
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Informatics

raj

Bachelor Thesis

Usage of Headless Content Management System for information
portals of public administration

Arozhdan Baibussynov

©2022 CZU Prague

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Arozhdan Baibussynov

Systems Engineering and Informatics
Informatics

Thesis title

Usage of Heasless Content Management System for information portals of public administration

Objectives of thesis
The main aim of this thesis is to analyse the impact of the usage of headless Content Management
System (CMS) on the design and programming the web pages and explain what headless CMS is and how
to use it through a relevant theory (communication via API services between front and back end).

The partial objectives are such as:
-To conduct a comprehensive literature review, studying the relevant theories on current usage and
prospects of traditional and headless CMS (e.g. Drupal, WordPress, Liferay, Joomla, etc.).
-To study challenges, opportunitiees, benefits and implications of headless CMS in the web design.
-To examine the impact of headless CMS on the desing and programming technique.
-To evaluate the proposed ideas, formulate recommendations and make conclusions.

Methodology

The theoretical part of this thesis is based on the author's own research and study of relevant information
resources, using qualitative document analysis and external desk research. The practical part will show
some usecases of how to work with headless CMS on front and back end (via API communication).

Based on the usecases through a selected theory the conclusions and implications both for theory and
practice will be formulated.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

The proposed extent of the thesis
30-50 pages

Keywords
Content management system, web pages, information portal, programming, design

Recommended information sources
LAURENČÍK, M . Tvorba www stránek v H T M L a CSS. Praha: Grada Publishing,

2019. ISBN 978-80-271-2241-7
M A Y E K A R , D. Decoupling Drupal: A Decoupled Design Approach for Web Applications. Berkeley, CA:

Apress, 2017. ISBN 978-1-4842-3320-7

Expected date of thesis defence
2021/22 SS - F E M

The Bachelor Thesis Supervisor
doc. Ing. Jan Tyrychtr, Ph.D.

Supervising department
Department of Information Engineering

Electronic approval: 1.3. 2022

Ing. Martin Pelikan, Ph.D.
Head of department

Electronic approval: 7. 3. 2022

doc. Ing. Tomáš Šubrt, Ph.D.
Dea

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Declaration

I declare that I have worked on my bachelor thesis titled "Usage of Headless Content

Management System for information portals of public administration" by myself and I have

used only the sources mentioned at the end of the thesis. As the author of the bachelor thesis,

I declare that the thesis does not break any copyrights.

In Prague on date of submission 12.03.2022

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Acknowledgement

I would love to thank my supervisor doc. Ing. Jan Tyrychtr, Ph.D., for all the help
he provided to me within short period of time. For the assistance with structuring and
organizing the job!

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Usage of Headless Content Management System for
information portals of public administration

Abstract

English

The purpose of this bachelor thesis is to learn more about "Headless" CMS and design a

new website that uses data created and managed by the CMS. We should be able to define

the fundamental difference in comparing more mature Traditional CMS to modern

Headless CMS.

The main goal of literature review is to clarify what CMS is, then define Headless CMS,

understand how it is different from "normal" CMS, define benefits, pros and cons of each

approach.

The goal of practical solution is to create an instance of headless CMS. Understand what is

happening behind the scene. With this, the aim is to create a fullstack application running

on Headless CMS.

Czech

Keywords: Content management system, web pages, information portal, programming,

design

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Využití Headless Content Management System pro
informační portály veřejné správy

Cílem této bakalářské práce je seznámit se s CMS "Headless" a navrhnout nové webové

stránky, které využívají data vytvořená a spravovaná tímto CMS. Měli bychom být schopni

definovat zásadní rozdíl v porovnání vyspělejších tradičních CMS s moderními Headless

CMS.

Hlavním cílem rešerše literatury je objasnit, co je to CMS, dále definovat Headless CMS,

pochopit, čím se liší od "normálního" CMS, definovat výhody, klady a zápory jednotlivých

přístupů.

Cílem praktického řešení je vytvořit instanci bezhlavého CMS. Pochopit, co se děje za

scénou. Díky tomu je cílem vytvořit fullstack aplikaci běžící na Headless CMS.

Keywords: Systém správy obsahu, webové stránky, informační portál, programování,

design

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Table of content

1 Introduction 7

2 Objectives and Methodology 8
2.1 Objectives 8
2.2 Methodology 8

3 Literature Review 9
3.1 Content and Content Management Systems 9

3.1.1 What is a "Content" itself? 9
3.1.2 Content management system 9

3.2 Traditional content management system 9
3.2.1 What is common for traditional systems 11

3.3 Headless CMS 11
3.4 Reasons to develop „Headless" management systems 12

3.4.1 Advantages of "traditional" approach: 12
3.4.2 Disadvantages of the approach: 13

3.5 Integration of Headless CMS 13
3.5.1 What is API 14
3.5.2 REST API 14
3.5.3 URL, REST API endpoints 15
3.5.4 GraphQL API 16

3.6 Databases 16
3.6.1 SQL 17

3.7 JavaScript 17
3.7.1 Client-side JS 18
3.7.2 Server-side JS 18

3.8 Strapi Headless CMS 19
3.8.1 Introduction to Strapi 19
3.8.2 Advantages of Strapi 19
3.8.3 Overview of Strapi 20
3.8.4 File structure in Strapi CMS 25

3.9 Node Package Manager 29

4 Practical Part 30
4.1 Backend development process 30

4.1.1 Entities required 30
4.1.2 Data structure 32
4.1.3 Post entity 33

4.2 REST API in action 34

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

4.2.1 Populating the response 35
4.3 Frontend data fetching and rendering 36

4.3.1 Homepage 36
4.3.2 Post / article page 39

5 Results and Discussion 42
5.1 Results 42
5.2 Limitaions and possible solution 42

5.2.1 Human resources required 42
5.2.2 Software resources 43
5.2.3 Community and state of CMS s 44

5.3 Features 44

6 Conclusion 45

7 References 46

8 List of pictures, tables, graphs and abbreviations 47
8.1 List of pictures 47
8.2 List of abbreviations 47

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

1 Introduction

In order to grow, businesses must have so called "representative branches" online, like

mobile applications, social networks, e-shops, corporate websites. You must put yourself

as widely as possible on the web by all possible ways. You also must be flexible, able to

adjust quickly and easily move to new platforms.

Traditional approach is that for each platform its own architecture is developed, content is

prepared, and the interface is configured. Development and support requires significant

resources. This limits the ability of companies to grow and keep quality.

A new generation of CMS solves the issue. Content is now created, stored and edited

regardless of the technical solutions used to present it on client equipment (browser,

smartphone, smartwatch)

The way how "Traditional" CMS combines both "front-end" and "back-end" causes some

inconvenience. The content is deeply associated with specific architecture and

technologies.

Headless CMS is a fundamentally different management system. It is only responsible for

the content itself, which can be used on many platforms and even synchronously. Now the

backend is not associated with the frontend.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

2 Objectives and Methodology

2.1 Objectives

The main aim of this thesis is to analyses the impact of the usage of headless Content

Management

System (CMS) on the design and programming the web pages and explain what headless

CMS is and how to use it through a relevant theory (communication via API services

between front and back end).

The partial objectives are such as:

- To conduct a comprehensive literature review, studying the relevant theories on current

usage and prospects of traditional and headless CMS (e.g. Drupal, WordPress, Liferay,

Joomla, etc.).

- To study challenges, opportunities, benefits and implications of headless CMS in the

web design.

- To examine the impact of headless CMS on the design and programming technique.

- To evaluate the proposed ideas, formulate recommendations and make conclusions.

2.2 Methodology

The methodology is based on analysis and study of suitable literature and electronic

resources, understanding the principals of reviewed theory.

Get familiar with the "content", "content management system", and two main

approaches of managing the content of applications.

Study most popular CMS systems, see how they are different from each other.

Define "Headless" CMS and find out the benefits of this approach.

Describe Client-Server architecture in case of headless approach.

Basing on this theoretical fundament:

Create a self-hosted instance of "Headless" CMS, review the admin UI panel, as well

as the processes running under the hood.

Design fullstack application, that retrieves data from CMS and renders it on client, so

that we see application, database and file structures in headless approach.

See in practice, how frontend application can consume and display incoming content

Describe conclusions for gained results

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

3 Literature Review

3.1 Content and Content Management Systems

3.1.1 What is a "Content" itself?

First of all, in order to define why we need a CONTENT management system, lets

define the content. Content is information produced through editorial process and

ultimately intended for human consumption via publication. Content is created and

managed, then it is published and delivered (Barker, 2016). Any piece of

information and/or data that we can get out of the page we access was created and

published by someone in some place. Content may vary from images and videos to

texts and tables. The reason we use internet and use our browser is to consume the

content. The hardest thing for content creators is to effectively manage it and this is

the reason for Content Management Systems to be considered. According to the

W3Techs, more than half of the sites are developed with the CMS on the board.

(w3techs.com, 2021)

3.1.2 Content management system

A content management system (CMS) is a software package that provides some

level of automation for the tasks required to effectively manage content. (Barker,

2016). In practice, CMS is a web/desktop application that allows users to build and

maintain website content. Whichever CMS you choose, you will work on the site in

a special personal account - control panel. Sometimes this place is also called the

admin or console. CMS gives you an opportunity to create, store, and modify a

content. The reason why user usually does not even need to have any IT

background, is because all of the Content Management System nowadays provides

you with a very convenient, easy-to-understand graphical user interface. There you

can manage all aspects of your website, you can create and edit content, add images

and videos, customize the overall site design. WordPress, Shopify and Drupal are

the most popular CMS currently on the web. (w3techs.com, 2021)

3.2 Traditional content management system

Nowadays, "traditional" approach is more common and according to

"websitesetup.com" (Schaferhoff, 2021), the most popular true traditional CMS

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://w3techs.com
http://w3techs.com
http://websitesetup.com

systems are: "WordPress", "Joomla" and 'Drupal". So the most popular „traditional"

systems are also the most popular in general

WordPress:

Their official website tells us that 42% of the web is built on WordPress. Most

famous internet bloggers, small and large businesses, Fortune 500 companies choose

WordPress over all other options combined. (MacDonald, 2020). But how does it

work?

WordPress is the brain of your website. When user accesses a WordPress-powered

website, the WordPress software generates and delivers a fresh new page to your

visitor. Instead of creating a web page on your own, you give WordPress your raw

content you want published as an article, a product listing, a blog post, or something

else. Then, when someone visits your site, WordPress assembles that content into a

perfectly tailored page. (MacDonald, 2020). WordPress allows you to create

different templates, use multiple styles and save money on designers and

programmers. But at the same time it requires a web server to make its computations,

combine content and markup together to send you a valid page, when you make a

request.

Drupal:

Drupal is a traditional content management system, that was created by over 4,500

contributors. It does not require much specific knowledge and you don't have to be

an experienced "Drupalist" (so called Drupal user to build highly scalable and

enterprise-ready websites. Drupal is a PHP-based content management system, that

takes your content and combines it with H T M L markup, CSS styles, and JavaScript.

Same as WordPress it pre-generates a static html response before it gets sent to you

(Nick Abbott, Richard Jones, Matt Glaman, Chaz Chumley, 2016)

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

3.2.1 What is common for traditional systems

We can already notice a common thing for these two CMS's. Actually, "Joomla",

"ModX", "October CMS" and many other most popular systems use same

approach. They all contain both H T M L structure and content. So they insert data

inside the H T M L tags and send you a normal .html file as a response (with some

styling and JS). That is how traditional Content Management Systems work. It is

essential for them to contain all the page structure.

3.3 Headless CMS

Headless CMS is a way different from mentioned earlier systems. It is only

responsible for the content and does not serve H T M L structure. You divide your

"body" from different "heads", so you gain a convenient way to manage content, that

is displayed different way on different platform. Individual frontend can be created

for each environment, that gets data from a single place.

Maintaining and delivering content to different platforms is carried out from one

interface, so it is more convenient. The content can be configured for each

technology to be displayed correctly on small smartphone as well as on big TV

displays. This system is built from scratch and is used to store and manipulate only

the content and with a set of tools. It provides creators with an admin panel to

collaborate on content.

The content is stored in the database it maintains. There are two types of databases

nowadays: relational and non-relational. Those would be covered in this thesis.

Data exchange most often occurs in the "universal" JSON format, which allows you

to adapt to any new frontend (Raevskiy, 2020). The frontend is only responsible for

user interaction, API is used to manipulate and consume data.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

3.4 Reasons to develop „Headless" management systems

Traditional approach came first and is way more popular even nowadays. So the

question is: "Why did people need to change anything?". With all the theory

described before, the benefits and disadvantages of this approach must be defined.

Traditional CMS Cloud-first Headless CMS

C M S

CDN

API

Back-end Ul

C M S

Obrázek 1 Traditional vs Headless
(source:https://query.prod. cms. rt.microsoft. com/cms/api/am/binary/RWLvVL)

3.4.1 Advantages of "traditional" approach:

• Everything is stored in the same place.

• Easy access to both content and markup

• Content owner can preview the way page will look like before publishing the

page

• No need to have strong knowledge in programming. You don't have to build

frontend to consume your content.

• Better SEO. You can set all the required meta data, page title and all other

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

https://query.prod

SEO info in CMS. SEO stands for "search engine optimization". It makes

your website listed on top of search results in search engines like Google,

Bing, Seznam and others. (Amerland, 2013)

• Usually a simple response. In the end of the day, it is only a normal HTML,

CSS and JS files, that computers have first met many year ago, and know

how to parse them.

• Popularity. If you ever run into any issue, 100% someone has already done it

before. There is a great community in the web, that can help you with any

problem.

• Reliability. Traditional approach has longer history than any other.

3.4.2 Disadvantages of the approach:

• Everything is stored in the same place. Yes, also is a disadvantage. Content

management system by its name means the management of content. No

H T M L markup should be involved.

• Usually slower, comparing to Headless CMS's. It takes time to insert your

texts, images and any other content into a html file, Include styles, scripts,

combine all together and send you a response.

• CMS for each application individually. Since you app has data and structure

closely related, it will be incredibly hard to connect multiple different

applications to the same CMS. So you will need to maintain one CMS for

web, one for mobile app and so on.

3.5 Integration of Headless CMS

Many times it was mentioned, that headless approach is different from the traditional

one mainly by the way of integration content into the structure. Since new

generation of management system does not include the markup and styling of the

content but only contains data itself, you must create some frontend to consume and

display your content.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Headless CMS are all API - based. This means, that they provide you with a specific

integrated interface to fetch and manipulate the data.

(Palas, 2019)

3.5.1 What is API

API (Application programming interface) is a set of specific features, functions

implemented by a specific software as an interface for communication with it from

outside. In simple words, it's an instruction for the consuming application with the

access how to use some functionality of the API provider. "I must be addressed

this way, and I am obligated to do this and that if you have the rights to ask for it"

3.5.2 REST API

The name Representational state transfer (REST) was coined by Roy Fielding from

the University of California (Yellavula, 2020). It allows for different clients to

communicate with a single server via API calls to the specific URLs (REST

endpoints).

Each type of operation uses its own HTTP request method:

1. receiving - GET

a. GET request / rest / articles - getting information about all users

b. GET request / rest / articles / 123 - getting information about the article with

id = 125

2. adding-POST

a. POST request / rest / articles - add a new article

3. modification - PUT

a. PUT request / rest / articles /123 - change information about article with id

= 125

4. deletion - DELETE

a. DELETE request / rest / articles /123 - deleting an article with id = 125

This is a way you address the API and ask to do something for you.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

3.5.3 U R L , REST API endpoints

U R L (Uniform Resource Locator) are used as the locators in World Wide Web.

It is like a virtual address to the specific part of the internet.

It was very useful for designing the REST API, because you can easily rich very

specific part of your webapp using the URLs. So called RESPI API endpoints are

created with this technology that allow you to communicate with the server.

Obrázek 2 Example of REST API Endpoint (self-made)

In the example above, we can see that we address our local machine (localhost) by

a specific U R L (/api/posts). The second part is the endpoint for our REST API.

I o ca I h o st: 1337/api/posts

loca lhost : ! 337/api/posts

Params Authorizat ion Headers (8) Body • Pre-request Script Tests Sett ings

Que r y Pa rams

"ody C o o k i e s Headers (16) Test Results

Pretty Raw Preview Visual ize J SON

" d a t a " : [
i

" i d " : 1,
" a t t r i b u t e s " : {

" t i t l e " : " B a s i c I n f o r m a t i o n " ,
" s u b t i t l e " : " I n t r o d u c t i o n i n t o CMS"

Status: 200 OK Time: 653 ms Size: 3.58 KB Save R e s p o n s e

" d a t e _ p u b l i c a t e d " : "2022-01-20",
"body": "## Post content\n\nThe c o n t e n t o f the post cones from API and can be q u i c k l y m o d i f i e d . B e n e f i t o f

Headless CMS i s t h a t i t ' s independent from f r o n t e n d . So t h i s d a t a can be used i n many s c e n a r i o s and
u s i n g d i f f e r e n t approached.\n\nWe can e a s l i l l y c r e a t e web blogs l i k e t h i s one and have a c o m p l i c a t e d
mobile app consuming same data.\n\nThe d a t a coming f o r t h i s post can be found by the f o l l o w i n g u r l : \ n * +
{H05T_URLj-/api/post/l**",

" c r e a t e d A t " : "2022-02-O1T20:14:35.970Z",
"updatedAt": "2022-02-01T20:19:05.684Z" r

" p u b l i s h e d A t " : "2Q22-02-01T2O:19:O5.678Z"

" a t t r i b u t e s " : {
" t i t l e " : " D r a f t system",
" s u b t i t l e " : "How you can manage the c o n t e n t " r

" d a t e _ p u b l i c a t e d " : "2022-01-31",
"body": "## What i s t h e \ " D r a f t system\"\n\nAs many p o p u l a r CMS's, S t r a p ! p r o v i d e s you w i t h a very handy and

Obrázek 3Response with REST API (self-made)

This is an example of the response coming with the REST API. We can clearly see,

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

file:///n/nWe

that by sending the GET request to the server, we ask it to grab all the posts in our

database and send them back in JSON format.

3.5.4 GraphQL API

GraphQL is a query language for the APIs. A GraphQL query asks only for the data

that it needs. It is a completely different approach since the structure and amount of

data is determined by the client application (Eve Porcello, Alex Banks , 2018).

Obrázek 4 GraphQL Query example (self-made)

The client asks for three fields (title, subtitle). But it can request both one field, for

example name, and an arbitrary number of fields that are defined in the user type on

the GraphQL server.

3.6 Databases

Now, it is clear how the data can be fetched and integrated. Another big question is

how is it stored and maintained on the server. How do the REST or GraphQL API

access data and send it in any convenient format to the consuming software.

Both traditional and headless systems use databases to store data. Actually, all

servers that provide data use any kind of database to maintain and provide raw data.

In this example we query our server and ask

for all the posts titles and subtitles.

The client specifies exactly what data it wants

to receive using a declarative, graph-like

structure that closely resembles the JSON

format.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Database is an organized structure that is designed to store, process and modify a

large amount of information. (Petrov, 2019).

The primary purpose and goal of any database is to effectively store data and make a

reliable availability of it to the users. Databases are used as a primary source of any

data, making it possible to share data across different parts of the software.

3.6.1 SQL

SQL (Structured Query Language) is a standard language for accessing and

manipulating databases. It allows us to perform queries in order to review,

manipulate and access the data using human readable language. It became a

standard of the ANSI (American National Standards Institute), and of the ISO

(International Organization for Standardization) in 1987.

(Petrov, 2019)

SELECT columnlj column2,
FROM table_name;

This is an example of a simple select query, that requires to return "columnl" and

"column2" from the table named "tablename". It is important to mention that you

don't have to write these queries on your own, the CMS system does it for you

when you access its API.

On these principle, the API system retrieves data from the database and creates a

response in JSON format. So it is more convenient to consume on any kind of

frontend and to render in with different technologies.

3.7 JavaScript

Both frontend and backend of the project described in the practical part are running

on JavaScript(JS). JavaScript is one of the most popular programming languages,

that mostly run on the web. Actually, all web browsers can read and execute

JavaScript, the all include JavaScript interpreters, that makes it the most deployed

programming language in history (Flanagan, 2020).

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

The name "JavaScript" does not come from "Java". These are completely different

and unrelated programing languages. First one was designed to run on web and

Java is mainly used to run on desktops or to develop mobile apps.

3.7.1 Client-side JS

Main purpose of JavaScript is to run on the client (web browser) and add the

interactivity to static web pages. It lets you make functional components such as

interactive buttons, slideshows, online calculators and much more units you can

"touch". As JavaScript is widely used, it has a big number of frameworks and

libraries. The most popular JS frameworks : Angular (one from google), React JS

(Facebook) and Vue. For the practical part, the frontend is running on React JS. It is

the most popular one, so has a lot of tutorials, plugins and even own frameworks

like Next JS.

React was created by Facebook developer Jordan Walke in 2012. It allows to fetch,

map and render incoming data the way we specify. JSX (JavaScript Syntax

Extension) syntax is used for generating and rendering H T M L templates inside

JavaScript functions. (Banks, et al., 2020). So it can be called JavaScript library for

building user interfaces.

3.7.2 Server-side JS

The aim of this thesis is not to describe the client side of this architecture, but the

way Headless CMS run. But it was said many times, that JavaScript is a Client-side

programming language that runs and executed by browsed. So the question is how

it can be useful for management system that obviously run on the server, not client.

The answer is simple, developers liked JS that much, so they decided to use it both

for frontend and backend development. With this in mind, NodeJS was designed.

This allows developers to write the whole app with one language, not wasting time

and resources to learn and include new scripting languages. One developer now is

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

able to do both: Frontend and Backend development. Fullstack developers

nowadays are not that rare, as it used to be, because modern technologies make it

easier to work with both servers and browsers. (Herron, 2020)

3.8 Strapi Headless CMS

3.8.1 Introduction to Strapi

Strapi is an open-source headless CMS, chosen to demonstrate the power and

principals of the headless approach. The original purpose of Strapi was to help

bootstrap the API. It was created in October 2015 by Aurelien, Jim, and Pierre as a

bachelor thesis (2015). Nowadays, it provides developers with a fast, simple to

create and use the API system. Content types and the access can be created and

modified with the provided Administration Panel, so it is a very quick way to create

the REST and GraphQL API with a convenient graphical user interface.

3.8.2 Advantages of Strapi

It is important to specify the benefits of Strapi CMS and reasons why it was

selected for practical solution.

Why Strapi?

- Open-source solution. It is 100% free to use and can be stored and running on

your own local machine.

- Self-hosted solution. As it was mentioned, you can get the source code of Strapi

and run it on your machine. So it can be very deeply customize and protected from

outside attacks.

- Functionality. Strapi has a giant preinstalled plugins (like content-type builder,

user permissions and others), and you can also find or create a bunch of different

ones.

- NodeJS. Strapi is built on top of NodeJS. So it uses familiar to many developer

JavaScript as a backend language, what makes us easier to use and manage it.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

3.8.3 Overview of Strapi

As most of the CMSs, Strapi has its own Admin panel where non developer users

without coding skills can manage and maintain content of their apps. The user

interface is done using React JS.

Admin panel consists of a set of different components that must be covered in this

thesis.

Dashboard
https://*strapi base url*/admin

Strapi Dashboard
I Workplace

H Content Manager

PLUGIN5

B Content-Type Builder

B Media Library

GENERAL

i f PluCjins

W Marketplace

0 Settings

Welcome
We hope you are making progress on your project! Fed free to read the latest news about Strapi.
We are giving our best to improve the product based on your feedback.

See more on trw blog LJ

Discover the essential concepts, guides, and instructions.

Join the community

Discus; with team members, contributors and
developers on different channels

See our road map [3

Code examples
Learn by testing real projects developed the community.

Tutorials
Follow step by-step instructions to use and customize Strapi.

Read the latest news about Strapi and the ecrjsyster

O Github

ĴJ. Forum

^ We are

d Discord

^0 Twitter

^ Blog

Arozhdan Baibuss,., <

Obrázek 5 Strapi Dashboard (self-made)

Provides with the news and releases, related links, community platforms and the

overview of collection types, single types, plugins and general.

Content manager
https://*strapi base url*/admin/content-manager/

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

https://*strapi
https://*strapi

+• ladt

COLLECTION TYPES

• post

• user

SINGLE TYPES

• homepage

homepage
API ID : homepage

Title

Bachelor Thai sis

s t r a p i

PNG log o, purple.dark pn g

Introduction

Subtitle

Why "Headless" CMS?

Pieview made

The purpose and goal of this "Bachelor Thesis" is to show the advantages of so called "Headless
CMS*". This demo project is a practical part of my thesis and represents the way haw easily and quickly
the content can be managed and shared to the web.
The message you read right now comes from the APltapplication programming interface) that's created
by ""Strapi" .
Admin panel and data representation is shown in practical part of my bachelor thesis.

* Editing published version

INFORMATION

Created 19 days ago

By Arozhdan ßaibussynav

Last update 19 days ago

By Arozhdan Baibussynov

/ Edit the model

f Configure the view

• Delete this entiv

About the project

This project was created using API builder - ""Strapi"". It serves as backend for content creation and
management. There is no commercial or informatical purposes, but only the demonstration of the usage
of Headless CMS.

Obrázek 6 Content manager - Sinle types (self-made)

It is an overview of all the content maintained by Strapi. Content in general is

divided into two groups: "Collection" and "Single" types. These both may contain

same fields, but have a fundamental difference.

Single types, displayed in the figure, is a most standard and "normal" type in Strapi.

It is the best way to manage specific page content (like Homepage, About page and

so on). Those are directly accessible from the main navigation of the admin panel.

Unlike collection types that have multiple entries, single types are not created for

multiple uses. In other words, there can only be one default entry per available

single type.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

post
COLLECTION TYPES 2

• pose

I entries found

• ' User Cl T Filter* 4 currently selected - O

B B SINGLi TYFE5 1

• homepage
ID TITLE - SUBTITLE DATE.PUBLICATED STATE

* 1 Basic Information introduction nto CMS Thursday, January 20.2022 Published s • •

O ! Draft system How you car manage the content Monday, January 31, 2022 Published / • 1

• 3 Mock post Post with no nfonnation Published S 0 1

10 - Entries per page

Obrázek 7 Collection types overview (self-made)

Used to create types repeating the same type of content like blog posts, products,

users or any list of content you can think of. Collection types category of the

Content Manager displays the list of available collection types which are directly

accessible from the main navigation of the admin panel. For each available

collection type multiple entries can be created. This is why each collection type is

divided into 2 interfaces: the list view and the edit view. The list view of a

collection type displays all entries created for that collection type.

Content-type plugins

http://*strapi base url*/admin/list-plugins/

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://*strapi

Plugins
List of the inslal led plugins in the project.

NAME DESCRIPTION

Content Managen

Content Type Builder

Quick way to see, edit and delete the data in your database.

Modelize the data structure of your API Create new fields and relations in just a minute. The files are automatically created and updated in your project

Media Library

Configure your application to send emails

Media file management.

GraphQL

Internationalization

Adds GraphQL endpoint with default API methods.

This piugin enables to create, to read and to update content in different languages, both from the Admin Panel and from the API.

Roles & Permissions Protect your API with a full authentication process based on JWT. This plugin comes also with an ACL strategy that allows you to manage the permissions between the groups c

_ o
Obrdzek 8 Strapi plugins list (self-made)

The list of installed plugins on specific Strapi instance. New project by default has

some pre-installed ones, but others can always be add or deleted.

For the practical solution, GraphQl plugin was installed, so I could show the way it

works.

Content-type builder

http://*strapi base url*/admin/plugins/content-type-builder

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://*strapi

Content-Type
Builder

m
COIL ECU ON TYPES -

* Post

* U« r

+- O âte nen CQUECÍIDÍI type

SINGLE rfF*E5 -

* Homepage

4- Create new sinqla type

COMPONENTS -

+• Create new component

Post * m ' + Add another field SAVÍ

Juild the data architecture of your content

•E Configure the view

NAME TYPE

Ab Title Ten

Ab subtitle Text ^ •

C date_publicaled Date /- •

M cover Med .i /- •

= body Rich tew

+ Add another field to this collection type

Obrdzek 9 Content type builder (self-made)

The Content Manager is a core plugin of Strapi. It is a feature that is always

activated by default and cannot be deleted. It is accessible both when the

application is in a development and production environment.

The Content Manager is divided into 2 categories, both displayed in the main

navigation: Collection types and Single types. Each category contains the available

collection and single content-types, which were created beforehand using the

Content-Types Builder. From these 2 categories, administrators can create, manage,

and publish content.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

3.8.4 File structure in Strapi CMS

> to .cache

> to .tmp

> to build

> to config

> to database

> to n o d e m o d u l e s

> « public

> to src

ť .editorconfig

Ťíi .env

Ťíi .env.example

® .eslintignore

® .eslintrc

^ .git ignore

{ } .strapi-updaterjson

if favicon.ico

® package-lockjson

® package.json

O R E A D M L m d

IS test js

Obrázek 10 File Structure overview (self-made)

Once a new instance of Strapi is installed, the following file structure appears on

the machine. The most important directories and files are described in this thesis.

API - is the place where all our models and their setting are stored.

\m src

> 9 admin
v- 15 api

> M homepage
> Is post

.gitkeep

Obrázek 11 API directory (self-made)

It duplicates all the collections and single types, we have in our Admin panel. This

is the place where our required fields are defined. On each manipulation with the

content type builder, this directory in modified.

Routes.js file is the place to manage the REST API endpoints, and the handlers for

it. It means that once we visit https://*strapi base url*/posts, Strapi will trigger

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

https://*strapi

that and using the "post.find" controller send us a response.

We can always add more controllers and specify our custom routes for that if we

need. For that, all we need is to add to "routes" directory JavaScript file with some

scripts.

// a p i / p o s t / r o u t e s / c u s t o m - p o s t s . j s

modu le .expor t s = {

r o u t e s : [

method: 'GET ' ,

p a t h : ' / pos t s / cus tomRou te ' ,

h a n d l e r : ' pos t . examp leMe thod ' , // c u s t o m - p o s t s . j s : exampleMethod

c o n f i g : {

au th : f a l s e ,

We create a configuration for our custom route, specifying all RestAPI required

options (method, URL/path, require or not authentication) and we also set the

handler for this route. It will say our server what to do, once it triggers a request to

this route.

* a p i / p o s t / c o n t r o l l e r s / p o s t . j s

* post c o n t r o l l e r

*/

const { c r e a t e C o r e C o n t r o l l e r } = r e q u i r e (' (S s t r a p i / s t r a p i ') . f a c t o r i e s ;

modu le .expor t s = c r e a t e C o r e C o n t r o l l e r (' a p i : : p o s t . p o s t ' , s t rap i=>({

exampleMethod: ctx=>{

r e t u r n ' H e l l o , W o r l d ! ' ;

}

») ;

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

In our case I have created an "exampleMethod" that returns a static string. But

obviously it can contain some computations, requests to database, requests to

external API's and so on.

With all this set, we can test our custom API endpoint:

GET lůCalhůSt:1337/apL. • + No Enviranr lent v

1 ocalhost:1 337/ap i/pos ts/cus tomRoute Q Save

G E T v iocalhost:1337/api/posts/customRoute S e n d ***

Params Authorizat ion Headers [8] Body • Pre-request Script Tests Settings C o o k i e s

Que r y Params

K E Y V A L U E DESCRIPT ION Bulk Edit

Body Cook ies Headers (16) Test Results j£ Status: 200 OK Time: 552 ms Size: 819 B Save Response v

Pretty Raw Preview Visual ize Text v < ú Q .

1 H e l l o , W o r l d !

Obrázek 12 Strapi custom endpoint(self-made)

Config - Global settings and preferences are stored in this directory. This is where

URL, port (by default that's 1337), database configurations can be modified.

v $ config
IB adminjs
IS api.js
IS database.js
IB middlewaresjs
IB server.js

Obrázek 13 Config (self-made)

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

SERVER. JS
m o d u l e . e x p o r t s = ({ env }) => ({

h o s t : env('HOST', '0.0.0.0'), // i f not i n .env f i l e , t h e n
l o c a l h o s t

p o r t : e n v . i n t (' P O R T ' , 1337), // i f not i n .env f i l e , t h e n 1337
admin: {

au t h : {
s e c r e t : env('ADMIN_JWT_SECRET' ,

'8c57b4c67c4 0 66a82 8 8 87 94ce2 6 c f d a f ') ,
},

},
}) ;

Node Modules - directory with preinstalled packages.

^ nodemodules library root

> • . b i n

> © .cache

> M @babel

> • ©buffetjs

> M @casl

> M ©emotion

> M @fingerphntjs

> M @formatjs

> M ©fortawesome

Obrázek 14 Node Modules (self-made)

Basically is the folder we wouldn't touch often. A l l our packages and dependencies

are stored here. Now there are more than 100 subfolders with packages Strapi

requires, and obviously we would not go through them.

Public - publicly accessible directory.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

@ public

^ M uploads

Obrázek 15 Public directory (self-made)

Usually contains images, downloadable files.

3.9 Node Package Manager

N P M stands for Node package manager. That's a great tool for JavaScript

developers.

It is a registry / collection of node modules. So you can install and use some plugins

/ packages developers have built in advance and share for free use.

N P X is a package runner. N P X - Node package executer. It runs a command of a

package without installing it explicitly.

(Herron, 2020)

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

4 Practical Part

This chapter is a summary of the process of developing fullstack (frontend and

backend) online blog project using Strapi CMS as a backend administrational system,

client-server communication process, developer experience and entity relation diagram

that shows the database structure designed by me and created by Strapi CMS.

4.1 Backend development process

This is the process of designing and creation of the Strapi instance for managing and

manipulating data. Every development starts with the architecture. The aim of this

practical solution is to create a web blog. So it is required to define all the entities

involved for the best content creation and management.

4.1.1 Entities required

COLLECTION TYPES 4

• Category

• Creator

• post
Obrdzek 16 Entities for practical solution (self-made)

The most essential components of my blog website are following:

• Posts themselves.

• Author of the post

• Categories the posts are related to

And I also have created a "homepage" entity, so we can provide our web blog with

some introduction and the "hottest" articles we want to display on first page.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

h o m e p a g e
API ID : h o m e p a g e

•y Unpub l i sh Save

Bachelor Theisis

Subtit le

W h y " H e a d l e s s " C M S ?

+ <? • f

PNG.Iogo.purple dark.png

Body

Preview m o d e A d d a t i t le

In t roduc t i on

The p u r p o s e a n d g o a l o f this * *Bache lo r Thes i s * * is to s h o w the a d v a n t a g e s o f so
ca l l ed * *Head l e s s CMS**. This d e m o pro jec t is a prac t i ca l par t o f m y thes is a n d
represen ts t he way h o w eas i l y a n d qu i ck l y the con t en t can be m a n a g e d a n d sha red
to the w e b .
The m e s s a g e y o u read r ight n o w c o m e s f r o m the AP I (app l i c a t i on p r o g r a m m i n g
interface) that 's c r ea ted by * * "5 t r ap i " * * .
A d m i n Danel a n d d a t a r ep resen ta t i on is s h o w n in oract ica l Dart o f m v b a c h e l o r thes is .

Ed i t ing published
version

INFORMATION

Created last m o n t h

By A r o z h d a n B a i b u s s y n o v

Last 46 m i n u t e s
update a g o

By A r o z h d a n B a i b u s s y n o v

RELATION

posts (1)

Select •

• Basic Information

Obrázek 17 Homepage entity (self-made)

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

4.1.2 Data structure

K
homepagespos t s l i nks

FK homepage jd
FK pos t j d

34-

Homepage
PK id

title
subtitle
body

createdAt

updatedAt

publishedAt

posts_creator_links

FK
FK

post_id
creator id

34-

Post
PK id

title
subtitle
date_publicated

body

createdAt

updatedAt

publishedAt

7L
Creator

PK id
name
email
bio

created_at

updated_at

publ isedat

Category
PK id

name
created_at

updated_at

publised_at

posts_category_links

FK
FK

pos t j d
categoryjd

>

Obrázek 18 ERD (self-made)

ERD (Entity Relationship Diagram) is the best way to represent the data structure

and data relationships in visual form. The diagram above is a representation of the

real database that was generated by Strapi for us. It did not require a single line of

SQL query from our side, but was created for us. There are much more tables, but

most of them are system tables for Strapi to work well.

But, with the SQL database browser, we can make sure, that the tables have been

created exactly as we needed them to, just by using a convenient admin panel,

letting CMS handling the rest for us.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

' • posts CREATE TABLE "posts ' (' i d ' integer not null primary key auto increment , ' t i t l e ' varchar(255)
id integer " i d " integer NOT MULL

U title varchar(255) "t it le" varchar(255)
Q subtitle varchar(255) "subtitle" varchar(255)
• date_publicated date "date_publ icated" date
• body text "body" text
• created_at datetime "created_at" datetime
Q updated_at datetime "updated_at" datetime
Q published_at datetime "published_at" datetime
Q created J > y j d integer " c r ea t ed_by jd " integer
• updated_by_id integer "updated_by_ id" integer

Obrázek 19 Database table example 1 (self-made)

v -j p o s t s c a t e g o r y j inks CREATE TABLE ' posts_category I inks' (' p o s t j d ' integer null , ' c a t e g o r y j d ' integer null, cor
Q p o s t j d integer " p o s t j d " integer
o category_id integer " c a t ego ry jd " integer

Obrázek 20 Database table example 2 (self-made)

4.1.3 Post entity

Core component in our architecture. It has the most relations to other entities and
actually is the purpose of any web blog. So I think it is the best to demonstrate how
Strapi CMS handles the process of creation of such an entity.

The following structure for post was created in admin panel using a Content type
builder.

NAME TYPE

Ab title Text / •

Ab subtitle Text / •

O datepubl icated Date /* •

cover M e d i a / •

body Rich text /* S

<*> category Relat ion w i th Category / •

creator Relat ion w i th Creator /* s

Obrázek 21Content type builder - post (self-made)

Once the save button was clicked, the process of restructuring of file structure and

database manipulations started.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

File Edit Sdectio

EXPLORER

Go Run Terminal Help

> • cache
> o ti-np
> to build
> to config
5 to database

> to rode_modules
> public
v » 5TC

n admin
v to aipi

> • category

> to homepage
v * post
v to content typ« post

{ } schemajson

> to cnrtiollErs

O gitteep
> to eirteíKJůlK

IB hdnji
ť .editorconfig

•i- .erw.example
• eslintjgnare

•01 .gitignore
I 1 sttvipi-update-r [son

* ftMconJco
:S) package lotItjson
iSj packsge.json

® package. json I } scbeiTiajson • H custom-postsjs

post > conlent-types > post > í) sdremajson > ...

15
16
17
18
19

26
27
28
29

" k i n d " " c o l l e c t i o n T y p e "
"posts"

"post",
posts 1',
"post".

" c o l l e c t lonNMM
" i n f o " : {

"singularName
"pluralName":
"displayName"
" d e s c r i p t i o n " : ""

L
" o p t i o n s " : {

"dr a f t A n d P u b l i s h " : t
L
"pluginQptions": {},
" a t t r i b u t e s " : {

" t i t l e " : {
"type": " s t r i n g "

L
" s u b t i t l e " : {

"type": " s t r i n g "

h
- - d a t e _ p u b l i c a t e d " : {

"type" : " d a t e "
},
"cover": {

"type": "media",
" m u l t i p l e " : f a l s e ,
" r e q u i r e d " : t r u e j
"allowedTypes": [

"images"
I i
>.
"body": {

"type" : " r i c h t e x t "

Obrázek 22 Post schema file (self-made)

id title subtitle date_publicated body created_at updated_at published_at created_by_id jpdated_by

Í W 1 . . . (WlbTp |*HJlbTp Í W l b T p 4>HJlbTp Í W l b T p (WlbTp Í W l b T p í>nnbTp (WlbTp

1 Basic... Introduction ... 2022-01-20 ## Post... 164374647... 164660521... 1643746745... 1

2 Draft... How you can... 2022-01-31 ## What i... 164374742... 164660435... 1643754468... 1

3 Mock post Post with no. . . NULL ## What i... 164375107... 164375447... 1643754471... 1

Obrázek 23 Post database table (self-made)

We can see that the schema of post entity in file structure, database table and in

Strapi are same once again.

Same happened for each content type, created with Strapi CMS. Same will happen

on each content type modifications.

4.2 REST API in action

The concept of RESTful API was covered in theoretical part of the thesis. In this

section, REST API endpoint for fetching content is demonstrated. Since the API

requires the rights to be called from outside, it is required to set them in Strapi admin

panel.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

• *

Post
Define all allowed actions for the api::post plugin.

O Select all POST O Select all

D create delete

exam pie Method O find

(B j f i n d O n e O 1 update

Obrázek 24 Access rights (self-made)

This way, we make post collection publicly available.
/api/posts/:id

Accessing this endpoint, we can now receive posts, stored in database
t

- data: [
- i

id: 1,
- sttribirUs: {

t i t l e ; ''Basic Inferuption",
subtitle: -Introduction into CMS".,
datejuiblicarted: "ZBZ2-B1-M",
tody: "4(i Post content

The content of The post comes from API and can be quickly modified. Benefit of "Headless CttS"* is that i t ' s independent from frontend. So this data can be

We CVI easli l ly create web blags like this one arid have a complicated mobile app consuming same data.

The data coming for this post can be found by the following url:
I*^HOST_UHL}/api/pOSt/l**"1

createdAt: -,2e22-e2-eiT29:14:35.97BZ",
updatedAt: "2B22-fl3-efeTZ2:zfl;11",
publlsnedAt: "2022-02-61128: 19 i 05 .678Z-'

)

h
Id: 2,

+ attributes: { ... }

1L
- {

Id: 3,
+ attributes: { ... J)

].
- meta: -f

- pagination: {
paije: 1,
pageSize: 25,
pagecourit: l,
total: 3

)
>

Obrázek 25 Rest API Posts collection (self-made)

4.2.1 Populating the response

At this moment, related field are not included into the response. It is done this way

on purpose, so the response is simple and quick. But it is always possible to include

required related data, by adding special query parameters to the request URL.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

• data: [
- {

id: 1,
• attributes: {

t i t l e : "Basic. Information",
subtitle: "Introduction into CMS",
datejjublicarted: "2022-61-20",
body: "*# Post contert

We can E

t of the post comes from API end can be quickly modified. Benefit of "Headless

Li l ly create web blags like this one and have a complicated mobile

be found by the following iirl:

independent from frontend. So this data cen t

The data ťůwing for this post
"{HOST_URL}/api/post/l"*",
ťi-eďtedflt "2822-B2-B-1T28: m. 35 . 5 7 B Z " ,
updatedflt: ,,2e22-e3-e6T22:23:11 „6B6Z",
published*?: "2ez2-e2-BiT28: 1 9 : BE .&7sz'

u
- pagination: 1

page: 1,
pages! ré:
pageCaunt
total: 3

>

Obrázek 26 Posts with related category (self-made)

h t t p : / / l o c a l h o s t : 1 3 3 7 / a p i / p o s t s ? p o p u l a t e = c a t e g o r y

4.3 Frontend data fetching and rendering

4.3.1 Homepage

Bachelor Theisis
Why "Headless" CMS?

Introduction
The purpose and goal of this Bachelor Thesis is lo show the advantages of so called
Headless CMS. This demo project is a practical part of my thesis and represents the way
how easily and quickly the content can be managed and shared to the web. The message
you read right now comes from the API(application programming interface) that's created
by "Strapi". Admin panel and data representation is shown in practical part of my
bachelor thesis.

About the project
This project was created using API builder - "Strapi". It serves as backend for content
creation and management. There is no commercial or informatical purposes, but only the
demonstration of the usage of Headless CMS.

Some words about myself
My name is Arozhdan Baibussynov. I am 22 y.o student of 3d year at Czech University of
Life Sciences Prague (CULS/CZU). I came from Kazakhstan to get Europenean education
and get a great life experiese, what I did throug last 5 year in Czech Republic. I partisipated
in Erasmus program in 2020 and have some Spanish experiense in my life.

What you can find on this website
As it was mentioned earlier, this project does not contain any sufficien information and
serves only as demonstatton of what Headless CMS can do, and what are the benefits of it.
There are some blog posts created with meanless information, so we can see the
difference between "single" and "collection1' types in Strapi CMS,

n strapi

Basic Information Draft system
How you can manage the content

Obrázek 27 Homepage frontend (self-made)

Mock post
Post with no information

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://localhost:1337/api/posts?populate=category

As it was mentioned before, JavaScript framework was used for fetching and

rendering the content. In does not matter which technology is chosen, but since I

have more experience with web development, I decided to go with React JS, or

actually some framework for React, called Next JS.

As it was covered in Literature review, there are two ways to access Strapi API,

with REST API with many different endpoints and with different queries, or via

GraphQL API. In the example below, first option is shown.

// i n d e x . j s x
export async f u n c t i o n g e t S t a t i c P r o p s (c o n t e x t) {

const pageData = await
axios.get('http://localhost:1337/api/homepage?populate=posts,cover,posts.
cover,posts.category')

r e t u r n {
props: {

page: pageData.data.data,
a r t i c l e s : pageData.data.data.attributes.posts.data,

},
r e v a l i d a t e : 10,

}

}

This is how the data is requested from backend. Already familiar U R L address is

used to reach the RestAPI endpoint to retrieve required data.

The returned object of this function contains data with Homepage related fields as

well as the related articles.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://localhost:1337/api/homepage?populate=posts,cover,posts

- data: i
id: 1,

- attribute: {
title; "Bachelor Theitit",
embtltle: -Why -HMdlMf OB?',
body: "»e» Introduction

The purpose and goal of this "Bachelor Thetit" it to show the advantages of to called "Headiest CMS". This demo project it a practical part of my thesis and represents the way how ei
The message you read right now conies fro* the API(application programming interface) that's created by " "St rapi " " .
Adain panel and data representation is shown in practical part of ay bachelor thesis.

•»• About tht project

This project was created using API builder • ••"Strapi"". It serves as backend for content creation and management. There is no commercial or informatical purposes, but only the demonst

»*• Some words about myself

My name is Arozhdan Baibussynov, I an 21 y.o student of Id year at "Czech University of Life Sciences Prague'* (CULS/CZU).
I came from Kazakhstan to get Europenean education and get a great life experiese, what I did throug last 5 year in Czech Republic.
I partisipated in "Erasmus'* program in 2828 and have some Spanish experiense in ay life.

#*» What you can find on this website

As it was Mentioned earlier, this project does not contain any sufficien information and serves only as demonstation of what Headless CMS can do, and what are the benefits of it.
There are some blog posts created with meanless information, so we can see the difference between "single" and "collection" types in Strapi CHS.

created**: "2822-92-81119:51:37.89»Z_,
updated**: "2822-83-67T88:29:37.488?",
pub11shed*t| "2022-e2-eiT28:11:19.9871",
porte: {

- data: [
- i

id: 1,
- attributes: {

title: "Basic Information",
subtitle: "Introduction into CHS",
date_publicated: "2822-81-28",
body: "•• Post content
The content of the pott coaes from API and can be quickly modified. Benefit of "Headiest CMS" is that it 's Independent from frontend. So thit data can be used in aany s

Me can eatlllly create web blogs like this one and have a complicated aobile app consuming teme data.

And once data is present in frontend application, it can be rendered and displayed

as we need.

There is an example of simple JSX markup

<div c lassName='page'>

<div c lassName="conta iner mx-auto pb-12">

<hl c l assName=' typorgraphy-h l mt-6'>

{ p a g e . a r t r i b u t e s . t i t l e } < / h l >

<h2 c lassName='typorgraphy-h2 tex t-gray-800 mb-8'>

{ p a g e . a t t r i b u t e s . s u b t i t l e } < / h 2 >

<div c lassName="f lex j u s t i f y - b e t w e e n i t e m s - s t a r t " >

<ReactMarkdown c l assName='norma l i ze- tex t f l ex-grow-1 f l e x - s h r i n k - 0 w-

6/12 pb-12'>{page.at t r ibutes.body}</ReactMarkdown>

<img className='w-3/12'

src={~ h t t p : / / l o c a l h o s t : 1 3 3 7 $ { p a g e . a t t r i b u t e s . c o v e r . d a t a . a t t r i b u t e s . u r l } ~ }

a l t= ' '>

</div>

<div c lassName="f lex j u s t i f y -be tween ">

a r t i c l e s . m a p (a r t i c l e => (

<Link k e y = { a r t i c l e . i d } h r e f = { V p o s t / $ { a r t i c l e . i d } ~ }>

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://localhost:1337$%7bpage.attributes.cover.data.attributes.url%7d~

<Card a r t i c l e = { a r t i c l e } />

</Link>

))
}

</div>

</div>

</div>

And this is the place, where the consumed data is placed into the JSX (HTML with

JS) template.

That is the main difference in "Traditional" and "Headless" approaches. In our

case, frontend is independent from the backend and can be written with any

technologies.

We ask for specific data in specific files to generate specific web page. Same data

can be used in any other software, like mobile apps written on Java, or desktop

applications running on C++.

4.3.2 Post / article page

Basic Information

Post content
The content of the post comes from API and can be quickly modified. Benefit of Headless CMS is that its independent from frontend. So this data can be used in many scenarios
and using different approached.

We can easlilly create web blogs like this one and have a complicated mobile app consuming same data.

The data coming for this post can be found by the following url: {HOST URL}/api/post/1

Obrázek 28 Post page (self-made)

We consume post data as well as all related fields like "creator" and "category"

entities. Actually, media content is also stored in a separated table, so does not

come by default.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

Posts or articles pages are a little tricky, cause individual page must be generated

for each row in posts database table. Of course, it is not required to add a new JS

file on each publication of a new post, Next JS will handle it for us.

export async f u n c t i o n g e t S t a t i c P a t h s Q {
const a r t i c l e s = await a x i o s . g e t (~ h t t p : / / l o c a l h o s t : 1 3 3 7 / a p i / p o s t s ')
const paths = a r t i c l e s . d a t a . d a t a . m a p (a r t i c l e => ({ params: { post:

~ $ { a r t i c l e . i d } ~ } }))
re t u r n {

paths,
f a l l b a c k : t r u e // f a l s e or 'blocking'

h

First, we catch all the posts. At this moment, we don't require related fields, so

build process is faster. Once we do it inside "getStaticPaths" function, Next JS will

load all posts and create a webpage for each of them. This is only related to this

specific frontend framework and is different for each technology.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://localhost:1337/api/posts'

export async f u n c t i o n g e t S t a t i c P r o p s (c o n t e x t) {
const r o u t e l d = context.params.post
const a r t i c l e D a t a = await

axios.get(~http://localh.ost:1337/api/posts/${routeld}/?populate=category,
c o v e r , c r e a t o r , c r e a t o r . a v a t a r ')

r e t u r n {
props: {

a r t i c l e : a r t i c l e D a t a . d a t a . d a t a ,

L
r e v a l i d a t e : 10,

}

}

This is how data fetching for a specific post in handled by Next JS. Since all

possible routes are already stored, we just loop through them and make a GET

request to fetch more data.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

http://localh.ost

5 Results and Discussion

5.1 Results

The result of the practical solution is a modern full stack web application, that is

running on local setup and can be hosted on any virtual server or serverless providers

like AWS (Amazon Web Services). Application owner is secured, in case of software

support termination, since the whole core code for both frontend and backend is under

developer's control and can be deeply modified.

Strapi "Headless" content management system was chosen as backend - brains and

content provider of the project, and Next JS (React JS framework) as a frontend tool to

display incoming data. This approach allows to painlessly and quickly switch frontend

to any other solution or/and use many data consumers on different platforms.

As the result, I have created a demo web blog, that's a functionality of creating,

managing and publishing articles in a convenient web admin interface, it also allows

to specify rights and permissions for different content consumers, so some data might

be hidden from public and only visible for registered users if required. Each admin

user also has different access level, such as super admin, administrator and editor.

5.2 Limitaions and possible solution

As a fullstack web developer, I have quite a big experience in both "traditional" and

"headless" management systems, and have mentioned to myself some complications

that come with a newer approach of development, I would like to discuss.

5.2.1 Human resources required

Both human and hardware resources consuming is higher.

Development requires more time and skills. When you build a website on

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

WordPress, for example, you can choose any of preinstalled templates for the

markup and stylings, so you can build it with a small development experience. In

our case, I had to build a frontend application from scratch, so I had to know any

technology to consume and display incoming data. The documentations coming

with most Headless CMSs are usually very descriptive and understandable, they

always contain integration tutorials and manuals. And actually, it is the point of

"headless" approach, when CMS is not responsible for frontend, but I think, newer

generations might have provide with some website constructors, that would already

know what content types are created.

5.2.2 Software resources

This is quite a big topic. Headless CMS itself requires much less computational

powers than elder brothers do, but as a developer you must also think of the

frontend part. There are three frontend development technologies and each have its

own compromises:

• Single page applications (SPA). Render happens on client side. Does not

consume server resources, but clients. Might run slow on old devices.

• Static server generators (SSG). Render happens on server side. Must be

manually triggered, otherwise client does not receive updates in content.

Render happens rarely, so server is not busy and client receives static well

known HTML, CSS and JS.

• Server side rendering (SSR). Happens on the server on each page visit. So

client receives most relevant and current state of data. Becomes a problem, if

you have thousands of visitors each day.

As we can see, project owner must know about each approach and choose the

best option.

While working on this thesis, Next JS (React JS framework) has released a major

update, containing the changes I thought of as a possible solution and suggestion.

Next JS running in SSR mode, now caches the page on first visit. Revalidate

value can be set for each specific page, so it erases the page from cache after

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

period of time. In my case, this is the perfect solution.

5.2.3 Community and state of CMSs

Community is quite small at this moment, comparing to "Traditional" CMSs.

It still requires some time, for articles to be written, questions to be answered.

The state even of the most popular Headless content management systems is quite

raw. New releases appear almost every week, that solve some bugs, but might also

bring new ones. It is not a disadvantage of a problem of "Headless" CMSs, but of

any new technology. They all require some time to evolve and grow.

5.3 Features

Never the less, newer approach brings a lot of benefits. Freedom is the biggest one.

You choose what development stack to use. You can build same websites with

different stacks, have multiple frontend applications manipulating same content and

data source. Everything is safely synchronized and shared across the web to ones,

who has rights to use to your data. You don't have to restrict the access to you

website while maintenance or moving to another platform, both versions can work

simultaneously.

So we can define most important features as following:

• Quick adjustment to changes.

• Less maintenance and migration complications.

• More workflow options.

• Freedom to choose development stack.

• No need to predefine target platforms. Once your API is up and running, you

can connect new applications to it whenever you decide to.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

6 Conclusion

This thesis was designed, so basing on theoretical knowledge, new clean instance of

Strapi headless content management, could be launched. It shows, that even though,

traditional approach is more popular, it deserves to be mentioned and used as an API

builder and data provider. First, the required basic theory was described in Literature

review, introduction to the world of content management systems, fundamental

difference in two main approaches, introduction to Strapi user interface, file and data

structures. Thesis aimed to show the impact of Headless CMS to web development in

general, show what does it change and how it can be useful.

With this theory, demonstrational project was created, so that changes are feasible in

practice. The process of content creation, storing in database and sharing with REST

API was covered step-by-step. I also had a frontend service, to show how this data can

be useful and consumable in real world application.

The flexibility of "Headless" approach would not be reachable in traditional

management systems and building API from scratch would require much more time

and knowledge.

As the conclusion, I would like to say, that I would definitely use Headless content

management systems for personal projects and push this approach to be chosen by

more developers.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

7 References

Nick Abbott, Richard Jones, Matt Glaman, Chaz Chumley. 2016 . Drupal 8:
Enterprise Web Development. Birmingham : Packt Publishing Ltd., 2016 . ISBN 978-1-
78728-319-0.
2015. About Strapi CMS. Strapi CMS. [Online] 2015. https://strapi.io/about-us.
Amerland, David. 2013. Google™ Semantic Search. Indianapolis : Que, 2013.
Banks, Alex a Eve, Porcello. 2020. Learning React. Sebastopol: O'Reilly Media, Inc.,
2020.
Barker, Deane. 2016. Web Content Management, s.l. : O'Reilly Media, Inc., 2016.
Eve Porcello, Alex Banks . 2018 . Learning GraphQL. Sebastopol: O'Reilly Media, 2018
. 978-1-492-03071-3.
Flanagan, David. 2020. JavaScript: The Definitive Guide, 7th Edition. Sebastopol:
O'Reilly Media, Inc., 2020.
Herron, David. 2020. Node.js Web Development. Livery Place : Packt Publishing, 2020.
978-1-83898-757-2.
MacDonald, Matthew. 2020. The WordPress Landscape. WordPress: The Missing
Manual, 3rd Edition, místo neznámé : O'Reilly Media, Inc., 2020.
NodeJS. [Online] https://nodejs.org/en/.
Palaš, Petr. 2019. The Ultimate Guide. Brno : Kentico Software, 2019.
Petrov, Alex. 2019. Database Internals. Sebastopol : O'Reilly Media, Inc., 2019.
Raevskiy, Mikhail. 2020. why-headless-cms-is-the-future-of-web. medium. [Online] 9.
Sep 2020. https://medium.com/swlh/why-headless-cms-is-the-future-of-web-
759105706325.
Schäferhoff, Nick. 2021. Popular CMS by Market Share. Websitesetup. [Online] 1. May
2021. [Citace: 13. August 2021.] https://websitesetup.org/news/popular-cms/.
w3techs.com. 2021. Usage statistics of content management systems, w3techs.com.
[Online] w3techs.com, 2021.
https://w3techs.com/technologies/overview/content_management.
Yellavula, Naren. 2020. Hands-On RESTful Web Services with Go Second Edition. Livery
Place : Packt Publishing, 2020. 978-1-83864-357-7.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

https://strapi.io/about-us
https://nodejs.org/en/
https://medium.com/swlh/why-headless-cms-is-the-future-of-web-
https://websitesetup.org/news/popular-cms/
http://w3techs.com
http://w3techs.com
http://w3techs.com
https://w3techs.com/technologies/overview/content_management

8 List of pictures, tables, graphs and abbreviations

8.1 List of pictures

Obrázek 1 Traditional vs Headless
(source:https://query.prodxms.rt.microsoftxom/cms/api/am/binary/RWLvVL) 12
Obrázek 2 Example of REST API Endpoint (self-made) 15
Obrázek 3Response with REST API (self-made) 15
Obrázek 4 GraphQL Query example (self-made) 16
Obrázek 5 Strapi Dashboard (self-made) 20
Obrázek 6 Content manager - Sinle types (self-made) 21
Obrázek 7 Collection types overview (self-made) 22
Obrázek 8 Strapi plugins list (self-made) 23
Obrázek 9 Content type builder (self-made) 24
Obrázek 10 File Structure overview (self-made) 25
Obrázek 11 API directory (self-made) 25
Obrázek 12 Strapi custom endpoint(self-made) 27
Obrázek 13 Config (self-made) 27
Obrázek 14 Node Modules (self-made) 28
Obrázek 15 Public directory (self-made) 29
Obrázek 16 Entities for practical solution (self-made) 30
Obrázek 17 Homepage entity (self-made) 31
Obrázek 18 ERD (self-made) 32
Obrázek 19 Database table example 1 (self-made) 33
Obrázek 20 Database table example 2 (self-made) 33
Obrázek 21Content type builder - post (self-made) 33
Obrázek 22 Post schema file (self-made) 34
Obrázek 23 Post database table (self-made) 34
Obrázek 24 Access rights (self-made) 35
Obrázek 25 Rest API Posts collection (self-made) 35
Obrázek 26 Posts with related category (self-made) 36
Obrázek 27 Homepage frontend (self-made) 36
Obrázek 28 Post page (self-made) 39

8.2 List of abbreviations

CMS - Content Management System

PHP - Personal Home Page (Hypertext Preprocessor)

H T M L - Hypertext markup language

CSS - Cascadian stylesheet

JS - Javascript

NodeJS - Node JavaScript (running on the server)

SEO - Search engine optimization

RESTful - representational state transfer

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha -

https://query.prodxms.rt.microsoftxom/cms/api/am/binary/RWLvVL

GraphQL - Graph Query Language

JSON - JavaScript Object Notation

X M L - extensible markup language

GitHub - Global Information Tracker

React JS - reactive JavaScript

JWT - JSON Web Token

N P M - Node package Manager

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha -

