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ABSTRAKT 
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde 
důkladně popsána struktura a funkce neuronů a ukázán nej používanější algoritmus pro učení 
neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. 
Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. 
Tyto techniky poskytují efektivní způsoby učení neuronových sítí. 
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ABSTRACT 
This work describes the principle of operation of neurons and how they form artificial neural 
networks. The structure and the operation of neurons are thoroughly described and the most widely 
used algorithm for neuron training is shown as well as the basics of fuzzy logic including its 
advantages and disadvantages. This work fully describes the backpropagation algorithm and the 
adaptive neuro-fuzzy inference system. These techniques provide effective methods of neural 
network learning. 

KEYWORDS 
neuron, artificial neural networks, action potential, backpropagation algorithm, fuzzy logic, fuzzy 
neural network, adaptive neuro-fuzzy inference system 
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1. INTRODUCTION 

A fuzzy system is an alternative to traditional concepts of set membersh ip and 
logic. Al though its bas ics originate from the ancient Greek philosophy, it is a relatively 
new field, and as such, leaves much room for development and appl icat ions at the 
leading edge of artificial intell igence. Within this work, I try to present the foundations 
of neural networks along with some of the more remarkable difficulties to its use with 
examples from the field of artificial intell igence. 

Modern techniques of artificial intell igence can be found in almost all f ields of 
the human sc ience, however, the biggest usage is in engineering field. The "neuro-
fuzzy" approach was born as a combinat ion of artificial neural networks and fuzzy 
logic. These two techniques are often used together for solving engineering 
problems, where c lass ic methods are not able to provide a straightforward or correct 
solution. General ly, the neuro-fuzzy term means a type of system character ized for a 
similar structure of a fuzzy controller where the fuzzy sets and rules are adjusted 
using neural networks' tuning techniques in an iterative way with data vectors (input 
and output system data) [1]. 

Two different p rocesses take place in such systems. The first is cal led the 
learning phase, where neural networks adjust their internal parameters. The second, 
implementation phase behaves like a fuzzy logic sys tem. The combinat ion of these 
two techniques is likely to produce better results than the two techniques appl ied 
separately. 

Within this work, an own neural network will be built in Matlab, using the 
presented techniques. A neural network for voice recognit ion will be programmed. 
The goal of the project is to apply these specif ic techniques on particular examples, 
and to analyze and present the differences between them. 
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2. NEURAL NETWORKS 

The basic concept ion behind the neural net is to simulate the biological 
functions of the human brain. The human brain consists of about 100 billion 
processing units connected together in just such a network. T h e s e processing units 
are cal led "brain cells" or "neurons" and each one is a living cell [2]. The main 
characterist ic of the neural network is the fact, that these structures can learn with 
examples (training vectors, input and output samples of the system). The neural 
networks modif ies its internal structure and the weights of the connect ions between 
its artificial neurons to make the mapping, with a level of acceptable error for the 
application of the relation input/output that represent the behavior of the modeled 
system [1]. 

The advantages of the neural networks are: 
• learning capacity 
• general izat ion capacity 
• robustness in relation to disturbances 

The d isadvantages of the neural networks are: 
• impossible interpretation of the functionality 
• difficulty in determining the number of layers and number of neurons 

2.1 Real brains 

Rea l neurons are much too smal l to see directly and are visible only under a 
microscope (Figure 2.1). 

Fig. 2.1 A biological neuron ([2]) 
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The main component parts of the biological neuron are: 

• Dendrites - short tips of the neuron with centripetal type, which receives 
information from the outside world (if the neuron is a sensory one) 

• Cel l body - the bulbous end of a neuron, which contains the cell nucleus 
(mechanism that keep the cell alive) 

• Axon - conducts electrical s ignals to other neurons, or to musc les or g lands 

The input information to the body is p rocessed by neurons. The light sensors 
in our eyes (called rods and cones) are neurons in which the dendrites are stimulated 
by light. Under our skin, there are pressure sens ing neurons, heat sensors , pain 
sensors and a bunch of other neurons, which help us to detect the outside world 
around us. The moving of our musc les is also stimulated by motor neurons. By 
looking at the Figure 2.2 you can get a c loser look at the process. 

Fig. 2.2 Body function control by neurons ([2]) 
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The input information goes through the long axons of the sensory neurons into 
the spinal cord and brain. There they are connected to other neurons (called 
interneurons). Finally, the result of the processing is passed to the output neurons 
which stimulate musc les or g lands to affect the outside world. This mechan ism is 
responsible for all our act ions from simple reflexes to consc iousness itself [2]. 

2.2 Operation of neurons 

After reviewing how the neurons form a network, the next step is to 
understand the function of each individual neuron. W h e n a neuron is stimulated by 
another neuron (or by outside inf luences in case of sensory neurons), it produces 
pulses, cal led "action potentials". 

Before a neuron becomes stimulated (at its poise), it is polarized. This means 
that, neuron is charged up and ready to produce electrical pulse. E a c h neuron has 
assoc ia ted with it a level of stimulus, above which a nerve pulse or action potential 
will be generated. Only when it receives enough stimulation, from one or more 
sources it will initiate a pulse - which travels a couple of hundred meters per second 
[2]. 

Fig. 2.3 The action potential ([2]) 

With the help of an osci l loscope, it is able to monitor these pulses. E a c h pulse 
is only a couple of mi l l iseconds wide. By increasing the stimulation, the density of 
impulses will increase as well. It means more pulses per second. 
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2.3 Learning 

Spot where the end of the axon meets the dendrites of the next neuron is 
cal led the Synapse , and it is important to the functioning of the neuron and to 
learning [2]. The enlargement of this area is illustrated in Figure 2.4. 

The end of the axon is cal led the synapt ic bulb. Between this and the next cell 
is a few tens of nanometers wide gap, cal led the synapt ic cleft. W h e n the action 
potential reaches the end of the axon, it st imulates the release of chemica ls cal led 
neurotransmitters, which are present in the synapt ic bulb. These cross the cleft and 
stimulate the next cell [2]. A s more often the synapse is used, the stronger it gets. 

2.4 Artificial neural networks 

The history of artificial neural networks goes back to 1943, when Warren 
McCu l loch and Walter Pitts des igned a simple artificial model of neuron. Most of the 
artificial neural networks are based on their model up to this day. 

The Artificial Neural Network (neural net or A N N ) is a collection of simple 
processors connected together [2]. It is actually a simplif ied mathematical model of 
brain-like systems. Each processor can only perform a very s imple mathematical 
function by its own, but with a large network of them much greater capabil i t ies can be 
achieved. The basic concept ion is presented in Figure 2.5. 

Bubble? of Neuro
transmitter 

Dendrite of 
next neuron 

Fig. 2.4 The synapse ([2]) 
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Fig. 2.5 A neural net with simple processors connected together ([2]) 

The most important advantage of neural networks is probably their adaptivity, 
which al lows to perform well even at situations when the system or the environment 
being controlled varies over time. 

2.4.1 The basic Artificial Neuron 

A bas ic artificial neuron is shown in Figure 2.6. Individual markings have the 
following meaning: 

i ... inputs to the neuron 
w ... represents the strength of the synapt ic connect ion of its dendrite 
S ... activity or activation of the neuron (sum of the inputs and their 

weights) 

i 

N 

P 

U 

T 

S 

S 
T h r e s h o l d 

O 
T h r e s h o l d 

S u m Output 

Fig. 2.6 A bas ic artificial neuron ([3]) 

Mathemat ical expression of artificial neuron is the following: 

S = ilwl + i2w2 + i3w3 + i4w4 (2.1) 
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After the summary, a threshold (set at 0.5) is appl ied in a simple binary level: 

if S > 0.5 then 0 = 1 
if S < 0.5 then 0 = 0 (2.2) 

Descr ibed in words: the neuron takes its inputs and weights them according to 
the strength of connect ion. If the total sum of the weighted inputs is more than the 
previously def ined threshold, the neuron produces a pulse (just like the biological 
one). 

Artificial Neural Networks used simple binary outputs at an early stage, but 
later than switched to cont inuous output function, because it was more flexible. One 
example is the Sigmoid function: 

O 
1 

(2.3) 

This function always produces an output between 0 and 1 that is why it is often 
cal led activation function. Other activation functions (linear, logarithmic, and 
tangential) are a lso used somet imes; however, the Sigmoid function is probably the 
most common. The biggest difference between threshold and Sigmoid function is that 
in the threshold case , the output changes suddenly from 0 to 1. In s igmoid case , the 
change from 0 to 1 happens gently - this helps the neuron to express uncertainty. 
Figure 2.7 compares the difference. 

Output 

T h r e s h o l d function 

Input Input 

Fig. 2.7 Threshold and Sigmoid function ([3]) 

Earl ier formula (2.1) may be formal ized for a neuron of n inputs: 

S = ilwl+i2w2 + ... + />„ (2.4) 

General ly: 

(2.5) 
x=l 



Or, if the inputs are considered as forming a v e c t o r / , and the weights a vector or 

matrix W [3]: 

S = l-W (2.6) 
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3. BACKPROPAGATION ALGORITHM 

After overviewing the bas ics of neural networks in the previous chapters, let 's 
have a look at some practical networks, their appl icat ions and how they are trained. 

Many hundreds of neural network types have been suggested over the years; 
however, there are only a smal l group of widely uses, so-ca l led "c lassic" networks, on 
which many others are based. These networks are: backpropagat ion, Hopfield 
networks, competit ive networks and networks using spiky neurons. There are even 
more variations on these themes. This chapter will deal with the algorithm cal led 
backpropagat ion. 

3.1 The algorithm 

Probably the most common way to connect neurons with sigmoid activation 
function are multilayer nets. Multi layer neural network with one inner neural layer 
(neurons are marked Zj, j = 1 ,...,p) is shown in Figure 3.1. Output neurons (neurons 
are marked Y k , k = 1,...,m). Neurons in output and inside layers must have a defined 
bias. Typical marking of the bias of the k t h neuron (Y k ) in the output layer is w 0k and 
typical marking of bias of the j t h neuron (Zj) in the inside layer is v 0j. B ias (e.g. j t h 

neuron) matches weighted value of the ass igned connect ion between the given and 
fictional neuron, whose activation is a lways 1. From the displayed picture then ensue, 
that a multilayer neural network is created minimally by three layers of neurons: input, 
output and at least one inside layer. Between two neighbour layers can always be 
found a so cal led complete neural connection, so each neuron of lower layer is 
connected with each neurons of higher layer. 

O U T P U T L A Y E R 

A L HIDDEN 
Zp J (inner) 
b ^ T L A Y E R 

INPUT L A Y E R 

Fig. 3.1 Neural network with one inner neural layer ([9]) 
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Backpropagat ion algorithm is used in approximately 8 0 % of all neural network 
applications. Algorithm itself includes three periods: feedforward spreading of the 
input signal of training pattern, backward spreading of errors and actualization of 
weighted values on connect ions. 

During feedforward signal spreading, each neuron in the input layer (Xj, i = 
1,...,n) receives input signal (Xj) and mediates its transfer to all neurons in the inner 
layer (Z-i..., Z p ) . E a c h neuron in the inner layer calculates its activation (Zj) and sends 
this signal to all the neurons in the output layer. E a c h neuron in the output layer 
calculates its activation (y k), which matches its real output (k t h neuron) after 
submiss ion of the input sample. 

In principle in this way a response of neural net on the input st imulus can be 
obtained, given by excitation of input layer neuron. Signal spreading in biological 
system proceeds in such a way too, where input layer can be created e.g. with visual 
cel ls and in the output layer of the brain are then identified individual objects of 
watching. The question then will be, how synapt ic weights leading to correct 
response on the input signal are defined. The process of determining the synaptic 
weights is linked again with the concept of learning the neural networks. 

Another issue is the ability of generalization over the learned material, in other 
words, how the neural network is able to deduce on the basis of learned phenomea 
that were not part of the learning process, but can somehow be deduced from the 
learned. 

What is needed for learning the neural network? It is both the training set 
containing elements descr ibing the so lved problem and then a method that can fix 
these samples in the form of neural network synapt ic weight values, including the 
already mentioned ability to general ize, if possible. Stop first at the training set. E a c h 
training set pattern descr ibes, how neurons are excited in the input and output layers. 
Formally, for the training set T we can consider set of e lements (patterns) that are 
arranged in pairs defined as follows: 

T = {{S 1,T 1}{S 2,T 2}...{S q,T q}} 

S, = [Si s 2 ... s„] Sj£<0, 1> (3.1) 

T, = [tit2... tm] tj e <0, 1> 

where q number of training set patterns 
Si excitation vector of the input layer consist ing of n neurons 
Tj excitation vector of the output layer consist ing of m neurons 
Sj, tj excitation of the j t h neuron of the input, respectively the output 

layer 

The method that al lows the adaptation of the neural network training set is 
cal led backpropagat ion. This method is an adaptation in the opposite direction of the 
spread of information from higher layers to lower layers. 
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During the neural network adaptation with backpropagat ion method, calculated 
activation y k with defined output va lues t k for each neuron in the output layer and for 
each training pattern are compared. Based on this compar ison, the neural network 
error is def ined, for which factor 5 k (k = 1, m) is calculated. 5 k is, as it was already 
mentioned, the part of error that spreads back from the neuron Y k to all the neurons 
of previous layers which are defined with neuron connect ions. Factor 5j (j = 1, p) 
can be defined similarly, which is a part of errors spreads back from neuron Zj to all 
the input layer neurons, which are defined with the neuron connect ions. 

Weight value adjustment w j k on the connect ions between neurons in the inner 
and output layers depends on factor 5 k and the activation of Zj neuron in the inner 
layer. Weight value adjustment vy on the connect ions between neurons in the input 
and inner layers depends on factor 5j and the activation of Xj neuron in the input 
layer. 

The activation function for neural neworks with adaptive backpropogat ion 
method must have the following characterist ics: it must be continuous, differentiable 
and monotonical ly nondecreasing. The most commonly used activation function is 
therefore standard (logical) s igmoid and hyperbol ic tangent. Network error E(w) is 
due to the training set def ined as the sum of the partial network error Ei(w) due to 
individual training patterns and depends on the network confugiration w: 

E{w) = fJEl{w) (3.2) 
i=i 

Partial network error Ei(w) for the Ith training pattern (1=1, ...,q) is proportional to 
the sum of squared deviat ions of actual output va lues of the network input for I-
training pattern from the required output values for this example: 

El(w) = \YJ(yk-t

ky (3-3) 
^ keY 

The aim of adaptation is to minimize network errors in the weight space . S ince 
the fault of the network directly depends on a compl icated nonl inear complex function 
of a multilayer network, the goal presents a non-trivial optimalization problem. For its 
solution, the basic model uses the simplest version of gradient method, which 
requires differentiability of the error function. Geometr ic concept ion will help us in 
better understanding. 

The error function E(w) is schematical ly shown in Figure 3.2 - configuration, 
which is a mult idimensional vector of weights w, is projected on the axis of x. Error 
function determines the network error due to f ixed training set, depending on network 
configuration. During the network adaptation, we are looking for a configuration, for 
which the error function is minimal. W e start with a randomly chosen configuration 
w ( 0 ) , where the corresponding network error from the desired network will probably be 
large. In analogy with human learning, it corresponds to the initial settings of synaptic 
weights of the newborn, who instead of the desired behaviors such as walking, 
talking, etc. performs random movements and makes vague noises. During the 
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adaptation, we frame at this point w(' tangent vector (gradient) — w ) and move in 
dw 

the direction of this vector down by S. For sufficiently smal l S then we obtain the new 
configuration w ( 1 ) = w ( 0 ) + A w ( 1 ) , for which the error function is smal ler than for the 
original configuration w ( 0 ) , i.e. E(w ( 0 ) ) > E (w ( 1 ) ) . The entire process is repeated for w ( 1 ) 

and so we get w ( 2 ) such that E(w ( 1 ) ) ^ E (w ( 2 ) ) etc., until we get to the local minimum of 
the error function. In a mult idimensional weighted space, this procedure exceeds our 
imagination. Al though with appropriate choice of the learning rate (a) this method 
always converges to some local minimum from any initial configuration, there is no 
guarantee that this happens in real time. Usual ly this process is very t ime-consuming 
(several days of calculation with P C ) for smal l multilayer networks (tens of neurons) 
as well. 

Weight 

Fig. 3.2 Gradient method ([4]) 

The main problem with gradient method is that when it f inds a local minimum, 
then this minimum does not need to be the global minimum (see Figure 3.2). 
Presented adaptation process stops at this low level (zero gradient) and the network 
error does not decrease further. 

There are a number of solutions to solve this problem. The simplest and most 
effective (can also solve several other problems) is to reset the weights to different 
random numbers and try training again. Another solution is to add ..momentum" to the 
weight change. This means that the weight change this interpretation depends not 
just on the current error, but a lso on previous changes. For example W + = W + 
Current change + (change on previous iteration*constant), where constant is < 1 [4]. 

3.1.1 Description of the backpropagation algorithm 

Step 0. The weighting values and the bias are initialized by smal l random 
numbers. Ass ign ing the initialization values of the learning coeficient a. 

Step 1. Repeat steps (2 to 9) until the condition of calculation termination is not 
executed. 

Step 2. Perform steps (3 to 8) for each (bipolar) training pair s:t. 
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Feedforward: 

Step 3. Act ivate the input neurons {X,, i=1, ...,n) 
Xj = Sj 

Step 4. Calculate the input va lues of internal neurons 
{Zj,j=1, ...,p): 

n 

i=\ 

Determintation of internal neuron output va lues 

zj=f(z_inj) (3.5) 

Step 5. Determination of the actual output va lues of neural 
network signal (Yk, k=1, ...,m): 

p 
yJnk=wf)k+YJzjwjk (3.6) 

yk=f(yJnk) (3-7) 

Backpropagation: 

Step 6. Va lue of the expected output for the input training pattern 
is ass igned to each neuron in the output layer (Yk, k=1, 
...,m). Furthermore Sk =(tk -yk)f'(y_ink) is calculated, 

which is a part of the weight correction Awjk = a8kzj and 

bias correction Awok = aSk. 

Step 7. A summat ion of its delta inputs (i.e. from neurons located 
m 

in the following layer), S_inj='^Skwjk is ass igned to 
k=l 

each neuron in the inner layer (Zy, j=1, ...,p). By multiplying 
the obtained values with derivation of activation function, 
we get 8j =S_inJ'{z_inj), which is a part of the weight 

correction Av ; = aSjxi and bias correction Av 0 = aS}. 

13 



Update weights and thresholds: 

Step 8. E a c h neuron in the output layer (Yk, k=1, ...,m) updates on 
their connect ions weight va lues including its bias (J=0, 
...,P): 
wjk (new) = wjk (old) + Awjk (3.8) 

E a c h neuron in the inner layer (Zy, j=1, ...,p) updates on 
their connect ions weight va lues including its bias (i=0, 
...,#?): 
vij(new) = vij(old) + Avij (3.9) 

Step 9. Termination condition: 
if any changes in weight va lues do not occur, or if there was performed 
maximally def ined amount of weight changes, stop; otherwise continue. 

Al though the description of backpropagat ion learning algorithm is formulated 
for c lass ic von Neumann computer model, despite it is c lear that it can be implement 
in the distributed way. For each training pattern, the active mode for its input runs 
firstly so that the information in the neural network spreads from the input to its 
output. Then based on external information about the required output, i.e. the error of 
individual inputs, partial derivation of error function are calculated so that the signal 
spreads back from the output to the input. Network calculation at reverse run 
proceeds sequential ly in layers, while in one layer can proceed paralelly. 

3.2 Running the algorithm 

Now, after the algorithm is reviewed in detail, let 's take a look how it works 
with a large data set. W e will trying to teach a network to recognise the first four 
letters of the alphabet on a 5x7 grid, see below. 

§ I I I 
Fig. 3.3 The first four letters of the alphabet ([4]) 

The first step to train the network is to apply the first letter and change all the 
weights on the network once. Next do the same for the second letter, then the third, 
etc. After you have done this for all four letters, return to the first one, and repeat the 
whole process until the error becomes smal l (see Figure 3.4). 
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Fig. 3.4 The first correctly working algorithm ([4]) 

Beginners often make a mistake by reducing the errors for each letters 
individually (apply the first letter to the network, run the algorithm and then repeat it 
until the error reduces, then apply the second letter, do the same, and so on). In such 
a way, the network learns to recognize the first letter, then forget it and learn the 
second letter, etc. and at the end the network would remember only the last letter. 

3.3 Stop the training 

A n important question is: when the training needs to be s topped? In practice, it 
is usual to let the error fall to a lower value, then wait until the network recognizes all 
the letters successful ly. In this case , the network keeps training all the patterns 
repeatedly until the total error falls to some pre-determined low target value and then 
it stops [4]. Let 's not forget that all errors needs to be made positive. Figure 3.5 
shows the calculation method. 
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Make total 
error =0 

Apply first 
pattern and train 

i 
Get error for each 
output neuron in 
network, make 

positive, and add to 
total error. 

Stop 

No, last 
pattern 
has riot 
trained 

Fig. 3.5 Total error for network ([4]) 

A trained network can recognize not just the perfect patterns, but a lso the 
corrupted or noisy ones. Using a validation set is a better way of working out when to 
stop network training - this helps us to eliminate network overtraining. The idea 
behind this method is to have a second set of patterns - noisy vers ions of the training 
set. Val idat ion set is used to calculate the error, after the network has trained. In case 
of a fully trained network, the validation set error reaches a minimum, in case of 
overtraining this error starts rising. 
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4. FUZZY SYSTEMS 

Fuzzy logic was first developed in 1965 by Lotfi Zadeh . It provides an 
approximate but effective means of descr ibing behavior of sys tems that are too 
complex, ill-defined or not easi ly ana lyzed mathematically. Its development was 
motivated by the need for a conceptual framework, which can help in address ing the 
issue of uncertainty and lexical imprecision. With the help of fuzzy logic the 
uncertainties of human cognitive p rocesses like thinking and reasoning can be 
expressed mathematically. Fuzzy logic uses graded statements rather than ones that 
are strictly true or false. S o m e significant characterist ics of the fuzzy logic are: 

• In fuzzy logic, exact reasoning is v iewed as a limiting case of approximate 
reasoning [6] 

• In fuzzy logic, everything is a matter of degree [6] 
• In fuzzy logic, knowledge is interpreted a collection of elast ic or, equivalently, 

fuzzy constrain on a collection of var iables [6] 
• Inference is v iewed as a process of propagation of elastic constraints [6] 
• A n y logical system can be fuzzif ied [6] 

The function of such systems can be descr ibed by a set of fuzzy rules, like 'if-
then' (premise-consequent). If-then rules use linguistics var iables with symbol ic 
terms. E a c h term represents a fuzzy set. The terms of the input space (typically 5-7 
for each linguistic variable) compose the fuzzy partition [1]. The fuzzy interference 
mechan ism consists of three stages: 
1. stage - conversion a numerical input value to a fuzzy value - fuzzyfication 
2. stage - definition of the rules according to the firing strengths of the inputs 
3. stage - retransformation of the resultant fuzzy values into numerical va lues -

defuzzyfication 

Main advantages of the fuzzy systems: 
• ability to represent uncertainties of the human knowledge with linguistic 

variables 
• easy interpretation of the results 
• easy expans ion of the base of knowledge by addition of new rules 
• robustness in relation of the possible disorders in the system 

Main d isadvantages are: 
• unable to universal ize, only answers to what is written in its rule base 
• topological changes of the system would demand alternation in the rule base 
• definition of the inference logical rules needs expert 

4.1 Fuzzy Neural Networks 

A marriage between fuzzy logic and neural networks can attenuate the 
problems of these technologies. Neural net technology can be used to learn system 
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behavior based on system input-output data. This learned knowledge can be used to 
generate fuzzy logic rules and membership functions, significantly reducing the 
development time. This provides a more cost effective solution as fuzzy 
implementation is typically a less expensive alternative than neural nets for 
embedded control applications. Express ing the weights of the neural net using fuzzy 
rules helps to provide greater insights into the neural nets, thus leading to a design of 
better neural nets [5]. 

Every intelligent technique has some computational qualit ies (explanation of 
decis ions, learning ability, etc.) making them suited for individual problems. For 
example, while neural networks are good at recognizing patterns, they are not good 
at explaining how they reach their decis ions [6]. Fuzzy logic sys tems are good in 
decis ion explanat ions but the rules they use to make those decis ions they cannot 
acquire automatically. 

The main reason behind the creation of intelligent hybrid sys tems have been 
these limitations. With the combinat ion of two or more techniques, it is able to 
overcome the limitations of individual techniques. If there is a complex application 
with two different sub-problems, then a neural network and an expert system can be 
used separately for solving these individual tasks. A short compar ison between the 
operation of fuzzy sys tems and neural networks is presented in the following table: 

Skills Fuzzy Systems Neural Nets 

Knowledge 
acquisition 

Inputs Human experts Samp le sets Knowledge 
acquisition Tools Interaction Algori thms 

Uncertainty 
Information Quantit ive and Qualit ive Quantit ive 

Uncertainty 
Cognit ion Decis ion making Percept ion 

Reasoning 
Mechan ism Heurist ic search Paral lel computat. 

Reasoning 
S p e e d Low High 

Adaptation 
Fault-tolerance Low Very high 

Adaptation 
Learning Induction Adjust ing weights 

Natural 
language 

Implementation Explicit Implicit Natural 
language Flexibility High Low 

Table 4.1 Propert ies of fuzzy sys tems and neural networks 
(based on [6]) 

Neural network learning techniques can automate the process of design and 
tune of the membership functions and reduce the development time and cost in 
a large measure. The behavior of fuzzy sys tems can be explained with the help of 
fuzzy rules and their performance can be adjusted by tuning the rules. However, 
fuzzy system appl icat ions are limited to the fields where expert knowledge is 
avai lable and the number of input var iables is smal l . 

To overcome the problem of knowledge acquisit ion, neural networks are 
extended to automatically extract fuzzy rules from numerical data [6]. The 
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computational p rocess for fuzzy neural sys tems starts with the development of fuzzy 
neuron, based on the understanding of biological neuron and the learning 
mechan isms. This leads to the following steps: 

• development of fuzzy neural models motivated by biological neurons [6] 
• models of synapt ic connect ions which incorporates fuzz iness into neural 

network [6] 
• development of learning algorithms (that is the method of adjusting the 

synaptic weights) [6] 

Two possib le models of fuzzy neural networks are: 

• In response to linguistic statements, the fuzzy interface block provides an input 
vector to a multi-layer neural network. The neural network can be adapted 
(trained) to yield desired command outputs or dec is ions [8]. 

Ftizzy 
Interface Perception as 

-leur/f input:. 

Linguist ic 
statements 

Neural 
Network 

Le airiine 
algorithm 

D e c H l O l l S 

(Neural 
outputs) 

Fig. 4.1 The first model of fuzzy neural network ([8]) 

• A multi-layered neural network drives the fuzzy inference mechanism [8]. 
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Neural 
Inputs Neural 

Network 

I 

Neural outputs 

Learning 
algorithm 

Fig. 4.2 The second model of fuzzy neural network ([8]) 

A typical fuzzy neural network is Barenj i 's A R I C (Approximate Reason ing 
B a s e d Intelligent Control) architecture. It is a neural network model of a fuzzy 
controller and learns by updating its prediction of the physical sys tem 's behavior and 
fine tunes a predefined control knowledge base [8]. 

r (error sienal) 

^ Updating weig hts~^) 

Fuzzv inference network 
A S N 

u(t) 

1 
Stochastic 
Action 
Modifier 

Neural network 

u(t) Physical 
System 

System state 

Fig. 4.3 Berenj i 's A R I C architecture ([8]) 
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This architecture has the opportunity to combine the advantages of both 
neural networks and fuzzy controllers. By predefining the fuzzy I F - T H E N rules the 
system learns faster than a standard neural control system, because it has not to 
learn from scratch. A R I C is made up of feedforward neural networks, the Act ion-State 
Evaluat ion Network (AEN) and the Act ion Select ion Network (ASN) . 

A S N is a multilayer neural network representation of a fuzzy controller. In fact, 
it consists of two separated nets, where the first one is the fuzzy inference part and 
the second one is a neural network that calculates p[t, t + 1], a measure of 
conf idence assoc ia ted with the fuzzy inference value u(t + 1), using the weights of 
time t and the system state of time t + 1. A stochast ic modifier combines the 
recommended control value u(t) of the fuzzy inference part and the so cal led 
„probability" value p and determines the final output value of the A S N [8]: 

u(t) = o(u(t\p[t,t + l\) (4.1) 

The hidden unit Zj of the fuzzy inference network represent the fuzzy rules, the 
input units Xj the rule antecedents, and the output unit u represents the control action, 
that is the defuzzif ied combinat ion of the conclus ions of all rules (output of hidden 
units). In the input layer, the system state variables are fuzzif ied [8]. A R I C uses 
monotonie membership functions only. The fuzzy labels of control rules are set for 
each rule locally. The membersh ip va lues are then multiplied by weights at tached to 
the connect ion of the input unit to the hidden unit. The minimum of those values is its 
final input [8]. 

A specia l monotonie membership function which represents the conclusion of 
the rule is stored in each hidden unit. The crisp output value belonging to the 
minimum membership value can be easi ly calculated by the inverse function (thanks 
to the monotonicity of this function). This value is multiplied with the connect ion 
weight between the hidden unit and the output unit. The output value is then 
calculated as a weighted avarage of all rule conc lus ions [8]. 

The A E N tries to forecast the behavior of the system. It is a feedforward neural 
network with one hidden layer, which receives the system state as its input and an 
error signal r from the physical system as additional information [8]. The network 
output v[t, ť ] is v iewed as a prediction of future reinforcement that depends of the 
weights of time t and the system state of time ť (which can be t or t+1). Better state 
have characteristically higher reinforcements. 

The weight changes are determined by a reinforcement procedure that uses 
the output of the A S N and the A E N . The A R I C architecture was appl ied to cart-pole 
balancing and it was shown that the system is able to solve this task [8]. 
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5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 

Adapt ive Neuro Fuzzy Inference System (ANFIS) as developed by Jang et al. 
(1997) is a c lass of adaptive networks that are functionally equivalent to fuzzy 
inference systems (FIS), where the parameters of fuzzy inference systems are 
updated by neural networks from a set of training data. A n adaptive network, as its 
name implies, is a network structure consist ing of nodes and directional links through 
which the nodes are connected. Moreover, part of all of the nodes are adaptive, 
which means their outputs depend on the parameters pertaining to these nodes, and 
the learning rule speci f ies how these parameters should be changed to minimize 
a prescr ibed error measure. A N F I S enjoys many of the advantages c la imed by neural 
networks (NNs) and the linguistic interpretability of fuzzy inference systems, wherein 
both N N s and FIS play active roles in an effort to reach specif ic goals [10], [11]. 

Thanks to its capabil ity and because it can perform the same function, almost 
any neural network can be replaced by A N F I S . Its primary advantages are non-
linearity and structural knowledge representation. 

A N F I S consists of a self-tuning Sugeno- type inference system and calculates 
its outputs as a weighted linear combinat ion of the consequents. The hybrid learning 
algorithm includes two stages, which are: 

• forward pass - identifies the consequent parameters with the help of FIS 
learning mechanism and least-squares estimator (LSE) 

• backward pass - propagates backward the error rates (error backpropagation) 
and updates the premise parameters by the gradient descent method 

In A N F I S , the membership functions (gaussian functions) are expected to map 
all inputs by changing their parameters. It is desi red that all inputs can be mapped to 
produce the desired outputs. Unfortunately, in the case that there occur variations in 
the inputs, the desired outputs will be poorly approximated by the actual outputs 
because of limitations in finding the parameters of the fixed finite number of fuzzy 
membership functions [10]. 

The fuzzy membership function is the bas ic block of fuzzy logic sys tems and 
has many possible interpretations [10]. It can define the r ichness of the extracted 
information from the given data in case of highly nonlinear sys tems and the form of 
the membership functions can be extended to cover this r ichness. 

5.1 Learning algorithm of ANFIS 

The standard A N F I S uses the Sugeno- type fuzzy model to generate fuzzy 
rules from a given input-output data set. For easy understanding, let's take a simple 
version of fuzzy inference system with two inputs x, y and one output f. A rule set for 
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a typical first-order Sugeno fuzzy with two fuzzy if-then rules has the following form 
(based on [10]): 

Rule 1: If x is A1 and y is Bi, then /1 = A + W +1 (5-1) 
Rule 2: If x is A2 and y is 6 2 , then / 2 = /? 2 + g 2 j + r2 (5.2) 

Figure 5.1 shows the reasoning mechanism for the Sugeno model . The 
corresponding standard A N F I S architecture where nodes in the same layer have 
similar functions is shown in Figure 5.2. The important part of the presented A N F I S is 
the modification of the error correction rules of error backpropagat ion (EBP) by using 
a mapping function to replace the membership function in the standard A N F I S [10]. 

-- wt f i = P i x + q 1 y + r 1 

__ w 2 f 
2 = p 2 x + q 2 y + r 2 

j _ W<| f<| + W 2 + f 2 

W-| + w 2 

= W-| f| + w 2 f2 

Fig. 5.1 A two-input first-order Sugeno fuzzy model ([10]) 
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5.1.1 Forward pass 

The forward pass is based on the architecture presented in Figure 5.2. It uses 
two inputs and one output. For convenience, a different notation is introduces as 
shown in Figure 5.3 [10]. 

Layer 1 

i 
Layer 2 Layer 3 

Layer 4 

\ 

Fig. 5.3 The forward pass (based on [10]) 

The functions of the individual layers are the following: 

Layer 1: 
This layer is the so-cal led fuzzification layer. The bell activation function is used as 
the membership function, which has a regular bell shape and is specif ied as 

juA(x) 
2h, (5.3) 

1 + x-
ci, 

The membership function has parameters {ai, bj, q}, i = 1, 2, 3, 4 which are 
predetermined by select ing parameter values. E a c h output of this node is labeled by 
a. Accordingly, the outputs are denoted by n1a, n2a, n3a, and n4a. The symbol a is 
used in order to differentiate with new symbol b (after the correction) that will be used 
later in the backward pass [10]. 

Layer 2: 
This layer is the rule layer, where fuzzy logic A N D is used in the node function. The 
output of this layer can be obtained as 
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n5a = min(«la, riia) 
n6a = min(«2a, n4a) (5.4) 

Layer 3: 
This layer is the normalization layer. Let ntot_a = n5a + n6a, then the normalization is 
given by [10] 

nla = n5al ntot _a 
ri&a = n6a I ntot a (5.5) 

Layer 4: 
This layer is the deffuzification layer. By arranging the incoming signals, matrix A can 
be obtained which has the form 

A = [(nla x) (nla y) nla (nSa x) (nSa y) nSa] (5.6) 

By means of the L S E method, we obtain the consequent parameter P = [p-i, q-i, r-i, p 2 , 
q 2 , r2] by using the following equation 

P = [ataYatU (5.7) 

where U is the desired output of the controller. The consequent parameter P is then 
used to compute f-t and f2 by using the following equation 

fl=plx + qly + rl 

f2= p2x + q2y + r2 (5.8) 

After that, the output of the node n9 and n10 are calculated by the equation [3] 

n9a = nla fx 

n\0a = nSa f2 (5.9) 

Layer 5: 
This layer is represented by a single summation neuron. This layer produces the 
overall A N F I S output with a simple summat ion of the layer input s ignals given by 

n\ la = n9a + n\ 0a (5.10) 
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5.1.2 Backward pass 

After running the forward pass, we get the resulted error. Within the backward 
pass, this error is propagated back to the system by using error correction rule of the 
modified error back propagation (EBP) , see Figure 5.4. 

Symbo l Zn def ines the error between the desired output dk and the actual output. 
The sum of the squared error is given by [10] 

j v ( / ) 

£ , = 5 > * - * & ) 2 (5-11) 
k=l 

In our case the sum of the squared error defines the difference between the desired 
and the actual output, Ep = £n. The value x/ in this layer is given by n11 and dk = 
U, then the error is defined as [10] 

sn =-2{U-n\\a) (5.12) 

Next, dn is defined as fol lows [10] 

dn=-snl2 = U-n\\a (5.13) 

The output of the node n11 then becomes [10] 

n\\b = n\\a + dn (5.14) 

Accord ing to formula 5.10, we have 

n\ \b = n9b + n\0b 
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B a s e d on formula 5.14, we can define 

n9b = n9a + d9 

n\ Ob = n\0a + d. 10 

then we can appoint 

10 (5.15) 

Multiplying the left s ide of formula 5.15 by (f| + f2)/(fi + f 2) leads to [10] 

d9 +d] 10 (5.16) 
fi+fi A+fi 

Since n9a = nla fi and n10a = n8a f2 , after correction we have n9b = n7b fi and 
n10b = n8b f2 . A s a result, we obtain [10] 

Next, from the ntot_a of the forward pass, we write the new ntot_b as fol lows [10] 

where d_tot is arbitrary and obtained from the experiment data. Suppose d_tot = 0, 
this implies ntot_b = ntot_a. Then the output nods in Layer 2 has the form [10] 

In this layer, the minimum value of input s ignals are selected - the logic A N D 
function is appl ied to process the outputs of Layer 1. A s in Layer 2, we already have 
n5a1 and n6b1, it is important that the outputs of this node must satisfy n5b = n5b1 
and n6b = n6b1. A simple way is to split n5b1 and n6b1 into two parts. W e then add 
an arbitrary value to the one part, so that it has higher value than the other part. A s a 
result, this part will not be chosen in Layer 2 [10]. After adding the arbitrary value 
which belongs to the output node in Layer 1, as a result we get the original value of 
nib, n2b, n3b and n4b. The next step is mapping all the inputs to the corrected 
output of Layer 1. The mapping function then becomes the membership function of 
the learning mechanism of the modified A N F I S . 

n9a + dg = (nla + d7)fl 

n\ 0a + dw = (nSa + d&)f2 

ntot b = ntot a + d tot (5.17) 

n5b\ = (nla + d7 )ntot _ b 
n6b\ = (nSa + d& )ntot _ b (5.18) 
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6. THE SPEECH SIGNAL 

Speech/vo ice recognition is a difficult task to be performed by a computer 
system [12]. Al though a wide range of commercia l products were launched in the last 
decade, an absolute solution has not been found out yet, and many research areas 
have still remained opened in the field. 

S p e e c h is a sequence of waves which are transmitted through a medium and 
are character ized by some features, including characterist ic f requencies and 
corresponding intensities [13]. The vibrations of sound waves are perceived by 
eardrums in the inner ear, and these oscil lat ions are forwarded to a specif ic part of 
brain for further processing. 

The three deciding factors when talking about human-l ike perception of 
speech are loudness, pitch and quality. Loudness represents the energy (intensity) of 
the sound. The greater the amplitude is, the louder the sound appears. Pitch is 
responsible for the tone of the sound. Higher pitch issues higher tone and against, 
lower pitches lower tone. The quality of sound is a perceptual correlate of its spectral 
content related to the fundamental f requency of the vocal vibration of the speaker 
organ [13]. 

S p e e c h communicat ion is a crucial channel for conveying various kinds of 
information that can be divided into three categories in terms of its content: linguistic, 
paralinguistic and nonlinguistic. 

The primary objective of human speech communicat ion is to transfer linguistic 
information. Linguistic information can be defined as "symbol ic information that is 
represented by a set of discrete symbols and rules for their combinat ion" [14]. A n 
important difference between linguistic and non-l inguistic information is that linguistic 
information can be controlled by the speaker. E a c h word in a sentence has a specif ic 
meaning and function and can be divided into smal ler segments: syllables and 
phonemes. The phoneme is the smal lest segment of sound. 

Paral inguist ic information is defined as "information that is not inferable from a 
written counterpart but is deliberately added by the speaker to modify or supplement 
linguistic information" [14] and can have both discrete and continuous characterist ics. 
A speaker can control and categorize a sentence and make it declarative, 
interrogative or imperative based on the speaker 's purpose. The speech - due to the 
effects of paralinguistic information - is changing among neutral, admirable, 
suspic ious and disappointed states. 

Bes ides linguistic and paralinguistic information, speech also contains nonlinguistic 
information. Nonlinguist ic information concerns idiosyncratic factors and emotional 
states (such as anger, sadness and delight) of the speaker. General ly, the speaker 
cannot control these factors, although it is possib le for speaker to imitate some 
characterist ics of these factors as actors do [14]. Idiosyncratic factors which affect the 
characterist ics of speech are age, gender, individual morphological characterist ics, 
health condition and possible physical handicaps. 
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6.1 Signal preparation 

Before process ing with neural network, the signal has to be p rocessed to 
contain only information relevant for recognition. This means that inappropriate or 
use less content has to be removed. Furthermore, it is useful to adjust the signal into 
an appropriate format that the recognizer will be able to work well with. This process 
of reducing the amount of information in the speech signal is cal led parameterization. 

6.1.1 Division into frames and preprocessing 

The basis of any speech processing is to record the signal. This sect ion 
includes sampl ing and quantization of audio input which is mostly provided by 
specia l ized hardware where the user 's task is only setting up the sampl ing frequency. 
The most often used sampl ing rate according to the sampl ing theorem is 8 k H z for 
speech signal process ing (carrying only human speech) , s ince for most phonemes, 
almost all of the energy is contained in the 100 Hz - 4 kHz range. 

In practise, however, we need to limit the input signal with a band-pass filter or 
sample it with a higher sampl ing frequency and then apply digital antial iasing filter. 
Otherwise, f requency components that do not exist in the original signal would be 
added to the speech signal and distort it. 

Furthermore, the signal is divided into short f rames in time which are 
p rocessed separately. For the purpose of speech recognition the division is 25 ms 
where every frame covers the previous one by 5 ms (i.e. first f rame from 0 ms to 25 
ms, second frame from 20 ms to 45 ms and so on). 

Signal process ing is performed only once for each time frame and, moreover, 
is largely accompl ished by the hardware. Therefore additional transformation is 
appl ied on the final framework which helps the further work with the samples: 
averaging and weighting with Hamming window. 

S ince the D C component is present only due to quantization error or D C offset 
it has no effect on speech recognition, but may have a negative impact on the used 
algorithms which assume a signal with zero D C components. D C component is 
subtracted from each frame according to the formula: 

S'n=Sn~^% (6.1) 

where N length of the f rame 
s n n t h sample in the frame 

Finally, the signal is suppressed at the edges of f rames so that at any given 
time the most important will be the central part. It a lso avoids potential signal 
distortion at the edges of the frame where signal was cut off. For this purpose 
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Hamming window is used in most of the cases due to its simplicity of calculation 
which is appl ied to each sample of the given frame: 

( 2m ^ 
coin) = 0.54- 0.46cos 

U - i . 
(6.2) 

where N number of samples in the window 

0 20 40 6D 00 100 120 14D 160 1B0 200 

Fig. 6.1 The Hamming window 

6.1.2 Analysis using filter banks 

The frequency intervals that the human ear can distinguish are nonuniformly 
distributed across the entire audio spectrum. Imitation of this behavior during signal 
process ing leads to better results of recognition. This method is a lso used because 
that it is simpler than similar methods with comparable results. The disadvantage of 
this method is that the ampli tudes of individual filter banks are highly correlated. 
Because of that, it is necessary to use cepstral transformation. 

For filter banks implementation it is necessary to transform the speech signal 
frame into f requency domain using Fourier transformation. Furthermore the results of 
this transformation are convolued with triangular Me l sca le filters (6.3). This means 
that each Fourier transform coefficient is multiplied by the corresponding value of the 
filter and the results are saved . 

^ = 2595 log 
K) 700 (6.3) 
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Afterwards the outputs of the filter banks are logarithmized and with discrete 
cosine transformation (DCT) are converted into values that are suitable as neural 
network input. D C T in this case serves as a replacement for inverse Fourier 
transformation. These values are cal led Mel- f requency cepstral coefficients ( M F C C ) 
and are used to represent sound. 
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7. THE REALIZATION OF THE PROGRAM 

This chapter serves to demonstrate the program built in Matlab. The program 
itself can be separated into 2 parts: A N F I S using the Mat lab's Fuzzy Logic Toolbox 
('anfis') and the individually built neural network based on the backpropagat ion 
algorithm presented in Chapter 3 ('nnv'). 

The main program is the script file s p u s t . m . Its listing is included in Appendix . 
The purpose of the first part is to read the parameters of the test voice recordings. 
This program serves for probing A N F I S as well as neural networks. For the select ion 
of the operation mode, the variable mode has to be set to 'anfis' or 'nnv' by 
comment ing and uncomment ing the individual lines. 

m o d e = ' a n f i s ' j 
%mode='nnv ' ; 

The data reading is implemented in the wav load function, which receives as 
input parameters the path to the directory containing training files and the number of 
output parameters. At the beginning of this script, the parallel processing toolbox is 
initialized by the command m a t l a b p o o l open. The usage of this toolbox greatly 
increases the processing speed in case of the processor is multi-cored or there are 
more computers avai lable. The next part of the code brings into effect the actual 
learning of the network. 

In the case of the mode is set to 'anfis', the parfor cycle is used for the creation 
and learning of three A N F I S networks, each for one output variable. Parfor is part of 
the parallel process ing toolbox. Its iterations are run in parallel increasing the 
computing speed. Firstly, the given network has to be created. For the purpose of this 
work, the practical usage of A N F I S is heavily limited by its high demands on 
processing power for the case of higher number of inputs and second level neurons. 
The bas ic task of network creation takes into account all combinat ions of inputs and 
membership functions. In this case it means a very high number of created 
membership functions and second level neurons. Therefore, a specia l function was 
used for the creation of these functions and network nodes which ana lyses the input 
data and searches for existing clusters in it. T h e s e clusters are used for simplification 
of the input s ide of the network. This approach significantly increases the maximal 
number of usable inputs of the system. 

The function gen f i s 2 creates a Sugeno- type FIS structure. For the creation of 
input rules, the subtractive cluster analysis method is used. This method tries to 
make use of existing patterns to simplify the input part of the network. The subtractive 
clustering initially a s s u m e s all data points as clusters. Subsequent ly, some clusters 
are merged together based on preset distance criterion, then the new cluster centers 
are calculated. 
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The learning itself is real ized by the function a n f i s that executes the learning 
algorithm individually for each network. The number of A N F I S networks equals to the 
number of output var iables (columns in matrix t g t ) . It utilizes a hybrid learning 
technique, what is a combinat ion of the least-squares estimator (LSE) method and 
the error backpropagat ion (EBP) algorithm. Afterwards, the network is tested for 
correctness with the same data as used for training using the function e v a l f i s . The 
result of each network is saved to the corresponding column in matrix r e s . For the 
case of usage of neural network, the function f e e d f o r w a r d n e t is used, which 
creates a neural network suitable for classif icat ion tasks. The number of neurons in 
each layer is a lso set here. The function t r a i n trains the network for the given 
training data. 

In the case , the mode is set to 'nnv', the neural network functions created 
within the frame of Semest ra l Project M M 2 E (netinit, netlearn and neteval) are in use. 
These functions can create a simple neural network structure, and are able to train 
and evaluate it. 

Loading of audio files - w a v l o a d . m 

This function is used for audio file loading and parameter calculation (see 
Appendix) . Firstly, the file names are determined in the given directory that has the 
wav extension. After that, all f i les are processed sequential ly, as is descr ibed herein. 
S ince the average length of the recorded words are around 700ms, each file is set to 
this length by cutting of the signal at this time point and filled up with zeros in case of 
shorter files. The given file is read into a vector and is normal ized to have maximal 
amplitude of 1. Subsequent ly, the parameters are calculated using the params 
function. The file names are prepared to contain information about the language of 
the recording. The first letter of it corresponds to the first letter of the used languages 
(i.e. 'c' means C z e c h , 'e' means Engl ish and the prefix 'h' is for Hungarian). This 
information is used for creating the target matrix ( tg t ) that is used for training the 
network. The target matrix and the matrix of parameters are returned as return values 
of the function. 

Analysis parameters - pa rams .m 

The signals in their raw form are not suitable as inputs to a network because 
these contain extremely large amount of information. However, parameters can be 
used instead of the original s ignals that descr ibe the signal shape at an appropriate 
level. The input signal is limited with a band-pass filter with a range of 100 Hz - 4 kHz 
to filter out background noise then divided into a number of f rames depending on its 
length and the adjusted parameters. Further signal preparation is descr ibed in 
Chapter 6.1. 
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Neural network creation - n e t i n i t . m 

This function creates a s imple structure that contains the necessary 
information and weights of each neuron input. The weights are initialized with smal l 
random numbers. This structure variable is returned by the function. 

Neural network training - net l e a r n . m 

This function implements the c lass ica l backpropagat ion algorithm for training 
the neural network. The network coefficients are updated on each run as many t imes 
as the number of input-target pairs. The number of runs (training epochs) has to be 
set manually. The function returns the trained network. 

Neural network simulation - n e t e v a l . m 

This function calculates the output of each neuron gradually in each layer and, 
finally, the output of the whole network for the given input sets. The result is returned 
as a matrix, where the corresponding outputs are organized in rows. E a c h row 
corresponds to one input set. 

The following figures (Fig. 7.1 and Fig. 7.2) show the workflow of the program 
where the first four blocks represents the training, while the last three parts the 
testing/evaluation part. 
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NEURAL N E T W O R K 

LOAD TRAINING SIGNALS 

CALCULATE ANALYSIS PARAMETERS 

G E N E R A T E AND TRAIN 
THE NEURAL N E T W O R K 

± 
CHECK THE NETWORK 

USING THE TRAINING DATA 

± 
LOAD TEST SIGNALS 

± 
CALCULATE ANALYSIS PARAMETERS 

EVALUATE THE TRAINED NEURAL 
NETWORK FOR TEST DATA 

PLOT RESULTS 

Fig. 7.1 Flow chart of the Neural Network 

35 



AN FIS 

LOAD TRAINING SIGNALS 

C A L C U L A T E ANALYSIS PARAMETERS 

G E N E R A T E A N D TRAIN 
THE AN FIS N E T W O R K 

r 

C H E C K THE NETWORK 
USING THE TRAINING DATA 

± 
LOAD T E S T SIGNALS 

>£ 
C A L C U L A T E ANALYSIS PARAMETERS 

EVALUATE THE T R A I N E D 
ANFIS FOR T E S T DATA 

PLOT RESULTS 

Fig. 7.2 Flow chart of A N F I S 
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8. THE SIMULATION 

Important factor of the recording is the clarity of the recorded signal. It should 
be as clear and noise free as possible. For this reason, the recording took place in a 
quite environment using a portable digital recorder for the best possible sound 
quality. The recorded continuous signal was then split into separate words with sound 
editor software. Al though voice s ignals with a sample rate of 8 kHz would be 
sufficient for speech signal process ing (see Chapter 6.1.1) the data was recorded 
with a sample rate of 44.1 kHz and a bit depth of 16 bits. The signal was then 
downgraded into 8 kHz and the system tested with both variations. S ince test 
simulations with higher quality signal gave better results (with no significant 
difference in simulation time), there was no doubt which to use for further work. A 
number of 153 different words (51 in 3 languages) were recorded. 

English Czech Hungarian 

one spring Katherine jeden jaro Katarína egy tavasz Katalin 
two summer Suz ie dva léto Z u z a n a kettö nyár Z s u z s a n n a 
three fall apple tři podzim jablko három ÔSZ a lma 
four winter grape čtiřy z ima hrozno négy těl SZÖIÖ 

five January orange pět leden pomeranč ot január narancs 
six February strawberry šest únor jahoda hat február eper 
seven March corn sedm březen kukuřice hét március kukorica 
eight Apri l house osm duben dům nyolc április ház 
nine May garden devět květen záhrada kilenc május kert 
ten June bicycle deset červen kolo tíz június bicikli 
Monday Jule umbrel la pondělý červenec deštník hétfo július esernyö 
Tuesday August table úterý srpen stůl kedd augusztus asztal 
Wednesday Andrew window středa Ondřej okno szerda András ablak 
Thursday Thomas drum čtvrtek Tomáš buben csütörtök Tamás dob 
Friday Gabr ie l violin pátek Gabr ie l housle péntek Gábor hegedů 
Saturday George skate sobota Juraj brusle szombat Gyórgy korcsolya 

Sunday Peter Chr is tmas neděle Peter vánoce vasárnap Peter karácsony 

Table 8.1 List of recorded words 

To understand the content of the folders used for training and testing the 
system, here is a little explanation. The wav fi les in each languages were separated 
with indexes ( *1 ; * 2 ; * 3 ; * 4 ; * 5 ; * 6 ; * 7 ; * 8 and * 9 ) . Every single word listed in 
Table 8.1 was recorded three t imes by each speaker ( S p e a k e r l , Speaker2 and 
Speaker3) which means a total amount of 1377 words. 
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Amount of words 

Language / index 
English Czech Hungarian 

M M M 
Speaker! 51x *.2 51x * 2 51x * 2 

*.3 *.3 *.3 

I i 153 153 153 

* 4 * 4 * 4 
Speaker2 51x *.5 51x *.5 51x *.5 

*.6 *.6 *.6 
153 153 153 

*.7 *.7 *.7 
Speaker3 51x * 8 51x * 8 51x * 8 

* 9 * 9 * 9 

13 153 153 153 

Table 8.2 Categorizat ion of the words 

The networks were trained with the signals in the train folder and then tested 
with test_1, test_2, test_3, test_4 and test_5 folders. Folders test_1 and test_2 
contains words pronounced by the same speakers as test words while test_3, test_4 
and test_5 folders the s a m e words pronounced by another speaker. The content of 
the folders are the following: 

train 

Language / index 
English Czech Hungarian 

Speaker! 51x 
M 

51x 
M 

51x 
M 

Speaker! 51x 
*.2 

51x 
*.2 

51x 
*.2 

I i 102 102 102 

Speaker2 51x 
* 4 

51x 
* 4 

51x 
* 4 

Speaker2 51x 
*.5 

51x 
*.5 

51x 
*.5 

12 102 102 102 

Table 8.3 Content of the training folder 
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test_1 

Language / index 
English Czech Hungarian 

Speakeř i 51x *.3 51x *.3 51x *.3 

I i 51 51 51 

Table 8.4 Content of the first test folder 

test_2 

Language / index 
English Czech Hungarian 

Speaker2 51x *.6 51x *.6 51x *.6 
12 51 51 51 

Table 8.5 Content of the second test folder 

test_3 

Language / index 
English Czech Hungarian 

Speaker3 51x *.7 51x * 7 51x * 7 

13 51 51 51 

Table 8.6 Content of the third test folder 

test_4 

Language / index 
English Czech Hungarian 

Speaker3 51x * 8 51x * 8 51x * 8 
13 51 51 51 

Table 8.7 Content of the fourth test folder 

test_5 

Language / index 
English Czech Hungarian 

Speaker3 51x *.9 51x *.9 51x *.9 
13 51 51 51 

Table 8.8 Content of the fifth test folder 
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8.1 The 'NNV network 

This sect ion was created using the mentioned algorithms in Chapter 3. 

8.1.1 Network parameters 

For the training and the testing p rocess the following parameters were set within the 
N N V network: 

Number of layers: 3 
Output function of the neuron: s igmoid function 
Training function: error backpropagat ion 
Number of epochs: 2000 
Threshold: the biggest output of the three networks indicates 

the recognized language 
Number of outputs: 3 

The training was done by the function n e t l e a r n while the testing is done by 
n e t e v a l . 

8.1.2 Running the simulation 

After the program was made and its adequate functionality was tested, the 
next step is experimentation with it and fine tuning the simulation parameters for 
optimal results. A total number of 5 trains and tests were run with two speakers 
(Speaker l and Speaker2) to al locate the average error rate while the analysis 
parameters were set in pa rams .m as follows: 

framestep=20; %ms 
framelen=25; %ms 
melfilerbankcount=10j 

With this setting, one simulation took approximately 700 seconds . 

a) The network tested with words by Speakeř i 

Actual language Czech English Hungarian I 

All words 51 51 51 153 

Precisely identified words 29 40 31 100 

Efficiency 56,86% 78,43% 60,78% 65,36% 

Imprecisely identified words 
as as as as as as v Imprecisely identified words Hungarian English Hungarian Czech English Czech 2. 

(instead of the actual language) 15 7 8 3 10 10 53 

Ratio 29,41% 13,73% 15,69% 5,88% 19,61% 19,61% 34,64% 

Table 8.9 The results of the NNV1 network tested with words by S p e a k e r l 
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b) The network tested with words by Speaker2 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 35 32 33 100 

Efficiency 68,63% 62,75% 64,71% 65,36% 

Imprecisely identified words 
as 

Hungarian 
as 

English 
as 

Hungarian 
as 

Czech 
as 

English 
as 

Czech I 
(instead of the actual language) 9 7 9 10 9 9 53 

Ratio 17,65% 13,73% 17,65% 19,61% 17,65% 17,65% 34,64% 

Table 8.10 The results of the NNV1 network tested with words by Speaker2 

c) The network tested with words by Speaker3 

For this simulation, the network was trained with the words by S p e a k e r l and 
Speaker2 and then tested with words by Speake r3 . The results presented hereinafter 
were obtained as an average of 5 training and 3 tests per train (with test_3, test_4 
and test_5 folder) to a total number of 15 tests. 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 19 16 31 66 

Efficiency 37,25% 31,37% 60,78% 43,14% 

Imprecisely identified words 
as as as as as as v Imprecisely identified words Hungarian English Hungarian Czech English Czech 2. 

(instead of the actual language) 19 13 32 3 18 2 87 

Ratio 37,25% 25,49% 62,75% 5,88% 35,29% 3,92% 56,86% 

Table 8.11 The results of the NNV1 network tested with words by Speake r3 

For the second N N V network (NNV2), the same simulations were run with the 
analysis parameters set in pa rams, m as follows: 

framestep=30; %ms 
framelen=35; %ms 
melfilerbankcount=10j 

With this setting, one simulation took approximately 390 seconds . 
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d) The network tested with words by Speakeř i 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 38 46 40 124 

Efficiency 74,51% 90,20% 78,43% 81,05% 

Imprecisely identified words 
as as as as as as v Imprecisely identified words Hungarian English Hungarian Czech English Czech 2. 

(instead of the actual language) 8 5 4 1 6 5 29 

Ratio 15,69% 9,80% 7,84% 1,96% 11,76% 9,80% 18,95% 

Table 8.12 The results of the N N V 2 network tested with words by S p e a k e r l 

e) The network tested with words by Speaker2 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 36 36 44 116 

Efficiency 70,59% 70,59% 86,27% 75,82% 

Imprecisely identified words 
as as as as as as v Imprecisely identified words Hungarian English Hungarian Czech English Czech 2. 

(instead of the actual language) 6 9 12 3 3 4 37 

Ratio 11,76% 17,65% 23,53% 5,88% 5,88% 7,84% 24,18% 

Table 8.13 The results of the N N V 2 network tested with words by Speaker2 

f) The network tested with words by Speaker3 

For this simulation, the network was trained with the words by S p e a k e r l and 
Speaker2 and then tested with words by Speaker3 . The results presented hereinafter 
were obtained as an average of 5 training and 3 tests per train (with test_3, test_4 
and test_5 folder) to a total number of 15 tests. 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 17 23 30 70 

Efficiency 33,33% 45,10% 58,82% 45,75% 

Imprecisely identified words 
as as as as as as I Imprecisely identified words Hungarian English Hungarian Czech English Czech I 

(instead of the actual language) 18 16 22 6 19 2 83 

Ratio 35,29% 31,37% 43,14% 11,76% 37,25% 3,92% 54,25% 

Table 8.14 The results of the N N V 2 network tested with words by Speake r3 
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8.2 The ANFIS network 

The A N F I S is a very complex structure; its implementation is extremely t ime-
consuming. The A N F I S network created by the Fuzzy Logic toolbox has clearly the 
same advantages over an own implementation and have the Neural Network toolbox 
over the implemented simple network. These include flexibility and wide range of 
possibil i t ies of configuration. 

The membership function for the A N F I S network is calculated by the g e n f i s 2 
function. This function generates the structure of the Fuzzy Inference System from 
data using subtractive clustering. 

The subtractive clustering is a one-pass algorithm for estimating the number of 
clusters and the cluster centers through the training data. This method partitions the 
training data into groups cal led clusters and generates the cluster centers until the 
maximum potential value in the current iteration is equal to or less than the threshold 
5. By the end of the clustering process, a set of fuzzy rules are obtained [2]. 

8.2.1 Network parameters 

For the training and the testing process the following parameters were set 
within the A N F I S network: 

Number of layers: 
Output function of the neuron: 
Training function: 

Number of epochs: 
Threshold: 

Number of outputs: 

see Chapter 7 
combinat ion of the least-squares method and the 
backpropagat ion gradient descent 
3 
the biggest output of the three networks indicates 
the recognized language 
1 for each network (for a total amount of 3) 

The training is done by the function a n f i s while the testing is done by e v a l f i s . 

8.2.2 Simulation results 

A total number of 5 trainings and tests were run with the two speakers 
(Speaker l and Speaker2) to al locate the average error rate while the analysis 
parameters were set in pa rams .m as follows: 

framestep=190; %ms 
framelen=200; %ms 
melfilerbankcount=5j 

With this setting, one simulation took approximately 7500 seconds. 
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a) The network tested with words by Speakeř i 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 47 45 48 140 

Efficiency 92,16% 88,24% 94,12% 91,50% 

Imprecisely identified words 
as as as as as as v Imprecisely identified words Hungarian English Hungarian Czech English Czech 2. 

(instead of the actual language) 1 3 1 5 2 1 13 

Ratio 1,96% 5,88% 1,96% 9,80% 3,92% 1,96% 8,50% 

Table 8.15 The results of the A N F I S network tested with words by S p e a k e r ! 

b) The network tested with words by Speaker2 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 49 48 48 145 

Efficiency 96,08% 94,12% 94,12% 94,77% 

Imprecisely identified words 
as as as as as as v Imprecisely identified words Hungarian English Hungarian Czech English Czech 2. 

(instead of the actual language) 1 1 2 1 1 2 8 

Ratio 1,96% 1,96% 3,92% 1,96% 1,96% 3,92% 5,23% 

Table 8.16 The results of the A N F I S network tested with words by Speaker2 

c) The network tested with words by Speaker3 

For this simulation, the network was trained with the words by S p e a k e r l and 
Speaker2 and then tested with words by Speaker3 . The results presented hereinafter 
were obtained as an average of 5 training and 3 tests per train (with test_3, test_4 
and test_5 folder) to a total number of 15 tests. 

Actual language Czech English Hungarian I 
All words 51 51 51 153 

Precisely identified words 26 32 36 94 

Efficiency 50,98% 62,75% 70,59% 61,44% 

Imprecisely identified words 
as as as as as as I Imprecisely identified words Hungarian English Hungarian Czech English Czech I 

(instead of the actual language) 12 13 8 11 8 7 59 

Ratio 23,53% 25,49% 15,69% 21,57% 15,69% 13,73% 38,56% 

Table 8.17 The results of the A N F I S network tested with words by Speake r3 
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All NNV1 ANFIS 
Inrrp^^p in 

11 

words Precisely 
identified words Efficiency Precisely 

identified words Efficiency 
I I CQoC I I I 

efficiency 

Speakeři 100 65,36% 140 91,50% 26,14% 

Speaker2 153 100 65,36% 145 94,77% 29,41% 

Speaker3 66 43,14% 94 61,44% 18,30% 

All 
NNV1 NNV2 

Increase in 
words Precisely 

identified words Efficiency Precisely 
identified words Efficiency efficiency 

Speakeři 100 65,36% 124 81,05% 15,69% 

Speaker2 153 100 65,36% 116 75,82% 10,46% 

Speaker3 66 43,14% 70 45,75% 2,61% 

All NNV2 ANFIS 
InrrpaQP in 

words Precisely 
identified words Efficiency Precisely 

identified words Efficiency 
ill i case H I 
efficiency 

Speakeři 124 81,05% 140 91,50% 10,45% 

Speaker2 153 116 75,82% 145 94,77% 18,95% 

Speaker3 70 45,75% 94 61,44% 15,69% 

Table 8.18 Compar is ion of the results 
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9. CONCLUSION 

Within the scope of this master 's thesis, I tried to give a deep insight into the 
function of neural networks, starting with the base of the whole concept - real 
neurons. The first half of this paper descr ibes the structure and the operation of real 
and artificial neurons including the description of the learning process and the 
manner and topology of their interconnections. The backpropagat ion algorithm is a lso 
descr ibed which is one of the bas ic types of neural network training. A detailed 
insight is given into fuzzy sys tems and fuzzy neural networks including the main 
advantages and d isadvantages of fuzzy sys tems and the properties of both sys tems 
and clearly descr ibes the problems which can be solved by combining these two 
techniques. The model of Fuzzy Neural Network and Barenj i 's A R I C (Approximate 
Reason ing B a s e d Intelligent Control) architecture is a lso presented. 

After introducing the Fuzzy Sys tems and Fuzzy Neural Networks, the Adapt ive 
Neuro -Fuzzy Inference System (ANFIS) was presented which effectively combines 
both neural networks and fuzzy logic reasoning in order to achieve the best possible 
results. This type of network can be exceptional ly suitable for the language 
recognition task too. 

A prerequisite of network training is to acquire training data. In our case these 
were recordings of individual words. Fifty-one different words in three languages 
(Engl ish, C z e c h and Hungarian) were recorded for further network training and 
testing purposes for a total of 153 acquired words (51 Engl ish, 51 C z e c h and 51 
Hungarian) by three speakers . Every word was recorded 3 t imes by each speaker 
which means a total amount of 1377 words. For the training method train folder was 
used, which contains 612 words from S p e a k e r l and Speaker2 (each word 2 t imes by 
both speakers) . Test ing was separated into 2 bas ic parts: testing the trained network 
with words by S p e a k e r l and Speaker2 , testing the trained network with words by 
Speaker3 (different speaker than of train words). In the framework of Matlab, 
a language recognition software has been built, which has two different types of 
network that can be used - the A N F I S network and an own implementation of neural 
network trained by the backpropagat ion algorithm. Both networks were f ine-tuned for 
optimal functionality. 

The goal of the work was to train the networks with the training words to gain 
the ability of recognizing the language of the words and, subsequent ly, test these 
trained networks. Both networks were able to recognize all the languages. The 
analysis parameters for the neural network were set into f rames of 25 ms where 
every f rame covers the previous one by 5 ms (NNV1). With this setting and 10 
cepstral parameters by frame the neural network precisely identified 100 words out of 
153, which means slightly more than 6 5 % of all words (while testing with words by 
S p e a k e r l and Speaker2) and 66 words out of 153 (43,14%) while testing with words 
by Speaker3 . 

The same neural network with analys is parameters set into f rames of 35 ms 
and 5 ms over laps (NNV2) performed even better. The network with this setting 
precisely identified 124 words out of 153 (81,05%) while testing with words by 
S p e a k e r l and 116 words out of 153 (75,82%) while testing with words by Speaker2 . 
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A slight increase in efficiency (2,61%) can be observed in contrast to NNV1 while 
testing with words by Speaker3 which means a recognition rate of 70 words out of 
153 (45,75%). 

The best results were obtained using the A N F I S network. This network uses a 
hybrid learning algorithm, an effective combinat ion of neural networks and fuzzy 
inference system while the other two networks are simple neural networks without the 
benefits of fuzzy logic reasoning. With the frame length of 200 ms, 10 ms over laps 
and 5 cepstral parameters per frame, the A N F I S network precisely identified 140 
words out of 153 (91,50%) while testing with words by S p e a k e r l and 145 words out 
of 153 (94,77%) while testing with words by Speaker2 . For Speaker3 , 94 words out of 
153 were precisely identified (61,44%) which means more than 1 5 % increase in 
efficiency to benchmark against the neural network. 

A s it was presented, both networks performed well at recognizing the learned 
languages especial ly the ones which came from the s a m e speakers as the system 
was trained with. There was a significant difference (~10-M5%) between the 
efficiency of recognition with the neural network depending on the analysis 
parameters while testing with words by S p e a k e r l and Speaker2 . Words from 
Speaker3 were al located with almost the same accuracy with both adjustments. The 
A N F I S network gave the best results exceeding the efficiency of neural network with 
more than 10+15%. 

With a much bigger training set containing data from various speakers the 
recognition would be more universal in terms of recognizing the isolated words by 
unknown speakers . 
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A MATLAB PROGRAMS 

A. 1 spust.m 

c l e a r ; c l c ; 
i f ( m a t l a b p o o l ( ' s i z e ' ) = = 0 ) 

m a t l a b p o o l open; 
end; 

num a n f i s i n p uts=140; 

%mode='anfis'; ^ s e l e c t i o n o f network t y p e 
mode='nnv'; 

t i c ; 
f p r i n t f ( ' L o a d t r a i n d a t a . . . \ n ' ) ; 
t r a i n d i r = ' . . / t r a i n ' ; % t r a i n i n g samples 
t e s t d i r = ' . . / t e s t 1'; % t e s t samples 

[ i n p , t g t ] = w a v l o a d ( t r a i n d i r , n u m a n f i s i n p u t s ) ; 

%% t r a i n 
f p r i n t f ( ' T r a i n . . . \ n ' ) ; 

s w i t c h mode 
case ' a n f i s ' 

epoch n = 3; 
p a r f o r i = l : s i z e ( t g t , 2 ) %runs i t e r a t i o n s i n p a r a l e l l 

f p r i n t f ( ' % d . . . \ n ' , i ) ; 
i n f i s ( i ) = g e n f i s 2 ( i n p , t g t ( : , i ) , . 2 0 ) ; 
% i n f i s ( i ) = g e n f i s 2 ( i n p , t g t ( : , i ) , . 3 ) ; 
out f i s ( i ) = a n f i s ( [ i n p t g t ( : , i ) ] , i n f i s ( i ) , e p o c h n , z e r o s ( 1 , 4 ) ) ; 

^network l e a r n i n g 
r e s ( : , i ) = e v a l f i s ( i n p , o u t f i s ( i ) ) ; ^network e v a l u a t i o n 

end 

case 'nnv' 
nnet = n e t i n i t ( s i z e ( i n p , 2 ) , s i z e ( t g t , 2 ) ) ; 
nnet = n e t l e a r n ( n n e t , i n p , t g t , 2000); %network l e a r n i n g 
r e s = n e t e v a l ( n n e t , i n p ) ; ^network e v a l u a t i o n 

end 
%% t e s t d a t a 
f p r i n t f ( ' E v a l . t e s t d a t a . . . \ n ' ) ; 

[ t i n p , t t g t ] = w a v l o a d ( t e s t d i r , n u m a n f i s i n p u t s ) ; 

s w i t c h mode 
case ' a n f i s ' 

w a r n i n g ( ' o f f ' , ' F u z z y : e v a l f i s : I n p u t O u t O f R a n g e ' ) ; 
t r e s = [ ] ; 
f o r i = l : s i z e ( t g t , 2) 

f p r i n t f ( ' % d . . . \ n ' , i ) ; 
t r e s ( : , i ) = e v a l f i s ( t i n p , o u t f i s ( i ) ) ; %network t e s t i n g w i t h t e s t 

d a t a 
end 
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case 'nnv' 
t r e s = n e t e v a l ( n n e t , t i n p ) ; 

end 
^network t e s t i n g w i t h t e s t d a t a 

f i g u r e ( 1 ) ; 
colormap(summer) ; 
t r e s ( t r e s < 0 ) = 0 ; 
b a r h ( t r e s . / ( s u m ( t r e s , 2 ) * [ 1 1 1 ] ) , ' s t a c k e d ' , 'DisplayName' , ' t r e s r a t i o s ' ) ; 
x l i m ( [ 0 1] ) ; 
l e g e n d ( ' c z e c h ' , ' h u n g a r i a n ' , ' e n g l i s h ' ) ; 
o. o. 
o o 

t o e ; 
f p r i n t f ( ' E n d . \ n ' ) ; 

A.2 wavload.m 

f u n c t i o n [ i n p , t g t ] = wavload( t r a i n d i r , ~) 

% l o a d wavs from a d i r and c o n v e r t t o parameters 

s i g l e n = 0.7; %s 

f i l e s = d i r ( [ t r a i n d i r '\*.wav']); 
[ ~ , F s ] = w a v r e a d ( [ t r a i n d i r '\' f i l e s ( 1 ) . n a m e ] ) ; 
s i g l e n s a m p = f l o o r ( s i g l e n * F s ) ; 
i n p = [ ] ; % i n p u t s i g n a l s 
t g t = [ ] ; % a c c o r d i n g t o l a n g u a g e s ( a c c . To p r e f i x 'c,h,e') - t a r g e t 
f o r i = l : l e n g t h ( f i l e s ) ^ p r o c e s s e v e r y f i l e i n d i r 

[ i n p t m p , F s ] = w a v r e a d ( [ t r a i n d i r '\' f i l e s ( i ) . n a m e ] ) ; 

i f l e n g t h ( i n p tmp)<siglensamp %make e v e r y s i g n a l t o be o f the same 
l e n g t h 

i n p tmp(siglensamp)=0; 
e l s e 

i n p tmp=inp t m p ( 1 : s i g l e n s a m p ) ; 
end 

i n p tmp = i n p tmp ./ max(max(abs(inp t m p ) ) ) ; % a m p l i t u d e n o r m a l i z a t i o n 
i n p tmp = awgn(inp tmp,2 0,'measured'); 

p=params( i n p tmp, Fs ); 
i n p ( e n d + 1 , 1 : l e n g t h ( p ) ) = p; 

l a n g = f i l e s ( i ) . n a m e ( 1 ) ; 
i f ( l a n g == 'c') 

t g t = [ t g t ; 1 0 0 ] ; 
e l s e i f ( l a n g == 'h') 

t g t = [ t g t ; 0 1 0 ] ; 
e l s e i f ( l a n g == 'e') 

t g t = [ t g t ; 0 0 1 ] ; 
e l s e 

t g t = [ t g t ; 0 0 0 ] ; 
end 

end 
end 

^ c a l c u l a t e p arameters 

^ d e t e r m i n e t a r g e t v e c t o r 
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A.3 params.m 
f u n c t i o n [ p a r s ] = params( s, f s ) 

s = r e s h a p e ( s , 1 , [ ] ) ; 

b a n d p a s s f i l t e r s t r u c t =... 
d e s i g n ( f d e s i g n . b a n d p a s s ( ' n , f 3 d B l , f 3 d B 2 ' , 8 , 1 0 0 , 4 0 0 0 , f s ) , ' b u t t e r ' ) ; 

s f = f i l t e r ( b a n d p a s s f i l t e r s t r u c t , s ) ; 
framestep=20; %ms 
framelen=25; %ms 

m e l f i l e r b a n k c o u n t = 1 0 ; %number o f c e p s t r a l parameters 

f r a m e l e n s a m p = f l o o r ( f r a m e l e n / 1 0 0 0 * f s ) ; %number o f samples i n a frame 

w = hamming(framelensamp)'; %frame window 

p a r s = [ ] ; 
framenum=0; 
w h i l e 1 

f r a m e s t a r t = f l o o r ( f r a m e n u m * framestep/1000* f s + 1) ; 
frameend=framestart+framelensamp-1; 
i f f rameend>length(s) 

break; 
end 

f r a m e = s f ( f r a m e s t a r t : f r a m e e n d ) ; ^ c u r r e n t frame 
framew=frame.*w; % a p p l y window 

m e l s p e c t = m e l f i l t e r b a n k ( a b s ( f f t ( f r a m e w ) ) , m e l f i l e r b a n k c o u n t , 100, 4000, 
f s ) ; ^ c a l c u l a t e mel s p e c t r a l c o e f f i c i e n t s 

m e l s p e c t l o g = l o g l 0 ( m e l s p e c t ) ; 
m f c c = d c t ( m e l s p e c t l o g ) ; ^ c a l c u l a t e c e p s t r a l c o e f f i c i e n t s 
p a r s = [ p a r s ; m f c c ] ; 

framenum=framenum+1; 
end 

p a r s = r e s h a p e ( p a r s , 1 , [ ] ) ; 

end 
f u n c t i o n [ r e s ] = m e l f i l t e r b a n k ( spectrum, n, f l , f 2 , f s ) 

f = l i n s p a c e ( 0 , f s , l e n g t h ( s p e c t r u m ) ) ; 

m e l f = l o g s p a c e ( l o g l O ( f 1 ) , I o g l 0 ( f 2 ) , n+2); % b o r d e r f r e q u e n c i e s 

^ c a l c u l a t e c o e f f i c i e n t s f o r each f i l t e r bank s e q u e n t i a l l y and a p p l y i t 
r e s = [ ] ; 
f o r i=2:n+1 

c o e f f l = ( f - m e l f ( i - 1 ) ) / ( m e l f ( i ) - m e l f ( i - 1 ) ) ; 
c o e f f 2 = ( f - m e l f ( i ) ) / ( m e l f ( i ) - m e l f ( i + 1) ) ; 
c o e f f = m i n ( c o e f f l , c o e f f 2 ) ; 
c o e f f ( c o e f f < 0 ) = 0 ; 

r e s = [res s u m ( c o e f f . ^ s p e c t r u m ) ] ; 
end 

end 
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A.4 netinit.m 

f u n c t i o n [ network ] = n e t i n i t ( i n p u t s , o u t p u t s ) % i n p u t s , o u t p u t s 

% s t e p 0 

n = s t r u c t ; ^ s t r u c t u r e , c o n t a i n s t h e network 

n.numin=inputs; 
n.numout=outputs; 
n.numz=round(inputs ) 

%number o f i n p u t s 
%number o f o u t p u s t 
%number o f h i d d e n l a y e r 

% i n i t i a l i z e network c o e f f i c i e n t s 
n.v=(rand(n.numin,n.numz)-0.5)/1000; 
n.w=(rand(n.numz,n.numout)-0.5)/1000; 

n.vO = (rand(n.numz,1)-0.5)/1000; 
n.wO = (rand(n.numout,1)-0.5)/1000; 

n . a l f a = 0.0001; 

network=n; 

end 

A.5 netlearn.m 

f u n c t i o n [ onet ] = n e t l e a r n ( n e t , i n p u t , t a r g e t , runs ) 

% i n p u t - s i g n a l s i n rows 

f = @(x) s i g m f ( x , [10 . 5 ] ) ; % s i g m o i d f u n c t i o n 
f a = @(x) ( f ( x ) - f ( x - 0 . 0 0 1 ) )/0 . 001; % d e r i v a t i o n 

% s t e p 1 
w h i l e (1) 

% s t e p 2 
f o r i = 1 : s i z e ( i n p u t , 1 ) 

% s t e p 3 
x = i n p u t ( i , :) ' ; 
t = t a r g e t ( i , :) ' ; 

% s t e p 4 
z i n = n e t . v 1 * x + net.vO; 
z = f ( z i n ) ; 

% s t e p 5 
y i n = net.wO + net.w'*z; 
y = f ( y _ i n ) ; 

% s t e p 6 
d e l t a = ( t - y ) . * f a ( y _ i n ) ; 
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d e l t a w = n e t . a l f a . * ( z * d e l t a 1 ) ; 
deltawO = n e t . a l f a . * d e l t a ; 

% s t e p 7 
d e l t a i n = n e t . w * d e l t a ; 
d e l t a = d e l t a i n . * f a ( z i n ) ; 
d e l t a v = n e t . a l f a . * ( x * d e l t a 1 ) ; 
d e l t a v O = n e t . a l f a . * d e l t a ; 

% s t e p 8 
net.w = net.w + d e l t a w ; 
n e t . v = n e t . v + d e l t a v ; 
net.wO = net.wO + deltawO; 
net.vO = net.vO + d e l t a v O ; 

end 
r u n s = r u n s - l ; 
i f (runs<=0) % l e a r n i n g ends 

break; 
end 

end 

onet=net; 
end 

A. 6 neteval.m 

f u n c t i o n [ out ] = n e t e v a l ( n e t w o r k , i n p u t ) 

% i n p u t - s i g n a l s i n rows 

f = @(x) s i g m f ( x , [10 . 5 ] ) ; % s i g m o i d 
f a = @(x) ( f ( x ) - f ( x - 0 . 0 0 1 ) ) / 0 . 0 0 1 ; % d e r i v e d 

o u t = [ ] ; 
% s t e p 2 
f o r i = 1 : s i z e ( i n p u t , 1 ) 

% s t e p 3 
x = i n p u t ( i , : ) ' ; 

% s t e p 4 
z i n = network.v'*x + network.vO; 
z = f ( z i n ) ; 

% s t e p 5 
y i n = network.wO + network.w'*z; 
y = f ( y _ i n ) ; 

out = [out; y ' ] ; 
end 
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B.2 The A N F I S network tested with words by Speaker2 
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