VYSOKE UCENI TECHNICKE V BRNE

y BRNO UNIVERSITY OF TECHNOLOGY

7

g

FAKULTA ELEKTROTECHNIKY A KOMUNIKACNICH

TECHNOLOGII
N
kﬂ USTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF RADIO ELECTRONICS

Q-
=

FUZZY NEURAL NETWORKS FOR PATTERN
CLASSIFICATION

KLASIFIKACE VZORU POMOCI FUZZY NEURONOVYCH SITi

DIPLOMOVA PRACE
MASTER’S THESIS

AUTOR PRACE Bc. TAMAS OLLE
AUTHOR

VEDOUCI PRACE Ing. JITKA SVOBODOVA
SUPERVISOR

BRNO 2012

[TTITT] VYSOKE UGENI
TECHNICKE V BRNE

Fakulta elektrotechniky
a komunikaénich technologii

[N

| \“ Ustav radioelektroniky

Diplomova prace

magistersky navazujici studijni obor
Elektronika a sdélovaci technika

Student: Bc. Tamas Ollé ID: 83398
Ro¢nik: 2 Akademicky rok: 2011/2012
NAZEV TEMATU:

Klasifikace vzord pomoci fuzzy neuronovych siti

POKYNY PRO VYPRACOVANI:

Prostudujte principy fuzzy logiky a umélych neuronovych siti. Navrhnéte neuronovou sit, ktera je
kombinaci fuzzy systému a zvoleného typu neuronové sité.

Vytvoite u€ebni mnoZinu pro neuronovou sit. Navrzeny systém naprogramujte v prostiedi MATLAB s
pouzitim toolboxu Parallel Computing Toolbox a otestujte na uloze klasifikace vzor(.

Ziskané vysledky porovnejte s vysledky ziskanymi pomoci vybranych typl neuronovych siti bez pouziti
fuzzy logiky.

DOPORUCENA LITERATURA:

[1] VASILIC, S. Fuzzy neural network pattern recognition algorithm for classification of the events in
power system networks [online]. Texas A&M University, 2004 — [cit. 18.12.2009]. Dostupné na www:
http://handle.tamu.edu/1969.1/436.

[2] DRABEK, O., SEIDL, P., TAUFER, |. Umé&lé neuronové sité — zaklady teorie a aplikace.
Chemagazin. 2005 (4) s. 32-34

Termin zadani: 6.2.2012 Termin odevzdani: 10.8.2012
Vedouci prace: Ing. Jitka Svobodova

Konzultanti diplomové prace:

prof. Dr. Ing. Zbynék Raida
Predseda oborové rady

UPOZORNEN:I:

Autor diplomové prace nesmi pfi vytvafeni diplomové prace porusit autorska prava tretich osob, zejména nesmi
zasahovat nedovolenym zplisobem do cizich autorskych prav osobnostnich a musi si byt pIlné védom nasledki

poruseni ustanoveni § 11 a nasledujicich autorského zakona ¢. 121/2000 Sb., v€etné moznych trestnépravnich
dasledku vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku ¢.40/2009 Sb.

ABSTRAKT

Prace popisuje zéklady principu funkcnosti neuront a vytvofeni umélych neuronovych siti. Je zde
dikladné popsana struktura a funkce neuronti a ukézan nejpouzivanéjsi algoritmus pro uceni
neuronti. Zaklady fuzzy logiky, vcetné jejich vyhod a nevyhod, jsou rovnéz prezentovany.
Detailnéji je popsan algoritmus zpétného Sifeni chyb a adaptivni neuro-fuzzy inferencni systém.
Tyto techniky poskytuji efektivni zpisoby uceni neuronovych siti.

KLICOVA SLOVA

neuron, umélé neuronové sité, akéni potencidl, algoritmus zpétného Sifeni chyb, fuzzy logika,
fuzzy-neuronova sit’, adaptivni neuro-fuzzy inferen¢ni systém

ABSTRACT

This work describes the principle of operation of neurons and how they form artificial neural
networks. The structure and the operation of neurons are thoroughly described and the most widely
used algorithm for neuron training is shown as well as the basics of fuzzy logic including its
advantages and disadvantages. This work fully describes the backpropagation algorithm and the
adaptive neuro-fuzzy inference system. These techniques provide effective methods of neural
network learning.

KEYWORDS

neuron, artificial neural networks, action potential, backpropagation algorithm, fuzzy logic, fuzzy
neural network, adaptive neuro-fuzzy inference system

OLLE, T. Fuzzy neural networks for pattern classification. Brno: Vysoké uéeni technické v Brng,
Fakulta elektrotechniky a komunikacnich technologii. Ustav radioelektroniky, 2012. 50s., 8 s.
ptiloh. Diplomova prace. Vedouci prace: Ing. Jitka Svobodova

PROHLASENI

Prohlasuji, Ze svou diplomovou praci na téma Klasifikace vzori pomoci fuzzy neuronovych
siti jsem vypracoval samostatné¢ pod vedenim vedouciho diplomové prace a s pouzitim
odborné literatury a dalSich informacnich zdrojt, které jsou vSechny uvedeny v seznamu
literatury na konci prace.

Jako autor uvedené diplomové prace dale prohlasuji, ze v souvislosti s vytvofenim této
diplomové prace jsem neporusil autorskd prava tietich osob, zejména jsem nezasahl
nedovolenym zplisobem do cizich autorskych prav osobnostnich a jsem si plné¢ védom
nasledki poruseni ustanoveni § 11 a nasledujicich autorského zékona ¢. 121/2000 Sb., o
pravu autorském, o pravech souvisejicich s pravem autorskych a o zméné nékterych zakont
(autorsky zakon), ve znéni pozdé&jSich piedpist, vCetné moznych trestnépravnich disledka
vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zékona ¢. 40/2009 Sb.

VBMEANe coovvvviiiivieccenecee e
(podpis autora)

PODEKOVANI

Dékuji vedoucimu diplomové prace Ing. Jitky Svobodové za ucinnou metodickou,
pedagogickou a odbornou pomoc a dalsi cenné rady pii zpracovani mé diplomové prace.

VBMedne ...coooveveiieieicc e
(podpis autora)

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
1. INTRODUCTION

2. NEURAL NETWORKS
P I T 1 I o] = 11 F= OSSR
2.2 0peration Of NEUIONS.........coiiiie e e e e e
2.3 LBAIMMING ...ttt ettt s e
2.4 Artificial neural NEIWOIKSoooir e
2.4.1 The basic Artificial NEUIONcoouniieee e

3. BACKPROPAGATION ALGORITHM
I T B I == Fo T 1 o o o PP
3.1.1 Description of the backpropagation algorithm ...,
3.2 Running the algorithm ...
3.3 StOP the traiNiNgGeee i e

4. FUZZY SYSTEMS
4.1 Fuzzy Neural NetWOIKS ... e

5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
5.1 Learning algorithm of ANFIS ... e
. 1.1 FOIWAI PASS ... i eieiiiee e et e e e et e e e e e et e e e e e et e e e e e eaaa e e eeeasaaneenes
5.1.2 BACKWAIT PASScovviiiiiiiiiiee e ettt e e e et e e e et e e e e et e e e e eaaa e

6. THE SPEECH SIGNAL
6.1 SigNal Preparationoooiiiiiiiee e
6.1.1 Division into frames and preproCeSSINGcoeevvuuueiiiiee e
6.1.2 Analysis using filter DanKs ...

7. THE REALIZATION OF THE PROGRAM

8. THE SIMULATION
8.1 The 'NNV' NEIWOIK......co oo e e e e e e e e e e eeann s
8.1.1 Network ParameEterscoooe it
8.1.2 Running the Simulation ..o e
8.2 The ANFIS NEWOIK ..o e e e
8.2.1 Network ParameEterscoooeiiiiiiii et e
8.2.2 SIMUIAtION FESUILSeeiieiii e

9. CONCLUSION

REFERENCES

LIST OF SYMBOLS, ABBREVIATIONS AND VARIABLES
LIST OF INSERTS

LIST OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

2.1 A biological NEUIrON ([2]).....eeeeeeiieieiie ettt e e e e e e e e e e e e e e e eeennnnas 2
2.2 Body function control by Neurons ([2])ceuvereuiiiieeieeeeeeieeiee e 3
2.3 The action potential ([2]) .. ceeeeeeemmmaaaee e e e e e e e e eeeeennnes 4
2.4 THE SYNAPSE ([2])-++vvvveeeeeeeeeeeeeeeeiiieet i ettt ettt ettt et e e e e e e e e ataaee e e et e e e e e eeeeeeaeaaaaaaaaeaees 5
2.5 A neural net with simple processors connected together ([2])........ccceevveeiiiiiiiennnne, 6
2.6 A basic artificial NeuUron ([3])uueeueeiiieeeei e e naans 6
2.7 Threshold and Sigmoid fuNCtioN ([3]) .. . eeeeeeeeemmeeiiiiiiiiiiie e 7
3.1 Neural network with one inner neural layer ([9])covvvvviiiiiiiiiiieeeee 9
3.2 Gradient MEthOd ([4]) .. ooeeeeeeeeeeeeee e e e e e e e e e eees 12
3.3 The first four letters of the alphabet ([4])......cvvveeeiiieiii e 14
3.4 The first correctly working algorithm ([4]).......coovvviiiiiiii 15
3.5 Total error for NEIWOIrK ([4]) .- eeeeeeeeeiiieiieeeeeeee e 16
4.1 The first model of fuzzy neural Nnetwork ([8])........ccevviirimiiriiiee e, 19
4.2 The second model of fuzzy neural network ([8])........cevvvveiiiiiiiiiiiiiiieeeeeeeeeeeeee, 20
4.3 Berenji’s ARIC architecture ([8])..... . ueeeeeremiiiiiiiiiiiiiii e 20
5.1 A two-input first-order Sugeno fuzzy model ([10])......ccovvriiiiiiiiiiiiiiiiiiiieeeeee 23
5.2 A standard ANFIS architecture ([10])......cccovemmmimiiiiie e 23
5.3 The forward pass (based on [10]).....ccceiiiiiiiiiiiii e e 24
5.4 The backward pass ([10]) .. eeceeeeemmiiiiiaee e e 26
6.1 The Hamming WINAOWcooiiiiiiiiiiiiii e 30
7.1 Flow chart of the Neural NetWork ... 35

7.2 Flow chart of ANFIS ... 36

LIST OF TABLES

Table 4.1 Properties of fuzzy systems and neural networks (based on [6]).....ccceeeeeennnnnnns 18
Table 8.1 List Of recorded WOrdSceueriiiiiisssssmmmerinn s ssssssssss s s sssssses 37
Table 8.2 Categorization Of the WOIdScuuieeeemmmciiiiiiiiiirr s s s s e 38
Table 8.3 Content of the training fOlEr ... i 38
Table 8.4 Content of the first teSt fOlder....uummmmmmmmmmiirererrrrrre e 39
Table 8.5 Content of the second test fOlder.....uummmmmmmmmmmmmimrrirrrir e 39
Table 8.6 Content of the third test fOlder ... 39
Table 8.7 Content of the fourth test fOlder ... 39
Table 8.8 Content of the fifth test folder.......ccvvmmmriniiirr e ——— 39
Table 8.9 The results of the NNV1 network tested with words by Speaker1cccceeuu.ee. 40
Table 8.10 The results of the NNV1 network tested with words by Speaker?2 41
Table 8.11 The results of the NNV1 network tested with words by Speaker3 41
Table 8.12 The results of the NNV2 network tested with words by Speakercccceeeeeees 42
Table 8.13 The results of the NNV2 network tested with words by Speaker?cccee... 42
Table 8.14 The results of the NNV2 network tested with words by Speaker3ccceeeees 42
Table 8.15 The results of the ANFIS network tested with words by Speaker1cccceeeee. 44
Table 8.16 The results of the ANFIS network tested with words by Speaker?2 44
Table 8.17 The results of the ANFIS network tested with words by Speaker3 44

Table 8.18 Comparision of the reSUIS ... e e e 45

1. INTRODUCTION

A fuzzy system is an alternative to traditional concepts of set membership and
logic. Although its basics originate from the ancient Greek philosophy, it is a relatively
new field, and as such, leaves much room for development and applications at the
leading edge of artificial intelligence. Within this work, | try to present the foundations
of neural networks along with some of the more remarkable difficulties to its use with
examples from the field of artificial intelligence.

Modern techniques of artificial intelligence can be found in almost all fields of
the human science, however, the biggest usage is in engineering field. The “neuro-
fuzzy” approach was born as a combination of artificial neural networks and fuzzy
logic. These two techniques are often used together for solving engineering
problems, where classic methods are not able to provide a straightforward or correct
solution. Generally, the neuro-fuzzy term means a type of system characterized for a
similar structure of a fuzzy controller where the fuzzy sets and rules are adjusted
using neural networks’ tuning techniques in an iterative way with data vectors (input
and output system data) [1].

Two different processes take place in such systems. The first is called the
learning phase, where neural networks adjust their internal parameters. The second,
implementation phase behaves like a fuzzy logic system. The combination of these
two techniques is likely to produce better results than the two techniques applied
separately.

Within this work, an own neural network will be built in Matlab, using the
presented techniques. A neural network for voice recognition will be programmed.
The goal of the project is to apply these specific techniques on particular examples,
and to analyze and present the differences between them.

2. NEURAL NETWORKS

The basic conception behind the neural net is to simulate the biological
functions of the human brain. The human brain consists of about 100 billion
processing units connected together in just such a network. These processing units
are called “brain cells” or “neurons” and each one is a living cell [2]. The main
characteristic of the neural network is the fact, that these structures can learn with
examples (training vectors, input and output samples of the system). The neural
networks modifies its internal structure and the weights of the connections between
its artificial neurons to make the mapping, with a level of acceptable error for the
application of the relation input/output that represent the behavior of the modeled
system [1].

The advantages of the neural networks are:
e learning capacity
e generalization capacity
e robustness in relation to disturbances

The disadvantages of the neural networks are:

e impossible interpretation of the functionality
o difficulty in determining the number of layers and number of neurons

2.1 Real brains

Real neurons are much too small to see directly and are visible only under a
microscope (Figure 2.1).

Dendrites
Cell body

Axon

Synapses

I

Fig. 2.1 A biological neuron ([2])

The main component parts of the biological neuron are:

e Dendrites — short tips of the neuron with centripetal type, which receives
information from the outside world (if the neuron is a sensory one)

e Cell body — the bulbous end of a neuron, which contains the cell nucleus
(mechanism that keep the cell alive)

¢ Axon — conducts electrical signals to other neurons, or to muscles or glands

The input information to the body is processed by neurons. The light sensors
in our eyes (called rods and cones) are neurons in which the dendrites are stimulated
by light. Under our skin, there are pressure sensing neurons, heat sensors, pain
sensors and a bunch of other neurons, which help us to detect the outside world
around us. The moving of our muscles is also stimulated by motor neurons. By
looking at the Figure 2.2 you can get a closer look at the process.

W

T~ e~
Skin / = ¥—__ Dendrites modified to
Dendrites /

Axon _\
Connection to other neurons

in brain or spinal cord

sense the outside world

Cell body

Neurons which connect to the outside
world and gather information are

£ axons send information to the brain and known as afferent or sensory neurons.
spinal cord - the Central Nervous System (CNS)
where 1t is processed by intemeurons (neurons
which only connect to other neurons and not the
outside world).

Interneuron Interneuron

Dendrites /
Cell body /

Axon

Neurons which output signals to
muscles are called efferent or
“motor” neurons.

Muscle fibres

Axon ends in Synapse

5

Fig. 2.2 Body function control by neurons ([2])

The input information goes through the long axons of the sensory neurons into
the spinal cord and brain. There they are connected to other neurons (called
interneurons). Finally, the result of the processing is passed to the output neurons
which stimulate muscles or glands to affect the outside world. This mechanism is
responsible for all our actions from simple reflexes to consciousness itself [2].

2.2 Operation of neurons

After reviewing how the neurons form a network, the next step is to
understand the function of each individual neuron. When a neuron is stimulated by
another neuron (or by outside influences in case of sensory neurons), it produces
pulses, called “action potentials”.

Before a neuron becomes stimulated (at its poise), it is polarized. This means
that, neuron is charged up and ready to produce electrical pulse. Each neuron has
associated with it a level of stimulus, above which a nerve pulse or action potential
will be generated. Only when it receives enough stimulation, from one or more
sources it will initiate a pulse — which travels a couple of hundred meters per second
[2].

Membrane I .
Potential (mV) 30
0
-55
-70 | h
‘-..,‘__“-‘___._._'_._,_,..-r" "
Time (ms)
1 2 3 4

Fig. 2.3 The action potential ([2])

With the help of an oscilloscope, it is able to monitor these pulses. Each pulse
is only a couple of milliseconds wide. By increasing the stimulation, the density of
impulses will increase as well. It means more pulses per second.

2.3 Learning

Spot where the end of the axon meets the dendrites of the next neuron is
called the Synapse, and it is important to the functioning of the neuron and to
learning [2]. The enlargement of this area is illustrated in Figure 2.4.

Bubbles of Neuro-
transmitter

End of the axon
< of one neuron

O O\ «— Synaptic Bulb

\ Synaptic Cleft

Dendrite of
next neuron

Fig. 2.4 The synapse ([2])

The end of the axon is called the synaptic bulb. Between this and the next cell
is a few tens of nanometers wide gap, called the synaptic cleft. When the action
potential reaches the end of the axon, it stimulates the release of chemicals called
neurotransmitters, which are present in the synaptic bulb. These cross the cleft and
stimulate the next cell [2]. As more often the synapse is used, the stronger it gets.

2.4 Artificial neural networks

The history of artificial neural networks goes back to 1943, when Warren
McCulloch and Walter Pitts designed a simple artificial model of neuron. Most of the
artificial neural networks are based on their model up to this day.

The Artificial Neural Network (neural net or ANN) is a collection of simple
processors connected together [2]. It is actually a simplified mathematical model of
brain-like systems. Each processor can only perform a very simple mathematical
function by its own, but with a large network of them much greater capabilities can be
achieved. The basic conception is presented in Figure 2.5.

e L R=R=

oy

\

Simple processing Neurons are connected together to
unit (neuron) form a network

Fig. 2.5 A neural net with simple processors connected together ([2])

The most important advantage of neural networks is probably their adaptivity,
which allows to perform well even at situations when the system or the environment
being controlled varies over time.

2.4.1 The basic Artificial Neuron

A basic artificial neuron is shown in Figure 2.6. Individual markings have the
following meaning:

[...inputs to the neuron
w ...represents the strength of the synaptic connection of its dendrite
S ...activity or activation of the neuron (sum of the inputs and their

weights)

N i)
S O
P Threshold
Sum Output
U
T

Fig. 2.6 A basic artificial neuron ([3])

Mathematical expression of artificial neuron is the following:

S =iw, +i,w, +iyw, +i,w, (2.1)

After the summary, a threshold (set at 0.5) is applied in a simple binary level:

if S>05then O =1
if S<0.5then O=0 (2.2)

Described in words: the neuron takes its inputs and weights them according to
the strength of connection. If the total sum of the weighted inputs is more than the
previously defined threshold, the neuron produces a pulse (just like the biological
one).

Artificial Neural Networks used simple binary outputs at an early stage, but
later than switched to continuous output function, because it was more flexible. One
example is the Sigmoid function:

1
0=
l+e

(2.3)

This function always produces an output between 0 and 1 that is why it is often
called activation function. Other activation functions (linear, logarithmic, and
tangential) are also used sometimes; however, the Sigmoid function is probably the
most common. The biggest difference between threshold and Sigmoid function is that
in the threshold case, the output changes suddenly from 0 to 1. In sigmoid case, the
change from 0 to 1 happens gently — this helps the neuron to express uncertainty.
Figure 2.7 compares the difference.

Output Qutput

I ' Y
1 — 1

Threshold function

Sigmoid Function

0 . 0
Input [nput

Y

Fig. 2.7 Threshold and Sigmoid function ([3])

Earlier formula (2.1) may be formalized for a neuron of n inputs:
S=iw, +i,w, +...+1i,w, (2.4)

Generally:

S=>wi, (2.5)

Or, if the inputs are considered as forming a vector I, and the weights a vector or
matrix W [3]:

S=I1-W (2.6)

3. BACKPROPAGATION ALGORITHM

After overviewing the basics of neural networks in the previous chapters, let’s
have a look at some practical networks, their applications and how they are trained.

Many hundreds of neural network types have been suggested over the years;
however, there are only a small group of widely uses, so-called “classic” networks, on
which many others are based. These networks are: backpropagation, Hopfield
networks, competitive networks and networks using spiky neurons. There are even
more variations on these themes. This chapter will deal with the algorithm called
backpropagation.

3.1 The algorithm

Probably the most common way to connect neurons with sigmoid activation
function are multilayer nets. Multilayer neural network with one inner neural layer
(neurons are marked Z;, j = 1,...,p) is shown in Figure 3.1. Output neurons (neurons
are marked Yy, k = 1,...,m). Neurons in output and inside layers must have a defined
bias. Typical marking of the bias of the k™ neuron (Y,) in the output layer is wgx and
typical marking of bias of the j"" neuron (Z)) in the inside layer is vq;. Bias (e.g. it
neuron) matches weighted value of the assigned connection between the given and
fictional neuron, whose activation is always 1. From the displayed picture then ensue,
that a multilayer neural network is created minimally by three layers of neurons: input,
output and at least one inside layer. Between two neighbour layers can always be
found a so called complete neural connection, so each neuron of lower layer is
connected with each neurons of higher layer.

OUTPUT LAYER

- ' Vi v Mmooy ip - i
1 - Vop @f""—; : . @D/ s Xa

INPUT LAYER

Fig. 3.1 Neural network with one inner neural layer ([9])

9

Backpropagation algorithm is used in approximately 80% of all neural network
applications. Algorithm itself includes three periods: feedforward spreading of the
input signal of training pattern, backward spreading of errors and actualization of
weighted values on connections.

During feedforward signal spreading, each neuron in the input layer (X;, i =
1,...,n) receives input signal (x;) and mediates its transfer to all neurons in the inner
layer (Z4..., Zp). Each neuron in the inner layer calculates its activation (z;) and sends
this signal to all the neurons in the output layer. Each neuron in the output layer
calculates its activation (y.), which matches its real output (k™ neuron) after
submission of the input sample.

In principle in this way a response of neural net on the input stimulus can be
obtained, given by excitation of input layer neuron. Signal spreading in biological
system proceeds in such a way too, where input layer can be created e.g. with visual
cells and in the output layer of the brain are then identified individual objects of
watching. The question then will be, how synaptic weights leading to correct
response on the input signal are defined. The process of determining the synaptic
weights is linked again with the concept of learning the neural networks.

Another issue is the ability of generalization over the learned material, in other
words, how the neural network is able to deduce on the basis of learned phenomea
that were not part of the learning process, but can somehow be deduced from the
learned.

What is needed for learning the neural network? It is both the training set
containing elements describing the solved problem and then a method that can fix
these samples in the form of neural network synaptic weight values, including the
already mentioned ability to generalize, if possible. Stop first at the training set. Each
training set pattern describes, how neurons are excited in the input and output layers.
Formally, for the training set T we can consider set of elements (patterns) that are
arranged in pairs defined as follows:

T ={{S T} {S:,T2}...{Sc, To}}
S =[s15:... 8] S| € 0, (3.1)
Ti=[t1t2...tm] tj€(0,1)

where q number of training set patterns
Si excitation vector of the input layer consisting of n neurons
T; excitation vector of the output layer consisting of m neurons
s, t; excitation of the jth neuron of the input, respectively the output
layer

The method that allows the adaptation of the neural network training set is
called backpropagation. This method is an adaptation in the opposite direction of the
spread of information from higher layers to lower layers.

10

During the neural network adaptation with backpropagation method, calculated
activation yi with defined output values tx for each neuron in the output layer and for
each training pattern are compared. Based on this comparison, the neural network
error is defined, for which factor & (k = 1, ..., m) is calculated. & is, as it was already
mentioned, the part of error that spreads back from the neuron Yy to all the neurons
of previous layers which are defined with neuron connections. Factor §; (j = 1, ..., p)
can be defined similarly, which is a part of errors spreads back from neuron Z; to all
the input layer neurons, which are defined with the neuron connections.

Weight value adjustment wjy on the connections between neurons in the inner
and output layers depends on factor d¢ and the activation of Z; neuron in the inner
layer. Weight value adjustment v;; on the connections between neurons in the input
and inner layers depends on factor d; and the activation of X; neuron in the input
layer.

The activation function for neural neworks with adaptive backpropogation
method must have the following characteristics: it must be continuous, differentiable
and monotonically nondecreasing. The most commonly used activation function is
therefore standard (logical) sigmoid and hyperbolic tangent. Network error E(w) is
due to the training set defined as the sum of the partial network error E|(w) due to
individual training patterns and depends on the network confugiration w:

()= E,(w) (3.2)

Partial network error E(w) for the I training pattern (I=1, ...,q) is proportional to
the sum of squared deviations of actual output values of the network input for I-
training pattern from the required output values for this example:

amp%wa%f (33)

keY

The aim of adaptation is to minimize network errors in the weight space. Since
the fault of the network directly depends on a complicated nonlinear complex function
of a multilayer network, the goal presents a non-trivial optimalization problem. For its
solution, the basic model uses the simplest version of gradient method, which
requires differentiability of the error function. Geometric conception will help us in
better understanding.

The error function E(w) is schematically shown in Figure 3.2 — configuration,
which is a multidimensional vector of weights w, is projected on the axis of x. Error
function determines the network error due to fixed training set, depending on network
configuration. During the network adaptation, we are looking for a configuration, for
which the error function is minimal. We start with a randomly chosen configuration
w©, where the corresponding network error from the desired network will probably be
large. In analogy with human learning, it corresponds to the initial settings of synaptic
weights of the newborn, who instead of the desired behaviors such as walking,
talking, etc. performs random movements and makes vague noises. During the

11

adaptation, we frame at this point w'® tangent vector (gradient) Z—E(w(o)) and move in
W

the direction of this vector down by €. For sufficiently small € then we obtain the new
configuration w(" = w® + Aw!), for which the error function is smaller than for the
original configuration w®, i.e. Ew®) = E(w™). The entire process is repeated for w'"
and so we get w*® such that E(w(") 2 E(w?) etc., until we get to the local minimum of
the error function. In a multidimensional weighted space, this procedure exceeds our
imagination. Although with appropriate choice of the learning rate (a) this method
always converges to some local minimum from any initial configuration, there is no
guarantee that this happens in real time. Usually this process is very time-consuming
(several days of calculation with PC) for small multilayer networks (tens of neurons)
as well.

r 9
Nebwork Local Minima Global Minima - the lowest error
etwor

\ (the weight value you really want to
error \ \ find)

Weight

Fig. 3.2 Gradient method ([4])

The main problem with gradient method is that when it finds a local minimum,
then this minimum does not need to be the global minimum (see Figure 3.2).
Presented adaptation process stops at this low level (zero gradient) and the network
error does not decrease further.

There are a number of solutions to solve this problem. The simplest and most
effective (can also solve several other problems) is to reset the weights to different
random numbers and try training again. Another solution is to add ,momentum® to the
weight change. This means that the weight change this interpretation depends not
just on the current error, but also on previous changes. For example W* = W +
Current change + (change on previous iteration*constant), where constant is < 1 [4].

3.1.1 Description of the backpropagation algorithm

Step 0. The weighting values and the bias are initialized by small random
numbers. Assigning the initialization values of the learning coeficient a.

Step 1. Repeat steps (2 to 9) until the condition of calculation termination is not
executed.
Step 2. Perform steps (3 to 8) for each (bipolar) training pair s:t.

12

Feedforward:

Step 3. Activate the input neurons (X, i=1, ...,n)
Xi = Sj
Step 4. Calculate the input values of internal neurons
(Z, j=1, ...,p):
Zin, = Vo; + invy. (3.4)
i=1
Determintation of internal neuron output values
z,=flz_in,) (3.5)
Step 5. Determination of the actual output values of neural
network signal (Yy, k=1, ...,m):
p
y_in, =wy, +szwjk (3.6)
Jj=1
v =Sy _in,) (3.7)
Backpropagation:
Step 6. Value of the expected output for the input training pattern
is assigned to each neuron in the output layer (Y, k=1,
...,m). Furthermore &, =(t, —y,)f (v _in,) is calculated,
which is a part of the weight correction Aw, =ad,z, and
bias correction Aw,, = a0, .
Step 7. A summation of its delta inputs (i.e. from neurons located

in the following layer), & in, :Z§kwjk is assigned to
k=1

each neuron in the inner layer (Z;, j=1, ...,p). By multiplying
the obtained values with derivation of activation function,
we get 6, =5 _in, f'(z_in,), which is a part of the weight

correction Av, = ad,x; and bias correction Ay, =a?,.

13

Update weights and thresholds:

Step 8. Each neuron in the output layer (Yx, k=1, ...,m) updates on
their connections weight values including its bias (j=0,
e P):
w, (new) =w, (old) +Aw (3.8)

Each neuron in the inner layer (Z;, j=1, ...,p) updates on
their connections weight values including its bias (i=0,
..., N):

v; (new) =v; (old) + Av, (3.9

Step 9. Termination condition:
if any changes in weight values do not occur, or if there was performed
maximally defined amount of weight changes, stop; otherwise continue.

Although the description of backpropagation learning algorithm is formulated
for classic von Neumann computer model, despite it is clear that it can be implement
in the distributed way. For each training pattern, the active mode for its input runs
firstly so that the information in the neural network spreads from the input to its
output. Then based on external information about the required output, i.e. the error of
individual inputs, partial derivation of error function are calculated so that the signal
spreads back from the output to the input. Network calculation at reverse run
proceeds sequentially in layers, while in one layer can proceed paralelly.

3.2 Running the algorithm

Now, after the algorithm is reviewed in detail, let’s take a look how it works
with a large data set. We will trying to teach a network to recognise the first four
letters of the alphabet on a 5x7 grid, see below.

Fig. 3.3 The first four letters of the alphabet ([4])

The first step to train the network is to apply the first letter and change all the
weights on the network once. Next do the same for the second letter, then the third,
etc. After you have done this for all four letters, return to the first one, and repeat the
whole process until the error becomes small (see Figure 3.4).

14

Calculate the error and Change all the
change all the weights weights again
in the network once.

-
-

L J

Apply this
letter 3.

Apply this Apply this
latter first. letter next

Change

Change weights

weights and
start again at A

Finally apply
this letter.

Fig. 3.4 The first correctly working algorithm ([4])

Beginners often make a mistake by reducing the errors for each letters
individually (apply the first letter to the network, run the algorithm and then repeat it
until the error reduces, then apply the second letter, do the same, and so on). In such
a way, the network learns to recognize the first letter, then forget it and learn the
second letter, etc. and at the end the network would remember only the last letter.

3.3 Stop the training

An important question is: when the training needs to be stopped? In practice, it
is usual to let the error fall to a lower value, then wait until the network recognizes all
the letters successfully. In this case, the network keeps training all the patterns
repeatedly until the total error falls to some pre-determined low target value and then
it stops [4]. Let’s not forget that all errors needs to be made positive. Figure 3.5
shows the calculation method.

15

Nake total
error =0

Apply first
pattern and train

v

Get error for each
output neuron m
network. make
positive, and add to
total error.

No

If total error < final ves

A

Stop

target error then
stop

If last pattern has
tramed, start again
with first pattern

pattern and train

otherwise load next

No, last
pattern
has not
trained

Fig. 3.5 Total error for network ([4])

A trained network can recognize not just the perfect patterns, but also the
corrupted or noisy ones. Using a validation set is a better way of working out when to
stop network training — this helps us to eliminate network overtraining. The idea
behind this method is to have a second set of patterns — noisy versions of the training
set. Validation set is used to calculate the error, after the network has trained. In case
of a fully trained network, the validation set error reaches a minimum, in case of

overtraining this error starts rising.

16

4. FUZZY SYSTEMS

Fuzzy logic was first developed in 1965 by Lotfi Zadeh. It provides an
approximate but effective means of describing behavior of systems that are too
complex, ill-defined or not easily analyzed mathematically. Its development was
motivated by the need for a conceptual framework, which can help in addressing the
issue of uncertainty and lexical imprecision. With the help of fuzzy logic the
uncertainties of human cognitive processes like thinking and reasoning can be
expressed mathematically. Fuzzy logic uses graded statements rather than ones that
are strictly true or false. Some significant characteristics of the fuzzy logic are:

e In fuzzy logic, exact reasoning is viewed as a limiting case of approximate
reasoning [6]

¢ In fuzzy logic, everything is a matter of degree [6]

¢ In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently,
fuzzy constrain on a collection of variables [6]

¢ Inference is viewed as a process of propagation of elastic constraints [6]

e Any logical system can be fuzzified [6]

The function of such systems can be described by a set of fuzzy rules, like ‘if-
then’ (premise-consequent). If-then rules use linguistics variables with symbolic
terms. Each term represents a fuzzy set. The terms of the input space (typically 5-7
for each linguistic variable) compose the fuzzy partition [1]. The fuzzy interference
mechanism consists of three stages:

1. stage — conversion a numerical input value to a fuzzy value — fuzzyfication

2. stage — definition of the rules according to the firing strengths of the inputs

3. stage — retransformation of the resultant fuzzy values into numerical values -
defuzzyfication

Main advantages of the fuzzy systems:
e ability to represent uncertainties of the human knowledge with linguistic
variables
e easy interpretation of the results
e easy expansion of the base of knowledge by addition of new rules
e robustness in relation of the possible disorders in the system

Main disadvantages are:
e unable to universalize, only answers to what is written in its rule base
e topological changes of the system would demand alternation in the rule base
e definition of the inference logical rules needs expert

4.1 Fuzzy Neural Networks

A marriage between fuzzy logic and neural networks can attenuate the
problems of these technologies. Neural net technology can be used to learn system

17

behavior based on system input-output data. This learned knowledge can be used to
generate fuzzy logic rules and membership functions, significantly reducing the
development time. This provides a more cost effective solution as fuzzy
implementation is typically a less expensive alternative than neural nets for
embedded control applications. Expressing the weights of the neural net using fuzzy
rules helps to provide greater insights into the neural nets, thus leading to a design of
better neural nets [5].

Every intelligent technique has some computational qualities (explanation of
decisions, learning ability, etc.) making them suited for individual problems. For
example, while neural networks are good at recognizing patterns, they are not good
at explaining how they reach their decisions [6]. Fuzzy logic systems are good in
decision explanations but the rules they use to make those decisions they cannot
acquire automatically.

The main reason behind the creation of intelligent hybrid systems have been
these limitations. With the combination of two or more techniques, it is able to
overcome the limitations of individual techniques. If there is a complex application
with two different sub-problems, then a neural network and an expert system can be
used separately for solving these individual tasks. A short comparison between the
operation of fuzzy systems and neural networks is presented in the following table:

Skills Fuzzy Systems Neural Nets
Knowledge |Inputs Human experts Sample sets
acquisition | Tools Interaction Algorithms

_ Information Quantitive and Qualitive | Quantitive
Uncertainty — - : :
Cognition Decision making Perception
Reasonin Mechanism Heuristic search Parallel computat.
g Speed Low High
Fault-tolerance | Lo Very high
Adaptation . : W : .y _Ig :
Learning Induction Adjusting weights
Natural Implementation | Explicit Implicit
language Flexibility High Low

Table 4.1 Properties of fuzzy systems and neural networks
(based on [6])

Neural network learning techniques can automate the process of design and
tune of the membership functions and reduce the development time and cost in
a large measure. The behavior of fuzzy systems can be explained with the help of
fuzzy rules and their performance can be adjusted by tuning the rules. However,
fuzzy system applications are limited to the fields where expert knowledge is
available and the number of input variables is small.

To overcome the problem of knowledge acquisition, neural networks are
extended to automatically extract fuzzy rules from numerical data [6]. The

18

computational process for fuzzy neural systems starts with the development of fuzzy
neuron, based on the understanding of biological neuron and the learning
mechanisms. This leads to the following steps:

e development of fuzzy neural models motivated by biological neurons [6]

e models of synaptic connections which incorporates fuzziness into neural
network [6]

e development of learning algorithms (that is the method of adjusting the
synaptic weights) [6]

Two possible models of fuzzy neural networks are:

e Inresponse to linguistic statements, the fuzzy interface block provides an input
vector to a multi-layer neural network. The neural network can be adapted
(trained) to yield desired command outputs or decisions [8].

Fuzzy > Neural D“:CISIDHSF
Interface Perception as Network
neural mputs
(Neural
outputs)
Linguistic Learning
statements algorithm -

Fig. 4.1 The first model of fuzzy neural network ([8])

e A multi-layered neural network drives the fuzzy inference mechanism [8].

19

(Knowledge-base)

Neural]
Inputs Neural Neural outputs Fuzzy Decisions
P Network > Inference -

T (Learming j

K algorithm

Fig. 4.2 The second model of fuzzy neural network ([8])

A typical fuzzy neural network is Barenji's ARIC (Approximate Reasoning
Based Intelligent Control) architecture. It is a neural network model of a fuzzy
controller and learns by updating its prediction of the physical system’s behavior and
fine tunes a predefined control knowledge base [8].

7 r (error signal)
> C Predict |——————

(Updating weights)

Fuzzy inference network

Stochastic :
we u'(t) Phvsical
Action . eSS
Modifier Svstem
Modifier J

Neural network

System state

Fig. 4.3 Berenji's ARIC architecture ([8])

20

This architecture has the opportunity to combine the advantages of both
neural networks and fuzzy controllers. By predefining the fuzzy IF-THEN rules the
system learns faster than a standard neural control system, because it has not to
learn from scratch. ARIC is made up of feedforward neural networks, the Action-State
Evaluation Network (AEN) and the Action Selection Network (ASN).

ASN is a multilayer neural network representation of a fuzzy controller. In fact,
it consists of two separated nets, where the first one is the fuzzy inference part and
the second one is a neural network that calculates p[t, t + 1], a measure of
confidence associated with the fuzzy inference value u(t + 1), using the weights of
time t and the system state of time t + 1. A stochastic modifier combines the
recommended control value u(t) of the fuzzy inference part and the so called
~probability“ value p and determines the final output value of the ASN [8]:

u'(t) = olu(t), plt,t +1]) (4.1)

The hidden unit z of the fuzzy inference network represent the fuzzy rules, the
input units x; the rule antecedents, and the output unit u represents the control action,
that is the defuzzified combination of the conclusions of all rules (output of hidden
units). In the input layer, the system state variables are fuzzified [8]. ARIC uses
monotonic membership functions only. The fuzzy labels of control rules are set for
each rule locally. The membership values are then multiplied by weights attached to
the connection of the input unit to the hidden unit. The minimum of those values is its
final input [8].

A special monotonic membership function which represents the conclusion of
the rule is stored in each hidden unit. The crisp output value belonging to the
minimum membership value can be easily calculated by the inverse function (thanks
to the monotonicity of this function). This value is multiplied with the connection
weight between the hidden unit and the output unit. The output value is then
calculated as a weighted avarage of all rule conclusions [8].

The AEN tries to forecast the behavior of the system. It is a feedforward neural
network with one hidden layer, which receives the system state as its input and an
error signal r from the physical system as additional information [8]. The network
output Vv[t, t] is viewed as a prediction of future reinforcement that depends of the
weights of time t and the system state of time t” (which can be t or t+1). Better state
have characteristically higher reinforcements.

The weight changes are determined by a reinforcement procedure that uses

the output of the ASN and the AEN. The ARIC architecture was applied to cart-pole
balancing and it was shown that the system is able to solve this task [8].

21

5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Adaptive Neuro Fuzzy Inference System (ANFIS) as developed by Jang et al.
(1997) is aclass of adaptive networks that are functionally equivalent to fuzzy
inference systems (FIS), where the parameters of fuzzy inference systems are
updated by neural networks from a set of training data. An adaptive network, as its
name implies, is a network structure consisting of nodes and directional links through
which the nodes are connected. Moreover, part of all of the nodes are adaptive,
which means their outputs depend on the parameters pertaining to these nodes, and
the learning rule specifies how these parameters should be changed to minimize
a prescribed error measure. ANFIS enjoys many of the advantages claimed by neural
networks (NNs) and the linguistic interpretability of fuzzy inference systems, wherein
both NNs and FIS play active roles in an effort to reach specific goals [10], [11].

Thanks to its capability and because it can perform the same function, almost
any neural network can be replaced by ANFIS. Its primary advantages are non-
linearity and structural knowledge representation.

ANFIS consists of a self-tuning Sugeno-type inference system and calculates
its outputs as a weighted linear combination of the consequents. The hybrid learning
algorithm includes two stages, which are:

o forward pass — identifies the consequent parameters with the help of FIS
learning mechanism and least-squares estimator (LSE)

e backward pass — propagates backward the error rates (error backpropagation)
and updates the premise parameters by the gradient descent method

In ANFIS, the membership functions (gaussian functions) are expected to map
all inputs by changing their parameters. It is desired that all inputs can be mapped to
produce the desired outputs. Unfortunately, in the case that there occur variations in
the inputs, the desired outputs will be poorly approximated by the actual outputs
because of limitations in finding the parameters of the fixed finite number of fuzzy
membership functions [10].

The fuzzy membership function is the basic block of fuzzy logic systems and
has many possible interpretations [10]. It can define the richness of the extracted
information from the given data in case of highly nonlinear systems and the form of
the membership functions can be extended to cover this richness.

5.1 Learning algorithm of ANFIS

The standard ANFIS uses the Sugeno-type fuzzy model to generate fuzzy
rules from a given input-output data set. For easy understanding, let's take a simple
version of fuzzy inference system with two inputs x, y and one output f. A rule set for

22

a typical first-order Sugeno fuzzy with two fuzzy if-then rules has the following form
(based on [10]):

Rule 1: If xis A and y is By, then fi=p +q,y+rn (5.1)
Rule 2: If x is Az and y is B>, then fr=p,+q,y+r, (5.2)

Figure 5.1 shows the reasoning mechanism for the Sugeno model. The
corresponding standard ANFIS architecture where nodes in the same layer have
similar functions is shown in Figure 5.2. The important part of the presented ANFIS is
the modification of the error correction rules of error backpropagation (EBP) by using
a mapping function to replace the membership function in the standard ANFIS [10].

] Al E B,.f
(RS ey
Z : . wqifi+wo+fo
Ao i x B;’: Y = Wi+ W
h\i == T | Wiy
'::““ ki :\R‘ """ e fa=pgp x+ayy+ry =wiliswa b
1 | Y

b
<

Fig. 5.1 A two-input first-order Sugeno fuzzy model ([10])

Layer 1 Layer 4
i Layer2 Layer3 *

A Layer 5
}!

wq f l

wy fa

t4
Xy

Fig. 5.2 A standard ANFIS architecture ([10])

23

5.1.1 Forward pass

The forward pass is based on the architecture presented in Figure 5.2. It uses
two inputs and one output. For convenience, a different notation is introduces as
shown in Figure 5.3 [10].

Layer 1 Layer 4
i Layer2 Layer3 ‘
4 Layer 5
n | i ayer
X < n9 W_1 f1 l
n2
f
n3 2=
ni0y wo fy
y <
n4 ? ?

Fig. 5.3 The forward pass (based on [10])
The functions of the individual layers are the following:

Layer 1:
This layer is the so-called fuzzification layer. The bell activation function is used as
the membership function, which has a regular bell shape and is specified as

LHA(X) = — (5.3)

The membership function has parameters {a;, b;, ¢}, i = 1, 2, 3, 4 which are
predetermined by selecting parameter values. Each output of this node is labeled by
a. Accordingly, the outputs are denoted by n1a, n2a, n3a, and n4a. The symbol a is
used in order to differentiate with new symbol b (after the correction) that will be used
later in the backward pass [10].

Layer 2:
This layer is the rule layer, where fuzzy logic AND is used in the node function. The
output of this layer can be obtained as

24

nSa = min(nla,n3a)
n6a = min(n2a,n4a) (5.4)

Layer 3:
This layer is the normalization layer. Let ntot_a = n5a + n6a, then the normalization is
given by [10]

n7la =nS5al/ntot _a
n8a =nba/ntot _a (5.5)

Layer 4:
This layer is the deffuzification layer. By arranging the incoming signals, matrix A can
be obtained which has the form

A= [(n7a x) (n7a y) n7a (n8a x) (n8a y) nSa] (5.6)

By means of the LSE method, we obtain the consequent parameter P = [p4, q1, r1, p2,
gz, 2] by using the following equation

p=[4a"4]'a'U (5.7)

where U is the desired output of the controller. The consequent parameter P is then
used to compute f; and f; by using the following equation

fi=px+qy+n
fo=px+q,y+r, (5.8)

After that, the output of the node n9 and n70 are calculated by the equation [3]

n9a =na f,
nl0a =n8a f, (5.9

Layer 5:
This layer is represented by a single summation neuron. This layer produces the
overall ANFIS output with a simple summation of the layer input signals given by

nlla =n9a+nl0a (5.10)

25

5.1.2 Backward pass

After running the forward pass, we get the resulted error. Within the backward
pass, this error is propagated back to the system by using error correction rule of the
modified error back propagation (EBP), see Figure 5.4.

Xy
n1 T T
/ - N .
X () n5 | ' N7 4——— n
— > N __/
— &
I d /111 e
ds dm N~ d
n3 TN 7N !
. N6 | . N8 j«——— n10
y (N N4 N
M
/i\ y l i

Xy

Fig. 5.4 The backward pass ([10])

Symbol €41 defines the error between the desired output dx and the actual output.
The sum of the squared error is given by [10]

N(I)
E, =Y.}l -x,)’ (5.11)
k=1

In our case the sum of the squared error defines the difference between the desired
and the actual output, E, = £71. The value x; in this layer is given by n11 and di =
U, then the error is defined as [10]

&, =—2(U - nlla) (5.12)
Next, d¢¢ is defined as follows [10]

d,=-¢,/2=U—-nlla (5.13)
The output of the node n77 then becomes [10]

nllb=nlla+d,, (5.14)

According to formula 5.10, we have

nl1b =n9b +nl0b

26

Based on formula 5.14, we can define

n9b =n%a+d,
nl0b =nl0a+d,

then we can appoint

d,=d,+d, (5.15)

Multiplying the left side of formula 5.15 by (f1 + f2)/(f1 + f2) leads to [10]

4./, + 4./, =d, +d,, (5.16)
h+ta fiths

Since n9a = n7a f; and n10a = n8a f,, after correction we have n9b = n7b f; and
n10b =n8b f,. As a result, we obtain [10]

na+d, =nla+d,)f
nlOa+d,, =(n8a+d,)f,

Next, from the ntot_a of the forward pass, we write the new ntot_b as follows [10]

ntot _b=ntot _a+d tot (5.17)

where d_tot is arbitrary and obtained from the experiment data. Suppose d_tot = 0,
this implies ntot_b = ntot_a. Then the output nods in Layer 2 has the form [10]

nSbl = (n7a+d,)ntot _b
n6bl = (n8a + dg)ntot _b (5.18)

In this layer, the minimum value of input signals are selected - the logic AND
function is applied to process the outputs of Layer 1. As in Layer 2, we already have
nba1 and n6b1, it is important that the outputs of this node must satisfy n5b = n5b1
and n6b = n6b1. A simple way is to split n5b1 and n6b1 into two parts. We then add
an arbitrary value to the one part, so that it has higher value than the other part. As a
result, this part will not be chosen in Layer 2 [10]. After adding the arbitrary value
which belongs to the output node in Layer 1, as a result we get the original value of
nib, n2b, n3b and n4b. The next step is mapping all the inputs to the corrected
output of Layer 1. The mapping function then becomes the membership function of
the learning mechanism of the modified ANFIS.

27

6. THE SPEECH SIGNAL

Speech/voice recognition is a difficult task to be performed by a computer
system [12]. Although a wide range of commercial products were launched in the last
decade, an absolute solution has not been found out yet, and many research areas
have still remained opened in the field.

Speech is a sequence of waves which are transmitted through a medium and
are characterized by some features, including characteristic frequencies and
corresponding intensities [13]. The vibrations of sound waves are perceived by
eardrums in the inner ear, and these oscillations are forwarded to a specific part of
brain for further processing.

The three deciding factors when talking about human-like perception of
speech are loudness, pitch and quality. Loudness represents the energy (intensity) of
the sound. The greater the amplitude is, the louder the sound appears. Pitch is
responsible for the tone of the sound. Higher pitch issues higher tone and against,
lower pitches lower tone. The quality of sound is a perceptual correlate of its spectral
content related to the fundamental frequency of the vocal vibration of the speaker
organ [13].

Speech communication is a crucial channel for conveying various kinds of
information that can be divided into three categories in terms of its content: linguistic,
paralinguistic and nonlinguistic.

The primary objective of human speech communication is to transfer linguistic
information. Linguistic information can be defined as “symbolic information that is
represented by a set of discrete symbols and rules for their combination® [14]. An
important difference between linguistic and non-linguistic information is that linguistic
information can be controlled by the speaker. Each word in a sentence has a specific
meaning and function and can be divided into smaller segments: syllables and
phonemes. The phoneme is the smallest segment of sound.

Paralinguistic information is defined as “information that is not inferable from a
written counterpart but is deliberately added by the speaker to modify or supplement
linguistic information” [14] and can have both discrete and continuous characteristics.
A speaker can control and categorize a sentence and make it declarative,
interrogative or imperative based on the speaker’s purpose. The speech — due to the
effects of paralinguistic information — is changing among neutral, admirable,
suspicious and disappointed states.

Besides linguistic and paralinguistic information, speech also contains nonlinguistic
information. Nonlinguistic information concerns idiosyncratic factors and emotional
states (such as anger, sadness and delight) of the speaker. Generally, the speaker
cannot control these factors, although it is possible for speaker to imitate some
characteristics of these factors as actors do [14]. Idiosyncratic factors which affect the
characteristics of speech are age, gender, individual morphological characteristics,
health condition and possible physical handicaps.

28

6.1 Signal preparation

Before processing with neural network, the signal has to be processed to
contain only information relevant for recognition. This means that inappropriate or
useless content has to be removed. Furthermore, it is useful to adjust the signal into
an appropriate format that the recognizer will be able to work well with. This process
of reducing the amount of information in the speech signal is called parameterization.

6.1.1 Division into frames and preprocessing

The basis of any speech processing is to record the signal. This section
includes sampling and quantization of audio input which is mostly provided by
specialized hardware where the user’s task is only setting up the sampling frequency.
The most often used sampling rate according to the sampling theorem is 8 kHz for
speech signal processing (carrying only human speech), since for most phonemes,
almost all of the energy is contained in the 100 Hz — 4 kHz range.

In practise, however, we need to limit the input signal with a band-pass filter or
sample it with a higher sampling frequency and then apply digital antialiasing filter.
Otherwise, frequency components that do not exist in the original signal would be
added to the speech signal and distort it.

Furthermore, the signal is divided into short frames in time which are
processed separately. For the purpose of speech recognition the division is 25 ms
where every frame covers the previous one by 5 ms (i.e. first frame from 0 ms to 25
ms, second frame from 20 ms to 45 ms and so on).

Signal processing is performed only once for each time frame and, moreover,
is largely accomplished by the hardware. Therefore additional transformation is
applied on the final framework which helps the further work with the samples:
averaging and weighting with Hamming window.

Since the DC component is present only due to quantization error or DC offset
it has no effect on speech recognition, but may have a negative impact on the used
algorithms which assume a signal with zero DC components. DC component is
subtracted from each frame according to the formula:

, RS
S =5 — S
=5, NZO , (6.1)
where N length of the frame

s, n"sample in the frame

Finally, the signal is suppressed at the edges of frames so that at any given
time the most important will be the central part. It also avoids potential signal
distortion at the edges of the frame where signal was cut off. For this purpose

29

Hamming window is used in most of the cases due to its simplicity of calculation
which is applied to each sample of the given frame:

2
o(n) = 0.54—0.46 cos(N”_"J (6.2)

where N number of samples in the window

1 | 1 | 1
0 20 40 G0 a0 100 120 140 160 180 200

Fig. 6.1 The Hamming window

6.1.2 Analysis using filter banks

The frequency intervals that the human ear can distinguish are nonuniformly
distributed across the entire audio spectrum. Imitation of this behavior during signal
processing leads to better results of recognition. This method is also used because
that it is simpler than similar methods with comparable results. The disadvantage of
this method is that the amplitudes of individual filter banks are highly correlated.
Because of that, it is necessary to use cepstral transformation.

For filter banks implementation it is necessary to transform the speech signal
frame into frequency domain using Fourier transformation. Furthermore the results of
this transformation are convolued with triangular Mel scale filters (6.3). This means
that each Fourier transform coefficient is multiplied by the corresponding value of the
filter and the results are saved.

o= 259510g10[%+1j (6.3)

30

Afterwards the outputs of the filter banks are logarithmized and with discrete
cosine transformation (DCT) are converted into values that are suitable as neural
network input. DCT in this case serves as a replacement for inverse Fourier
transformation. These values are called Mel-frequency cepstral coefficients (MFCC)
and are used to represent sound.

31

7. THE REALIZATION OF THE PROGRAM

This chapter serves to demonstrate the program built in Matlab. The program
itself can be separated into 2 parts: ANFIS using the Matlab's Fuzzy Logic Toolbox
(‘anfis') and the individually built neural network based on the backpropagation
algorithm presented in Chapter 3 ('nnv').

The main program is the script file spust.m. Its listing is included in Appendix.
The purpose of the first part is to read the parameters of the test voice recordings.
This program serves for probing ANFIS as well as neural networks. For the selection
of the operation mode, the variable mode has to be set to 'anfis' or 'nnv' by
commenting and uncommenting the individual lines.

mode="anfis"';
%mode="nnv";

The data reading is implemented in the wavload function, which receives as
input parameters the path to the directory containing training files and the number of
output parameters. At the beginning of this script, the parallel processing toolbox is
initialized by the command matlabpool open. The usage of this toolbox greatly
increases the processing speed in case of the processor is multi-cored or there are
more computers available.The next part of the code brings into effect the actual
learning of the network.

In the case of the mode is set to 'anfis’, the parfor cycle is used for the creation
and learning of three ANFIS networks, each for one output variable. Parfor is part of
the parallel processing toolbox. Its iterations are run in parallel increasing the
computing speed. Firstly, the given network has to be created. For the purpose of this
work, the practical usage of ANFIS is heavily limited by its high demands on
processing power for the case of higher number of inputs and second level neurons.
The basic task of network creation takes into account all combinations of inputs and
membership functions. In this case it means a very high number of created
membership functions and second level neurons. Therefore, a special function was
used for the creation of these functions and network nodes which analyses the input
data and searches for existing clusters in it. These clusters are used for simplification
of the input side of the network. This approach significantly increases the maximal
number of usable inputs of the system.

The function genfis2 creates a Sugeno-type FIS structure. For the creation of
input rules, the subtractive cluster analysis method is used. This method tries to
make use of existing patterns to simplify the input part of the network. The subtractive
clustering initially assumes all data points as clusters. Subsequently, some clusters
are merged together based on preset distance criterion, then the new cluster centers
are calculated.

32

The learning itself is realized by the function anfis that executes the learning
algorithm individually for each network. The number of ANFIS networks equals to the
number of output variables (columns in matrix tgt). It utilizes a hybrid learning
technique, what is a combination of the least-squares estimator (LSE) method and
the error backpropagation (EBP) algorithm. Afterwards, the network is tested for
correctness with the same data as used for training using the function evalfis. The
result of each network is saved to the corresponding column in matrix res. For the
case of usage of neural network, the function feedforwardnet is used, which
creates a neural network suitable for classification tasks. The number of neurons in
each layer is also set here. The function train trains the network for the given
training data.

In the case, the mode is set to 'nnv', the neural network functions created
within the frame of Semestral Project MM2E (netinit, netlearn and neteval) are in use.
These functions can create a simple neural network structure, and are able to train
and evaluate it.

Loading of audio files —wavload.m

This function is used for audio file loading and parameter calculation (see
Appendix). Firstly, the file names are determined in the given directory that has the
wav extension. After that, all files are processed sequentially, as is described herein.
Since the average length of the recorded words are around 700ms, each file is set to
this length by cutting of the signal at this time point and filled up with zeros in case of
shorter files. The given file is read into a vector and is normalized to have maximal
amplitude of 1. Subsequently, the parameters are calculated using the params
function. The file names are prepared to contain information about the language of
the recording. The first letter of it corresponds to the first letter of the used languages
(i.e. 'c' means Czech, 'e' means English and the prefix 'h' is for Hungarian). This
information is used for creating the target matrix (tgt) that is used for training the
network. The target matrix and the matrix of parameters are returned as return values
of the function.

Analysis parameters —params.m

The signals in their raw form are not suitable as inputs to a network because
these contain extremely large amount of information. However, parameters can be
used instead of the original signals that describe the signal shape at an appropriate
level. The input signal is limited with a band-pass filter with a range of 100 Hz — 4 kHz
to filter out background noise then divided into a number of frames depending on its
length and the adjusted parameters. Further signal preparation is described in
Chapter 6.1.

33

Neural network creation — netinit.m

This function creates a simple structure that contains the necessary
information and weights of each neuron input. The weights are initialized with small
random numbers. This structure variable is returned by the function.

Neural network training — netlearn.m

This function implements the classical backpropagation algorithm for training
the neural network. The network coefficients are updated on each run as many times
as the number of input-target pairs. The number of runs (training epochs) has to be
set manually. The function returns the trained network.

Neural network simulation — neteval.m

This function calculates the output of each neuron gradually in each layer and,
finally, the output of the whole network for the given input sets. The result is returned
as a matrix, where the corresponding outputs are organized in rows. Each row
corresponds to one input set.

The following figures (Fig. 7.1 and Fig. 7.2) show the workflow of the program
where the first four blocks represents the training, while the last three parts the
testing/evaluation part.

34

NEURAL NETWORK

LOAD TRAINING SIGNALS

l

CALCULATE ANALYSIS PARAMETERS

l

GENERATE AND TRAIN
THE NEURAL NETWORK

l

CHECK THE NETWORK
USING THE TRAINING DATA

l

LOAD TEST SIGNALS

l

CALCULATE ANALYSIS PARAMETERS

l

EVALUATE THE TRAINED NEURAL
NETWORK FOR TEST DATA

l

PLOT RESULTS

Fig. 7.1 Flow chart of the Neural Network

35

LOAD TRAINING SIGNALS

i

CALCULATE ANALYSIS PARAMETERS

l

GENERATE AND TRAIN
THE ANFIS NETWORK

:

CHECK THE NETWORK
USING THE TRAINING DATA

l

LOAD TEST SIGNALS

l

CALCULATE ANALYSIS PARAMETERS

l

EVALUATE THE TRAINED
ANFIS FOR TEST DATA

l

PLOT RESULTS

Fig. 7.2 Flow chart of ANFIS

36

8. THE SIMULATION

Important factor of the recording is the clarity of the recorded signal. It should
be as clear and noise free as possible. For this reason, the recording took place in a
quite environment using a portable digital recorder for the best possible sound
quality. The recorded continuous signal was then split into separate words with sound
editor software. Although voice signals with a sample rate of 8 kHz would be
sufficient for speech signal processing (see Chapter 6.1.1) the data was recorded
with a sample rate of 44.1 kHz and a bit depth of 16 bits. The signal was then
downgraded into 8 kHz and the system tested with both variations. Since test
simulations with higher quality signal gave better results (with no significant
difference in simulation time), there was no doubt which to use for further work. A
number of 153 different words (51 in 3 languages) were recorded.

English Czech Hungarian
one spring Katherine |jeden |jaro Katarina |egy tavasz Katalin
two summer | Suzie dva léto Zuzana |kettd nyar Zsuzsanna
three fall apple tfi podzim |jablko harom Osz alma
four winter grape Ctiry zima hrozno négy tél sz0616
five January |orange pét leden pomeranc | 6t januar narancs
SiX February | strawberry | Sest unor jahoda hat februar eper
seven March corn sedm |bfezen |kukufice |hét marcius | kukorica
eight April house osm duben ddm nyolc aprilis haz
nine May garden devét |kvéten |zahrada |kilenc majus kert
ten June bicycle deset |Cerven |kolo tiz junius bicikli
Monday Jule umbrella |pondély|ervenec|destnik | hétfé julius esernyd
Tuesday August |table utery srpen stul kedd augusztus | asztal
Wednesday | Andrew | window stfeda |Ondfej |okno szerda |Andras ablak
Thursday |Thomas |drum Ctvrtek | Tomas | buben csutortok | Tamas dob
Friday Gabriel |violin patek | Gabriel |housle péntek | Gabor heged(
Saturday George |skate sobota |Juraj brusle szombat | Gyorgy korcsolya
Sunday Peter Christmas | nedéle |Peter vanoce |vasarnap | Péter karacsony

Table 8.1 List of recorded words

To understand the content of the folders used for training and testing the
system, here is a little explanation. The wav files in each languages were separated
with indexes (*.1; *.2; *.3; *.4; *.5; *.6; *.7; *.8 and *.9). Every single word listed in
Table 8.1 was recorded three times by each speaker (Speaker1, Speaker2 and
Speaker3) which means a total amount of 1377 words.

37

Amount of words
Language / index

English Czech Hungarian
*1 *1 *1
Speaker1 51x *2 51x | *.2 51x *2
*3 *.3 *3

1 153 153 153
*4 *4 *4
Speaker2 51x *5 51x | *5 51x *5
*.6 *.6 *.6

>2 153 153 153
7 7 7
Speaker3 51x *.8 51x *.8 51x *.8
*.9 *.9 *.9

>3 153 153 153

Table 8.2 Categorization of the words

The networks were trained with the signals in the train folder and then tested
with test 1, test 2, test 3, test 4 and test 5 folders. Folders test 1 and test 2
contains words pronounced by the same speakers as test words while test_3, test_4
and test_5 folders the same words pronounced by another speaker. The content of
the folders are the following:

train
Language / index
English Czech Hungarian
*1 *1 *1
Speaker1 51x * 9 51x * 9 51x o
21 102 102 102
*4 *4 *4
Speaker2 S51x Y= S51x Y= 51x 5
D2 102 102 102

Table 8.3 Content of the training folder

38

test_1

English

Language / index

Czech

Hungarian

Speaker1

51x | *.3

51x | *.3

51x | *.3

21

51

51

51

Table 8.4 Content of the first test folder

test_2
Language / index
English Czech Hungarian
Speaker2 51x *.6 51x *.6 51x *.6
>2 51 51 51

Table 8.5 Content of the second test folder

test_3
Language / index
English Czech Hungarian
Speaker3 51x 7 51x 7 51x *7
>3 51 51 51

Table 8.6 Content of the third test folder

test 4
Language / index
English Czech Hungarian
Speaker3 51x *.8 51x *.8 51x *.8
>3 51 51 51

Table 8.7 Content of the fourth test folder

test 5
Language / index
English Czech Hungarian
Speaker3 51x *9 51x *9 51x *.9
>3 51 51 51

Table 8.8 Content of the fifth test folder

39

8.1 The 'NNV' network
This section was created using the mentioned algorithms in Chapter 3.
8.1.1 Network parameters

For the training and the testing process the following parameters were set within the
NNV network:

Number of layers: 3

Output function of the neuron: sigmoid function

Training function: error backpropagation

Number of epochs: 2000

Threshold: the biggest output of the three networks indicates
the recognized language

Number of outputs: 3

The training was done by the function netlearn while the testing is done by
neteval.

8.1.2 Running the simulation

After the program was made and its adequate functionality was tested, the
next step is experimentation with it and fine tuning the simulation parameters for
optimal results. A total number of 5 trains and tests were run with two speakers
(Speaker1 and Speaker2) to allocate the average error rate while the analysis
parameters were set in params.m as follows:

framestep=20; %ms

framelen=25; %ms

melfilerbankcount=10;

With this setting, one simulation took approximately 700 seconds.

a) The network tested with words by Speaker1

Actual language Czech English Hungarian >
All words 51 51 51 153
Precisely identified words 29 40 31 100
Efficiency 56,86% 78,43% 60,78% 65,36%
. . . as as as as as as
:mz::;lslsﬁlfyt;\ie:ctzltz‘:\?I‘;vr?éflzge) Hungarian | English | Hungarian | Czech | English | Czech 2
15 7 8 3 10 10 53
Ratio 29,41% | 13,73% | 15,69% |5,88% | 19,61% |19,61% | 34,64%

Table 8.9 The results of the NNV1 network tested with words by Speaker1

40

b) The network tested with words by Speaker2

Actual language Czech English Hungarian >
All words 51 51 51 153
Precisely identified words 35 32 33 100
Efficiency 68,63% 62,75% 64,71% 65,36%
. . - as as as as as as

;mz::::isﬁlfytlﬂe;t:ltﬁif I‘;v:;ﬂ:ge) Hungarian | English | Hungarian | Czech | English | Czech 2

9 7 9 10 9 9 53
Ratio 17,65% | 13,73% | 17,65% |19,61% | 17,65% | 17,65% | 34,64%

Table 8.10 The results of the NNV 1 network tested with words by Speaker2

c) The network tested with words by Speaker3

For this simulation, the network was trained with the words by Speaker1 and
Speaker2 and then tested with words by Speaker3. The results presented hereinafter
were obtained as an average of 5 training and 3 tests per train (with test_3, test 4

and test_5 folder) to a total number of 15 tests.

Actual language Czech English Hungarian >
All words 51 51 51 153
Precisely identified words 19 16 31 66
Efficiency 37,25% 31,37% 60,78% 43,14%
o as as as as as as
:mz:::&silfyt;‘ie:;z"‘:‘? I‘;vr?grflzge) Hungarian | English | Hungarian | Czech | English | Czech 2
19 13 32 3 18 2 87
Ratio 37,25% | 25,49% | 62,75% |5,88% | 35,29% | 3,92% |/56,86%

Table 8.11 The results of the NNV1 network tested with words by Speaker3

For the second NNV network (NNV2), the same simulations were run with the
analysis parameters set in params.m as follows:

framestep=30; %ms
framelen=35; %ms
melfilerbankcount=10;

With this setting, one simulation took approximately 390 seconds.

41

d) The network tested with words by Speaker1

Actual language Czech English Hungarian >

All words 51 51 51 153

Precisely identified words 38 46 40 124

Efficiency 74,51% 90,20% 78,43% 81,05%
. . . as as as as as as 5

Imprecisely identified words Hungarian | English | Hungarian | Czech | English | Czech

(instead of the actual language) 8 5 4 1 6 5 29

Ratio 15,69% 9,80% 7,84% 1,96% | 11,76% | 9,80% | 18,95%
Table 8.12 The results of the NNV2 network tested with words by Speaker1

e) The network tested with words by Speaker2

Actual language Czech English Hungarian >

All words 51 51 51 153

Precisely identified words 36 36 44 116

Efficiency 70,59% 70,59% 86,27% 75,82%
. . . as as as as as as 5

Imprecisely identified words Hungarian | English | Hungarian | Czech | English | Czech

(instead of the actual language) 6 9 12 3 3 4 37

Ratio 11,76% | 17,65% | 23,53% |5,88% | 5,88% | 7,84% |24,18%

Table 8.13 The results of the NNV2 network tested with words by Speaker2

f) The network tested with words by Speaker3

For this simulation, the network was trained with the words by Speaker1 and
Speaker2 and then tested with words by Speaker3. The results presented hereinafter
were obtained as an average of 5 training and 3 tests per train (with test 3, test 4

and test_5 folder) to a total number of 15 tests.

Actual language Czech English Hungarian >
All words 51 51 51 153
Precisely identified words 17 23 30 70
Efficiency 33,33% 45,10% 58,82% 45,75%
. . . as as as as as as

Imprecisely identified words Hungarian | English | Hungarian | Czech | English | Czech 2
(instead of the actual language) 18 16 29 6 19 5 83
Ratio 35,29% | 31,37% | 43,14% |11,76% | 37,25% | 3,92% | 54,25%

Table 8.14 The results of the NNV2 network tested with words by Speaker3

42

8.2 The ANFIS network

The ANFIS is a very complex structure; its implementation is extremely time-
consuming. The ANFIS network created by the Fuzzy Logic toolbox has clearly the
same advantages over an own implementation and have the Neural Network toolbox
over the implemented simple network. These include flexibility and wide range of
possibilities of configuration.

The membership function for the ANFIS network is calculated by the genfis2
function. This function generates the structure of the Fuzzy Inference System from
data using subtractive clustering.

The subtractive clustering is a one-pass algorithm for estimating the number of
clusters and the cluster centers through the training data. This method partitions the
training data into groups called clusters and generates the cluster centers until the
maximum potential value in the current iteration is equal to or less than the threshold
0. By the end of the clustering process, a set of fuzzy rules are obtained [2].

8.2.1 Network parameters

For the training and the testing process the following parameters were set
within the ANFIS network:

Number of layers: 5

Output function of the neuron: see Chapter 7

Training function: combination of the least-squares method and the
backpropagation gradient descent

Number of epochs: 3

Threshold: the biggest output of the three networks indicates
the recognized language

Number of outputs: 1 for each network (for a total amount of 3)

The training is done by the function anfis while the testing is done by evalfis.

8.2.2 Simulation results
A total number of 5 trainings and tests were run with the two speakers

(Speaker1 and Speaker2) to allocate the average error rate while the analysis
parameters were set in params.m as follows:

framestep=190; %ms
framelen=200; %ms
melfilerbankcount=5;

With this setting, one simulation took approximately 7500 seconds.

43

a) The network tested with words by Speaker1

Actual language Czech English Hungarian >

All words 51 51 51 153

Precisely identified words 47 45 48 140

Efficiency 92,16% 88,24% 94,12% 91,50%
. . . as as as as as as 5

Imprecisely identified words Hungarian | English | Hungarian | Czech | English | Czech

(instead of the actual language) 1 3 1 5 5 y 13

Ratio 1,96% 5,88% 1,96% |9,80%| 3,92% | 1,96% || 8,50%
Table 8.15 The results of the ANFIS network tested with words by Speaker1

b) The network tested with words by Speaker2

Actual language Czech English Hungarian >

All words 51 51 51 153

Precisely identified words 49 48 48 145

Efficiency 96,08% 94,12% 94,12% 94,77%
. . . as as as as as as 5

Imprecisely identified words Hungarian | English | Hungarian | Czech | English | Czech

(instead of the actual language) y y 5 1 y 5 8

Ratio 1,96% 1,96% 3,92% 1,96% | 1,96% | 3,92% | 5,23%

Table 8.16 The results of the ANFIS network tested with words by Speaker2

c) The network tested with words by Speaker3

For this simulation, the network was trained with the words by Speaker1 and
Speaker2 and then tested with words by Speaker3. The results presented hereinafter
were obtained as an average of 5 training and 3 tests per train (with test 3, test 4

and test_5 folder) to a total number of 15 tests.

Actual language Czech English Hungarian >
All words 51 51 51 153
Precisely identified words 26 32 36 94
Efficiency 50,98% 62,75% 70,59% 61,44%
. . . as as as as as as
:mz::(a:::lsilfytlﬂe;t:ltfl:ea?I::;ﬂde) Hungarian | English | Hungarian | Czech | English | Czech 2
12 13 8 11 8 7 59
Ratio 23,53% | 25,49% | 15,69% |21,57%| 15,69% | 13,73%] 38,56%

Table 8.17 The results of the ANFIS network tested with words by Speaker3

44

NNV1 ANFIS \
All T 7 Increase in
identified words Efficiency identified words =l J
Speaker1 100 65,36% 140 91,50% 26,14%
Speaker2 153 100 65,36% 145 94,77% 29,41%
Speaker3 66 43,14% 94 61,44% 18,30%
NNV1 NNV2 .
All - e Increase in
identified words Efficlency identified words Efficlency 4
Speaker1 100 65,36% 124 81,05% 15,69%
Speaker2 153 100 65,36% 116 75,82% 10,46%
Speaker3 66 43,14% 70 45,75% 2,61%
NNV2 ANFIS .
All —— — Increase in
identified words CGIENEY identified words Eificlency y
Speaker1 124 81,05% 140 91,50% 10,45%
Speaker2 153 116 75,82% 145 94, 77% 18,95%
Speaker3 70 45,75% 94 61,44% 15,69%

Table 8.18 Comparision of the results

45

9. CONCLUSION

Within the scope of this master’s thesis, | tried to give a deep insight into the
function of neural networks, starting with the base of the whole concept — real
neurons. The first half of this paper describes the structure and the operation of real
and artificial neurons including the description of the learning process and the
manner and topology of their interconnections. The backpropagation algorithm is also
described which is one of the basic types of neural network training. A detailed
insight is given into fuzzy systems and fuzzy neural networks including the main
advantages and disadvantages of fuzzy systems and the properties of both systems
and clearly describes the problems which can be solved by combining these two
techniques. The model of Fuzzy Neural Network and Barenji’'s ARIC (Approximate
Reasoning Based Intelligent Control) architecture is also presented.

After introducing the Fuzzy Systems and Fuzzy Neural Networks, the Adaptive
Neuro-Fuzzy Inference System (ANFIS) was presented which effectively combines
both neural networks and fuzzy logic reasoning in order to achieve the best possible
results. This type of network can be exceptionally suitable for the language
recognition task too.

A prerequisite of network training is to acquire training data. In our case these
were recordings of individual words. Fifty-one different words in three languages
(English, Czech and Hungarian) were recorded for further network training and
testing purposes for a total of 153 acquired words (51 English, 51 Czech and 51
Hungarian) by three speakers. Every word was recorded 3 times by each speaker
which means a total amount of 1377 words. For the training method train folder was
used, which contains 612 words from Speaker1 and Speaker2 (each word 2 times by
both speakers). Testing was separated into 2 basic parts: testing the trained network
with words by Speaker1 and Speaker2, testing the trained network with words by
Speaker3 (different speaker than of train words). In the framework of Matlab,
a language recognition software has been built, which has two different types of
network that can be used — the ANFIS network and an own implementation of neural
network trained by the backpropagation algorithm. Both networks were fine-tuned for
optimal functionality.

The goal of the work was to train the networks with the training words to gain
the ability of recognizing the language of the words and, subsequently, test these
trained networks. Both networks were able to recognize all the languages. The
analysis parameters for the neural network were set into frames of 25 ms where
every frame covers the previous one by 5 ms (NNV1). With this setting and 10
cepstral parameters by frame the neural network precisely identified 100 words out of
153, which means slightly more than 65% of all words (while testing with words by
Speaker1 and Speaker2) and 66 words out of 153 (43,14%) while testing with words
by Speaker3.

The same neural network with analysis parameters set into frames of 35 ms
and 5 ms overlaps (NNV2) performed even better. The network with this setting
precisely identified 124 words out of 153 (81,05%) while testing with words by
Speaker1 and 116 words out of 153 (75,82%) while testing with words by Speaker2.

46

A slight increase in efficiency (2,61%) can be observed in contrast to NNV1 while
testing with words by Speaker3 which means a recognition rate of 70 words out of
153 (45,75%).

The best results were obtained using the ANFIS network. This network uses a
hybrid learning algorithm, an effective combination of neural networks and fuzzy
inference system while the other two networks are simple neural networks without the
benefits of fuzzy logic reasoning. With the frame length of 200 ms, 10 ms overlaps
and 5 cepstral parameters per frame, the ANFIS network precisely identified 140
words out of 153 (91,50%) while testing with words by Speaker1 and 145 words out
of 153 (94,77%) while testing with words by Speaker2. For Speaker3, 94 words out of
153 were precisely identified (61,44%) which means more than 15% increase in
efficiency to benchmark against the neural network.

As it was presented, both networks performed well at recognizing the learned
languages especially the ones which came from the same speakers as the system
was trained with. There was a significant difference (~10+15%) between the
efficiency of recognition with the neural network depending on the analysis
parameters while testing with words by Speaker1 and Speaker2. Words from
Speaker3 were allocated with almost the same accuracy with both adjustments. The
ANFIS network gave the best results exceeding the efficiency of neural network with
more than 10+15%.

With a much bigger training set containing data from various speakers the
recognition would be more universal in terms of recognizing the isolated words by
unknown speakers.

47

REFERENCES

[11 VIERA, J., DIAS, F.M. a MOTA, A. Neuro-Fuzzy Systems: A Survey. WSEAS

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

TRANSACTIONS on SYSTEMS. April 2004, vol. 3, issue 2, s. 414-419. ISSN
1109-2777.

MACLEQOD, Christopher. An Introduction to Practical Neural Networks and
Genetic Algorithms For Engineers and Scientists, 2004. Chapter 1, An
introduction to Neural Networks, s. 1-5.

MACLEQOD, Christopher. An Introduction to Practical Neural Networks and
Genetic Algorithms For Engineers and Scientists, 2004. Chapter 2, Artificial
Neural Networks, s. 6-15.

MACLEQOD, Christopher. An Introduction to Practical Neural Networks and
Genetic Algorithms For Engineers and Scientists, 2004. Chapter 3, The Back
Propagation Algorithm, s. 16-27.

JAIN, L.C.; MARTIN, N.M. Fusion of Neural Networks, Fuzzy Systems and
Genetic Algorithms: Industrial Applications. CRC Press, CRC Press LLC, 1998.,
368 s. ISBN 0849398045.

FULLER, Robert. Introduction to Neuro-Fuzzy Systems. Advances in Soft
Computing Series, Springer-Verlag, Berlin/Heildelberg, 2000., 289 s. ISBN 3-
7908-1256-0.

LIU, Puyin; LI, Hongxing. Fuzzy Neural Network Theory and Application. Series
in Machine Perception and Atrtificial Intelligence — Vol. 59, World Scientific
Publishing Co. Pte. Ltd., 2004., 376 s. ISBN 981-238-786-2.

FULLER, Robert. Neural Fuzzy Systems. Abo Akademis tryckeri, Abo, ESF
Series A:443, 1995., 249 s. ISBN 951-650-624-0, ISSN 0358-5654.

VOLNA, Eva. Neuronové sité 1. Ostrava, 2002. Studijni materialy pro distanéni
kurz: Neuronové sité 1. Ostravska univerzita v Ostraveé, Prirodovédecka fakulta.

[10] RAHMAT, Basuki; JOELIANTO, Endra. Adaptive Neuro Fuzzy Inference System

(ANFIS) with Error Backpropagation Algorithm using Mapping Function.
International Journal of Artificial Intelligence. Autumn 2008, Vol. 1, Number A0S,
s. 3-8. ISSN 0974-0635.

[11] KASABOV, Nikola K. Foundations of Neural Networks, Fuzzy Systems, and

Knowledge Engineering. The MIT Press, 1996. ISBN 0-262-11212-4.

[12] ELWAKDY, A. M., ELSEHELY, B. E., ELTOKHY, C. M., ELHENNAWY, D. A.

Speech Recognition using a Wavelet Transform to Establish Fuzzy Inference
System through Substractive Clustering and Neural Network (ANFIS).
INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL
PROCESSING [online]. 2008, vol. 2, issue 1 [cit. 2012-04-11]. ISSN 1998-4464.
Dostupny z: http://www.naun.org/journals/circuitssystemssignal/2008.htm

[13] JANG, Jyh-Shing R. ANFIS: Adaptive-Network-Based Fuzzy Inference System.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS [online].
1993, vol. 23, no. 3 [cit. 2012-04-15].
Dostupny z: http://ece.ut.ac.ir/Classpages/S86/ECE406/Papers/ANFIS.pdf

48

[14] SHIGERU, Katagiri. Handbook of Neural Networks for Speech Processing.
Artech House signal processing library, 2000. ISBN 0-89006-954-9.

[15] TOMEC, Martin. Optimalizace rozpoznavani rec¢i pro mobilni zafizeni. Brno,
2010. Diplomova prace (Ing.). Vysoké uceni technické v Brné, Fakulta
informacnich technologii, Ustav pocitaCovych systému.

49

LIST OF SYMBOLS, ABBREVIATIONS AND VARIABLES

ANN
MPL
ARIC
AEN
ASN
FIS
ANFIS
LSE
EBP
DCT
MFCC

Artificial Neural Net

Multi-Layer Perceptron

Approximate Reasoning Based Intelligent Control
Action-State Evaluation Network

Action Selection Network

Fuzzy Inference System

Adaptive Neuro Fuzzy Inference System
Least-Squares Estimator

Error Backpropagation

Discrete Cosine Transformation

Mel-frequency cepstral coefficients

50

LIST OF INSERTS

A MATLAB PROGRAMS ... 52
Nt I 1 11 1= 1 o o PRSP 52
N2 1= Y [7= To N o o PRSP 53
N N o = =1 o < 70 o RSP 54
N 1= 11 1 1 o PSP PPPPPPPPPPN 55
AD NEHIEAIN.IM e aaaaas 55
AB NEtEVALIM e aaaan 56

B EXAMPLE OF GRAPHICAL RESULTS ... 57
B.1 The NNV2 network tested with words by Speaker1ccccouiiiiiiiiiiiiiiiiies 57
B.2 The ANFIS network tested with words by Speaker2cccccuiiiiiiiiiiiiiiines 58

51

A MATLAB PROGRAMS

A.1 spustm

clear; clc;

if (matlabpool ('size')==0)
matlabpool open;

end;

num_anfis inputs=140;

smode="anfis'; %selection of network type
mode="nnv';

tic;

fprintf ('Load train data...\n');

traindir = '../train'; S%training samples
testdir = '../test 1'; S%test samples

[inp, tgt]=wavload(traindir,num anfis inputs);

%% train
fprintf ('Train...\n');

switch mode
case 'anfis'
epoch n = 3;
parfor i=l:size(tgt,2) %$runs iterations in paralell
fprintf (' %d...\n',1i);

in fis(i) = genfis2(inp,tgt(:,1i),.20);

%in _fis (i) = genfis2(inp,tgt(:,1),.3);

out fis(i) = anfis([inp tgt(:,i)],in fis(i),epoch n,zeros(1l,4));
%network learning

res(:,1) = evalfis(inp,out fis(i)); S%network evaluation

end

case 'nnv'
nnet = netinit(size(inp,2), size(tgt,2));
nnet = netlearn(nnet, inp, tgt, 2000); S%Snetwork learning
res = neteval (nnet, inp):; $network evaluation
end
%% test data

fprintf ('Eval. test data...\n');
[tinp, ttgt]=wavload(testdir,num _anfis inputs);

switch mode
case 'anfis'
warning ('off', 'Fuzzy:evalfis:InputOutOfRange');
tres=[];
for i=l:size(tgt,?2)
fprintf (' %d...\n',1i);
tres(:,i)=evalfis(tinp,out fis(i)); %network testing with test
data
end

52

case 'nnv'

tres = neteval (nnet, tinp); network testing with test data
end

figure (1) ;

colormap (summer) ;

tres (tres<0)=0;

barh (tres./ (sum(tres,2)*[1 1 1]), "stacked', 'DisplayName', 'tres ratios');
x1lim ([0 1]);

legend('czech', "hungarian', 'english');

toc;

fprintf ('End.\n");

A.2 wavload.m

function [inp, tgt] = wavload(traindir, ~)

o)

% load wavs from a dir and convert to parameters
siglen = 0.7; %s

files = dir([traindir "*.wav']);
[~,Fs]=wavread([traindir '\' files(l) .name]):;
siglensamp = floor (siglen*Fs);

inp=[]; $input signals
tgt=[]; %according to languages(acc. To prefix 'c,h,e') - target
for i=l:length(files) %process every file in dir

[inp tmp,Fs]=wavread([traindir '\' files(i) .name]);

if length(inp tmp)<siglensamp tmake every signal to be of the same
length
inp tmp(siglensamp)=0;
else
inp tmp=inp tmp(l:siglensamp);
end
inp tmp = inp tmp ./ max(max(abs(inp tmp))); %amplitude normalization
inp tmp = awgn(inp_ tmp, 20, 'measured’) ;

p=params (inp tmp, Fs) %calculate parameters

“ ~e

inp (end+1l,1l:1length(p)) P
lang=files (i) .name (1) ; %determine target vector
if (lang == 'c'")
tgt = [tgt; 1 0 0],
elseif (lang == 'h'")
tgt = [tgt; 0 1 0];
elseif (lang == 'e')
tgt = [tgt; 0 0 1],
else
tgt = [tgt; 0 0 0];
end
end
end

53

A.3 params.m

function [pars] = params(s, fs)
s=reshape(s,1,[]);

bandpassfilter struct =...
design (fdesign.bandpass('n, £3dB1, £3dB2',8,100,4000, fs), 'butter');
sf=filter (bandpassfilter struct, s);

framestep=20; S%ms
framelen=25; %ms
melfilerbankcount=10; $number of cepstral parameters

framelensamp=floor (framelen/1000*fs); %number of samples in a frame

w = hamming (framelensamp) '; $frame window
pars=[];

framenum=0;

while 1

framestart=floor (framenum*framestep/1000*fs+1) ;
frameend=framestart+framelensamp-1;

if frameend>length (s)
break;
end

frame=sf (framestart:frameend); S%current frame
framew=frame. *w; %apply window

melspect=melfilterbank (abs (fft (framew)), melfilerbankcount, 100, 4000,
fs); %calculate mel spectral coefficients

melspectlog=logl0 (melspect) ;

mfcc=dct (melspectlog); %calculate cepstral coefficients

pars = [pars; mfcc];

framenum=framenum+1;

end

pars=reshape (pars, 1, []):;

end

function [res] = melfilterbank(spectrum, n, f1l, £f2, fs)

f=linspace (0, £s, length (spectrum)) ;
melf=logspace (loglO(fl), loglO(f2), n+2); $border frequencies

%calculate coefficients for each filter bank sequentially and apply it

res=[1];

for i=2:n+1
coeffl = (f-melf(i-1))/(melf(i)-melf (i-1));
coeff2 = (f-melf(i))/ (melf(i)-melf (i+1));

coeff = min(coeffl, coeff2);
coeff (coeff<0)=0;

res = [res sum(coeff.*spectrum)];
end
end

54

A.4 netinit.m

function [network] = netinit(

%step O
n=struct;
n.numin=inputs;

n.numout=outputs;
n.numz=round (inputs) ;

inputs,

$structure,

outputs) %inputs,

$number of inputs
gnumber of outpust
gnumber of hidden layer

$initialize network coefficients

5B

.v=(rand(n.numin,n.numz)-0.5)/1000;
.w=(rand (n.numz,n.numout)-0.5)

/1000;

n.v0 = (rand(n.numz,1)-0.5)/1000;
n.w0 = (rand(n.numout,1)-0.5)/1000;
n.alfa = 0.0001;

network=n;

end

A.5 netlearn.m

function [onet] = netlearn(net,
%input - signals in rows
f = @(x) sigmf(x, [10 .5]);
fa = @(x) (£(x)-f(x-0.001))/0.001;
%step 1
while (1)
%step 2
for i = l:size(input,1)
%step 3
x = input(i,:)"';

t = target(i,:)"';

Sstep 4

z in = net.v'*x + net.v0;
z = £(z_in);

%step 5

y_in = net.w0 + net.w'*z;
y = f(y_in);

%step 6

delta = (t-y).*fa(y _in);

input, target, runs)

%sigmoid function
%derivation

55

contains the network

outputs

deltaw = net.alfa.*(z*delta');
deltaw0 = net.alfa.*delta;

Sstep 7

delta in = net.w*delta;

delta = delta in.*fa(z _in);
deltav = net.alfa.* (x*delta');
deltav0 = net.alfa.*delta;

%step 8

net.w = net.w + deltaw;
net.v = net.v + deltav;
net.w0 = net.wO0 + deltawO;
net.v0 = net.v0 + deltavO;

end

runs=runs-1;

if (runs<=0) %$learning ends
break;

end

end

onet=net;
end

A.6 neteval.m

function [out] = neteval (network, input)
%$input - signals in rows

sigmf (x, [10 .5]) %sigmoid

X) ;
(x) (f(x)-f(x-0.001))/0.001; %derived

o\

9]

port

0]

o)
Do~

l:size (input,1)

z_in = network.v'*x + network.v0;
z = £(z_in);

%step 5
y_in = network.w0 + network.w'*z;
y = f(y_in);

out = [out; y'];
end

56

EXAMPLE OF GRAPHICAL RESULTS

160 T T
I czech —‘
[0 hungarian
= english ;

140

120

100

80

B.1 The NNV2 network tested with words by Speaker1

57

160

I czech
[0 hungarian

english

140

120

100 =

80

60

B.2 The ANFIS network tested with words by Speaker2

58

