples, MAE1 approach tends to decrease the MAE 

value towards zero. While the set of regression points is equal to the set of input points, 
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the value of MAE is zero, which may cause a misinterpretation of results. The MAE2 

neglects this problem and therefore it is the preferred method for the comparison of this 

method to another methods. The same approach is used to evaluate the IDW regression. 

 

Figure 4-7       LI - MAE Comparison 

To ensure the precision and validity of linear interpolation MAE calculation, the 

regression algorithm was run to evaluate MAE for each sample density across all 9 

measurements 5 times while using a different random generator seed to pick different 

samples and ensure reproducibility. Each 5 different, randomly picked sets of input 

samples for each measurement were then averaged to acquire statistically more reliable 

MAE calculation result. All nine measurements were then averaged to gain the final MAE 

dependency on the number of input data, as shown in previous figure. The MAE of LI 

applied to used data is 1.5 dB at 30 % of input data and less while using more than 30 % 

of input data. 

4.3.2 SMOOTHING TECHNIQUES 

The techniques not generating any new samples will be discussed in the following text. 

First, the exponential smoothing’s utilization as a regression method is tested, then 

exponential smoothing and other smoothing techniques are evaluated as noise-reduction 

techniques on noisy sine simulation. Reducing the noise form the measurement is utilized 

in later chapters of this thesis combined with regression techniques such as IDW, which 

return the exact values of the reference points at their coordinates as the output. These 

techniques will be evaluated by applying the smoothening to the noisy sine function with 

MAE calculation with sine function (without noise) as reference. Such approach is 

impossible to apply directly on NEMO data, since there is no noiseless reference 

available. 

EXPONENTIAL SMOOTHING 

Exponential smoothing (ES) is a technique for smoothing time series sample-by-sample. 

Compared to the other regressions, ES does not create new data points (see Chapter 2.2). 

See Figure 4-8 for an example of ES, while changing values of alpha parameter (for fixed 

value of parameter beta), applied to the full set of input data gained from NEMO 

measurements. 
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Figure 4-8       Exponential Smoothing Example 

The algorithm weights the past observations with the decreasing weight over time and 

based on the chosen parameters, assigns the new point as a combination of the new value 

and the value from the past. The name exponential refers to the exponentially decreasing 

weight of the sample points from the past on the current sample. 

The mean average error was calculated based on the number of used samples across 

all 9 measurements for 5 different seeds the same way as it was for linear interpolation. 

Since the exponential smoothing is not able to generate new samples, linear interpolation 

was used to connect the estimated points. The sweep was realized across both alpha and 

beta values from 0 to 1 with 0.1 step and the results were compared. With the MAE2 

comparison, the smallest error was measured for each entry with alpha equal to 1 (see 

Chapter 2), disregarding beta parameter completely the code as well as the results can be 

found in the attachment of the thesis. The comparison shows, that minimizing MAE2 (or 

MAE1) cannot be considered as the only metric for evaluating the estimations, because 

the results inaccurately suggest, that exponential smoothing is not usable as a regression 

method since linear interpolation (alpha equal to 1 in ES) gives the smallest average error. 

Exponential smoothing, as the noise-filtering technique, was also applied to the noisy 

sine signal. The evaluation of the method was repeated for 20 different seeds for noise. 

The signal amplitude 1 [-] and noise amplitude 1 [-] was generated for one period of sine 

signal (0 to 2 pi) with 0.01 step (629 samples). The MAE1 (since all samples were used 

to evaluate the method) was calculated for signal - noise and for signal – smoothing across 

all parameters with maximum resulting MAE reduction by 56.34 % for alpha equal to 0.2 

and beta equal to 0.1. After changing the step to 0.05 resulting in 126 data points, the 

maximum resulting MAE reduction by 45.5 % was found for alpha equal to 0.3 and beta 

equal to 0.2 (see Figure 4-9, where three different settings were used for comparison). 

After lowering the noise amplitude to 0.1 [-] and setting the sampling to 0.01 the resulting 

in 54.84 % MAE improvement with alpha = 0.2 and beta = 0.1. As a conclusion 

exponential smoothing can be utilized as a noise-reduction technique with approximately 

50 % efficiency. 
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Figure 4-9       Exponential Smoothing of Noisy Sine Function 

MOVING AVERAGE 

Utilizing moving average as noise-cancelling technique is commonly utilized throughout 

the community [56] as an easily implemented and efficient technique. Similar to the 

exponential smoothing comparison, the moving average MAE calculation was utilized on 

the training noisy sine with amplitude 1 and noise amplitude 1. The sweep was realized 

on window sizes from 1 to 99 with step size 2 (to exclude even-sized windows) for 0.05 

signal step size. The smallest MAE between signal (without noise) and moving average 

estimation was for window of 17 samples with MAE reduction by 71.2 % in comparison 

to signal – noisy signal MAE. For step size 0.01, the MAE reduction was 86.6 % for 

window size of 61 samples. Figure 4-10 (left) shows the dependency of MAE on the size 

of the window for step 0.01 samples, where the values of the window size minimizing 

MAE are in the lower parts of the graph. There, the blue crosses symbolize the MAE of 

sine signal to noisy signal, yellow ones symbolize the MAE of moving average estimation 

to noisy signal and red ones symbolize the MAE of moving average estimation to sine 

signal. The graph clearly shows the significant reduction of error caused by noise by 

applying moving average technique.  

Figure 4-10 (right) shows the moving average with window sizes of 15, 31, 61 and 

121 samples applied to the NEMO measurement results. Considering that sampling 

interval in NEMO CELLMEAS measurement was 0.5 seconds, the scattering of the 

values of RSRP is caused by static noise. Utilizing moving average algorithm with 15 to 

31 samples corresponds to averaging the measured value with ± 3.5 seconds to ± 7.5 

seconds of measured values. An average person walks with approximate speed of 

1.5 meters per second, meaning the ± 3.5 second to ± 7.5 second time window 

corresponds to 10.5-meter to 22.5-meter spatial bin size, which is more than sufficient for 

performance mapping.  
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Figure 4-10     Moving Average Comparison (MAE - left, Window Size - right) 

SMOOTHING FUNCTIONS 

Techniques similar to moving average were created using different window weighting 

shapes than constant value. Such techniques include Gaussian-shaped window, triangular 

window, moving median or Savitzky–Golay window etc. The comparison of MAE of 

Gaussian smoothing (GS), Savitzky–Golay smoothing, moving median and moving 

average with window size varying from 1 to 501 samples with step 2 on noisy sine 

(sampling 0.01 [-], 629 samples per period) was realized and shown in Figure 4-11 (left). 

The figure shows, that the smallest value of MAE was measured using Savitzky-Golay 

filter smoothing with window size of 327 samples (larger than half of the sine period) 

with MAE reduction 91 %, followed by Gaussian kernel smoothing with window size of 

93 samples with noise reduction of 83.6 %.  

Figure 4-11 (right) depicts the detail of sine function and the smoothing methods. 

Since the changes in NEMO data are inconsistent in frequency, Savitzky-Golay filter 

smoothing with window size of 201 samples does not track the trend of data with 

sufficient dynamics (see Figure 4-12). The lower-sample Savitzky-Golay filter and 31 

and 61-sample Gaussian smoothing give comparable results with consistent dynamics 

and noise suppression throughout the whole measurement. 
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Figure 4-11     Smoothing Function Comparison (MAE - left, Noisy Sine - right) 

 

Figure 4-12     Smoothing Function Effect 

4.3.3 INVERSE DISTANCE WEIGHTING 

The Inverse Distance Weighting (IDW) determines cell values using an inversely 

weighted combination of a set of sample points (see Chapter 2.2). The two main 

parameters of this method are radius and power parameter. The radius determines the 

maximum distance between the cell of interest and the most distant point from the 

distance data set. The power parameter determines the power on which the inverse 

of the distance is applied.  

To determine the optimal values for each parameter the optimization algorithm is 

utilized in a way to minimize the mean absolute error of the regression. For both of 

the parameters, the regression was run for all 9 input measurements, while using 

5 different random generator seeds to pick different samples for each number of input 

samples, while sweeping the parameter.  
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The radius parameter was swept for values 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9 and infinity. The presented data show no dependency on the radius changes. Based 

on this, the radius parameter may be neglected in this case. It is set as “infinity” for all 

following regressions in this chapter. See Figure 4-13 for the comparison of IDW radius 

parameter, where 11 lines (each for a different radius value, gained as the average of each 

seed-based data set averaged for each measurement) almost merge into one.  

 

Figure 4-13     IDW - Radius Parameter Comparison 

The power parameter has significantly higher impact on the presented data than the 

radius. See Figure 4-14, where the comparison of power parameter related to MAE is 

presented. It consists of 28 lines based on the input values for it (ranging from 0.6 to 6 

with the step of 0.2). The highest line (blue) stands for power parameter 0.6, the lowest 

one represents the power of 4.8. With the increasing power factor, the MAE decreases till 

the 4.8 value, afterwards the value of MAE increases again. This value is therefore 

considered the optimal value for the following regressions within this chapter, 

nevertheless slightly reducing or increasing this parameter results in smoother regression 

and almost the same error. To ensure the precision of this optimization simulation, 

the regression was rerun in the same manner as the one for the radius.  

 

Figure 4-14     IDW - Power Parameter Comparison 

One of the major downsides of IDW is that this method in reference coordinates returns 
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the same value as the input, meaning that this method does not possess the attribute of 

noise filter itself. This aspect of IDW can be overcome by smoothing the data before 

applying the regression using any of the smoothing methods described above. The 

combination of smoothing and IDW offers a simple approach to create a viable regression 

and to decrease noise within the signal. Figure 4-15 shows the comparison in detail of full 

input samples of a single measurement (yellow line), Gaussian window smoothing with 

window size of 61 samples applied to the full samples (blue line), IDW with power 

parameter 4.8 applied to every tenth smoothed sample (green line) and IDW with power 

parameter 4.8 applied to every tenth sample (red line). Applying IDW to original samples 

creates random peaks and blips within the regression due to the noise variation, smoothed 

IDW regression differs only slightly (see stair-like shape of the function) form the noise-

supressed signal. The smoothed IDW provides an elegant, transparent and easy to 

implement solution as the regression method. 

 

Figure 4-15     Detail of Comparison between ES, IDW and IDW+ES 

The prediction capabilities of IDW method with smoothing is shown in Figure 4-16. The 

figure shows, that the larger the power parameter is, the longer the regression keeps its 

trend before leaning towards the mean. In case the predicted point is further from any 

training samples by more than the radius parameter, the regression does not occur (see 

purple line). In this case, the remaining values are either left without prediction or have 

to be set (e.g. as a mean of training symbols) using additional algorithm. Nevertheless, 

either by setting the radius to infinity or implementing a secondary regression condition, 

the smoothed IDW becomes a fully functional regression method. The power and radius 

parameter of the method has to be optimized for each implementation directly to properly 

represent the parameters of regression. 
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Figure 4-16     Smoothed IDW – Prediction based on power parameter and radius 

4.3.4 RANDOM FOREST 

Random forest (RF) is a supervised machine learning algorithm, which builds a “forest” 

of decision trees and from such forest chooses the most probable outcome (see Chapter 

2.2). This regression method does not possess any predefined behaviour (as IDW) or 

hyperparameters such as kernel function in GPR. The prediction is only based on decision 

trees trained on training symbols. Figure 4-17 presents the comparison of RF regression 

changes with input data thinning. The behaviour of the regression between samples is 

unpredictable and with lower sample density the regression does not show any predefined 

behaviour.  

 

Figure 4-17     RF – Comparison of Number of Input Data 

The MAE2 comparison was realized the same way as with previously discussed methods. 

The random data sample was chosen using different random generator seeds on all 9 

measurements while calculating MAE2 depending on the number of created trees. MAE 

decreases with the growing number of utilized trees, as shown in Figure 4-18 up to the 

certain number of trees, from which the error stays within the same bounds (the difference 

in MAE between 1 and 5 trees is bigger than the difference between 5 and 10 trees). 
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Figure 4-18     RF – MAE – Number of Trees Comparison 

Figure 4-19 depicts the application of RF regression on partially removed RSRP samples. 

The prediction capabilities of this algorithm are limited, staying constant outside the 

prediction range within the data. The figure shows, that this regression method is not 

applicable for being “non-predictive” while the data samples are further from each other, 

staying constant after the last sample (similar to the extension of the linear interpolation 

method). 

 

Figure 4-19     RF – Prediction based on number of trees 

4.3.5 GRAUSSIAN PROCESS REGRESSION 

The utilization of Gaussian Process Regression as the regression of choice presents a 

number of advantages in comparison to the remaining regression methods.  Gaussian 

process regression is realized in Matlab by creating and training a GPR model, which 

defines the behaviour of the regression. 

The created model estimates the exact parameters of the regression itself based on 

the training data and the hyperparameters [57]. Hyperparameters are the parameters, 

which have to be given to the model on the point of its creation and are later utilized to 

predict the parameters of the regression. For GPR, the main hyperparameters are the 

definition of the covariance function, type of the basis function, mean and standard 

deviation of the signal and length of the distribution. Parameters such as mean or standard 

deviation can be defined as the hyperparameters or can be estimated from the input data. 

The pre-defined kernel functions are able to estimate the length and standard 
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deviation of the signal from the input data if not defined differently. The choice of kernel 

function has a dramatic impact on the data prediction within the training symbols and 

more importantly in the prediction zone. Figure 4-20 shows the prediction capabilities of 

GPR based on the kernel function of choice. The prediction shows that the exponential 

kernel keeps the last known value for the longest duration and in between samples 

behaves almost linearly, squared exponential kernel approaches the mean the fastest (seen 

also in the cut-off interval from 0.12 to 0.195) and Matérn kernels predict the values with 

slightly larger spread than squared exponential kernel. 

 

Figure 4-20     GPR - Comparison of Kernel Functions 

Figure 4-21 visualizes the behaviour of the kernel function in between the thinned 

samples. Again, regression using exponential kernel function reacts to the new samples 

the fastest, while squared exponential and Matérn kernels smooth the data and supress the 

noise more significantly. 

 

Figure 4-21     GPR - Detail of Comparison of Kernel Functions 

The comparison of error of the GRP’s kernel function with varying sample density is 

shown in Figure 4-22. There, the exponential function shows the smallest MAE2 values, 

followed by rational quadratic kernel. The estimation was realized, as with previous 
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methods, on 5 random seeds across all 9 measurements. The errors of this function are 

comparably smaller than the ones calculated at e.g. random forest regression. 

 

Figure 4-22     MAE - GPR - Comparison of Kernel Functions 

4.4 COMPARISON OF 1D REGRESSIONS 

To choose the regression methods for multidimensional application, factors such as 

magnitude of error, noise suppression, prediction capabilities, complexity and 

predictability need to be taken into account.  

Figure 4-23 shows all the considered regression methods and compares their noise-

suppressing capabilities on fully-sampled reference measurement. The figure shows, that 

LI (blue line) does not reduce noise, since its values at the output in reference points equal 

the values of the input. Smoothed IDW (red line) is able to control its sensitivity to noise 

variation by increasing or reducing the size of the smoothing window. GPR (purple and 

green lines) is capable to calculate the noise variation from the input samples and its 

behaviour depends on the chosen kernel function, on the other hand RF (orange line) 

supresses the noise in rather undirected and unpredictable manner. Since noise 

suppression is an important aspect of each regression, linear interpolation is not 

considered the suitable regression method. Exponential smoothing and other smoothing 

methods are used only in combination with IDW (see Chapter 4.3.2). 

The remaining regression methods can be divided into the parametric and non-

parametric methods. Parametric methods (smoothed IDW) have directly defined all 

parameters which define the overall behaviour when calling the regression function. 

Non-parametric methods such as GPR or RF are pre-defined only by hyperparameters, 

which calculate the exact parameters of the regression. Non-parametric methods utilize 

machine-learning and optimization algorithms, which define the final behaviour of the 

regression using training symbols. 
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Figure 4-23     Comparison of noise-cancelling capabilities of LI, IDW+GS, RF and GPR 

MAE2 (see Chapter 2.3) comparison on reduced samples of chosen prediction methods 

is shown in Figure 4-24, including 95 % confidence intervals. 95 % intervals represent 

the spread of values, within which the random result will be with 95 % probability. 

Technically it means the values between 2.5 and 97.5 percentile. The figures show the 

confidence intervals are below 0.5 dB for all realizations, when the sample density is 

above 8 %. The confidence intervals increase with decreasing number of samples due to 

higher impact of randomness on the resulting regression.  

The comparison was realized on repeated measurements using 5 different random 

generator seeds on each of the 9 measurements. Since the reference values were the 

unused samples from the individual measurements which include noise, smoothed IDW 

shows larger errors on high samples due to pre-smoothing using GS. Both RF and GPR 

have linearly increasing error with decreasing number of samples. Figure also shows, that 

smoothed IDW crosses 1.5 dB margin at 15 % samples used, exponential kernel GPR at 

19 % and random forest with 20 trees at 27 % of samples. This fact shows, that non-

parametric, machine learning algorithm’s performance deteriorates, when it does not have 

a sufficient number of training samples, faster than the parametric method, which has 

directly defined behaviour independent of the number of samples.  

This fact is highlighted in Figure 4-25, where the low-sample detail (from 0 % to 

20 % of samples) of the three regression algorithms is shown. There, the random forest 

regression returns the highest level of error and IDW returns the lowest. All regressions 

show minimal differences in MAE for sample density larger than 20 % of samples, 

meaning that considering only 20 % of samples to create regressions results in 

comparable plots as when using 100 % of the samples. MAE at 20 % samples of IDW 

equals 1.47 dB, 1.5 dB for GPR and 1.58 dB for RF. This conclusion also allows to 

dismiss confidence intervals. Since NEMO measurements were realized on the 2 km long 

path through the centre of Vienna with over 2500 samples per measurement (see Table 4 

in Chapter 4.1), each sample was taken at least every 0.8 meters. Reducing the samples 

to 20 % will result in 500 samples per 2 km equal to one sample every 4 meters. At 2 % 

of samples IDW shows 2.4 dB MAE, GPR 2.6 dB and RF 3.8 dB. Taking only 2 % of 

samples would increase MAE slightly, but sampling could be realized once every 80 

meters (12.5 samples per km). 
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Figure 4-24     Comparison of MAE on sample density for IDW (left), GPR (centre) and RF (right) 

 

Figure 4-25     Comparison of MAE on sample density for IDW, GPR and RF in low samples 

Considering prediction capabilities, GPR is the regression capable of creating various 

prediction models. In close proximity to the training symbols the kernel function dictates 

the shape of regression, whereas in further regions the prediction is defined by basis 

function shape. IDW’s prediction capabilities are limited to exponential function from the 

nearest set of training symbols towards the mean and can be affected only by the power 

parameter. Random forest presents no reliable predictive capabilities when not given 

enough training samples. Figure 4-26 depicts the comparison of the mentioned methods 

and confirms the claims above. Predictability of GPR, based on the hyperparameters 

chosen, is the highest of all other regressions. IDW must be iteratively tuned to show the 

desired shape of the regression, but from the power parameter chosen the result is highly 

predictable. Random forest, as the name suggests, returns “randomly” estimated results, 

therefore its predictability is limited. 

 

Figure 4-26     Comparison of prediction capabilities of smoothed IDW, RF and GPR 
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To evaluate the accuracy and sample-reliance of each method, the following algorithm 

was created (see Figure 4-27). It presents the procedure to evaluate the impact of 

parameters or hyperparameters on the results of every method. For every sample of the 

evaluated parameter the algorithm loads the data of the NEMO measuremets one by one. 

For each of the 9 measurements, the algorithm chooses a percentage (at least 10 different 

values) and using 5 different random seeds generates random samples as training symbols 

(of current percentage’s size) from all input samples. The regression algorithm with 

current parameter sample and training symbols from current measurement is then ran and 

its MAE2 is calculated and saved. Afterwards, each parameter-MAE reliation was 

calculated and visualized. Every point of the graph was calculated from 45 independent 

simulations (9 measurements, 5 randomly generated inputs). The example of this 

procedure’s result may be seen in e.g. Figure 4-22. 

 

Figure 4-27     Parameter Sweeping Algorithm 

The complexity differs for each method. For example, while sweeping kernel functions 

in GPR, the parameter sweeping algorithm took 126 minutes and 18 seconds in 

comparison to RF tree count, for which the computation took 3 minutes and 46 seconds. 

IDW sweeping of power parameter took 34 minutes and 9 seconds. The complexity of 

IDW depends on the number of reference symbols, the size of the grid and radius 

parameter. GPR’s complexity additionally varies based on the chosen hyperparameters 

such as regression method and fitting method. Random forest’s complexity relies on the 

number of utilized trees, number of symbols and size of the grid.  

Concluding, the two regression techniques that will be implemented for 2D grid are 

GPR due to its scalability, natural noise suppression capabilities and pre-defined 

behaviour due to the hyperparameter selection and smoothed IDW for it’s straight-

forward parametric approach, reliability and simplicity. 
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5 2D ANALYSIS 

In this chapter the utilization of chosen regression methods (see Chapter 4) onto a 

presented input data is described. Each of the regression methods was implemented in 

Matlab and its parameters or hyperparameters settings were compared. Later in the 

chapter the mutual comparison is discussed and evaluated for purposes of coverage maps 

utilization, complemented by its evaluation. At the end the estimated maps are presented. 

5.1 INPUT DATA 

For the purposes of creating an estimated coverage map, the location aware measured 

data including downlink and uplink speeds, ping, RSRP etc. were used. These data come 

from two sources, RTR NetTest and NEMO-based measurements (see Chapter 3).  

The NEMO measurements were provided by TU Vienna while measured using 

Keysight NEMO on the route through the centre of Vienna. This measurement was 

repeated 9 times to gain 9 repetitions of the test (see Chapter 3.2). These data were used 

as a base for 1D analysis (see Chapter 4) for several regression methods, their parameters 

evaluation and possible utilization opportunities. In this chapter they serve as a tool to 

show each regression’s properties in space on previously evaluated data, which 

additionally contain global trend in signal strength. Using regressions on such data allows 

further parameter optimization. See Figure 5-1, where the route taken through the centre 

of Vienna during the measurements was taken. Each measurement point refers to a single 

measurement of all parameters at given GPS coordinates. It consists of 11518 points. 

Each of 9 colours of depicted dots refers to a different measurement (9 measurements in 

total). The depicted area of measurements is approximately 0.6930 × 1.0 km. Code for 

Map-plotting used in this thesis was based on [58]. 

 

Figure 5-1       Route of NEMO-Based Measurements [58] 
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The data from RTR NetTest utilized in this thesis compose of the database of all LTE 

measurements realized over the year 2018 and the self-measured database consisting of 

measurements in the city area and open-air area. The database gained based on RTR 

NetTest [18] (see Chapter 3.1) includes a set of measured network parameters for each 

test. These data are directly connected to the GPS coordinates. The GPS coordinates of 

NEMO measurements need to be additionally connected with the value of interest based 

on the algorithm described in Chapter 3.2.2.  

Two sets of self-measured data serve as an example of city area with high buildings 

surrounding narrow streets in the centre of Vienna and open-air area taken in the gardens 

of Schönbrunn castle, where the area is either with no obstacles or with trees only. Both 

data sets are depicted by blue crosses in Figure 5-2.  

  

Figure 5-2       Reference Measurement - City and Open Area [58] 

Both sets of measurements were obtained using SIM card with unlimited amount of data 

tariff from H3 operator with download speed limitation of 50 Mbit per second and upload 

speed limitation of 20 Mbit per second (although there were even higher speeds measured 

during the testing measurements). To perform this measurement, Samsung Galaxy S8 

device was used. The total area of all city-area measurements consisting of 468 measured 

samples in larger, than the one shown in  Figure 5-2 (left). The area shown in the figure 

consists of the measurements with high density and consists of 340 samples. The open-

area database consists of 249 samples over the whole depicted area (right part of the 

figure) with high density measurements on the area with no obstacles (no trees) consisting 

of 104 samples. The depicted area of measurements is approximately 0.4798×0.8889 km 

for the high-density city measurements and the depicted area for open area measurements 

is approximately 0.7998 × 1.5556 km.     

The database obtained from the RTR NetTest [18] includes all measurements by this 

application for the year of 2018. The dataset used in the scope of this thesis is filtered and 

includes only of LTE data measured on the devices using A1, H3 and T-Mobile operators 

(no roaming using users) in the area covering most of the Vienna. This area is depicted 

in Figure 5-3, where each point refers to a different measurement. Blue dots symbolize 

the measurements in H3 network, green dots in A1 network and pink dots in T-Mobile 

network. The depicted area of measurements is approximately 8.8524 × 18.6676 km. The 
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used database consists of 17322 measurements, from which 4315 were realized in H3, 

8176 measurements were realized in T-Mobile and 4831 measurements in A1 LTE 

network. These measurements are used to create a coverage map of Vienna for each of 

the stated Austrian operators. 

 

Figure 5-3       RTR NetTest Measurement Database of 2018 [58] 

While using various regressions an error may occur due to the usage of degrees of latitude 

and longitude. The distance of 1 degree in latitude is not equal to the distance of 1 degree 

in longitude. For example, in geographic area of Austria, 1 degree change in latitude is 

corresponding to the distance of approximately 111.1 km and 1 degree change in 

longitude is corresponding to distance of approximately 77.1 km. In case latitude and 

longitude information was used for regressions such as IDW, an error would be created 

not only by latitude-longitude distance inequality, but also by specifying some parameters 

that are reliant on absolute distance (e.g. radius).  

To compensate the distance proportion difference between the degrees of latitude 

and longitude the algorithm for recalculation of latitude and longitude degrees to distance 

in meters is used (see Figure 5-4). The algorithm loads the latitude and longitude and 

then, by implementing Heaviside formula, gains the shift from ‘zero-zero’ coordinate 

(derived as minimal latitude and minimal longitude value from the input set) to the right 

and to the up direction for each point of the grid. This function is called ‘DegtoM’. The 

algorithm considers only one-dimensional shift for latitude recalculation, as well as for 

longitude recalculation allowing to simplify the Heaviside equation (Δlat is considered 0 

for longitude recalculation and Δlong is considered zero for latitude recalculation). 

GPR in Matlab is able to compensate this shift by using ‘ard’ kernel functions, which 
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require higher computational power than standard versions of kernels. Since the 

conversion to meters is needed and implemented to be used for IDW, ‘ard’ kernel 

functions are not used. 

 

Figure 5-4       Latitude/Longitude Degrees Input Recalculation to Meters 

5.2 2D REGRESSIONS 

In this chapter the regression methods chosen in Chapter 4, Inverse Distance Weighting 

and Gaussian Process Regression, are utilized and their settings, parameters, prediction 

accuracy ability and computation complexity are presented. Later, they are used 

for creating of coverage maps of network parameters as the main result of this thesis. 

The introduction to each method and its basic theory can be found in Chapter 2.2, 

followed by Chapter 4, where 1D analysis and additional extension of theory is given. 

MAE serves as a basic metric for evaluating the performance and for comparison of used 

methods. This evaluation is shown at the end of this Chapter. 

5.2.1 INVERSE DISTANCE WEIGHTING 

In this chapter, the utilization of Inverse Distance Weighting (IDW) regression method 

for coverage maps creation is evaluated, using several input data sources. To explain the 

influence of each parameter on the resulting regression, the same set of training input data 

is used as in Chapter 4. Next, the set of self-performed measurements using NetTest is 

used to evaluate the regression’s ability to cope with highly diverse data at the small area 

vs. its ability to work with low diversity data. At the end of this chapter, the IDW 

regression is used to create the coverage map to evaluate the network’s performance. 

As determined in Chapter 2 and Chapter 4, IDW determines cell values (the density 

of which depends on the regression grid) using an inversely weighted combination of a 

set of training points. The influence of each training point on the resulting regression 

depends on two main parameters, radius and power parameter. The radius determines the 

maximum distance between the cells that influence each other. The power parameter 

determines the power on which the inverse of the distance is applied.  
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To show the parameter’s influence on the performance maps, the NEMO-based 

measurements were used. Utilization of NEMO measurements allows to choose optimal 

parameters due to the existing global trend within the data (worse RSRP in upper regions, 

better in the lower, see figures below), varying distances between the sample points and 

empty areas, evaluated strictly using the regression’s prediction capabilities. 

Figure 5-5 shows the comparison of the two spatial IDW regressions with power 

parameter 4 and radius set to infinity on a single NEMO measurement. The left figure 

shows the regression applied on the original, unsmoothed data, whereas the data in the 

right figure were smoothed using Gaussian smoothing with 61-sample window before 

applying the regression. The smoothed IDW has lower spread of values (see the colour 

bar next to the pictures) due to the noise-cancelation smoothing, which reduced the 

extreme values within the measurement. Although in the full-sample regression the 

smoothing does not have such heavy impact, for the regressions with lower sample 

density the smoothing plays significantly bigger role, as discussed in Chapter 4. 

  

Figure 5-5       Comparison of IDW vs. Smoothed IDW 

Figure 5-6 depicts the impact of different power parameter choice on the same data with 

plain IDW. The left figure shows the regression with power parameter set to 1, resulting 

in grid, which reacts to the reference points only in their closest vicinity, rapidly reaching 

mean values of the reference symbols with the increasing distance from the reference 

samples. IDW realization with power parameter 8 is shown on the right side of the figure. 

Here, the power parameter chosen was higher than the grid required, resulting in rapid 

changes of the regression at the borders between the samples or areas with reference 

samples with different measured values (see the vertical change in the grid in the middle 

of the larger path). The choice of higher power parameter should be considered when 

creating a regression with sparse samples, within which each sample is supposed to have 

impact on a larger area around itself. The optimal power parameter for the current 

regression is approximately 4, as derived in Chapter 4 and shown in Figure 5-5 and has 

to be selected individually for each utilization of IDW based on the input data properties 

and distribution. This choice of power parameter allows for smooth transitions of 

regression results in the area between the measured samples. 
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Figure 5-6       IDW Power Parameter Comparison 

Choosing radius parameter other than infinity may create unreasonable predictions of the 

resulting regression, in case the reference samples are not spread across the whole area 

for the regression. On the other hand, the infinite radius may increase the computational 

complexity while performing regressions of a huge grid. As shown in Figure 5-7, where 

IDW was realized with power parameter 4 and radius 150 metres, the edge areas of the 

regression are influenced only by several closes (almost 150 m away) samples, obtaining 

their values. In right bottom part of the regression (yellow part) it holds the values of the 

nearest training points, but closer to the training points the values of regression are already 

lower (greener area between two yellow areas). Similarly, in the middle of the training 

data route, the area influenced by samples with lower RSRP values (dark blue) meets with 

the area influenced by higher RSRP values, creating a sharp edge with high slope change. 

While creating a spatial regression with reasonably distributed trainee data, radius 

parameter allows to create a local trend within the data, not considering the points that 

could not influence the current point of the regression. 

 

Figure 5-7       IDW Limited Radius Example 
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A set of self-performed measurements using NetTest is used to evaluate the regression’s 

ability to perform in various environments. The highly diverse data at the small area is 

evaluated while applying the regression on the city area reference measurement in Vienna 

centre. Its ability to cope with low diversity data is evaluated while being applied to the 

open-area reference measurement from Schönbrunn castle park. The noise-suppression 

smoothing is required for NEMO measurement results, as each data sample reflects the 

currently measured parameter value including the fluctuations due to the momentary 

noise variation. As the RTR tests results reflect the evaluation of the whole measurement 

process in which the NetTest evaluation suppresses the noise within its own algorithm, 

the smoothing of data is not required. Additionally, the measurements of RTR data do not 

share a common timing information with equidistant spacing to allow for per-sample 

smoothing.  

All the evaluations of regressions presented below are the result of the averaging 

between 10 regression realisations, based on 10 random seed generators (from 10 to 100 

with step 10), which define the initial values of the pseudo-random generator. For the 

purposes of precision evaluation, the MAE metric is used in the same manner as in MAE2 

scenario (see Chapter 2.3). The set of input measurements data is divided into two smaller 

sets, the training dataset and the evaluation dataset. The regression is then run with the 

input of training set while the evaluation set (consisting of the complement of the full 

dataset) is used to calculate MAE. The green crosses in the following figures represent 

the evaluation dataset and the red ones represent the training dataset.  

The power parameter set to approximately 4 was determined in Chapter 4 as 

an optimal value for high density measurement inputs. The results of such settings are 

satisfying with the given input as well. Figure 5-8 (right) shows the regression applied to 

the high-sample reference measurement. The regression in the high-sample direction 

(along the street) changes dynamically and holds its trend. In low-sample direction (area 

filled by buildings) it dynamically varies, reflecting the differences of signal strengths 

between the two parallel streets and in the direction without measurements holds the last 

known value for sufficiently long interval. In comparison, the left figure representing 

IDW with power parameter 2 deteriorates too fast towards the mean. Both right and left 

figures were realized with full sample input.  

  

Figure 5-8       IDW – Comparison of Power Parameter in Vienna City Area 



 67 

The same setting of IDW as above was applied to the open area reference measurement 

with 100 % samples. Figure 5-9 (right) depicts the regression with power parameter 4 

to the open-area data, showing rather steep transitions of signal strengths between the two 

paths taken through the park (the edge between dark blue and light green). The real-world 

performance is not reflected, since in the open-area the transitions of signal strength are 

continuous since there are no strong attenuators in the area (only several low trees).  The 

figure on left presents the IDW with power parameter 2, for which the regression drops 

to the mean values too soon. Slightly reducing the power parameter from 4 for open area 

applications reduces the steepness of the transitions, resulting in better reflection of the 

real-world signal behaviour. 

  

 Figure 5-9       IDW – Comparison of Power Parameter in Open Space Area (park) 

The comparison of IDW regression on reduced samples in the city area is shown in Figure 

5-10. The prediction map on left was realized using 20 % of the input samples (red 

crosses) and MAE was calculated at locations of the remaining, unused 80 % of the 

samples (green crosses). The resulting mean average error was 7.134 dB. The figure on 

the right side depicts the realization of IDW regression using 80 % of the input samples 

as the reference data. The resulting MAE for this case is 7.119 dB confirming the 

conclusions drawn in Chapter 4 about the stability of MAE and sample density. 7 dB of 

MAE refers to the local signal strength variation and better regression results are 

impossible to obtain. The figures and MAE calculation show, that the IDW regression 

reliably reflects the real-world signal strength even at lower samples. The dark blue areas 

on the resulting performance map reflect areas with reduced signal strength, allowing the 

network operator to locate and improve the coverage within those areas. 
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Figure 5-10     IDW – Comparison of Input Amount in Vienna City Area 

The sample-density dependency of IDW in open areas is depicted in Figure 5-11 and the 

resulting MAE shows, that the relative change of MAE is larger. The power parameter 

for open area evaluation was reduced to 3 (see paragraphs above). The figure on left 

shows the realization of IDW with 20 % of the samples as input, resulting in 3.778 dB 

MAE. The figure on right depicts the regression with 80 % input samples and 2.863 dB 

resulting MAE.  

  

Figure 5-11     IDW – Comparison of Input Amount in Open Space Area (park) 

Figure 5-12 shows the application of IDW with p = 3 on the purely open area (with no 

obstacles at all) large 130×360 metres. The performance map on the right is evaluated 

using 50 % samples as input, resulting in 2.887 dB MAE. On the left, the regression is 

realized using only 5 % of the input samples (5 samples). The MAE calculation shows 

3.716 dB error. The resulting MAE for the regression with 95 % of samples as input is 

2.667 dB. Reducing the samples to 5 % results in 1 dB increase of error above the noise 

variance margin. 
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Figure 5-12     Comparison of Input Amount in PURELY Open Space Area 

The comparison on MAE for IDW with power parameter 4 for city area and 3 for open 

area is shown in Figure 5-13. The figure shows, that the MAE for both scenarios stays 

within the noise variance above 15 % input samples for open area measurements and 

above 3 % of samples for city area. The calculation of sample density per squared 

kilometre to reach minimum error threshold is shown in Equation 5.1: 

𝐷𝑚𝑖𝑛 =
𝑝 ∙ 𝑁

𝑆 ∙ 100
 (5.1) 

Where 𝑝 stands for the threshold percentage, 𝑁 for the number of reference measurements 

and  𝑆 stands for the area in squared kilometres on which the measurements were realized. 

The resulting sample densities equal 32 measurements per squared kilometre for city 

areas and 29.7 measurements per squared kilometre open areas. Concluding this chapter, 

for both scenarios the maximum accuracy of the IDW prediction is achieved with 

reference sample density of 30 evenly distributed measurements per squared kilometre. 

 

Figure 5-13     IDW - MAE on Input Samples 
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5.2.2 GAUSSIAN PROCESS REGRESSION 

This chapter presents the utilization capabilities of GPR for the creation of spatial 

performance and coverage maps. To explain the influence of the discussed 

hyperparameters on the resulting regression in 2D, the same set of training input data 

from NEMO measurements is used as in Chapter 4. Next, self-performed database of 

RTR measurements for both city and open area is used as the basis for evaluating 

the method in high sample-data density, as well as in low sample density scenarios. At 

the end of this chapter, the GPR regression is used to create the coverage map to evaluate 

the network’s performance. 

As presented in Chapters 2 and 4, GPR is a non-parametric machine learning 

approach, the output of which is predefined only by the input samples and the 

hyperparameters. To show their influence on the regression result, the NEMO-based 

measurements are used. There is the global trend within the data (worse RSRP in upper 

regions, better in the lower), varying distances between the sample points and empty 

areas, evaluated strictly using the regression’s prediction capabilities.  

Figure 5-14 shows the impact of choosing different basis functions on the resulting 

regressions. The regression was realized with the squared exponential kernel function, 

with low covariance distance to highlight the impact of basis choice. Constant basis 

underlays the regression with constant trend within the data, which is based on the values 

of the input.  

The choice of constant basis (top left figure) is adequate in case there is an unknown 

trend within the data or in case the trend is globally undefinable using other functions. 

The lack of global shape of the regression can be compensated by increasing the impact 

and the range of the kernel function. In case the basis function is set to “none” (top right 

figure), the regression automatically considers constant basis as 0. The value of the basis 

can be predefined, which is usable in case the global trend within the data is constant and 

known beforehand. Linear kernel function (bottom left figure) derives the linear trend 

within the data based on the input samples, resulting in tilted plane underlaying the data. 

Setting the basis function to “pureQuadratic” (bottom right figure) results in curved plane 

with quadratic shape underlaying the regression. The choice of this basis reflects the 

single source of the parameter value (e.g. eNodeB) within the considered area, as the 

dominant or only source of the value within the grid. Additionally, the quadratic basis 

considers regular fading of the parameter in all directions. As the global trend within the 

data is previously unknown for all data sources considered within this thesis, constant 

basis function will be considered as the most viable and the shape of the regression will 

be compensated by increasing the impact of the kernel function on the output grid. 
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Figure 5-14     GPR - Comparison of Basis 

Figure 5-15 depicts the impact on the resulting regression while using five different pre-

defined kernel functions. The parameters of the kernel functions, such as characteristic 

length scale (similar to the radius parameter for IDW) or signal standard deviation, were 

evaluated from the training samples by the algorithm. The characteristic length scale is 

calculated as the mean standard deviation of input sample coordinates and the signal 

standard deviation is evaluated as standard deviation of input sample parameter values 

divided by the square root of 2. The top-left figure depicts the regression using 

exponential kernel function, which results in the regression with spread values around 

each sample point. Visually the similar impact on the surrounding points has the rational 

quadratic kernel with automatically estimated parameters (see bottom figure). Squared 

exponential kernel function shows the least impact on its surroundings (as in Chapter 4), 

followed by Matern52 and Matern32 kernels. 
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Figure 5-15     GPR - Comparison of Kernel Functions ('constant' Basis) 
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In general, the kernel function expresses the similarity of the regressed result point to the 

values of predictor, therefore how much does one point react the other. Its base is usually 

the Euclidian distance 𝒓 between the points 𝒙𝒊 and 𝒙𝒋 corresponding to all points at the 

grid (see Equation 5.2), signal standard deviation 𝜎𝑓 and characteristic length scale 𝜎𝑙. 

Equation 5.3 shows the formula for calculating the covariance matrix using Exponential 

Kernel function. 

𝒓 = √(𝒙𝒊 − 𝒙𝒋)𝑇 ∙ (𝒙𝒊 − 𝒙𝒋) (5.2) 

𝑘(𝒙𝒊, 𝒙𝒋|𝜎𝑓, 𝜎𝑙) = 𝜎𝑓
2exp (−

𝒓

𝜎𝑙
) (5.3) 

Equation 5.4 shows the formula for calculating the covariance matrix using Rational 

Quadratic Kernel Function. 

𝑘(𝒙𝒊, 𝒙𝒋|𝜎𝑓, 𝜎𝑙) = 𝜎𝑓
2 (1 +

𝒓2

2𝛼𝜎𝑙
2)

−𝛼

 (5.4) 

Where 𝛼 is a positive-valued scale-mixture parameter, the third hyperparameter of this 

kernel function (1 by default). 

Although it is possible to explicitly set signal standard deviation and characteristic 

length as the regression function input, the optimizing algorithm considers these 

parameters as the initial values, adjusting them based on the reference data. In case there 

is a hidden trend within the data that was not detected with the default kernel parameters, 

the initially set kernel function parameters may enable to find it (e.g. high frequency 

signal). 

Another way to impact the spread of the kernel function is to specify the standard 

noise deviation 𝜎𝑛. The optimizing algorithm optimizes the value of standard noise 

deviation in the same way as it does with kernel function parameters. It is possible to 

enter the command for constant standard noise deviation, disabling the algorithm to 

optimize 𝜎𝑛 and as such explicitly increase or decrease the kernel function spread. This 

operation is case-sensitive and requires individual approach for each dataset and every 

regression to ensure comparable results. 

As the kernel function is used as the method for predicting the network performance 

in locations without existing measurements, the exponential and rational quadratic 

kernels are the two candidates for the kernel function of choice. Exponential kernel’s 

shape is highly similar to the one of Gaussian kernel’s (as is its formula), being only less 

sensitive to scale length parameter. Rational quadratic kernel is a less computationally 

extensive variant of the Gaussian with adjustable scale length parameter [59]. Its shape is 

equivalent to the normalized sum of mane Gaussian kernel function with different length 

parameters [60]. To choose the more appropriate covariance function, the two considered 

solutions were swept for MAE metric across sample densities, for city area and open area 

measurements. Figure 5-16 shows, that the two kernel functions return almost identical 

errors across the sweep for scenarios. The rational quadratic function is chosen as the 

kernel function of choice for its lower computational complexity. 
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Figure 5-16     MAE Comparison of Kernel Functions 

To evaluate the distribution of the input data, the binned distributions of the RSRP, as 

shown in Figure 5-17 (left), was fitted a Gaussian distribution (green line) and windowed 

Gaussian distribution (red line). The value of RSRP is considered in absolute value to 

enable fitting the desired distributions. As the central tendency of the data changed over 

the coordinated measurement, the RSRP distribution does not resemble Gaussian. 

The figure on right shows the distribution of RSRP of all 9 NEMO measurements in 

the small interval of the measurement, where the mean of data remained the same. 

The resulting distribution strongly resembles Gaussian, concluding that RSRP during 

the NEMO measurement exhibits normally distributed behaviour with changing mean 

over the duration of the testing. 

  

Figure 5-17     RSRP Histogram - NEMO data, Full/Partial Samples 

To confirm whether RSRP (in absolute values) indicates Gaussian behaviour, the results 

of the two reference tests, both in city area and in open area, were plotted in bar graph 

and compared to fitted normal distribution, as shown in Figure 5-18. The reference 

distribution approximates the distributions of the RSRP for both city area (left) and open 
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are (right) significantly. Additionally, the Gaussian distribution of RSRP was confirmed 

by Anderson-Darling [61] test on samples in purely open area (see Figure 5-12). 

 

  

Figure 5-18     Comparison of RSRP Histograms - City/Open Area 

Figure 5-19 depicts the RSRP performance map on reference measurements data in the 

city (left) and open areas (right). The regression was created using constant basis and 

rational quadratic kernel function. Both realizations of the regression have smooth signal 

transitions and sufficiently large prediction range. It can be derived from the Figure 5-16 

it can be derived, that GPR MAE has the minimum threshold at the same, or slightly 

lower samples than IDW, concluding that Gaussian Process Regression method with 

rational quadratic kernel function reaches minimum error matric at 30 evenly distributed 

samples per squared kilometre.  

  

Figure 5-19     GPR - City/Open Area Comparison 
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5.3 COMPARISON OF 2D REGRESSIONS 

In this chapter, the utilization of GPR and IDW is compared in terms of such aspects as 

error metric or resulting regression characteristics. The direct comparison of error is 

realized by evaluating the error on the two reference measurements, followed by the 

application of the regression methods onto the crowdsource-based data. 

Figure 5-20 shows the resulting MAE comparison of IDW and GPR based 

measurements. The settings of GPR were constant basis function and rational quadratic 

kernel for both city and open area evaluations. The radius of IDW was set to infinity for 

both areas, the power parameter was set to 4 for the city area and 3 for the open area. The 

figure shows, that the error or GPR is lower on the whole range of axis for both 

realizations except for 2 % input samples in city area, where the error of GPR is larger. 

The smaller measured error of GPR caused by the non-parametric nature of this method, 

which is able to iteratively optimize its parameters based on the input samples to minimize 

the potential error. The calculation of the resulting MAE was realized by a sweep, done 

by randomly choosing a set of input data while using 15 random generator seeds, for each 

point of the graph. The remaining (unused) samples were used for MAE calculation. This 

is the same procedure as explained in Chapter 2.3 and used in previous chapters. 

 

Figure 5-20     Comparison of GPR and IDW based on MAE, Open/City Area 

Figure 5-21 shows the application of GPR on the measurements from the crowdsource-

based database of RTR in the centre of Vienna. The figure shows, that the distribution of 

samples is not consistent in space, resulting in “blank” areas. In such locations, GPR 

evaluates the resulting RSRP as the value close to the mean of the input samples. MAE 

of GPR was estimated as 6.540 dB, while utilizing 95 % of samples as the regression 

input. The density of samples in the figure is 310 samples per squared kilometre, which 

is more than ten-fold higher than the error threshold derived in the previous chapter. 

Nevertheless, large amounts of measurements are frequently grouped together, reducing 

the effective number of samples. 
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Figure 5-21     Vienna NetTest measurement, GPR, H3 

After applying the established IDW regression to the crowdsource-based data from RTR, 

several observations were made, which result in adjusting the previously established 

findings. The power parameter 4 for IDW in city areas reliably describes the shifts of 

signal strength between the adjacent streets in case the measurements are frequent. As 

shown below, the density of measurements of the RTR’s database that is available in the 

centre of Vienna is inconsistent, resulting in frequent edges in open spaces. The power 

parameter is therefore adjusted to 3 for crowdsource-based performance evaluation maps. 

The variation of radius parameter did not have any positive impact on the data, creating 

inconsistent fluctuations when too small and having no visible effect when increased. The 

IDW with power parameter 3 and infinite radius applied to the crowdsource-based data 

from the centre of Vienna is shown in Figure 5-22. Reducing the power parameter 

decreases the steepness of the edges between the two neighbouring samples and 

effectively reduces MAE from 7.211 dB (for power parameter equal to 4) to 6.927 dB. 
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Figure 5-22     Vienna NetTest measurement, IDW, H3 

By comparing the results and the figures, several core differences between the two 

solutions can be highlighted. The resulting MAE of GPR is smaller by 0.38 dB than the 

MAE of IDW. The GPR performance map drops faster from the reference values to mean 

values than the IDW (for which the spread of circles is larger around each of the red 

points). While IDW takes all samples into consideration equally, GPR smoothens the 

resulting grid, effectively reducing the impact of the extreme values on the final 

regression. 

5.4 PERFORMANCE COVERAGE MAPS 

The final evaluation of RTR-based data and their utilization to create accurate 

prediction maps is realised, followed by the examples of the prediction maps for different 

network parameters. First, the part of the Austria’s area, that can be reliably evaluated 

using the created analysis. The accuracy of the applied method is evaluated, and the final 

findings are discussed. Before creating performance maps of other parameters than 

RSRP, their distribution was evaluated, compared to the Gaussian, described and 

commented in the paragraphs below. This analysis was realized for RTR reference 

measurements, as well as the measurements from the crowdsource-based database. All 

map bases displayed in figures within this chapter are based on function from [58]. 

To estimate the possible coverage density using the created method, the percentage 

of Austria’s area covered by the RTR NetTest measurements is derived. The validity 
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interval of a measurement until it becomes irrelevant first has to be established. Since for 

both GPR and IDW the error threshold is 30 evenly distributed measurements per squared 

kilometre, this information serves as a basis for determining the single measurement 

coverage, resulting in 33 333 squared metres coverage per measurement. To reflect 

theimpact of each point on the surrounding area, each point is considered a circle, its 

radius is easily calculated as r = √𝑆 𝜋⁄ = √33 333 𝜋⁄ = 103 metres, where S stands for 

the area. The circle has been drawn around each data point and their total area compared 

to the total area of Austria. The resulting coverage density of Austria is 1.68 %, densely 

covering only the centres of the large cities. Due to this fact, the regressions are realized 

on the filtered data to fit the area of Vienna with sufficient number of tests. The 

visualization of the performance map is therefore focused on the part of the Vienna centre. 

The downlink speed distribution of the self-made measurements using H3 operator’s 

network for both open area and city are shown in Figure 5-23 left and right. Neither of 

them resembles normal distribution. Additionally, most of the city measurements were 

tariff-limited (tariff limitation of 50 Mbps), creating a peak at the right side of the 

distribution. 

  

Figure 5-23     Downlink Speed Histograms - Open/City Area 

Figure 5-24 depicts the uplink speed distributions for the two reference measurements, 

which again are not Gaussian. The measurements in the city area (right figure) were tariff 

limited to 20 Mbps. 
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Figure 5-24     Uplink Speed Histograms - Open/City Area 

Figure 5-25 shows the distribution of uplink (left) and downlink (right) results of the RTR 

measurements in H3 operator’s network in the area of Vienna. The peaks in the values of 

tariff limitation (20 Mbps and 50 Mbps for downlink, 10 Mbps and 20 Mbps for uplink) 

are visible. These distributions are not Gaussian. 

  

Figure 5-25     H3 - Uplink/Downlink Histogram, Vienna 

The distribution of the uplink and downlink of the measurements within A1 network is 

shown in Figure 5-26. The distributions are non-Gaussian and tariff-limited peaks are also 

visible. 
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Figure 5-26     A1 - Uplink/Downlink Histogram, Vienna 

The measurements of T-Mobile network are depicted in Figure 5-27. Also here, the 

distributions are not Gaussian. 

  

Figure 5-27     T-Mobile - Uplink/Downlink Histogram, Vienna 

The distributions of RSRP for H3 and A1 are shown in Figure 5-28 left and right. In both 

figures, the fitted Gaussian distribution strongly resembles the empirical distributions of 

the measurement results. 
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Figure 5-28     H3 and A1 - RSRP Histogram, Vienna 

Figure 5-29 depicts the RSRP distribution of the RTR tests in Vienna realized in T-Mobile 

network. The resulting graph resembles Gaussian despite having an odd shape on the left 

slope of the distribution.  

 

 

Figure 5-29     T-Mobile - RSRP Histogram, Vienna 

The conclusion of this analysis is that in none of the networks, the upload and download 

distribution of the measurements is similar to the normal distribution. The RSRP 

distributions resemble Gaussian significantly. The non-Gaussian distributions of uplink 

and downlink may negatively affect the performance of GPR, which is designed to 

process the Gaussian-like data. 

As the majority of the datapoints from the RTR database come from the users who 

performed only a signle measurement, the tariff limitation detection is impossible from 

the available data. As is clearly visible form the uplink and downlink distributions, all 

operators limit the maximum throughput within some tariffs, offering the unlimited 
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connectivity in premium packages requiring a long-term subscription. The users with 

maximum speed limited from the operator’s side then devaluate the results of the network 

performance estimation by reporting a false maximum throughput (limited by tariff). 

As the non-Gaussian distributions of data reduce the potential performance of GPR, 

the tariff limitation factor devaluates the IDW’s performance as well, as it considers the 

closest points on the grid with the highest weight. Two measurements next to each other, 

one with tariff limitation and one without it, create a strong fluctuation on the regression. 

Below are presented the performance maps created isung IDW regression (power 3, 

infinity radius) for download and upload parameters. Figure 5-30 and Figure 5-31 depict 

the performance maps for downlink and uplink for A1, the performance maps of H3 are 

shown in Figure 5-32 for downlink and Figure 5-33 for uplink and Figure 5-34 with 

Figure 5-35 show the network performance prediction map for T-Mobile. The 

performance of GPR returned comparable results to the IDW (in some cases slightly 

larger, in others a little lower MAE). 

The measured mean abosolute errors for downlink are presented in Table 5 along 

with mean measured value and relative MAE, which is calculated as MAE divided by the 

meam of all input samples. The table shows, that the relative error is up to the half of the 

mean value of the input samples. Compared to the RSRP values, for which the MAE for 

H3 is estimated as 7 dB and mean value -98.21 dB resulting in the relative MAE 7.13 %. 

Table 5     Downlink MAE comparison 

DL MAE MAE [Mbps] Mean [Mbps] Relative MAE [%] 

A1 26.06 52.11 50.00 

H3 17.61 36.20 48.65 

T-Mobile 18.92 87.14 21.71 

Table 6 presents the error metrics for the uplink performance evaluation. The same as in 

downlink results, the relative MAE exceeds the bounds for which the regression presents 

the satisfying results. 

Table 6     Uplink MAE comparison 

UL MAE MAE [Mbps] Mean [Mbps] Relative MAE [%] 

A1 6.70 19.78 33.87 

H3 9.23 13.54 68.17 

T-Mobile 7.92 31.97 24.77 

The reason why the regression, which works well with RSRP does not perform reliably 

for uplink and downlink is that those parameters are not reflected by elementary metrics 

such as signal strength. The downlink and uplink speeds depend on a number of additional 

factors apart from the received signal power such as the current load on the node, tariff 

limitation, current coding and modulation setting, potential handovers or performance 

utilization on the side of the end device (video streaming, online games etc.). 
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Figure 5-30     A1 - Downlink Map of 2018 

 

Figure 5-31     A1 - Uplink Map of 2018 
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Figure 5-32     H3 - Downlink Map of 2018 

 

Figure 5-33     H3 - Uplink Map of 2018 



 86 

 

Figure 5-34     T-Mobile - Downlink Map of 2018 

 

Figure 5-35     T-Mobile - Uplink Map of 2018 
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FUTURE POTENTIAL & EXTENSION 

Several possible extensions of this work may be utilized to obtain a better precision and 

reliability of the resulting regressions, leading to a better scalability and usability in 

performance optimization, resources allocation and eNodeB orientation or relocation. 

Utilizing an additional source of data, which are merged with the current database to 

increase a number of data samples may greatly increase the operability of the created 

method. Utilizing for example a database from Tutela, who implements their 

measurements within other applications and games to periodically run lightweight tests, 

would quickly fill the map with relevant measurements. 

To increase the reliability of downlink and uplink performance evaluation by 

identifying the tariff-limited users by utilizing a suitable technique (clustering, 

classification) may remove the inconsistencies they are causing from the performance 

maps and improve the method’s performance. Tariff limited user could be not considered 

in performance evaluation or several parallel maps could be created, each for the specific 

group of users. 

To perform the estimation of greater area (e.g. whole Austria) an area-dividing 

algorithm such as location-classifying algorithm or centroid-based clustering could be 

implemented. The performance mapping would then be realized based on the location, 

with the technique chosen based on the density of measurements. 

The current method can be adjusted to localize the telecommunication nodes within 

the area, find the objects that dampen the signal and other facts about the current state of 

the network. By localizing the blind spots, the network operator can adjust the position 

or orientation of the current nodes or add the new ones to ensure better coverage of his 

network. 
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SUMMARY 

The performance optimization is an important topic in wireless networks, especially 

of interest for operators, regulators of the network and researchers. The main goal of this 

thesis is creation of a network performance parameters estimation approach, which 

creates performance maps for the chosen network parameters.  Based on the analysis of 

various regressions, the thesis proposes a set of optimal settings based on which maps 

may be created using measured points with known parameter value and coordinates. 

First, the thesis introduces the reader to the topic of machine learning and big data, 

including “V” characteristics, storage options and brief history, followed by initial 

remarks on the thesis workflow. The challenges of working with crowdsource based data 

are listed and discussed. The considered data processing and regression methods are then 

introduced, and their basic parameters explained. As the method performance evaluation 

metric, MAE was introduced. 

The network testing application RTR NetTest is introduced and discussed in detail, 

including its properties, interface and network performance testing process. The results 

and their visualization inside the application as well as in the web view is shown. 

The results of all tests, available as open data are introduced. The second source of data, 

the drive test measurements performed by NEMO Keysight system are introduced along 

with the supporting measurement tool. 

In 1D analysis chapter, the NEMO measurement data are utilized to evaluate the 

performance of the considered regression methods and their applicability on the 

crowdsource-based data, as well as on the two-dimensional regression. Inverse distance 

weighting and Gaussian process regression were evaluated to be the best fitting methods 

for further application. 

The reference measurements using H3 SIM card with unlimited data volume, 

downlink limitation to 50 Mbps and uplink limitation to 20 Mbps were performed in 

the city area and open area to evaluate the impact of the surroundings on the data. Along 

with the reference measurements, NEMO data were utilized in 2D analysis to find optimal 

parameters for each method. Adjusted Haversine formula was applied to transform the 

data coordinates into distances in meters to create regressions without the bias 

(as 1 degree of latitude and 1 degree of longitude do not represent the same distance). 

Minimum number of evenly distributed samples per area was derived, above which both 

regression methods show the same qualitative performance regarding MAE. The 

evaluation of methods established, that the optimal parameters for IDW are power 

parameter in the range from 3 to 4 and infinity radius, GPR performs the best with 

constant basis and rational quadratic covariance function. By evaluating the input data 

from all sources as discrete probability density functions it was discovered, that RSRP 

measurements resemble Gaussian distribution, whereas uplink and downlink have highly 

differing distributions, within which the tariff limitations are clearly visible. 

The performance maps were created for the three biggest mobile network operators, 

predicting downlink, uplink and RSRP parameters. The relative MAE established, RSRP 

returns reliable performance maps, whereas uplink and downlink prediction is unreliable 

due to the corruption of data by tariff limitation and plenty other factors that are listed in 

the text. It was also established, that the current method while utilizing the existing 
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database is able to assess the parameters on 1.68 % area of Austria. 

As the created RSRP prediction tool performs on the lowest margin of error with 30 

measurements distributed evenly on the 1 square kilometre area, the performance maps 

can be created for the centres of the major cities in Austria. A set of proposals for the 

future extension of the method include extending the database by other sources of 

information or removing the tariff limitation bias by monitoring the limited number 

of users. 
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