

1

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Systems Engineering

Master's Thesis

Delivery Route Planner web Application

Ahmed Tebakhi

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
Bc. Ahmed Tebakhi

Systems Engineering and Informa cs
Informa cs

Thesis tle

Delivery Route Planner web Applica on

Objec ves of thesis
This diploma thesis focuses on designing and implemen ng a web applica on for automated planning
that gets Route Planning Solu ons for local delivery company in Prague. The main goal of this applica on
is to reduce spending me on manual scheduling, sor ng out delivery management or specific route
op miza on details.

Methodology

The thesis will consist of two parts; the theore cal part will based on study Dijkstra’s Algorithm to finds
the shortest path between a given node (which is called the ”source node”) and all other nodes in a graph.
This algorithm uses the weights of the edges to find the path that minimizes the total distance (weight)
between the source node and all other nodes.

The prac cal part will start with analyzing the requirements, based on the requirements the database will
be implemented using SQL Server, based on Shortest Paths APIs also, then the applica on will be designed,
implemented and finally tested. The standard tools and methods of so ware engineering will be used
during the whole process. Based on both theore cal and prac cal parts, the conclusion will be formulated
and possible future development and improvements proposed.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
55-70 pages

Keywords
Route planning, Shortest path, Travelling salesman problem, Web applica on, logis c op miza on.

Recommended informa on sources
Akella, Ravindra, et al. Enterprise Applica on Development with C# 9 And . NET 5 : Enhance Your C# and .

NET Skills by Mastering the Process of Developing Professional-Grade Web Applica ons, Packt
Publishing, Limited, 2021. ProQuest Ebook Central,
h ps://ebookcentral-proquest-com.infozdroje.czu.cz/lib/czup/detail.ac on?docID=6507711.

Dincer, Alper, and Balkan Uraz. Google Maps API Cookbook, Packt Publishing, Limited, 2013. ProQuest
Ebook Central,
h ps://ebookcentral-proquest-com.infozdroje.czu.cz/lib/czup/detail.ac on?docID=1572949.

Mancas, Chris an. Conceptual Data Modeling and Database Design: a Fully Algorithmic Approach, Volume
1 : The Shortest Advisable Path, Apple Academic Press, Incorporated, 2015. ProQuest Ebook Central,
h ps://ebookcentral-proquest-com.infozdroje.czu.cz/lib/czup/detail.ac on?docID=4003224.

Shortest Path Solvers. from So ware to Wetware, edited by Andrew Adamatzky, Springer Interna onal
Publishing AG, 2018. ProQuest Ebook Central,
h ps://ebookcentral-proquest-com.infozdroje.czu.cz/lib/czup/detail.ac on?docID=5372081.

Expected date of thesis defence
2022/23 SS – FEM

The Diploma Thesis Supervisor
doc. Ing. Ludmila Dömeová, CSc.

Supervising department
Department of Systems Engineering

Electronic approval: 16. 11. 2022

doc. Ing. Tomáš Šubrt, Ph.D.
Head of department

Electronic approval: 28. 11. 2022

doc. Ing. Tomáš Šubrt, Ph.D.
Dean

Prague on 30. 03. 2023

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

2

Declaration

I declare that I have worked on my master’s thesis titled “Delivery Route Planner web

Application" by myself and I have used only the sources mentioned at the end of the thesis. As the

author of the master's thesis, I declare that the thesis does not break any copyrights.

In Prague on 2023 ___________________________

Ahmed Tebakhi

3

Acknowledgement

First of all, I would like to thank my family for their continuous encouragement, support

and love. They have always been there for me in times of my need in all aspects of life.
I would like to show my gratitude to my thesis supervisor doc. Ing. Ludmila Dömeová,

CSc, for her great support and understanding in the completion of this thesis. Prof. Ludmila
Dömeová was always clear and willing to answer whenever I had a question about my thesis
research and writing.

 I would also like to thank my teachers, my classmates and the academic staff of the

Systems Engineering and Informatics of the Czech University of Life Sciences, Prague, who
always supports me in the learning process.

Finally, I would like to thank my friends for their continuous support and motivation to

complete the thesis. I also want to wish them a bright future and success in their life.

4

Delivery Route Planner web Application

Abstract

Delivery web applications have become integral to people's lives, especially in today's fast-paced

world. With the convenience of ordering anything from the comfort of their homes or workplaces,

people rely on delivery apps for everything from food to groceries, medicine, and even furniture.

Delivery apps offer a hassle-free way to get what people need without leaving their homes or

dealing with the stresses of traffic and parking. The ease of use and reliability of delivery apps

have made them essential tools for people to manage their busy lives efficiently.

Delivery Route Planner web Application helps businesses optimize their delivery operations

through a Delivery Route Planner web application. Based on delivery addresses, the software

generates an optimized route plan based on factors such as traffic, distance, and time windows. It

provides real-time tracking of drivers and deliveries and analytics and reporting tools for

monitoring and optimizing operations. User-friendly interface with real-time driver and delivery

statuses and analytics and reporting tools for monitoring performance allows businesses to easily

manage delivery addresses, view driver and delivery statuses, and manage their deliveries. Users

can also customize parameters such as delivery time windows and driver availability to suit their

requirements. Fuel costs can be reduced, driver overtime can be minimized, and customer

satisfaction can be increased by optimizing delivery routes. Small start-ups and large enterprises

alike can use Delivery Route Planner, which is scalable. Business owners looking to improve their

delivery operations and increase profit can benefit significantly from Delivery Route Planner.

Business operations can be streamlined, costs can be reduced, and products can be delivered faster

and more efficiently by leveraging route optimization technology.

Keywords: Route planner solution, travel salesman problem, MySQL, database, JavaScript,

React, Node.js, Web App, TomTom API, Delivery logistic system.

5

Webová aplikace plánovač doručovacích tras

Abstrakt

Doručovací webové aplikace se staly nedílnou součástí života lidí, zejména v dnešním uspěchaném

světě. Díky pohodlí objednat si cokoli z pohodlí domova nebo pracoviště se lidé spoléhají na

aplikace pro doručování všeho, od jídla po potraviny, léky a dokonce i nábytek. Doručovací

aplikace nabízejí bezproblémový způsob, jak získat to, co lidé potřebují, aniž by museli opouštět

své domovy nebo řešit stres z provozu a parkování. Snadné použití a spolehlivost doručovacích

aplikací z nich udělaly základní nástroje pro lidi, aby mohli efektivně řídit svůj rušný život.

Webová aplikace Delivery Route Planner pomáhá podnikům optimalizovat jejich doručovací

operace prostřednictvím webové aplikace Delivery Route Planner. Na základě dodacích adres

software vygeneruje optimalizovaný plán trasy na základě faktorů, jako je provoz, vzdálenost a

časová okna. Poskytuje sledování řidičů a dodávek v reálném čase a analytické a reportovací

nástroje pro monitorování a optimalizaci provozu. Uživatelsky přívětivé rozhraní se stavy

ovladačů a dodávek v reálném čase a analytickými a reportovacími nástroji pro monitorování

výkonu umožňuje podnikům snadno spravovat dodací adresy, zobrazovat stavy řidičů a dodávek

a spravovat své dodávky. Uživatelé si také mohou přizpůsobit parametry, jako jsou dodací lhůty a

dostupnost řidiče, aby vyhovovaly jejich požadavkům. Optimalizací dodacích tras lze snížit

náklady na palivo, minimalizovat přesčasy řidiče a zvýšit spokojenost zákazníků. Malé start-upy i

velké podniky mohou využívat Plánovač tras doručení, který je škálovatelný. Majitelé podniků,

kteří chtějí zlepšit své doručovací operace a zvýšit zisk, mohou výrazně těžit z Plánovače tras

doručení. Obchodní operace lze zefektivnit, snížit náklady a dodávat produkty rychleji a

efektivněji využitím technologie optimalizace trasy.

Klíčová slova: Řešení plánovače tras, problém s cestovním prodejcem, MySQL, databáze,

JavaScript, React, Node.js, Web App, TomTom API, Logistický systém dodávek.

6

Table of Contents

1. Introduction ... 8

2. Objectives and Methodology .. 9

2.1 Objectives ... 9

2.1 Methodology .. 9

3. Literature Review ... 10

3.1 Dijkstra’s Algorithm: The Shortest Path Algorithm .. 10

3.1.1 Purpose and Use Cases ... 10

3.1.2 Dijkstra's History .. 10

3.1.3 Introduction to Graphs .. 11

3.1.4 Dijkstra Algorithm implementation .. 12

3.1.5 Dijkstra algorithm Pseudocode code .. 12

3.2 TomTom — Mapping and Location Technology .. 14

3.2.1 TomTom's Map Display API .. 14

3.2.2 Matrix Routing services .. 15

3.3 The Travel Salesman Problem ... 17

3.3.1 Traveling-salesman Problem implementation .. 18

3.4 React JavaScript Library .. 19

3.4.1 Most Important React libraries ... 20

3.5 Tailwindcss Library.. 22

3.6 MySQL Database ... 23

3.7 Unified Modeling Language .. 24

3.8 UI/UX Design .. 28

4. Practical Part ... 29

4.1 Functional Requirements.. 29

4.2 Non-Functional Requirements ... 29

4.3 Analysis model ... 30

4.4 Static model .. 30

4.5 Dynamic model .. 31

4.5.1 Use case diagram: ... 31

4.5.2 Sequence diagram: .. 32

5. Implementation of web application ... 34

5.1 UI/UX design ... 34

7

5.1.1 Login Page .. 34

5.1.2 Main Page ... 34

5.1.3 Add Order page ... 35

5.1.4 Add driver page... 36

5.1.5 Order List page ... 36

5.2 Client-side .. 37

5.2.1 React application platform installation ... 37

5.2.2 Axios Installation .. 38

5.2.3 TomTom API installation ... 38

5.2.4 Create React Components ... 39

5.3 Server side .. 49

5.4 Database ... 52

5.4.1 MySQL Reference Manual ... 52

5.4.2 MySQL Workbench .. 53

6. Results and Discussion .. 57

7. Conclusion ... 60

8. References .. 61

9. Table of figures .. 62

10. Table of source code.. 63

11. List of symbol and Abbreviation ... 64

8

1. Introduction

The transportation and logistics industry is undergoing a rapid transformation, driven by
the growth of e-commerce and the increasing need for fast and efficient delivery services.
Delivery companies are pressured to optimize operations and reduce delivery times while
maintaining high customer service standards. One of the critical challenges delivery companies
face is planning delivery routes. With multiple stops to make and various constraints to
consider, route planning can be a time-consuming and complex task. To address this challenge,
advanced route planning systems have been developed that use algorithms to calculate the most
efficient delivery routes. These systems consider distance, traffic, delivery volume, and time
windows to create optimized routes that minimize delivery times and costs. However, such
systems can be expensive and complex, making them inaccessible to smaller delivery
companies.

A more cost-effective and accessible solution is a web application that enables delivery
companies to create optimized delivery routes. A web application can be accessed from any
device with an internet connection, allowing delivery companies to plan their routes from
anywhere. It can also be designed to be user-friendly and easy to use, making it accessible to
delivery drivers and operations staff with minimal training. In this diploma thesis, we will
present the design and development of a web application for delivery route planning.

The thesis aims to provide a user-friendly and efficient tool for delivery companies to
improve their operations and enhance customer satisfaction. The web application will be
designed to consider the specific needs and requirements of delivery companies, such as the
number of stops, delivery windows, and the size of the delivery vehicles.

Providing a cost-effective and accessible solution for delivery companies of all sizes, the
web application for delivery route planning can potentially revolutionize the delivery industry.
By improving their delivery operations, delivery companies can reduce costs, improve
customer satisfaction, and gain a competitive edge in the rapidly evolving transportation and
logistics industry.

Modern businesses constantly look for ways to improve their delivery processes to save
money and time while improving the customer experience. A delivery route planner web
application is one of the most effective ways to achieve this. By using this software tool,
businesses can plan their delivery routes most efficiently, considering factors such as traffic,
delivery time windows, and vehicle capacity. Thus, businesses can reduce delivery costs,
improve delivery times, and provide better customer service. This article aims to examine the
benefits of using a delivery route planner web application and how it can help businesses
streamline their delivery process.

9

2. Objectives and Methodology

2.1 Objectives

 This diploma thesis focuses on designing and implementing a web application for
automated planning that gets Route Planning Solutions for a local delivery company in Prague.
The main goal of this application is to reduce spending time on manual scheduling, sorting out
delivery management, or specific route optimization details.

2.1 Methodology

 The theoretical portion of the thesis will be centered on examining Dijkstra's Algorithm,
which determines the shortest path between a specified node (referred to as the "source node")
and every other node in a graph. In order to determine the path that minimizes the overall
distance (weight) between the source node and all other nodes, this technique uses edge
weights.

 The practical part will start with analyzing the requirements; based on the requirements,
the database will be implemented using SQL Server and Shortest Paths APIs. Then, the
application will be designed, implemented, and finally tested. The standard software
engineering tools and methods will be used throughout the process. The conclusion will be
formulated based on both theoretical and practical parts, and possible future development and
improvements will be proposed.

10

3. Literature Review

3.1 Dijkstra’s Algorithm: The Shortest Path Algorithm

3.1.1 Purpose and Use Cases

A graph's shortest path can be found with Dijkstra's Algorithm. The shortest path tree is
generated by finding the shortest path between a node (called the "source node") and all other
nodes in the graph.

GPS devices use this algorithm to find the shortest path between their location and
destination. It has broad applications in industry, especially in domains that require modeling
networks.

3.1.2 Dijkstra's History

 Mathematician and computer scientist Edsger Wybe Dijkstra was from the Netherlands.
He passed away in Nuenen on August 6, 2002, and was born on May 11, 1930, in Rotterdam,
Netherlands. Before accepting a professorship at the University of Texas at Austin in 1984,
Dijkstra held academic positions as a researcher and professor in the Netherlands. The Dijkstra
algorithm, one of the most well-known in computer science, was developed by Dijkstra while
working as a programmer at the Mathematical Center in Amsterdam in 1956 to showcase the
capabilities of a brand-new computer named ARMAC. His goal was to select both a computer-
generated problem and a solution that non-computer experts could grasp. His most outstanding
achievement was coming up with the. His invention of the structured programming paradigm
for creating computer programs made him most famous.

 Brilliant Dutch computer scientist and software engineer Dr. Edsger W. Dijkstra developed
and published this approach. Dr. Dijkstra described the algorithm's creation process and
motivations in an interview from 2001 (sauer-utley, 2020):

Figure 1 describes Dr. Dijkstra’s speech (Dijkstra, 2001).

11

3.1.3 Introduction to Graphs

Real-time objects, persons, or other entities are called nodes (or vertex) in graphs, data
structures designed to describe connections between a few of these elements. The connections
between nodes are referred to as edges. Moreover, two nodes are only linked if an edge exists
between them.

Generally, graphs are suited to real-world applications, such as graphs illustrating a

transportation system/network, where nodes represent facilities that transfer or obtain products.
Edges show routes or subways connecting nodes.

Graphs can represent complex relationships between objects and are thus helpful for

modeling and analyzing real-world systems, such as transportation networks.

One of the most common applications of graphs is to represent transportation systems. In

this context, nodes represent facilities that transfer or obtain products, and edges represent
routes or subways that connect those facilities. For example, a graph could be used to model a
city's subway system, with each station represented as a node, and each subway line
represented as an edge.

This representation allows us to analyze the transportation system in several ways, such as

using graph algorithms to find the shortest path between two stations or identify the most
efficient way to route products between different facilities.

Graphs can also be used to model social networks, where nodes represent individuals and

edges represent their relationships. This kind of representation can help us to understand how
information and influence spread through a network or to identify key individuals who play
essential roles in the network.

In addition to transportation and social networks, graphs can be applied to other real-world

systems. For example, they can be used to model the structure of molecules in chemistry, the
flow of electrical currents in circuits, or the connections between websites on the internet.

One of the strengths of graphs as a modeling tool is their flexibility.

They can be used to represent many different kinds of relationships and can be adapted to

suit the specific needs of a particular application. Additionally, many powerful algorithms have
been developed for analyzing and manipulating graphs, making them valuable tools for data
analysis and decision-making.

In conclusion, graphs are a versatile and powerful tool for modeling and analyzing real-

world systems. Their ability to represent complex relationships between objects makes them
well-suited to transportation and social network applications. With the right tools and
techniques, graphs can help us understand and optimize these systems in various ways..

12

3.1.4 Dijkstra Algorithm implementation

Dijkstra's algorithm starts with the source node, the node that will be chosen, and it looks
at the complete graph to find the shortest path between the source node and other nodes in the
graph. The method keeps track of the shortest path found so far between each node and the
source code and updates these values when a new shortest path is found.

After finding the short path between two nodes, we can make the node visited and be added
to the path once the algorithm has found the quickest route across the source code to another
node.

The process is repeated until all of the nodes in the graph have been added to the path,

creating a path that connects the source node to every other node while also taking the most
logically sound route to each node (Cormen, 2001).

Now describe the algorithm implementation procedure step by step:
 All nodes must initially be marked as "unvisited."
 Give the chosen starting node a distance of 0 and the remaining nodes a distance of

infinite.
 Fix the initial node to become the current node now.
 Add the current node's distance to the weight of the edge connecting the neighboring

node and the current node to calculate the distances between the current node and its
unexplored neighbors.

 Compare the most recent measurement to the distance already allocated to the
neighboring node, then set that distance as the new current distance for that node.

 Consider all of the current node's unvisited neighbors. After that, mark the current node
as visited, and then.

 When an algorithm ends, and the destination node has been marked as visited, stop.
 Instead, select the unvisited node marked with the shortest distance and set it as the

new current node before repeating the procedure from step 4 with the selected node.

3.1.5 Dijkstra algorithm Pseudocode code

 First, we called the distance from the source to the destination u is represented by dist[u]
in the following pseudocode algorithm, which is an array including the origin distances from
the source to other vertices. The shortest path from the origin point to the specified destination
is contained in the prior array via references to previous-hop nodes. In the vertex set Q, the
code u vertex in Q with min dist[u] looks for the vertex u with the lowest dist[u] value. The
function edges(u, v) returns the length of the edge connecting (or, more precisely, the distance
between) the neighboring nodes. The length of the path passing through [u] from the root node
to neighbor node v is represented by the variable alt on line 14. This alternative path will be
used instead of the shortest path recorded for [v] if it is cost less.

13

Figure 2 describes Dijkstra algorithm Pseudocode code (McConnell, 2004).

 If we are only interested in the shortest path between the destination's origin and destination
point, we can decide the result after ten lines if (u) = destination point. So, using reverse
iteration, we can read the shortest route between source and target:

Figure 3 describes Dijkstra algorithm Pseudocode code (McConnell, 2004).

 The collection of vertices making up one of the shortest pathways from source to target is
now known as sequence S or the empty sequence if no path is present.

 Finding the shortest routes between the source and the objective would be a more general
task (there might be several different ones of the same length). Then, we would store all nodes
meeting the relaxation condition instead of just one node in each item of prev. As the edge cost
is identical in all scenarios, we would add both r and source to prev [target] if, for instance,
both r and source connect to the target and lie on different shortest paths through the target.

14

3.2 TomTom — Mapping and Location Technology

TomTom is a leading provider of navigation and location-based services, offering a range
of APIs that enable developers to integrate TomTom's technology into their applications. There
has been growing interest in using TomTom's APIs in various industries, including
transportation, logistics, and urban planning. As a result, several studies and reviews of the
TomTom API have been conducted in academic and industry literature (Manson, 2017).

 These reviews generally focus on the strengths and limitations of the API, including its

accuracy, reliability, ease of use, and potential applications in various industries. Some studies
have also compared the TomTom API to other navigation and location-based services, such as
Google Maps and OpenStreetMap.

Overall, the literature review suggests that the TomTom API is a competent and versatile

tool for integrating location-based services into applications, with various potential
applications in various industries.

3.2.1 TomTom's Map Display API

TomTom's Map Display API is a web-based service allowing developers to embed
interactive maps and location-based services. The API offers a comprehensive set of tools and
functionalities that enable developers to create customized maps, add markers and annotations,
and display dynamic information related to specific locations.

With the Map Display API, developers can integrate maps and location-based services into

various applications, including fleet management systems, ride-hailing apps, logistics
platforms, and more. The API provides access to a global map database, which includes
detailed street-level maps, satellite imagery, and traffic data, enabling developers to create
highly detailed and accurate maps.

The Map Display API is designed to be easy to use and integrate into existing applications.

It supports multiple programming languages and platforms, including JavaScript, Python, and
Android. It provides a range of customization options, such as map styles, markers, and
overlays, allowing developers to create maps that match the branding and design of their
applications.

In addition to its core functionalities, the Map Display API offers advanced features, such

as real-time traffic data, geocoding and reverse geocoding, and routing and navigation services.
These features enable developers to create sophisticated location-based applications that
provide users with real-time information about traffic conditions, optimal routes, and nearby
points of interest.

Overall, TomTom's Map Display API provides developers with a powerful and flexible

tool for creating interactive maps and location-based services that enhance the user experience
of their applications.

15

3.2.2 Matrix Routing services

 Matrix Routing is a powerful feature of the TomTom API that allows developers to
calculate travel times and distances between multiple origins and destinations. This technology
is beneficial for optimizing logistics operations and planning efficient routes for fleets of
vehicles (Van der Zijpp, 1996).

 The Matrix Routing API takes a set of origins and destinations as input and returns a matrix
of travel times and distances between all pairs of points. This matrix can calculate the shortest
or fastest route between any two points or optimize a complex routing problem involving
multiple stops and vehicles.

 The input to the API can be provided in several formats, including addresses, coordinates,
or a combination of both. The API also allows users to specify additional parameters such as
travel mode (driving, walking, or cycling), traffic conditions, and vehicle profiles.

 One of the critical advantages of Matrix Routing is that handling extensive data is efficient
and easy. The API is designed to process up to 1,000 origins and destinations in a single
request, which can significantly simplify the development of complex routing algorithms.

 The Matrix Routing API uses a combination of TomTom's proprietary routing algorithms
and real-time traffic data to calculate the travel times and distances between pairs of points.
The algorithms consider road types, speed limits, turn restrictions, and traffic signals to
calculate the most efficient route between each pair of points.

 The real-time traffic data is gathered from various sources, including GPS devices, mobile
apps, and traffic sensors. This data estimates the current traffic conditions on each route
segment and adjust the travel times accordingly.

 The output of the Matrix Routing API is a matrix of travel times and distances between all
pairs of points, represented as a two-dimensional array. This matrix can calculate the shortest
or fastest route between any two points or optimize a complex routing problem involving
multiple stops and vehicles.

 In summary, Matrix Routing is a powerful feature of the TomTom API that allows
developers to calculate travel times and distances between multiple origins and destinations.
This technology is beneficial for optimizing logistics operations and planning efficient routes
for fleets of vehicles. The API is designed to handle large datasets efficiently.

 It uses routing algorithms and real-time traffic data to calculate the most efficient route
between each pair of points.

16

Route Directions API is a web service that determines routes between several sites. The
API can determine the best direct, time-saving, or economic path between two or more points.
The API is well-documented and straightforward to use. The TomTom API has all the
information you require to get going.

The Route Directions API has a wide range of applications. Here are a few illustrations:

 Determine the shortest path between various places.
 Determine the shortest path between various places.
 Determine the delivery driver's path that is the most effective.
 The most effective path for a road trip.

The Route Directions API provides multiple parameters to calculate various routes. The
whole list of parameters and a brief description are provided below. Our API is covered in
great detail on the API documentation page.

 Type: The route type to calculate. Short, balanced, and fewer maneuvers are all
possible values. Short is the default value.

 Avoid: avoid the kinds of places to stay away from. Highways, tolls, locations, and
ferries are examples of potential values. None is the default value.

 Details: Whether or not to provide more details about the route, like the overall
mileage and expected journey time. Elevation, route details, and instruction details
are all potential values.

 Traffic: the traffic model used to choose routes, utilized only for driving, trucking,
and other motorized vehicle modes.

 Units: the units to be used for time and distance measurements. Imperial and metric
measurements are options. Metric is the default setting.

 Waypoint: the places between which to compute the route. Each waypoint is
formatted as latitude and longitude.

Figure 4 shows the route Directions and points using TomTom API (Geoapify, 2022).

17

3.3 The Travel Salesman Problem

 The Traveling Salesman Problem is a classic optimization problem in computer science
and mathematics. The problem involves finding the shortest route that visits a set of cities and
returns to the starting city. This problem is of great interest in logistics, transportation, and
supply chain management, as it has practical applications in route planning and scheduling
(Fevrin, n.d.).

 The TSP can be formulated as follows: Given a list of n cities and the distances between
each pair of cities, what is the shortest route that visits each city exactly once and returns to
the starting city (Cook, n.d.)?

 The approach is to generate all possible routes, calculate their total distances, and then
select the route with the shortest distance. However, this approach quickly becomes infeasible
for larger problem sizes as the number of possible routes grows exponentially with the number
of cities.

 To address this challenge, various algorithms have been developed to solve the TSP
efficiently. One popular approach is to use heuristics and metaheuristics, which use rules of
thumb or randomized search strategies to find suitable solutions in a reasonable amount of
time.

 One such heuristic is the Nearest Neighbour algorithm, which starts at a random city and
repeatedly visits the nearest unvisited city until all cities have been visited. This algorithm is
easy to implement and often yields reasonable solutions, but it can also produce suboptimal
results.

 Another popular algorithm is the 2-Opt algorithm, which involves iteratively swapping
pairs of edges in the tour to improve its length. This algorithm can be used as a post-
optimization step after applying another algorithm to generate an initial solution.

 Metaheuristics such as simulated annealing, genetic algorithms, and ant colony
optimization have also been applied to the TSP with varying levels of success. These
algorithms often find high-quality solutions but can be computationally expensive and difficult
to tune.

 Despite the advances in algorithmic techniques for solving the TSP, it remains a
challenging problem, particularly for large problem sizes. Researchers continue to investigate
new approaches to the TSP and apply its principles to other optimization problems in logistics,
transportation, and supply chain management.

 In conclusion, the Traveling Salesman Problem is a classic optimization problem with
practical applications in logistics, transportation, and supply chain management. Various
algorithms have been developed to solve the TSP efficiently, including heuristics,
metaheuristics, and optimization techniques. While the problem remains challenging for large

18

problem sizes, researchers continue investigating new approaches to the TSP and applying its
principles to other optimization problems.
3.3.1 Traveling-salesman Problem implementation

In the traveling salesman problem, a driver must visit n points. The salesman wishes to
make a tour or cycle path, visiting each point exactly once and finishing at the point he started.
This algorithm does not accept any negative cost from point to point. The goal is to find a path
of minimum cost for drivers. We assume that every two points are connected. Such problems
are called the Traveling-salesman problem (TSP). We can model the points as a complete graph
of n vertices, where each edge represents a point. Assuming that cost function c satisfies the
triangle inequality, we can use the following approximate algorithm.

 Define u, v, and w. as three vertices.

Figure 5 describes Traveling-salesman Problem formula (Anon., 2018).

Figure 6 describes Traveling-salesman Problem graph (Anon., 2018).

19

3.4 React JavaScript Library

React is an open-source JavaScript library used for building user interfaces. It was
developed by Facebook and released to the public in 2013. Since then, React has become one
of the most popular libraries for building web applications, with a large and active community
of developers.

At its core, React is designed to make it easy to build large-scale, complex user interfaces.
It provides a set of reusable components that can be combined to create custom UI elements.
These components are designed to be modular so they can be easily reused across different
parts of an application.

One of the key benefits of using React is its performance. React is built around a virtual
DOM (Document Object Model), a lightweight representation of the actual DOM. This means
that updates to the UI can be processed more efficiently, which results in faster rendering times
and a smoother user experience (Porcello, 2020).

Another critical feature of React is its ability to manage application state. React provides a
simple and efficient way to manage data within an application, making it easier to keep track
of changes and ensure that everything stays in sync. That makes building more complex
applications that require dynamic data and user interactions easier.

React also provides several other useful features, such as server-side rendering, which
allows applications to be pre-rendered on the server before being sent to the client. That can
help improve performance and SEO and provide a better user experience.

In addition to these core features, React has a vast and active community of developers
who have created a wide range of plugins, libraries, and tools to extend its capabilities. That
makes it easy to find solutions to common problems and integrate React with other
technologies.

React is a flexible library for building modern web applications. Its modular design,
performance benefits, and state management capabilities make it an excellent choice for
building complex user interfaces. Moreover, with a large and active community of developers,
plenty of resources and tools are available to help you get started and build unique applications
(Inc., 2023).

20

3.4.1 Most Important React libraries

3.4.1.1 Redux library

 In particular, Redux is a state management library for React-based JavaScript applications.
It was developed in 2015 as a solution to the issue of handling complicated states in large
applications Dan Abramov and Andrew Clark.

 At its core, Redux operates on the principle of a single immutable state tree. That means an
application's state is stored in a single object that cannot be directly mutated. Instead, any
changes to the state must be made through dispatching actions, which are plain JavaScript
objects that describe what happened in the application (e.g., "user clicked a button," "data was
loaded from the server").

Reducers are pure functions that take action and the current state and produce a new state object
reflecting the changes that action described. The application's user interface is then updated
using the new state.

 Redux also provides middleware, which can be used to add additional functionality to the
dispatch process. That can include things like logging, async operations, and more.
Overall, Redux provides a powerful and flexible way to manage application state and is widely
used in the React ecosystem (CyberWolves, 2021).

Figure 7 describes connection between react and redux (geosolutionsgroup, 2020).

21

3.4.1.2 Axios library

 Axios is the most JavaScript library for making HTTP requests from web applications. It
is often used in front-end applications built with frameworks like React and Vue but can also
be used in server-side Node.js applications.

 Axios provides a simple and consistent API for making HTTP requests and supports a wide
range of features, including:

 Promise-based API: Axios returns promises which allow us to use async/await syntax
for handling responses.

 Interceptors: Axios provides a mechanism for intercepting requests and responses,
allowing you to modify or handle them as needed.

 Request and response transformations: Axios allows you to transform the data being
sent or received using functions that can be useful for formatting data or handling
errors.

 Automatic serialization: Axios can automatically serialize request and response data in
various formats, including JSON, form data, and more.

 Cancelation: Axios provides a built-in mechanism for canceling requests, which can
help prevent unnecessary requests from being sent.

 Overall, Axios is a powerful and flexible library for making HTTP requests from
JavaScript applications and is widely used in the web development community (Anon., 2023).

Figure 8 describes how axios making http request (Nico, 2020).

22

3.4.1.4 TomTom international/web-sdk-maps

 Tomtom-international/web-sdk-maps is a JavaScript library that provides tools and
components for integrating maps and location-based services into web applications. TomTom,
a leading location data and services provider, developed and maintained it.

The library is built on top of the TomTom Maps SDK, which provides high-quality map data
and a robust set of APIs for working with location data. It includes features such as:
· Map display and interaction: The library provides a flexible set of tools for displaying
and interacting with maps, including support for markers, overlays, and custom styling.
· Geocoding and search: The library includes APIs for geocoding (i.e., converting addresses
to latitude/longitude coordinates) and searching for locations based on keywords or categories.
· Routing and navigation: The library provides APIs for calculating routes between locations
and displaying turn-by-turn navigation instructions.
· Traffic and weather information: The library includes APIs for accessing real-time traffic
and weather information, which can be used to provide more accurate and relevant location-
based services.

 Overall, tomtom-international/web-sdk-maps provides a robust set of tools for integrating
location-based services into web applications and is a popular choice for developers who need
to work with maps and location data (support, 2023).

3.5 Tailwindcss Library

 Tailwind CSS provides a set of pre-defined styles and classes that can be easily applied to
any HTML element. Adam Wathan, Steve Schoger, and Jonathan Reinink created it. It has
gained popularity in the web development community due to its ease of use and flexibility.

 The primary goal of Tailwind CSS is to provide developers with a set of low-level utility
classes that can be used to create custom designs quickly and easily. These utility classes can
be combined to create more complex styles and are designed to be highly configurable and
customizable.

 One of the main advantages of Tailwind CSS is its simplicity. The framework is designed
to be easy to use and understand, even for developers new to CSS. The classes are named
descriptively, making it easy to understand what each one does, and the framework provides
much flexibility for customization.

 Tailwind CSS has a minimal footprint, which can be easily integrated into any project
without adding many bloats. That is especially important for performance-sensitive
applications, where every kilobyte of data can significantly affect load times.

 Another advantage of Tailwind CSS is its responsive design capabilities. The framework
provides a range of responsive classes that can be used to create designs that work well on
different screen sizes and devices. That means developers can create responsive designs
quickly and easily without writing many custom CSS codes (Ovuoba, 2021).

23

 Tailwind CSS also includes a range of plugins that can be used to extend its functionality.
For example, plugins for forms, typography, and even dark mode exist.

 Overall, the Tailwind CSS framework provides developers with many utility classes and
customization options. Its plainness and ease of use make it an excellent choice for developers
who want to create custom designs quickly and efficiently without writing much custom CSS
code. Moreover, its small footprint and responsive design capabilities make it an excellent
choice for performance-sensitive applications and mobile-first designs.

Figure 9 shows an example of tailwind CSS library code (tailwindcss, 2021).

3.6 MySQL Database

 MySQL is a relational database management system widely used by developers and
businesses of all sizes. It was initially developed by Swedish developers Michael Widenius
and David Axmark in 1995 and later acquired by Oracle Corporation in 2010. MySQL is
written in C and C++ programming languages and is available for various operating systems,
including Windows, macOS, and Linux.

 MySQL is a strong database management system that stores organizes, and manages large
amounts of data. It uses a structured query language (SQL) to manage data and allows users to
define the relationships between different data sets. This makes it easy to search, sort, and filter
data and create complex reports and analytics.

 One of the main advantages of MySQL is its speed and scalability. It is designed to handle
large amounts of data and high-traffic websites, making it an excellent choice for businesses
with growing needs. MySQL also supports clustering, which allows multiple servers to work
together to handle large amounts of traffic and data.

24

 Another advantage of MySQL is its flexibility. It is compatible with various programming
languages, including PHP, Java, Python, and C++. It makes it easy to integrate MySQL into
existing systems and create custom applications that can interact with the database.

 MySQL also provides a range of security features, including user authentication and access
control. It makes it easy to manage user access and keep sensitive data secure.

 MySQL has a large and active community of developers contributing to its development
and support. It means that many resources are available for developers who need help with
MySQL, including documentation, forums, and tutorials.

 Overall, MySQL is a powerful and flexible database management system widely used by
developers and businesses worldwide. Its speed, scalability, and flexibility make it an excellent
choice for businesses with growing needs, and its security features make it a safe choice for
storing sensitive data. With a large and active community of developers, plenty of resources
are available to help developers get started and support them as they build applications with
MySQL (Technologies, 2022).

3.7 Unified Modeling Language

 UML is a standard notation software engineers use to create visual models of software
systems. It was created by Grady Booch, James Rumbaugh, and Ivar Jacobson in the 1990s
and has since become a widely accepted standard in the software development industry.

 The purpose of UML is to provide a standardized way to represent complex software
systems. Using UML, software engineers can create visual diagrams that describe the structure,
behavior, and interactions of different components within the system. It can make the software
development process more efficient and effective.

 One of the main advantages of UML is that it is a standardized notation that can be easily
understood by developers, designers, and other stakeholders involved in the software
development process. It helps to ensure that everyone is on the same page and that there is a
common understanding of the system being developed.

 UML provides wide range of diagrams that can be used to represent different aspects of
software systems. These diagrams include use case diagrams, which describe the system's
functionality from the user's perspective; class diagrams, which explain the structure of the
system and the relationships between different classes; and sequence diagrams, which describe
the interactions between different components of the system over time.

 Another advantage of UML is that it is a flexible notation that can be adapted to different
development methodologies and programming languages. It means that it can be used to model
systems developed using agile methodologies and those developed using more traditional
approaches.

25

 Various software development tools, including modeling tools, code generators, and
testing tools, also support UML. These tools can make the software development process more
efficient and effective by automating many software modeling and testing tasks.

 Overall, UML is a powerful and flexible notation widely used by software engineers to
model complex software systems. Its standardized notation, a wide range of diagrams, and
support for different development methodologies and programming languages make it a
valuable tool for software development teams worldwide. Using UML, software engineers can
create visual models of software systems that can help ensure that everyone involved in the
development process has a common understanding of the system being developed.

 There are several types of UML diagrams, each with its specific purpose. Here is an
overview of the principal UML diagrams:

1. Use Case Diagram: This diagram represents the user's interaction with the system. It
shows the different use cases or scenarios where the user interacts with the system and
the actors involved in those interactions.

Figure 10 represents an example of use case diagram (Kawabata, 2007).

2. Class Diagram: This diagram represents the system's classes, interfaces, and
relationships. It shows the attributes and methods of each class and their relationships
with other classes.

26

Figure 11 represents an example of a class diagram (Lopez-Rojas, n.d.).

3. Sequence Diagram: This diagram represents the chronological interactions between
objects or classes. It shows the sequence of messages exchanged between objects or
classes.

Figure 12 represents an example of a Sequence Diagram (Kawabata, 2007).

27

4. State Diagram: This diagram represents the different states of an object and the events
that trigger transitions between those states. It shows the states, events, and actions
during state transitions.

Figure 13 represents an example of a State Diagram (Kawabata, 2007).

5. Activity Diagram: This diagram represents a system's flow of activities or processes. It
shows the different activities and the conditions or decisions that affect the flow of the
activities.

Figure 14 represents an example of an Activity Diagram (Kawabata, 2007).

There are more types of UML diagrams as Object diagrams, Collaboration diagrams,
Component diagrams, and Deployment Diagram.

28

3.8 UI/UX Design

 UI design, or user interface design, is designing the visual elements and user interactions
of software applications, websites, and other digital products. UI design aims to create
intuitive, user-friendly, and aesthetically beautiful user interfaces.

One of the critical principles of UI design is usability. A good user interface should be simple
to use and navigate using labeling that is clear and straightforward, buttons, and other interface
elements. UI designers strive to create intuitive interfaces that require minimal training for
users to understand.

Another important aspect of UI design is visual design. A good UI designer will create visually
appealing interfaces with a consistent design language and style. It includes selecting
appropriate colors, typography, and images and creating a visual hierarchy to guide the user's
attention to the essential elements of the interface.

Accessibility is also an essential consideration in UI design. A skilled user interface (UI)
designer will ensure that people with disabilities can use the interface. It may involve using
appropriate color contrasts, providing alternative text for images, and ensuring the interface is
navigable using a keyboard alone.

UI design is an iterative process, with designers creating and testing multiple interface versions
before arriving at a final design. It involves gathering feedback from users and making
adjustments based on their feedback.

One of the challenges of UI design is creating interfaces that work well across various devices
and screen sizes. With the increasing popularity of mobile devices, UI designers must ensure
that the interface works well on both desktop and mobile devices, with appropriate scaling and
layout adjustments.

 Creating user-centered digital goods or services, simple to use and successful in
accomplishing their objectives is known as UX design or user experience design. Whether a
user interacts with a website, app, or other digital product, UX design aims to create a good
experience.

 UX design is a connection process that involves ongoing testing and refinement to create
a product that meets the user's needs. By focusing on the user's needs and goals, UX
designers can create products that are easy to use and effective in achieving their intended
purpose (Matco, 2023).

29

4. Practical Part

 In this chapter, we delve into the planning, analysis, design, and implementation of the
Delivery Route Planner web application, which offers companies a suite of powerful tools,
including driver matrix routing control, the ability to add and edit driver data, and order display.
Additionally, we explore other essential functions that enhance website performance, such as
user authentication and login capabilities, as well as secure data storage in the database.

4.1 Functional Requirements

 Functional requirements are specific outcomes that a system must achieve. Their
implementation involves facilitating communication between the application system and its
users, regardless of whether the system is executed. The following list comprises the primary
functional requirements of this web application:

 User registration and login.
 Ability to enter the origin and destination addresses.
 Display the delivery route from the origin to the destination.
 Calculation of the delivery cost based on the delivery option chosen and the distance

between origin and destination.
 Ability to add drivers and add orders with the destination.

 Display a map with all destinations that have been added.

4.2 Non-Functional Requirements

Non-functional requirements refer to the quality attributes of a system that help assess the
system's quality. Failing to meet non-functional requirements can result in the system's
inability to meet and satisfy user needs. The success of the software system depends on its
ability to meet critical non-functional standards such as responsiveness, usability, security,
portability, and others.

 Performance: The application should be able to handle a large number of users and
provide quick responses.

 Reliability: The application should be available and accessible 24/7 with minimal
downtime.

 Security: The application should provide access to user information and payment
details.

 Usability: The application should be easy to use and navigate for users with varying
levels of technical expertise.

 Compatibility: The application should be compatible with web browsers and mobile
devices.

 Scalability: The application should be able to handle an increasing number of users and
delivery requests without compromising performance or reliability.

30

4.3 Analysis model

 The necessary analysis of system design for this application is discussed using different
UML diagrams for the visualization; all database relationships are correct; ensure that all
factors and environment are suitable for launching the application without any problems. All
libraries and functions used must be compatible with each other.

4.4 Static model

 The following figure shows the overview of a class diagram. It depicts the static
relationships between objects present in the application. Each class represents the objects with
their related attributes and methods/operations. Before building the diagram, it is necessary to
recognize relationships between the classes, their communication, and their links, associations,
and generalizations with other classes in the diagram.

 As shown in the figure below, the classes and their relationships are designed considering
the project description of the web application. That includes the classes of user, administrator,
customer, driver, route, location, and order. The relationship among the classes and their
respective multiplicities are identified in the diagrams.

 We can see in figure no; the class user inherits or generalizes three other classes, i.e.,
Administrator, Driver, and Customer. These three classes inherit all the attributes and method
from the parent User class and also has their particular methods. The parent class User abstracts
the common attributes from the child classes even though the child classes have their attribute.
The other type of relationships we see here are three of the composition association between
the order class and customer class, location class and order class, and route class and location
class.

 This type of association shows the strong relationships between the class as it implies the
ownership from the whole to the part. In this case, the customer class has composition
relationships with the order class. Destroying the customer class leads to destroying the order
class. Order class cannot exist without the customer class. And the same thing for all location
and route classes.

 In the following class diagram, the class administrator has an Association relationship with
the driver, that it can add a new driver with driver class type. Also administrator class has an
Association relationship with the route class so that it can add a new route with the route class
type.

 The following Diagram explains all the relationships between the classes required by this
application, as it explains the relationship between the user and user types and the relationship
between an administration-type class and other classes such as Route, Driver, and others.

31

Figure 15 display class diagram and their relationships(own work).

4.5 Dynamic model

4.5.1 Use case diagram:

 The following figure for this web application shows cases involving the customer,
administrator, and driver as an actor. As the customer first visits the web application, they are
prompted to log in to be able to make an order.

 The login use case is an included relationship that shows the dependency with verify
password use case. The verify password use case is also implemented every time the login use
case is implemented.
The admin is available to see the available drivers, and they can add routes and orders task for
each.

 The drivers can display all tasks they should be done. Add route use case shows the
dependency relationship on driver information and locations with origins points. The admin
can also add a driver to our system by using add driver use case.

 The customers can add orders to the system by using add order use case. The order use
case shows the dependency relationship between order details and addresses.

32

Figure 16 Use case diagram and their relationships(own work).

4.5.2 Sequence diagram:

Sequence diagrams are the type of UML diagrams that show how the objects in the system
interact. These diagrams show interactions in the order that takes place. In other words, they
show the sequence of events. The first figure shows the implementation of the sequence
diagram. The process starts as the user visits the site and log-in to access our web application.
The scenario starts with the user attempting to log-in by inputting the username and password.
If the log-in credential provided by the user is authenticated and authorized, the user can see
and interact with the available services in the system. The second figure shows the process for
adding a new route plan to our system. It starts with selecting a driver from the database to add
a route for him/her; then the admin asks for a request from the database to return all information
he needs to make a new route; after the admin gets all locations then, he can select the points
he wants to make a route for them, then send these points to the server to modify and running
a specific function to make a new route, after server finish routing the path, display the route
for admin. He can decide to confirm the routing or do it again.

33

 Sequence diagram for login operation

Figure 17 display Sequence diagram for login operation(own work).

 Sequence diagram for routing operation

Figure 18 display Sequence diagram for routing operation(own work).

34

5. Implementation of web application

 The implementation process is divided into three main parts, UI/UX design, Client-side,
server-side, and Database connection. We will use Adobe Illustrator for UI design, React app
platform for the client side, node.js for the server side, and MySQL workbench for the
database.

5.1 UI/UX design

5.1.1 Login Page

 Logging in is required to access the application. There are two inputs on the login page,
the username, and password, and then a button to send the entered information to our database
and to confirm the username is there, and also to verify the password, either yes or no, and if
the data entered is incorrect, the page will ask the user to enter it again, but if it is correct, it
will take the user to the main page.

Figure 19 shows login page design(own work).

5.1.2 Main Page

 Upon logging in successfully, the program sends the user to the home page, which contains
the following:

 Main menu: all pages that the user can access are listed on the menu, and each time he
or she clicks on an item, a new page will be displayed

 Sidebar: contain all drivers available so the user can check all tasks or order for each
driver.

 Map: display all locations or points for each driver, different from driver to driver.

35

 Logout button: this button lets the user log out of the application.
 Profile button: this button route the user to the profile page for the user, then he can

edit or modify his personal information.

Figure 20 shows the Main Page design(own work).

5.1.3 Add Order page

 On this page, customers can add orders with customer names, phone numbers, email,
longitude, latitude, and address information to add this information to the database.

Figure 21 shows the Add Order Page design(own work).

36

5.1.4 Add driver page

 Admin users can only access this page, and they can add more drivers to the system. This
page has ten inputs, including usernames, passwords, confirm passwords, first names, last
names, car types, emails, phone numbers, addresses, and cities. This page has ten inputs,
including usernames, passwords, confirm passwords, first names, last names, car types, emails,
phone numbers, addresses, and cities—moreover, one button to add this information to the
database.

Figure 22 shows the Add Driver Page design(own work).

5.1.5 Order List page

 Admin users can only access this page. On this page, the admin can see all the orders that
need to be done. On this page, the admin can add any of these orders to one of the couriers for
this company, which will be added directly to the couriers. He can also review all orders and
check whether the data is correct or incorrect.

Figure 23 show the Order List Page design(own work).

37

5.2 Client-side

5.2.1 React application platform installation

 To create a React app, you can use Create React App, a command-line interface tool that
creates a new React project with a single command. Here are the steps:

 First, install Node.js and npm installed on your computer:

 Second, install Visual Studio Code – a code editor that is redefined and optimized for
building and debugging modern web and cloud applications.

 Third, Install or set up react library package. To create a new react app, we need to
use this command:

source code 1 shows how to install react app(own work).

Then we can run the react app by this command after going to the path for react app:

source code 2 shows how to run react app(own work).

 Install the tailwind CSS library package
 Instead of creating a CSS file for each component, we can use the tailwind CSS library
 and add it to our application. That provides styling the code on the same page.

38

5.2.2 Axios Installation

I used Axios for making HTTP requests from a web browser or Node.js server, automatic
transformation of data, and error handling.

 Open the terminal on visual code editor and run this following command:

source code 3 shows how to install axios library(own work).

 Now it’s ready for use, and I can use it by import Axios to specific component:

source code 4 shows an example how to import axios(own work).

5.2.3 TomTom API installation

In the web application, we used tomtom API to build our application with accurate Maps,
Places, and Routing. To use this API, we must register on the tomtom
website https://developer.tomtom.com/ and get the API key.

Figure 24 shows TomTom API dashboard and how to get API key (tomtom, n.d.).

https://developer.tomtom.com/

39

5.2.4 Create React Components

1) Index.js component: this file used for render the application using react hook called
react DOM.

source code 5 display the index.js component(own work).

2) App.js component : this file used as a router, by this file we can route and access for
all others pages in our web application.

source code 6 display the App.js component(own work).

3) RoutePage Component: this component contains almost the all function we need in
this application. By this page we can add maps, delivery markers, drawRoute line,
add Location or addresses, recalculate short path, and sortDestinations.

import React from 'react';
import ReactDOM from 'react-dom/client';
import './index.css';
import Home from './home/Home'
import App from './App';

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(
 <React.StrictMode>
 <Home />
 <App />
 </React.StrictMode>
);

import './App.css';
import MainPage from './../src/mainpage/MainPage';
import OrderPage from './../src/orderPage/OrderPage'
import AddDriver from './../src/addDriver/AddDriver'
import {BrowserRouter as Router, Routes, Route} from 'react-router-dom'

function App() {
 return (
 <div>
 <Router>
 <Routes>
 <Route path='/MainPage' element={<MainPage />}/>
 <Route path="/OrderPage" element={<OrderPage />} />
 <Route path="/AddDriver" element={<AddDriver />} />
 </Routes>
 </Router>
 </div>
);
}

export default App;

40

Add Map function: this function calls the tomtom API library and imports it inside the code
page; after that, we can call a function called map and insert all parameters we need. Also,
we can call a function called addMarker to add a marker for the origin location.

source code 7 display how to add map to our code(own work).

By this function, we can add a map with specific variables:

 TT.map is an object containing parameters for the map; here, we added traffic
incidents and traffic flow, center, and zoom.

 AddMarker: function to add markers for a driver. In this way, the driver can know
his location on the map.

 Popup: function to add text above driver marker.
 SetLngLat: by this function, we can add the location or address for a driver. This

function takes two variables [longitude and latitude].

 let map = tt.map({
 key: 'LogiATbu3rz2pEbdrofkBVFxLBJT4GaW',
 container: mapElement.current,
 stylesVisibility: {
 trafficIncidents: true,
 trafficFlow: true,
 },
 center: [longitude, latitude],
 zoom: 14,
 })
 setMap(map)

 const addMarker = () => {
 const popupOffset = {
 bottom: [0, -25]
 }
 const popup = new tt.Popup({ offset: popupOffset }).setHTML('This is you!')
 const element = document.createElement('div')
 element.className = 'marker'

 const marker = new tt.Marker({
 element: element,
 })
 .setLngLat([longitude, latitude])
 .addTo(map)
 marker.setPopup(popup).togglePopup()

 }
 addMarker()

41

Map.on click function: Using TomTom API, we can add points or locations to the map by
three methods. In our application, we used the click on map function to add points for our
drivers. In this function, we called all the following functions:

 Add the longitude and latitude to an array called destinations.
 AddDeliveryMarker to send the longitude and latitude to add these points on the

map.
 We called recalculateRoutes to make a new route between all points we added.

source code 8 display how to add longitude and latitude(own work).

RecalculateRoutes function. This function is used to recalculate the time cost between all
nodes that we added. We also used TomTom API services to add all parameters we
needed.

 We called the sortDestinations function and gave it a destination array variable
that includes all our destinations. Then ask for sorting.

 TT.map API. Services: An object containing a key to establish route services and
locations.

 I used routeData function to add geoJson to map.

source code 9 display recalculateRoutes function(own work).

 map.on('click', (e) => {

 destinations.push(e.lngLat)
 console.log(destinations)
 addDeliveryMarker(e.lngLat, map)
 recalculateRoutes()
 })

 return () => map.remove()
 }, [longitude, latitude])

 const recalculateRoutes = () => {
 sortDestinations(destinations).then((sorted) => {
 sorted.unshift(origin)

 ttapi.services
 .calculateRoute({
 key: 'LogiATbu3rz2pEbdrofkBVFxLBJT4GaW',
 locations: sorted,
 })
 .then((routeData) => {
 const geoJson = routeData.toGeoJson()
 drawRoute(geoJson, map)
 })
 })
 }

42

SortDestinations function is the most essential function in our application.

 First, we called the pointsForDestinations function, this function called function
defined by the tomtom API called location.map. We passed destinations.
PointsForDestinations function returns a function called convertToPoints. We
passed the destination to this function. ConvertToPoints function takes the lngLat
as input, then convert it to an object called points containing two parameters
[latitude, longitude].

source code 10 represent convertToPoints function(own work).

 Second, we define a variable called callParameters with an object type; this
variable contains the following parameters.

source code 11 represent callParameters function(own work).

 Finally, after we defined all parameters and variable that we need, now we can
return new Promise using tomtom api services with two inputs called resolve and
reject.

o matrixRouting function:
 The Matrix Routing service enables the calculation of a matrix of

route summaries for a set of routes defined with origin and
destination locations.

 For every given origin, this service calculates the cost of routing
from that origin to every given destination.

 The set of origins and the set of destinations can be thought of as the
column and row headers of a table, while each cell in the table
contains the costs of routing from the origin to the destination for
that cell.

 The following costs are computed for each route:
 Travel times
 Distances

 const convertToPoints = (lngLat) => {
 return {
 point: {
 latitude: lngLat.lat,
 longitude: lngLat.lng
 }
 }
 }

 const callParameters = {

 key: 'LogiATbu3rz2pEbdrofkBVFxLBJT4GaW',

 destinations: pointsForDestinations,

 origins: [convertToPoints(origin)],

 }

43

source code 12 represent matrixRouting function(own work).

 DrawRoute function: this function used to add layer or lines between all node, we need
to draw a path for drivers then they can know the driver route planner route for each.

source code 13 represent drawRoute function(own work).

 In the end, we combine all functions in one function called sortDestinations.

 return new Promise((resolve, reject) => {
 ttapi.services
 .matrixRouting(callParameters)
 .then((matrixAPIResults) => {
 const results = matrixAPIResults.matrix[0]
 const resultsArray = results.map((result, index) => {
 return {
 location: locations[index],
 drivingtime: result.response.routeSummary.travelTimeInSeconds,
 }
 })
 resultsArray.sort((a, b) => {
 return a.drivingtime - b.drivingtime
 })
 const sortedLocations = resultsArray.map((result) => {
 return result.location
 })
 resolve(sortedLocations)
 })
 })

 const drawRoute = (geoJson, map) => {
 if (map.getLayer('route')) {
 map.removeLayer('route')
 map.removeSource('route')
 }
 map.addLayer({
 id: 'route',
 type: 'line',
 source: {
 type: 'geojson',
 data: geoJson
 },
 paint: {
 'line-color': '#4a90e2',
 'line-width': 6

 }
 })
 }

44

source code 14 represent sortDestinations function(own work).

 MainPage component: In this component, we displayed all the following components:
o Main menu: contains all pages that the admin can access, like add driver page, order

list page,
o Sidebar: contains all drivers we have; this sidebar gives access to admin to display

all driver maps and reach every driver page.
o Map: This page shows the main map containing all points that need to make a route

for the driver.

source code 15 represent part 1 of MainPage component(own work).

const sortDestinations = (locations) => {
 const pointsForDestinations = locations.map((destination) => {
 return convertToPoints(destination)
 })
 const callParameters = {
 key: 'LogiATbu3rz2pEbdrofkBVFxLBJT4GaW',
 destinations: pointsForDestinations,
 origins: [convertToPoints(origin)],
 }

 return new Promise((resolve, reject) => {
 ttapi.services
 .matrixRouting(callParameters)
 .then((matrixAPIResults) => {
 const results = matrixAPIResults.matrix[0]
 const resultsArray = results.map((result, index) => {
 return {
 location: locations[index],
 drivingtime: result.response.routeSummary.travelTimeInSeconds,
 }
 })
 resultsArray.sort((a, b) => {
 return a.drivingtime - b.drivingtime
 })
 const sortedLocations = resultsArray.map((result) => {
 return result.location
 })
 resolve(sortedLocations)
 })
 })
 }

import React from "react";
import RoutePage from ".././RoutePage/RoutePage";
import { useState } from "react";
import axios from "axios";

const MainPage = () => {
 let id = 0;
 const [driver, setDriver] = useState([]);

45

source code 16 represent part 2 of MainPage component(own work).

 const ShowDriver = () => {
 axios.get("http://localhost:3001/getDriver").then((response) => {
 setDriver(response.data);
 console.log(response);
 });
 };

 return (
 <div>
 <div class="min-h-full flex flex-row bg-gray-100">
 <div class="flex flex-col w-56 bg-white rounded-r-3xl overflow-hidden">
 <ul class="flex flex-col py-4">
 <button
 data-dropdown-trigger="{hover|click}"
 className="btn hover:block"
 onClick={ShowDriver}
 >
 Show Driver list{" "}
 </button>
 {driver.map((val, key) => {
 id = id++;
 return (

 <a
 href="/"
 id={id}
 class="flex flex-row items-center h-12 transform hover:translate-x-2
 transition-transform ease-in duration-200 text-gray-500 hover:text-gray-800"
 >

 <i class="bx bx-home"></i>

 {val.userName}

);
 })}

 </div>
 <div>
 <RoutePage />
 </div>
 </div>
 </div>
);
};

export default MainPage;

46

 AddDriver component: we used three methods in this component
o Tailwindcss library to create a form that includes all input information for the

driver.
o Axios library to make the connection between the interface page and the database.
o Database to store all driver information in the database.

source code 17 represent Import react, useState, and axios(own work).

source code 18 for Defined all inputs as a variable using useState hook to save all data and changes(own work).

source code 19 for using axios post method to send all data that we inserted to database url called

locathost:3001/AddDriver(own work).

The following code contains <divs> designing by tailwind CSS to display driver information form.
This form contains Username, Password, Confirm Password, FIRST NAME, Last NAME, Car
Type, Email Address, Phone Number, Address / Street, and City.

import React from "react";
import { useState } from "react";
import axios from "axios";

const AddDriver = () => {
 const [userName, setUserName] =useState("");
 const [password, setPassword] = useState("");
 const [firstName, setFirstName] = useState("");
 const [lastName, setLastName] = useState("");
 const [carType, setCarType] = useState("");
 const [email, setEmail] = useState("");
 const [phone, setPhone] = useState("");
 const [address, setAddress] = useState("");
 const [city, setCity] = useState("");

 const DriverAdd = () => {
 axios
 .post("http://localhost:3001/AddDriver", {
 userName : userName,
 password: password,
 firstName: firstName,
 lastName: lastName,
 carType : carType,
 email: email,
 phone: phone,
 address: address,
 city: city,
 })
 .then(() => {
 console.log("success");
 });
 };

47

source code 20 represent html and tailwindcss for driver information form(own work).

return (
 <div>
 <div>
 <div class="min-h-screen p-6 bg-gray-100 flex items-center justify-center">
 <div class="container max-w-screen-lg mx-auto">
 <div>

 <div class="bg-white rounded shadow-lg p-4 px-4 md:p-8 mb-6">
 <div class="grid gap-4 gap-y-2 text-sm grid-cols-1 lg:grid-cols-3">
 <div class="text-gray-600">
 <p class="font-medium text-lg">ADD DRIVER INFORMATIONS</p>
 </div>

 <div class="lg:col-span-3">
 <div class="grid gap-4 gap-y-2 text-sm grid-cols-1 md:grid-cols-5">

 <div class="md:col-span-2">
 <label>Username</label>
 <input
 type="text"
 name="UserName"
 id="UserName"
 class="h-10 border mt-1 rounded px-4 w-full bg-gray-50"
 value={userName}
 onChange={(event) => {
 setUserName(event.target.value);
 }}

 />
 </div>
 <div class="md:col-span-2">
 <label>Password</label>
 <input
 type="Password"
 name="Password"
 id="Password"
 class="h-10 border mt-1 rounded px-4 w-full bg-gray-50"
 value={password}
 onChange={(event) => {
 setPassword(event.target.value);
 }}
 />
 </div>
 <div class="md:col-span-1">
 <label>Confirm Password</label>
 <input
 type="password"
 name="ConfirmPassword"
 id="ConfirmPassword"
 class="h-10 border mt-1 rounded px-4 w-full bg-gray-50"
 />
 </div>

 <div class="md:col-span-2">
 <label>FIRST NAME</label>
 <input
 type="text"
 name="FirstName"
 id="FirstName"
 class="h-10 border mt-1 rounded px-4 w-full bg-gray-50"
 value={firstName}
 onChange={(event) => {
 setFirstName(event.target.value);

48

 OrderList Page: this page created to display all orders in our database. It a simple
component contain function called showOrders that get data from table called order in
the database using axios library.

source code 21 for using axios get method to get orders data that we inserted to the database(own work).

source code 22 display orders data that get from the database(own work).

 We used the .map function, this function for variables with an array type, allows us to
reach all data inside this array. That function looks like for loop. We used this
function to catch all orders data and display it on web application using <divs> with
tailwindCSS styiling.

 let id = 0;

 const [order, setOrder] = useState([]);

 const ShowOrders = () => {

 axios.get("http://localhost:3001/getOrders").then((response) => {

 setOrder(response.data);

 console.log(response);

 });

 };

 <div class= "justify-items-center justify-center m-7 " >

 <a class=" block max-w-sm p-6 bg-white border border-gray-200 rounded-lg

 shadow hover:bg-gray-100 dark:bg-gray-800

 dark:border-gray-700 dark:hover:bg-gray-700">

 <h5 class="mb-2 text-2xl font-bold tracking-tight

 text-gray-900 dark:text-white">{val.customername}</h5>

 <p class="font-normal text-gray-700 dark:text-gray

 400">{val.orderdetails}</p>

 <p class="font-normal

 text-gray-700 dark:text-gray-400">longitude : {val.longitude} latitude :

 {val.latitude} </p>

 <p class="font-normal

 text-gray-700 dark:text-gray-400">email : {val.Email}</p>

 <p class="font-normal

 text-gray-700 dark:text-gray-400">Phone number : {val.Phone}</p>

 <p class="font-normal

 text-gray-700 dark:text-gray-400">Address : {val.address} city :

 {val.city}</p>

 </div>

49

5.3 Server side

 Web browsers use the Hypertext Transfer Protocol (HTTP) to communicate with web
servers. Whenever a link is clicked, a form is submitted, or a search is performed, the browser
sends an HTTP request to the target server (Mancas, 2015).

 A straightforward architecture for a dynamic website is illustrated in the diagram below.
Like in the previous diagram, browsers send HTTP requests to the server, which then processes
the requests and returns appropriate HTTP responses.

 Requests for static resources, such as CSS, JavaScript, images, and pre-created PDF files,
are handled similarly to static sites, as they are files that do not change (Deshpande, 2021).

Figure 25 shows relationships between browser, server, and database (Mancas, 2015).

 In our application, we need to send data to the database and also request data from the
database. To do that, we need to create a connection between React files or components and
MySQL workbench.
 We used all of the expresses, require, Cors, and MySQL libraries for React to connect the
database and our files.

 Require function: The function is intended to add separate pieces of code (“modules”)
to the current scope, a feature not part of the JavaScript/ECMA Script language until
the ES2015 specification.

 Cors: Cross-Origin Resource Sharing is a mechanism that allows services to
communicate with each other. You must have encountered the infamous error that
bothered almost everyone dabbling with web development.

 Express is a back-end web application framework of node js.
 MySQL: Functions allow us to enhance the capabilities of MySQL.

50

Index.js file: this file contains all the following function and library below:
 Configuration express, MySQL, and Cors functions.

source code 23 display configuration of express, mysql, and cors library(own work).

 Create connection to the database by MySQL function.

source code 24 display configuration connection to the database(own work).

 Add driver function, after clicked on submit button to insert driver information by
interface form in client-server, we used app.post require function to catch all
information and save it in variables.

source code 25 represent store data came from inteface front-end to the database(own work).

 After saved all data in variables, we called next function to insert these data to
database.

source code 26 represent sending data to database(own work).

const express = require("express");
const app = express();
const mysql = require("mysql");
const cors = require("cors");
app.use(cors());
app.use(express.json());
c

const db = mysql.createConnection({
 user: "root",
 host: "localhost",
 password: "1234",
 database: "thesis_database",
});

app.post("/AddDriver", (req, res) => {
 const userName = req.body.userName;
 const password = req.body.password;
 const firstName = req.body.firstName;
 const lastName = req.body.lastName;
 const carType = req.body.carType;
 const email = req.body.email;
 const phone = req.body.phone;
 const address = req.body.address;
 const city = req.body.city;

 db.query(
 "INSERT INTO drivers (userName , password , firstName , lastName , carType ,
email, phone,address,city) VALUES (?,?,?,?,?,?,?,?,?)",
 [userName,password,firstName, lastName,carType,email,phone, address,city],
 (err,result) => {
 if(err){
 console.log(err);
 }
 else {
 res.send("driver inserted");
 }
 }
);

51

 In the following code, we represent how the system create driver information form and
how catch the information from inputs, then save it into variables that sent it to database
using http requset created by axios library. We used aslo html with tailwindcss to design
the driver information form that dispalyed on the interface website or web application.

source code 27 represent driver information form(own work).

import React from "react";
import { useState } from "react";
import axios from "axios";

const AddDriver = () => {
 const [userName, setUserName] =useState("");
 const [password, setPassword] = useState("");
 const [firstName, setFirstName] = useState("");
 const [lastName, setLastName] = useState("");
 const [carType, setCarType] = useState("");
 const [email, setEmail] = useState("");
 const [phone, setPhone] = useState("");
 const [address, setAddress] = useState("");
 const [city, setCity] = useState("");

 const DriverAdd = () => {
 axios
 .post("http://localhost:3001/AddDriver", {
 userName : userName,
 password: password,
 firstName: firstName,
 lastName: lastName,
 carType : carType,
 email: email,
 phone: phone,
 address: address,
 city: city,
 })
 .then(() => {
 console.log("success");
 });
 };

 return (
 <div>
 <div>
 <div class="min-h-screen p-6 bg-gray-100 flex items-center justify-center">
 <div class="container max-w-screen-lg mx-auto">
 <div>

 <div class="bg-white rounded shadow-lg p-4 px-4 md:p-8 mb-6">
 <div class="grid gap-4 gap-y-2 text-sm grid-cols-1 lg:grid-cols-3">
 <div class="text-gray-600">
 <p class="font-medium text-lg">ADD DRIVER INFORMATIONS</p>
 </div>

 <div class="lg:col-span-3">
 <div class="grid gap-4 gap-y-2 text-sm grid-cols-1 md:grid-cols-5">

 <div class="md:col-span-2">
 <label>Username</label>
 <input
 type="text"
 name="UserName"
 id="UserName"
 class="h-10 border mt-1 rounded px-4 w-full bg-gray-50"

52

 Package.json: package.json holds important information about the project. It contains
human-readable metadata about the project (like the project name and description) as
well as functional metadata like the package version number and a list of dependencies
required by the application.

source code 28 represent package.json file(own work).

5.4 Database

 Databases are organized collections of structured information, or data, stored electronically
by a computer system. A database management system (DBMS) usually controls a database.
The data and the Database Management Systems, along with the associated applications, are
called database systems. It is often shortened to just a database.

 The prevalent database systems of today typically model data in tables organized into rows
and columns. This structure enhances the efficiency of processing and querying data, making
it simple to access, manage, modify, update, control, and organize data. Most databases employ
Structured Query Language (SQL) for writing and querying data.

5.4.1 MySQL Reference Manual

 The documentation for MySQL versions 8.0 through 8.0.34 and NDB Cluster, based on
NDB versions 8.0 through 8.0.33-ndb-8.0.33, is available in the MySQL Reference Manual. It
might also include documentation for yet-to-be-released MySQL versions' features. Please
consult the MySQL 8.0 Release Notes to learn which releases have been made.

 The handbook discusses MySQL 8.0 features that, depending on the license agreement,
might only be present in a special edition of MySQL 8.0. If you have any questions about the
features offered by your edition of MySQL 8.0, please consult your licensing agreement for
MySQL 8.0 or contact an Oracle sales representative (Oracle, 2023).

{
 "name": "server-side",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "cors": "^2.8.5",
 "express": "^4.18.2",
 "mysql": "^2.18.1"
 }
}

53

5.4.2 MySQL Workbench

 DBAs, database architects, and developers can use MySQL Workbench as a unified visual
tool. Besides data modeling and SQL development, MySQL Workbench offers comprehensive
administrative tools for server configuration, user management, and backup. Besides Windows
and Linux, MySQL Workbench is also available for Mac OS X.

 An administrator, developer, or data architect can design, model, create, manage, and
generate databases visually using MySQL Workbench. Additionally, it provides tools
for performing complex change management and documentation tasks that typically
require much time and effort for a data modeler.

 You can create, execute, and optimize SQL queries visually using MySQL Workbench.

Color syntax highlighting, auto-completion, snippet reuse, and execution history are all
included in the SQL Editor. MySQL Fabric connections can be managed easily via the
Database Connections Panel. Object Browsers provide instant access to database
schema and objects.

 You can quickly gain better database visibility with MySQL Workbench, a visual

console for managing MySQL environments. Developers use tools to configure
servers, administer users, perform backup and recovery, inspect audit data, and view
database health.

Figure 26 shows MySQL Workbench software(own work).

54

Using MySQL Workbench, We created a database called thesis_database that contains all
tables and data we need to store and make operations on it.

Figure 27 creation database called thesis_database(own work).

 Drivers table: After creating the database, we added a specific table to store driver
information from the client side. This information includes username, password, first
name, last name, car type, email, phone, address, and city.

source code 29 represent creation table called Driver(own work).

Figure 28 display data in the driver table(own work).

CREATE TABLE `drivers` (
 `id` int NOT NULL AUTO_INCREMENT,
 `userName` text NOT NULL,
 `password` text aNOT NULL,
 `firstname` text NOT NULL,
 `lastname` text NOT NULL,
 `carType` text NOT NULL,
 `email` text NOT NULL,
 `phone` int NOT NULL,
 `address` text NOT NULL,
 `city` text NOT NULL,
 `usertype` char(20) DEFAULT 'driver',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

55

 Order table: After creating the database, we added a specific table to store orders
information from the client side. This information includes customer name, order
details, longitude, latitude, car type, email, phone, address, and city.

source code 30 represent creation table called Order(own work).

Figure 29 display data in the order table(own work).

 administrations table: After creating the database, we added a specific table to store
user of admin type information. This information includes admin name, email, and
password.

source code 31 represent creation table called admins(own work).

 Locations table: After creating the database, we added a location table. In this table, we
defined one keys: foreign called order id. Moreover, one primary key is called the id.
In this table, we make a relationship between orders, and location tables. This table gets

CREATE TABLE `orders` (
 `id` int NOT NULL AUTO_INCREMENT,
 `customername` text NOT NULL,
 `orderdetails` text NOT NULL,
 `longitude` double NOT NULL,
 `latitude` double NOT NULL,
 `Email` text NOT NULL,
 `Phone` text NOT NULL,
 `Address` text NOT NULL,
 `city` text NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

CREATE TABLE `admins` (
 `id` int NOT NULL AUTO_INCREMENT,
 `adminname` text NOT NULL,
 `email` text NOT NULL,
 `password` text NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

56

the longitude and latitude from orders table. The value must exist in the other table for
order id. Otherwise, it is not going to be able to add data.

source code 32 represent creation table called locations(own work).

Figure 30 display data of locations table(own work).

 Routing table: After creating the database, we added a location table. In this table, we
defined three keys: foreign, called “oid“ for order id, “did“ for driver id and “ lid“ for
location id. Moreover, one primary key is called the id. In this table, we make a
relationship between orders, drivers, and location tables. The value must exist in the
other table for order id, driver id, and location id. Otherwise, it will not be able to add
data. by this table; we can access all other columns in the other table; For example, if
we want to get the driver name, we can use a foreign key called “did “.

source code 33 represent creation table called Routing(own work).

CREATE TABLE `locations` (
 `id` int NOT NULL AUTO_INCREMENT,
 `orderid` int NOT NULL,
 `longitude` double NOT NULL,
 `latitude` double NOT NULL,
 PRIMARY KEY (`id`),
 KEY `id_idx` (`orderid`,`longitude`,`latitude`),
 CONSTRAINT `id` FOREIGN KEY (`orderid`) REFERENCES `orders` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

CREATE TABLE `routing` (
 `id` int NOT NULL AUTO_INCREMENT,
 `locations` int NOT NULL,
 `driver` int NOT NULL,
 `order` int NOT NULL,
 `deliverytime` double DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `id_idx` (`driver`),
 KEY `id_idx1` (`order`),
 KEY `id_idx2` (`locations`),
 CONSTRAINT `did` FOREIGN KEY (`driver`) REFERENCES `drivers` (`id`),
 CONSTRAINT `lid` FOREIGN KEY (`locations`) REFERENCES `locations` (`id`),
 CONSTRAINT `oid` FOREIGN KEY (`order`) REFERENCES `orders` (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

57

6. Results and Discussion

 This application aims to solve the problem of finding the shortest path. Furthermore, create
a route plan for the drivers of the local target company. This application dramatically helps the
people responsible for managing employees, especially drivers, coordinate and manage orders
that are expected to be completed soon, as we know that the issue of tracking orders and drivers'
status and problems requires time and great effort.

 That is why there is an application that saves those in charge of managing companies' time
and effort by carrying out the process of planning a route for drivers automatically from the
time of entering the application and also updating the data simultaneously with entering any
new data into the system and re-planning a new route plan that is commensurate with the new
inputs in the system, by kneading no The person in charge needs to re-plan the road plan over
and over again whenever we get new inputs or orders for the system.

 In the following pictures, you will explain how creating a new route plan for one of the
drivers, adding new points, and watching how the system reroute-planner the road,
automatically taking care of the presence of new points.

Figure 31 shows the route planner for a driver(own work).

 On this page, the application displays to users of type admin the main page, where the user
can see the map assigned to the first driver with points and the delivery plan, but to access
more data, he needs to click on the driver's name from the sidebar located in the section on the
left of the screen, and the user can through this page Navigating, monitoring and supervising
drivers pages.

In the following figure, we dsipalyed what happend after the admin user clicked on one of the
drivers.

58

Figure 32 shows the route planner for a driver with orders information (own work).

 As two sections appear, the admin reviews the delivery plan available to driver number
one on this page. The first section is the map, containing all the points that need the delivery
process. In the other section, there is a sidebar that contains information for all orders added
to this driver, and this happens by extracting all the data stored in the database and shown on
this page. This information remains present as long as the admin has not modified or deleted
any data.

Figure 33 shows the route planner for another driver with orders information (own work).

 As two sections appear, the admin reviews the delivery plan available to driver number
one on this page. The first section is the map, containing all the points that need the delivery
process. In the other section, there is a sidebar that contains information for all orders added
to this driver, and this happens by extracting all the data stored in the database and shown on
this page. This information remains present as long as the admin has not modified or deleted

59

 any data. After we noticed how to review the route plan for each driver and get all the
information from the database, we will now see how the system enters one of the new orders.

 The following figure shows a form for entering information or adding a new order. After
the customer adds a new order, it will be stored in the database, and this data is saved below.
How does the system add this information to the system? The system sends an HTTP request
to take the coordinates of the new order and add them to the array called destination before
entering them into calculating the shortest path and creating a route. After completing the
equation that adds this point to the appropriate driver after a calculation process, it calculates
all possible possibilities for all drivers and chooses the shortest time.

 After the new points are added to the map, you can see the system re-routing automatically
and show the route again.
There are advantages and disadvantaged to the systems:

 Advantages:
o Real-time routing planner solution.
o optimizing routes, reducing errors and delays, and improving customer

satisfaction.
o The system is fast and can handle up to 100 connection points.
o the company can increase efficiency, reduce costs, and build a loyal customer

base.
o reducing the number of errors and delays in the delivery process.

 Disadvantaged:

o Drivers are not allowed to adjust their routes or schedules as needed.
o Drivers have no maximum locations can accept.
o Administrator can not modify route planning manually.

 To fix all these disadvantages, we need to add more functions to our application, for
example, we can add a function that controls how many orders can be added to one driver
during a day. We can add a function for drivers to adjust their routes or their status if they are
able to drive or not. Also we can add fucntion to set a priority for very important orders.

60

7. Conclusion

 In this chapter, we will explain to him how this application works. At first, when the user
of the type of admin runs the application, the application asks the user to enter his data to
ensure the validity and authenticity of this user to use this application. After verifying the
validity of the user, the application route this user To the home page; after that, the user can
create a route plan; how does that happen? In the beginning, we need to enter a few locations
that need to make a route plan; this is done through a page dedicated to entering orders with
an address and coordinates; after that, the application stores that data in tables dedicated to it
in the database, and now we have the coordinates and locations that we need to create a route
for it, the next step is to go to the page dedicated to making a routing plan, immediately after
clicking on the main page, the program takes the user to the page through which a routing plan
can be created, after moving to this page, the program automatically extracts the coordinates
stored in the database and stores them in an array.

 Then it will be used to create the shortest path routing plan for the driver. This process is
considered the most difficult in terms of execution because of the time that the program needs
to calculate the distance between one point and another and use complex algorithms such as
Dijkstra to extract the shortest path. However, in light of technological development and the
availability of many libraries that help develop and invent new tools that we can use in this
field, this has become possible and possible.

 Nevertheless, if we talk about it, building a complete web application specialized in the
logistic management system is complex. It requires specialized companies to build it because
the logistics management system does not stop at creating a route plan and solving the problem
of the shortest path routing but instead needs a complete system to deal with customers in terms
of Providing them with all the necessary information such as live tracking the order and the
duration of delivery, and also needs to provide all functions for drivers also by providing them
with control over the orders assigned to them, as well as modifying personal information and
getting notifications if a new order or a new task is added, and many other functions.

 However, this thesis focused on how to solve short path problems for drivers and solve the
problem of the shortest route, opening the way for adding all the characteristics that were
previously mentioned in other thesis and doing another study on how to improve the
performance of the work of managing logistics systems.

61

8. References

Advances in Health Sciences Education, v. n. p.-1. J. 2., n.d. s.l.:s.n.
Anon., 2018. https://truongtx.me/2018/06/07/binary-heap-heapsort-summary-part-1. [Online].
Anon., 2023. https://stacktuts.com/how-to-send-basic-auth-with-axios-in-request. [Online].
Anon., 2023. https://stacktuts.com/how-to-send-basic-auth-with-axios-in-request. [Online].
Applegate, D. L., Bixby, R. M., Chvátal, V. & Cook, W. J. (. T. T. S. P. I. 9.-0.-6.-1.-8., n.d.
[Online].
Cook, W. J., n.d. The Traveling Salesman Problem. s.l.:s.n.
Cormen, T. H., 2001. Introduction to Algorithms. second ed. s.l.:s.n.
CyberWolves, 2021. https://dev.to/cyberwolves/how-to-call-apis-in-react-redux-3f9k. [Online].
Deshpande, H., 2021. https://javascript.plainenglish.io/what-is-cors-cross-origin-resource-
sharing-and-how-to-fix-the-cors-error-d10130e99dd0. [Online].
Dijkstra, D., 2001. https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-
introduction/. [Online].
Fevrin, N., n.d. https://insights.workwave.com/industry/home-delivery/traveling-salesman-
problem-for-deliveries/. [Online].
Geoapify, 2022. https://www.geoapify.com/openstreetmap-routing. [Online].
geosolutionsgroup, 2020. https://training.mapstore.geosolutionsgroup.com/development/fe-
technologies/react-redux/react-redux.html. [Online].
Inc., B. T., 2023. https://www.linkedin.com/pulse/reactjs-vs-angularjs-comprehensive-
comparison-bytes-technolab/. [Online].
Kawabata, R. K. K., 2007. Systems Analysis for Collaborative System by Use Case Diagram.
s.l.:s.n.
Lopez-Rojas, E. A., n.d. https://www.researchgate.net/figure/Simplified-Class-Diagram-for-the-
Mobile-Money-Simulation_fig3_262117316. [Online].
Mancas, C., 2015. Conceptual Data Modeling and Database Design. s.l.:s.n.
Manson, S., 2017. Mapping, Society, and Technology. s.l.:University of Minnesota Libraries
Publishing.
Matco, C., 2023. https://techbehemoths.com/blog/must-have-skills-ux-designer-should-have.
[Online].
McConnell, S., 2004. Code Complete. s.l.:s.n.
Nico, 2020. https://codewithnico.com/react-wait-axios-to-render/. [Online].
Oracle, ©. 2., 2023. https://dev.mysql.com/doc/refman/8.0/en/. [Online].
Ovuoba, S., 2021. https://dev.to/devwares/10-awesome-projects-built-with-tailwind-css-4mmf.
[Online].
Porcello, E., 2020. Modern Patterns for Developing React Apps. 2nd edition ed. s.l.:s.n.
Rotterdam, n.d. https://en.wikipedia.org/wiki/Rotterdam. [Online].
sauer-utley, n., 2020. https://levelup.gitconnected.com/finding-the-shortest-path-in-javascript-
dijkstras-algorithm-8d16451eea34. [Online].
support, T. d., 2023. https://developer.tomtom.com/maps-sdk-web-js/documentation. [Online].
tailwindcss, 2021. https://tailwindcss.com/. [Online].
Technologies, N., 2022. https://www.linkedin.com/pulse/mysql-most-popular-database-
management-system-netsqure/. [Online].
tomtom, n.d. https://developer.tomtom.com/user/me/apps?category=1. [Online].
Trail", A. N. P. I. M. f. T. P. S. i. t. H. S. A. E. o. t. "., n.d. [Online].

62

Van der Zijpp, N., 1996. Dynamic origin-destination matrix estimation on motorway networks.
s.l.:s.n.

9. Table of figures

Figure 1 describes Dr. Dijkstra’s speech (Dijkstra, 2001). ... 10
Figure 2 describes Dijkstra algorithm Pseudocode code (McConnell, 2004). 13
Figure 3 describes Dijkstra algorithm Pseudocode code (McConnell, 2004). 13
Figure 4 shows the route Directions and points using TomTom API (Geoapify, 2022). 16
Figure 5 describes Traveling-salesman Problem formula (Anon., 2018). 18
Figure 6 describes Traveling-salesman Problem graph (Anon., 2018). 18
Figure 7 describes connection between react and redux (geosolutionsgroup, 2020). 20
Figure 8 describes how axios making http request (Nico, 2020). ... 21
Figure 9 shows an example of tailwind CSS library code (tailwindcss, 2021). 23
Figure 10 represents an example of use case diagram (Kawabata, 2007). 25
Figure 11 represents an example of a class diagram (Lopez-Rojas, n.d.). 26
Figure 12 represents an example of a Sequence Diagram (Kawabata, 2007). 26
Figure 13 represents an example of a State Diagram (Kawabata, 2007). 27
Figure 14 represents an example of an Activity Diagram (Kawabata, 2007). 27
Figure 15 display class diagram and their relationships(own work). ... 31
Figure 16 Use case diagram and their relationships(own work). .. 32
Figure 17 display Sequence diagram for login operation(own work). ... 33
Figure 18 display Sequence diagram for routing operation(own work). 33
Figure 19 shows login page design(own work). ... 34
Figure 20 shows the Main Page design(own work). ... 35
Figure 21 shows the Add Order Page design(own work). .. 35
Figure 22 shows the Add Driver Page design(own work). ... 36
Figure 23 show the Order List Page design(own work). .. 36
Figure 24 shows TomTom API dashboard and how to get API key (tomtom, n.d.). 38
Figure 25 shows relationships between browser, server, and database (Mancas, 2015). 49
Figure 26 shows MySQL Workbench software(own work). .. 53
Figure 27 creation database called thesis_database(own work). .. 54
Figure 28 display data in the driver table(own work). .. 54
Figure 29 display data in the order table(own work). ... 55
Figure 30 display data of locations table(own work). ... 56
Figure 31 shows the route planner for a driver(own work). ... 57
Figure 32 shows the route planner for a driver with orders information (own work). 58
Figure 33 shows the route planner for another driver with orders information (own work). 58

63

10. Table of source code

source code 1 shows how to install react app(own work). .. 37
source code 2 shows how to run react app(own work). .. 37
source code 3 shows how to install axios library(own work). .. 38
source code 4 shows an example how to import axios(own work). ... 38
source code 5 display the index.js component(own work). .. 39
source code 6 display the App.js component(own work). .. 39
source code 7 display how to add map to our code(own work). ... 40
source code 8 display how to add longitude and latitude(own work)... 41
source code 9 display recalculateRoutes function(own work). .. 41
source code 10 represent convertToPoints function(own work). ... 42
source code 11 represent callParameters function(own work). .. 42
source code 12 represent matrixRouting function(own work). .. 43
source code 13 represent drawRoute function(own work). .. 43
source code 14 represent sortDestinations function(own work). .. 44
source code 15 represent part 1 of MainPage component(own work). ... 44
source code 16 represent part 2 of MainPage component(own work). ... 45
source code 17 represent Import react, useState, and axios(own work). 46
source code 18 for Defined all inputs as a variable using useState hook to save all data and
changes(own work). .. 46
source code 19 for using axios post method to send all data that we inserted to database url called
... 46
source code 20 represent html and tailwindcss for driver information form(own work). 47
source code 21 for using axios get method to get orders data that we inserted to the database(own
work). .. 48
source code 22 display orders data that get from the database(own work). 48
source code 23 display configuration of express, mysql, and cors library(own work). 50
source code 24 display configuration connection to the database(own work). 50
source code 25 represent store data came from inteface front-end to the database(own work). .. 50
source code 26 represent sending data to database(own work). ... 50
source code 27 represent driver information form(own work). .. 51
source code 28 represent package.json file(own work). ... 52
source code 29 represent creation table called Driver(own work). .. 54
source code 30 represent creation table called Order(own work). .. 55
source code 31 represent creation table called admins(own work). ... 55
source code 32 represent creation table called locations(own work). .. 56
source code 33 represent creation table called Routing(own work). .. 56

64

11. List of symbol and Abbreviation

CSS: Cascading Style Sheet.

OOP: Object Oriented Programming.

RDBMS: Relational Database Management System.

SQL: Structure Query Language.

MySQL: My Structured Query Language

HTTP: The Hypertext Transfer Protocol.

API: Application Programming Interface.

TSP: Travel Salesman Problem.

VSc: Visual Studio Code.

UML: Unified Modeling Language.

UI: User interface.

UX: User experience.

JSX: JavaScript syntax extension.

XML: Extensible Markup Language.

CORS: Cross-Origin Resource Sharing.

NPM: Node Package Manager.

GIT: Global Information Tracker.

