BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF TELECOMMUNICATIONS

USTAV TELEKOMUNIKACI

LIGHTWEIGHT MULTI-SIGNATURE SCHEMES FOR IOT

ODLEHCENE VICENASOBNE PODPISY PRO 10T

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR Jakub Jarina

AUTOR PRACE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.

VEDOUCI PRACE

BRNO 2023

BRNO FACULTY OF ELECTRICAL
I UNIVERSITY ENGINEERING

OF TECHNOLOGY AND COMMUNICATION

Bachelor's Thesis

Bachelor's study program Information Security

Department of Telecommunications
Student: Jakub Jarina ID: 230086
Year of

Academic year: 2022/23
study:

TITLE OF THESIS:

Lightweight Multi-signature schemes for loT

INSTRUCTION:

The work is focused on the implementation and comparison of multi-signature schemes for Internet of Thing (loT)
environment. The student will analyze current multisignature schemes and compare them from the point of view
of security, computing and memory requirements. The thesis aims to implement, analyze and compare the
threshold signature proposed in [1] and the best state-of-the-art proposal. Since the schemes allow multi-devices
signing, the implemented protocols are expected to be run on different devices with limited computing power,
e.g., microcontrollers.

RECOMMENDED LITERATURE:

[11 Ricci, S.; Dzurenda, P.; Casanova-Marques, R.; Cika, P.: Threshold Signature for Privacy-preserving
Blockchain. In Business Process Management: Blockchain, Robotic Process Automation, and Central and
Eastern Europe Forum. Miinster, Germany: Springer, 2022. p. 1-15. ISBN: 978-3-031-16167-4.

[2] Komlo C, Goldberg |. FROST: flexible round-optimized Schnorr threshold signatures. Ininternational
Conference on Selected Areas in Cryptography 2020 Oct 21 (pp. 34-65). Springer, Cham

Date of project Deadline for
. 6.2.2023 .. 26.5.2023
specification: submission:

Supervisor: M.Sc. Sara Ricci, Ph.D.

doc. Ing. Jan Hajny, Ph.D.
Chair of study program board

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10 /616 00 / Brno

ABSTRACT

The focus of this work is to introduce the topic of multi-signatures and subsequently
implement a scheme supported for Internet of Things (loT) devices. The work analyzes
known multi-signature schemes from the perspective of security, computational com-
plexity, and memory requirements. The work includes the implementations of a Flexible
Round-Optimized Schnorr Threshold signature and Threshold Signature for Privacy-
preserving Blockchain in the C programming language.

KEYWORDS

Multi-signature, Threshold signature, Internet of Things, Schnorr signature, Shamir's
Secret Sharing, Distributed Key Generation, Elliptic Curves Cryptography, Security, Proof
of Knowledge, Sigma protocols, Flexible Round-Optimized Schnorr Threshold signatures

ABSTRAKT

Zameranim tejto prace je predstavit problematiku hromadnych podpisov a nasledne im-
plementovat schému podporovan(pre zariadenia internetu veci (loT). Praca anlyzuje
zname viacnasobné podpisy z pohladu bezpecnosti, vypocetnej a pamatovej narocnosti.
Praca obsahuje implementaciu Flexibilne, optimalizovaného Schnorrovo prahového pod-
pisu a prahového podpisu pre zachovanie siikromia v blockchaine v programovacom
jazyku C.

KLUCOVE SLOVA

Viacnasobné podpisy, Prahové podpisy, Internet veci, Schnorrov podpis, Shamirovo zdie-
lanie tajomnstva, Distribuované generovanie Klucov, Kryptografia eliptickych kriviek,
bezpecnost, Dokaz znalosti, Sigma protokoly, Flexibilné, optimalizované Schnorrove pra-
hové podpisy

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZSIRENY ABSTRAKT

Zameranim tejto prace je predstavit problematiku hromadnych podpisov a nasledne
implementovat schému podporovanu pre zariadenia internetu veci (IoT') zo dévodu
coraz vicsej popularite IoT a dolezitosti bezpecnosti pri vymene a ukladani dat,
ktoré su casto doverné alebo citlivé. Digitalne podpisy sa ukazali ako slubné riesenie
na zabezpecenie vymeny dat, ale tradicné schémy jedného podpisu nie su pre IoT
castokrat vhodné z dévodu limitacii vo vykonostnej kapacite. Preto cielom tejto
prace je taktiez analyzovat moderné schémy z pohladu bezpecnosti, vypocetnej a
pamétovej narocnosti. Tato praca pozostava z 3 hlavnych casti: teoreticka cast,
implementacia a nakoniec pracovné prostredie.

Teoreticka cast je napisana chronologisckou formou, ¢o znamena od zakladnych
primitiv a po tie komplexné pre plné pochopenie hromadnych podpisov. Ako prvym
sa teoretickd cast zaobera digitdlnym podpisom a jeho hlavnymi vlastnostami v
kapitole 1.1, tivodom do samotnej vseobecnej schémy az po najznamejsie pouzi-
vané algoritmy. Taktiez tato kapitola predstavuje hash funkcie ako neodmyslitelni
sucast digitalnych podpisov, s blisim zameranim na vlastnosti bezpen¢nych hash
funkecii a néslednim porovnanim najznamejsich pouzivanych hash funkcii z pohladu
bezpecnosti.

V kapitole 1.2 sa popisuje oblast kryptografie zalozena na elitpickych krivkach,
z dovodu neskorsej implementacie v tejto praci. Hlavnym dévodom vyuzitia je ich
efektivnost, rychlost a vécsia bezpecnost v porovnani s klasickymi kryptografickymi
primitivami. Kapitola popisuje funkciu eliptickej krivky, jej struktiru a zakladné
vlastnosti. Blisie je vysvetlené funkcénost a vyuzitie eliptickych kriviek v praxi najmé
vdaka nasobeniu skalarnej hodnoty a bodu na eliptickej krivke. V neposlednom rade
kapitola sa zameriava na mozné utoky ale aj bezpecnost a ich porovnanie k symet-
rickym algoritmom alebo RSA algoritmu. Nakoniec st porovnané 2 najpouzivane-
jsie eliptické krivky a to secp256kl a secp256rl. Porovnanie bolo zamerané najméa
vplyv rychlosti podpisovania a overnia na zaklade vyuzitej kniznice. 7Z vysledkov
bol vyvedeny zaver v prospech eliptickej krivky secp256r1, ktora je neskor pouzita
pre implementaciu.

V naslediicej kapitole 1.3 je popisana digitalny podpis s ndzvom Schnorrov pod-
pis, ktory som sebou nesie vela vyhod, ktoré esencidlne v hromadnych podpisoch.
Jednymi z nich st prave jednnoduchost a linearita, ktora umoznuje spocitat viacero
podpisov dokopy, bez toho aby to bolo mozné rozoznat. V kapitole je blizsie opisany
algoritmus pre podpis a overenie. Kedze praca je zalozenda na eliptickych krivkach,
kapitola porovnava rozdiely v schémach zalozelnych na eliptickych krivkach a taktiez
popisuje algoritmy podpisu a overenia, ktoré si pouzité neskor v implementacii.

Digitalne podpisy su kltcovou suicastou zabezpecenia IoT zariadeni, pretoze

umoznuju autentifikaciu a overovanie sprav a dat zdielanych medzi zariadeniami.

Avsak mozu nastat situacie, kde jediny podpis nie je dostatocny a je potrebnych vi-
acero podpisov na zabezpecenie platnosti spravy. Hromadné podpisy (multipodpisy)
poskytujui riesenie tohto problému, umoznujic skupine podpisovych os6b spolo¢ne
podpisat spravu a zabezpecit, Ze bude uznavana len v pripade, Ze ju podpise dosta-
tocny pocet osob. V tejto praci Specificky kapitola 1.4 sa zaobera zakladmi multi-
podpisov, ich klasifikaciou a vyhodami a nevyhodami. Multipodpisy pozostavaju z
troch algoritmov: generovania klticov, podpisovania a overovania. Proces generova-
nia kIticov ma najvacsi vplyv na rychlost a bezpec¢nost multipodpisovych schém,
pretoze ucastnici musia sthlasit s privatnymi/verejnymi kliémi. Po vygenerovani
klicov tcastnici pouzivaju svoje sukromné klice na generovanie podpisov na sprave
a overovac¢ kontroluje platnost podpisu.

Ako bolo spomenuté vyssie, generovanie klucov je najzlozitejsou castou multi-
podpisovnych schém. Fakt, Ze viaceré nedéveryhodné strany musia spolo¢ne pri-
jat a distribuovat verejné a sikromné klice bez odhalenia tajnych informécii, robi
generovanie klicov problematickym. Okrem toho musi byt verejny kli¢ konec-
nou funkciou stukromného kluca. Inymi slovami, generovanie klticov musi splnif
poziadavky na sukromie a korektnost. FExistuju dve hlavné techniky, Shamirovo
Bezpecné Zdielanie a Distribuvované Generacia Klucov, ktoré si bizsie popisané v
podkapitolach 1.5.4 a 1.5.5. Kedze Shamirovo Bezpecné Zdielanie ma nevyhodu v
potrebu distribttora ¢iastoénych stikromnych kltcov, ktory vie rekonstruovat hlavny
sikromny kli¢, ¢o je povazované za bod zranitelnmosti algoritmu, preto nesko-
rSia implementacia je zaloZzena na Distribuvovanej Generacii KIucov. Tato schéma
generovania klucov pozostava z inicializacie, distribicie dielov "shares', ich overnie
a nakoniec generacia klucov. Pre rekonstrukciu sikromného klica je pouzita La-
grangova polynomialna interpolacia, ktora je popisana v kapitole 1.6.

Kapitola 1.7 sa zaobera Paillierovym kryptosystémom, ktory je znamy ako pravde-
podobnostna asymetrickd metéda pouzivana v kryptografii s verejnym klicom, za-
lozena na probléme distrkétneho logaritmu. Tato kryptografickd metoda ma vlast-
nost aditivnej homomorfie, ¢o umoznuje kombinaciu dvoch Sifrovanych textov bez
poskodenia vysledku. Dekryptacia nie je potrebnd, pretoze vypocet funguje tak,
akoby prislusné otvorené texty boli jednoducho s¢itané. Avsak uc¢innost Paillierovho
kryptosystému ako homomorfnej Sifry je stalym problémom. Na rieSenie tohto prob-
lému bolo predlozenych niekolko optimalizacnych napadov.

Predosledna teoreticka kapitola 1.8 sa zaobera samotnym flexibylnym rundovo
optimalizovanym prahovym podpisom zalozeny na Schnorrovej schéme znamy ako
FROST podpis. Prahové podpisy st specifickda obnoz multipodpisov, pri ktorych je
potrebnd minimalna tcast podpisujicich spravu z celkovej mnoziny moznych pod-
pisujucich. v kapitole st blizsie zmienené vyhody tohoto podpisu. V podkapitolach

je blizsie zmeniena distribuca klucov, ktora je zalozena na Pedersonovej schéme Dis-

tribuovanej Generacie kltucov. Ta pozostava z 2 rind, ktoré si matematickz popisané
v podkapitole 1.8.2. Nakoniec je popisana schéma samotného podpisu v podkapitole
1.8.3, ktora pozostava z 3 fazy: vytvorenie zavizku, vyzvy a nakoniec samotného
podpisu.

Posledna kapitola 1.9 sa zaobera prahovym podpisom pre zachovanie sukromia
v blockchaine. Dany podpis je zaloZeny na Paillerovej schéme, Shnorrovom podpise
a Shamirovom Bezpecnom Zdielani. Dany podpis ma dvojité vyuzitie bud pre jed-
ného pouzivatela, ¢o zvysuje bezpecnost tym, ze vyzaduje podpisanie transakcii v
blockchaine z viacerych zariadeni pouzivatelov, alebo pre celi skupinu pouzivatelov,
ktori spolupracuji, ¢o podporuje sikromie tym, ze umoznuje anonymné podpisy v
mene spolo¢nej penazenky v blockchaine.

Druha cast prace sa zaobera samotnou implementaciou a dovodom vyberu prave
FROST podpisu. V Kapitole 2.1 je porovnanie najznamejsich multipodpisov. Ich
porovnanie je zalozené z pohladu bezpecnosti, potrebnych interacii pri generovani
klicov a podpisovani a nakoniec samotnej narocnosti algroritmu na vypocet. Z
vysledkov bol nakoniec ustideny zaver v prospech FROST podpisu, ktory je ideany
kandidat pre implementaciu na IoT zariadenia z pohladu dostatocnej bezpecnosti,
rychlosti a nenaroc¢nosti na vypoctovi techniku.

Pre samotni implementaciu je potrebné splitovat urcité bezpecnostné kritéria,
aby sme ju mohli povazovat za bezpecni. Bezpecnost FROST podpisu ako schémy,
vyuzitie bezpecnej kniznice a naslednym bezpecnych implementovanim funkcii. Tak-
tiez je potrebné pouzit dostatocne bezpecne kryptografické primitiva a na zaver je
potrebné bezpecne alokovat a nasledné dealokovat paméat v samotnej implementacii.
Thto siroku cast popisuje prave druhd cast tejto prace.

Implementécia je napisané v programovacom jazyku C s vyuzitim kniznice OpenSLL.
Kapitola 2.2 blizsie Specifikuje dévod vyberu s obhajobou bezpecnosti kniznice pre
pouzitie. Pre implementaciu je vyuzita verzia 3.0, z ktorej si nasledne vyuzité
potrebné kryptografické primitiva ako hash funkcia SHA-256, elipticka krivka SECP-
256r1 a generator ndhodnych ¢isel. Implementacia vyuziva najnovsich funkeii pod-
porované kniznicou OpenSSL 3.0.

Samotna implementacia FROST podpisu je naprogramovana formou kniznice,
ktora pozostava z .c suborou setup.c, signing.c, globals.c and macros.c, ktoré s
nalikované na hlavickové stbory z priecinku ../headers a na hlavickové stbory
kniznice OpenSSL, ktora je potrebna v OS pre spustenie projektu. Main.c slizi
ako API na testovanie samotnej kniznice. Hlavickové sibory v ../header st nasle-
dovné: setup.h, signing.h a globals.h. Cely projekt je spusteny pomocou Makefile.
KnizZnica mé na staroti chod celého podpisu v zmysle , inicializaciu elitptickej krivky
a jej paremetrou, matematickych vypoctou az po alokaciu a dealokaciu paméte. Z

pohladu API ma uzivatel na staroti volanie funkcii, ktoré slizia na inicializaciu

potrebnych dat a naslednii komunikaciu medzi uzivatelmi. Pre blizsie pochope-
nie potrebnej komunikacie a samotnej schémy podkapitola 2.3.1 obsahuje diagram
pre generaciu klucov a podkapitola 2.3.2 vysvetluje komunikaciu pri podpisovani v
danom diagrame. V neposlednom rade podkapitola 2.3.5 zhrnuje celkovi bezpecnost
implementacie a blizsie opisuje spravu paméte a jej Cistenie. Ta bola testovana
open-source nastrojom Valgrind. V podkapitole 2.3.6 je opisané testovanie FROST
implementacie z pohladu rychlosti a vplyvu mnozstva uc¢inkujicich pri generovani
klicov a samotného podpisu. Boli testované schémy (2,3), (3,5) a (4,6) pomocou
kniznice time.h.

Na zaver kapitola 2.4 opisuje samotni implementaciu prahového podpisu pre
zachovanie sikromia v blockchaine. Implementacia je napisand v programovacom
jazyku C s vyuzitim kniznice OpenSLL a ¢JSON. Implementéacia z ¢asti navazuje
na dimplomovi préacu [1], kde bol poskytnuty kéd za cielom vyuzitia poc¢iatoéného
nastavenia Zmluvy o autentizacnom klic¢i na zaklade Shamirovho zdielania tajom-
stva. Implementacia funguje pre schému (3,3) no pokracujica praca je potrebnd

najma v oblasti generovania klicov.

JARINA, Jakub. Lightweight Multi-signature schemes for loT. Brno: Brno University

of Technology, Faculty of Electrical Engineering and Communication, Department of
Telecommunications, 2023, 62 p. Bachelor’s Thesis. Advised by M.Sc Sarra Ricci, Ph.D.

Author’s Declaration

Author: Jakub Jarina

Author’s ID: 230086

Paper type: Bachelor's Thesis

Academic year: 2022/23

Topic: Lightweight Multi-signature schemes for
loT

| declare that | have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, bachelor’s thesis | furthermore declare that, with respect to the creation
of this paper, | have not infringed any copyright or violated anyone's personal and/or
ownership rights. In this context, | am fully aware of the consequences of breaking
Regulation §11 of the Copyright Act No.121/2000 Coll. of the Czech Republic, as
amended, and of any breach of rights related to intellectual property or introduced within
amendments to relevant Acts such as the Intellectual Property Act or the Criminal Code,
Act No.40/2009 Coll. of the Czech Republic, Section 2, Head VI, Part 4.

author’s signature*

*The author signs only in the printed version.

ACKNOWLEDGEMENT

| would like to express my deepest gratitude and appreciation to all the individuals who
have supported me throughout the process of completing my bachelor’s thesis. | would
like to thank my supervisor M.Sc Sarra Ricci Ph.D. for professional guidance, patience
and suggestions. Many thanks to my colleague Dmitrii Bulashevich for sharing his
valuable knowledge and leading me in programming.

Contents

Introduction

1 Background

1.1 Elliptic Curve Cryptography
1.1.1 Context
1.1.2 Principle
1.1.3 Security
1.1.4 Comparison of Secp256r1 and Secp256kl

1.2 Digital Signature L Lo Lo
1.2.1 Hash functiono
1.2.2 Secure Hash Algorithm 256-bit
1.2.3 Digital Signature Schemeo
1.2.4 Digital Signature Algorithms.

1.3 Schnorr Signatureo oo
1.3.1 EC-Schnorr Signature

1.4 Multi-signatureso
1.4.1 Classification o

1.5 Multi-signature Key Generation
1.5.1 Shamir’s Secret Sharing
1.5.2 Distributed Key Generation

1.6 Lagrange Polynomial Interpolation

1.7 Pailler Cryptosystemo
1.7.1 Homomorphic Properties
1.7.2 Pailler Scheme 1

1.8 FROST signature
1.8.1 Context
1.82 DKG in FROST
1.8.3 Signing in FROST 0.

1.9 Threshold Signature for Privacy-preserving Blockchain
1.9.1 Setup Algorithm L.
1.9.2 Signing Algorithm L0000

2 Implementation

2.1 Multi-signature Comparison
2.2 Implementation of OpenSSL Library
2.2.1 Implementation of SHA-256

2.2.2 Implementation of Secp256rl

2.2.3 Randomization e 42

2.3 FROST Implementation 43
2.3.1 FROST Setup oo v vttt o e 43

2.3.2 FROST Signing 44

2.3.3 FROST Verification 45

2.3.4 Implementation of Link List 45

2.3.5 Security of the Implementation 47

2.3.6 FROST Benchmark 48

2.4 Implementation of TSPB 50
241 Results. 50

2.5 Working Environment 52

3 Practical Background 53
3.1 Programming Language 53
3.2 Libraries 54
3.2.1 OpenSSL Library 54

3.2.2 JSON Library oo 54

3.3 Source Code Dictionary Tree b}
Conclusion 56
Bibliography 57

Symbols and abbreviations 61

List of Figures

1.1
2.1
2.2
2.3
24

Visualisation of EC o oo 19
Signing Algorithm for 2-round FROST [2] 38
FROST Setup Diagram 44
FROST Signing Diagram 46

Summary of Memory Leak L 48

List of Tables

1.1
1.2
1.3
1.4
1.5
2.1
2.2
2.3

Algorithm Size Comparisons for Security [3] 20
Elliptic Curve Speed Comparison [4] 21
Security Comparison of secp256kl and secp256rl [5] 21
Security Comparison of Hash Functions [6] 23
Comparison of Different Types of Schnorr Signature 25
Comparison of Multi-signatures 37
Frost Setup Benchmark 49

Frost Signing Benchmark 49

Listings

2.1
2.2
2.3
24

Implementaion code of SHA-256 40
Implementaion code of Secp256rl 41
Generation of 32-byte Random Number 42

Installing Project Dependentcies 52

Introduction

Over the last few decades, the Internet has reached its full potential and has had a
significant impact on our everyday lives. Only recently has the Internet unlocked a
new feature of digital ownership that transforms our current economy. Nowadays, a
trend of owning physical assets is tending to be replaced by the online world, where
people can hold different types of ownership.[7] A good example of this can be seen
in digital rights or art, commonly associated with Non-Fungible Tokens (NFTs), and
any type of cryptocurrency. They are all based on the principles of cryptography,
more specifically digital signatures.

Digital signatures employ asymmetric cryptography, which operates with private
and public keys and hash functions.[6] The main goal is to securely conduct data
with a proof of integrity, authenticity, and non-repudiation over the Internet. Signing
schemes, where a single user issues signatures, may suffer from potential threats as
only one signer is considered a point of failure. A solution can be found in a specific
type of digital signature known as multi-signatures, where two or more people can
sign documents together as a group.

This thesis is concerned with multi-signature schemes with a major focus on
multi-sig and threshold signatures. They caught public attention after blockchain
technology was invented and implemented in the cryptocurrency such as Bitcoin.[§]
Blockchain is used by Bitcoin as a ledger to keep track of all network transactions
that are made primarily on-chain by multi-sig. However, it brings some drawbacks
that threshold signatures are able to solve.

The main goal of the thesis, therefore, is to analyze different types of current
multi-sig and threshold schemes and compare them in the area of security and com-
putational complexity. Moreover, the thesis covers the implementation of the cur-
rently best-known multi-signature called Flexible Round-Optimized Schnorr Thresh-
old signatures (FROST) [2] and threshold signature [9] in the C programming lan-
guage. These implementations are focused on the suitable usage of multi-signatures
in the area of the Internet of Things (IoTs).

16

1 Background

This chapter focuses on the theoretical aspects necessary for understanding the topic
and its subsequent implementation. While some general knowledge of cryptography
is welcomed, it is not required, as all the necessary information is presented in

chronological order to provide a deeper understanding.

1.1 Elliptic Curve Cryptography

1.1.1 Context

The classical era and the modern era can be used to divide the history of cryp-
tography. The Diffie-Hellman key exchange algorithm and the introduction of the
Rivest—-Shamir-Adleman (RSA) algorithm in 1977 mark the turning point between
the two. The principle of modern cryptography is that the key is used to encrypt
data can be made public, while the key you need to decrypt data can be kept secret.
Therefore, these systems are called public-key cryptography, which is also known as
asymmetric cryptography. RSA is the first system of this type and is still widely
used publicly. It is equipped with strict security proofs based on effective trap-
door functions that make the algorithm powerful. In general, trap-door functions
are algorithms that are easy in one direction and difficult in the other. The easy
technique in the case of RSA multiplies two prime numbers [10]. If multiplication
is the easy algorithm, then decomposing the multiplication product into its two
prime components is the difficult pair algorithm without a private key [10]. This
principle is based on a mathematical statement about the difficulty of factorizing
large prime numbers. After the development of RSA and Diffie-Hellman, researchers
investigated other similar mathematically based cryptographic methods, which led
to the study of Elliptic Curves (ECs) and the development of a new branch of
asymmetric cryptography known as Elliptic Curve Cryptography (ECC). This is a
public key encryption method based on EC theory that can be an alternative to
RSA for instance. This method allows cryptographic keys to be generated faster,
more efficiently, and in smaller sizes with equivalent level of security with respect to
traditional cryptography|[11]. Due to its advantages, it is most often used for digital

signatures and in cryptocurrencies such as Bitcoin.

1.1.2 Principle

As opposed to the RSA conventional method of generation as the product of big

prime numbers, ECC creates keys through the characteristics of an EC equation.

17

The points on the graph, used in later generation of private/public keys, can be

expressed using the following equation from a cryptographic perspective:
v’ =2 +ar+b (1.1)

Equation 1.1 is simplified version of EC also known as Short Weierstras Curve
[11]. ECC uses this form of curve with two possibilities: EC over the finite field
F, or Fy,,, where p is a prime number and p > 3, respectively. For Fym 'p’ is size
of 2. m_ that indicates the EC’s points can only have integer coordinates within
the field, which is a square matrix of size p * p [12]. Every algebraic operation
performed on the field, such as point addition and scalar multiplication, yields a
new point. All points belonging to EC can be expressed by cyclic algebraic group or
non-overlapping cyclic subgroups (each including a portion of the EC points on the
curve). All EC’s points are described by equation n = h x r where; n is order of the
curve, h is number of subgroups (known as co-factor) and lastly 7 is the number of
points in each subgroup (called order of the subgroups) [11]. By detail examination
of the EC displayed on the figure 1.1, it is possible to notice some of remarkable
aspects. First of all, curves are horizontally symmetric. Secondly, any non-vertical
line will only cross the curve three times, which is a more intriguing characteristic.
As a feature can be noticed from the figure 1.1, addition of two point A, B creates
a new point that reflects over x-axes resulting in C point. The feature is known
as EC point addition that idea can be enhanced. By adding A point &k times, also
known as EC multiplication,new point is created in really quick way [11]. It is good
theoretical example, but in practice point A is replaced with generator point G
that bring useful properties. Since EC over finite field form cyclic algebraic group or
non-overlapping cyclic subgroups, generator G is used for generating any other point
from group/subgroup by multiplying with integer in range of [0...r], where r is order

of the cyclic subgroup. This leads to creating public key describes by equation:
P=kxG (1.2)

where P is public key, k is secret key and G is generator.

1.1.3 Security

EC’s security is based on mathematical principle called The Elliptic Curve Dis-
crete Logarithm Problem (ECDLP). Definition is derived from generalized discrete

logarithm problem as follows: [13];

Definition 1 Given a finite cyclic group of points G of order n of an EC over a
finite field, a generator A of G, and an element B € G. Find the integer x,0 < x <
n—1:[z]A=1B

18

Fig. 1.1: Visualisation of EC

The ECDLP problem lacks an effective solution for carefully selected finite fields
and ECs, according to cryptographers, although there is no exact mathematical
proof that EC is secure [12]. System security is of the utmost importance. A mini-
mum of 128 bits of security should be provided by contemporary systems, according
to the majority of cryptographic specialists. This is not the key length, though.
The unique algorithm and its key length work together to provide security. This
means that at least a 2*k-bit curve is required in order to obtain a k-bit security
strength because the quickest known technique to solve the ECDLP for a key of size
'k’ requires steps [12]. Because of this, 256-bit ECs typically offer security strength
of about 128 bits. One common example is the belief that AES-128, EC-256 and
RSA-3072 bits can provide 128 bits of protection. As the amount of computation
accessible to attackers continues to grow, keys typically get longer over time. Table

1.1 clearly shows an efficiency of EC security regards of key length.

19

Minimum Size of Public Keys (Bits)
Security Bits | Symmetric Algorithm | RSA ECC
80 Skipjack 1024 160
112 3DES 2048 224
128 AES-128 3072 256
192 AES-192 7680 384
256 AES-256 15360 512

Tab. 1.1: Algorithm Size Comparisons for Security [3]

1.1.4 Comparison of Secp256r1 and Secp256k1l

As signature is computed by IoT devices in this work, a decision of choosing ap-
propriate computing method of signing and verifying is crucial. Limited computing
capacity has to be taken into consideration. Therefore, balance between sufficient se-
curity and fast computing is required. Because of its effectiveness and solid security
guarantees, ECC is widely employed in commercial environments. Curves, which
are established by the National Institute of Standards and Technology (NIST')[14],
are the most often utilized ECs in ECC. In numerous cryptographic protocols and
systems, these curves are commonly used and approved. Based on their sizes, the
NIST curves are separated into three groups: P-256, P-384, and P-521. The key
sizes for these curves are 256 bits, 384 bits, and 521 bits, respectively. The most
used curve, the P-256 curve, strikes a fair mix between security and effectiveness.
Our requirements sorted possible candidates into two options: EC secp256rl also
known as prime256v1 or its sibling secp256k1. Secp256r]1 heavily used publicly as it
is standardized by NIST. On the other hand, secp256k1 is created and standardized
by Standards for Efficient Cryptography Group (SECG) [15]. However, this curve
was not added as NIST standard in the last publication FIPS 186-5 yet [16].That
led to public comment raised by block-chain community included ETH Foundation
[17]. In spite of this fact, secp256k1 has some benefits over secp256rl. The benefits
comes from its fundamental structure of curve that is defined by equation 1.3:

v =a>+7 (1.3)

As The Weierstrass coefficients (a,b) are static with set values of (0,7), it results
in using interesting features that resulted secp256kl to be curve with fast scalar
multiplication. Table 1.2 compares secp256kl and secp256rl in terms of signing
and verification in Elliptic Curve Digital Signature Algorithm (ECDSA) provided
by OpenSSL and Libsecp256k1 libraries.

According to benchmark in table 1.2, speed of the ECs are critical on selection of

library as Openssl library is optimized for secp256r1 and libsecp256k1l was primaly

20

Libsecp256k1 Libsecp256k1
OpenSSL | OpenSSL
secp256k1 secp256k1
secp256r1 | secp256kl)))
excl. endomorphism | incl. endomorphism
sign 33000/s 2000/s 22000/s 22000/s
verify | 12000/s 2300/s 15000/s 21000/s

Tab. 1.2: Elliptic Curve Speed Comparison [4]

created for secp256k1 curve. When it comes to security, next table 1.3 shows security

difference that has currently no effect as both curves are 256 bits.

Curve secp256k1 | secp256rl
Security 127.03 127.83
Automorphism Order 6 2
Parameters a 0 3
Cost for a combine attack | 2 7109,5 | 2 ~120,3

Tab. 1.3: Security Comparison of secp256k1 and secp256r1 [5]

In terms of security, both ECs are considered secure, with small lead of secp256r1.
Since then, secp256rl has been advocated by standards organizations like the Na-
tional Security Agency (NSA) and NIST and is increasingly frequently adopted and
used in cryptographic protocols and systems. secp256rl was chosen for implemen-
tation of this work since secp256k1 is predominantly used in bitcoin and blockchain

applications and may not be as extensively accepted in different environments.

1.2 Digital Signature

In the digital realm, there is a need for an equivalent representation of a hand-written
signature with all its properties. A digital signature serves as a unique behavioral
biometric that enables easy authentication and guards against signature alteration
or accurate falsification. Additionally, it encompasses a valuable attribute known as
non-repudiation, which prevents the signer from denying their own signature in the
future. Digital signature, a mathematical scheme used for verifying digital messages
6], satisfies the requirements of authentication, integrity, and non-repudiation. It is
generally regarded as a signature created using cryptographic methods, specifically

employing asymmetric cryptography and hash functions.

21

1.2.1 Hash function

A hash function is a mathematical procedure that converts a numeric input value
into another value.[18] Hash values, or simply hashes, can be understood as repre-
sentations of fixed-length messages of any length. To create hashes, a hash function
operates on two fixed-size blocks of data, typically ranging between 128 bits and
512 bits. The entire process functions as a chain with rounds, where the output of
one hash function becomes the input of another. This results in a desirable effect
known as the avalanche effect [19]. Nearly identical messages that differ by only one
bit produce completely different hashes.

A reliable hash algorithm must satisfy several criteria, as they are commonly used
in digital signatures, authentication systems, and databases. One essential property
is speed. Additionally, a hash function should possess the following properties. Pre-
image resistance ensures that it is difficult to reverse the hash algorithm and deduce
the original input from the output. Second Pre-image resistance refers to the concept
that given an input and its hash value, finding a different input with the same hash
value should be challenging [20]. Since a hash function is a compression function
with a specific hash length, collisions are unavoidable. Therefore, comparing two
inputs of different lengths that result in the same hash value, commonly known as
collision resistance, should be challenging.

The NIST compares the security of the most popular hash functions in the
SHA-3 Standard publication [21]. The comparison is presented in the table 1.4. In
definition 1 the security strength against second pre-image attacks on a message M

is stated as:

Definition 1 logs(len(M)/B), where B is the block length of the function in bits,
i.e., B =512 for SHA-1, SHA-22/, and SHA-256, and B = 1024 for SHA-512 [21].

1.2.2 Secure Hash Algorithm 256-bit

Secure Hash Algorithm 256-bit (SHA-256) is a widely used cryptographic hash func-
tion that belongs to the SHA-2 family. It was designed by NSA and later on pub-
lished by NIST in 2001. In order for SHA-256 to work, the input message must be
divided into 512-bit blocks. Next, each block must undergo a series of cryptographic
operations that combine and alter the bits. These procedures include conditional
assignments, modular arithmetic, bitwise logical operations, and message expansion
[22]. These operations provide a 256-bit hash value that is unique to the input
message as the end result.

One of SHA-256’s major characteristics is its resistance to collisions, which means

that finding two separate input messages that give the same output hash value

22

Security Strengths in Bits
Function O;:;Ut Collision | Preimage 2nd Preimage
SHA-1 160 <80 160 160-L(M)
SHA-224 224 112 224 min(224, 256-L(M))
SHA-512/224 224 112 224 224
SHA-256 256 128 256 256-L(M)
SHA-512/256 256 128 256 256
SHA-384 384 192 384 384
SHA-512 512 256 512 512-L(M)
SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512

Tab. 1.4: Security Comparison of Hash Functions [6]

is computationally impossible. Moreover, SHA-256 is considered as deterministic
which results by same input same output. Because of these characteristics, SHA-
256 may be used for a variety of cryptographic tasks, including password storage,

digital signatures, and message authentication codes.

1.2.3 Digital Signature Scheme

The most commonly a digital signature scheme consists of three-stage process [6]; a
key generation, signing and a signature verification. The key generation is an algo-
rithm that creates a pair of private and public key. The pair of keys is tied to one
entity, who signs a document by private key that is kept in secret. Then, public key
is sent to other entity for verification. Signing is generated by hashing document.
A outcome of hash function is signed by private key in order to create digital signa-
ture and then to be transmitted with document to a receiver. Finally, the signature
verification is done by decryption using public key. Algorithm states acceptance or
rejection of signature authenticity. Problem can be found in distribution of public
key from one entity to another as that is no evidence of key authenticity. More-
over, public key can be tampered by third party. Public Key Infrastructure (PKI)
solves this problem by creating third party organization, trusted by both entities,
also known as Certificate Authority (CA). they issue certificate on entity and its

legitimate key pairs.

23

1.2.4 Digital Signature Algorithms

Due to the presence of various types of digital signatures, NIST specifies approved
digital signature algorithms in the publication Digital Signature Standards (DSS)
[14]. This includes the Digital Signature Algorithm (DSA) developed by NIST, as
well as the recently added RSA [10] and ECDSA. All of these algorithms work in
conjunction with approved hash functions specified in the Secure Hash Standard
(SHS) [23] or the SHA-3 Standard [21].

Moreover, alternative digital signatures gains popularity these days. The Schnorr
Signature [24] is a relatively old algorithm created by Claus Schnorr, which was under
patent protection until 2008. In the same year, Bitcoin was created, and its creator
decided to implement ECDSA using the EC secp256k1 due to its optimization and
public awareness [25]. However, ECDSA has some drawbacks that the Schnorr
Signature solves. Therefore, developers decided to implement the Schnorr signature

in the taproot upgrade that took place in November 2021.

1.3 Schnorr Signature

Public key signature techniques are essential for authenticating sensitive messages
such as electronic funds transfers and managing access to communication networks.
Since the development of RSA, research has focused on improving the effectiveness of
these techniques. In 1991, Claus Schnorr introduced a new signature scheme, known
as Schnorr signature, with main purpose of minimizing computation for smart cards
due to a lack of computing power [26]. The Schnorr signature is a digital signa-
ture protocol known for its ease of use, effectiveness, and concise signatures. It is
based on the idea of public keys and is widely used in many different cryptosystems.
The Discrete Logarithm Problem (DLP), extracted from the Schnorr identification
method using the Fiat-Shamir heuristic, serves as the basis for the scheme [27]. The
scheme’s security has been investigated and proven in the Random Oracle Model
(ROM). It has been demonstrated to be strongly resistant to forging during adap-
tively chosen-message attacks[27]. One of the advantages, that has noticeable effect
is linearity that is desirable in multi-party computation. This useful attribute en-
ables the creation of another valid Schnorr signature by combining two Schnorr
signatures, resulting of possible algebraic operations in signatures. Following algo-
rithms describe signing and verification process in Schnorr signature [26]. Let H be
a cryptographic hash function that maps to Z; and let G be a group with generator
g and prime order ¢q. The following actions are taken to generate a Schnorr signature

over a message m:

24

Algorithm 1 Signing Algorithm for Schnorr Signature [26]

Select random nonce k €p Z,

Calculate the commitment R + ¢* € G

Calculate the challenge ¢ = H(m, R)

Calculate the response with secret key Sp 2 =k + Sk * c € Z,

A

Signature is defined as o = (z,¢)

Algorithm 2 Verification Algorithm for Schnorr Signature [26]

1. Parse o into (z,c)
2. Calculate R = ¢g* x P, © | P, = ¢g° (Public key)
3. Calculate 2z’ = H(m, R')
if ¢ = 2/ then
output is 1; Valid
else
output is 0; Rejected
end if

1.3.1 EC-Schnorr Signature

Since introduction of basic Schnorr signature by Claus Schnorr, another versions of
this type were proposed. Significant improvement is provided by collaboration with
ECC, where EC are used for calculating parameters in result of faster computing. As
a consequence, small changes are done in signing and verifying algorithm. Following

table compares some types of Schnorr signatures.

Scheme Schnorr Sig. | EC-SDSA EC-FSDSA Schnorr Sig.
BIP 340
1. Component | H(m,R) | H(Rs||Ry|lm) R.||R, R,
2. Component k+ Skxh k+Skxh k+ H(Rg||Ry|lm) * Sk | k+ H(Rz||Prz|lm) * Sk
Sign. Size b+2b 2b+2b 4b+2b 2b+2b
Public Key g e -8, x G Sy x G
Reference [26] [28] [29] [30]

Tab. 1.5: Comparison of Different Types of Schnorr Signature

Nowadays, one of the most breaking news in cryptography is implementation

of EC-Schnorr signature into Bitcoin that took place in November 2021. It was

well-grounded by Bitcoin Improvement Proposal (BIP), more specifically BIP 340

[30]. It is considered as standard for 64-byte EC-Schnorr signature algorithm that is

performed over secp256kl EC. Following algorithms show how signing and verifying

is done in this work:

Algorithm 3 Signing Algorithm for EC-Schnorr Signature
1. Select random nonce k €p Z,

Calculate the point on curve R =k x G
Calculate hash ¢ = H(R||m)
Calculate the challenge with secret key Si s =k + ¢ * Si

AR

Signature is defined as o = (s, ¢)

Algorithm 4 Verification Algorithm for EC-Schnorr Signature
1. Parse o into (s,c)

2. Calculate R' = s+« G —c*x Py | P, = G % S
3. Calculate hash 2’ = H(R'||m)
if 2/ = ¢ then
output is 1; Valid
else

output is 0; Rejected
end if

The main difference between Schnorr Signature and EC-Schnorr Signature is fact
that exponentiation is replaced by simpler and faster multiplication in EC. Lastly,

generator GG, public commitment R and public key P, are points on EC.

1.4 Multi-signatures

In order to secure communication and data sharing on IoT devices, digital signa-
tures are essential. However, situations might arise in terms of communication where
there is a need to have several signatures since one signature might not be sufficient
for verifying its validity. Multisignatures provide a solution to this issue by enabling
a group of signers to jointly sign a message. This ensures that the message is only
recognized as legitimate if the necessary number of signers have signed it. With
multisignature, multiple signers can each add their own signature to a message, cre-
ating a single signature that can be verified by anyone with access to the public key.
Blockchain technology, digital certificates, encrypted communications, and authen-
tication protocols all make extensive use of multisignatures. Multisignature systems
have the major benefit of increasing security and accountability while also offering
flexibility and scalability. The drawbacks of conventional digital signatures, which
only permit one signer to sign a message, can be solved by multisignature. Similarly
to conventional digital signatures, multi-signatures consist of three algorithms: key
generation, signing, and verification. The biggest impact on speed and security of

multisignature schemes is key generation, as participants have to agree on private

26

and public keys. After that, participants use their private key to generate a signa-
ture on the message, and finally, a verifier, usually one entity, checks the validation

of the signature.

1.4.1 Classification

Threshold multisignature schemes and distributed multisignature schemes are the

two basic kinds of multisignature schemes.

1. For Threshold signature to be legitimate, a certain minimum number of
signers must take part in the signing process according to this method. Two
more classes may be added to the classification of threshold multisignature
schemes:

e Secret sharing-based multisignature methods proposed by Shamir
Using Shamir’s secret sharing technique, the message is first divided into
shares, and each side creates a partial signature on their corresponding
share. A reconstruction procedure is used to combine the partial sig-
natures to create the whole signature. With this strategy, the signing
job is divided among the signers, but the shares must be created and
distributed by a reputable dealer.

e Schnorr’s threshold signature-based multisignature schemes: In
this method, each party signs the message partially using their private
key, and the partial signatures are then merged with a threshold signature
algorithm to create the final signature. While Shamir’s secret sharing-
based schemes have a lower computational overhead, this strategy does
away with the requirement for a trusted dealer.

2. Distributed multisignature techniques permit any subset of signers to co-
operatively create a signature on the message rather than requiring a minimum
number of signers to participate in the signing process. Two more classes may
be added to the classification of distributed multisignature schemes:

o Multisignature techniques based on ring signatures use a public key
ring that contains the public keys of all signers, each party creates a ring
signature on the message in this method. Using a verification technique,
the ring signatures are combined to get the final signature. Although
this method offers signers anonymity, it has a higher computational cost
when compared to other multisignature schemes.

» Aggregate signature-based multisignature schemes depends on each
participant as they create a unique signature on the message using their

private key, and these signatures are then merged to make the final signa-

27

ture using an aggregate signature algorithm. This method has a minimal
computational cost and is appropriate for devices with limited resources,

but it needs a reliable third party to combine the signatures.

1.5 Multi-signature Key Generation

As in previous section was mentioned, key generation is the most complicated part
in multisignatures. The fact, that multiple untrusted parties have to jointly accept
and distribute public and private key without leaking secret information makes key
generation problematic. Moreover, final public key has to be a function of secret
key. In other words, key generation has to fulfill terms of privacy and correctness.

There are 2 main techniques that are used in Multi-signature key generation.

1.56.1 Shamir’s Secret Sharing

Shamir’s Secret Sharing (SSS) is a cryptographic procedure that divides a secret
into shares, with the result that the original secret can only be recreated if enough
shares are joined. Adi Shamir created it in 1979 [31], and today it is extensively
used for many different purposes, such as secure communications and multi-party
calculations.

The key concept underlying SSS is to create shares of a secret via polynomial
interpolation. To be more precise, we can produce N points on a random polynomial
of degree N — 1, where the secret value S is the constant term, given a secret value S
and a positive integer N [31]. In order to prevent any party from learning anything
about the secret value from only their share, these N points can be divided to N
separate parties. Any T or more parties are able to combine their shares using
polynomial interpolation in order to recreate the secret value. In other words, we
can calculate the special degree T'— 1 polynomial that goes over any 7" shares (where
T is less than or equal to N). The secret value S serves as the polynomial’s constant
term.

SSS is secure since an attacker cannot discover any information about the secret
value from less than 7" shares. The reason for this is that any polynomial with degree
less than 7' — 1 may be constructed to pass through an endless number of points,
hence the shares by themselves are meaningless in revealing the secret[31]. It has
many advantages and useful properties such as: scalability, flexibility, robustness
and efficiency as only simple arithmetic algorithms are required.

SSS has the drawback of requiring a reliable dealer to create and distribute the
secret shares. In order to maintain the confidentiality of the shared secret, the

dealer must be trustworthy and cannot collaborate with any of the parties. If the

28

dealer is dishonest or malevolent, they may distribute the wrong shares or disclose
information that compromises the secrecy of the secret. Therefore, in some schemes
is not desired to have centralized power in hand of one entity that brings us to point

of failure.

1.5.2 Distributed Key Generation

A cryptographic technique called Distributed Key Generation (DKG) is used to
create cryptographic keys in a distributed and safe way without depending on a
reliable dealer. DKG enables a group of participants to collectively produce a shared
secret that may be used as a cryptographic key for a variety of purposes, including
encrypted communication or digital signatures.

The Pedersen DKG protocol, first forward by Torben Pedersen in 1991 [32],
serves as a prime example of DKG. SSS and ECC are used in the Pedersen DKG
protocol to provide a shared secret key that is safely generated. Generaly any DKG
scheme, Pedersen DKG included, consist of following stages:

1. Initialization: The parties decide on a generating point on a shared EC. In
order to calculate their matching public key on the EC, each side produces a
random value [32].

2. Share distribution: The parties divide their random value into shares and
provide those shares to the other members of the group using SSS. Each party
obtains shares from every other participant and computes its own polynomial
interpolated reconstructed private key [32].

3. Share verification: The parties calculate a shared public key on the EC
using their private keys that they have rebuilt. They then trade promises to
their rebuilt private keys, using these commitments to confirm the authenticity
of the shared public key.

4. Key generation: If the key verification procedure is successful, the parties
utilize their shared public key to create their cryptographic keys. The parties’
respective public keys are used to form the shared public key, which is then

used to generate the matching reconstructed private keys.

1.6 Lagrange Polynomial Interpolation

A mathematical method called Lagrange polynomial interpolation is used to identify
a polynomial function that traverses a collection of known points on graph [33]. In
various fields, including cryptography and its cryptographic systems like SSS, which
is used to safely divide a secret into numerous shares, the Lagrange polynomial

interpolation is utilized.

29

The general form of the Lagrange polynomial interpolation is [33]:

where [;(x) is the ith Lagrange basis polynomial, defined as [33]:

li(z) = H T (1.5)

j=0ji i — Lj
The characteristic of the Lagrange basis polynomials is that for any 74, [;(x;) =1
and /;(z;) = 0. This indicates that the point (x;,y;) is the only point through which

the polynomial function P(z) passes and not any other points [33].

1.7 Pailler Cryptosystem

The Paillier cryptosystem is a probabilistic asymmetric method used in public-key
cryptography, and it was developed by Pascal Paillier in 1999 [34]. A trapdoor
mechanism developed from the family of trapdoors based on the DLP is shown in
Paillier’s work [34] with an emphasis on composite residuosity classes.

This cryptographic method has the additive homomorphic characteristic, which
allows two ciphertexts to be combined without impairing the outcome. Decryption
is not required since the computation operates as if the appropriate plaintexts were
simply added.

However, for any homomorphic encryption technique, the effectiveness of the
Paillier cryptosystem is an an ongoing concern. To solve this problem, several op-
timization ideas have been presented up. Paillier himself, for instance, suggested
Scheme 3 as a modification of the initial Scheme 1. Moreover, another way of im-
provement includes computing certain values in advance, such as exponentiating

either the message ¢ or the noise r", as suggested in the article [35].

1.7.1 Homomorphic Properties

The additive and multiplicative homomorphic qualities of the Paillier scheme are its
major features. These characteristics make it possible to simulate addition and mul-
tiplication operations on ciphertexts while computing addition and multiplication
operations on plaintexts. This is stated mathematically as follows [1]:
+ adding homomorphically the two related plain-texts together is identical

to decryption the product of two ciphers (or the product of a cipher and a

generator g raised to the power of the plain-text):

- D(E(my,r) - E(mg,r9)n?) = (my +my) (mod n)

- D(E(my,r1) - g™ (mod n?)) = (my +mz) (mod n)

30

o plaintexts are multiplied homomorphically. Decrypting the result in this
instance reveals the multiplication of the two plaintexts when a ciphertext is
raised to the power of a plaintext:

- D(E(mqy,r1)™ (mod n?)) = (mymsy) (mod n)

- D(E(my,r9)7 (mod n?)) = (mymy) (mod n)

1.7.2 Pailler Scheme 1

The following procedure is used to create the public key pk and secret key sk in
Scheme 1. P and (), two large prime numbers, are first chosen at random to ensure
their independence from one another. Both primes must be of similar length in order
to ensure a certain property (GCD(PQ, (p—1)(¢q—1)) = 1). The parameter is then
calculated as the least common multiple of (p — 1) and (¢ — 1) and the parameter
n is then calculated as the product of P and @ [1]. The parameter g is then drawn
at random from the set Z7, after that. It’s crucial to confirm that n divides g by
looking for a modular multiplicative inverse, given by the symbol. At this stage, it
is necessary to ensure that n divides the parameter g by verifying the existence of a

modular multiplicative inverse denoted as p showed in equation 1.4 [1].
p=(L(g* (modn*))~" (modn) (1.6)

where L(z) = ””T_l The public key pk is defined as the ordered set consisting of the
parameters n and g. On the other hand, the secret key sk is defined as the ordered
set containing the parameters A and p. The encryption of message m is done as
in equation 1.5 [1].

c=g¢"-r" (mod n? (1.7)

On the other hand, the decryption of cipher-text is done as in equation 1.6 [1].

m=(L(¢* (mod n?))-p (mod n) (1.8)

1.8 FROST signature

1.8.1 Context

FROST signature is a method for cryptographically signing communications that
enables many users to sign messages using a single secret key. It is based on the
Schnorr signature technique and generates the shared secret key using the Pedersen
DKG protocol. In January 2020, Chelsea Komlo and Ian Goldberg described FROST
in a research article.[2] It has drawn interest from the cryptography community
because to its efficiency and security trade-offs, as well as its potential application

in decentralized systems like block-chain networks.

31

FROST has several advantages:

1. Threshold security: FROST offers threshold security, which implies that
in order to access the private key, an attacker would need to successfully
compromise a significant number of signers.

2. Flexibility: FROST may be modified to meet various threshold and signer
criteria due to its adaptability.

3. Efficiency: FROST uses less bandwidth and has a high processing efficiency
2].

4. Round-optimized: FROST is created to reduce the number of rounds that

are necessary for communication between the signers [2].

1.8.2 DKG in FROST

DKG is used to generate and distribute the shared secret key among all participants
for later signing. Pedersen DKG protocol serves as the foundation for the DKG
in FROST. Each participant in this procedure creates a random polynomial whose
degree is equal to the threshold value ¢ — 1. The other coefficients are selected at
random, and the polynomial’s constant term is set to their secret share. Following
that, each participant broadcasts their polynomial to the entire group. After receiv-
ing polynomial from all participants, polynomials are verified with previously shared
commitments that consists of random values chosen by participant. If verification
holds, participant moves on for key generation, otherwise protocol is aborted. Secret
key of participant is generated by sum of all received polynomial, while public key
is computed as a linear combination of the individual public keys using Lagrange
polynomial interpolation. Specifically, each participant evaluates their polynomial
at a designated point, and then computes their individual public key as a scalar
multiple of the group generator raised to the participant’s secret share. Pedersen
DKG is done in 2 rounds. Since FROST in this thesis is based on EC computations,
DKG is done as following (Please, consider a use of ECC):

Round 1 o

« Every participant P; computes polynomial f;(z) = 3 a; ;%27 (mod Q) where
=0
a;; is random number [2].

o Every participant P; computes public commitment and send it to every par-
ticipant: X; = (04,0 > Git-1)), Where ¢ j = a;; *G |0 <7<t —1
Round 2
 Every participant P; securely sends to all participants P; a secret share (j, f;(j))
2].

« Every participant P; verifies secret share from participant P; as follow:

32

G f;(i) = til Gix * % (mod Q). If verification does not hold protocol is
aborted. =
o Generate keys as following:
— Secret share: s; = i fi(1) (mod Q) [2]
— Verify share: Y; = JG_I* S;
— Public key: Y = il ®i0
j=

1.8.3 Signing in FROST

FROST proposal introduce 2 options of signing. Standard signing is done within
2 rounds. Alternatively, option with 1 round signing is presented that is done by
preprocess stage and by adding entity commitment server [2]. By that, commitment
phase is not counted to signing part as it is done before signing considered as pre-
requisite to participate in signing operation. Overall, both versions are based on
same computations.

Secondly, FROST has options of signing in terms of aggregator role [2]. Without
an aggregator, each signer contributes their own signature to the message. The
total of the individual signatures is then calculated to create the signature. This
indicates that the signing procedure requires the presence of all participants, and
the signature cannot be calculated if any member is unavailable or unresponsive.

An aggregator is a single participant who gathers the partial signatures from the
other participants while using this method of signing. The incomplete signatures
are then combined by the aggregator to create a complete signature. The benefit of
this strategy is that just the aggregator has to be present when signing documents.
The signature procedure may be postponed until the aggregator is back online or
responsive if it is unavailable. It has also disadvantage that, aggregator has to be
honest, but to ensure security aggregator can be made randomly and changed for
each signing process.

Signing part can be divided into 3 phases (Please, consider a use of ECC):

1. Commitment phase

o Selected number of participants ¢ out of n participate in signature, where
they calculate each single-use public commitments share D; = G x d; ; d;
is random number. Then the commitments are sent to aggregator.

o Aggregator checks if all selected participants ¢ have sent commitment

shares. If not protocol is aborted, Otherwise, public commitment is cre-
ated as: R = Zt: D; (mod Q)

o Aggregator sleTclis tuple (m, R, S) to all participants ¢, where S is set of
participants ¢ [2]

33

2. Challenge phase
« every participant P, computes challenge ¢ = H(R||m) [2]
« every participant P; computes signing share z; = d;+\;*s;%¢c (mod Q),
where \; is coefficient of Lagrange polynomial interpolation [2].
o every participant P; send signing share to aggregator and deletes d;, D;
3. Signature phase
o Aggregator verifies each response by checking:
Gxz=D;+Y;xcx); (mod Q). If verification does not hold, protocol
is aborted.
o Aggregator computes group’s response z = Zt: z; (mod Q)
» Release signature o = (z, ¢) along with mesé;ge m (2]
Released signature o is verified as standard EC-Schnorr signature by public key Y

with algorithm 4 in subsection 1.3.1.

1.9 Threshold Signature for Privacy-preserving Blockchain

Threshold signature presented in [9] abbrev. (TSPB) is focused on increasing se-
curity and privacy in blockchain technology. [9] provides a method for distributing
a Blockchain wallet across several devices safely. It is possible to implement this
divide for either a single user, which increases security by requiring multiple user’s
devices to sign Blockchain transactions, or for an entire group of users that collab-
orate, which promotes privacy by allowing anonymous signature on behalf of the
shared Blockchain wallet [9]. The signature is based on cryptographic primitives
that have been demonstrated to be secure, including the Schnorr signature, Pailler

cryptosystem, and SSS.

1.9.1 Setup Algorithm

The proposed approach necessitates the collaboration of a subset of registered de-
vices, specifically t out of n, in order to retrieve the secret key. To achieve this, an
utilization of SSS scheme along with the Paillier cryptographic scheme is essential in
setup part. This combination ensures a secure distribution of the client authentica-
tion secret key, which is computed as the sum of individual secret keys sk belonging
to the devices and the client. The resulting share is then employed as the secret key
for the respective device.

A polynomial made up of randomly generated values (d;, t) is created throughout
the distribution process. Here, i stands for the device number, while ¢ stands for the

threshold value, which is related to the degree of the polynomial. The polynomial

34

is defined in accordance with a system of N devices by following equation 1.7.

N
f@)=(dii+...+dy)z' +...+ (dyvi+...+dv)z+ DK (1.9)
i=1
where -V | k; the client device as well as other devices’ secret keys are added up. By
adding the terms of the polynomial d; 12* + ...+ d; & + Kk;, where each value of x is
encrypted using the Paillier scheme, one can obtain the summations of dj 4, ...dy;
and x;. The authentication sk calculation may be partially executed on each device
thanks to this encryption, guaranteeing that none of the secret keys ever leave their
respective devices.
Setup algorithm can be divided into 2 rounds computed by number of n partic-
ipants:
1. Parameter Generation
 generate random values dy4,...dy,
« generate the Pailler’s key pair (pk, ;, sk,.;)
 generate random secret k;
o calculate pk; = g%
The entire secret distribution process proceeds as follows for the calculation
of each f(z;) where j ranges from 1 to n. Consider the variable h, which is
defined as 7 + 1:
2. Polynomial Evaluation
e Dy, generates random value 75, and compute x = Encyy, ; (xj,7h)

e Dy, generates random value v;;, and compute

:Et,_2*d§]1)1 m?_3*d§]1)2)
Ch = Xjh Xih * .ok X x Ene(ky, vjn) (1.10)

e if h =341, then D), sends ¢, to Dp4q
o if h#j,then h=h+1 (mod n) and go to first step of the polynomial
evaluation

o if h = j, then D; computes:

f(x;) = Decle;y) + dia'™ + .+ dPw; + k; (1.11)

1.9.2 Signing Algorithm

Signing part and later on verification of final signature is identical with FROST
scheme in this article. First of all, t out of n participants need to be agreed to
issue signature o. In proposed work [9] participants are divided into Main Device
(MD), who has enabled signing mode and Secondary Device (SD) with co-signing

mode. Therefore, for optimization and better understanding MD can be considered

35

as participant and aggregator in one entity as MD participates in setup and signing
part. Then, signing algorithm is followed in subsection 1.8.3 consisted of 3 phases:
Commitment, Challenge and Signature phase.

Released signature o is verified as standard EC-Schnorr signature by public key
Y with algorithm 4 in subsection 1.3.1.

36

2 Implementation

This chapter is dedicated to the practical part of the thesis, focusing on the com-
parison of different types of multi-signature schemes in terms of computational com-
plexity and efficiency. Based on the obtained results, the most suitable signature
scheme is selected and implemented for IoT. The next section focuses on the imple-
mentation of multi-signature in the programming language C, with carefully chosen

and included essential libraries.

2.1 Multi-signature Comparison

During the research on the defined problem, five potential candidates were selected
for further implementation of multi-signature for IoT. IoT devices can be consid-
ered secondary devices that extend the functionality and connectivity of standard
devices such as laptops or smartphones. In most cases, they have limited computing
capacity, which plays a significant role in choosing an appropriate multi-signature
scheme. Therefore, the main attention was given to the number of rounds required
by each scheme and the size of exponentiation computed during the process. The
optimal solution can be found by striking a balance between the speed of the scheme
and sufficient security. The following table 2.1 describes the number of iterations

and the computational complexity of each part of the scheme for each scheme.

Signature scheme | FROST 1 round | FROST 2 round | MuSig2 BNO06 mBCJ
Complexity OMDL + PROM | OMDL + PROM | OMDL | DL + ROM | DL + ROM
KeyGen (# iter.) 2 2 n n n
KeyGen (#exp.) | 3n+nt+t+1 | 3n+nt +t+1 1 1 2
Sign (# iter.) 1 2 2 3 2
Sign (# exp.) 2 t+ 2 n+3 1 4
Verify (# exp.) 2 2 n+ 2 n+1 8
Type Threshold Threshold Mu-Sig Mu-Sig Mu-Sig
Party Involved (n,t) (n,t) (n,n) (n,n) (n,n)
Life-time N/A N/A N/A N/A N/A

Tab. 2.1: Comparison of Multi-signatures

Table compares 5 different types of securely-proven multi-signatures. All sig-

natures are compatible with Schnorr signature except mBCJ. They can be divided
into 2 main types of Threshold and Multi-Signature (Mu-Sig). Result of that is the
different number of parties involved for signature as Mu-Sig requires all number of
participants n and on the other hand, threshold requires only group of participant

t from all participants n. A representative of threshold is FROST that is precisely

37

presented in Komlo and Goldberg [2] with 2 variants; FROST requiring 1 (FROST
ver. 1) or 2 (FROST ver. 2) iterations for signing. FROST security is based on
One-More Discrete Logarithm (OMDL) and Programmable Random Oracle Model
(PROM) assumptions [36]. A valuable tool for demonstrating cryptography methods
and highlighting probable assumptions that might or might not hold true in prac-
tice is the security model. According to PROM, the execution environment (which
executes the adversary and simulates answers to the adversary’s oracle queries) is
permitted to program the random oracle, but only if the programming is identical
to all other truly random responses [36]. In FROST key generation is done by DKG
with protocol called Pedersen’s DKG that takes 2 iterations [2]. Difference between
FROST with 1 round and 2 rounds is that 1 round misses generation of public
share commitments that is done in preprocess stage autonomously operated as a
requirement to take part in next signing processes. Therefore, all participants must
have access to the commitment server role since it manages and stores the partici-
pant’s commitment shares [2]. Moreover, it changes and reduce signing rounds with
slightly different structure in FROST 2 rounds. As an example can be shown picture

of FROST 2 rounds signing algorithm with steps for calculating of exponentiation:

Round 1

1. The signature aggregator A initializes a signing operation by sending a re-
quest for a commitment share to each participant P; : i € S.
2. Each P; samples a fresh nonce d; €r Zy.
3. Each P; derives a corresponding single-use public commitment share D; =
d.
g-.
4. Each P, returns D; to A, and stores (d;, D;) locally.

Round 2

1. The signature aggregator A computes the public commitment R =
[,z Di for the set of selected participants.

2. Fori € S, Asends P, the tuple (m, R, S).

3. After receiving (m, R, S), each participant P, for i € S first validates the
message 11, aborting if the check fails.

4. Each P; computes the challenge ¢ = H(m, R).

5. Each P; computes their response using their long-lived secret share s; by

computing z; = d; + A; - s; - ¢, using S to determine \;.

Each P, securely deletes (d;, I;), and then returns z; to A.

7. The signature aggregator A performs the following steps:

o

7.a Verifies the validity of each response by checking g* = D; - Y;¢ for

each signing share 21, . .., z;. If the equality does not hold, first iden-
tify and report the misbehaving participant, and then abort. Otherwise,
continue.

7.b Compute the group’s response z = Y z;
7.c Publish the signature o = (z, ¢) along with the message m.

Fig. 2.1: Signing Algorithm for 2-round FROST [2]

38

Round 1 is mainly set up of public commitment that in FROST ver. 1 preprocess
stage deals with it. As every single participant ¢ has to calculates single-use public
commitment first exponentiation is equal to t participants. Round 2 is practically
similar for both FROST versions. Public group commitment is computed by the
signature aggregator who also verifies response validity of participants that contains
2 exponentiation. This is also done in FROST ver. 1, but single-use commitments
are taken commitment server.

The best representative of Mu-sig group is MuSig2, introduced in Nick et al.
article [37], with sufficient security based on OMDL assumption. MuSig2 is fast and
robust, but requires all participants that in some occasions is not the ideal option.
Another Multi-signature scheme is BN06 (brings in Bellare and Neven article [38])
based on DLP, regarded as a "standard assumption' in the field of cryptography,
supported with ROM, presuming that hash function outputs are identical to random
values. Lastly, multi-signature mBCJ, firstly mentioned by M. Drijvers et al. [39].
It is in many ways similar to BN0O6, but does not support Schnorr signature, thus

for this implementation is not appropriate.

2.2 Implementation of OpenSSL Library

This section clearly reveals functions and cryptography’s methods implemented for
further signature including hash function, EC curve and generator of random num-
bers based on the library. The implementation is done in globals.c and is called
when is needed.

OpenSSL [40] is a strong and well-liked software library that offers developers
useful cryptographic functionalities. Therefore, the implementation of FROST sig-
nature is based on this library. More information about the library itself can be
found in chapter 3. Used version of OpenSSL library is following: OpenSSL 3.0.7 1;
Nov 2022. OpenSSL version 3 has some new updated functions that replace older

deprecated function.

2.2.1 Implementation of SHA-256

SHA-256 was chosen for use in the implementation for ensuring integrity and pre-
vent tampering as it is a popularly used cryptographic hash algorithm that accepts
arbitrary-length input messages and generates a fixed-size output (256 bits) that is
specific to the input.

Hash function is used for concatenation of message and public commitment for
creating signing share in signing part. Moreover, hash function is also needed for ver-

ification of final signature. Hash function implementation satisfy the latest changes

39

© 00 N O O = W N

NN NN DNNR R R P B B 2 B & =
T W Nk O © 00 N O O I W NN+ O

in OpenSSL library as functions replacing deprecated functions are implemented as
in the listing 2.1:

/*declares an array of unsigned characters
to store the value of 256 bitsx/
unsigned char hash[SHA256_DIGEST_LENGTH];

/*struc holding the context for a message digest operationx*/
EVP_MD_CTX* mdctx;

/*struct, that represents the message digest algorithmx*/
const EVP_MD* md;

/*select the SHA-256 algorithm*/
md = EVP_sha256();

/*allocates and initializes a new struct*/
mdctx = EVP_MD_CTX_new ();

/*initializes the message digest context*/
EVP_DigestInit_ex(mdctx, md, NULL);

/*updates the message digest context with the input datax*/
EVP_DigestUpdate (mdctx, concat_string, hash_len);

/*finalizes computation and stores hash value into arrayx*/
EVP_DigestFinal_ex (mdctx, hash, NULL);

/*free allocated memory*/
EVP_MD_CTX_free(mdctx);

Listing 2.1: Implementaion code of SHA-256

2.2.2 Implementation of Secp256rl

The EC employed, the hash function, and the structure of the code with adequate
parameters all play major roles in the security of the final signature implementation.
EC secp256r1, also known as prime256v1, is a widely used ECC curve. It is defined
over a prime field, and its parameters are standardized by NIST. The curve equation
is defined as [15]:

v =2 —ar+0b

where parameter a, b are defined as:
a=FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF

40

© 0 N O Ot = W NN

NN NN DNNR R~ R P P B = = &= =
T W N Pk O © 00 N O U = W N + O

FFFFFFFF FFFFFFFC
b=5AC635D8 AA3A93E7 B3EBBDb55 769886 BC' 651 D06B0 C'C53B0F6
3BCE3C3E 27D2604B

On the other hand, obtaining appropriate parameters is essential. The emphasis
is on a suitably big modulo P, as the parameters (a, b) are constant. This application
makes advantage of the modulo "P" of the size of 2224(232 — 1) 4 2192 4+ 29 — 1 that
co-responds with SECG recommendation [15]. Generator G, order () and modulus
p are initialized as in the listing 2.2. The point is serialized into a byte array since
function a EC'_POINT point2bn has been deprecated since OpenSSL 3.0.

void initialize_curve_parameters () {
// initialize curve
ec_group =
EC_GROUP_new_by_curve_name (NID_X9_62_prime256vl);

// retrieves point of the EC group

p_generator = EC_GROUP_getO_generator (ec_group);

// serialize the point into a byte array

size_t buf_len = EC_POINT_point2oct(
ec_group, p_generator, POINT_CONVERSION_UNCOMPRESSED,
NULL, O, NULL);

unsigned char* buf = 0OPENSSL_malloc(buf_len);
EC_POINT_point2oct (ec_group, p_generator,
POINT_CONVERSION_UNCOMPRESSED, buf,

buf_len, NULL);

// create a BIGNUM from the byte array
b_generator = BN_bin2bn(buf, buf_len, NULL);

order = EC_GROUP_getO_order (ec_group);
modulo = EC_GROUP_getO_field(ec_group);

// free the memory allocated for buffer
OPENSSL free (buf);}

Listing 2.2: Implementaion code of Secp256r1

The implementation uses uncompressed generator G in form [15]:

G =04 6B17D1F2 E12C4247 FSBCEGES 63A440F2 77037D81 2D EB33A0
F4A13945 D8ISC296 4F E342E2 FE1ATFIB SEETEBAA TCOF9E16 2BCE33
57 6B315ECE CBB64068 37TBF51F5

41

© 00 N O Ot = W N

o e S o S S S S S
S U s W NN = O

Finally, the order @ is defined as following [15]:
QQ =FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD
AT17T9E84 F3BIC AC?2 F(C632551

2.2.3 Randomization

The implementation uses generation of multiple random numbers that have to be
securely generated with unpredictability. Generation of random numbers relies on
function RAND _bytes() that is implemented in library OpenSSL.

The specified RAND method, a collection of instructions for producing random
numbers, determines the algorithm used by RAND_bytes() [41]. The Deterministic
Random Bit Generator (DRBG) technique is used as the default RAND method in
OpenSSL 3.0 from NIST SP 800-90A [42]. DRBG belongs to a group of Pseudo-
Random Number Generators (PRNGs) that are cryptographically safe. To produce
pseudo-random output, a number of cryptographic primitives are used, such as
hash functions, block ciphers, and Message Authentication Codes (MACs) [41]. The
process is referred to be deterministic since only the seed value and any other inputs,
such customization or entropy, have any bearing on the final result. Even with a
compromised internal state, the DRBG algorithm is built to offer a high level of
security and predictability. However, it is important to implement randomization
securely with later memory cleaning. Function generate rand() is called every

time, 32 byte random number is needed. Function is implemented as in listing 2.3:

BIGNUM#* generate_rand() {
unsigned char buffer [NUM_BYTES];
BN_CTX* ctx = BN_CTX_new();
BIGNUM* result = BN_new();
// generate random bytes
if (RAND_bytes (buffer, NUM_BYTES) != 1) {
printf ("Error, generating random, bytes\n");
exit (EXIT_FAILURE);}
// convert buffer to a bignum mod Q
BIGNUM* rand_num = BN_bin2bn(buffer, NUM_BYTES, NULL);

BN_mod (result, rand_num, order, ctx);

OPENSSL_cleanse (buffer ,sizeof (buffer));
BN_CTX_free(ctx);
BN_clear_free(rand_num);

return result;}

Listing 2.3: Generation of 32-byte Random Number

42

2.3 FROST Implementation

FROST signature is implemented in C, since it is low level program language that
is resulting high performance and possibility for IoT device implementation. Im-
plementation consists of following .c files: main.c, setup.c, signing.c, globals.c and
macros.c. .c files are then linked with header files located ../headers and with head-
ers of OpenSSL library that has to be downloaded to OS. Header files in ../header
are following: setup.h, signing.h and globals.h. Whole project is built by Makefile.

The project is meant to be programmed as library with API that is run by
main.c which tests whole library with a result of released signature and its ver-
ification. Structure of API and communication between participant is showed in
following subsection. Please, be aware of (2,3) FROST is showed in the thesis for
simplicity, but implementation is defaulted set as (3,5). Since communication be-
tween participants is needed link list algorithm is used for storage and later use of

packets.

2.3.1 FROST Setup

Setup of FROST is basically implementation of Pedersen-DKG that is done withing
2 rounds. At the beginning function init_pub commit() is called by every partici-
pant P;. Public commit packet is created by this function holding index of sender,
length of public commit array and finally public commit array. Within the function
init_coeff list() is trigged which results in creation of array of random numbers
that has length of n. 32 bytes random numbers are used in later public commit-
ment. As every P; created own public commitment, broadcast to all participants P;
is done. After the packets are received by all the participants, every participant calls
function init_sec_share() for each n participant for creating polynomial. Function
takes parameters such as address of participant P; that sends secret share and in-
dex of participant P; that will receive the share. Please, be aware of participant
P; sending secret share itself as it is not done internally. When participant P; cre-
ated secret share for participant P;, secret share is verified and accepted/denied by
P; with function accept pub commit(). Mathematical function mentioned in sec-
tion 1.7.2 is used for verification of secret share by function accept_pub__commit().
If verification hold participant P; secret share is accepted and stored, otherwise
the protocol is aborted. When all participants P; finished verification of all secret
shares, key generation is done with function gen_keys(). Secret share, verify share
and public key are generated for all participants that are stored for later signing.

Setup diagram is showed on following figure 2.2:

43

Participant_0 Participant_1 Participant_2

init_pub_commit init_pub_commit init_pub_commit
bmadcastl‘
pub_commit_packet -
ub_commit_packet ub_commit_packet
<= =P > = =P >
end of B
broadcast
init_sec_share init_sec_share init_sec_share
sec_share (fo(1)) _ Vverify share
sec_share (f0(2)) _ verify share
verify Share“ sec_share (f1(0)) sec_share (f1(2)) ' verify share

verify share* sec_share (f2(0))

verify Sf'IElFE‘m:E sec_share (f2(1))

gen_keys gen_keys gen_keys

Participant_0 Participant_1 Participant_2

Fig. 2.2: FROST Setup Diagram

2.3.2 FROST Signing

After setup of FROST is successfully finished, signing part is started by pre-selected
number of ¢ participants P, located in array threshold_set[]. Every participant
P; calls function init_pub_share() that results in creation of public share packet.
The packet consist of index of sender P;, P;’s verify share, single use commitment
share and public key. The packets are then received by aggregator with function
accept_pubshare(). Received data are stored and next step is to generate tuple
with function init_tuple packet() by aggregator. Within this function other 2
functions are trigged R_pub__commit__compute() and pub_share_mul() that pro-

vide check if all public share packets were received from treshold set[| participants.

44

If yes, R is computed by function pub_shares mul(), otherwise protocol is aborted.
Tuple packet consists of message m, size of m, public commitment R, set of par-
ticipants t and size of set. Tuple is received by every participant P; with function
accept_tuple(). Aslong as tuple data are stored, function init sig share() is called
by every participant P;. Function is in charge of creating partial signature for every
P;. Hash_ func() and lagrange_coef ficient() functions are called by the function
as essential part for partial signature. When all partial signatures are created, they
are sent to aggregator by participants P;. For verification and acceptance of partial
signature accept_sig share() is called. Verifying is done by function described in
subsection 1.7.3 followed by storing the partial signature if verification holds or by
aborting the protocol if function is broken. At the end, signature packet is created
by called function signature(). Gen_ signature() is called within library for sum
of all partial signatures. Then packet is published as signature and hash. Exact

sequence of signing is showed on diagram with figure 2.3.

2.3.3 FROST Verification

The EC-Schnorr signature verification algorithm is a process used to verify the
validity of an EC-Schnorr signature on a message that is more clearly described
in subsection 1.3.1 by Algorithm 4. Idea behind the verification is in comparison
of the calculated hash value 2’ with the value of ¢ in the signature. If the values
match, then the signature is considered valid. Otherwise, the signature is rejected.
Verification of signature works by reconstructing the point R’ from the signature
components and the public key, and then verifying that its hash value matches the
value of ¢ in the signature. If the hash values match, it provides strong evidence
that the signature was produced by the holder of the private key corresponding to

the public key used in the verification process.

2.3.4 Implementation of Link List

For storing and organizing data, a fundamental data structure was chosen in the
implementation, called singly linked list. In this kind of linked list, there is only one
way in which the linked list may be traversed, where each node’s next pointer links
to a different node, but the last node’s next pointer points to NULL. Two main
operation are applied in the implementation: insertion with time complexity O(1)
and search with time complexity O(n).

During setup part link list is applied as participants communicates between each
other as they need to share pub commit packets and later sec shares. For ac-
cepting pub__commit_packets each participant P; stores the last node of packet. By

function accept_pub_commit() one of 2 functions is trigged; create_node commit()

45

Aggregator Participant_1 Participant_2

init_pub_share . init_pub_share

pub_share packet

< Pub_share packet .

init_tuple_packet

LN

Broadcast

tuple_packet

End of &

Broadcast
init_sec_share _init_sec_share

and and
delete (d.D) delete (d.D)

—]

‘u'E'rifj-"IIE sec_share_packet

verify sec_share packet

group response

f pubish_sig \

Aggregator Participant_1 Participant_2

Fig. 2.3: FROST Signing Diagram

function, if participant did not accept any pub commit_packet, otherwise

insert_node__commit() is used. Every participant P; after all pub__commit_packets
are stored is searching in its list in accept_sec_share() function, as the verifi-
cation of sec shares from participants P; is validated towards earlier accepted

pub__commit packet from participant P;. Similar methodology is used for storing

sec_shares by function accept__sec__share() that calls once function

create__node__share() and then every time insert_node_ share() is used. Searching
in this list is not necessary. Finally, traversing of both lists is necessary during gen-

eration of public key and participant’s secret share in functions gen_sec_share()

46

and gen_ pub_ key().

In signing part, link list algorithm is used during communication of participants
with aggregator as he need to store pub_share_ packets and later on sig shares.
pub__share_ packets are stored by function accept pub_share() with help of func-
tions create_node pubshare() and then insert node_pub share(). Each
pub__share_packet from participants P; has to be search in the list for later ver-
ification of sig share_ packet of participants P;. Finally, aggregator stores each
sig_ shares by function accept sig share() with similar steps of calling function
create__node_ sig share() and then insert node_ sig share(). At the end, aggre-

gator traverses this list for sum of all received sig shares to create final signature.

2.3.5 Security of the Implementation

For overall security of the implementation, security of protocol, used secure cryp-
tographic primitives, used secure library with proper functions and lastly secure
allocation/de-allocation of memory has to be taken into account. Since FROST
is considered as secure, in previous sections were defensed secure cryptographic
primitives such as EC with proper parameters, secure hash function and random
generator. Also the implementations is based on secure OpenSSL library where
functions with the highest precision were chosen to satisfy updated library of version
3.0. Therefore, the last thing for considering the implementation as secure, alloca-
tion/deallocation of memory has to be proven. Library is designed to free memory
for used, therefore no action is needed in API from user. Memory is allocating and
then freed simultaneously within the functions in the most cases. However, library
and also participants operates and store sensitive data that in case of some leak
or attack would be destructive for protocol. Therefore, 3 main clearing are done
by library, despite of simultaneous freeing of unnecessary variables. At the end of
setup, after generation of keys, all secret shares, commitments, coefficient lists and
polynomials are securely freed. Lastly, after initializing of partial signature every
participant deletes all data followed by aggregator after publishing the final group
signature. Lastly, parameters of EC are freed after verification of the signature. For
memory free of sensitive data function BN _clear_ free() is used. The big num-
ber (BN) library in OpenSSL has the BN clear_free() function, which is used to
deallocate memory allocated to a large number once it is no longer required. This
function is written as a macro that first uses the BN _clear() function to clear the
contents of the big number and then uses the OPENSSL__ free() function to re-
lease the memory. While the OPENSSL free() method deallocates the memory
allocated to the big number itself, the BN _clear() function resets the value of the

large number to zero and releases any memory allocated to retain the value [43].

47

For memory testing Valgrind open-source tool was used [44]. It is tool used for
debugging and profiling programs including memory leaks based on Linux and other

Unix-based operating systems. The results are followed in the next figure:

=45624== HEAP SUMMARY:
=45624== in use at exit: 2,728 bytes in 89 blocks
=45624== total heap usage: 9,166 allocs, 92,077 frees, 1,144,581 bytes allocated
=45624==
=45624== LEAK SUMMARY:
definitely lost: 456 bytes in 21 blocks
indirectly lost: 2,272 bytes in 68 blocks

possibly lost: © bytes in @ blocks
still reachable: @ bytes in @ blocks
suppressed: @ bytes in © blocks
45624== Rerun with --leak-check=full to see details of leaked memory
=45624==
=45624== For lists of detected and suppressed errors, rerun with: -s
=45624== ERROR SUMMARY: @ errors from © contexts (suppressed: © from @

Fig. 2.4: Summary of Memory Leak

It can be noticed that library does keep 30 blocks per participant after ending of
the protocol. These blocks are mainly allocated memory of final signature and public
attributes such as, public key and verify key. Finally, each computed secret share of
participant can be kept for potential later use in another signature. Overall, all data
that could lead to reconstruction of keys or final signature are securely freed during
the protocol. Therefore, the implementation can be considered as secure, depending

under deeper circumstances of later use in production.

2.3.6 FROST Benchmark

Benchmark was done by library time.h on setup and then signing part separately.
Each participant had index set to size of up to 23° bit number. Main purpose is to
notice an impact of number of participants in each operation. 3 different schemes
are compared in following table in seconds:

It can be noticed that all iterations were very consist with small difference in
time by each scheme. Setup is done by all participants n due to construction of
keys. Therefore, setup by 3,5 and 6 participants is compared by table. However, it
can be noticed as more participants are involved in setup average time is slightly
increased. After computation, an average increment of adding one participant to
setup is 1.3850583 milliseconds. Setup part of FROST signature is the most com-
plicated part with high consumption of device performance. On the other hand,
the signing part is much faster in every scheme then the setup part due to lower
mathematical difficulty as it can be noticed on following table 2.3. The average

increment per participant is calculated with the result of 0.351 milliseconds.

48

Itr\(t,n) | (2,3) [ms] | (3,5) [ms] | (4,6) [ms]

1 6.874 2.452 6.147

2 3.385 14.967 17.827

3 6.232 13.609 16.278

4 4.63 13.115 17.585

5 6.865 4.349 11.094

6 7.668 4.77 3.56

7 7.287 9.466 9.513

8 3.23 12.291 3.851

9 18.552 12.412 10.508

10 3.704 13.466 20.307

11 2.55 12.095 12.803

Avg. 6.45245 | 10.272 11.77027
Tab. 2.2: Frost Setup Benchmark

Itr\(t,n) | (2,3) [ms] | (3,5) [ms] | (4,6) [ms]

1 0.561 0.398 1.555

2 0.794 1.044 0.726

3 0.949 1.093 0.524

4 0.355 0.585 2.804

5 0.591 0.569 0.775

6 0.565 0.816 1.288

7 0.587 1.557 1.856

8 0.64 1.583 2.458

9 0.652 0.595 0.565

10 0.871 1.658 1.011

11 0.392 1.62 2.109

Avg. 0.723 1.047 1.425

Tab. 2.3: Frost Signing Benchmark

49

2.4 Implementation of TSPB

The TSPB signature is implemented in C, since it is low level program language
that is resulting high performance and possibility for IoT device implementation.
Implementation consists of following .c files: main.c, setup.c, signing.c, globals.c,
support__functions.c and macros.c. .c files are then linked with header files lo-
cated ../headers and with headers of OpenSSL library and JSON library that
have to be downloaded to OS. Header files in ../header are following: setup.h,
signing.h, support _functions.h and globals.h. Lastly, the project contains a folder
precomputed,alues. In the folder can be found 2 .json files precomputation,,essage
and precomputation,oise. The whole project is built by Make file.

The implementation partially is followed up master thesis [1] as a code of the
thesis was provided with goal to use an setup part of Secret Sharing Authentication
Key Agreement and optimize it for TSPB.

The project is meant to be programmed as library with API that is run by main.c
which tests whole library with a result of released signature and its verification.
Structure of APl and communication between participant is very similar to the
FROST implementation as singing part is identical with the communication during
the signing process. Therefore, signing communication is pictured in figure 2.3.
Moreover, verification of the final signature is done by the same algorithm 4 from

subsection 1.3.1.

2.4.1 Results

After investing significant time and effort, I have managed to make progress with
the C code obtained from the master thesis [1]. Although the code lacked clear
comments and was challenging to comprehend, I successfully executed it, albeit only
partially, by identifying and rectifying errors in obtain in public key. As verification
was always aborted by public key from function get pk c() even after point was
changed from point to uncompressed bignum form, the changes were made in this
part. New public key is computed as sum of all verification shares that are computed
as PK; = G % s;, where s; is the session key of participant P;. Moreover, global
variables were moved to macros.c as provided code was not able to build due to
errors of multiple definitions. It is worth noting that the original code exhibited
several undesirable characteristics, such as excessive use of global variables and the
presence of goto statements, which are generally discouraged in C programming.
Moreover, the code is rigid in terms of adding participants the setup is using only
for loop structure for storage and communication between fictive participants.

Despite these challenges, the implementation is partially working in scheme (3, 3)

50

as the final signature is successfully verified. However, the implementation is aborted

as threshold signature as computation of SSS has to have unresolved error or is just

incompatible with overall API as the setup using random generated number instead

of ID of participant in SSS.

To enhance the implementation of TSPB, it is important to consider the following

recommendations:

To improve code readability, add clear comments throughout the codebase.
This will make the code easier to understand and facilitate future maintenance
and collaboration.

Reduce the reliance on global variables by encapsulating data within appropri-
ate data structures. Instead of using global variables, pass data as parameters
to functions as needed. This will make the code more modular and organized.
Refactor the control flow by replacing goto statements with structured control
flow mechanisms, such as loops and conditional statements. This will improve
the overall code structure and make it easier to maintain.

Modify the participant setup to allow for dynamic addition or removal of
participants. Currently, the code relies on a fixed for loop structure, which
limits scalability and adaptability. By making the setup more flexible, the
codebase can accommodate varying numbers of participants more effectively.
Investigate and resolve any errors or incompatibilities in the computation of
the threshold signature using SSS. Ensure that the proper participant IDs
are used instead of randomly generated numbers. This will result in a more

accurate and reliable implementation of the threshold signature functionality.

By implementing these recommendations and continuously refining the codebase,

the overall implementation of TSPB can be significantly improved. These improve-

ments will make the system more robust and efficient, enhancing its reliability and

usability.

51

© 00 N O Ot s W N

[
o

2.5 Working Environment

The implementations were performed on a device with the following parameters:
Processor Intel(R) Core(TM) i5—8250U CPU 1.60GHz, 4Core(s), 8GB RAM,
Windows 11 Home x64 based Operate (Host) System. Virtual machine system:
Ubuntu 22.04.2 LTS with kernel version 5.19.0—38—generic. The Virtual Machine
was set to 4 GB RAM and 4 CPU processors. Following commands are required for
installing Openssl, cJSON libraries into system and other dependencies for building

the projects:

/*Install OpenSSL into system*/

sudo apt-get install openssl

/*Install the OpenSSL development headers*/
sudo apt-get install libssl-dev

/*Install make for building the projectx*/
sudo apt install make

/*Install gcc compiler*/

sudo apt install gcc

/*Install cJson into system*/

sudo apt install libcjson-dev

Listing 2.4: Installing Project Dependentcies

52

3 Practical Background

3.1 Programming Language

The implementation is written and programmed in C programming language. Since
its the first introduction to public, it has developed into one of the most popular and
important programming languages, acting as the basis for several other programming
languages and operating systems.

The advantages of C include its effectiveness, adaptability, and intimate con-
nection to the underlying hardware. Because it is a low-level language with direct
access to memory and system resources, it is appropriate for embedded systems and
systems programming. It also provides high-level structures that enable organized
and modular programming at the same time.

For the implementation was chosen mainly because of its portability and ef-
ficiency: C programs can be compiled to run on a wide range of platforms and
architectures. The language itself is designed to be highly portable, allowing de-
velopers to write code that can be easily ported and executed on different systems.
Moreover, as C is low-level language, it provides low-level control over memory and
hardware resources which results in code that is highly optimized for performance.
Thus, execution speed and memory usage is exceptional.

The C/C++ Extension Pack (Version 1.3.0) created by Microsoft was used
in conjunction with the Microsoft Visual Studio Code editor (Version 1.78.2) for the
development [45]. The list of extensions included in this package and other used are
following;:

o C/C++ by Microsoft (Version 1.15.4) for IntelliSense, debugging and code

browsing,

o C/CH+ Themes by Microsoft (Version 2.0.0) for User Interface (UI) themes,

o CMake by twxs (Version 0.0.17) for CMake language support,

o CMake Tools by Microsoft (Version 1.14.31) for extended CMake support in

the VS Code,

o GitHub Pull Requests and Issues (version 0.64.0) For editing and managing

pull requests and issues on the GitHub platform,

« Clang-Format by Xaver Hellauer to format C/C++ code (version 1.9.0),

o PlantUML by Jebbs (version 2.17.5) to create sequence diagrams.

93

3.2 Libraries

3.2.1 OpenSSL Library

OpenSSL is an open-source project [40] and is maintained by a team of volunteer
developers. It has a long history and has been widely adopted by the industry
as a standard cryptographic library. Furthermore, OpenSSL has a well-established
process for managing vulnerabilities, including coordinated disclosure, CVE assign-
ment, and regular security releases. Its quick response to security vulnerabilities
and patching has established trust with developers for being a reliable and secure
software library.

The software library OpenSSL is frequently used to give applications access to
cryptographic utilities and functionalities. It is a popular choice for developers that
need to include cryptography in their applications because of its robust security
features and wide variety of functionality.

AES, RSA, and SHA are only a few of the many cryptographic algorithms that
are supported by OpenSSL. These algorithms, which are among the strongest cur-
rently in use, are used to encrypt data, produce digital signatures, and validate the
legitimacy of certificates. Strong random number generators, which are necessary for
many cryptographic operations, are among the security-enhancing features included
in OpenSSL [40].

The library is written in the C programming language, and is available for various
operating systems, including Linux, Unix, macOS, and Windows [40]. It provides
a comprehensive set of APIs for developers to incorporate cryptographic functions
into their applications.

All things considered, OpenSSL is a strong and well-liked software library that of-
fers developers useful cryptographic functionalities. Its vast functionality and robust
security features make it a popular option for applications that need cryptography,
and its track record for promptly patching security flaws has made it a reliable op-
tion for security-conscious apps. Therefore, the implementation of FROST signature
is based on this library. Used version of OpenSSL library is following: OpenSSL
3.0.7 1; Nov 2022.

3.2.2 JSON Library

The ¢JSON library[46] is a popular JavaScript Object Notation (JSON) library
specifically designed for C programming. It provides a lightweight and efficient
solution for parsing, generating, and manipulating JSON data within C code.

The ¢JSON library is known for its simplicity and ease of use, making it a popular

choice among C developers for working with JSON data. It is distributed as a single

o4

header file and source file, allowing for easy integration into existing projects. cJSON
is designed to be lightweight and efficient, with a small footprint and minimal depen-
dencies. It aims to provide fast JSON parsing and generation capabilities, making it
suitable for resource-constrained environments or performance-critical applications.
JSON data may be parsed using the cJSON library to create a hierarchical structure
that is simple to explore and retrieve. It offers tools for extracting values, navigating
the JSON hierarchy, and working with different data kinds including objects, arrays,
characters, integers, and booleans.

3.3 Source Code Dictionary Tree

For better navigation and organization directory trees of the implementations with
brief information of each file and folder are provided in this section.

B e Y= v PPN root folder
N 4 1YV =Y o= TS A PP folder with headers of library
| globals.h
| setup.h............iiiiiiian. linking and defining objects participant etc.
| _signing.h..........iiiiit linking and defining objects aggregator etc.
= o2 PP folder with source files
| globalsS.C.ouiiiiiiiiii i initialization of EC and DRBG
| MACTOS . C evtereeeneennnennnenns source file for defining of global variables
D =T T o 2 A API for testing library
| SeUP.Cirttiie e i e source file of setup computations
| Signing.C..viiiiiiiiiii i e source file of signing computations
N o e T e O folder where project is built
L Makefile ...ouii it i e file for project compilation
B) 2 2 - PPN root folder
L headers . .oi it e e folder with headers of library
| globals.h
| _setup.h............iiiiiiian, linking and defining objects participant etc.
| signing.h...........iiiiiit linking and defining objects aggregator etc.
| support_functions.h
= o2 PP folder with source files
| globalsS.C.ovuiiiiiiiii i initialization of EC and DRBG
| MACTOS . Cuveereeeeineeennennnenns source file for defining of global variables
I - o API for testing library
L SELUP . C ittt i source file of setup computations
| SIgNING.Coevrniiieee e source file of signing computations
| _support_functions.c...........c...... source file of Pailler’s computations
N o e T ' O folder where project is built
| precomputed_valuesoiiiuiuiiiiiiiniiiiiieaain folder with .json files

| precomputation_message. json

, _precomputation_noise.json

L MaKe il .ttt e e e e e file for project compilation

95

Conclusion

A increasing need for safe and effective cryptographic protocols has been generated
by the rise of the Internet of Things (IoT), particularly in the context of portable
devices with constrained resources. This thesis looked at the usage of multisignatures
for IoT, with a particular emphasis on the implementation of the FROST signature
scheme based on elliptic curves (more particularly, secp256r1) in the C programming
language with the OpenSSL library.

Our research has demonstrated that the FROST signature scheme, which has
various benefits over other current schemes, is a potential option for lightweight
multisignatures in IoT applications. The first feature of the concept is distributed
key generation, which enables the creation of public and private keys without the
need for a single, trusted authority. Second, it uses elliptic curve encryption in-
stead of more conventional RSA-based techniques, which provides high levels of
security while using less resources. Additionally, the FROST signature technique
outperforms other comparable systems in terms of efficiency, notably with regard to
signature size and verification speed.

Moreover, the work includes the implementation of Threshold Signature for
Privacy-preserving Blockchain. This implementation is partially working in scheme
(3,3). Further work is essential namely in setup part as the code is rigid with
possible inconsistencies or incompatibilities with overall library and API.

We have also investigated different elements of elliptic curve cryptography
throughout our implementation, including the mathematical foundations of elliptic
curves and their use in cryptographic applications. We have also given security in
[oT systems some thought, especially the necessity for compact solutions that can
effectively fend off intrusions.

In conclusion, the use of lightweight multisignatures for IoT applications has
been shown to be feasible and potentially useful through the implementation of the
FROST signature scheme based on elliptic curves in the C programming language
using the OpenSSL library. Our research has emphasized the need of efficiency
and security in these systems, and we think the FROST signature scheme offers a

potential way to satisfy these needs.

o6

Bibliography

[1] Pavla Rysava. Secret sharing authentication key agreement. Master’s thesis,
VUT Brno, 2022. URL: https://www.vut.cz/www_base/zav_prace_soubor_
verejne.php?file_id=241101.

2] Chelsea Komlo and lan Goldberg. Frost: flexible round-optimized schnorr
threshold signatures. In International Conference on Selected Areas in Cryp-

tography, pages 34-65. Springer, 2020.

[3] Chelsea Komlo. Rsa vs. ecc comparison for embedded systems. 2020. URL:
https://wwl.microchip.com/downloads/en/DeviceDoc/00003442A. pdf.

[4] CoinEx Chain Team. Acceleration of ecdsa verification
with endomorphism mapping of secp256kl. Medium, Jan-
uary 2, 2020. URL: https://coinexsmartchain.medium.com/

acceleration-of-ecdsa-verification-with-endomorphism-mapping-of-secp256kl-12

[5] Azine Houria, Bencherif Mohamed Abdelkader, and Guessoum Abderezzak.
A comparison between the secp256rl and the koblitz secp256k1 bitcoin curves.
Indonesian Journal of Electrical Engineering and Computer Science, 13(3):910—
918, 2019.

[6] Jonathan Katz. Digital signatures: Background and definitions. In Digital
Signatures, pages 3—33. Springer, 2010.

[7] Dominic Chalmers, Christian Fisch, Russell Matthews, William Quinn, and
Jan Recker. Beyond the bubble: Will nfts and digital proof of ownership em-

power creative industry entrepreneurs? Journal of Business Venturing Insights,
17:e00309, 2022.

[8] Bitcoin Core. Technology roadmap-schnorr signatures and signature ag-
gregation. URL: hittps://bitcoincore. org/en/2017/03/23/schnorrsignature-
aggregation/(visited on 06/07/2020), 2017.

[9] Sara Ricci, Petr Dzurenda, Ratl Casanova-Marqués, and Petr Cika. Thresh-
old signature for privacy-preserving blockchain. In Business Process Manage-
ment: Blockchain, Robotic Process Automation, and Central and FEastern Fu-
rope Forum: BPM 2022 Blockchain, RPA, and CEE Forum, Muinster, Ger-
many, September 11-16, 2022, Proceedings, pages 100-115. Springer, 2022.

[10] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978,

o7

https://www.vut.cz/www_base/zav_prace_soubor_
https://wwl.microchip.com/downloads/en/DeviceDoc/00003442A.pdf
https://coinexsmartchain.medium.com/
https://bitcoincore

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[22]

23]

[24]

Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

Jan Jancar. Security considerations for elliptic curve domain parameters selec-

tion.

Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 2018.

National Institute of Standards and Technology. Digital signature standard
(dss), 2013-07-19 2013. doi:https://doi.org/10.6028/NIST.FIPS.186-4.

Daniel RL Brown. Sec 2: Recommended elliptic curve domain parameters.
Standards for Efficient Cryptography, 2010.

National Institute of Standards and Technology. Digital signature standard
(dss), 2019-10-31 2019. URL: https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-5-draft.pdf.

Shailee Adinolfi. Public comments received on draft fips 186-
5. Digital signature standards (dss). January 27, 2020. URL:
https://csrc.nist.gov/CSRC/media/Publications/fips/186/5/draft/

documents/fips-186-5-draft-comments-received.pdf.

J Lawrence Carter and Mark N Wegman. Universal classes of hash functions.

In Proceedings of the ninth annual ACM symposium on Theory of computing,
pages 106-112, 1977.

AF Webster and Stafford E Tavares. On the design of s-boxes. In Conference on
the theory and application of cryptographic techniques, pages 523-534. Springer,
1985.

Bart Preneel. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit te Leuven Leuven, 1993.

Morris J Dworkin et al. Sha-3 standard: Permutation-based hash and

extendable-output functions. 2015.
FIPS Pub. Secure hash standard (shs). Fips pub, 180(4), 2012.

Quynh Dang. Secure hash standard, 2015-08-04 2015. doi:https://doi.org/
10.6028/NIST.FIPS.180-4.

Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161-174, 1991.

o8

https://nvlpubs.nist.gov/nistpubs/FIPS/
https://csrc.nist.gov/CSRC/media/Publications/fips/186/5/draft/

[25]

2]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentral-
ized Business Review, page 21260, 2008.

Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161-174, 1991.

Bec Antonin Dufka. Schnorr Signatures with Application to Bitcoin. PhD thesis,
Master’s thesis, Masaryk University Faculty of Informatics, Czech Republic,
2020.

British Standards Institution. Elliptic curve cryptography. Techni-
cal Guideline BSI TR-03111, 2018. URL: https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/
BSI-TR-03111 V-2-1 pdf.pdf?__blob=publicationFile&v=1.

ISO/IEC 4888-3:2018. [T Security techniques — Digital signatures with ap-
pendiz — Part 3: Discrete logarithm based mechanisms. International Organi-

zation for Standardization, 2018.

Tim Ruffing Pieter Wuille, Jonas Nick. Schnorr signatures
for secp256kl, last update on aug 23, 2022. last commit is
3998dbbc8adab3bfabb1b2e90a4840ad93a84adb. URL: https://github.
com/bitcoin/bips/blob/master/bip-0340.mediawiki.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, nov 1979.
doi:10.1145/359168.359176.

Torben Pryds Pedersen. A threshold cryptosystem without a trusted party.
In Advances in Cryptology—EUROCRYPT’91: Workshop on the Theory and
Application of Cryptographic Techniques Brighton, UK, April 8-11, 1991 Pro-
ceedings 10, pages 522-526. Springer, 1991.

JL Lagrange. Lecon cinquieme: sur l'usage des courbes dans la solution des
problémes. Séances des Ecoles Normales recueillies par les sténographes et

revues par les professeurs, Reynier, Paris, 1795.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT 99,
pages 223-238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. [cited
10-12-2021].

Christine Jost et al. Encryption performance improvements of the paillier cryp-
tosystem. Cryptology ePrint Archive, Report 2015/864, 2015. [cited 17-05-2022].
URL: https://ia.cr/2015/864.

99

https://www.bsi.bund.de/
https://ia.cr/2015/864

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

Chelsea Komlo. On security assumptions underpinning recent schnorr threshold
schemes. Ethereum Foundation, 2022. URL: https://crypto.ethereum.org/
blog/schnorr-threshold-blogpost#user-content-fn-2.

Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: simple two-round
schnorr multi-signatures. In Annual International Cryptology Conference, pages
189-221. Springer, 2021.

Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Proceedings of the 153th ACM conference

on Computer and communications security, pages 390-399, 2006.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1084-1101. IEEE, 2019.

OpenSSL. OpenSSL Project, 2021. Accessed: May 16, 2023.
OpenSSL. OpenSSL RAND_DRBG. OpenSSL, 2021. Accessed: May 16, 2023.

National Institute of Standards and Technology. NIST Special Publication 800-
90A: Recommendation for Random Number Generation Using Deterministic
Random Bit Generators. National Institute of Standards and Technology, 2012.
Accessed: May 16, 2023.

OpenSSL. OpenSSL OPENSSL_malloc. OpenSSL, 2021. Accessed: May 16,
2023.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89-100, 2007.

Microsoft. C/C++ Extension Pack - Visual Studio Marketplace. Visual
Studio Marketplace. URL: https://marketplace.visualstudio.com/items?

itemName=ms-vscode.cpptools—extension-pack.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martin Ugarte, and Domagoj
Vrgoc¢. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, pages 263-273. International World Wide Web

Conferences Steering Committee, 2016.

60

https://crypto.ethereum.org/

Symbols and abbreviations
NFT Non-Fungible Token

FROST Flexible Round-Optimized Schnorr Threshold signature
IoT Internet of Thing

RSA Rivest-Shamir-Adleman

EC Elliptic Curves

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm
ECDLP Elliptic Curve Discrete Logarithm Problem
NIST National Institute of Standards and Technology
SECG Standards for Efficient Cryptography Group
NSA National Security Agency

SHA-256 Secure Hash Algorithm 256-bit

PKI Public Key Infrastructure

CA Certificate Authority

DSS Digital Signature Standards

DSA Digital Signature Algorithm

SHS Secure Hash Standard

ROM Random Oracle Model

DPL Discrete Logarithm Problem

BIP Bitcoin Improvement Proposal

SSS Shamir’s Secret Sharing

DKG Distributed Key Generation

Mu-Sig Multi-Signature

OMDL One-More Discrete Logarithm

61

PROM Programmable Random Oracle Model

DRBG Deterministic Random Bit Generator

PRNG Pseudo-Random Number Generators

MAC Message Authentication Code

TSPB Threshold Signature for Privacy-preserving Blockchain
TSPB Threshold Signature for Privacy-preserving Blockchain
API Application Programming Interface

JSON JavaScript Object Notation

62

