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Annotation 

In this study, employing an integrated approach that involves 

transcriptomics, metabolomics, and other techniques, we aimed to 

understand the mechanistic roles of the cryoprotective system underlying 

extreme freeze tolerance in the larvae of the drosophilid fly, Chymomyza 

costata. Metabolomics unveiled the complex composition of the seasonally 

accumulated larval innate mixture of putative cryoprotectants. This mixture 

was predominantly composed of proline and trehalose, supplemented by 

minor components (glutamine, asparagine, betaine, sarcosine, 

glycerophospho-choline, and ethanolamine). We identified food ingestion as 

a significant source for the direct assimilation of amino compounds, while 

glycogen and phospholipids served as the primary internal sources for the 

biosynthesis of other cryoprotectants. 

The utilization of MALDI-MSI to observe cryoprotectants revealed distinct 

behaviors of proline and trehalose during ecologically relevant, gradual 

inoculative extracellular freezing of larvae. Trehalose exhibited 

accumulation in partially dehydrated hemolymph, inducing a transition to 

the amorphous glass phase. On the other hand, proline migrated to the 

boundary between extracellular ice and dehydrated hemolymph and 

tissues, forming a layer of dense viscoelastic liquid. 

Finally, through a combination of in vivo and in vitro assays, we found that 

cell membranes are likely targets of freezing injury, while their integrity is 

sustained by accumulated small cryoprotective molecules and proteins in 

cold-acclimated C. costata larvae. Contrary to our expectations, our assays 

did not provide support for the hypothesis that proteins (soluble enzymes) 

require in vivo stabilization through the accumulation of cryoprotectants. 
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1.1 Insect seasonality and diapause 

Insects, as ectothermic organisms, are inherently vulnerable to fluctuations in 

environmental temperature, lacking the ability to regulate their internal heat. Changes in 

temperature directly impact their survival, fitness, and molecular interactions (Overgaard et al., 

2014). Daily and seasonal temperature fluctuations affect insects, with higher latitudes 

experiencing greater seasonal temperature variations, resulting in better adaptations to 

withstand temperature extremes (Sunday et al., 2011). 

Low seasonal temperatures pose a significant obstacle to the survival and fitness of insects 

living in temperate and polar regions. Low temperatures limit the viability of cells, tissues, and 

entire organisms, although the exact mechanisms remain unclear due to the complex effects of 

low temperatures on living organisms. The effect of low temperatures impacts various 

structures, processes, activities, and molecules, making it challenging to discern the hierarchy, 

importance, and causal relationship of individual changes. Therefore, the question of what 

determines the survival of individual insect species at low temperatures, often below freezing 

point, remains unresolved (Storey & Storey, 2013). The seasonal plasticity and thermal limits for 

survival and fitness are crucial factors in determining the geographic distribution of insect 

species and their response to global climate change (Sunday et al., 2012). 

In response to these environmental pressures, insects have evolved complex strategies, 

with diapause and cold acclimation emerging as two major adaptive complexes, which include 

diverse mechanisms to adapt to challenging conditions, such as producing antifreeze proteins, 

accumulating cryoprotectants (CPs), and modifying their metabolism and behavior (Koštál et al., 

2010). The significance of cryoprotectants in cold acclimation and mitigating freeze dehydration 

stresses has been emphasized in numerous studies, revealing various types of cryoprotectants 

present in different organisms, including insects. Despite these findings, the precise 

mechanisms governing their biosynthesis, accumulation, and physiological roles still lack 

comprehensive understanding (Storey & Storey, 2013). 

Insects living in polar and temperate regions have life cycles that are highly adapted to 

seasonality, characterized by active summer phenotypes and dormant winter phenotypes. In 

response to changing environmental signals, such as photoperiod and thermoperiod, diapause 

is induced prior to the onset of environmental stressors. Diapause is a form of dormancy that is 

systemically regulated, whereas quiescence is a type of dormancy that occurs directly in 

response to environmental factors that fall below a critical threshold. Any developmental stage 

of an insect can potentially enter quiescence triggered by low temperatures (Lees, 1955; Danks, 

1987; Koštál, 2006). 

During the diapause induction phase, photoperiod and thermoperiod changes are sensed by 

specific developmental stages, leading to a deep transformation of the insect's phenotype. 

Insect brains and/or eyes contain specialized photoperiodic receptors that transduce the short-

day signal into changes in the synthesis and secretion of developmental hormones, such as 

ecdysone and juvenile hormone (JH). The signaling of ecdysone or JH will systematically govern 
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the phenotypic transformation in all peripheral organs, depending on the stage of development 

at which diapause is expressed. Insects engage in intensive foraging activity during the 

preparation phase to build up energy reserves for the harsh period to come (Hahn & Denlinger, 

2007). During diapause, the reproductive activity of adult insects ceases, and the proliferation 

activity in precursor cells stops. As a result, the behavioral activities related to mating, parental 

care, and partner location are halted (Koštál et al., 2009). 

During the early phase of diapause, insects may still be highly active as they migrate to seek 

out overwintering microhabitats and initiate various protective mechanisms (Willmer, 1982; 

Masters et al., 1988; Solensky, 2004). These mechanisms include building cocoons (Danks, 

1987), increasing the thickness of cuticular hydrocarbon layers (Rinehart et al., 2001; Benoit, 

2010), upregulation of heat shock proteins (Rinehart et al., 2006), stimulation of antioxidant 

mechanisms (Jovanović‐Galović et al., 2007), and inhibition of proapoptotic pathways 

(Villeneuve et al., 2006). 

However, during the next phase of diapause, insects become very inactive and experience 

deep metabolic suppression to avoid prematurely reaching the next developmental stage, 

which would be unable to survive the winter. The gradual drop in temperature during autumn 

has two important consequences: the termination of diapause and the induction of cold-

acclimation processes. Transcription profiles, protein expression patterns, and metabolic 

pathways undergo deep restructuring during diapause to support the insect's survival during 

the winter months (Emerson et al., 2010; Kankare et al., 2010; MacRae, 2010; Ragland et al., 

2010; Poelchau et al., 2013; Teets & Denlinger, 2013; Poupardin et al., 2015; Yocum et al., 2015; 

Koštál et al., 2017). 

It takes weeks or months of exposure to low temperatures for diapause to end and for 

insects to resume their normal activities. The end of diapause typically occurs in December or 

January for most insect species. Even after diapause has ended, insects remain in a state of low 

temperature-quiescence until the spring, when the rise in temperature allows them to rapidly 

resume their behavioral activities and reproduction/development (Tauber et al., 1986; Danks, 

1987; Denlinger, 2002). 

The topic of the relationship between diapause and cold tolerance in insects has been 

debated for a long time (Denlinger, 1991). Although cold hardiness generally increases upon 

entering diapause, the greatest increase in cold hardiness usually occurs during the gradual 

decrease in ambient temperature during autumn (Šlachta et al., 2002). Insects use an adaptive 

complex of cold acclimation, which is often linked with diapause, to increase their cold 

tolerance. Cold acclimation is based on extensive restructuring of the transcriptome, proteome, 

and metabolic pathways and includes number of interconnected mechanisms (Qin et al., 2005; 

Sinclair et al., 2007; Zhang et al., 2011; Colinet et al., 2013; Shang et al., 2015; MacMillan et al., 

2016; Koštál et al., 2017). 
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1.2 Mechanisms of insect cold acclimation 

The literature on insect cold hardiness reveals a comprehensive framework that categorizes 

their adaptive responses into three distinct and well-defined strategies. Each strategy is 

characterized by the state of body water at temperatures below the melting point of body 

fluids (Zachariassen, 1985). When an insect's body temperature dips below the threshold of 

fluid melting, three possible outcomes emerge, shaping the fundamental approaches insects 

adopt to withstand cold stress: 

 

• Freeze avoidance or supercooling strategy: In this strategy, some insects manage to 

maintain their body water in a liquid state, even at temperatures below the freezing 

point of their bodily fluids. This remarkable ability to supercool enables them to avoid 

the formation of ice crystals within their tissues, thus preventing the damaging 

consequences of ice formation. The intricate mechanisms that underlie this strategy 

involve the suppression of ice nucleation, often achieved through the presence of high 

concentrations of various low molecular weight cryoprotectants (LMW CPs) and also 

specialized proteins or antifreeze compounds (Zachariassen, 1985; Holmstrup et al., 

2002; Sinclair & Renault, 2010; Rozsypal, 2022). 

 

• Freeze tolerance strategy: In contrast to supercooling, other insects have evolved to 

embrace the freezing of their body water, manifesting the remarkable capacity to 

survive the formation of ice crystals within their tissues. This strategy involves a series of 

sophisticated adaptations that protect the insects' cellular structures and prevent lethal 

damage during freezing and subsequent thawing. These adaptations include the 

accumulation of cryoprotectants, adjustments to cellular physiology, and the 

stabilization of membranes and macromolecules (Horwath & Duman, 1984; 

Zachariassen, 1985; Holmstrup et al., 2002; Sinclair & Renault, 2010; Rozsypal, 2022). 

 

• Cryoprotective dehydration strategy: Some insects take a unique route to cold hardiness 

by allowing their body water to vaporize, effectively undergoing a process of 

cryoprotective dehydration. This strategy involves the deliberate reduction of body 

water content to minimize the risk of ice crystal formation. The remaining small amount 

of liquid solution may undergo vitrification, forming an amorphous solid or "glass" 

phase, which further contributes to the preservation of cellular integrity and function 

(Sformo et al., 2009, 2010; Koštál et al., 2011a). 
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1.2.1 Mechanisms of cold and freeze-induced injuries 

Low temperature is defined as any temperature falling below a species-specific threshold, 

beyond which activity, growth, or developmental processes become constrained. In a more 

precise context, it can be described as the temperature level that triggers some form of injury, 

which may ultimately result in mortality or various sub-lethal outcomes (Lee, 1991). It is crucial 

to emphasize that a substantial differentiation exists between cold and freeze-induced injuries, 

as these processes are entirely distinct from one another (Rozsypal, 2022). 

Low temperature-induced injuries are generally categorized into two distinct types: cold (or 

chill) injury and freeze injury, as outlined by Storey and Storey (1988). Cold injury occurs when 

temperatures fall below optimal levels but remain above the crystallization point of bodily 

fluids, known as the supercooling point (SCP). Cold injury can be further subdivided into acute 

cold injury, occurring in response to rapid and brief temperature fluctuations, and chronic or 

cumulative cold injury, arising from prolonged exposures to low temperatures. Freeze injury, on 

the other hand, ensues due to the formation of ice within the organism, either extracellularly or 

intracellularly. Evaluating the extent of cold injury commonly involves assessing mortality 

following cold exposure. It is important to note that cold injury does not invariably lead to 

immediate fatality; instead, organisms may exhibit varying degrees of tolerance or repair 

capabilities (e.g., Košťál et al., 2007; Štětina et al., 2018). Depending on the extent of damage 

and the organism's ability to tolerate or repair it, cold injury may also manifest as sub-lethal 

effects, such as delayed mortality, impaired development, reduced lifespan, and compromised 

fitness (Košťál et al., 2019).When organisms experience temperatures below their optimal or 

"permissive" range (which do not cause immediate injury), it primarily affects chemical 

reactions at the molecular level. Enzymes, which catalyze these reactions, are highly sensitive 

to temperature changes. Lower temperatures alter enzyme conformation, affecting their 

affinity for substrates (Franks & Hatley, 1991). Additionally, temperature impacts the fluidity of 

biological membranes, influencing membrane permeability and the function of membrane-

bound proteins (Quinn, 1988). These alterations in enzyme activity and membrane function can 

result in an overall decline in organismal activity and may have consequences for various 

biological processes, including performance, reproduction, development, and distribution 

(Gilbert & Raworth, 1996; Overgaard & Macmillan, 2017; MacMillan, 2019). 

Injury caused by low temperatures primarily involves the disruption of macromolecular 

structures. This includes the denaturation of proteins, changes in membrane properties, and 

potential damage to nucleic acids. The hydrophobic effect, a critical force in maintaining protein 

structure, weakens at lower temperatures, leading to protein denaturation (Privalov, 1990; Dias 

et al., 2010). 

Proteins play a critical role in metabolism and form vital intracellular structures such as the 

cytoskeleton. While it is generally believed that proteins are particularly vulnerable to damage 

by low temperatures and require relatively high concentrations of cryoprotectants to protect 

them against cold denaturation, evidence suggests that such a "rule" may not be universal 



6 
 

(Rozsypal, 2022). Some proteins may be resistant to cold denaturation under physiological 

conditions, or they may denature reversibly (Kunugi & Tanaka, 2002). Membranes composed of 

phospholipids undergo phase transitions at different temperatures, affecting their fluidity and 

barrier function. Lateral phase separation and the formation of pores can result from these 

transitions, leading to membrane damage (Quinn, 1985; Hazel, 1995). Nucleic acids, such as 

DNA and RNA, can also be affected by low temperatures, potentially resulting in breaks or 

degradation (Linfor & Meyers, 2002; Huang et al., 2017). While cold-induced damage to nucleic 

acids is not fully understood, it may involve changes in the structure of histones and other 

factors (Tatone et al., 2010; Fraser et al., 2011). 

The rate at which temperatures change, both during cooling and warming, plays a 

significant role in cold injury. Rapid cooling can lead to the formation of small ice crystals, while 

slow cooling helps prevent intracellular freezing. Rapid warming is used to avoid 

recrystallization during thawing (Seki & Mazur, 2008). 

Freezing injury is a combination of the effects of low temperatures and ice formation. 

Supercooling can occur when a solution remains in a liquid state below its freezing point, but 

ice nucleation eventually leads to freezing. The extent of supercooling depends on various 

factors, including solution volume, solute concentration, and the presence of ice nucleators 

(Lee, 1991; Lee et al., 1996; Zhao, 1997). This freeze-induced injury is a complex phenomenon 

associated with the need to withstand a series of challenges. These challenges include exposure 

to severe cold, mechanical stress caused by the growth of ice crystals, loss of liquid water, 

elevated osmolality, increased concentrations of protons, metal ions, and other potentially 

harmful compounds, disruption of vital processes such as anoxia and ischemia, increased 

compaction of cellular components, and cell shrinkage (Sinclair et al., 2003). 

 

1.2.2 General suppression and specific regulation of metabolic pathways 

During cold acclimation, temperature has a direct effect on enzyme kinetics and 

biological processes leading to metabolic suppression. However, this suppression is often 

deeper than expected, as many processes are completely inhibited rather than slowed down 

(Hochachka, 1986). In supercooled insects, protein stability and lifespan are limited in a liquid 

environment, necessitating a slow continuation of processes such as gene transcription and 

protein turnover. Regulated metabolism is required to maintain basal cellular homeostasis, 

including transmembrane ion gradients, which consumes energy in the form of ATP (Koštál et 

al., 2004a). On the other hand, frozen insects are likely to save energy since they most likely do 

not continue regulated metabolism, though insects frozen at ecologically relevant temperatures 

display signs of anaerobic metabolism, such as slow lactate accumulation (Storey & Storey, 

1985). 

Interestingly, glycogen degradation serves as an example of a specific metabolic 

pathway paradoxically upregulated at low temperatures, stimulated below +5°C (Storey & 
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Storey, 1991). The liberated glucose from glycogen contributes to the synthesis and 

accumulation of diverse cryoprotectants, encompassing glycerol, sorbitol, and ribitol. The 

reduction of sugars into their corresponding polyols necessitates the involvement of NADPH, 

which is primarily generated in the pentose cycle—a process that must also undergo 

upregulation to facilitate this metabolic transformation (Storey & Storey, 1991; Koštál et al., 

2004b). Understanding intricate metabolic shifts was highly important, as metabolic 

restructuring was one of the aims of my study. 

 

1.2.3 Restructuring of biological membranes 

Sinensky's (1974) pioneering study elucidated the connection between membrane lipid 

composition, fluidity, and biological functions, while Cossins (1994) extended this insight to 

explore the interplay of membrane fluidity and temperature adaptation. Cold acclimation 

induces significant changes in membrane composition, such as increased fatty acyl 

unsaturation, enhancing fluidity at low temperatures, coupled with decreased fatty acyl chain 

length (Hazel, 1995; Koštál, 2010). Moreover, membrane restructuring during cold acclimation 

involves shifts in phospholipid and sterol ratios; Koštál et al. (2013) observed elevated sterol 

levels in insects adapted to low temperatures, possibly contributing to membrane stability in 

cold environments. 

Crucial to membrane functionality and integrity in supercooled and frozen insects, 

membrane restructuring is vital for maintaining protein functionality, including ion transport 

systems (McElhaney, 1984; Hazel, 1995). While specific fluidity prevents membrane leakiness 

during supercooling, protection of membrane integrity is pivotal during extracellular ice crystal 

growth and cell dehydration in frozen insects (Hazel, 1995). Cellular dehydration during 

extracellular freezing makes the phospholipid bilayer susceptible to unregulated transitions to 

hexagonal phase compromising the membrane barrier function. In addition, membrane fusions 

may occur due to closely packed membranes (Uemura et al., 1996; Hincha et al., 1998). 

Furthermore, oxidative stress, a notable cause of harm, can also inflict damage upon 

membranes, particularly as a result of heightened metabolism and the generation of free 

oxygen radicals during the recovery process (Colinet et al., 2016). Insects enact cellular 

protective adjustments during diapause and cold acclimation, developing a winter phenotype 

to counteract oxidative stress (Storey & Storey, 2012). Among supercooling and freeze-tolerant 

species, adaptive regulation of enzymatic and non-enzymatic systems is observed, including the 

upregulation of heat shock proteins (HSPs), which stabilize protein complexes, bind 

hydrophobic domains, and prevent protein aggregation due to cold or freeze-dehydration 

stress (Rinehart et al., 2006; King & MacRae, 2015; Toxopeus et al., 2019a). Also, HSPs play a 

pivotal role in repairing damaged proteins and contribute to recovery from cold stress (Richter 

et al., 2010; Goto & Kimura, 1998; Sinclair et al., 2007; Koštál & Tollarová-Borovanská, 2009; 

Štětina et al., 2015). 
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1.2.4 Accumulation of low molecular weight cryoprotectants (CPs) 

Organisms have various ways of responding to environmental stress, including the 

accumulation of small protective molecules known as compatible osmolytes (Yancey, 2005). 

Although first discovered in organisms that cope with osmotic stress, these molecules have 

been found to have protective functions in many forms of life (Yancey & Siebenaller, 2015). 

Insects, in particular, accumulate cryoprotectants in response to cold stress. CPs are often 

represented by sugars, polyols, and free amino acids (Storey & Storey, 1988; Koštál et al., 

2011a). These molecules protect the insects from the effects of low temperatures by affecting 

the water phase behavior, metabolic protection, and stabilization of macromolecules (protein, 

nucleic acid, lipid bilayer) (Storey & Storey, 1988). 

Freeze-avoiding insects have high concentrations of CPs, which suppress the 

temperature of supercooling point and stabilize the metastable supercooled phase of water, 

making the biological solution unfreezable under ecologically-relevant conditions (Zachariassen, 

1985). In contrast, freeze-tolerant insects prefer to freeze at relatively high subzero 

temperatures and accumulate low to medium concentrations of various CPs (Storey and Storey, 

1988). This way, accumulated CPs can reduce the amount of ice generated at any given subzero 

temperature and reduce the osmotic outflow of water from cells, thus reducing cell shrinkage 

(Meryman, 1971; Rozsypal & Košťál, 2018; Rozsypal et al., 2018). Insects that undergo 

cryoprotective dehydration or freeze-induced cellular dehydration can transit highly 

concentrated solutions into an amorphous glass phase, which may be adaptive (Rudolph & 

Crowe, 1986; Sformo et al., 2010; Koštál et al., 2011a; Rozsypal et al., 2018). 

The CP concentrations in insects can reach very high levels, up to 3M or even 5M in 

some cases of supercooling insects (Gehrken, 1984; Salt, 1961). However, the accumulation of 

very high concentrations of CPs would be counterproductive for freeze-tolerant insects, whose 

general role of accumulated CPs is to reduce ice generation and cell shrinkage rather than 

prevent freezing altogether (Storey & Storey, 1988). The accumulation of CPs can have an 

impact on the redox balance, as the metabolism of polyols consumes NADPH, which is also 

required for the re-reduction of oxidized glutathione. However, many CPs, such as trehalose 

(Reyes-DelaTorre et al., 2012) and proline (Kaul et al., 2008), have antioxidant capacity and can 

theoretically protect overwintering insects against oxidative damage. 

The stability of macromolecules and integrity of macromolecular complexes are directly 

threatened by low temperature. A number of polymeric proteins will depolymerize already at 

moderately low temperatures around zero degrees Celsius (Privalov, 1990). While 

depolymerized proteins lose their activity (enzymes, signaling molecules) or structural function 

(cytoskeleton), the depolymerization is usually reversible upon return of normal conditions and, 

therefore, need not negatively affect the viability of cold-stressed insects (Des Marteaux et al., 

2018). In liquid environments at very low temperatures (supercooled state), proteins may also 

denature, i.e., exposed their internal hydrophobic domains. The occurrence of cold and heat 

denaturation of proteins is similarly probable at extremely low and high, respectively, 
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temperatures (Dias et al., 2010; Sanfelice & Temussi, 2016). Denatured proteins may aggregate, 

i.e., tightly interact via their exposed hydrophobic regions. As the aggregation is hardly 

reversible, it will negatively affect the viability of an insect after cold stress. Phospholipid 

bilayers undergo a phase transition to a non-functional gel phase at low temperatures. In 

supercooled insects, the accumulated CPs can protect native protein structures as well as the 

functional liquid crystalline bilayer phase via a mechanism known as preferential exclusion 

(Arakawa & Timasheff, 1985; Timasheff, 1992a). Many CPs have been found to behave as 

kosmotropes in aquatic solutions, i.e., compounds highly soluble in water that prefer 

interactions with water molecules over interactions with proteins or phospholipid headgroups. 

Consequently, kosmotropic CPs are preferentially excluded from macromolecular vicinities, 

rendering the macromolecules preferentially hydrated and thermodynamically more stable (Xie 

& Timasheff, 1997; Timasheff, 1998; Jensen et al., 2004; Ball, 2008).  

When it comes to freeze-tolerant insects, their cells are subjected to not only low 

temperatures, but also two other stressors: a near lack of liquid bulk water and the presence of 

ice crystals. Consequently, freezing stress is much riskier than simply supercooling at the same 

temperature. This stress affects four different levels of biological organization all at once. At the 

molecular level, freezing stress causes a reduction in the kinetic energy and reactivity of all 

molecules, such as enzymes and signaling cascades. The reduction in molecular mobility poses a 

significant threat to the functional conformation, stability, and complex integrity of 

macromolecules (Carpenter & Crowe, 1988; Franks & Hatley, 1991; Muldrew et al., 2004; Des 

Marteaux et al., 2018). Low water activity can cause nucleic acids to shift from their biologically 

relevant B-form to nonfunctional A-form (Brovchenko & Oleinikova, 2008). Furthermore, 

euchromatin DNA loops may break when subjected to mechanical stress (Lubawy et al., 2019). 

These molecular dysfunctions can impair metabolic processes and inhibit biochemical and 

cellular functions, leading to energy depletion and toxic buildup (Storey & Storey, 1985; 

Joanisse & Storey, 1996). 

At the cellular and tissue levels, osmotic fluxes of water and growing ice crystals exert 

osmotic and direct mechanical stresses on organelles, cells, and extracellular matrices, which 

may lead to a loss of physical integrity (Lovelock, 1954; Mazur, 1984). Injured molecules, 

structures, cells, and organs may fail to interact properly during repair of freezing injury and 

resumption of life functions after freezing stress, leading to organismal collapse or loss of 

fitness (Pörtner, 2002; MacMillan, 2019). Despite these severe effects, some ectotherm 

vertebrates and invertebrates have independently evolved freeze tolerance mechanisms (Salt, 

1961; Asahina, 1970; Storey & Storey, 1988, 1992). This is a surprising phenomenon given the 

significant combination of deleterious effects associated with internal freezing. 

Several specific cryoprotective proteins have been suggested to provide protection 

against denaturation and aggregation of native protein structures caused by freeze dehydration 

(Inoue & Timasheff, 1972; Tamiya et al., 1985; Wang, 1999; Bolen & Baskakov, 2001; Kaushik & 

Bhat, 2003; Toxopeus & Sinclair, 2018). During freeze dehydration, 50-70% of cellular water is 



10 
 

removed, and the cell interior becomes more viscous, leading to a failure of the mechanism of 

preferential exclusion. Most kosmotropic (stabilizing) CPs are unable to provide protection 

beyond a hydration threshold of 0.3 g of water per gram of dry mass (Hoekstra et al., 2001). 

However, some disaccharides and oligosaccharides, including trehalose, have been shown to 

stabilize membranes during desiccation by forming hydrogen bonds with polar residues on 

phospholipid headgroups and replacing the missing water molecules (Crowe et al., 1984; 

Thompson, 2003). Therefore, this mechanism is known as water replacement (Crowe et al., 

2001; Crowe, 2007). Among all amino acids, proline and arginine are very specific in their ability 

to directly interact with partially denatured proteins resulting from freezing stress and stabilize 

them in a molted globule phase, thus preventing further denaturation and aggregation (Samuel 

et al., 1997; Das et al., 2007; Lange & Rudolph, 2009; Schneider et al., 2011). Moreover, proline 

and arginine are the only two amino acids that display, at high concentrations and low water 

activities, a high propensity to self-associate and form supramolecular clusters (stacked 

columns) with hydrophobic surfaces that interact with hydrophobic surfaces of partially 

unfolded proteins (Rudolph & Crowe, 1986; Das et al., 2007). Notably, proline and arginine are 

the two most potent cryoprotective compounds in a large screening bioassay of 31 different 

native amino acids in Drosophila melanogaster (Koštál et al., 2016a). Additionally, high 

concentrations of proline can alter the temperature of bilayer phase transitions and reduce the 

tendency for fusion in closely packed membranes through hydrophobic interactions of proline 

imino-groups with the hydrocarbon chains of the bilayer phospholipids (Anchordoguy et al., 

1987). 

Cellular freeze dehydration can result in crowded cytoplasmic components, close 

contact between organelles, and possible membrane fusion (Uemura et al., 1996). To prevent 

unwanted interactions between tightly adjacent phospholipid bilayers or proteins, a variety of 

CPs have been proposed to act as a molecular shield (Bryant et al., 2001; Hoekstra et al., 2001; 

Ball, 2008). Furthermore, highly concentrated CPs like trehalose and proline can stimulate the 

transition of highly concentrated body solutions into the amorphous phase, which can further 

stabilize structures and protect them against thermomechanical stress (Rudolph & Crowe, 

1986; Rubinsky et al., 1980). 

 

1.2.5 Production of high molecular weight cryoprotectants 

In preparation for winter, certain insect species accumulate two classes of proteins 

associated with ice crystal regulation: anti-freeze proteins (AFPs) and protein ice nucleators 

(PINs) (Zachariassen & Kristiansen, 2000; Duman, 2001; Duman et al., 2010; Duman, 2015). In 

sub-zero temperatures, AFPs attach to embryonic ice crystals, inhibiting water molecule binding 

and suppressing crystal growth, lowering freezing points by -2°C to -8°C compared to melting 

points (thermal hysteresis, magnitude species-dependent). Paradoxically, AFPs also function in 

some freezing insects with high-temperature initiation, limiting ice recrystallization (Capicciotti 

et al., 2013). PINs, unlike AFPs, catalyze ice crystallization near freezing points, preventing 
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supercooling and accelerating ice formation in the extracellular space (Zachariassen & 

Kristiansen, 2000). 

Highly conserved heat shock proteins stabilize protein complexes, e.g., cytoskeleton 

(Russotti et al., 1997; Des Marteaux et al., 2018), aiding during cold stress or freeze 

dehydration. Cold-exposed insects regulate HSP gene expression in early diapause/cold 

acclimatization, adapting for future thermal stress (Rinehart et al., 2006; Toxopeus et al., 

2019a). Increased HSP gene expression primarily follows cold/frost shock, associated with 

protein repair (Goto & Kimura, 1998; Colinet et al., 2010a). However, HSP mRNA may not 

correlate with protein activity (Feder & Walser, 2005; Nielsen et al., 2005; Tollarová et al., 

2005). Silencing small HSP genes (hsp22, hsp23) prolongs Drosophila recovery from cold coma 

(Colinet et al., 2010b). RNAi against hsp70 decreases cold tolerance in Sarcophaga crassipalpis 

(Rinehart et al., 2007) and reduces survival in Pyrrhocoris apterus after cold stress (Koštál & 

Tollarová-Borovanská, 2009). Absence of hsp70 negatively impacts extreme supercooling 

survival in Drosophila (Štětina et al., 2015). 

 

1.2.6 Cold acclimation and recovery after cold stress 

The assessment of insect cold hardiness varies among researchers, with survival 

following cold exposure being a direct and fundamental metric of cold hardiness. Typically, 

lower lethal temperature (LT50) and lethal time at low temperature (Lt50) are analyzed in 

population samples to gauge the lethality of various cold exposures. While direct analysis of 

cold hardiness through lethality seems straightforward, practical limitations arise from the need 

for large insect populations and the challenge of determining accurate survival criteria that 

align with ecologically meaningful outcomes (Nedvěd et al., 1998). 

Cold acclimation is a crucial strategy employed by insects to enhance their ability to 

withstand freezing stress. Various physiological changes, such as alterations in membrane 

composition, metabolic pathways, and gene expression, contribute to the development of 

enhanced cold hardiness (Hazel, 1995; Koštál et al., 2013). However, the assessment of cold 

hardiness often neglects the consideration of delayed mortality and sublethal effects that can 

impact an insect's overall fitness and survival. Delayed mortality, observed in different 

ontogenetic stages not directly subjected to cold stress, has been reported in various insect 

species (Turnock et al., 1983, 1985; Pullin & Bale, 1988; Bale et al., 1989; Yocum et al., 1994; 

Marshall & Sinclair, 2015; Štětina et al., 2018; Koštál et al., 2019). Such sublethal effects, 

encompassing physiological and behavioral changes, may significantly influence an insect's 

ability to cope with cold stress and can have profound implications for population dynamics and 

ecological interactions (Coulson & Bale, 1992; Hutchinson & Bale, 1994; Kelty et al., 1996; 

Marshall & Sinclair, 2010). 

Understanding the complex interplay between resistance and tolerance mechanisms in 

response to cold stress is essential for a comprehensive grasp of insect cold hardiness. 
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Resistance mechanisms involve reducing or avoiding cold stress injury to maintain high survival 

rates and fitness, while tolerance mechanisms focus on an insect's ability to survive or repair 

injuries incurred during cold stress, albeit potentially at a fitness cost. In this context, analyzing 

fitness parameters such as reproductive output, developmental transitions, and longevity can 

shed light on the relative contributions of resistance and tolerance mechanisms in different 

insect species (Simms & Triplett, 1994; Núñez-Farfán et al., 2007; Råberg et al., 2007). 

 

1.3 Model species 

My research focuses on exploring the biosynthesis, physico-chemical properties, and 

protective functions of low molecular weight CPs in Chymomyza costata (Zetterstedt, 1838) 

(Diptera, Drosophilidae). This species is an important model for studying the bionomics of the 

genus Chymomyza, which comprises around 60 described species. Chymomyza costata is 

distributed across the Holarctic region and is one of the northernmost species in the 

Drosophilidae family, with a range extending beyond the Arctic Circle (Hackman et al., 1970; 

Toda, 1985). The Drosophilidae family has more than 1,500 species, and they are predominantly 

distributed in tropical regions. These species typically exhibit limited diapause expression and 

have low cold tolerance. Only a few species are adapted to polar or temperate regions 

(Strachan et al., 2011). 

Temperate vinegar fly species typically enter adult reproductive dormancy during winter 

through diapause or quiescence. However, pupal diapause has been observed in one species, 

Drosophila alpina (Lumme, 1978), while Chymomyza species (including C. costata) and 

Scaptodrosophila deflexa are reported to undergo larval diapause (Basden, 1954). 

The taxonomic classification of the species can be found on the following websites: 

• NCBI Taxonomy browser, ID 76946: 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=76946 

• NCBI Life map: 

https://lifemap-ncbi.univ-lyon1.fr/?tid=7271 

 

1.3.1 Larval diapause in Chymomyza costata 

Overwintering of C. costata larvae in a diapause state has been described for both Finnish 

and Japanese populations (Lakovaara et al., 1972; Enomoto, 1982). In the 1980s, a joint Finnish-

Japanese group began to study the mechanism of diapause in more detail. Most of their 

research was conducted on a fly line that originated from several individuals captured in 1983 

near the city of Sapporo, Hokkaido Island, Japan (43.06°N, 141.35°E). The research was 

stimulated by the isolation of a non-diapausing fly line, which spontaneously appeared in 

laboratory culture in the first few years after capture in the wild. This line did not respond to 

the short-day signal that otherwise reliably induces diapause in virtually all wild-type larvae 
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(Riihimaa & Kimura, 1988). Further genetic analysis suggested that the loss of photoperiod 

sensitivity in larvae was likely caused by a mutation of a single recessive allele of an unknown 

gene (locus) located on autosomes. The gene locus was named NPD (Non-Photoperiodic 

Diapause), reflecting the fact that larvae can enter a dormant (quiescent) state if exposed to 

low temperatures (<LDT, <11°C), but the photoperiodic signal itself applied at relatively high 

temperatures (18°C) does not induce diapause (Riihimaa & Kimura, 1989). The NPD line thus 

became a suitable model for studying the genetic and molecular basis of photoperiodism in 

insects. 

Debates about the nature of the so-called photoperiodic calendar have been ongoing for 

decades (Pittendrigh, 1960), and recently, the prevailing view is that the photoperiodic calendar 

(the ability to recognize day length and respond to it with a complex phenotypic change, such 

as entering diapause) is based on specific interactions in the neural network of so-called “clock 

neurons” in the insect brain (Saunders, 2002; Koštál, 2011). Research conducted on the NPD C. 

costata model line has contributed to support this view. First, using formal experiments 

(monitoring the response to photoperiods with a total length of >24 h; experiments with long 

nights interrupted by short flashes of light, etc.), it was found that the measurement of day (or 

night) length is attended by a factor with circadian rhythmicity in C. costata larvae that is not 

specified in more detail (Yoshida & Kimura, 1995; Lankinen & Riihimaa, 1997; Koštál et al., 

2000). Analysis of the clock gene period revealed that it exhibits daily and circadian rhythms in 

expression in the wild line of larvae, whereas its expression is low and arrhythmic in the NPD 

line of larvae (Koštál & Shimada, 2001). Transcripts of another clock gene, timeless (tim), were 

not detectable in the NPD line, whereas in the wild line, they again exhibited the typical daily 

rhythm of expression. At the same time, disruption of timeless gene expression by RNAi led to a 

loss of photoperiodic sensitivity in larvae (Pavelka et al., 2003). The protein TIM was localized to 

two neurons in the larval brain in each hemisphere, where it exhibited a daily rhythm in the 

wild line. In the NPD line, the TIM protein was not detected at all (Stehlík et al., 2008). These 

results suggest that the dysfunction of circadian clocks in the brain of NPD larvae may be 

related to the loss of photoperiodic calendar function. Sequencing of the tim gene locus 

revealed that the recessive allele of this gene in the NPD line carries a long deletion (1,855 base 

pairs) in the 5'-UTR region. This deletion removed the transcription start and regulatory 

elements called E-boxes and TER-boxes (Stehlík et al., 2008). Gradual artificial shortening of the 

sequence revealed that insect S2 cells transfected with shortened constructs require precisely 

those promoter regions that are removed by the mutation in the NPD line to express the tim 

gene (Kobelková et al., 2010). It is therefore possible that the NDP locus is occupied by the tim 

gene, and this clock gene may represent a molecular link between clock and calendar functions. 

The larvae of C. costata have also been used as a model for detailed characterization of 

factors inducing diapause in insects (Koštál et al., 2016b). It is often incorrectly stated in 

literature that diapause in insects is induced by low temperature (or primarily by low 

temperature). However, the main inducing factors are signals from the environment that have a 

rhythmic character and thus encode calendar time - photoperiod and also thermoperiod. These 
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rhythmic signals can safely induce diapause in C. costata larvae even when applied individually 

or independently. If both are applied simultaneously, the larvae are governed only by the 

photoperiodic information. Other factors (temperature, population density, food access) play a 

secondary role and modify the response to primary rhythmic factors. Furthermore, diapause of 

C. costata larvae has been used as a model for characterizing individual ecophysiological phases 

of insect diapause development (Poupardin et al., 2015; Koštál et al., 2016b, 2017). The 

simplified notion of diapause as a static state has been replaced by a model of dynamic changes 

in gene expression and physiology, which run spontaneously (endogenously, without changing 

external conditions) while also responding to (exogenous) changes in external conditions, 

leading to gradual termination of diapause during the winter season. 

 

1.3.2 Cold hardiness in Chymomyza costata 

The initial investigation into C. costata larvae's cold tolerance identified freeze-avoidance as 

the primary strategy for subzero survival (Enomoto, 1982). This classification relied on 

supercooling point (SCP) measurements, which were relatively low (around -20°C). However, 

it's now understood that the same SCP value is also observed in tropical drosophilids, including 

the vinegar fly larvae, D. melanogaster, which possess low cold tolerance and perish rapidly at 

0°C exposure (Koštál et al., 2011b). Consequently, the mere presence of a low SCP does not 

necessarily correlate with high cold tolerance.  

Subsequently, the strategy classification shifted to freeze-tolerance (Riihimaa, 1988), when 

it was recognized that C. costata larvae exhibit high sensitivity to surrounding ice inoculation, 

likely common in their hibernation sites. Inoculative freezing initiates at mild subzero 

temperatures between -1°C and -3°C (Rozsypal et al., 2018). Early inoculation and slow freezing 

rates enable survival of frozen larvae down to -100°C (Shimada, 1990). The same authors 

highlighted another survival condition - prior entry into diapause and cold acclimation (4°C, 1-

month, constant darkness). Furthermore, larvae undergoing photoperiodic diapause displayed 

a slightly heightened freeze-tolerance compared to their quiescing counterparts. Cold 

acclimation also triggered the accumulation of two potentially cryoprotective substances: 

proline (up to 175 nmol.mg-1 FW) and trehalose (up to 37 nmol.mg-1 FW). 

In 1996, it was discovered that frozen larvae could endure cooling to the temperature of 

liquid nitrogen (-196°C) (Moon et al., 1996). This revelation rendered C. costata larvae a 

compelling model for cryopreservation studies involving complex animal organisms. While 

current cryobiology effectively stores cells and simple embryos in liquid nitrogen, significant 

challenges arise when dealing with basic tissues (ovaries, kidneys), and cryopreserving entire 

organs or organisms was long deemed nearly impossible (Fahy & Wowk, 2015). It's important to 

mention that these organisms, like C. costata larvae, are well-hydrated, distinguishing them 

from anhydrobiotic organisms that experience loss of water before freezing, such as plant 

seeds, various invertebrate embryos, and tardigrades. 
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Koštál et al. (2011a) affirmed larvae's resilience to liquid nitrogen exposure and validated 

proline and trehalose accumulation during cold acclimation of diapausing larvae through 

metabolomic profiling. Moreover, they established that diapause entry and cold acclimation 

coincide with an overall rise in hemolymph osmotic concentration up to 700 mOsmol.kg-1, a loss 

of osmotically active (freezable) water, and heightened susceptibility to traverse the glass 

transition during freezing. Similar changes were evident in non-diapausing larvae fed a proline-

enriched diet. Heat-acclimated, non-diapausing larvae can't withstand freezing or 

cryopreservation, but proline-enriched diet consumption bestowed this ability. A subsequent 

study (Koštál et al., 2012) employed relatively simple methods to "transform" D. melanogaster, 

a tropical and cold-sensitive fruit fly larva, into a -5°C freeze-tolerant organism. Survival post-

freezing necessitated preliminary cold acclimation, halting development via cold quiescence, 

proline-enriched diet intake, early ice inoculation, and slow freezing. 

Diverse microscopic approaches were employed to unveil micro-morphological alterations 

arising from the freezing of C. costata larvae, pinpointing vulnerable tissues and structures. 

Employing light and confocal microscopy, cytoskeletal structures like tubulin and actin 

experienced breakdown, especially in larval fat tissue (Des Marteaux et al. 2018). 

Simultaneously, the freezing-induced cytosol dehydration led to the pronounced coalescence of 

lipid droplets. Whether this coalescence instigated the secondary disruption of radial tubulin 

fiber structures or was enabled by tubulin breakdown remains ambiguous. Additionally, actin 

microfilaments aggregated within the adipose cell cortical layer. Freeze-tolerant larvae 

demonstrated less pronounced cytoskeletal damage than their freeze-sensitive counterparts 

(non-diapausing and warm-acclimated). Remarkably, feeding sensitive larvae a proline-enriched 

diet significantly mitigated cytoskeletal damage. 

The utilization of electron microscopy provided even deeper insights into the micro-

morphology of frozen C. costata larval tissues (Štětina et al., 2020). Sensitive larvae exhibited a 

prominent inclination toward pathological mitochondrial changes, ranging from enlargement 

and rounding to the disruption of cristae structures on the inner membrane. Both inner and 

outer membrane ruptures occurred, leading to the release of mitochondrial contents into the 

cytosol. The intensity of these changes exhibited an adverse correlation with larval survival, and 

these alterations were evident in adipose, hindgut (Štětina et al., 2020), and later also in 

muscular tissues (Štětina et al., unpublished data). Intriguingly, while respiratory tissue capacity 

decreased, the activity of the citrate synthase enzyme, typically sensitive to cold and frost 

damage, paradoxically persisted. As seen in prior research, mitochondria's pathological changes 

were absent in resistant larvae and notably suppressed in sensitive larvae nourished with a 

proline-rich diet. Collectively, these experiments highlight the substantial, microscopically 

discernible influence of proline incorporation into the metabolism of C. costata larvae on 

freezing damage repair and larval tissue development. 
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1.4 Objectives of the dissertation 

According to the doctoral study plan, the main objective of my dissertation was to carry out 

a functional examination of the cryoprotectant system in C. costata. The plan was modified 

throughout a four-year period in response to the results of specific experiments, and more 

precise goals were established: 

• Diversity and biosynthesis of cryoprotectants (CPs) 

The primary objective of our study was to determine an exhaustive compilation of 

potential CPs of C. costata using global comparative metabolomics of tissues in 

differently acclimated larvae (GC-LC/MS). Next, we aimed to distinguish whether the 

CPs are synthesized from internal larval reserves or assimilated from diet. We 

approached this goal by mapping the metabolomics and gene transcriptomics profiles 

on CPs’ biosynthetic pathways and combined this approach with key enzyme activity 

assays and feeding assays.  

 

• Physico-chemical behavior of CPs in vivo during slow inoculative freezing 

The study’s secondary objective was to determine (using differential scanning 

calorimetry) the thermal phase transition properties of artificial mixtures of CPs 

mimicking the composition of the hemolymph of cold-acclimated C. costata larva. We 

aimed to test the hypothesis that such mixtures possess physico-chemical properties of 

NADES (natural deep eutectic systems). Next, using MALDI mass spectrometry imaging, 

we aimed to track the localization of CPs to larval tissues and, mainly, whether and how 

this localization changes during the process of extracellular ice formation and cell 

freeze-dehydration.  

 

• Protective roles of CPs during extracellular freezing and cell freeze dehydration  
The final objective of our study was to test the coupled hypotheses: that irreversible 
denaturation of proteins and loss of biological membrane integrity are two ultimate 
molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally 
accumulated CPs stabilize proteins and membranes against injury in freeze-tolerant 
insects. We approached this goal by a combination of in vivo and in vitro assays of 
selected enzyme activities and membrane permeability in differently acclimated larvae 
and tissues incubated in different mixtures of CPs and exposed to different freezing 
stresses. 
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• Diversity and biosynthesis of cryoprotectants (CPs) 

The first aim of this study was to identify the composition of the natural cryoprotective (CP) 

mixture within the highly freeze-tolerant C. costata larvae. Our mass spectrometry (MS) 

analysis, which covered 49 metabolites, likely comprehensively represented the most abundant 

metabolites. We base this assumption on the following arguments: 

• The total osmolarity of cold acclimated (SDA) larval hemolymph approximates 700 

mOsmol kg-1 (Rozsypal et al., 2018). Our MS analysis accounted for 554 mmol l-1 of 

this osmolarity attributed to the 49 metabolites. 

• Metal cations, primarily Na+ and K+, occupy roughly 80 mmol l-1 within the 

hemolymph (Olsson et al., 2016; Štětina et al., 2018). 

• An equivalent concentration of approximately 70 mmol l-1 is anticipated for anions, 

encompassing Cl-, HCO3-, and proteins, with a 10 mmol l-1 allowance to 

accommodate negatively charged metabolites like aspartate, glutamate, and TCA 

intermediates. 

• Calculations, as follows [700 – 554 – (80 + 70) = -4], indicate no unexplained 'osmotic 

gap' between the cumulative molar concentrations of the 49 metabolites and the 

hemolymph osmolality. 

The putative components of the CP mixture were identified based on their significant 

accumulation during larval cold acclimation.The identified composition of this mixture consists 

of proline, trehalose, glutamine, asparagine, betaine, GPE, GPC, and sarcosine, with 

concentrations in hemolymph at a ratio of 313:108:55:26:6:4:2.9:0.5 mmol l−1. Notably, this CP 

mixture exhibits similarities to cocktails found in various organisms exposed to different 

environmental stressors (Somero, 1986; Yancey, 2005; Choi et al., 2011; Gertrudes et al., 2017). 

This similarity suggests that the presence of these organic cytoprotectants and compatible 

osmolytes across different organisms likely results from convergent evolution, favoring the 

accumulation of polar, water-soluble molecules with high solubility and low toxicity (Hochachka 

& Somero, 2002). 

The CP mixture in C. costata likely evolved as a functional adaptation to help larvae survive 

overwintering in a sub-arctic climate zone. These larvae overwinter in cold yet thermally stable 

microenvironments under fallen tree bark, often shielded by snow (Band & Band, 1982; 

Grimaldi, 1986). They are susceptible to external ice crystal formation at temperatures just 

below 0⁰C and can survive after the formation of extracellular ice (Rozsypal et al. 2018). 

Diapause, cold-acclimated larvae (SDA) exhibit significantly higher freeze tolerance compared 

to non-diapause, warm-acclimated larvae (LD). While LD larvae have lower survival limits at 

around -5⁰C, SDA larvae can endure freezing at temperatures as low as -100⁰C (Shimada & 

Riihimaa, 1988; Shimada, 1990) and even withstand long-term cryopreservation in liquid 

nitrogen (Moon et al., 1996, Koštál et al., 2011; Rozsypal et al., 2018). 
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In our study, we conducted a bioassay, demonstrating that supplementing the larval diet 

with the major components of the CP mixture, namely proline, trehalose, glutamine, 

asparagine, and betaine, in their natural stoichiometric ratio, transformed freeze-sensitive LD 

larvae into freeze-tolerant, cryopreservable larvae within just three days. Moreover, we found 

that the components of the mixture work in synergy, where the complete mixture's effect 

surpasses the simple addition of individual component effects. These results suggest that 

different components may play specific roles, opening avenues for further investigation. 

Next, we analyzed the adaptive metabolic modifications that occurred in C. costata larvae 

as they transitioned from a freeze-sensitive to a freeze-tolerant phenotype while entering 

winter diapause and undergoing subsequent cold acclimation. Our analysis involved the 

profiling of 56 metabolites, utilizing liquid chromatography and high-resolution mass 

spectrometry (LC-HRMS), as well as the assessment of the relative expression levels of 95 key 

genes encoding metabolic enzymes and transport systems. This comprehensive analysis 

covered metabolic pathways involving all three major chemical groups of potential 

cryoprotectants (CPs). 

We examined changes in 56 metabolites and 95 genes, mapping them onto schematic 

pathways for proline, trehalose, and betaine (see paper I for figures). It is important to note 

that these schematic maps do not specify cell types but differentiate between cytosolic and 

extracellular spaces.  

• Proline primarily comes from dietary intake, which contradicts initial expectations. 

We have also confirmed partial synthesis from precursors like glutamine, glutamate, 

and ornithine, with a minor contribution from proteins, particularly collagens. 

•  Trehalose mainly derives from glycogen, a known and confirmed source (Storey & 

Storey, 2012), and there may be a partial contribution from the diet. 

•  Betaine sources, including GPC, GPE, DMG, and sarcosine, primarily originate from 

choline released through phospholipid conversions. Our 13C labeling experiments 

confirmed that glycine is not a contributing source. 

 

• Physico-chemical behavior of CPs in vivo during slow inoculative freezing 

In our research, we employed the MALDI-MSI technique to explore the distribution of 

cryoprotectants (CPs) within larval tissues. This application marks a novel addition to 

cryobiology literature as it allowed us to examine changes in CP localization during gradual 

extracellular freezing for the first time. Typically, CP concentrations in insects have been 

reported in whole body samples due to challenges in estimating precise concentrations in small 

insect tissues and the belief that native CPs move freely across membranes. Our study 

confirmed that SDA larvae of C. costata accumulate putative CPs in all examined tissues, but 

with the highest concentrations and contents found in the hemolymph. For instance, the pool 
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of the insect 'blood sugar', trehalose (Thompson, 2003; Mullins, 1985) in cold acclimated larval 

hemolymph was about 16 times larger than in the fat body or midgut and 64 times larger than 

in muscle tissue. Other metabolites, however, showed tissue-specific predominance. For 

instance, maltose was primarily found in the midgut, reflecting the digestion of dietary starch 

(Applebaum, 1985). Muscles had enriched levels of arginine and arginine phosphate, related to 

their role as energy stores in insect muscle (Beis & Newsholme, 1975). Aspartate and glutamate 

were prevalent in all tissues due to their central role in amino acid metabolism (Champe & 

Harvey, 1994). Tissues also contained abundant glutathione, known for its role in cellular redox 

balance (Sies, 1999). 

One significant finding in our study concerns the behavior of the two main CP components, 

proline and trehalose, during slow extracellular freezing. The MALDI-MSI analysis revealed that 

trehalose mainly remains in its original location before freezing, concentrating in partially 

freeze-dehydrated hemolymph and tissues. In contrast, proline molecules appear to migrate 

out of the hemolymph and tissues and concentrate in thin layers separating extracellular ice 

crystals from freeze-dehydrated tissues and hemolymph. The underlying mechanisms behind 

this delocalization and its functional significance in cryopreserved insects are still hypothetical 

and speculative. Differences in water solubility, glass transition initiation, and mobility in 

freeze-concentrated solutions may explain this phenomenon. 

Furthermore, our study emphasizes the importance of the glass transition phenomenon 

during the gradual freezing of SDA larvae. This transition occurred within the temperature 

range of -20°C to -30°C. Notably, only larvae pre-frozen to temperatures below -30°C, 

effectively below the glass transition temperature, survived sudden submersion and 

cryopreservation in liquid nitrogen. This underscores the critical role of the glass transition 

process in ensuring survival under these conditions. 

In contrast to previous research attributing glass formation primarily to high proline 

concentrations, our investigation using differential scanning calorimetry (DSC) affirmed that 

proline, even at a concentration of 978 mmol kg−1, does not induce the glass transition (at least 

not at temperatures down to -60°C) (Rudolph & Crowe, 1986; Rozsypal et al., 2018). Instead, 

our study recognized trehalose as a potent inducer of the glass transition in C. costata tissues, 

which is in accordance with the knowledge on trehalose glassification in the in vitro aqueous 

systems (Green & Angell, 1989; Chen et al., 2000; Cesaro et al., 2008). 

Regarding the viscoelastic properties of proline, it's essential to note that, unlike trehalose, 

proline does not initiate the glass transition (Rasmussen et al., 1997; Liu et al., 2020) and 

exhibits extensive solubility in water, potentially exceeding 15 mol kg−1 (Held et al., 2014; Qiu et 

al., 2019). Nonetheless, principles from physical chemistry indicate that proline, when present 

at high concentrations, can form a viscoelastic liquid (McLain et al., 2007; Troitzsch et al., 2008; 

de Molina et al., 2017) similar to non-aqueous deep eutectic systems (NADES) (Choi et al., 

2011). These liquids are known for their distinctive properties, including a significantly 

depressed melting point, inhibited ice crystallization, and an enhanced propensity for 
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amorphous glass formation. The elements within a complex mixture that form NADES are 

connected to each other through a highly structured three-dimensional network, characterized 

by optimal interactions involving both intermolecular and intramolecular hydrogen bonding 

(Dai et al., 2013; Dai et al., 2015). 

Our study postulates that within slowly freeze-dehydrating larvae, a proline-dominated 

viscoelastic solution with properties resembling NADES may form locally at a microscale level. 

As water molecules migrate from gradually dehydrating hemolymph and tissues toward 

extracellular ice during extracellular freezing, proline molecules, highly soluble and mobile, may 

accompany this movement. This phenomenon results in the creation of a thin, highly 

concentrated layer of proline, observed via MALDI-MSI. This viscoelastic liquid likely contributes 

to the stabilization of deeply frozen C. costata larvae by forming a rubber-like intermediate 

zone located between extracellular ice crystals and freeze-dehydrated tissues. Consequently, 

this process aids in alleviating the thermo-mechanical stresses associated with temperature 

fluctuations during the immersion of larvae in liquid nitrogen and subsequent rewarming. 

 

• Protective roles of CPs during extracellular freezing and cell freeze dehydration 

Furthermore, we investigated how insects protect their soluble enzymes and cell 

membranes when exposed to freezing. Our main goal was to determine if the proposed 

mechanisms for freezing injury and the effectiveness of CPs could be confirmed or disproven. 

It's worth noting that this idea mainly comes from existing literature, which mainly relies on in 

vitro experiments. Our study, on the other hand, is the first to directly examine these processes 

using in vivo assays. 

We began by assessing the in vivo response of several distinct soluble enzymes in 

freeze-sensitive C. costata larvae when exposed to freezing temperatures. These enzymes 

included glucose 6-P dehydrogenase (G6PDH), citrate synthase (CS), lactate dehydrogenase 

(LDH), phenoloxidase (PO), matrix metalloproteinases (MMPs), amylases and maltases, and 

glycogen phosphorylase. Our experiments revealed that freezing stress did not lead to 

complete loss of enzyme activity, with only minor decreases observed in some cases. 

Specifically, G6PDH in muscle and certain enzymes in the midgut experienced statistically 

significant reductions in activity. This outcome aligns with the extensive body of literature 

pertaining to vertebrate (Tamiya et al., 1985; Carpenter & Crowe, 1988; Lippert & Galinski, 

1992) and insect enzymes (Storey et. al., 1991) that have shown susceptibility to in vitro 

freezing-induced inactivation. Intriguingly, freezing stress even stimulated the activity of 

prophenoloxidase in the hemolymph. To validate our findings, we conducted experiments using 

samples from two other insect species: D. melanogaster larvae and Locusta migratoria tibial 

levator muscle. The results aligned with our initial observations, underscoring the preservation 

of enzymatic activities in soluble enzymes found in various biological solutions within C. 

costata, including hemolymph, alimentary canal, extracellular matrix, cytosol, and 
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mitochondrial matrix of muscle and fat body cells, during freezing stress in vivo. To further 

investigate the behavior of soluble enzymes during freezing stress, we subjected total protein 

extracts from C. costata larvae to freezing in vitro. Soluble enzymes were susceptible to loss of 

activity upon freezing in vitro in a diluted aqueous solution, often resulting in complete or near-

complete inactivity. However, we found that the addition of various CPs and other compounds 

at low concentrations effectively protected enzyme activity during freezing in vitro. These 

results show that soluble enzymes are more sensitive to freezing stress in vitro than in their 

native biological environment, which is characterized by a crowded milieu of microsolutes and 

macromolecules.  

We explored the protective potential of different additives in preserving enzyme activity 

during freezing stress in vitro. Low concentrations of various CPs and macromolecules were 

found to be sufficient to shield enzymes from loss of activity during freezing. Notably, five 

components of the C. costata native cryoprotectant mixture displayed protective abilities, with 

glycerol and bovine serum albumin (BSA) demonstrating similar cryoprotective effects. Urea 

and potassium (K+) failed to protect enzyme activity at any concentration tested. Furthermore, 

we examined the interactions between proline and trehalose, two major CPs, and their 

protective effects under different conditions. Our experiments have illuminated a significant 

observation: the loss of enzyme activity can be effectively prevented by the addition of low 

concentrations of various CPs and other microsolutes, including the artificial compound 

HistoDenz, to the freezing medium. Even at concentrations as low as a few millimolars (mM), 

these compounds were found to be sufficient to entirely safeguard the enzymes from activity 

loss upon freezing. This finding closely corresponds to an earlier investigation conducted by 

Storey et al. (1991), which reported remarkably similar low P50 values (ranging from 7 to 25 

mM) for various sugars, polyols, and amino acids in protecting G6PDH from freeze inactivation 

across different species, including a fly (Eurosta solidaginis), a moth (Epiblema scudderiana), 

and yeast. 

Furthermore, in addition to these microsolutes, native biological solutions were 

observed to contain macromolecules – proteins at total concentrations ranging from 50 to 400 

mg/mL (Chebotareva et. al. 2004). In our study, we have demonstrated that the inclusion of 

macromolecules, such as BSA or Ficoll, into the in vitro freezing medium at concentrations as 

low as 4–40 mg/mL sufficed to completely safeguard the insect enzymes from activity loss 

during freezing. 

It is noteworthy that when compared to insect enzymes, purified mammalian enzymes 

necessitated higher concentrations of CP microsolutes, often in the range of hundreds of mM, 

to protect against activity loss during in vitro freezing (Tamiya et. al., 1985; Carpenter & Crowe, 

1988). However, mammalian enzymes were also effectively shielded by extremely low 

concentrations, typically between 0.02–0.25 mg/mL, of macromolecular compounds such as 

polyethylene glycol or BSA, or by increasing the concentration of the enzyme itself through self-

protection mechanisms. Notably, some vertebrate enzymes were observed to survive freeze-
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thaw cycles when frozen within tissues, such as succinate dehydrogenase and cytochrome 

oxidase in rat heart (Hart et. al., 1972) or sarcoplasmic ATPase and aldolase in fish meat. These 

enzymes exhibited significant activity loss only upon prolonged frozen storage (Connel, 1966; 

Yamanaka & Mackie, 1971). 

These findings underscore a critical distinction between typical enzymatic assays conducted 

under low enzyme concentrations within dilute in vitro solutions and assays conducted in vivo 

or under conditions simulating "molecular crowding", a characteristic feature of all living 

organisms (Chebotareva et. al., 2004). Consequently, microsolutes and macromolecules that 

are ubiquitous in the biological solutions of all organisms may serve as adequate stabilizers for 

various soluble enzymes during freezing stress. Microsolutes likely operate through the 

mechanism of "preferential exclusion," (Timasheff, 1992b, 1993, 2002), while macromolecules, 

whether natural (e.g., BSA) or synthetic (e.g., Ficoll), may stabilize enzymes in their compact 

native states through the mechanism of nonspecific steric repulsion, often referred to as the 

"excluded volume effect". This effect arises from the mutual impenetrability of solute 

molecules (Minton, 2000; Fiorini et. al., 2015). 

In summary, our findings suggest that soluble enzymes in insects are sufficiently 

protected against activity loss when exposed to freezing conditions in vivo, within their native 

biochemical environment, characterized by a biological solution crowded with various 

microsolutes and macromolecules. However, it is essential to exercise caution when 

extrapolating the validity of this hypothesis from soluble enzymes to all proteins. Specifically, 

the stability under freezing stress of large polymeric protein complexes, nucleoprotein 

multimeric complexes such as ribosomes, or membrane-embedded protein complexes should 

be further investigated. 

Additionally, we assessed the integrity of fat body cell plasma membranes in freeze-

sensitive and freeze-tolerant C. costata larvae exposed to freezing stress. Our results indicated 

that freeze-tolerant larvae exhibited significantly better ability to maintain membrane integrity 

compared to freeze-sensitive larvae when subjected to freezing stress, both in vivo and in vitro. 

We also found that the freeze-tolerant hemolymph contained components that effectively 

preserved membrane integrity during freezing stress. Furthermore, we tested various additives 

for their ability to protect fat body cell plasma membranes in vitro. Proline, trehalose, and BSA 

displayed partial protection for freeze-sensitive phenotype cells. Freeze-tolerant phenotype 

cells, on the other hand, showed complete membrane integrity rescue when exposed to a 

mixture of proline, trehalose, and BSA. 

The preservation of membrane integrity through the addition of CPs and proteins has 

been demonstrated as a crucial process for maintaining cell integrity during freezing stress. In 

accordance with the widely recognized theory of freezing injury mechanisms, our experimental 

findings validate that the plasma membranes of freeze-sensitive C. costata larval phenotypes 

lose their barrier function under in vivo lethal freezing stress. In contrast, the freeze-tolerant 

phenotype exhibits almost no loss of membrane integrity. It is worth noting that the plasma 
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membrane is considered a primary target of cold and freezing injury in plants (Steponkus, 1984) 

and mammalian cells (Mazur, 1984; Drobnis et. al. 1993). 

Another noteworthy observation from this study pertains to the freeze-tolerant C. 

costata larval hemolymph, which appears to contain components essential for preserving 

plasma membrane integrity during freezing stress. We assessed the cryoprotective capabilities 

of the micromolecular constituents previously identified within the hemolymph of the freeze-

tolerant phenotype, in conjunction with the macromolecular protein, bovine serum albumin 

(BSA). The combination of three additives in Schneider's medium - proline, trehalose, and BSA - 

proved sufficient to fully safeguard membrane integrity during in vitro freezing stress applied to 

fat body cells of freeze-tolerant larvae, reducing the incidence of freezing injury from 95% to 3% 

of cells. These same additives were also effective in partially mitigating freezing injury in freeze-

sensitive phenotype cells, reducing it from 94% to 64-68%. These results suggest an interactive 

effect between cell phenotype and the composition of the freezing medium on membrane 

integrity. However, the precise mechanisms driving this interaction remain unclear, although 

acclimation-related changes in the lipid composition of the cell membrane may play a pivotal 

role (Koštál et. al., 2003). 

Among the three additives (proline, trehalose, and BSA), BSA demonstrated the highest 

efficacy in preserving membrane integrity for both freeze-sensitive and freeze-tolerant 

phenotypes. We employed BSA to simulate the high concentrations of serum proteins 

accumulated by many insects prior to metamorphosis (Powell et. al. 1984; Telfer & Kunkel, 

1991). Furthermore, late third-instar C. costata larvae, as used in this study, exhibit elevated 

concentrations of serum proteins and total proteins in the hemolymph, measuring 100 and 160 

mg/mL for freeze-sensitive and freeze-tolerant phenotypes, respectively. BSA and other 

nonpermeable compounds like sucrose, Ficoll, polyethylene glycol, and hydroxyethyl starch are 

frequently added to cryopreservation solutions for mammalian sperm (Hidalgo et. al., 2018). 

These compounds are believed to indirectly aid in maintaining membrane integrity by 

influencing thermal transitions in the extracellular medium (including the kinetics of ice crystal 

growth and morphology and glass transition temperatures) (Oldenhof et. al., 2013; Hornberger 

et. al., 2021) or by reducing membrane lipid peroxidation caused by reactive oxygen species 

(Cabrita et. al., 2001). Nevertheless, the precise mechanism underlying BSA's high effectiveness 

in preserving C. costata's membrane integrity remains unknown. Other nonpermeable 

compounds, such as sucrose and Ficoll, exhibited little to no cryoprotective effects on C. costata 

fat body cell membranes. Further research is warranted to elucidate how the plasma 

membrane's permeability to various additives influences their efficacy as cryoprotectants. 

Our functional assays provide additional support for earlier studies where insect fat 

body cells were subjected to freezing stress in vitro, followed by the assessment of plasma 

membrane integrity using vital dyes. For instance, fat body cells of Eurosta solidaginis larvae, 

when frozen to -25 °C in Grace's insect medium, displayed an increase in intact plasma 

membrane proportions from less than 20% to 80% when the medium was augmented with 1 M 
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glycerol (Lee et. al., 1993). Similarly, fat body cells of the cricket Gryllus veletis, frozen to -12 °C 

(in warm-acclimated crickets) or -16 °C (in cold-acclimated crickets) in Grace's medium, with or 

without different CPs, exhibited enhanced survival rates with intact plasma membranes when 

myo-inositol, trehalose, and glycerol were added to the medium (Toxopeus et al., 2019b). This 

study also suggested that individual CPs have differential impacts on survival in the frozen state, 

are not interchangeable, and likely function non-colligatively in insect freeze tolerance. In our 

present investigation, no single CP or combination of CPs was sufficient to confer high freeze 

tolerance to warm-acclimated cricket cells. However, in cold-acclimated crickets, the 

proportion of cells with intact membranes after freezing stress increased to approximately 75% 

when a combination of myo-inositol plus trehalose or glycerol alone was added (Toxopeus et 

al., 2019b). 

In conclusion, our study shows that membrane integrity plays a crucial role in cell 

survival during freezing, with proline, trehalose and BSA showing promising cryoprotective 

effects. Further research is needed to explore the complex interactions between CPs and 

membrane protection and to understand the downstream effects of membrane integrity loss 

on cell viability. 
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4. Conclusions and prospects 
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• Diversity and biosynthesis of cryoprotectants (CPs) 

Metabolomics revealed the intricate composition of the naturally accumulated larval 

cryoprotectant mixture, mainly comprising proline and trehalose, complemented by additional 

minor components such as glutamine, asparagine, betaine, sarcosine, glycerophospho-choline, 

and ethanolamine. Our findings emphasize the critical role of food ingestion for direct amino 

compound assimilation, while glycogen and phospholipids serve as the primary internal sources 

for cryoprotectant biosynthesis. 

Potential avenues for future research include: 

• Extending metabolomic analyses to describe the complex cryoprotectant mixtures in 

various insect species, shedding light on species-specific adaptations. 

• Further investigations into the relative importance of dietary intake versus internal 

sources for cryoprotectant biosynthesis, expanding our understanding of these 

mechanisms. 

• Exploring the roles of diapause and cold acclimation in shaping the composition of 

cryoprotectants in insects, contributing to a more comprehensive comprehension of 

seasonal adaptations. 

 

• Physico-chemical behavior of CPs in vivo during slow inoculative freezing 

The application of MALDI-MSI offered insights into the behavior of cryoprotectants 

during ecologically relevant gradual extracellular freezing of larvae. Trehalose accumulated in 

partially dehydrated hemolymph, prompting a transition to the amorphous glass phase, while 

proline moved to the boundary between extracellular ice and dehydrated hemolymph and 

tissues, forming a layer of dense viscoelastic liquid. 

Potential avenues for future research include: 

• Delving into the physical chemistry of these complex cryoprotectant mixtures, aiming to 

uncover the thermodynamic properties and molecular interactions that govern their 

unique characteristics. 

• Elucidating the thermal behavior of these intricate mixtures, providing insights into their 

responses to temperature changes, phase transitions, and other relevant thermal 

phenomena. 

• Investigating the potential involvement of Natural Deep Eutectic Solvents (NADES) in 

cryoprotectant mixtures could provide a deeper understanding of their role in insect 

cold tolerance and adaptation. 
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• Protective roles of CPs during extracellular freezing and cell freeze dehydration 

A combination of in vivo and in vitro assays suggests that cell membranes are 

susceptible to freezing injury, with their integrity supported by the presence of small 

cryoprotective molecules and proteins in cold-acclimated C. costata larvae. Surprisingly, our 

assays did not support the hypothesis that proteins, specifically soluble enzymes, require in vivo 

stabilization through cryoprotectant accumulation. 

Potential avenues for future research include: 

• Exploring the stability of complex assemblages involving proteins, membranes, or 

proteins with DNA or RNA. These investigations aim to shed light on the interactions and 

behaviors of other, more complex biological components under freezing conditions. 
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