
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

SIMULATION OF GUITAR SOUND EFFECTS ON MO
BILE DEVICE WITH ANDROID

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE TOMÁŠ MÉSZÁROS
AUTHOR

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

SIMULACE KYTAROVÝCH ZVUKOVÝCH EFEKTU NA
MOBILNÍM ZAŘÍZENÍ ANDROID
SIMULATION OF GUITAR SOUND EFFECTS ON MOBILE DEVICE WITH ANDROID

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE TOMÁŠ MÉSZÁROS
AUTHOR

VEDOUCÍ PRÁCE Ing. VÍTĚZSLAV BERAN, Ph.D.
SUPERVISOR

BRNO 2013

Abstrakt
H l a v n í m cí lem t é t o p r á c e je z k o u m á n í m o ž n o s t i real-time zpracován í zvuku v o p e r a č n í m
s y s t é m u A n d r o i d a vy tvo ř i t prototyp aplikace, k t e r á p ř e k o n á v á vyskytu j íc í se ob t í že tohoto
úkolu . Obsahuje p řeh led o p r o b l é m u a n á v r h m o ž n é h o řešení . I m p l e m e n t o v a n é čás t i sys
t é m u jsou p o p s á n y p o d r o b n ě j i v j edno t l i vých kap i to lách . N a závěr jsou shrnuty dosavadn í
výs ledky v ý z k u m u a n á v r h u aplikace.

Abstract
The pr imary goal of this thesis is to discover the possibilities of real-time audio processing
on the A n d r o i d operating system and to create a prototype applicat ion which overcomes
the occurring difficulties of this task. It includes an overview of the problem and the design
of a possible solution. The currently implemented components are described in detail . A s
an afterword, a conclusion is made about the results obtained trough the research and the
design process.

Klíčová slova
A n d r o i d , mode lován í zvukových efektů, real-time, zvuková karta, A L S A , L inux , U S B O n -
The-Go , V i r t u a l Studio technology, V S T pluginy, L A D S P A , hos tován í zvukových p lug inů

Keywords
A n d r o i d , sound effects modell ing, real-time, sound card, A L S A , L inux , U S B On-The -Go ,
V i r t u a l Studio Technology, V S T plugin, L A D S P A , signal processing, audio plugin hosting

Citace
T o m á š Mészá ros : Simulat ion of Gu i t a r Sound Effects on Mob i l e Device w i th A n d r o i d ,
baka l á ř ská p ráce , Brno , F I T V U T v B r n ě , 2013

Simulation of Guitar Sound Effects on Mobile De
vice with Android

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m Ing. Ví tězs lava
Berana, P h . D . U v e d l jsem všechny l i t e rá rn í prameny a publikace, ze k t e r ý c h jsem čerpal .

T o m á š Mészá ros
M a y 12, 2013

Poděkování
Děkuji svému v e d o u c í m u baka l á ř ské p r á c e panu Ing. Ví tězs lavu Beranovi , P h . D , k t e r ý pod
poroval n á p a d t é t o p r á c e a poskyt l odbornou pomoc př i řešení . Dá le bych poděkova l panu
B c . Sándorov i R u h á s o v i za pomoc př i měřen í výs ledků a p o s k y t o v á n í měř ic ích p r o s t ř e d k ů .

© T o m á š Mészáros , 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Theoretical Overview of Sound Processing on A n d r o i d 3
2.1 A u d i o effects i n a musical context 3
2.2 Vi r tua l i za t ion of analogue effect blocks - pedal-boards 4
2.3 Reusable audio niters - Plug-ins 6
2.4 The A n d r o i d sound architecture 7
2.5 Connect ing A n d r o i d devices wi th external peripherals 9

3 Conceptional Design of an A n d r o i d Based V i r t u a l Pedal-board 11
3.1 Decomposi t ion of the application 11
3.2 Designing a low latency audio subsystem 12
3.3 Designing a plug-in hosting service 15
3.4 Front-end for the plug-in hosting service 19

4 Realization Details 21
4.1 Load ing the USB-aud io driver into the A n d r o i d kernel 21
4.2 The low latency subsystem engine 22
4.3 P lug- in hosting service - implementat ion details 25

4.4 Discussion of the implemented user interface 27

5 Conclusion 28

A Development Environment 30

B Contents of the provided C D 31

1

Chapter 1

Introduction

Today's music industry is crawling wi th products emulating sound effects which can be
applied to many instruments. These solutions (usually called multieffects) are mainly dis
t r ibuted as an embedded device w i th its own processing unit and controll ing interface. The
market of mobile devices is growing quickly and the processing power of these devices like
tablets and mobile phones is becoming suitable for real-time processing of an audio signal.
For this reason an idea was born to actually use these devices for such purposes.

A n applicat ion for a mobile device that can process the signal from a real instrument like
an electric guitar, bass or microphone would be cost efficient and very useful for musicians,
allowing them to use it as a personal practising or recording tool . Addi t ional ly , it could
replace some parts of their equipment for live performance as well.

Examples of such applications are available from A p p l e for iPads and iPhones as their
operating system provides a good support for connecting sound devices w i th very low
latency. O n the other hand, no such software is available for A n d r o i d because of the lack
of this support by the operating system's A P I . Th is fact is disappointing and seams to be
solvable through the L i n u x kernel which is used as the core of the OS .

The a im of this work is to demonstrate the abi l i ty of the A n d r o i d O S to run such
programs and serve as a proof that official low latency audio support would be appreciated
and useful. The main goal is to implement a subsystem that can uti l ize existing audio plug-
in filters created using different technologies (these w i l l be discussed later in this document).
A l though the provided solution for real-time sound processing w i l l be described i n detail , it
cannot replace a generally applicable solution provided i n the future releases of the official
A n d r o i d S D K .

2

Chapter 2

Theoretical Overview of Sound
Processing on Android

This chapter provides a generic introduct ion of the ma in notions used i n the thesis. Gathers
al l the necessary information from the in i t i a l research gravitat ing towards the A n d r o i d OS
and tries to filter the results through the viewpoint of this platform.

2.1 Audio effects in a musical context

From technical perspective, an audio effect can be thought as a processing block i n an
electric signal chain. It can do whatever is needed by a musician from a simple ha l l effect
to a revolutionary sounding instrument that does not remind the original input at a l l .
However, the result is s t i l l musical and pleasing to the ears of listeners.

These effects can be buil t as an analogue circuit or simulated by an algori thm. Each
approach has its advantages and withdraws. A n analogue effect can be more authentic,
it can have a more detailed and richer sound. The simulat ion on the other hand has
many pract ical benefits. It w i l l have significantly lower price and some other positive
side effects like noise reduction or the smaller size of the resulting devices. There are
ongoing debates about which solution is better. The accuracy of a model highly depends
on the processing power of the hosting device and the tendency of increasing computing
performance implicates a growing popular i ty of digi ta l audio effects across many musicians
today.

This work does not discuss the various algorithms and techniques of digi ta l audio pro
cessing rather it uses existing software modules that are open-source and are free to be
used. The reasons of this choice are the following:

• good quali ty audio effects are hard to write

• addit ional measurements of the real (analogue) effect could be unavoidable

• existing free — or even open-source — models are available on the internet.

A u d i o effects are commonly categorized based on the musical qualities they are provid
ing. These categories are named i n [3] as :

Signal Conditioners A l l gain-based and EQ-based effects are included. Thei r pr imary
function is not to change the nature of the sound but mainly to increase its gain or
the amplitude of specific frequencies.

3

e. g.: preamps, equalizers, distortions, compressors, wah-wah, ...

Modula t ion and Time-Based Effects Time-based effects, by definition, combine the
original signal w i th a t ime-manipulated version.

e. g.: choruses/flangers, pitch-shifters, delays, ...

Ambient Processors These effects usually simulate some k ind of environment.

e. g.: reverb and delay1

Other Effects A big number of other effects are known and used in practise that do not
really fit in any of these categories.

e. g.: octavers, noise-gates, synthesizers, harmonizers, ...

From the perspective of s imulat ion the most difficult task is to simulate a specific am
plifier. Taking an electric guitar sound as a basis, there are legendary amplifiers by many
manufacturers, that — for some reason — gained big populari ty across musicians. A com
mon property of these amplifiers is the tube driven power stage. Simulat ing the behaviour
of this electronic component is not t r iv ia l . Nevertheless, the real essence of a guitar sound
is bound to the amplifier to which the guitar is connected.

2.2 Virtualization of analogue effect blocks - pedal-boards

The t radi t ional way of colouring an instrument's sound is to create a so called pedalboard
(Figure 2.1). Th is can contain a l l kinds of s tompboxes 2 which are analogue processing
blocks from a technical view. The whole pedalboard can be vir tual ized by simulat ing these
blocks. The modell ing does not have to stop at this point. The impulse response of a guitar
amplifier together w i th the characteristics of the loudspeakers can also be modelled.

Figure 2.1: A n example of a pedalboard for live performance. Source: [7]

A software effect processor is a d ig i ta l signal processing (DSP) applicat ion which can
model the signal path of a guitar equipment from the dry input of the instrument to the

xDelay can be thought as both an ambient and a time-based effect. Its realization is evidently connected
with time-based operations but the result is often an emulation of an echo sound.

2 A box containing one or a few effect units traditionally achieved with an analogue circuit but digital
implementations are now common alternatives

4

loudspeakers including the amplifier and the stompbox effects. A popular application of
this type is perhaps the software package called Guitar Rig developed by the company
Native Instruments.

1 Guildr Rig 3 - Native Instruments • S

0D1 Clean AC BOK(5C + HB}
QOZ Fat Ckan AC t HB}

| Wi Bril Hip Hhy-rhni (SI Unrlgi-)
004 Chiysltl Crunch [5C + HBBrldae)
001 Hot Treble Boost (SC Bridk)e)
006 Crunch* LP {HB Bridge}
007 Hot Treble Boost (HB Bridge)
003 ZU is no name
009 Brijrt'iViiion
010
011
012

STU DIOR EVE FB

Figure 2.2: Preview of the Guitar Rig 3 application's U I . Source: W i k i p e d i a

The requirements for user interaction wi th such software are dependent on the forms
of usage. A good approach could be the visual izat ion of a real pedalboard as the average
musician is used to them. A tablet w i t h a big touch-screen is a good candidate for being a
hosting device in situations like practising or quick recording. A home/professional studio
recording software has to enable more detailed editing of parameters and fits better to
a desktop environment. Last but not least, the sound quali ty and accuracy of the effect
models have to be comparable wi th their analogue alternatives.

One of the biggest requirements in real-time processing is the extremely low latency
between the input and the output interface. Accord ing to [] latency is the delay between
an act ion and its effect. For example, an action could be triggered by pressing a but ton
and the reaction would be to hear a note. The elapsed t ime is the overall latency of the
system and has 3 major sources:

Physical Distance from the loudspeakers.

Hardware Latencies of hardware components, A D C and D A C conversions, hardware
buffering.

Software M a i n l y caused by software buffering, processing algorithms and the platform
itself.

5

The max ima l t ime of human-perceptible audio latency is assumed between 20 — 30 ms
[4]. The lowest value from this interval has to be taken as an upper l imi t . The easiest
way of reducing software delays is by using short buffers and min imiz ing platform specific
overhead — by choosing the right A P I for instance. This topic is essential and has to be
examined from different angles. The goal is a soft real-time application which have to
respond to the input signal without noticeable delays.

2.3 Reusable audio niters - Plug-ins

The simulation of an audio effect is a computer program wri t ten in an appropriate language
- usually C or C + + . To make these simulations reusable they have to be packaged in

some format which can be used by a set of applications. In an embedded device there is
no need for such packaging but when it comes to professional audio edit ing programs or
desktop based multi-effect applications this modular i ty is highly required. The usual way
of dis t r ibut ing audio effect models is i n the form of shared or dynamic l ibrar ies 3 mostly
referred to as plug-ins.

A plug-in is not an applicat ion and cannot be used without a hosting software. It can
be thought as a black box that receives a stream of audio samples, processes this stream
and sends it out to its output [9]. The concept is very similar to the stomboxes mentioned
in chapter 2.2 from the analogue world.

P lug- in creation can be done wi th a specific A P I or framework that defines the interface
of the shared library. Frameworks do exist for different platforms wi th different approaches
but their interfaces can be unified wi th a moderate effort.

A lot of audio edit ing applications are using some form of plug-ins to allow the extension
of available effects. A quick overview of the best k n o w n 4 open-source and proprietary
formats is provided here.

Steinberg's V S T Plug- in framework
A proprietary plug-in framework from the company Steinberg wri t ten in C + + . Ava i l
able for Windows, L i n u x and M a c O S but compil ing it for A n d r o i d is possible as well.

L A D S P A Plug- in A P I
L i n u x A u d i o Developer's Simple P lug - in A P I is an open-source framework for wr i t ing
audio effects for G N U / L i n u x operating systems or generally for any operating system.
A s a framework, it is really simple and easy to understand. The documentation is
captured i n the single header file of this A P I .

D S S I
Stands for Disposable Soft Synth Interface. Very similar to the previous one. Some
times referred to as L A D S P A for instruments.

V A M P
Very sophisticated C + + A P I . Unl ike the previous technologies, this framework is
specialized for feature extraction and audio analysis.

Other frameworks that are worth mentioning but they are either closed source or in
compatible w i th the A n d r o i d architecture:

3Standard OS dependent binary file, .dll in Windows, .so in Linux...
4Plug-in formats are publicly available and a generic overview is available on Wikipedia

6

• Real-Time AudioSuite (RTAS)

• Apple Computer's Audio Units

Using the plug-ins requires a hosting application that takes the inputs and outputs
of the plug-in and connects them wi th other plug-ins or w i th an audio interface. A l so
manages effect parameters and controls the signal chain i n its entirety. The user interface
may belong to the host as well and it can incorporate many plug-in formats depending on
its specifications.

Wr i t i ng a very simple realization requires the following steps []:

1. Load ing and in i t ia l iz ing the plug-in

2. Set up the callback methods and other connections wi th the plug-in

3. Provide audio samples to the plug-in for processing

The software Guitar Rig mentioned in chapter 2.2 is actually a plug-in hosting applica
t ion that is compatible w i th a variety of plug-in formats.

2.4 The Android sound architecture

To implement a low latency audio (L L A hereafter) system it is very important to be familiar
w i th the l imitat ions and capabilities of the target platform. The support for L L A i n A n d r o i d
S D K is under development 5 and there is no well documented or easy way to get it working.

A n d r o i d is based on the L i n u x kernel. This means that drivers and hardware specific
code is a l l bound to the monoli thic approach of this well known operating system. M a n
ufacturers can branch the kernel source tree and write their own drivers for their devices.
The audio section follows this concept without any exception. The need for abstracting
these drivers into a single interface — H A L 6 , to use the right term — is immediate.

The L i n u x kernel has already included a type of H A L for its sound devices. It is called
A L S A , an acronym for Advanced Linux Sound Architecture which is a stable and popular
base for many L i n u x distributions to control sound devices [8]. Even so, A n d r o i d have to
deal w i th a bigger confusion in drivers and hardware layers. A new level has been imple
mented as a solution, that unifies A L S A drivers w i th other manufacturer specific drivers.
A s a consequence, an A n d r o i d based device is not forced to use A L S A as a framework for
its audio drivers.

There is one more important aspect that has to be introduced to the reader to un
derstand the problem behind real-time applications in A n d r o i d . This is the well known
Dalvik Virtual Machine. A Java V M reimplemented and opt imized by Google. It has many
advantages in resolving hardware incompatibil i t ies for the wide variety of A n d r o i d devices.
The side-effect is evidently a dropdown i n performance. The overhead caused by Da lv ik
significantly decreases the abi l i ty of A n d r o i d to host real-time applications.

The A n d r o i d platform provides a development framework to a id the creation and pub
licat ion of new software [1]. These tools and the features they provide is a very important
design aspect. A s mentioned before, the support for real-time applications is absent from
this framework in its present state and a brief int roduct ion of this A P I is useful as it w i l l
be mentioned many times from now on.

development news at: http://developer.android.com/about/versions/jelly-beaii.html
6Hardware Abstraction Layer

7

http://developer.android.com/about/versions/jelly-beaii.html

Applications

Applications
Framework

Libraries
(user space)

Linux Kernel

Figure 2.3: The A n d r o i d audio subsystem, h t t p : / / w w w . n e t m i t e . c o m / a n d r o i d / m y d r o i d /
d e v e l o p m e n t / p d k / d o c s / a u d i o _ s u b _ s y s t e m . h t m l

The S D K is based on the Java language. The official documentation [1] states that the
pr imary way of bui ld ing applications is through this framework. It provides a standard
set of classes that are present i n the Java A P I and addi t ional classes associated w i t h the
A n d r o i d O S . A native tool-chain called N D K is provided as an optional part of the S D K 7 .
It enables to write part of the application i n a native language such as C or C + + . Some
functions or libraries can be compiled to native binaries or shared libraries and a specific
interface — the Java Native Interface (JNft) — is responsible for connecting these native
functions wi th the Java world.

A L S A is s imply the core of L i n u x audio. It has the control over hardware specific
functions i n the kernelspace and can be used as a framework for wr i t ing audio applications
wi th the provided userspace library. The project has its own official implementat ion the
ALSA Library API (referred to as the a l s a - l i b package) [8]. Th is is a low level l ibrary
wi th a robust functionality. In fact, A n d r o i d uses tinyalsa 9, its own t iny version of this
l ibrary to provide the very basic features for upper layers. Us ing a l s a - l i b in A n d r o i d
applications is generally not considered a good practise and i n the S D K (nor the N D K) it
is not even available. Other l ibrary worth mentioning is the s a l s a - l i b l ibrary package.
This is a lighter implementat ion of a l s a - l i b w i th l imi ted features targeted to embedded
systems. The interface is source level compatible w i th the official alternative.

7Available at http://developer.android.com/tools/sdk/ndk/index.html
8Java Native Interface - Calling C/C++ functions from Java and accessing Java objects from C++
9Available from the official Android source code repositories.

8

http://www.netmite.com/android/mydroid/
http://developer.android.com/tools/sdk/ndk/index.html

In order to implement a stable audio pipe wi th the lowest possible latency, it is important
to be familiar w i th the transfer methods of a P C M s t r eam 1 0 . Th is includes the playback
and capture procedure which are handled by A L S A as I / O operations. The audio devices
are files i n the /dev directory just like any other peripheral. A t some point dur ing the
transfer an I / O system cal l is involved and the overlying A P I has to obey al l the rules of
such operation. A L S A distinguishes three basic transfer modes [5]:

1. Blocking read/write: A n I / O operation w i l l block un t i l the required amount of
samples is not available.

2. Non-blocking read/write: A n I / O operation w i l l never block and explicit wait ing
is used v i a a poll or select system call .

3. Asynchronous transfer: The process is signalled periodical ly and resolves the
transfer in a signal handler method. This kind of transfer is not part of the safe
operation subset in ALSA.11

A L S A uses the term period to mark a t ime or data block that is periodical ly transferred
while capturing or playing audio samples. Also defines a frame as a collection of samples for
mult iple channels corresponding to a given point i n t ime. Samples are collected i n frames
wi th an interleaved or non-interleaved organization. The Figure 2.4 is an example P C M
data layout.

read/write
pointer

Y

Period = 8 frames

Buffer = 16 periods

L R Frame = 2 channels: left, right

L M Sample = 2 bytes: LSB, MSB

Figure 2.4: P C M data model [13]

2.5 Connecting Android devices with external peripherals

In order to connect anything wi th a mobile device it has to be equipped wi th a set of ports
which allows interaction wi th other devices. A wireless solution appears to be a better
choice to avoid the use of cables and to mainta in the „mobility" of mobile devices. The
A n d r o i d O S has support for peripherals like a keyboard or a mouse thanks to the mentioned
L i n u x kernel which has a decent collection of drivers for external devices. Beside the wireless
methods a connection can also be made v i a the U S B port. The pr imary purpose of an U S B
connector on a mobile device is to make connection wi th a P C and for charging the battery.

10Pulse-Code Modulation - digitally sampled audio signal
1 1According to the unofficial ALSA wiki page http: / /a l sa . opensrc.org/HowTo_Asynchronous_Playback

9

http://opensrc.org/HowTo_Asynchronous_Playback

In these situations the P C has the role of a U S B host and the mobile or tablet acts as a
U S B device [10]. A mobile device can take the role of a U S B host only i f it supports the
On-the-Go12 extension of the U S B specif icat ion 1 3 . This requires a U S B O T G controller
and a M i c r o - A B U S B plug installed on the device.

This type of connection is incredibly useful and surprisingly a poor documented area
of mobile devices. Manufacturers do not give a big attention to indicate the state of this
technology i n their devices and the easiest way to find out whether it is enabled on a
part icular phone or tablet is to actually connect it w i th an external peripheral.

Android ' s approach to support external devices is the Android Open Accessory (AOA)
p r o t o c o l 1 4 . The connected device has to be implemented according to the specifications
described i n A O A . The protocol enables the connection without the O T G functionality
because the external device acts as a host and the Android-powered device acts i n the U S B
accessory role. A u d i o support is introduced i n A O A 2.0, but no generic sound card support
is available for now.

;Abbreviated as USB O T G .
;http://www.usb.org/developers/onthego/USB_0TG_and_EH_2-0.pdf
http://source.android.com/tech/accessories/index.html

10

http://www.usb.org/developers/onthego/USB_0TG_and_EH_2-0.pdf
http://source.android.com/tech/accessories/index.html

Chapter 3

Conceptional Design of an Android
Based Virtual Pedal-board

This chapter can be thought as a detailed conceptual and implementat ion plan for con
structing the final application. Describes the problems and difficulties then chooses an
available solution for a l l of them. Includes U M L diagrams and explanations of implemen
tat ion specific decisions.

3.1 Decomposition of the application

The subject of this thesis is to create an application following the principals introduced
in section 2.2. The signal of the instrument is captured by a suitable audio interface and
the digi tal ized audio stream is forwarded to the tablet /mobile v ia a M i c r o - U S B port . The
sound is then processed by the applicat ion using open-source plug-ins and sent back to an
output interface. The gateway of the guitar signal to the device could be an external U S B
sound card suitable for real-time processing.

Instrument Mobile device Headphones

External audio interface Studio monitors

Figure 3.1: I l lustrat ion of the in i t i a l idea

The first and most important task is to connect the instrument and solve or find a work-

11

around for latency problems. This procedure is hosted i n a separate module. Secondly, a
multi-threaded plug-in hosting environment is required to uti l ize audio filters w i th variable
format or technology. F ina l ly , the application has to be controlled by the user through a
visual interface. The Figure 3.2 shows these modules i n a bot tom-up layout. F r o m the
aspect of this thesis the most challenging are the first two modules and they have prior i ty
for implementation. The user interface is opened for future enhancements.

GUI - front-end

r

Back-end - sound processin g, plug-ins

Low latency subsystem -
^ ^ ^ ^ ^ ^ ^ ^

llaudio

Figure 3.2: Design stages

In the newest versions of A n d r o i d O S , the Open Accessory protocol enables the sending
of audio streams to an external device that meets the A O A specifications. The problem
is that none of the generic U S B sound interfaces are buil t w i th this functionality i n mind .
The solution is the USB-audio kernel module used i n most L i n u x distributions as a generic
A L S A U S B sound card driver. Unfortunately, the majori ty of Android-powered devices
have their kernel compiled without this module. A s a workaround, the kernel version in
a part icular device can be easily obtained and the module can be compiled and loaded at
runtime. The specific how-to is described i n the chapter 4.1. A n average user can find
this procedure really complex, but at least it can be automated and there is no need for
changing the firmware of a part icular device.

3.2 Designing a low latency audio subsystem

The applicat ion has to respond to the input signal i n the 20 ms latency l imi t declared in
chapter 2.2. This is the most essential requirement and the following section is intended to
outline a usable solution.

After the external sound card has been made available to A L S A , a l ibrary is needed for
interfacing wi th the audio device. The a l s a - l i b 1 is the official A P I for programming audio
applications i n A L S A , but as mentioned in 2.4 there are other — more lightweight versions.
Compi la t ion of the a l s a - l i b package wi th the N D K is not an option. The package uses
the shared memory header files which are deprecated i n the N D K tool-chain. A n d r o i d
features the Binder [12] mechanism instead for Java applications and drops support for a
few System V IPC2 facilities. Sockets and pipes are s t i l l usable though.

The N D K includes the OpenSL ES l ibrary. F r o m al l the supported and integrated
alternatives this A P I offers the lowest latency [11].

1In some distributions available as the libasound package.
2 Standard Inter Process Communication methods used in UNIX-like systems

12

Figure 3.3: The libraries and their relationship

The output latency has gone trough a major opt imizat ion and a lot of applications
benefit from these improvements (starting wi th the Jel ly Bean family of the A n d r o i d OS) ,
but the input is s t i l l very slow thus the provided A P I is not a good opt ion to start wi th .
The best solution for min imiz ing the software latency seems to be the t i n y a l s a l ibrary,
since it already represents the l ink between A L S A and A n d r o i d 3 . A s a fall-back option,
there is s a l s a - l i b which can be compiled for A n d r o i d as well.

Taking i n account that a suitable improvement of the OpenSL E S l ibrary might get
released i n the future, my final decision has been to make my own low latency audio library
which uses t i n y a l s a as the first possible driver and to make sure that other drivers or
engines (like the OpenSL ES) can replace t i n y a l s a after the arr ival of an official latency
free A P I . This new layer corresponds to the red rectangle on Figure 3.3 and it w i l l be
mentioned as the llaudio l ibrary from now on. It aims to provide a wrapper interface for
any k ind of low latency audio l ibrary and to help the final application to be independent on
the underlying subsystem. This approach enables to bu i ld a prototype wi th the tinyalsa
l ibrary and to change it when the support for L L A w i l l be available or if this A P I would
not met the appropriate requirements.

The Figure 3.4 shows the basic shape of the llaudio l ibrary in the form of a class
diagram concentrating mainly on the interfaces and leaving the implementat ion classes to
other sections. Th is is an important part of the work. The approximate posit ion of this
layer i n the A n d r o i d audio stack is i l lustrated on the Figure 3.3.

3Only in the source tree of the Android OS. The SDK does not include tinyalsa as an API.

13

MaDev iceManager

+getlnstance0
+getErrorHandlerO q 1
+setErrorHandler()
+getDeviceIterator()
+getDevice()
+getDefaultDevice()
+getInputStream()
+getOutputStream()
+getFileStream()
+setDriver()
+refresh()
« c r e a t e » - l l a D e v i c e M a n a g e r ()

« i n t e r f a c e »
llaDriver

+detectDevices()
+getDefaultDevice()
+getDeviceList()

« i n t e r f a c e »
llaDevice

+isNull()
+getlnputstream()
+getlnputstream()
+getOutputStream()
+getOutputStream()
+getName()
+getInputStreamIterator()
+getOutputStreamIterator()

<

0..*

! <<create>>
>

llaStream

+open()
+close()
+getName()
+getld()
+setSampleRate()
+setChannelCount()
+getSampleRate()
+getChannelCount()
+getSampleRateRange()
+getChannelCountRange()
+isNull()
+getOwner()

<<create>>

« i n t e r f a c e »
HalnputStream

+read()
+connect()

MaAudioPipe

+fail()
+getInputBuffer()
+getOutputBuffer()
+getBufferLength()
+setBufferLength()
+connectStreams()
+onSamplesReady()
+stop()

Buffer

+channelsRequested: TChannels

+changeChannelCount()
+convertOrganization()
+getFormat()
+getChannels()
+getSamples()
+writeSamples()
+alloc()
+clear()
+isAlloced()

« i n t e r f a c e »
HaOutputStream

+write()

Figure 3.4: Class diagram of the low latency audio layer

The l ibrary can be instantiated wi th the class HaDeviceManager which has a single
ton character. Th is object can provide a list of available sound devices gathered from a
part icular driver. The set of polymorphic base classes llaDriver, llaDevice, llaStream,
HalnputStream, and HaOutputStream are meant to be implemented i n specific subclasses
which are allowed to use whatever l ibrary or A P I is preferred like the mentioned tinyalsa,
salsa-lib, or OpenSL ES. Th is k ind of separate implementat ion is considered as a driver or
engine of the llaudio l ibrary. A l l objects of type llaDevice represent a real hardware based
or logical sound device w i th its name as a pr imary key for identification. The device has a set
of input and a set of output audio streams. These are encapsulated i n the HalnputStream
and HaOutputStream classes. Device objects can be obtained from the device manager and
the streams are provided by devices. Alternat ively, an audio stream is accessible directly
from the device manager w i th the getlnputStreamO and getOutputStreamO methods
by specifying the name of the device and the ID of the stream.

Al loca t ion and memory issues are completely handled i n the l ibrary and there is no
need for deleting objects like devices or streams obtained from the l ibrary instance. These

14

structures are handled by reference to access the polymorphic feature of C + + objects.
Exp l i c i t clean-up operation is required by the singleton HaDeviceManager object only.

The HaAudioPipe class is a pipe-like facility to interchange audio data between input
and output streams. Samples can be wri t ten into or read from i t . The class is composed of
two Buffer type objects (for input and output) . The actual samples are stored i n internal
buffers and the getSamples () method of the Buffer class delivers them i n a unified format
handling conversions and memory allocations. The connectStreamsO method creates a
flow of audio data from an input to an output stream, doing this w i th the lowest possible
latency that the engine can deliver. Th is method could be useless if the readO and the
write () methods of stream objects operate wi th sufficient delays.

The l ibrary also introduces a callback mechanism. The overridden onSamplesReady ()
method of a pipe is the point where the actual processing of audio samples takes place and
called right before the samples are wri t ten to the output.

It is worth to spend a few words on the internal data structures holding a l l the device
and stream objects in this l ibrary. W i t h a careful approach the efficiency and code size
can be highly optimised allowing an easy integration into embedded platforms other than
A n d r o i d or any A R M based board wi th an audio chip. The l ibrary has to use a predefined
internal interface for its sequence types and a default implementat ion can be provided by
the S T L library. Considering a hypothetical si tuation where there is no need to handle
mult iple sound devices, the use of such sequences would represent a big redundancy in the
binary size and a degradation of execution speed. In such cases the S T L sequences can be
replaced wi th dummy but fast and efficient containers for the part icular audio chip.

3.3 Designing a plug-in hosting service

This part corresponds to the yellow rectangle on Figure 3.2. The module has the responsi
bi l i ty for managing plug-ins and the processing pipeline. A l so dispatches commands from
the user interface. Beside these essential features, it has to provide a database of sound
filters (derived from various plug-ins), the abi l i ty to save and load the configuration of the
effect chain as a „preset" and to store them i n a bank or logical directory.

The are a few options for creating the service. It can be wri t ten in Java by providing
the latency sensitive functions through native methods (through the J N I interface). This
approach is problematic due to the fact that the majori ty of audio plug-ins are wri t ten
i n C / C + + . To easily integrate the plug-ins, a better solution can be a completely native
module wi th a well defined interface that is controllable form Java classes.

The si tuation gets a bit more complex w i t h the requirement for root access to the system
resources. O n l y the root user or the audio group can open a sound device in the A n d r o i d
environment (which is at this level identical to L i n u x) . W i t h an engine of llaudio being
a l ibrary provided by the N D K there would be no need for such privileges, but w i th the
compiled and stat ically l inked t i n y a l s a or s a l s a - l i b an audio device in the /dev/snd
directory can be opened only as a privileged user. The straightforward way to compile
the module as a shared l ibrary and load to the applicat ion in a Java class seems to be
compromised wi th this issue. A n important fact is that A n d r o i d runs a l l the applications
wi th a unique L i n u x UID and privileged native methods do not succeed if they are called
from a shared l ibrary l inked to the Java application. However, root privileges can be
assigned to any executable w i th the su command after the rooting process.

M y solution is to compile the plug-in hosting module together w i t h the llaudio l ibrary
as a separate executable file which behaves as a service in the A n d r o i d system. The front-

15

end can be treated as a „client" meanwhile other clients can connect as well (illustrated on
Figure 3.7). The outl ined architectures are compared on Figure 3.5.

Shared library mode

Application

) Java
o classes

JNI Native
level

> r
DSP module

j r
Access 1 1

Denied
Y
S o u n d d

Service mode

Application

Java
classes

IPC channel

Linux

DSP module (root)

A

Access
Granted

Figure 3.5: Archi tecture comparison

The Figure 3.6 visualizes the model of the D S P module and the relationships between
the main interfaces. The centre of the module is the DspServer class which controls the
service and manages user commands. The signature of this class can be considered as an
A P I to the system. O n instantiat ion it has no clients that could control the processing.
One or more ClientConnector type objects have to be specified to provide the messages
(captured in the Message class) to the server by implementing the receiving and sending
methods. The specific mechanism for obtaining messages is completely i n responsibili ty of
the ClientConnectors. The source of incoming data can be a remote process w i th an I P C
connection or a separate thread connected by a special interface (e.g. J N I in Andro id) . A
ClientConnector object also utilizes his own execution thread to watch the data input.

Each incoming message is a subclass of the InboundMessage base and it carries a com
mand for the server in the overridden instruct () method. The server has a special blocking
queue to store the messages and to be able to block if no user interaction has been made. A
cal l to the popMessageO method blocks the server un t i l a new message is not pushed into
the queue. W h e n the message is pulled out, its instruct ion is executed on the server, and
the result is broadcasted to a l l clients. For example, i f the user switches a preset w i t h the
M I D I controller, the result can be seen on the U I of the mobile device. The benefit of this
multi-threaded approach is that the sound processing can run pract ical ly undisturbed in
its own execution thread wi th an associated real t ime scheduling pol icy to ensure a smooth
and continuous experience for the users. The response t ime for U I events is evidently less
crucial than the stabil i ty of the processing.

The SoundEf f ect class is a wrapper around audio filters. A specialization can provide a
bridge to L A D S P A , V S T , or generally any type of audio plug-in, or can be a simple native
filter. The processing is leaved to the DspProcess class which takes a ProcessingGraph

16

type object at instantiat ion. Th is is an interface to a net of filters connected together.
The scheme is not relevant from the perspective of the D S P process. It s imply calls the
traverse () method of the graph and runs a l l the filters on the prepared audio data. The
order of the filters and their connection is up to the implementat ion of the processing graph.

DspServer

+start()
+stop()
+getDevicel_ist()
+setInputStream()
+setOutputStream()
+getInputStream()
+getOutputStream()
+setBufferSize()
+setSampleRate()
+addEffect()
+getState()
+Iisten0n()
+clientOut()
+stopListening()
+startListening()
+processMessage()

sends

OutboundMessage

+serialize()
+setChannelId()

Message

- £ > +getChannelId()
+setChannelId()

MessageQueue

Contains

InboundMessage

+popFront()
+pushBack()
+getSize()
+isEmpty()

Contains +instruct()
+unserialize()
+isExitMessage()

+popFront()
+pushBack()
+getSize()
+isEmpty() 0..*

+instruct()
+unserialize()
+isExitMessage()

1..*

ClientConnector

+send()
+watch()
+stopWatching()
+isWatching()
+getName()
+setChannelId()

<<create>>

Messaging system

DSP features

EffectChain

-getEffectByldO
-setEffectParamO
-getEffectParamO
+setlnput()
+setOutput()
+setInputBuffer()
+setOutputBuffer()
+setSampleRate()
+getSampleRate()
+getInputChannelsCount()
+getOutputChannelsCount()
+getlnput()
+getOutput()
+traverse()
+addEffect()
+removeEffect()
+setEffectParam()
+setEffectParam()
+getEffectParam()
+getEffectParam()
+bypass()
+activate()
+deactivate()
+save()
+load()

« i n t e r f a c e »
ProcessingGraph

+setInputBuffer()
+setOutputBuffer()
+getlnput()
+getOutput()
+activate()
+deactivate()
+traverse()

« p e r s i s t e n t »
PresetDatabase

+getPresetIterator()
+serialize()

0..

DspProcess

+getState()
+run()
+startProcessing()
+setBufferSize()
+stopProcessing()
+lock()
+unlock()

« p e r s i s t e n t »
EffectDatabase

+getEffects()
+isValid()
+getEffect()
+buildDatabaseO
+serialize()

SoundEffect

+getParam()
+getParam()
+getInputsCount()
+getOutputsCount()
+getParamsCount()
+getInputPort()
+getInputPort()
+getOutputPort()
+getOutputPort()
+getName()
+process()
+activate()
+deactivate()
+setSampleRate()
+getSampleRate()
+getMutex()
+switchOn()
+switchOff()
+isOn()

« c r e a t e »

0..*

Figure 3.6: O O P design of the D S P service

The EffectChain class is a realization of the ProcessingGraph interface that mod
els the t radi t ional guitar signal path where the effects are connected in series and the
signal is created in a fashion where each block processes the previous block's output. The

17

Ef f ectChain is composed of a mono input and a stereo output node which are SoundEf f ect
objects as well . A n y number of effects can be inserted between these two bui l t - in nodes
if the number of input and output ports are compatible w i t h the surrounding nodes. A n
addi t ional mixer-node can be inserted in the case of incompatibi l i ty . A l l SoundEf feet ob
jects are supplied by a semaphore to ensure that a parameter of the effect w i l l not change
if samples are being processed by it.

Two classes are declared on Figure 3.6 whose state can be recovered from a persistent
storage. Namely the Ef f ectDatabase and the PresetDatabase classes are involved. A l
though the service uses open-source audio plug-ins as the ma in source of effects, some k ind
of meta information is required to integrate them i n the context of a v i r tua l pedal-board.
This could be done w i t h addi t ional meta-files (e.g. X M L or J S O N) describing a sound
processing block by its name, description, and other properties. Also declaring a category
for each effect from a predefined set of effect types like distortion, modulat ion, ambient
processor, or any other (discussed i n chapter 2.1) and assigning the shared l ibrary file and
program identifier to the effect. After loading this database, a SoundEf feet object can be
instantiated by supplying the unique name of the effect to the database, thus behaving like
an abstract factory of audio filters. The PresetDatabase class is a storage structure to store
the state of the EffectChain object. This saved image is a predefined tone that can be
recalled any t ime. Musicians sometimes refer to them as patches. O n A n d r o i d the storage
can be the external S D card or the internal flash memory of the device. A l l applications
have a default working directory w i t h the locat ion provided through the Java A P I .

DSP service

AndroidConnector

ZZ ZZ

MidiConnector

JSON/XML MIDI
messages

MIDI foot-controller

Mobile device UI

Figure 3.7: D S P service wi th clients

The controll ing algori thm is shown on the Figure 3.8 wi th a main thread that receives
and evaluates messages coming from the ClientConnector threads. If a start message is
received, the processing thread is started. This event is symbolized by setting the state of
the DspProcess object to Running. A s the opposite operation a stop message terminates
the sound processing thread. A l l other messages are doing some k ind of modification i n the
state of the processing. They can add new effect blocks, change a parameter of an effect,
change the buffer size, sample rate or other parameter. The ClientConnector's watching
state represents a running thread collecting U I commands from whatever source they come

18

from. One ClientConnector is expl ic i t ly required for a running service and others can
be specified optionally. The Message Received and Command Received nodes are wait ing
points where the execution blocks un t i l no data is obtained.

Processing thread

DspProcess [Stopped] •*

DspProcess [Running] -

Main thread

ClientConnector
[not watchingl

Start listening

[Stop message] y

Message
received

Evaluate
message

[Start message]
[Other

V messagel
Send reply
to clients

[Not exit
y message]

ClientConnector thread

[Exit message]

ClientConnector
[watching]

[not watching]

[watching] ;

Command
received

Create message

V
Inbound Message

[created]

Send message
to the main
thread

ClientConnector
[not watchingl

Figure 3.8: A c t i v i t y diagram of the D S P service

3.4 Front-end for the plug-in hosting service

This short section aims to provide a more detailed description for connecting a user interface
wi th the D S P module, especially on the A n d r o i d OS .

The previous section introduced the ClientConnector class that intends to connect a
client w i th the service. It is important to notice that an object of this type can be a client
itself or it can also be only a bridge providing the connection. Ta lk ing about this work as
an A n d r o i d application, it has to be installable through an apk package without any change
in the device firmware.

The previous chapter defines two methods for integrating the D S P module into the
application (3.5):

1. Compi le the module as a shared library.

19

2. Compi le the module as a service and provide it as an asset4 in the apk package. The
server executable is then installed and executed on the start-up of the application.

The recommended and safe approach is the first one wi th the J N I interface. If a suitable
A P I would be provided by the N D K to implement a low latency audio pipe, then no further
analysis would be necessary. However, the issues described i n chapter 2.4 are forcing the
design to the second alternative, at least for a period of a prototype application. This
implies a communicat ion protocol and a suitable I P C channel. Us ing a pipe wi th a character
based protocol seems to be a quick solution to connect an A n d r o i d Activity w i th the D S P
service. Us ing a socket has more potential in terms of a client-server architecture, but for
the prototype application it could be a bit over-complicated.

The Figure 3.9 shows a rough idea about the U I and a vision of how it might look
like i n a smart-phone. This part of the work is not implemented and it is opened to
future development. O n this imaginary interface, the main components are the audio effect
models stacked i n a bottom-up direction. The Output „effect" is a mixer node controlling
the overall output gain. E a c h model has a bypass but ton, and the U I contains a master
bypass but ton inspired by t radi t ional multi-effect processors. A n addi t ional Start/Stop
toggle helps to keep the sound processing running while the application is not visible.

Figure 3.9: U I preview on a smart-phone

4Assets are additional files in the application package (apk) for general purpose.

20

Chapter 4

Realization Details

The previous chapter presented a conceptual description of the main components. Specific
details were leaved to this chapter to be a reference or a step-by-step guide for various
issues. The work has two „project" trees. One for the Java code implementing a basic user
interface and one for the D S P service w i th the llaudio l ibrary wri t ten in C + + . A s a useful
information and to mainta in the trustworthiness of this thesis, a detailed description of the
development tools and the reference mobile device is provided in appendix A .

4.1 Loading the USB-audio driver into the Android kernel

Al though the concept is really simple, the mentioned workaround i n chapter 3.1 is not
t r iv ia l . F i r s t of a l l , the device has to be rooted. This s imply means that it has to be
unlocked to access root privileged commands and service routines.

To make a compatible kernel module the very first step is to obtain the specific kernel
version and bu i ld number of the part icular device (appendix A) . The kernel source code
can be downloaded v i a the public git repository of the A n d r o i d codebase 1 . The steps which
led to a compiled kernel module are the following:

1. C lon ing the git repository. For the reference device this is:

$ g i t c l o n e h t t p s : / / a n d r o i d . g o o g l e s o u r c e c o m / k e r n e l / o m a p . g i t

Searching for the matching revision based on the kernel signature w i th the gitk tool .

Compi l ing the kernel modules using:

$ make t u n a _ d e f c o n f i g
$ make m e n u c o n f i g
$ make m o d u l e s

After typing menuconfig, a terminal based G U I helps to set up the bu i ld . The
appropriate options have to be set to compile the U S B sound card drivers as a kernel
module. W h e n the compile process finishes, the kernel modules 2 are available i n the
directory $ (KERNEL_SRC_DIR) /sound/usb.

compilation of an Android kernel: http://source.android.com/source/building-kernels.html.
snd-hwdep.ko, snd-rawmidi.ko, snd-usbmidi.ko, snd-usb-audio.ko

21

http://source.android.com/source/building-kernels.html

4. L o a d the modules using the insmod <module. ko> command i n an A n d r o i d shell.

A s a side note the gcc tool-chain provided wi th the N D K is not suitable for kernel
compilat ion. Instead, an arm-linux-eabi version of gcc has to be used. For the reference
device the tool-chain was downloaded from the git repository of the A n d r o i d source tree.

4.2 The low latency subsystem engine

The following section discusses the implementat ion of the audio path that has a latency
below the 20 ms l imi t defined in chapter 2.2. The first engine was based on the tinyalsa
A P I . The sound quali ty and latency was sufficient w i th the i386 desktop L i n u x bu i ld . O n
the other hand, the A n d r o i d bu i ld was not functional due to unknown sound quali ty issues
wi th the reference configuration (see appendix A) . The most l ikely causes are incorrect
P C M parameters that could not be changed by the A P I . Instead of t racking down errors
in the implementation, my decision was to rewrite the engine wi th the s a l s a - l i b l ibrary.
The t i n y a l s a engine is therefore not discussed further, though its creation exhausted some
fragment of the available t ime frame.

The s a l s a - l i b package is a free, light-weight (with l imi ted functionality), and source
level compatible alternative for libasound, the official A L S A user-space A P I . M a i n targets
are embedded or resource restricted platforms. It can provide an interface for opening,
wr i t ing and reading P C M streams and for controll ing their parameters.

A s mentioned in chapter 3.2 the engine is made of a few implementat ion classes. The
Figure 4.1 shows how they are connected wi th the llaudio model.

Engine

SalsaDriver

«create»-SalsaDriver()
«destroy»-SalsaDriver()
+detectDevices()

Salsa Device

«create»-SalsaDevice()
«destroy»-SalsaDevice()
+getlnputList()
+getOutputList()
+getName()
+getld()

SalsaStream

+INPUT STREAM: snd pern stream t
+OUTPUT STREAM: snd pcm stream t

«create»-SalsaStream()
«destroy»-SalsaStream()
+open()
+close()
+getName()
+getld()
+setSampleRate()
+setChannelCount()
+setCustomParam()
+getSampleRate()
+getChannelCount()
+read()
+write()
+connect()

- o

<interface»
UaDriver

«create» - l laDr iver ()
«destroy» - l laDr iver ()
+detectDevices()
+getDeFaultDevice()
+getDevicel_ist()

«create» -UaDevice()
«create» -UaDevice()
« d es t roy» - l la Device ()
+isNull()
+getlnputStream()
+getlnputStream()
+getOutputStream()
+getOutputStream()
+getName()
+getlnputStreamlterator()
+getOutputStreamlterator()

UaStream

«create» - l laStream()
+open()
+dose()
+getName()
+getld()
+setSampleRate()
+setChannelCount()
+getSampteRate()
+getChannelCount()
+getSampleRateRange()
+getChannelCountRange()
+isNull()
«destroy» - l laStream()
+getOwner()

<h

r O

« i n t e r f a c e »
UalnputStream

+read()
+connect()
«destroy»- l lalnputStream()

- o

« i n t e r F a c e »
UaOutputStream

+write()
«destroy»- l laOutputStream()

Figure 4.1: The s a l s a - l i b engine class diagram

22

The most interesting aspect of the engine is to achieve the desired latency. The goal
is to minimize buffer sizes while s t i l l mainta in the stabil i ty of the stream. The connect ()
method of the SalsaStream class implements the low latency audio pipe wi th variable
buffer size. Various transfer methods are described i n section 2.4. The implementat ion
uses a non-blocking read and a standard blocking write transfer i n the latest version as this
solution appeared to be the most stable. Simply, a very short per iod of the instrument's
sound is recorded and simultaneously the previous block is under processing or played back,
if it is already processed. The write operation (playback) blocks only i f there is no room for
new samples in the hardware ring-buffer of the device. The Figure 4.2 tries to visualise the
algori thm wi th a simple flowchart and a discrete t ime diagram that shows which operations
are done simultaneously.

connect()

Set up PCM parameters
of the input

Start recording the input

Wait for samples

Get available
sample count

Read samples
from PCM stream

write()

Return from
w r i t e ()

Set up PCM parameters
of the output

f

Call onSamp! esReady ()

Write processed
samples

Start the audio
devices

w Write samples to
output HW buffer

p Play samples

R Read samples
from input

C Capture samples
(record)

B Blocking wait

Write samples
to the output

R | B

C

W R | B W|B

Figure 4.2: L o w latency audio pipe - implementat ion concept

No doubt, that this configuration can be further opt imized. Perhaps a different ordering
of I / O and blocking wait operations can lead to even smaller latencies and more stable audio
flow. Figure 4.3 shows the measurement results of this part icular realization.

23

MAIN M5ns TCH1 EDGE I <20Hz
CHI — 200mU CH2 — 200mU CH3 — 5U CH4 — 5U

Figure 4.3: measurement results

The measurement was taken wi th a d igi ta l oscilloscope (see appendix A) . The upper
yellow signal is the raw input of the electric guitar captured by the external U S B audio
interface. The blue signal at the bo t tom is the processed output from the reference smart-
phone coming out from the output jack of the external audio card. A phaser and a plate
reverb model are involved in the processing. The noise seen on the snapshot can be caused
by the galvanic connections wi th the 3.5 m m Jack connector. The relevant value is the
latency shown i n the right side of the picture. 13 ms is far beyond the noticeable value and
enables a comfortable playing experience. A n embedded multi-effects processor 3 was also
measured and it had a latency near 4 - 5 ms w i th a l l effects turned on. We have to take in
account that a multi-effects processor has specially opt imized hardware and firmware for
its purpose. The A n d r o i d platform is not designed for real-time applications.

The l ibrary includes an enhanced error handling mechanism. A n object of the poly
morphic HaErrorHandler class is delivered to the l ibrary at instantiat ion and a l l error,
warning, and debugging messages are sent w i th the error handler object. The actual output
can be redirected by overriding the rawlogO method of the error handler. N o messages
can be delivered through the stderr or stdout descriptors in the A n d r o i d environment be
cause they are managed by a special logging system called Logcat. The messages from the
llaudio and the overlying D S P service are sent to this logging facility for the A n d r o i d
bu i ld instead of the standard terminal output.

Simpl ic i ty of usage was an important goal. A connection of an input w i th an output
stream might look like as the following example:

3See the reference audio interface in appendix A.

24

/ / T h e l i b r a r y i n s t a n c e
H a D e v i c e M a n a g e r & devman = H a D e v i c e M a n a g e r : : g e t l n s t a n c e () ;

/ / ge t t h e s y s t e m d e f a u l t a u d i o d e v i c e a n d i t s d e f a u l t s t r e a m s
l l a D e v i c e & d e v i c e = d e v l i s t . g e t D e f a u l t D e v i c e () ;

H a O u t p u t S t r e a m & o s t r e a m = d e v i c e — > g e t O u t p u t S t r e a m () ;

H a I n p u t S t r e a m & i s t r e a m = d e v i c e — > g e t I n p u t S t r e a m () ;

/ / ge t an a u d i o p i p e and c o n n e c t t h e s t r e a m w i t h i t
H a A u d i o P i p e a p i p e ;

a p i p e . c o n n e c t S t r e a m s (i s t r e a m , o s t r e a m) ;

/ / d e s t r o y t h e l i b r a r y i n s t a n c e
devman . d e s t r o y () ;

The reader may notice that the connectStreams () method w i l l occupy the call ing
thread and the last line is never executed. The connection of the streams breaks i f the
bool stopO method of the pipe returns true or i f one of the streams are broken. For
example, the connection would stop immediately by removing the audio interface. The
read() and write() methods of the streams placed i n a loop would have similar results.
The connectStreams () method is intended to provide an opt imized audio data flow.

The internal sequence types mentioned in the design period are solved w i t h the
llaContainer template class. A l l objects of this type can provide an iterator to be used
for i terating through the contained elements. A default realizations wi th S T L sequences
are located in the defaultcontainer .h header file.

4.3 Plug-in hosting service - implementation details

The D S P module is implemented i n C + + to be a native software. It can be buil t for any
architecture w i t h a cross-compile G C C tool-chain. Initially, it supposed to be a shared
l ibrary connected wi th the A n d r o i d U I through the J N I interface. Further investigation of
the problem revealed a security issue w i t h opening sound devices in the /dev directory. The
design was extended wi th a messaging system and a client-server architecture that is useful
if considering mult iple U I clients. The interface for the D S P service is now completely up
to this messaging mechanism and direct calls to the public DspServer methods are not
really thread safe. Messages are encoded using the J S O N protocol which is simple and very
intui t ively translates an object state into a serialized form.

A few external open-source libraries are used by the module. The JsonCpp l ibrary for
parsing, bui ld ing and storing J S O N messages, the LADSPA plugin framework to work wi th
L A D S P A plug-ins, and finally, the many times mentioned salsa-lib. The J S O N protocol is
also used for the effect database as it is already l inked to the binary file. The prototype
applicat ion uses a hard-coded database in the database.h header file4, but a stand-alone
J S O N file is also usable.

4generated from the effects, json file

25

Error handling is done wi th simple functions behaving differently on various platforms.
The A n d r o i d bu i ld uses the logcat terminal for error messages. The ut i l ized llaudio l ibrary
is instantiated wi th an HaErrorHandler object that uses the logging output of the D S P
service.

The utili t ies for concurrency and mult i- threading are captured on the Figure 4.4 by
the abstract class Thread, Mutex, and the interface Runnable. This approach helps to
avoid any dependency on a part icular platform and makes easier to track future errors of
concurrent algorithms. A n object of type Thread is a descriptor for an execution thread
and it can take a Runnable object to run it in this thread. C r i t i c a l sections can be realized
wi th Mutex objects by placing the code between the lockQ and the unlock () method.

Mutex Thread

« c r e a t e » - M u t e x (t h r e a d s : unsigned int)
« d e s t r o y » - M u t e x ()
+lock(: void): void
+unlock(: void): void
+isLockedByCurrent(: void): boot
+isLocked(: void): bool

+waitOn(c: ConditionVariable, timeout: int): void
+waitOn(timeout: int): void
+wakeUp(: void): int
+wakeilpAll(: void): int
+join(): void
+setReattime(realtime: bool): int
+isRunning(: void): bool
+run(r: Runnable): TAlchemyError
+getReturnValue(: void): void
+qetCurrent(: void): Thread
+qetNewThread(* void)* Thread

« i n t e r f a c e »
Runnable Runs

+waitOn(c: ConditionVariable, timeout: int): void
+waitOn(timeout: int): void
+wakeUp(: void): int
+wakeilpAll(: void): int
+join(): void
+setReattime(realtime: bool): int
+isRunning(: void): bool
+run(r: Runnable): TAlchemyError
+getReturnValue(: void): void
+qetCurrent(: void): Thread
+qetNewThread(* void)* Thread

+run(: void): void • +aetMutex(threads: int): Mutex

Pthread

Figure 4.4: Classes for concurrency

The signal processing runs i n a separate execution thread wi th the highest possible
priori ty and real-time scheduling, synchronized wi th the controll ing parent thread. It is
not fortunate to change an effect parameter while that effect is running. Thread-safeness is
generally not quarantined for a l l plug-ins. Th is implies the use of semaphores. Concurrency
is managed wi th the Pthread l ibrary which has a mutex structure for such purposes. A n
uncontended mutex can be locked and unlocked wi th a couple of machine instructions in
modern L i n u x systems maintaining cr i t ica l sections suitable for soft real-time applications.
Memory allocations are avoided in the processing pipeline.

The architecture of this module has many potentials in terms of extendibili ty. A s an
example, a DspProcess object w i th an appropriate ProcessingGraph can process an audio
pipe while another pair of these objects can process a different pipe. P rac t i ca l meaning
is that a musician can have an electric guitar and a microphone for vocals. These are
two different signals requiring different effect chains. In some interpretation, the code is a
framework to make v i r tua l pedal-boards for many platforms. This extendibil i ty is a natural
consequence of object oriented design.

The most promising filter collection was the open-source and freely available C* Audio
plug-in Suite5. Th is is an L A D S P A plug-in l ibrary wi th the most essential electric guitar
effects and uti l i t ies. Includes a phaser, flanger, chorus, compressor, distort ion, reverb, delay,
and many amplifier and cabinet models. Th is collection is enough to compose a t radi t ional
pedal-board in a vir tual ized form. Regrettably, the collection has many bugs and the
amplifier models (which are perhaps the most important models) are crashing randomly in

5Abbreviated as CAPS

26

the latest release. Other filters, like the reverb, chorus, and phaser are working correctly
and have a very authentic sound. A lot of plug-ins are available i n L A D S P A and other
formats wait ing to be ut i l ized i n the future. M a i n candidates are the Guitarix filters6, and
the ScorchCrafter7 V S T amplifier model.

The N D K offers a script for obtaining stand-alone tool-chains and the provided C D con
tains a reference arm-android-eabi-gcc compiler w i th the standard C and C + + libraries
found i n the N D K . The source code can be compiled wi th a t radi t ional make command
using the provided makefiles and no other tool are required.

4.4 Discussion of the implemented user interface

A very simple U I has been created to control the D S P service. The processing can be
started and stopped, the list of available sound devices can be obtained and the buffer
size is adjustable. M u c h more important is the synchronization of these two components
and their communicat ion. The U I client has a few classes implemented in Java for this
task. The A n d r o i d code has the t radi t ional project structure described i n [1]. It contains
an Application class specialization, the AlchemyConnector that is a bridge to the D S P
service. U I events generate messages and these are sent to the server w i th a passive time-out
secured wait ing for the reply. If no reply is received, the service has probably crashed. The
AlchemyServer is a Java interface declaration for the service. Th is interface is realized by
the AlchemyConnector class. The AlchemyMessage class encapsulates the J S O N messages.

The assets folder of the apk package contains the executable binary file for the D S P
service which is installed into the application's data directory. The locat ion is managed
by the A n d r o i d system and obtained wi th an A P I cal l . After the service is installed and
started, the U I builds the connection wi th the service through the standard input and
output file descriptors.

Other mobile devices than the reference were not tested although there is nothing to pre
vent the applicat ion to run i f the requirements are met. The kernel module for U S B - a u d i o
functionality can be provided in the assets folder and loaded on start-up i f a distributable
version is considered.

6available at http://guitarix.sourceforge.net
7available at http://scorchcrafter.destructavator.com

27

http://guitarix.sourceforge.net
http://scorchcrafter.destructavator.com

Chapter 5

Conclusion

The main goal of this work was to take the sound of an instrument, process it w i t h a
mobile device, and to hear a nice guitar sound on the output without significant delays.
The solution has to run on A n d r o i d , the most popular mobile platform available at the
moment that is designed for stability, rel iabil i ty and not for real-time applications. The
thesis provided an overall image for the reader to become familiar w i th the key notions and
actors of the problematic. Addi t iona l ly , an available solution was declared for each obstacle
that occurred during the design period.

After this overview, an ambivalent summary can be made considering the big number
of difficulties that the A n d r o i d platform brings to the field of real-time or at least soft
real-time applications and audio oriented software. A few workarounds had to be invented,
w i th each one decreasing the deployabili ty of this idea as an A n d r o i d applicat ion. However,
even a working prototype is really valuable, since no official support is released from the
main contributors of the platform.

This work has no resources to solve problems like the general low latency U S B sound
interface support as it would require a special A O A compliant hardware design and addi
t ional software support to be compatible w i th the majori ty of A n d r o i d devices. Solving
the latency issues was the highest pr ior i ty task as it represents a major problem of the
platform. The creation of a usable and pleasing graphical interface is more of a graphical
and t ime consuming work as an engineering problem. Nevertheless, a complex U I can be
buil t without barriers w i th the created tools.

The result of this work has accomplished the main goals of the project, guitar sound is
created without noticeable latencies. It is very hard to find a commercial application for
A n d r o i d that is able to do this task, probably none is available yet. O n the other hand,
these applications w i l l be available as soon as a suitable A P I w i l l enable such usage on a
wide range of devices. Th is involves the standardization of hardware requirements, and a
software opt imizat ion in the official S D K . Thanks to the versatile architecture, the created
software w i l l be s t i l l usable, and doing so without requiring any k ind of rooting procedure.

28

Bibliography

[1] A n d r o i d . Get the android S D K . h t t p : / / d e v e l o p e r . a n d r o i d . c o m / s d k / i n d e x . h t m l .

[2] Teragon A u d i o . How to make your own V S T host.
h t t p : / / t e r a g o n a u d i o . c o m / a r t i c l e / H o w - t o - m a k e - y o u r - o w n - V S T - h o s t . h t m l ,
2012.

[3] Jon Chappe l l . A guide to guitar effects [online].
h t t p : / / w w w . h a r m o n y c e n t r a l . c o m / d o c s / D O C - 1 3 5 1 .

[4] P h . D Ing. J i ř i Schimmel. S tud iová a h u d e b n í elektronika. Technical report, F E K T
V U T v B r n ě , Pu rkynova 118, 612 00 Brno , 2012. ISBN-978-80-214-4452-2.

[5] Jaroslav Kyse la , A b r a m o Bagnara, Takashi Iwai, and Frank van de P o l . A l s a project
- the c l ibrary reference.
h t t p : / / w w w . a l s a - p r o j e c t . o r g / a l s a - d o c / a l s a - l i b / p c m . h t m l , [cit. 2013-05-05].

[6] R e m i Lor r iaux . Real- t ime audio on embedded l inux [online],
h t t p : / / e l i n u x . o r g / i m a g e s / 8 / 8 2 / E l c 2 0 1 1 _ l o r r i a u x . p d f .

[7] E d Mi t che l l . How to bu i ld a guitar pedalboard. h t t p : / / w w w . m u s i c r a d a r . c o m /
t u i t i o n / g u i t a r s / h o w - t o - b u i l d - a - g u i t a r - p e d a l b o a r d - 5 5 3 8 5 5 , 2013-01-20 [cit.
2013-05-06]. Tota l Gui ta r .

[8] Dave Phi l l ips . A user's guide to alsa.
h t t p : / / w w w . l i n u x j o u r n a l . c o m / n o d e / 8 2 3 4 / p r i n t , 2005-06-30 [cit. 2013-05-06].
L i n u x journal .

[9] W . P i rk l e . Designing Audio Effect Plug-Ins in C++: With Digital Audio Signal
Processing Theory. Taylor & Francis, 2012. ISBN-9780240825151.

[10] M a x i m Integrated Products . Usb on-the-go basics.
h t t p : / / p d f s e r v . m a x i m i n t e g r a t e d . c o m / e n / a n / A N 1 8 2 2 . p d f , 2002-12-20 [cit.
2013-05-06].

[11] Sylva in Ra tabou i l . Android NDK Beginner's Guide. Packt Publ i sh ing , January 2012.
ISBN-978-1-84969-152-9.

[12] Thorsten Schreiber. A n d r o i d binder - android interprocess communicat ion. Master 's
thesis, R u h r - U n i v e r s i t ä t Bochum, Oct 2011.

[13] Jeff Tranter. Introduction to sound programming wi th alsa.
h t t p : / / w w w . l i n u x j o u r n a l . c o m / n o d e / 6 7 3 5 / p r i n t , 2004-09-30 [cit. 2013-05-06].

29

http://developer.android.com/sdk/index.html
http://www.harmonycentral.com/docs/DOC-1351
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
http://elinux.org/images/8/82/Elc2011_lorriaux.pdf
http://www.musicradar.com/
http://www.linuxjournal.com/node/8234/print
http://pdfserv.maximintegrated.com/en/an/AN1822.pdf
http://www.linuxjournal.com/node/6735/print

Appendix A

Development Environment

Development operating system:
Reference A n d r o i d device:

S D K tools revision:
N D K revision:
Development I D E :
Measurement tools:
Reference audio interface:

Ubuntu Linux 12.10, kernel:
Samsung Galaxy Nexus

3.6.3-030603-generic

Variant:
H W version:
Serial number:
A n d r o i d version:
B u i l d number:
Kerne l version:

Maguro 16GB I9250XXLF1
9
0A3C27F41501700B
J e l l y Bean 4.2.1
J0P40D.I9250XWMA2
3.0.31-gd5al8e0 android-buildOvpbsl
F r i Nov 2 11:02:59 PDT 2012

20.0.3
r8b
Eclipse 3.8.0
GW INSTEK GDS-2104 -
Digitech RP250
Firmware version: 1.6

Oscilloscope

30

Appendix B

Contents of the provided CD

• The source code wi th a doxygen generated class reference

• The L^T^X source text for this document

• The reference A n d r o i d G C C tool-chain

• Poster

• V ideo

31

