
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Bachelor Thesis

ReactJS as a tool for component-based web application

development

Adam Peklák

© 2019 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Adam Peklák

Informa cs

Thesis tle

ReactJS as a tool for component-based web applica ons development

Objec ves of thesis
The main objec ve of the thesis is to compare two of the most popular state management libraries that
are used with ReactJS – Redux and MobX.

Par al objec ves:
- Describe characteris cs of JavaScript, and more generally, of func onal programming
- Analyze architecture used by ReactJS
- Analyze data flow and state management

Methodology

At the beginning, a rather extensive research of the topic is necessary in order to grasp all the aspects of
the issue. As a prac cal part, two iden cal simple applica ons will be developed, one using Redux, and the
other one using MobX. A comparison of the final results, the speed of development, learning curve and
other quali es will be performed. Scien fic methods such as comparison, analysis, and deduc on will be
used. Based on the research from the literature and also on the prac cal part of the thesis, a final conclusion
will be formulated.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

The proposed extent of the thesis
35 – 45 stran

Keywords
javascript, reactJS, mobX, redux, state management

Recommended informa on sources
Greg Sidelnikov, 2017. Learning React JavaScript Library from Scratch
Ilya Gelman and Boris Dinkevich, 2017. The Complete Redux Book: Everything you need to build real

projects with Redux
Lionel Lopez, 2017. React: Quickstart Step�by�step Guide to Learning React Javascript
Robin Wieruch, 2018. The Road to learn React: Your journey to master plain yet pragma c React.js

Expected date of thesis defence
2018/19 SS – FEM

The Bachelor Thesis Supervisor
Ing. Jan Masner, Ph.D.

Supervising department
Department of Informa on Technologies

Electronic approval: 11. 9. 2018

Ing. Jiří Vaněk, Ph.D.
Head of department

Electronic approval: 19. 10. 2018

Ing. Mar n Pelikán, Ph.D.
Dean

Prague on 13. 03. 2019

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled “ReactJS as a tool for

component-based web application development” by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the

thesis does not break copyrights of any their person.

In Prague on 12. 3. 2019 ___________________________

Acknowledgement

I would like to thank Jan Masner and my friends for their advice and support during

my work on this thesis.

 6

ReactJS as a tool for component-based web application

development

Abstract

ReactJS is a popular open-source JavaScript library used for programming interactive

user interfaces for single page web applications. It specifically handles the view layer from

the MVC application model. React has component-based architecture, which encapsulates

reusable individual pieces of the UI (components) into independent micro-systems.

This thesis examines two of the popular state management libraries for React, MobX

and Redux. These libraries keep state object in application store and provide access to it for

any components necessary, rather than passing the data through tree structure of the

components, as is the native React way. The libraries have been examined and compared to

determine advantages and disadvantages of both.

Two web applications, which are in every aspect identical, apart from one using

MobX for state management and the other one using Redux, have been compared from

multiple points of view such as performance, complexity, code length and learning curve.

It has been found, that even though Redux’s popularity far surpasses MobX, there

are use-cases, such as this application, where MobX is superior to Redux in performance

and speed of development and is overall a better choice.

Keywords: JavaScript, React, ReactJS, MobX, Redux, state management, web application

 7

Table of Content

1 Introduction .. 11

2 Objectives and Methodology ... 12

2.1 Objectives ... 12

2.2 Methodology .. 12

3 Literature Review... 13

3.1 JavaScript ... 13

3.1.1 How does JavaScript work ... 13

3.2 What is ReactJS .. 14

3.2.1 Advantages of React ... 15

3.2.2 Disadvantages of React ... 16

3.3 React Environment Setup ... 17

3.3.1 Node.js .. 17

3.3.2 CDN Links .. 17

3.3.3 NPM .. 17

3.3.3.1 Create-react-app .. 18

3.3.3.2 Package.json .. 18

3.4 Architecture .. 19

3.4.1 Components .. 19

3.4.2 JSX .. 19

3.4.3 Virtual DOM ... 20

3.4.4 Flux ... 20

3.4.4.1 Flux vs MVC ... 20

3.4.5 Lifecycle Methods .. 22

3.5 State & Props.. 22

3.6 Redux ... 23

3.7 MobX ... 25

4 Practical Part .. 27

4.1 React Application ... 27

4.1.1 Introduction ... 27

4.1.2 Application Description .. 27

4.1.3 Project Structure ... 28

4.1.4 NPM Packages .. 29

4.2 State management .. 30

4.2.1 Complexity .. 30

4.2.1.1 Redux ... 30

 8

4.2.1.2 MobX ... 31

4.2.2 Performance .. 32

4.2.2.1 Load Time ... 33

4.2.2.2 Assigning Task to Sector ... 33

4.2.3 Learning Curve ... 34

4.2.4 Code length ... 34

5 Results and Discussion ... 35

5.1 Results .. 35

5.1.1 Complexity .. 35

5.1.2 Performance .. 36

5.1.2.1 Load Time ... 36

5.1.2.2 Modifying state data .. 36

5.1.3 Code length ... 37

5.1.4 Learning Curve ... 38

5.1.5 Summary ... 38

5.2 Discussion .. 39

6 Conclusion ... 40

7 References ... 41

7.1 Bibliography ... 41

8 Attachments .. 42

 9

List of Figures

Figure 1: JavaScript code execution in HTML (https://static.makeuseof.com/wp-

content/uploads/2017/09/how-works.png) .. 14

Figure 2: React Advantages (screenshot from https://2018.stateofjs.com/front-end-frameworks/react/)

 ... 16

Figure 3: React Disadvantages (Screenshot from https://2018.stateofjs.com/front-end-

frameworks/react/) .. 17

Figure 4: MVC Architecture (https://cdn-images-1.medium.com/max/800/0*Ift_ZYTPqpLd4AP5.png)

 ... 21

Figure 5: FLUX Architecture (https://cdn-images-1.medium.com/max/800/0*M-SY5eww-

OW9xbMs.png) .. 21

Figure 6: Lifecycle Methods (https://cdn-images-1.medium.com/max/800/1*0RTMM_pQEpO7kJ-

ex80MEA.png) ... 22

Figure 7: Redux Store (https://mobx.js.org/images/action-state-view.png) 24

Figure 8: MobX Action State Views ... 25

Figure 9: Application User Interface ... 28

Figure 10: File structure of src/ folder ... 29

Figure 11: App.js Render method .. 29

Figure 12: Single Redux action from taskActions.js ... 30

Figure 13: Redux's connect method and mapping State to Props .. 31

Figure 14: Single MobX action from taskStore.js ... 31

Figure 15: MobX Provider wrapped around App .. 32

Figure 16: MobX decorators .. 32

Figure 17: Benchmark function ... 33

Figure 18: Load Time graph .. 36

Figure 19: Modifying state data graph ... 37

Figure 20: Code length comparison ... 38

 10

List of Tables

Table 1: Speed of modifying data from state ... 33

Abbreviations and their explanations

HTML HyperText Markup Language

URL Uniform Resource Locator

API Application Program Interface

DOM Document Object Model

JS JavaScript

XML eXtensible Markup Language

JSX JavaScript XML

CDN Content Delivery Network

 11

 Introduction

ReactJS is a popular JavaScript library used for building user interfaces for single-

page web applications. It specifically handles the view layer from the MVC application

model, and it is component-based, which means, that it encapsulates reusable individual

pieces of the UI (components) into independent micro-systems. Component can manage its

own state and can consist of arbitrary number of other components. Another feature of

ReactJS is Virtual DOM, which is and internal representation of rendered webpage. When a

change of the webpage occurs and needs to be rendered, virtual DOM compares the new

result to the original, and only performs the necessary modifications without the need of

page refresh. This ensures, that Reacts is a fast, scalable and simple JavaScript library.

This thesis first delves deeper into Reacts, it’s properties and architecture (FLUX and

MVC are both explained and compared), and then focuses on state management libraries

Redux and MobX. Both libraries are used for managing application state, which is different

from native state in stateful components, because scope of the state is not only one

component, but the whole application.

 Two web applications have been created as a practical part of the thesis, which are

in every aspect identical, apart from the fact, that the first one is using Redux for state

management, and the other one uses MobX. Aspects of the libraries, such as performance,

complexity, code length and learning curve, are compared to determine the advantages and

disadvantages of both.

Measured results are then analysed in order to determine, which of the libraries is a

better option for specific use-case, and which is more suitable for different developers.

 12

 Objectives and Methodology

 Objectives

The main objective is to compare two of the most popular state management libraries,

which are used with ReactJS – Redux and MobX. This thesis examines their benefits and

shortcomings and determines their suitability for different use-cases. It will be determined,

which of the libraries performs better when used for state management in similar ReactJS

web application, as well as other important qualities such as the level of complexity and the

steepness of learning curve.

Partial objectives are as follows:

• Describe characteristics of JavaScript, and more generally, of functional

programming

• Analyse architecture used by ReactJS

• Analyse data flow and state management

 Methodology

At the beginning, a rather extensive research of the topic was necessary in order to

grasp all the aspects of the issue. As a practical part, two identical simple web applications

have been developed, one using Redux, and the other one using MobX as a state management

library. A comparison of the final results, the speed of development, learning curve and other

qualities will be performed. Scientific methods such as comparison and analysis have been

used. Based on the research from the literature and also on the practical part of the thesis, a

final conclusion has been formulated, which states, which of the two libraries is more

suitable for the project, and advantages and disadvantages of both.

 13

 Literature Review

 JavaScript

JavaScript is a scripting language, which is used to dynamically manipulate content

of a website. Scripting language is characterized by interpretation of the source code, rather

than using a compiler to convert it into machine code. Since JavaScript is used in web pages,

all web browsers contain built-in engine, which can render JavaScript code. That is the

reason, why JavaScript does not require any additional programs to run and inserting the

code into a HTML document is sufficient for it to get executed.

 How does JavaScript work

When a webpage is loaded by a web browser, it begins by parsing HTML code and

thus creating the DOM. Whenever the parser comes across a JavaScript code, it gets send

into JavaScript engine provided by the browser. There, the code is executed once HTML

(and CSS) parsing is over. The whole process is displayed in Figure 1. Code execution is

being done in strict order from top to bottom of the document. When a function is defined

and executed, it is certain that DOM has already been built, and therefore can be modified.

JavaScript can be loaded in a website simply by using HTML script tag, where it can

either refer to a JavaScript file, or the code can be embedded directly inside of the script tag.

Loading the code from external files allows for code separation and reusability, and it is a

good practise on any project. The loaded file does not need to be present locally on a machine

but can referred to by an URL and fetched from the internet, which is especially useful for

loading external JavaScript libraries. Such libraries contain pre-programmed functions and

extend or improve the capabilities of the native language.

As JavaScript’s main function on the webpage is to dynamically change content, it

would not be practical to execute all of the code on page load. When the need arises to

execute a function triggered by user action, JavaScript provides event listeners, which can

be bounded with specific HTML element. Event listener waits for specific user action, for

example mouse click on a button, and then executes appropriate function.

 14

Figure 1: JavaScript code execution in HTML

 What is ReactJS

React (also known as React.js or ReactJS) is a flexible JavaScript library responsible

for the view layer of the MVC pattern in the application. It is a modern language used for

building user interfaces. React uses component-based architecture, which contributes to

declarative development, as developers are able to build encapsulated components that

manage their own state. React applications are usually divided into logically separated

entities - components - which can be nested within other components and thus creating larger

structures. A component also may or may not manage its internal state - an object for storing

data. State usually stores data that are likely to change, because due to virtual DOM (an in-

memory representation of an actual DOM), React is able to detect changes in state, and

 15

swiftly update DOM. This ensures instant change of content of the application without page

refresh.

React was created by software engineer Jordan Walke at Facebook in 2011 and was

initially meant for internal use in the company. It has proven to be very fast and efficient

language for building UIs, and found to provide great user experience, so Facebook has

decided to make it open-source. Since then, major companies including Instagram, PayPal

and Netflix have been using ReactJS for their front-end development.

 Advantages of React

React has seen an immense growth in popularity since it was made available to the

whole world by Facebook. It has a fair number of competitors, for instance Angular.js,

Vue.js or Ember.js, but due to its easy learning curve and great user experience, its popularity

is not fading away. New React applications are being developed as we speak, and there are

multiple reasons for that.

React is not a complex full-blown framework, but merely a library, which is

consistently used with other JavaScript libraries. This allows the learning curve for

developing to be short and easier when compared to other, more complex libraries. The

official documentation is very clear and thorough, and web is in no short supply of React

tutorials and articles.

React application is built by using components, which allows the separation of logic

and rendering of each of the parts of the application, and then reuse the code wherever

needed.

To ensure lightning-fast content update, React introduced Virtual DOM. This in-

memory representation of DOM is where all the modifications at first take place. Virtual

DOM is then compared to current DOM, and the difference (and only the difference) is re-

rendered.

Data in React is being passed using unidirectional data flow between the states and

layers. All data in the application flows in the same direction - from parent components to

children components. This allows better control over the data, making the application more

predictable and easier to debug, as certain errors such as infinite loops are becoming easier

to notice and avoid.

React allows usage of JSX syntax in the code, which is similar to combining HTML

and JavaScript. It is certainly not compulsory to use JSX, but it makes the code substantially

 16

shorter and easier to both code and read. Components can be called in the same manner as

XML tags, with attributes being passed as properties in XML would.

 Overview of React Advantages (according to an online survey) can be found in a

form of a graph in Figure 2.

Figure 2: React Advantages

 Disadvantages of React

ReactJS is a library with the sole purpose of managing UI, which makes it necessary

to include additional libraries to handle other parts of the application. React does not force

developers to use any specific way to structure the application, which suits the needs of

experienced developers, because it allows them to build the structure precisely as they see

fit. On the other hand, inexperienced coders may choose inappropriately, which will be

costly once the application starts to scale. React also uses lots of technologies in the

background, which may confuse beginners and make the learning curve steeper. It is written

mostly in JSX and ES6, transpiled using Babel and build & packaged using Webpack &

NPM.

Overview of React disadvantages (according to an online survey) can be found in a

form of a graph in Figure 3.

 17

Figure 3: React Disadvantages

 React Environment Setup

 Node.js

Node.js is an open-source JavaScript runtime environment designed to build scalable

network applications. Node is not strictly required to run react code, because if React files

are loaded using CDN links, a browser can execute the React code. It is, however, vital for

using NPM, which provides developers with a great range of Node packages.

 CDN Links

The most basic way to provide necessary JS files is to use CDN links in plain HTML

file. Script tags, that handle loading React and ReactDOM files, are provided on official

React webpages. Two files are necessary for full functionality - ReactDOM handles all

DOM-related methods, while React file exposes all other methods.

To add the ability to process JSX, a transpiler transforming ECMAScript 6 code into

browser-compatible ECMAScript 5 is needed.

 NPM

Whenever React project spans across multiple files (which transpires fast due to the

separation of code into components), including files using CDN would be tedious and

impractical. That is the reason why using a package manager in a project helps to sustain

well-arranged code. NPM (Node.js Package Manager) offers thousands of easily-installable

 18

packages, which can be utilized and customized for the needs of the project. “It's the world's

largest software registry, with approximately 3 billion downloads per week. The registry

contains over 600,000 packages (building blocks of code). Open-source developers from

every continent use NPM to share and borrow packages, and many organizations use NPM

to manage private development as well.”1

 Create-react-app

Create-react-app is an official boilerplate from Facebook designed to help developers

get started on their project fast. It generates a file structure of the project, sets up a web

server, which is necessary for running the code, and much more. Generating a ready-to-

develop application is remarkably easy and the process is completed within minutes. The

structure generated by create-react-app package is easy to understand and ready to be

expanded by adding more files. There are three folders by default - node_modules, public

and src. Node_modules accommodates all packages defined in packages.json and their

dependencies. The folder public contains all the files in a project, which can be accessed

publicly by anyone including index.html, an html file containing a root div element for

rendering React code. The src folder is a home to all of application’s components and any

additional files such as CSS or JS. Default top-most component App.js can be found here as

well.

 Package.json

Package.json file can always be found in the root of a React project and it contains

information about the application as well as list of NPM packages, which are being used,

and scripts, which can be executed through the NPM command. It is very useful when a

project is shared using a VCS (Version Control System) such as Git, because all the

necessary packages and their dependencies can be installed using a single command.

1 NPM documentation. 2018. Online Source. Retrieved from https://docs.npmjs.com/all

 19

 Architecture

 Components

The concept of components is one of the most important principles in react. Using

components is a convenient way to separate application code into logical parts, which can

be reused in different parts of the application. There are two types of a component - stateless

and stateful, sometimes also referred to as function component and class component. Both

of these components can receive props, but only the latter one has the ability to manage its

own state. Props stands for properties, a set of attributes which can be passed along when

calling a component. They are accessible anywhere inside of the component and their value

is immutable.

All components must return no more than one JSX element, with arbitrary number

of sub-elements. In case the component needs to return more elements, they must be enclosed

inside a parent element.

Stateful components have its own private state object. When the state changes, React

re-renders changes in DOM in that component in the browser. This is the biggest difference

between state and props - the state object can be modified, while the props cannot. State is

utilized for saving values which are prone to changing in the runtime and whose modification

will in any way affect the UI.

 JSX

“JSX is an XML/HTML-like syntax used by React that extends ECMAScript so that

XML/HTML-like text can co-exist with JavaScript/React code. The syntax is intended to be

used by pre-processors (i.e., transpilers like Babel) to transform HTML-like text found in

JavaScript files into standard JavaScript objects that a JavaScript engine will parse.” 2

Facebook officially recommends using JSX with React, as it combines the simplicity

of HTML and the power of JavaScript. What looks like HTML are in fact functions, which

generate optimized JavaScript code for creating elements. JSX allows rendering logic and

UI logic to blend together, because of the possibility to use the logic inside of views before

rendering. This behaviour makes it easier to handle events, to change state according to user

interactions with the UI, and to render content conditionally.

2 React Enlightenment. 2018. Online Source. Retrieved from https://www.reactenlightenment.com/react-

jsx/5.1.html

 20

 Virtual DOM

Usually, whenever an app, which requires a lot of data updates or feedback from the

user, is being developed, DOM manipulations must be done carefully and infrequently due

to negative effect on performance. React faces this problem by introducing virtual DOM.

The virtual DOM is a programming concept where a representation of an UI is stored

in memory and synchronized with the real DOM using a library ReactDOM. Any new

changes are first performed on the virtual in-memory DOM, and an efficient algorithm then

determines the modifications that must be done to the real DOM. This provides better

performance, and therefore minimum update time.

 Flux

Flux is an architecture for building client-side web applications used by Facebook

together with React. It is responsible for creating data layers in JavaScript applications. Flux

complements React’s Composable view components through its unidirectional data flow.

The concept of unidirectional data flow makes it easier to debug the application, as the data

go through strict pipeline. Flux presumes, that data is stored in a central place, and that it

only flows through components in the direction from parent element to its children.

The Flux pattern consists of four main components: dispatcher, stores, views and

actions. Actions are methods that facilitate passing data to dispatcher. Dispatcher receives

these actions and triggers callbacks connected with them. Stores are simply containers for

application’s state and for logic of said callbacks. Views are components, which upon

receiving the state forward it to child components via props. “When a user interacts with a

React view, the view propagates an action through a central dispatcher, to the various stores

that hold the application's data and business logic, which updates all of the views that are

affected. This works especially well with React's declarative programming style, which

allows the store to send updates without specifying how to transition views between states.”3

 Flux vs MVC

The Model-View-Controller is considered the most spread application design pattern

for web application development. Model serves the purpose of handling data independently

3 Flux Github. 2018. Online Source. Retrieved from https://facebook.github.io/flux/docs/in-depth-

overview.html

 21

of the controller or view. View visually represents the data, and controller connects model

and view and handles external inputs from a user. Following this pattern ensures separating

the presentation from the model (as shown in diagram in Figure 4), which allows more

flexibility and implementation of tests. Separating the controller from the view is most useful

for web UI, where extensive routing, event handling and templates are common.

Figure 4: MVC Architecture

Facebook started using Flux over MVC due to its unidirectional data flow and better

scalability for their huge codebase. Flux enforces strict rules about data flow, whereas MVC

makes no assumptions about whether the data flow should be unidirectional or bidirectional.

Flux design pattern can be implemented to be completely asynchronous, which is harder to

achieve using MVC. Asynchronous UI provides synchronized data and fast response time to

user actions, which contributes positively to great user experience.

In Flux, every state change must be part of an action, which gets executed through

dispatcher (as shown in Figure 5). Reducing communication between elements of the

application prevents unwanted behaviour, where one change can loop back and have

cascading effect on data, which should have been left untouched.

Figure 5: FLUX Architecture

 22

 Lifecycle Methods

In every ReactJS application, components are rendered into virtual DOM. Before and

after rendering the virtual DOM, a component may contain methods to execute at a precise

moment throughout component’s life. These methods are called Component Lifecycle

Methods and can be categorized into three groups, based on whether their execution takes

place on creation, update or destruction of a component. Utilization for such behaviour can

be found when a need occurs to trigger a method or a function automatically, without a direct

impulse from a user. An example can be componentDidMount method, which will be called

once a component have been mounted. Few of the many purposes, which this lifecycle

method could serve, is fetching data through AJAX call or to add event listeners to desired

objects. In Figure 6 are shown existing lifecycle methods to date.

Figure 6: Lifecycle Methods

 State & Props

“State is referred to the local state of the component which cannot be accessed and

modified outside of the component and only can be used & modified inside the component.

Props, on the other hand, make components reusable by giving components the ability to

receive data from the parent component in the form of props.”4 Props can be assigned a value

when they are sent into a component but become immutable thereafter. On the other hand,

local state is initialized in a stateful component and can only be manipulated with inside said

4 Code Burst. 2018. Online Source. Retrieved from https://codeburst.io/react-state-vs-props-explained-

51beebd73b21

 23

component. Values of any property of the state object can be modified, and the changes will

be quickly propagated in DOM.

Both Redux and MobX libraries bring concept of a global state separated from

components. Such state can be connected to “Container Components”, and accessed directly

from them, rather than sending necessary state values in props from component to

component. This is most convenient when working with medium to large project, where

passing values down through all components in the tree structure becomes tedious.

Redux and MobX create state in dedicated place, a store, where all state data is stored.

These libraries also manage all methods, which in any way modify data in state, which makes

it easier to keep the application well-organized. Such methods are then made available by

importing them into components, where they are needed.

 Redux

“Redux is a predictable state container for JavaScript apps. It helps you write

applications that behave consistently, run in different environments (client, server, and

native), and are easy to test. On top of that, it provides a great developer experience, such as

live code editing combined with a time traveling debugger.”5 It is rather to challenging to

keep state properly managed once the application grows into multiple components and

subcomponents, since React alone does not strictly specify, how to deal with application’s

state. Redux provides a global state, which is stored in a single store and can be connected

to any component, no matter how deeply nested within other components (Figure 7)

5 Medium. 2018. Online Source. Retrieved from https://medium.com/@tkssharma/understanding-redux-

react-in-easiest-way-part-1-81f3209fc0e5

 24

Figure 7: Redux Store

There are three fundamental principles on which Redux is founded.

• Application state is stored in a single object. Redux stores state in a single

JavaScript object to make it easier to map out and pass data throughout the entire

application. Centralizing state in a single object also makes the process of testing

and debugging faster

• Application state is immutable, i.e. it cannot be directly modified. The only way to

change the state is through and action, and JavaScript object, which describes

changes to the state. Because all actions are centralized and happen one by one in a

strict order, the danger of race conditions is eliminated.

• Reducers specify how the action transform the state. Reducers are JavaScript

functions that create a new state with the given current state and action. They

centralize data mutations and can act on all or part of the state. Reducers can also

be combined and reused.

This architecture significantly increases scalability for large and complex

applications, because it is based on Flux architecture, which demands unidirectional data

flow. It also enables the usage of powerful tools for debugging such as Redux DevTools,

which track state object, as it was in the past and present, and its actions.

 25

Redux is influenced by functional programming principles, and as a result, it uses

pure functions. A pure function always outputs the same result with the same input and does

not have any side-effects.

Redux state is always immutable, which means that instead of changing values in the

state, a new state with appropriately modified data is necessary. The state object is saved as

a normalized structure and the entities reference each other using IDs.

 MobX

“MobX is a battle tested library that makes state management simple and scalable by

transparently applying functional reactive programming (TFRP). The philosophy behind

MobX is very simple: Anything that can be derived from the application state, should be

derived. Automatically. That includes the UI, data serialization, server communication, etc.

React and MobX together are a powerful combination. React renders the application state

by providing mechanisms to translate it into a tree of renderable components. MobX

provides the mechanism to store and update the application state that React then uses.”6

One of the core concepts of MobX are observables, which observe existing data

structures and synchronize them with the state object. Using observable is similar to

transforming a property of an object into a spreadsheet cell. But values in the spreadsheets

are not just simple values, but references, objects or arrays.

Any modification to state object is induced by actions. Actions are a part of store and

can modify state directly, since the state is mutable. Once state changes, view updates

accordingly (Figure 8).

MobX also supports, even though not necessarily require, unidirectional data flow,

where the state object (or objects - MobX typically contains more logically separated stores)

is being changed using actions.

Figure 8: MobX Action State Views

6 MobX Documentation. 2018. Online Source. Retrieved from https://mobx.js.org/index.html

 26

MobX strives to derive as much from state data as possible, so that no redundant data,

which could be deduced from other data, is saved in state. It distinguishes two kinds of

derivations:

• Computed values

These are values that can always be derived from the current observable state using

a pure function.

• Reactions

Reactions happen automatically if the state changes. Their purpose is to trigger a side

effect, which can be for example displaying re-calculated value on screen.

In MobX, the state is mutable, and more than one state object may exist. The State

itself stays denormalized, and the data are saved as a nested structure in relation to each

other.

 27

 Practical Part

 React Application

 Introduction

Two ReactJS applications have been built for analysing development with external

state management libraries. These applications have the same architecture and work in the

same way, but one of them is using MobX library, and the other one relies on Redux. This

approach allows for a comparison of advantages and disadvantages of both regarding

complexness, performance, learning curve and code length. This approach serves well the

purpose of highlighting key characteristics of the libraries. It also proves, that Redux, while

being by far the most popular state management library used with React, is not the best

option for all purposes and that further consideration is important when deciding, what state

management library to choose for a project according to its specifications.

 Application Description

The purpose of this application is short-term management of user’s tasks. If a person

has an overwhelming number of tasks to do, it is useful to prioritize and to divide them into

categories, so that it is better arranged and filtered. The application has been designed

according to the principle of Eisenhower’s Matrix (also known as the Urgent-Important

Matrix), which can help prioritize tasks by sorting them into four categories according to

their urgency and importance. The top-left section of this grid is for tasks that are both urgent

and important, while the bottom-right section symbolizes little urgency and importance. The

matrix has been invented by US president Dwight D. Eisenhower in 1950s as a tool to decide,

on which tasks he should focus each day.

Task are automatically retrieved from user’s Google Calendar through an API using

constant in-code credentials. Fetching method is asynchronous, which ensures, that the data

are loaded and displayed without the need of page refresh. Tasks are then displayed in a left

panel in a list, from where they can be sorted into the four sectors as shown in Figure 9. After

sorting has been finished, user has the opportunity to download a jpg image displaying the

matrix and all tasks inside.

 28

The application is responsive and the number of tasks per sector is not limited. The

front-end is written in ReactJS and HTML and styled with SCSS and CSS3 feature such as

grid and transitions. It is fully supported by all major modern web browsers.

Figure 9: Application User Interface

 Project Structure

Source code of the application is located in src folder, where following structure has

been created to accommodate needs of the project and store files in a logical manner.

Contents of the folder are displayed in a tree structure in Figure 10.

 29

Figure 10: File structure of src/ folder

Assets contains all SCSS files, which are necessary for styling the UI. Helpers hold

general reusable functions, which are exported, so that multiple components can make use

of them without code duplicity. In case of MobX application, MobX folder is where the store

holding application’s state is located. Redux application has Redux folder, which holds the

state and all Redux-related files. And components folder contains all of React logically

structured components, with App.js being the root of the structure tree. Components can be

called with JSX within render method and pass data as props from parent to child. Example

of a render method from App.js is shown in Figure 11.

Figure 11: App.js Render method

 NPM Packages

The project is based on NPM package create-react-app, which offers the advantage

of having tools such as Babel or Webpack already installed and configured, and therefore

saves developer’s time. Create-react-app is widely used for starting React projects, because

 30

it is highly customisable and serves the needs of majority of typical projects, while saving

time that would otherwise have to be spent of boilerplate.

The project utilizes Google Calendar API and package react-google-calendar-api,

through which the task data is fetched. In order to save & download final image of the matrix,

dom-to-image package captures specified div element determined by its ID and file-saver

manages download of a snapshot of the div container.

 State management

 Complexity

 Redux

Redux is a complex library, which is very convenient over large codebase, but it can

be too bulky for small to medium sized projects, because it requires relatively lot of

boilerplate to set up. After installing necessary NPM packages, a store must be created with

at least one reducer imported. It is necessary to insert a specific clause, so that the DevTools

extension, which is used for debugging, would be working with the application.

It has three important separate parts: Actions, Reducers and Store. Actions are

payloads of information sending data to the store. They are the only way a store can use to

obtain information due to React’s strict unidirectional data flow rule. This makes it more

tedious to create methods, that are modifying state date, but it allows for features such as

time travel, which is a debugging feature, which makes it possible to view state data history

from the initial load. Sending data to the store can be invoked using store.dispatch(). Tasks

are placed in separate dedicated file and are only imported into files where they are

necessary. Redux action to assign task to a sector can be seen in Figure 12.

Figure 12: Single Redux action from taskActions.js

 31

“Reducers specify how the application's state changes in response to actions sent to

the store. “7 It must define the type, which an action has dispatched, and determine, how the

state will be affected.

Store connects both Actions and Reducers and actually holds the state object of the

application. It can be created with Redux method createStore from one or many Reducers.

The state object and actions can only be used in a view after it is wrapped in a connect

method, as shown in Figure 13 below.

Figure 13: Redux's connect method and mapping State to Props

Because state object must remain immutable, Redux maps the state object to props,

which can be accessed within a view like any ordinary props propagated from a parent

component. Actions are mapped to props in the same way state is.

 MobX

MobX is a relatively simple, lightweight state management library, which requires

very little boilerplate. It is typically used with small to medium sized projects, because it

offers lesser scalability over huge codebase compared to Redux. MobX offers simpler and

more straight-forward approach to state management than Redux without compromising

functionality. Its incomplexity allows the code to remain brief and improve its readability.

Figure 14: Single MobX action from taskStore.js

Action from Figure 14 has the exact same purpose as the action written in Redux in

Figure 12, namely, to assign task to one of the four sectors, but it only takes up 5 lines instead

of 11, which is the case for Redux. It is the result of mutable state, because new state object

does not have to be created due to every state modification.

7 Redux Documentation. 2018. Retrieved from https://redux.js.org/basics/reducers

 32

Redux’s actions and reducers are also not applicable in case of MobX, because state

can be accessed and mutated directly and actions are defined in store class, together with

state object. This means, that in order to set a store for this project, only one comprehensible

file had to be added to the application. MobX also automatically maps the whole store

including data and methods into props, so there is no need for manual mapStateToProps

method of Redux.

Figure 15: MobX Provider wrapped around App

The state is provided using a Provider element, which wraps the root element of the

application and accepts store object as an attribute (Figure 15). This wrapper is used by both

MobX and Redux, but out of these two libraries, only MobX uses decorators. Provider,

together with inject decorator, propagates state object and all actions from the store to child

components.

Figure 16: MobX decorators

Decorators are an important part MobX. Inject decorator servers the purpose of

directly providing state to a deep-nested component without the need of relying on passing

it though all middle components, as demonstrated in Figure 16. It is similar to Redux’s

connect method, but MobX offers simpler approach with minimum necessary code.

Observer is what makes react component reactive. If the component contains any

observable value, and that value was to change, observer will call the render method of the

component, and thus project the changes in the UI. Redux does not have these decorators,

because any modification to state must be invoked through an action.

 Performance

An identical test for Redux and MobX application has been performed, in order to

determine, which application loads faster, and which modifies data in the state object faster.

All measurements have been performed 3 times, and an average result has been used as the

final result.

 33

 Load Time

This performance test is measuring the time it takes the two applications to become

available for the user from the time it is accessed in browser.

Window.performance JavaScript function has been used in the constructor and

lifecycle method of the root component, in order to start and stop the timer. It has been started

in constructor of the component and stopped in ComponentDidMount lifecycle method,

which gets executed right after component is done loading.

It has been discovered that it takes 462.99ms for Redux application to load, whereas

MobX application performs the same in 430.72ms.

 Assigning Task to Sector

A simple benchmark function has been created for testing, how much time is

necessary in order to move a task from once sector of the Eisenhower Matrix to another.

This test has been conducted with three different number of state modification - 1000, 10000

and 100000. In every single one, MobX was significantly faster than Redux, and the more

data was modified, the more significant the difference became. With thousand changes,

MobX was faster by 28 milliseconds, but with hundred thousand changes, the difference was

almost 10 seconds. Complete results are listed in Table 1 below.

Number of

changes

MobX

(ms)

Redux

(ms)

Difference

(ms)

Percentage

difference

1 000 12,03 40,12 28,09 233,49

10 000 75,19 254,74 179,55 238,79

100 000 187 1154 967 517,11

Table 1: Speed of modifying data from state

These results were measured using Google Chrome performance developer tool. The

modifications to state object were induced using benchmark function shown in Figure 17,

which keeps continuously assigning a task to sectors until given number of times.

Figure 17: Benchmark function

 34

 Learning Curve

MobX is much easier to learn and has a steady learning curve compared to Redux. It

is based on Object-oriented programming and uses a lot of abstraction, which leads to shorter

code. Direct access to store data increases simplicity and makes the framework easier to

understand. Setup of MobX is fast and well documented, and therefore will not discourage

people from the very beginning.

Redux has steeper learning curve, because it is made to be scalable and accommodate

huge codebase. Lengthy setup is necessary is necessary when adding Redux into a project,

and Redux library itself is not enough. Additional middleware such as Redux Thunk is

necessary for asynchronous data fetching and it makes the learning curve even steeper and

can be a breaking point for many inexperienced developers.

Both libraries are well-documented using helpful examples and descriptions. Redux,

however, is the most popular state management library used with Redux to date, with over

4 million weekly downloads from NPM. MobX only has 257 thousand weekly downloads

from NPM, which is a huge difference, not to mention a significant one. More people using

a library means more content and solutions on the internet. Therefore, using a popular library

is advantageous, because there is a high probability, that if there is a bug or a problem during

development, someone on the internet has already encountered it before and posted a

solution.

 Code length

Code length is an important aspect for developers as it is related to the speed of

development and, although not directly, simplicity. All files regarding state management

have been taken in account, and the summary of the number of lines of code calculated. For

Redux, it means taking store itself, reducer and actions, whereas for MobX, single store file

contains everything necessary.

MobX takes up 30 lines of code, whereas number of lines of Redux code reaches 64,

which is more than twice the amount it took MobX.

 35

 Results and Discussion

 Results

State management libraries Redux and MobX have been compared in an identical

ReactJS project for the purpose of demonstrating the benefits and shortcomings of both.

Comparisons were made of important aspects of a data management library including code

length, performance, complexity and learning curve. The results are significant, as they

provide specific and definite comparison of the two libraries in the same scenario, and can

help with decision, on which library should a developer rely when starting a project. The

results also demonstrate the possible advantages of migrating from one library to another on

an existing project.

 Complexity

When comparing source code from both Redux and MobX application, it became

apparent, that the libraries were designed for different use-cases.

Redux required deeper understanding of its inner workings, and its architecture will

become advantageous once the project reaches certain complexness and size. It has stricter

rules concerning how data are being manipulated, so it takes away some of developer’s

freedom to manage data in the best way, that is suitable for the project. On the other hand,

enforcing guidelines on unidirectional data flow and on state immutability makes the code

clearer, if the project scales into a large application.

MobX allows for more freedom when handling data in state, from which small to

medium sized applications benefit, because it allows for the code to be shorted and

development faster. The possibility to mutate state makes it simpler to implement methods,

that are meant to modify state, but it makes it harder to debug, as the debug tools are not as

extensive, and feature like time travel is not possible due to state’s mutability. MobX saved

a lot of time in the setup stage, where very little is necessary in order to start developing, and

the code is clear and concise. A single file with store was created, where methods are defined

using convenient decorators.

When using state data or methods in React components with Redux, it is necessary

import them and then to map them manually into props. MobX’s inject decorator makes both

 36

state data and methods available through props automatically, so that developer can use it

right away.

 Performance

An important aspect of any state management library is, how fast can it load and

modify data. Two different tests have been conducted to discover, which one has a faster

load time, and which one modifies state data faster.

 Load Time

After putting JavaScript performance methods inside of constructor and a lifecycle

method of a root component, it has been discovered, that Redux application loaded on

average in 462.99 ms and MobX application in 430.72 ms, which makes MobX slightly

faster, as demonstrated in the graph in Figure 18. Both measurements have been taken 3

times, and an average result has been used.

Figure 18: Load Time graph

 Modifying state data

Using a benchmark function, a test has been conducted to measure, how much time

it will take to assign task to different sectors of the Eisenhower Matrix. It has been found,

that MobX outperforms Redux in any number of data changes, and that the difference

gradually gets larger as the amount of changes increases. The test has been conducted with

thousand, ten thousand and hundred thousand modifications to the state object, and the graph

 37

comparison of the results is displayed in Figure 19. It proves, that for simple state object

manipulation, MobX is out of the two libraries faster.

Figure 19: Modifying state data graph

 Code length

A comparison of code length has been conducted between the Redux and MobX

applications. All files from folders MobX and Redux, which contain all state data and

methods, have been considered and their lines of code counted. The result is, as visualized

in Figure 20, that the number of lines of MobX code was 30, while number of lines of Redux

code reached 64.

 38

Figure 20: Code length comparison

 Learning Curve

Due to Redux’s complexity and lengthy setup, its learning curve is steep and

unfriendly for beginners. It has been found that additional middleware such as Redux Thunk

is necessary for asynchronous calls. It has been proven on this application, that using Redux

on a small project is disadvantageous, because it will cause the code to be lengthier and it

will take time to set up, without providing any significant benefit in return.

MobX is intended for small to medium sized projects, which makes this application

suitable use-case, and it makes it easy for beginners to try it on a simple application. The

learning curve of MobX is significantly mellower and steady, because the setup is fast and

well documented and because the code is shorter and clearer. Store can be accessed and

modified directly, and it is available with all data and actions in injected components

automatically through props.

 Summary

After reviewing the results, it became clear, that MobX is better suited for this

particular use-case than Redux. It is less complex, which ensures fast development and

simple implementation. Because this application is meant to be very small, there is no danger

of the code becoming messy and hard to maintain, and extensive debugging options are not

important. MobX has been proven to be faster in both loading and modifying state data,

which is an undeniable benefit. It also has easier learning curve and its code is shorter, which

makes it a great state management library for inexperienced programmers.

 39

Redux has been proven to be better fitted for bigger and more complicated projects.

Its complexity and longer code become beneficial, once project scales into huge application.

If used correctly, it will help keep the project from becoming chaotic due to the vast number

of files in a project. Its learning curve is steep, but thanks to extensive documentation, a

skilled developer should not have any problems setting up a ReactJS project with Redux

state management.

 Discussion

The results obtained in this thesis have been measured precisely and multiple times,

but the values, that are being compared, are always coming from the same simple task

management application. That is both positive and negative. The advantage of this approach

is, that the two applications are identical in every aspect apart from the state management

library, and it is therefore possible to compare implementations of the same methods in both.

That makes it convenient to compare specific aspects such as code length or performance. It

highlights the differences in libraries, because source codes of both have the same purpose,

but the implementation of the solution is different. The disadvantage of demonstrating the

difference on similar applications is, that only this specific use-case can be tested. This

project did not use full capabilities of either library, so the limitations of Redux and MobX

have not been tested.

The libraries have been compared in the learning curve aspect, where it was

determined, that the learning curve of Redux is steeper than that of MobX. This has been

based on a personal experience from writing the application, which makes it a subjective

result. Some properties, such as how easy something is to learn, are difficult to measure

objectively, because it depends on many factors, for instance beforehand knowledge or

simply personal preference. My subjective result is backed up by literature about MobX and

Redux and is therefore not misleading.

 40

 Conclusion

The main objective of this thesis was to compare Redux and MobX - two of the most

popular state management libraries with ReactJS. The objective was fulfilled in the practical

part by creating two ReactJS applications for task management, which are similar in every

aspect apart from the state management library, and then comparing them.

The first partial objective was to describe characteristics of JavaScript, and more

generally, of functional programming. The first chapter of the literature review has been

dedicated to this topic, and it provided a fundamental understanding of the problematics,

which all following chapters were expanding.

The second partial objective was to analyse the architecture used by ReactJS, which

is a part of literature review, as well as the practical part. Important concepts of React have

been defined and specific principles explained. The topic of React architecture has been

analysed extensively to provide broad understanding of the inner workings of the language.

The third partial objective was to analyse data flow and state management, which is

closely connected with the primary objective, and was also a part of both literature review

and practical part. Data flow of native React, as well as state management libraries, has been

analysed and compared. State management, being the single most important principle for the

practical part, has been elucidated comprehensively and in depth.

It has been proven, that using MobX on a React project of limited dimensions is

beneficial in multiple aspects. It offers significantly better performance than Redux, achieves

the same results with less code, and takes less time to learn and setup in a project, which

contributes to greater speed of development

This result can be used by ReactJS developers to help them with the decision, which

state management library to use with their projects, or to learn more about React and state

management in general. It also proves, that MobX, while being significantly less popular,

can in specific use-cases outperform Redux.

 41

 References

 Bibliography

Wieruch, R. (2018). The Road to learn React: Your journey to master plain yet pragmatic

React.js.

Lopez, L. (2017). React: Quickstart Step‑by‑step Guide to Learning React Javascript.

Gelman, I., & Dinkevich, B. (2017). The Complete Redux Book: Everything you need to

build real projects with Redux.

Sidelnikov, G. (2017). Learning React JavaScript Library from Scratch.

International, E. (2009). ECMA-262 ECMAScript Language Specification. JavaScript

Specification.

Academind. (2016). ReactJS Basics - #1 What is React?

O’Shaughnessy, K. (2016). Choosing a JavaScript Framework in 2017 – Medium.

Aggarwal, S. (2018). Modern Web-Development using ReactJS. International Journal of

Recent Research Aspects.

MacCaw, A. (2011). JavaScript Web Applications. Presentation.

http://doi.org/10.1017/CBO9781107415324.004

Gagliardi, V. (2018). React Redux Tutorial for Beginners: The Definitive Guide (2018).

Retrieved August 20, 2018, from https://www.valentinog.com/blog/react-redux-tutorial-

beginners/

 42

 Attachments

File ReactJS_applications.zip has been attached to this bachelor thesis, which contains

both Redux and MobX version of the React application source code.

