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ABSTRACT 
The focus of this work is to introduce the topic of multi-signatures and subsequently 
implement a scheme supported for Internet of Things (loT) devices. The work analyzes 
known multi-signature schemes from the perspective of security, computational com­
plexity, and memory requirements. The work includes the implementations of a Flexible 
Round-Optimized Schnorr Threshold signature and Threshold Signature for Privacy-
preserving Blockchain in the C programming language. 
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Secret Sharing, Distributed Key Generation, Elliptic Curves Cryptography, Security, Proof 
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ABSTRAKT 
Zameraním tejto práce je predstaviť problematiku hromadných podpisov a následne im­
plementovat schému podporovanú pre zariadenia internetu vecí (loT). Práca anlyzuje 
známe viacnásobné podpisy z pohľadu bezpečnosti, výpočetnej a pamäťovej náročnosti. 
Práca obsahuje implementáciu Flexibilne, optimalizovaného Schnorrovo prahového pod­
pisu a prahového podpisu pre zachovanie súkromia v blockchaine v programovacom 
jazyku C. 
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ROZŠÍŘENÝ ABSTRAKT 
Zameraním tejto práce je predstaviť problematiku hromadných podpisov a následne 
implementovat schému podporovanú pre zariadenia internetu vecí (IoT) zo dôvodu 
čoraz väčšej popularite IoT a dôležitosti bezpečnosti pri výmene a ukladaní dát. 
ktoré sú často dôverné alebo citlivé. Digitálne podpisy sa ukázali ako sľubné riešenie 
na zabezpečenie výmeny dát, ale tradičné schémy jedného podpisu nie sú pre IoT 
častokrát vhodné z dôvodu limitácii vo výkonostnej kapacite. Preto cieľom tejto 
práce je taktiež analyzovať moderné schémy z pohľadu bezpečnosti, výpočetnej a 
pamäťovej náročnosti. Táto práca pozostáva z 3 hlavných častí: teoretická čast, 
implementácia a nakoniec pracovné prostredie. 

Teoretická časť je napísaná chronologisckou formou, čo znamená od základných 
primitív a po tie komplexné pre plné pochopenie hromadných podpisov. Ako prvým 
sa teoretická časť zaoberá digitálnym podpisom a jeho hlavnými vlastnosťami v 
kapitole 1.1, úvodom do samotnej všeobecnej schémy až po najznámejšie použí­
vané algoritmy. Taktiež táto kapitola predstavuje hash funkcie ako neodmysliteľnú 
súčasť digitálnych podpisov, s bliším zameraním na vlastnosti bezpenčných hash 
funkcii a následním porovnaním najznámejších používaných hash funkcii z pohľadu 
bezpečnosti. 

V kapitole 1.2 sa popisuje oblasť kryptografie založená na elitpických krivkách, 
z dôvodu neskoršej implementácie v tejto práci. Hlavným dôvodom využitia je ich 
efektívnosť, rýchlosť a väčšia bezpečnosť v porovnaní s klasickými kryptografickými 
primitívami. Kapitola popisuje funkciu eliptickej krivky, jej štruktúru a základné 
vlastnosti. Blišie je vysvetlené funkčnosť a využitie eliptických kriviek v praxi najmä 
vďaka násobeniu skalárnej hodnoty a bodu na eliptickej krivke. V neposlednom rade 
kapitola sa zameriava na možné útoky ale aj bezpečnosť a ich porovnanie k symet­
rickým algoritmom alebo RSA algoritmu. Nakoniec sú porovnané 2 najpoužívane­
jšie eliptické krivky a to secp256kl a secp256rl. Porovnanie bolo zamerané najmä 
vplyv rýchlosti podpisovania a overnia na základe využitej knižnice. Z výsledkov 
bol vyvedený záver v prospech eliptickej krivky secp256rl, ktorá je neskôr použitá 
pre implementáciu. 

V nasledúcej kapitole 1.3 je popísaná digitálny podpis s názvom Schnorrov pod­
pis, ktorý som sebou nesie veľa výhod, ktoré esenciálne v hromadných podpisoch. 
Jednými z nich sú práve jednnoduchosť a linearita, ktorá umožňuje spočítať viacero 
podpisov dokopy, bez toho aby to bolo možné rozoznať. V kapitole je bližšie opísaný 
algoritmus pre podpis a overenie. Kedže práca je založená na eliptických krivkách, 
kapitola porovnává rozdiely v schémach založelných na eliptických krivkách a taktiež 
popisuje algoritmy podpisu a overenia, ktoré sú použité neskôr v implementácii. 

Digitálne podpisy sú kľúčovou súčasťou zabezpečenia IoT zariadení, pretože 
umožňujú autentifikáciu a overovanie správ a dát zdieľaných medzi zariadeniami. 



Avšak môžu nastať situácie, kde jediný podpis nie je dostatočný a je potrebných vi­
acero podpisov na zabezpečenie platnosti správy. Hromadné podpisy (multipodpisy) 
poskytujú riešenie tohto problému, umožňujúc skupine podpisových osôb spoločne 
podpísať správu a zabezpečiť, že bude uznávaná len v prípade, že ju podpíše dosta­
točný počet osôb. V tejto práci špecificky kapitola 1.4 sa zaoberá základmi multi-
podpisov, ich klasifikáciou a výhodami a nevýhodami. Multipodpisy pozostávajú z 
troch algoritmov: generovania kľúčov, podpisovania a overovania. Proces generova­
nia kľúčov má najväčší vplyv na rýchlosť a bezpečnosť multipodpisových schém, 
pretože účastníci musia súhlasiť s privátnymi/verejnými kľúčmi. Po vygenerovaní 
kľúčov účastníci používajú svoje súkromné kľúče na generovanie podpisov na správe 
a overovač kontroluje platnosť podpisu. 

Ako bolo spomenuté vyššie, generovanie kľúčov je najzložitejšou časťou multi-
podpisovných schém. Fakt, že viaceré nedôveryhodné strany musia spoločne pri­
jať a distribuovať verejné a súkromné kľúče bez odhalenia tajných informácií, robí 
generovanie kľúčov problematickým. Okrem toho musí byť verejný kľúč koneč­
nou funkciou súkromného kľúča. Inými slovami, generovanie kľúčov musí splniť 
požiadavky na súkromie a korektnosť. Existujú dve hlavné techniky, Shamirovo 
Bezpečné Zdieľanie a Distribuvované Generácia Kľúčov, ktoré sú bizšie popísané v 
podkapitolách 1.5.4 a 1.5.5. Kedže Shamirovo Bezpečné Zdieľanie má nevýhodu v 
potrebu distributora čiastočných súkromných kľúčov, ktorý vie rekonštruovať hlavný 
súkromný kľúč, čo je považované za bod zraniteľnmosti algoritmu, preto nesko­
ršia implementácia je založená na Distribuvovanej Generácii Kľúčov. Táto schéma 
generovania kľúčov pozostáva z inicializácie, distribúcie dielov "shares", ich overnie 
a nakoniec generácia kľúčov. Pre rekonštrukciu súkromného kľúča je použitá La-
grangova polynomiálna interpolácia, ktorá je popísaná v kapitole 1.6. 

Kapitola 1.7 sa zaoberá Paillierovým kryptosystémom, ktorý je známy ako pravde-
podobnostná asymetrická metóda používaná v kryptografii s verejným kľúčom, za­
ložená na probléme distrkétneho logaritmu. Táto kryptografická metóda má vlast­
nosť aditívnej homomorfie, čo umožňuje kombináciu dvoch šifrovaných textov bez 
poškodenia výsledku. Dekryptácia nie je potrebná, pretože výpočet funguje tak, 
akoby príslušné otvorené texty boli jednoducho sčítané. Avšak účinnosť Paillierovho 
kryptosystému ako homomorfnej šifry je stálym problémom. Na riešenie tohto prob­
lému bolo predložených niekoľko optimalizačných nápadov. 

Predosledná teoretická kapitola 1.8 sa zaoberá samotným flexibýlnym rundovo 
optimalizovaným prahovým podpisom založený na Schnorrovej schéme známy ako 
FROST podpis. Prahové podpisy sú špecifická obnož multipodpisov, pri ktorých je 
potrebná minimálna účasť podpisujúcich správu z celkovej množiny možných pod­
pisujúcich, v kapitole sú bližšie zmienené výhody tohoto podpisu. V podkapitolách 
je bližšie zmeniená distribucá kľúčov, ktorá je založená na Pedersonovej schéme Dis-



tribuovanej Generácie kľúčov. Tá pozostáva z 2 rúnd, ktoré sú matematickz popísané 
v podkapitole 1.8.2. Nakoniec je popisaná schéma samotného podpisu v podkapitole 
1.8.3, ktorá pozostáva z 3 fázy: vytvorenie záväzku, výzvy a nakoniec samotného 
podpisu. 

Posledná kapitola 1.9 sa zaoberá prahovým podpisom pre zachovanie súkromia 
v blockchaine. Daný podpis je založený na Paillerovej schéme, Shnorrovom podpise 
a Shamirovom Bezpečnom Zdieľaní. Daný podpis má dvojité využitie buď pre jed­
ného používateľa, čo zvyšuje bezpečnosť tým, že vyžaduje podpísanie transakcií v 
blockchaine z viacerých zariadení používateľov, alebo pre celú skupinu používateľov, 
ktorí spolupracujú, čo podporuje súkromie tým, že umožňuje anonymné podpisy v 
mene spoločnej peňaženky v blockchaine. 

Druhá časť práce sa zaoberá samotnou implementáciou a dôvodom výberu práve 
FROST podpisu. V Kapitole 2.1 je porovnanie najznámejších multipodpisov. Ich 
porovnanie je založené z pohľadu bezpečnosti, potrebných interácii pri generovaní 
kľúčov a podpisovaní a nakoniec samotnej náročnosti algroritmu na výpočet. Z 
výsledkov bol nakoniec usúdený záver v prospech FROST podpisu, ktorý je ideány 
kandidát pre implementáciu na IoT zariadenia z pohľadu dostatočnej bezpečnosti, 
rýchlosti a nenáročnosti na výpočtovú techniku. 

Pre samotnú implementáciu je potrebné splňovať určité bezpečnostné kritéria, 
aby sme ju mohli považovať za bezpečnú. Bezpečnosť FROST podpisu ako schémy, 
využitie bezpečnej knižnice a následným bezpečných implementováním funkcii. Tak­
tiež je potrebné použiť dostatočne bezpečne kryptografické primitíva a na záver je 
potrebné bezpečne alokovat a následné dealokovať pamäť v samotnej implementácii. 
Túto širokú časť popisuje práve druhá časť tejto práce. 

Implementácia je napísaná v programovacom jazyku C s využitím knižnice OpenSLL. 
Kapitola 2.2 bližšie špecifikuje dôvod výberu s obhajobou bezpečnosti knižnice pre 
použitie. Pre implementáciu je využitá verzia 3.0, z ktorej sú následne využité 
potrebné kryptografické primitíva ako hash funkcia SHA-256, eliptická krivka SECP-
256rl a generátor náhodných čísel. Implementácia využíva najnovších funkcii pod­
porované knižnicou OpenSSL 3.0. 

Samotná implementácia FROST podpisu je naprogramovaná formou knižnice, 
ktorá pozostáva z .c súborou setup.c, signing.c, globals.c and macros.c, ktoré sú 
nalikované na hlavičkové súbory z priečinku ../headers a na hlavičkové súbory 
knižnice OpenSSL, ktorá je potrebná v OS pre spustenie projektu. Main.c slúži 
ako A P I na testovanie samotnej knižnice. Hlavičkové súbory v ../header sú nasle­
dovné: setup.h, signing.h a globals.h. Celý projekt je spustený pomocou Makejile. 
Knižnica má na staroti chod celého podpisu v zmysle , inicializáciu elitptickej krivky 
a jej paremetrou, matematických vypočtou až po alokáciu a dealokáciu pamäte. Z 
pohľadu A P I má uživatel na staroti volanie funkcii, ktoré slúžia na inicializáciu 



potrebných dát a následnú komunikáciu medzi užívateľmi. Pre bližšie pochope­
nie potrebnej komunikácie a samotnej schémy podkapitola 2.3.1 obsahuje diagram 
pre generáciu kľúčov a podkapitola 2.3.2 vysvetľuje komunikáciu pri podpisovaní v 
danom diagrame. V neposlednom rade podkapitola 2.3.5 zhrňuje celkovú bezpečnosť 
implementácie a bližšie opisuje správu pamäte a jej čistenie. Tá bola testovaná 
open-source nástrojom Valgrind. V podkapitole 2.3.6 je opísané testovanie FROST 
implementácie z pohľadu rýchlosti a vplyvu množstva účinkujúcich pri generovaní 
kľúčov a samotného podpisu. Boli testované schémy (2,3), (3,5) a (4,6) pomocou 
knižnice Ume.h. 

Na záver kapitola 2.4 opisuje samotnú implementáciu prahového podpisu pre 
zachovanie súkromia v blockchaine. Implementácia je napísaná v programovacom 
jazyku C s využitím knižnice OpenSLL a cJSON. Implementácia z časti naväzuje 
na dimplomovú prácu [1], kde bol poskytnutý kód za cieľom využitia počiatočného 
nastavenia Zmluvy o autentizačnom kľúči na základe Shamirovho zdieľania tajom­
stva. Implementácia funguje pre schému (3,3) no pokračujúca práca je potrebná 
najmä v oblasti generovania kľúčov. 
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Introduction 
Over the last few decades, the Internet has reached its full potential and has had a 
significant impact on our everyday lives. Only recently has the Internet unlocked a 
new feature of digital ownership that transforms our current economy. Nowadays, a 
trend of owning physical assets is tending to be replaced by the online world, where 
people can hold different types of ownership. [7] A good example of this can be seen 
in digital rights or art, commonly associated with Non-Fungible Tokens (NFTs), and 
any type of cryptocurrency. They are all based on the principles of cryptography, 
more specifically digital signatures. 

Digital signatures employ asymmetric cryptography, which operates with private 
and public keys and hash functions. [6] The main goal is to securely conduct data 
with a proof of integrity, authenticity, and non-repudiation over the Internet. Signing 
schemes, where a single user issues signatures, may suffer from potential threats as 
only one signer is considered a point of failure. A solution can be found in a specific 
type of digital signature known as multi-signatures, where two or more people can 
sign documents together as a group. 

This thesis is concerned with multi-signature schemes with a major focus on 
multi-sig and threshold signatures. They caught public attention after blockchain 
technology was invented and implemented in the cryptocurrency such as Bitcoin. [8] 
Blockchain is used by Bitcoin as a ledger to keep track of all network transactions 
that are made primarily on-chain by multi-sig. However, it brings some drawbacks 
that threshold signatures are able to solve. 

The main goal of the thesis, therefore, is to analyze different types of current 
multi-sig and threshold schemes and compare them in the area of security and com­
putational complexity. Moreover, the thesis covers the implementation of the cur­
rently best-known multi-signature called Flexible Round-Optimized Schnorr Thresh­
old signatures (FROST) [2] and threshold signature [9] in the C programming lan­
guage. These implementations are focused on the suitable usage of multi-signatures 
in the of the Internet of Things (IoTs). 

16 



1 Background 
This chapter focuses on the theoretical aspects necessary for understanding the topic 
and its subsequent implementation. While some general knowledge of cryptography 
is welcomed, it is not required, as all the necessary information is presented in 
chronological order to provide a deeper understanding. 

1.1 Elliptic Curve Cryptography 

1.1.1 Context 

The classical era and the modern era can be used to divide the history of cryp­
tography. The Dime-Hellman key exchange algorithm and the introduction of the 
Rivest-Shamir-Adleman (RSA) algorithm in 1977 mark the turning point between 
the two. The principle of modern cryptography is that the key is used to encrypt 
data can be made public, while the key you need to decrypt data can be kept secret. 
Therefore, these systems are called public-key cryptography, which is also known as 
asymmetric cryptography. RSA is the first system of this type and is still widely 
used publicly. It is equipped with strict security proofs based on effective trap­
door functions that make the algorithm powerful. In general, trap-door functions 
are algorithms that are easy in one direction and difficult in the other. The easy 
technique in the case of RSA multiplies two prime numbers [10]. If multiplication 
is the easy algorithm, then decomposing the multiplication product into its two 
prime components is the difficult pair algorithm without a private key [10]. This 
principle is based on a mathematical statement about the difficulty of factorizing 
large prime numbers. After the development of RSA and Diffie-Hellman, researchers 
investigated other similar mathematically based cryptographic methods, which led 
to the study of Elliptic Curves (ECs) and the development of a new branch of 
asymmetric cryptography known as Elliptic Curve Cryptography (ECC). This is a 
public key encryption method based on E C theory that can be an alternative to 
RSA for instance. This method allows cryptographic keys to be generated faster, 
more efficiently, and in smaller sizes with equivalent level of security with respect to 
traditional cryptographyfll]. Due to its advantages, it is most often used for digital 
signatures and in cryptocurrencies such as Bitcoin. 

1.1.2 Principle 

As opposed to the RSA conventional method of generation as the product of big 
prime numbers, E C C creates keys through the characteristics of an E C equation. 
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The points on the graph, used in later generation of private/public keys, can be 
expressed using the following equation from a cryptographic perspective: 

Equation 1.1 is simplified version of E C also known as Short Weierstras Curve 
[11]. E C C uses this form of curve with two possibilities: E C over the finite field 
Fp or F2m, where p is a prime number and p > 3, respectively. For F2m 'p' is size 
of 2 _ m _ that indicates the EC's points can only have integer coordinates within 
the field, which is a square matrix of size p * p [12]. Every algebraic operation 
performed on the field, such as point addition and scalar multiplication, yields a 
new point. A l l points belonging to E C can be expressed by cyclic algebraic group or 
non-overlapping cyclic subgroups (each including a portion of the E C points on the 
curve). A l l EC's points are described by equation n = h*r where; n is order of the 
curve, h is number of subgroups (known as co-factor) and lastly r is the number of 
points in each subgroup (called order of the subgroups) [11]. By detail examination 
of the E C displayed on the figure 1.1, it is possible to notice some of remarkable 
aspects. First of all, curves are horizontally symmetric. Secondly, any non-vertical 
line will only cross the curve three times, which is a more intriguing characteristic. 
As a feature can be noticed from the figure 1.1, addition of two point A , B creates 
a new point that reflects over x-axes resulting in C point. The feature is known 
as E C point addition that idea can be enhanced. By adding A point k times, also 
known as E C multiplication,new point is created in really quick way [11]. It is good 
theoretical example, but in practice point A is replaced with generator point G 
that bring useful properties. Since E C over finite field form cyclic algebraic group or 
non-overlapping cyclic subgroups, generator G is used for generating any other point 
from group/subgroup by multiplying with integer in range of [0...r], where r is order 
of the cyclic subgroup. This leads to creating public key describes by equation: 

where P is public key, k is secret key and G is generator. 

1.1.3 Security 

EC's security is based on mathematical principle called The Elliptic Curve Dis­
crete Logarithm Problem (ECDLP) . Definition is derived from generalized discrete 
logarithm problem as follows: [13]; 

Definition 1 Given a finite cyclic group of points G of order n of an EC over a 
finite field, a generator A of G, and an element B e G. Find the integer x, 0 < x < 
n-1: [x]A = B 

y2 = xs + ax + b 

P = k*G 
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Fig. 1.1: Visualisation of E C 

The E C D L P problem lacks an effective solution for carefully selected finite fields 
and ECs, according to cryptographers, although there is no exact mathematical 
proof that E C is secure [12]. System security is of the utmost importance. A mini­
mum of 128 bits of security should be provided by contemporary systems, according 
to the majority of cryptographic specialists. This is not the key length, though. 
The unique algorithm and its key length work together to provide security. This 
means that at least a 2*k-bit curve is required in order to obtain a k-bit security 
strength because the quickest known technique to solve the E C D L P for a key of size 
'k' requires steps [12]. Because of this, 256-bit ECs typically offer security strength 
of about 128 bits. One common example is the belief that AES-128, EC-256 and 
RSA-3072 bits can provide 128 bits of protection. As the amount of computation 
accessible to attackers continues to grow, keys typically get longer over time. Table 
1.1 clearly shows an efficiency of E C security regards of key length. 
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Minimum Size of Public Keys (Bits) 
Security Bits Symmetric Algorithm RSA E C C 

80 Skipjack 1024 160 
112 3DES 2048 224 
128 AES-128 3072 256 
192 AES-192 7680 384 
256 AES-256 15360 512 

Tab. 1.1: Algorithm Size Comparisons for Security [3] 

1.1.4 Comparison of Secp256rl and Secp256kl 

As signature is computed by IoT devices in this work, a decision of choosing ap­
propriate computing method of signing and verifying is crucial. Limited computing 
capacity has to be taken into consideration. Therefore, balance between sufficient se­
curity and fast computing is required. Because of its effectiveness and solid security 
guarantees, E C C is widely employed in commercial environments. Curves, which 
are established by the National Institute of Standards and Technology (NIST)[14], 
are the most often utilized ECs in E C C . In numerous cryptographic protocols and 
systems, these curves are commonly used and approved. Based on their sizes, the 
NIST curves are separated into three groups: P-256, P-384, and P-521. The key 
sizes for these curves are 256 bits, 384 bits, and 521 bits, respectively. The most 
used curve, the P-256 curve, strikes a fair mix between security and effectiveness. 
Our requirements sorted possible candidates into two options: E C secp256rl also 
known as prime256vl or its sibling secp256kl. Secp256rl heavily used publicly as it 
is standardized by NIST. On the other hand, secp256kl is created and standardized 
by Standards for Efficient Cryptography Group (SECG) [15]. However, this curve 
was not added as NIST standard in the last publication FIPS 186-5 yet [16].That 
led to public comment raised by block-chain community included E T H Foundation 
[17]. In spite of this fact, secp256kl has some benefits over secp256rl. The benefits 
comes from its fundamental structure of curve that is defined by equation 1.3: 

y

2 = x

3 + 7 (1.3) 

As The Weierstrass coefficients (a,b) are static with set values of (0,7), it results 
in using interesting features that resulted secp256kl to be curve with fast scalar 
multiplication. Table 1.2 compares secp256kl and secp256rl in terms of signing 
and verification in Elliptic Curve Digital Signature Algorithm (ECDSA) provided 
by OpenSSL and Libsecp256kl libraries. 

According to benchmark in table 1.2, speed of the ECs are critical on selection of 
library as Openssl library is optimized for secp256rl and libsecp256kl was primaly 
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OpenSSL 
secp256rl 

OpenSSL 
secp256kl 

Libsecp256kl 
secp256kl 

excl. endomorphism 

Libsecp256kl 
secp256kl 

incl. endomorphism 
sign 33000/s 2000/s 22000/s 22000/s 
verify 12000/s 2300/s 15000/s 21000/s 

Tab. 1.2: Elliptic Curve Speed Comparison [4] 

created for secp256kl curve. When it comes to security, next table 1.3 shows security 
difference that has currently no effect as both curves are 256 bits. 

Curve secp256kl secp256rl 
Security 127.03 127.83 
Automorphism Order 6 2 
Parameters a 0 3 
Cost for a combine attack 2 ^109,5 2 ^120,3 

Tab. 1.3: Security Comparison of secp256kl and secp256rl [5] 

In terms of security, both ECs are considered secure, with small lead of secp256rl. 
Since then, secp256rl has been advocated by standards organizations like the Na­
tional Security Agency (NSA) and NIST and is increasingly frequently adopted and 
used in cryptographic protocols and systems. secp256rl was chosen for implemen­
tation of this work since secp256kl is predominantly used in bitcoin and blockchain 
applications and may not be as extensively accepted in different environments. 

1.2 Digital Signature 

In the digital realm, there is a need for an equivalent representation of a hand-written 
signature with all its properties. A digital signature serves as a unique behavioral 
biometric that enables easy authentication and guards against signature alteration 
or accurate falsification. Additionally, it encompasses a valuable attribute known as 
non-repudiation, which prevents the signer from denying their own signature in the 
future. Digital signature, a mathematical scheme used for verifying digital messages 
[6], satisfies the requirements of authentication, integrity, and non-repudiation. It is 
generally regarded as a signature created using cryptographic methods, specifically 
employing asymmetric cryptography and hash functions. 
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1.2.1 Hash function 

A hash function is a mathematical procedure that converts a numeric input value 
into another value. [18] Hash values, or simply hashes, can be understood as repre­
sentations of fixed-length messages of any length. To create hashes, a hash function 
operates on two fixed-size blocks of data, typically ranging between 128 bits and 
512 bits. The entire process functions as a chain with rounds, where the output of 
one hash function becomes the input of another. This results in a desirable effect 
known as the avalanche effect [19]. Nearly identical messages that differ by only one 
bit produce completely different hashes. 

A reliable hash algorithm must satisfy several criteria, as they are commonly used 
in digital signatures, authentication systems, and databases. One essential property 
is speed. Additionally, a hash function should possess the following properties. Pre-
image resistance ensures that it is difficult to reverse the hash algorithm and deduce 
the original input from the output. Second Pre-image resistance refers to the concept 
that given an input and its hash value, finding a different input with the same hash 
value should be challenging [20]. Since a hash function is a compression function 
with a specific hash length, collisions are unavoidable. Therefore, comparing two 
inputs of different lengths that result in the same hash value, commonly known as 
collision resistance, should be challenging. 

The NIST compares the security of the most popular hash functions in the 
SHA-3 Standard publication [21]. The comparison is presented in the table 1.4. In 
definition 1 the security strength against second pre-image attacks on a message M 
is stated as: 

Definition 1 /o(?2(/en(M)/'B), where B is the block length of the function in bits, 
i.e., B = 512 for SHA-1, SHA-224, and SHA-256, and B = 1024 for SHA-512 [21]. 

1.2.2 Secure Hash Algorithm 256-bit 

Secure Hash Algorithm 256-bit (SHA-256) is a widely used cryptographic hash func­
tion that belongs to the SHA-2 family. It was designed by NSA and later on pub­
lished by NIST in 2001. In order for SHA-256 to work, the input message must be 
divided into 512-bit blocks. Next, each block must undergo a series of cryptographic 
operations that combine and alter the bits. These procedures include conditional 
assignments, modular arithmetic, bitwise logical operations, and message expansion 
[22]. These operations provide a 256-bit hash value that is unique to the input 
message as the end result. 

One of SHA-256's major characteristics is its resistance to collisions, which means 
that finding two separate input messages that give the same output hash value 
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Security Strengths in Bits 

Function 
Output 

Size 
Collision Preimage 2nd Preimage 

SHA-1 160 <80 160 160-L(M) 
SHA-224 224 112 224 min(224, 256-L(M)) 

SHA-512/224 224 112 224 224 
SHA-256 256 128 256 256-L(M) 

SHA-512/256 256 128 256 256 
SHA-384 384 192 384 384 
SHA-512 512 256 512 512-L(M) 

SHA3-224 224 112 224 224 
SHA3-256 256 128 256 256 
SHA3-384 384 192 384 384 
SHA3-512 512 256 512 512 

Tab. 1.4: Security Comparison of Hash Functions [6] 

is computationally impossible. Moreover, SHA-256 is considered as deterministic 
which results by same input same output. Because of these characteristics, SHA-
256 may be used for a variety of cryptographic tasks, including password storage, 
digital signatures, and message authentication codes. 

1.2.3 Digital Signature Scheme 

The most commonly a digital signature scheme consists of three-stage process [6]; a 
key generation, signing and a signature verification. The key generation is an algo­
rithm that creates a pair of private and public key. The pair of keys is tied to one 
entity, who signs a document by private key that is kept in secret. Then, public key 
is sent to other entity for verification. Signing is generated by hashing document. 
A outcome of hash function is signed by private key in order to create digital signa­
ture and then to be transmitted with document to a receiver. Finally, the signature 
verification is done by decryption using public key. Algorithm states acceptance or 
rejection of signature authenticity. Problem can be found in distribution of public 
key from one entity to another as that is no evidence of key authenticity. More­
over, public key can be tampered by third party. Public Key Infrastructure (PKI) 
solves this problem by creating third party organization, trusted by both entities, 
also known as Certificate Authority (CA). they issue certificate on entity and its 
legitimate key pairs. 
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1.2.4 Digital Signature Algorithms 

Due to the presence of various types of digital signatures, NIST specifies approved 
digital signature algorithms in the publication Digital Signature Standards (DSS) 
[14]. This includes the Digital Signature Algorithm (DSA) developed by NIST, as 
well as the recently added RSA [10] and ECDSA. A l l of these algorithms work in 
conjunction with approved hash functions specified in the Secure Hash Standard 
(SHS) [23] or the SHA-3 Standard [21]. 

Moreover, alternative digital signatures gains popularity these days. The Schnorr 
Signature [24] is a relatively old algorithm created by Claus Schnorr, which was under 
patent protection until 2008. In the same year, Bitcoin was created, and its creator 
decided to implement E C D S A using the E C secp256kl due to its optimization and 
public awareness [25]. However, E C D S A has some drawbacks that the Schnorr 
Signature solves. Therefore, developers decided to implement the Schnorr signature 
in the taproot upgrade that took place in November 2021. 

1.3 Schnorr Signature 

Public key signature techniques are essential for authenticating sensitive messages 
such as electronic funds transfers and managing access to communication networks. 
Since the development of RSA, research has focused on improving the effectiveness of 
these techniques. In 1991, Claus Schnorr introduced a new signature scheme, known 
as Schnorr signature, with main purpose of minimizing computation for smart cards 
due to a lack of computing power [26]. The Schnorr signature is a digital signa­
ture protocol known for its ease of use, effectiveness, and concise signatures. It is 
based on the idea of public keys and is widely used in many different cryptosystems. 
The Discrete Logarithm Problem (DLP), extracted from the Schnorr identification 
method using the Fiat-Shamir heuristic, serves as the basis for the scheme [27]. The 
scheme's security has been investigated and proven in the Random Oracle Model 
(ROM). It has been demonstrated to be strongly resistant to forging during adap-
tively chosen-message attacks[27]. One of the advantages, that has noticeable effect 
is linearity that is desirable in multi-party computation. This useful attribute en­
ables the creation of another valid Schnorr signature by combining two Schnorr 
signatures, resulting of possible algebraic operations in signatures. Following algo­
rithms describe signing and verification process in Schnorr signature [26]. Let H be 
a cryptographic hash function that maps to Z* and let G be a group with generator 
g and prime order q. The following actions are taken to generate a Schnorr signature 
over a message m: 
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Algorithm 1 Signing Algorithm for Schnorr Signature [26] 
1. Select random nonce k ER 1*Q 

2. Calculate the commitment R <— gk G G 
3. Calculate the challenge c = H(m, R) 
4. Calculate the response with secret key Sk z = k + Sk * c G Z g 

5. Signature is defined as a = (z, c) 

Algorithm 2 Verification Algorithm for Schnorr Signature [26] 
1. Parse a into (z, c) 
2. Calculate R' = gz * P f c

_ c | Pk = gSk {Public key) 
3. Calculate z' = H(m, R') 
if c = z' then 

output is 1; Valid 
else 

output is 0; Rejected 
end if 

1.3.1 EC-Schnorr Signature 

Since introduction of basic Schnorr signature by Claus Schnorr, another versions of 
this type were proposed. Significant improvement is provided by collaboration with 
E C C , where E C are used for calculating parameters in result of faster computing. As 
a consequence, small changes are done in signing and verifying algorithm. Following 
table compares some types of Schnorr signatures. 

Scheme Schnorr Sig. E C - S D S A E C - F S D S A 
Schnorr Sig. 

BIP 340 
1. Component H(m, R) H(Rx\\Ry\\m) Rx\\Ry Rx 
2. Component k + Sk * h k + Sk * h k + H(Rx\\Ry\\m)*Sk k + H(Rx\\PKx\\m)*Sk 

Sign. Size b+2b 2b+2b 4b+2b 2b+2b 
Public Key gsk -Sk*G -Sk*G Sk*G 
Reference [26] [28] [29] [30] 

Tab. 1.5: Comparison of Different Types of Schnorr Signature 

Nowadays, one of the most breaking news in cryptography is implementation 
of EC-Schnorr signature into Bitcoin that took place in November 2021. It was 
well-grounded by Bitcoin Improvement Proposal (BIP), more specifically BIP 340 
[30]. It is considered as standard for 64-byte EC-Schnorr signature algorithm that is 
performed over secp256kl E C . Following algorithms show how signing and verifying 
is done in this work: 
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Algorithm 3 Signing Algorithm for EC-Schnorr Signature 
1. Select random nonce k ER Z 9 

2. Calculate the point on curve R = k * G 
3. Calculate hash c = H(R\\m) 
4. Calculate the challenge with secret key Sk s = k + c * Sk 

5. Signature is defined as a = (s, c) 

Algorithm 4 Verification Algorithm for EC-Schnorr Signature 
1. Parse a into (s, c) 
2. Calculate R' = s * G - c * Pk \ Pk = G * Sk 

3. Calculate hash z' = H(R'\\m) 
if z' — c then 

output is 1; Valid 
else 

output is 0; Rejected 
end if 

The main difference between Schnorr Signature and EC-Schnorr Signature is fact 
that exponentiation is replaced by simpler and faster multiplication in EC . Lastly, 
generator G, public commitment R and public key Pk are points on EC. 

1.4 Multi-signatures 

In order to secure communication and data sharing on IoT devices, digital signa­
tures are essential. However, situations might arise in terms of communication where 
there is a need to have several signatures since one signature might not be sufficient 
for verifying its validity. Multisignatures provide a solution to this issue by enabling 
a group of signers to jointly sign a message. This ensures that the message is only 
recognized as legitimate if the necessary number of signers have signed it. With 
multisignature, multiple signers can each add their own signature to a message, cre­
ating a single signature that can be verified by anyone with access to the public key. 
Blockchain technology, digital certificates, encrypted communications, and authen­
tication protocols all make extensive use of multisignatures. Multisignature systems 
have the major benefit of increasing security and accountability while also offering 
flexibility and scalability. The drawbacks of conventional digital signatures, which 
only permit one signer to sign a message, can be solved by multisignature. Similarly 
to conventional digital signatures, multi-signatures consist of three algorithms: key 
generation, signing, and verification. The biggest impact on speed and security of 
multisignature schemes is key generation, as participants have to agree on private 
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and public keys. After that, participants use their private key to generate a signa­
ture on the message, and finally, a verifier, usually one entity, checks the validation 
of the signature. 

1.4.1 Classification 

Threshold multisignature schemes and distributed multisignature schemes are the 
two basic kinds of multisignature schemes. 

1. For Threshold signature to be legitimate, a certain minimum number of 
signers must take part in the signing process according to this method. Two 
more classes may be added to the classification of threshold multisignature 
schemes: 

• Secret sharing-based multisignature methods proposed by Shamir 
Using Shamir's secret sharing technique, the message is first divided into 
shares, and each side creates a partial signature on their corresponding 
share. A reconstruction procedure is used to combine the partial sig­
natures to create the whole signature. With this strategy, the signing 
job is divided among the signers, but the shares must be created and 
distributed by a reputable dealer. 

• Schnorr's threshold signature-based multisignature schemes: In 
this method, each party signs the message partially using their private 
key, and the partial signatures are then merged with a threshold signature 
algorithm to create the final signature. While Shamir's secret sharing-
based schemes have a lower computational overhead, this strategy does 
away with the requirement for a trusted dealer. 

2. Distributed multisignature techniques permit any subset of signers to co­
operatively create a signature on the message rather than requiring a minimum 
number of signers to participate in the signing process. Two more classes may 
be added to the classification of distributed multisignature schemes: 

• Multisignature techniques based on ring signatures use a public key 
ring that contains the public keys of all signers, each party creates a ring 
signature on the message in this method. Using a verification technique, 
the ring signatures are combined to get the final signature. Although 
this method offers signers anonymity, it has a higher computational cost 
when compared to other multisignature schemes. 

• Aggregate signature-based multisignature schemes depends on each 
participant as they create a unique signature on the message using their 
private key, and these signatures are then merged to make the final signa-
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ture using an aggregate signature algorithm. This method has a minimal 
computational cost and is appropriate for devices with limited resources, 
but it needs a reliable third party to combine the signatures. 

1.5 Multi-signature Key Generation 

As in previous section was mentioned, key generation is the most complicated part 
in multisignatures. The fact, that multiple untrusted parties have to jointly accept 
and distribute public and private key without leaking secret information makes key 
generation problematic. Moreover, final public key has to be a function of secret 
key. In other words, key generation has to fulfill terms of privacy and correctness. 
There are 2 main techniques that are used in Multi-signature key generation. 

1.5.1 Shamir's Secret Sharing 

Shamir's Secret Sharing (SSS) is a cryptographic procedure that divides a secret 
into shares, with the result that the original secret can only be recreated if enough 
shares are joined. Adi Shamir created it in 1979 [31], and today it is extensively 
used for many different purposes, such as secure communications and multi-party 
calculations. 

The key concept underlying SSS is to create shares of a secret via polynomial 
interpolation. To be more precise, we can produce N points on a random polynomial 
of degree TV — 1, where the secret value S is the constant term, given a secret value S 
and a positive integer N [31]. In order to prevent any party from learning anything 
about the secret value from only their share, these N points can be divided to TV 
separate parties. Any T or more parties are able to combine their shares using 
polynomial interpolation in order to recreate the secret value. In other words, we 
can calculate the special degree T — 1 polynomial that goes over any T shares (where 
T is less than or equal to N). The secret value S serves as the polynomial's constant 
term. 

SSS is secure since an attacker cannot discover any information about the secret 
value from less than T shares. The reason for this is that any polynomial with degree 
less than T — 1 may be constructed to pass through an endless number of points, 
hence the shares by themselves are meaningless in revealing the secret [31]. It has 
many advantages and useful properties such as: scalability, flexibility, robustness 
and efficiency as only simple arithmetic algorithms are required. 

SSS has the drawback of requiring a reliable dealer to create and distribute the 
secret shares. In order to maintain the confidentiality of the shared secret, the 
dealer must be trustworthy and cannot collaborate with any of the parties. If the 
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dealer is dishonest or malevolent, they may distribute the wrong shares or disclose 
information that compromises the secrecy of the secret. Therefore, in some schemes 
is not desired to have centralized power in hand of one entity that brings us to point 
of failure. 

1.5.2 Distributed Key Generation 

A cryptographic technique called Distributed Key Generation (DKG) is used to 
create cryptographic keys in a distributed and safe way without depending on a 
reliable dealer. D K G enables a group of participants to collectively produce a shared 
secret that may be used as a cryptographic key for a variety of purposes, including 
encrypted communication or digital signatures. 

The Pedersen D K G protocol, first forward by Torben Pedersen in 1991 [32], 
serves as a prime example of D K G . SSS and E C C are used in the Pedersen D K G 
protocol to provide a shared secret key that is safely generated. Generaly any D K G 
scheme, Pedersen D K G included, consist of following stages: 

1. Initialization: The parties decide on a generating point on a shared EC. In 
order to calculate their matching public key on the E C , each side produces a 
random value [32]. 

2. Share distribution: The parties divide their random value into shares and 
provide those shares to the other members of the group using SSS. Each party 
obtains shares from every other participant and computes its own polynomial 
interpolated reconstructed private key [32]. 

3. Share verification: The parties calculate a shared public key on the EC 
using their private keys that they have rebuilt. They then trade promises to 
their rebuilt private keys, using these commitments to confirm the authenticity 
of the shared public key. 

4. Key generation: If the key verification procedure is successful, the parties 
utilize their shared public key to create their cryptographic keys. The parties' 
respective public keys are used to form the shared public key, which is then 
used to generate the matching reconstructed private keys. 

1.6 Lagrange Polynomial Interpolation 

A mathematical method called Lagrange polynomial interpolation is used to identify 
a polynomial function that traverses a collection of known points on graph [33]. In 
various fields, including cryptography and its cryptographic systems like SSS, which 
is used to safely divide a secret into numerous shares, the Lagrange polynomial 
interpolation is utilized. 
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The general form of the Lagrange polynomial interpolation is [33]: 

n 
(1.4) 

i=0 
where U{x) is the zth Lagrange basis polynomial, defined as [33]: 

n 
u(x)= n (1.5) 

The characteristic of the Lagrange basis polynomials is that for any j i, k(xi) = 1 
and li(xj) = 0. This indicates that the point (xj, y*) is the only point through which 
the polynomial function P(x) passes and not any other points [33]. 

The Paillier cryptosystem is a probabilistic asymmetric method used in public-key 
cryptography, and it was developed by Pascal Paillier in 1999 [34]. A trapdoor 
mechanism developed from the family of trapdoors based on the D L P is shown in 
Paillier's work [34] with an emphasis on composite residuosity classes. 

This cryptographic method has the additive homomorphic characteristic, which 
allows two ciphertexts to be combined without impairing the outcome. Decryption 
is not required since the computation operates as if the appropriate plaintexts were 
simply added. 

However, for any homomorphic encryption technique, the effectiveness of the 
Paillier cryptosystem is an an ongoing concern. To solve this problem, several op­
timization ideas have been presented up. Paillier himself, for instance, suggested 
Scheme 3 as a modification of the initial Scheme 1. Moreover, another way of im­
provement includes computing certain values in advance, such as exponentiating 
either the message gm or the noise rn, as suggested in the article [35]. 

1.7.1 Homomorphic Properties 

The additive and multiplicative homomorphic qualities of the Paillier scheme are its 
major features. These characteristics make it possible to simulate addition and mul­
tiplication operations on ciphertexts while computing addition and multiplication 
operations on plaintexts. This is stated mathematically as follows [1]: 

• adding homomorphically the two related plain-texts together is identical 
to decryption the product of two ciphers (or the product of a cipher and a 
generator g raised to the power of the plain-text): 
- D(E(mi,ri) • E(m,2,?"2)n2) = (mi + m 2) (mod n) 
- D(E(mi,ri) • gm2 (mod n 2)) = (mi + m 2 ) (mod n) 

1.7 Pailler Cryptosystem 
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• plaintexts are multiplied homomorphically. Decrypting the result in this 
instance reveals the multiplication of the two plaintexts when a ciphertext is 
raised to the power of a plaintext: 
- D(E(mi,ri)m2 (mod n 2)) = (mim 2) (mod n) 
- D(E(rri2, r2)™ (mod n 2)) = (roiro2) (mod n) 

1.7.2 Pailler Scheme 1 

The following procedure is used to create the public key pk and secret key sk in 
Scheme 1. P and Q, two large prime numbers, are first chosen at random to ensure 
their independence from one another. Both primes must be of similar length in order 
to ensure a certain property (GCD(PQ, (p— l)(q — 1)) = 1). The parameter is then 
calculated as the least common multiple of (p — 1) and (q — 1) and the parameter 
n is then calculated as the product of P and Q [1]. The parameter g is then drawn 
at random from the set Z* 2 after that. It's crucial to confirm that n divides g by 
looking for a modular multiplicative inverse, given by the symbol. At this stage, it 
is necessary to ensure that n divides the parameter g by verifying the existence of a 
modular multiplicative inverse denoted as p showed in equation 1.4 [1]. 

fi = (L(gx (mod n 2 ) ) ) - 1 (mod n) (1.6) 

where L(x) = ^—^ The public key pk is defined as the ordered set consisting of the 
parameters n and g. On the other hand, the secret key sk is defined as the ordered 
set containing the parameters A and p. The encryption of message m is done as 
in equation 1.5 [1]. 

c = gm-rn (mod n 2) (1.7) 

On the other hand, the decryption of cipher-text is done as in equation 1.6 [1]. 

m = (L(cx (mod n 2))) • p (mod n) (1.8) 

1.8 FROST signature 

1.8.1 Context 

FROST signature is a method for cryptographically signing communications that 
enables many users to sign messages using a single secret key. It is based on the 
Schnorr signature technique and generates the shared secret key using the Pedersen 
D K G protocol. In January 2020, Chelsea Komlo and Ian Goldberg described FROST 
in a research article. [2] It has drawn interest from the cryptography community 
because to its efficiency and security trade-offs, as well as its potential application 
in decentralized systems like block-chain networks. 
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FROST has several advantages: 
1. Threshold security: FROST offers threshold security, which implies that 

in order to access the private key, an attacker would need to successfully 
compromise a significant number of signers. 

2. Flexibility: FROST may be modified to meet various threshold and signer 
criteria due to its adaptability. 

3. Efficiency: FROST uses less bandwidth and has a high processing efficiency 

[2]-
4. Round-optimized: FROST is created to reduce the number of rounds that 

are necessary for communication between the signers [2]. 

1.8.2 DKG in FROST 

D K G is used to generate and distribute the shared secret key among all participants 
for later signing. Pedersen D K G protocol serves as the foundation for the D K G 
in FROST. Each participant in this procedure creates a random polynomial whose 
degree is equal to the threshold value t — 1. The other coefficients are selected at 
random, and the polynomial's constant term is set to their secret share. Following 
that, each participant broadcasts their polynomial to the entire group. After receiv­
ing polynomial from all participants, polynomials are verified with previously shared 
commitments that consists of random values chosen by participant. If verification 
holds, participant moves on for key generation, otherwise protocol is aborted. Secret 
key of participant is generated by sum of all received polynomial, while public key 
is computed as a linear combination of the individual public keys using Lagrange 
polynomial interpolation. Specifically, each participant evaluates their polynomial 
at a designated point, and then computes their individual public key as a scalar 
multiple of the group generator raised to the participant's secret share. Pedersen 
D K G is done in 2 rounds. Since FROST in this thesis is based on E C computations, 
D K G is done as following (Please, consider a use of ECC) : 
Round 1 

t-i 
• Every participant Pj computes polynomial fi(x) = J2 ciij*x^ (mod Q) where 

j o 
dij is random number [2]. 

• Every participant Pj computes public commitment and send it to every par­
ticipant: Xi = ( 0 i j O , 0 i , ( t - i ) ) , where 4>id = aid *G \ 0 <j < t - l 

Round 2 

• Every participant Pj securely sends to all participants Pj a secret share (j, fi(j)) 

[2]-
• Every participant Pj verifies secret share from participant Pj as follow: 
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G * fj(i) = J2 <Pj,k * ik (mod Q). If verification does not hold protocol is 
fc=0 

aborted. 
• Generate keys as following: 

n 
— Secret share: Sj = J2 fj(i) (mod Q) [2] 

i=i 
— Verify share: Yi = G * Si 

n 
— Public key: Y — <f>jo 

1.8.3 Signing in FROST 

FROST proposal introduce 2 options of signing. Standard signing is done within 
2 rounds. Alternatively, option with 1 round signing is presented that is done by 
preprocess stage and by adding entity commitment server [2]. By that, commitment 
phase is not counted to signing part as it is done before signing considered as pre­
requisite to participate in signing operation. Overall, both versions are based on 
same computations. 

Secondly, FROST has options of signing in terms of aggregator role [2]. Without 
an aggregator, each signer contributes their own signature to the message. The 
total of the individual signatures is then calculated to create the signature. This 
indicates that the signing procedure requires the presence of all participants, and 
the signature cannot be calculated if any member is unavailable or unresponsive. 

A n aggregator is a single participant who gathers the partial signatures from the 
other participants while using this method of signing. The incomplete signatures 
are then combined by the aggregator to create a complete signature. The benefit of 
this strategy is that just the aggregator has to be present when signing documents. 
The signature procedure may be postponed until the aggregator is back online or 
responsive if it is unavailable. It has also disadvantage that, aggregator has to be 
honest, but to ensure security aggregator can be made randomly and changed for 
each signing process. 

Signing part can be divided into 3 phases (Please, consider a use of ECC) : 
1. Commitment phase 

• Selected number of participants t out of n participate in signature, where 
they calculate each single-use public commitments share Di = G * di ; di 
is random number. Then the commitments are sent to aggregator. 

• Aggregator checks if all selected participants t have sent commitment 
shares. If not protocol is aborted, Otherwise, public commitment is cre-

t 
ated as: R = J2 A (mod Q) 

i=l 
• Aggregator sends tuple (m, R, S) to all participants t, where S is set of 

participants t [2] 
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2. Challenge phase 
• every participant p computes challenge c = H(R\\m) [2] 
• every participant Pj computes signing share Zi = di + \i*Si*c (mod Q). 

where \ is coefficient of Lagrange polynomial interpolation [2]. 
• every participant Pj send signing share to aggregator and deletes di,Di 

3. Signature phase 
• Aggregator verifies each response by checking: 

G * Zi = Di + Yi * c * \i (mod Q). If verification does not hold, protocol 
is aborted. 

t 
• Aggregator computes group's response z = zi (mod Q) 

i i 

• Release signature a = (z, c) along with message m [2] 
Released signature a is verified as standard EC-Schnorr signature by public key Y 
with algorithm 4 in subsection 1.3.1. 

1.9 Threshold Signature for Privacy-preserving Blockchain 

Threshold signature presented in [9] abbrev. (TSPB) is focused on increasing se­
curity and privacy in blockchain technology. [9] provides a method for distributing 
a Blockchain wallet across several devices safely. It is possible to implement this 
divide for either a single user, which increases security by requiring multiple user's 
devices to sign Blockchain transactions, or for an entire group of users that collab­
orate, which promotes privacy by allowing anonymous signature on behalf of the 
shared Blockchain wallet [9]. The signature is based on cryptographic primitives 
that have been demonstrated to be secure, including the Schnorr signature, Pailler 
cryptosystem, and SSS. 

1.9.1 Setup Algorithm 

The proposed approach necessitates the collaboration of a subset of registered de­
vices, specifically t out of n, in order to retrieve the secret key. To achieve this, an 
utilization of SSS scheme along with the Paillier cryptographic scheme is essential in 
setup part. This combination ensures a secure distribution of the client authentica­
tion secret key, which is computed as the sum of individual secret keys sk belonging 
to the devices and the client. The resulting share is then employed as the secret key 
for the respective device. 

A polynomial made up of randomly generated values (di, t) is created throughout 
the distribution process. Here, % stands for the device number, while t stands for the 
threshold value, which is related to the degree of the polynomial. The polynomial 
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is defined in accordance with a system of TV devices by following equation 1.7. 

N 
f(x) = ( d M + ... + dN^xl + ... + (dN:1 + ... + dN:t)x + (L9) 

i=l 

where J2iLi Ki the client device as well as other devices' secret keys are added up. By 
adding the terms of the polynomial di^x* + ... + di^x + Hi, where each value of x is 
encrypted using the Paillier scheme, one can obtain the summations of di^, • • • djq,t 
and Ki. The authentication sk calculation may be partially executed on each device 
thanks to this encryption, guaranteeing that none of the secret keys ever leave their 
respective devices. 

Setup algorithm can be divided into 2 rounds computed by number of n partic­
ipants: 

1. Parameter Generation 
• generate random values dijt,.. .d]yjt 

• generate the Pailler's key pair (pkpj,skpj) 
• generate random secret kj 
• calculate pkj = gkj 

The entire secret distribution process proceeds as follows for the calculation 
of each f(xj) where j ranges from 1 to n. Consider the variable h, which is 
defined as j + 1: 

2. Polynomial Evaluation 
• Dh generates random value and compute x — Encpkpj(xj,rh) 
• Dh generates random value Vj^ and compute 

ch = Xj% Xj% *•••* XjX * Encikj, vjih) (1.10) 

• if h — j + 1, then Dh sends Ch to Dh+i 
• if h 7̂  j, then h — h + 1 (mod n) and go to first step of the polynomial 

evaluation 
• if h = j, then Dj computes: 

f{xj) = Dec(c3_x) + + • • • + dfxj + kj (1.11) 

1.9.2 Signing Algorithm 

Signing part and later on verification of final signature is identical with FROST 
scheme in this article. First of all, t out of n participants need to be agreed to 
issue signature a. In proposed work [9] participants are divided into Main Device 
(MD), who has enabled signing mode and Secondary Device (SD) with co-signing 
mode. Therefore, for optimization and better understanding M D can be considered 
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as participant and aggregator in one entity as M D participates in setup and signing 
part. Then, signing algorithm is followed in subsection 1.8.3 consisted of 3 phases: 
Commitment, Challenge and Signature phase. 

Released signature a is verified as standard EC-Schnorr signature by public key 
Y with algorithm 4 in subsection 1.3.1. 
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2 Implementation 
This chapter is dedicated to the practical part of the thesis, focusing on the com­
parison of different types of multi-signature schemes in terms of computational com­
plexity and efficiency Based on the obtained results, the most suitable signature 
scheme is selected and implemented for IoT. The next section focuses on the imple­
mentation of multi-signature in the programming language C, with carefully chosen 
and included essential libraries. 

2.1 Multi-signature Comparison 

During the research on the defined problem, five potential candidates were selected 
for further implementation of multi-signature for IoT. IoT devices can be consid­
ered secondary devices that extend the functionality and connectivity of standard 
devices such as laptops or smartphones. In most cases, they have limited computing 
capacity, which plays a significant role in choosing an appropriate multi-signature 
scheme. Therefore, the main attention was given to the number of rounds required 
by each scheme and the size of exponentiation computed during the process. The 
optimal solution can be found by striking a balance between the speed of the scheme 
and sufficient security. The following table 2.1 describes the number of iterations 
and the computational complexity of each part of the scheme for each scheme. 

Signature scheme F R O S T 1 round F R O S T 2 round MuSig2 BN06 m B C J 

Complexity O M D L + P R O M O M D L + P R O M O M D L D L + R O M D L + R O M 
KeyGen (# iter.) 2 2 n n n 
KeyGen (# exp.) 3n + nt + t + 1 3n + nt + t + 1 1 1 2 

Sign (# iter.) 1 2 2 3 2 
Sign (# exp.) 2 t + 2 n + 3 1 4 

Verify (# exp.) 2 2 n + 2 n+1 8 
Type Threshold Threshold Mu-Sig Mu-Sig Mu-Sig 

Party Involved (n,t) (n,t) (n,n) (n,n) (n,n) 

Life-time N / A N / A N / A N / A N / A 

Tab. 2.1: Comparison of Multi-signatures 

Table compares 5 different types of securely-proven multi-signatures. A l l sig­
natures are compatible with Schnorr signature except mBCJ . They can be divided 
into 2 main types of Threshold and Multi-Signature (Mu-Sig). Result of that is the 
different number of parties involved for signature as Mu-Sig requires all number of 
participants n and on the other hand, threshold requires only group of participant 
t from all participants n. A representative of threshold is FROST that is precisely 
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presented in Komlo and Goldberg [2] with 2 variants; FROST requiring 1 (FROST 
ver. 1) or 2 (FROST ver. 2) iterations for signing. FROST security is based on 
One-More Discrete Logarithm (OMDL) and Programmable Random Oracle Model 
(PROM) assumptions [36]. A valuable tool for demonstrating cryptography methods 
and highlighting probable assumptions that might or might not hold true in prac­
tice is the security model. According to P R O M , the execution environment (which 
executes the adversary and simulates answers to the adversary's oracle queries) is 
permitted to program the random oracle, but only if the programming is identical 
to all other truly random responses [36]. In FROST key generation is done by D K G 
with protocol called Pedersen's D K G that takes 2 iterations [2]. Difference between 
FROST with 1 round and 2 rounds is that 1 round misses generation of public 
share commitments that is done in preprocess stage autonomously operated as a 
requirement to take part in next signing processes. Therefore, all participants must 
have access to the commitment server role since it manages and stores the partici­
pant's commitment shares [2]. Moreover, it changes and reduce signing rounds with 
slightly different structure in FROST 2 rounds. As an example can be shown picture 
of FROST 2 rounds signing algorithm with steps for calculating of exponentiation: 

Round 1 

1. The signature aggregator A initializes a signing operation by sending a re­
quest for a commitment share to each participant Pi : i e S. 

2. Each Pi samples a fresh nonce di ê j 7Lq. 
3. Each Pi derives a corresponding single-use public commitment share Di = 

4. Each Pi returns Di to A, and stores (dj, Dt) locally. 

Round 2 

1. The signature aggregator A computes the public commitment R = 
Yli(ES Di for the set of selected participants. 

2. For i e S, A sends Pt the tuple (m, R, S). 
3. After receiving (rn, R, S), each participant Pi for i 6 S first validates the 

message m, aborting if the check fails. 
4. Each Pi computes the challenge c = H(m, R). 
5. Each Pi computes their response using their long-lived secret share 3i by 

computing Zi = dt + A; • • c, using S to determine A.;. 
6. Each Pi securely deletes (di,Di), and then returns zt to A. 
7. The signature aggregator A performs the following steps: 

7.a Verifies the validity of each response by checking gZi = Di • Yf'Xi for 
each signing share z i , . . . , zt. If the equality does not hold, first iden­
tify and report the misbehaving participant, and then abort. Otherwise, 
continue. 

7.b Compute the group's response z = £3 zt 
7.c Publish the signature a = (z, c) along with the message rn. 

Fig. 2.1: Signing Algorithm for 2-round FROST [2] 
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Round 1 is mainly set up of public commitment that in FROST ver. 1 preprocess 
stage deals with it. As every single participant t has to calculates single-use public 
commitment first exponentiation is equal to t participants. Round 2 is practically 
similar for both FROST versions. Public group commitment is computed by the 
signature aggregator who also verifies response validity of participants that contains 
2 exponentiation. This is also done in FROST ver. 1, but single-use commitments 
are taken commitment server. 

The best representative of Mu-sig group is MuSig2, introduced in Nick et al. 
article [37], with sufficient security based on O M D L assumption. MuSig2 is fast and 
robust, but requires all participants that in some occasions is not the ideal option. 
Another Multi-signature scheme is BN06 (brings in Bellare and Neven article [38]) 
based on DLP, regarded as a "standard assumption" in the field of cryptography, 
supported with R O M , presuming that hash function outputs are identical to random 
values. Lastly, multi-signature m B C J , firstly mentioned by M . Drijvers et al. [39]. 
It is in many ways similar to BN06, but does not support Schnorr signature, thus 
for this implementation is not appropriate. 

2.2 Implementation of OpenSSL Library 

This section clearly reveals functions and cryptography's methods implemented for 
further signature including hash function, E C curve and generator of random num­
bers based on the library. The implementation is done in globals.c and is called 
when is needed. 

OpenSSL [40] is a strong and well-liked software library that offers developers 
useful cryptographic functionalities. Therefore, the implementation of FROST sig­
nature is based on this library. More information about the library itself can be 
found in chapter 3. Used version of OpenSSL library is following: OpenSSL 3.0.7 1; 
Nov 2022. OpenSSL version 3 has some new updated functions that replace older 
deprecated function. 

2.2.1 Implementation of SHA-256 

SHA-256 was chosen for use in the implementation for ensuring integrity and pre­
vent tampering as it is a popularly used cryptographic hash algorithm that accepts 
arbitrary-length input messages and generates a fixed-size output (256 bits) that is 
specific to the input. 

Hash function is used for concatenation of message and public commitment for 
creating signing share in signing part. Moreover, hash function is also needed for ver­
ification of final signature. Hash function implementation satisfy the latest changes 
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in OpenSSL library as functions replacing deprecated functions are implemented as 

in the listing 2.1: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

/ • d e c l a r e s an a r r a y of u n s i g n e d c h a r a c t e r s 
to s t o r e the v a l u e of 256 b i t s * / 
u n s i g n e d cha r hash [SHA256_DIGEST_LENGTH] ; 

/ * s t r u c h o l d i n g the c o n t e x t f o r a message d i g e s t o p e r a t i o n * / 
EVP_MD_CTX* m d c t x ; 

/ • s t r u c t , t h a t r e p r e s e n t s the message d i g e s t a l g o r i t h m * / 
c o n s t EVP_MD* md; 

/ • s e l e c t the SHA-256 a l g o r i t h m * / 
md = E V P _ s h a 2 5 6 ( ) ; 

/ • a l l o c a t e s and i n i t i a l i z e s a new s t r u c t * / 
mdctx = EVP_MD_CTX_new ( ) ; 

/ * i n i t i a l i z e s the message d i g e s t c o n t e x t * / 

E V P _ D i g e s t I n i t _ e x ( m d c t x , md, N U L L ) ; 

/ * u p d a t e s the message d i g e s t c o n t e x t w i t h the i n p u t d a t a * / 
E V P _ D i g e s t U p d a t e ( m d c t x , c o n c a t _ s t r i n g , h a s h _ l e n ) ; 

/ * f i n a l i z e s c o m p u t a t i o n and s t o r e s hash v a l u e i n t o a r r a y * / 
E V P _ D i g e s t F i n a l _ e x ( m d c t x , h a s h , N U L L ) ; 

/ • f r e e a l l o c a t e d memory^/ 
E V P _ M D _ C T X _ f r e e ( m d c t x ) ; 

Listing 2.1: Implementaion code of SHA-256 

2.2.2 Implementation of Secp256rl 

The E C employed, the hash function, and the structure of the code with adequate 

parameters all play major roles in the security of the final signature implementation. 

E C secp256rl, also known as prime256vl, is a widely used E C C curve. It is defined 

over a prime field, and its parameters are standardized by NIST. The curve equation 

is defined as [15]: 

y2 = xs — ax + b 

where parameter a, b are defined as: 
a = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF 
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FFFFFFFF FFFFFFFC 
b = 5AC635D8 AA3A93E7 B3EBBD55 7698865C 651D0650 CC53B0F6 
3BCE3C3E 27D26045 

On the other hand, obtaining appropriate parameters is essential. The emphasis 
is on a suitably big modulo P, as the parameters (a, b) are constant. This application 
makes advantage of the modulo "P" of the size of 2 2 2 4 (2 3 2 - 1) + 2 1 9 2 + 2 9 6 - 1 that 
co-responds with S E C G recommendation [15]. Generator G, order Q and modulus 
p are initialized as in the listing 2.2. The point is serialized into a byte array since 
function a EC _PO I NT _point2bn has been deprecated since OpenSSL 3.0. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

v o i d i n i t i a l i z e _ c u r v e _ p a r a m e t e r s ( ) { 
/ / i n i t i a l i z e c u r v e 
ec_group = 

E C _ G R O U P _ n e w _ b y _ c u r v e _ n a m e ( N I D _ X 9 _ 6 2 _ p r i m e 2 5 6 v l ) ; 

/ / r e t r i e v e s p o i n t of the EC group 
p _ g e n e r a t o r = E C _ G R O U P _ g e t 0 _ g e n e r a t o r ( e c _ g r o u p ) ; 
/ / s e r i a l i z e the p o i n t i n t o a b y t e a r r a y 
s i z e _ t b u f _ l e n = E C _ P 0 I N T _ p o i n t 2 o c t ( 

ec_group , p . g e n e r a t o r , POINT_CONVERSION_UNCOMPRESSED , 
N U L L , 0 , N U L L ) ; 

u n s i g n e d cha r * buf = 0 P E N S S L _ m a l l o c ( b u f _ l e n ) ; 
E C _ P 0 I N T _ p o i n t 2 o c t ( e c_g roup , p _ g e n e r a t o r , 
P0INT_C0NVERSI0N_UNC0MPRESSED, b u f , 

b u f _ l e n , N U L L ) ; 

/ / c r e a t e a BIGNUM from the b y t e a r r a y 
b _ g e n e r a t o r = B N _ b i n 2 b n ( b u f , b u f _ l e n , N U L L ) ; 

o r d e r = E C _ G R 0 U P _ g e t 0 _ o r d e r ( e c _ g r o u p ) ; 
modulo = E C _ G R O U P _ g e t O _ f i e l d ( e c _ g r o u p ) ; 

/ / f r e e the memory a l l o c a t e d f o r b u f f e r 
0 P E N S S L _ f r e e ( b u f ) ; > 

Listing 2.2: Implementaion code of Secp256rl 

The implementation uses uncompressed generator G in form [15]: 
G = 04 6B17D1F2 E12C4247 F8BCE6E5 63AU0F2 77037D81 2DEB33A0 

F4A13945 D898C296 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE33 
57 6B315ECE CBB64068 37BF51F5 
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Finally, the order Q is defined as following [15]: 
Q = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD 
A7179P84 F3B9CAC2 FC632551 

2.2.3 Randomization 

The implementation uses generation of multiple random numbers that have to be 
securely generated with unpredictability. Generation of random numbers relies on 
function RAND_bytes() that is implemented in library OpenSSL. 

The specified R A N D method, a collection of instructions for producing random 
numbers, determines the algorithm used by RAND_bytes() [41]. The Deterministic 
Random Bit Generator (DRBG) technique is used as the default R A N D method in 
OpenSSL 3.0 from NIST SP 800-90A [42]. D R B G belongs to a group of Pseudo-
Random Number Generators (PRNGs) that are cryptographically safe. To produce 
pseudo-random output, a number of cryptographic primitives are used, such as 
hash functions, block ciphers, and Message Authentication Codes (MACs) [41]. The 
process is referred to be deterministic since only the seed value and any other inputs, 
such customization or entropy, have any bearing on the final result. Even with a 
compromised internal state, the D R B G algorithm is built to offer a high level of 
security and predictability. However, it is important to implement randomization 
securely with later memory cleaning. Function generate_rand() is called every 
time, 32 byte random number is needed. Function is implemented as in listing 2.3: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

BIGNUM* g e n e r a t e . r a n d ( ) { 
u n s i g n e d cha r b u f f e r [ N U M _ B Y T E S ] ; 
BN_CTX* c t x = B N _ C T X _ n e w ( ) ; 
BIGNUM* r e s u l t = B N _ n e w ( ) ; 
/ / g e n e r a t e random b y t e s 

i f ( R A N D _ b y t e s ( b u f f e r , NUM_BYTES) != 1) { 
p r i n t f ( " E r r o r u g e n e r a t i n g u r a n d o m u b y t e s \ n " ) ; 
e x i t ( E X I T _ F A I L U R E ) ; > 

/ / c o n v e r t b u f f e r t o a b ignum mod Q 
BIGNUM* rand_num = B N _ b i n 2 b n ( b u f f e r , NUM_BYTES, N U L L ) ; 
BN_mod ( r e s u l t , r and_num, o r d e r , c t x ) ; 

O P E N S S L _ c l e a n s e ( b u f f e r , s i z e o f ( b u f f e r ) ) ; 
B N _ C T X _ f r e e ( c t x ) ; 
B N _ c l e a r _ f r e e ( r a n d _ n u m ) ; 
r e t u r n r e s u l t ; } 

Listing 2.3: Generation of 32-byte Random Number 
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2.3 FROST Implementation 

FROST signature is implemented in C, since it is low level program language that 
is resulting high performance and possibility for IoT device implementation. Im­
plementation consists of following .c files: main.c, setup.c, signing.c, globals.c and 
macros.c. .c files are then linked with header files located ../headers and with head­
ers of OpenSSL library that has to be downloaded to OS. Header files in ../header 
are following: setup.h, signing.h and globals.h. Whole project is built by Makefile. 

The project is meant to be programmed as library with A P I that is run by 
main.c which tests whole library with a result of released signature and its ver­
ification. Structure of A P I and communication between participant is showed in 
following subsection. Please, be aware of (2, 3) FROST is showed in the thesis for 
simplicity, but implementation is defaulted set as (3,5). Since communication be­
tween participants is needed link list algorithm is used for storage and later use of 
packets. 

2.3.1 FROST Setup 

Setup of FROST is basically implementation of Pedersen-DKG that is done withing 
2 rounds. At the beginning function init_pub_commit() is called by every partici­
pant Pj. Public commit packet is created by this function holding index of sender, 
length of public commit array and finally public commit array. Within the function 
init_coef f_list() is trigged which results in creation of array of random numbers 
that has length of n. 32 bytes random numbers are used in later public commit­
ment. As every Pj created own public commitment, broadcast to all participants Pj 
is done. After the packets are received by all the participants, every participant calls 
function init_sec_share() for each n participant for creating polynomial. Function 
takes parameters such as address of participant Pj that sends secret share and in­
dex of participant Pj that will receive the share. Please, be aware of participant 
Pj sending secret share itself as it is not done internally. When participant Pj cre­
ated secret share for participant Pj, secret share is verified and accepted/denied by 
Pj with function accept_pub_commit(). Mathematical function mentioned in sec­
tion 1.7.2 is used for verification of secret share by function accept_pub_commit(). 
If verification hold participant p secret share is accepted and stored, otherwise 
the protocol is aborted. When all participants Pj finished verification of all secret 
shares, key generation is done with function gen_keys(). Secret share, verify share 
and public key are generated for all participants that are stored for later signing. 
Setup diagram is showed on following figure 2.2: 
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Fig. 2.2: FROST Setup Diagram 

2.3.2 FROST Signing 

After setup of FROST is successfully finished, signing part is started by pre-selected 
number of t participants p located in array threshold_set\\. Every participant 
Pi calls function init_pub_share() that results in creation of public share packet. 
The packet consist of index of sender Pi: Pj's verify share, single use commitment 
share and public key. The packets are then received by aggregator with function 
accept_pubshare(). Received data are stored and next step is to generate tuple 
with function init_tuple_packet() by aggregator. Within this function other 2 
functions are trigged R_pub_commit_compute() and pub_share_mul() that pro­
vide check if all public share packets were received from treshold_set\\ participants. 
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If yes, R is computed by function pub_shares_mul(), otherwise protocol is aborted. 
Tuple packet consists of message m, size of m, public commitment R, set of par­
ticipants t and size of set. Tuple is received by every participant Pj with function 
accept_tuple(). As long as tuple data are stored, function init_sig_share() is called 
by every participant Pj. Function is in charge of creating partial signature for every 
Pj. Hash_func() and lagrange_coef ficientQ functions are called by the function 
as essential part for partial signature. When all partial signatures are created, they 
are sent to aggregator by participants Pj. For verification and acceptance of partial 
signature accept _sig_share() is called. Verifying is done by function described in 
subsection 1.7.3 followed by storing the partial signature if verification holds or by 
aborting the protocol if function is broken. At the end, signature packet is created 
by called function signature(). Gen_signature() is called within library for sum 
of all partial signatures. Then packet is published as signature and hash. Exact 
sequence of signing is showed on diagram with figure 2.3. 

2.3.3 FROST Verification 

The EC-Schnorr signature verification algorithm is a process used to verify the 
validity of an EC-Schnorr signature on a message that is more clearly described 
in subsection 1.3.1 by Algorithm 4. Idea behind the verification is in comparison 
of the calculated hash value z' with the value of c in the signature. If the values 
match, then the signature is considered valid. Otherwise, the signature is rejected. 
Verification of signature works by reconstructing the point Rl from the signature 
components and the public key, and then verifying that its hash value matches the 
value of c in the signature. If the hash values match, it provides strong evidence 
that the signature was produced by the holder of the private key corresponding to 
the public key used in the verification process. 

2.3.4 Implementation of Link List 

For storing and organizing data, a fundamental data structure was chosen in the 
implementation, called singly linked list. In this kind of linked list, there is only one 
way in which the linked list may be traversed, where each node's next pointer links 
to a different node, but the last node's next pointer points to NULL. Two main 
operation are applied in the implementation: insertion with time complexity 0(1) 
and search with time complexity 0(n). 

During setup part link list is applied as participants communicates between each 
other as they need to share pub_commit_packets and later sec_shares. For ac­
cepting pub_commit_packets each participant p stores the last node of packet. By 
function accept_pub_commit() one of 2 functions is trigged; create_node_commit() 
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Fig. 2.3: FROST Signing Diagram 

function, if participant did not accept any pub_commit_packet, otherwise 
insert_node_commit() is used. Every participant Pj after all pub_commit_packets 
are stored is searching in its list in accept_sec_share() function, as the verifi­
cation of sec_shares from participants Pj is validated towards earlier accepted 
pub_commit_packet from participant Pj. Similar methodology is used for storing 
sec_shares by function accept_sec_share() that calls once function 
create_node_share() and then every time insert_node_share() is used. Searching 
in this list is not necessary. Finally, traversing of both lists is necessary during gen­
eration of public key and participant's secret share in functions gen_sec_share() 

46 



and gen_pub_key(). 
In signing part, link list algorithm is used during communication of participants 

with aggregator as he need to store pub_share_packets and later on sig_shares. 
pub_share_packets are stored by function accept _pub_share() with help of func­
tions create_node_pubshare() and then insert_node_pub_share(). Each 
pub_share_packet from participants Pi has to be search in the list for later ver­
ification of sig_share_packet of participants Pi. Finally, aggregator stores each 
sig_shares by function accept_sig_share() with similar steps of calling function 
create_node_sig_share() and then insert_node_sig_share(). At the end, aggre­
gator traverses this list for sum of all received sig_shares to create final signature. 

2.3.5 Security of the Implementation 

For overall security of the implementation, security of protocol, used secure cryp­
tographic primitives, used secure library with proper functions and lastly secure 
allocation/de-allocation of memory has to be taken into account. Since FROST 
is considered as secure, in previous sections were defensed secure cryptographic 
primitives such as E C with proper parameters, secure hash function and random 
generator. Also the implementations is based on secure OpenSSL library where 
functions with the highest precision were chosen to satisfy updated library of version 
3.0. Therefore, the last thing for considering the implementation as secure, alloca­
tion/deallocation of memory has to be proven. Library is designed to free memory 
for used, therefore no action is needed in A P I from user. Memory is allocating and 
then freed simultaneously within the functions in the most cases. However, library 
and also participants operates and store sensitive data that in case of some leak 
or attack would be destructive for protocol. Therefore, 3 main clearing are done 
by library, despite of simultaneous freeing of unnecessary variables. At the end of 
setup, after generation of keys, all secret shares, commitments, coefficient lists and 
polynomials are securely freed. Lastly, after initializing of partial signature every 
participant deletes all data followed by aggregator after publishing the final group 
signature. Lastly, parameters of E C are freed after verification of the signature. For 
memory free of sensitive data function BN_clear_free() is used. The big num­
ber (BN) library in OpenSSL has the BN_clear_free() function, which is used to 
deallocate memory allocated to a large number once it is no longer required. This 
function is written as a macro that first uses the BN _clear{) function to clear the 
contents of the big number and then uses the OPENSSL_free{) function to re­
lease the memory. While the OPENSSL_free() method deallocates the memory 
allocated to the big number itself, the BN_clear() function resets the value of the 
large number to zero and releases any memory allocated to retain the value [43]. 
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For memory testing Valgrind open-source tool was used [44]. It is tool used for 
debugging and profiling programs including memory leaks based on Linux and other 
Unix-based operating systems. The results are followed in the next figure: 

•== HEAP SUMMARY: 
i n use at e x i t : 2,728 bytes i n 89 b l o c k s 

•== t o t a l heap usage: 9,166 a l l o c s , 9,977 f r e e s , 1,144,581 bytes a l l o c a t e d 

== LEAK SUMMARY: 
d e f i n i t e l y l o s t : 456 bytes In 21 b l o c k s 
i n d i r e c t l y l o s t : 2,272 bytes i n 68 b l o c k s 

•== p o s s i b l y l o s t : 9 bytes i n 9 b l o c k s 
s t i l l r eachable: 9 bytes i n 9 b l o c k s 

suppressed: 9 bytes i n 9 b l o c k s 
•== Rerun w i t h - - l e a k - c h e c k = f u l l t o see d e t a i l s of leaked memory 

•== For l i s t s of detected and suppressed e r r o r s , rerun w i t h : -s 
= = ERROR SUMMARY: 9 e r r o r s from 0 co n t e x t s (suppressed: 0 from 9) 

Fig. 2.4: Summary of Memory Leak 

It can be noticed that library does keep 30 blocks per participant after ending of 
the protocol. These blocks are mainly allocated memory of final signature and public 
attributes such as, public key and verify key. Finally, each computed secret share of 
participant can be kept for potential later use in another signature. Overall, all data 
that could lead to reconstruction of keys or final signature are securely freed during 
the protocol. Therefore, the implementation can be considered as secure, depending 
under deeper circumstances of later use in production. 

2.3.6 FROST Benchmark 

Benchmark was done by library time.h on setup and then signing part separately. 
Each participant had index set to size of up to 2 3 0 bit number. Main purpose is to 
notice an impact of number of participants in each operation. 3 different schemes 
are compared in following table in seconds: 

It can be noticed that all iterations were very consist with small difference in 
time by each scheme. Setup is done by all participants n due to construction of 
keys. Therefore, setup by 3,5 and 6 participants is compared by table. However, it 
can be noticed as more participants are involved in setup average time is slightly 
increased. After computation, an average increment of adding one participant to 
setup is 1.3850583 milliseconds. Setup part of FROST signature is the most com­
plicated part with high consumption of device performance. On the other hand, 
the signing part is much faster in every scheme then the setup part due to lower 
mathematical difficulty as it can be noticed on following table 2.3. The average 
increment per participant is calculated with the result of 0.351 milliseconds. 
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Itr.\(t,n) (2,3) [ms] (3,5) [ms] (4,6) [ms] 
1 6.874 2.452 6.147 
2 3.385 14.967 17.827 
3 6.232 13.609 16.278 
4 4.63 13.115 17.585 
5 6.865 4.349 11.094 
6 7.668 4.77 3.56 
7 7.287 9.466 9.513 
8 3.23 12.291 3.851 
9 18.552 12.412 10.508 
10 3.704 13.466 20.307 
11 2.55 12.095 12.803 
Avg. 6.45245 10.272 11.77027 

Tab. 2.2: Frost Setup Benchmark 

Itr.\(t,n) (2,3) [ms] (3,5) [ms] (4,6) [ms] 
1 0.561 0.398 1.555 
2 0.794 1.044 0.726 
3 0.949 1.093 0.524 
4 0.355 0.585 2.804 
5 0.591 0.569 0.775 
6 0.565 0.816 1.288 
7 0.587 1.557 1.856 
8 0.64 1.583 2.458 
9 0.652 0.595 0.565 
10 0.871 1.658 1.011 
11 0.392 1.62 2.109 
Avg. 0.723 1.047 1.425 

Tab. 2.3: Frost Signing Benchmark 

49 



2.4 Implementation of TSPB 

The TSPB signature is implemented in C, since it is low level program language 
that is resulting high performance and possibility for IoT device implementation. 
Implementation consists of following .c files: main.c, setup.c, signing.c, globals.c, 
support_functions.c and macros.c. .c files are then linked with header files lo­
cated ../headers and with headers of OpenSSL library and JSON library that 
have to be downloaded to OS. Header files in ../header are following: setup.h, 
signing.h, support_f unctions.h and globals.h. Lastly, the project contains a folder 
precomputedvalues. In the folder can be found 2 .json files precomputationmessage 
and precomputationnoise.The whole project is built by Makefile. 

The implementation partially is followed up master thesis [1] as a code of the 
thesis was provided with goal to use an setup part of Secret Sharing Authentication 
Key Agreement and optimize it for TSPB. 

The project is meant to be programmed as library with A P I that is run by main.c 
which tests whole library with a result of released signature and its verification. 
Structure of A P I and communication between participant is very similar to the 
FROST implementation as singing part is identical with the communication during 
the signing process. Therefore, signing communication is pictured in figure 2.3. 
Moreover, verification of the final signature is done by the same algorithm 4 from 
subsection 1.3.1. 

2.4.1 Results 

After investing significant time and effort, I have managed to make progress with 
the C code obtained from the master thesis [1]. Although the code lacked clear 
comments and was challenging to comprehend, I successfully executed it, albeit only 
partially, by identifying and rectifying errors in obtain in public key. As verification 
was always aborted by public key from function _get_pk_c() even after point was 
changed from point to uncompressed bignum form, the changes were made in this 
part. New public key is computed as sum of all verification shares that are computed 
as PKi = G * Si, where Si is the session key of participant Pi. Moreover, global 
variables were moved to macros.c as provided code was not able to build due to 
errors of multiple definitions. It is worth noting that the original code exhibited 
several undesirable characteristics, such as excessive use of global variables and the 
presence of goto statements, which are generally discouraged in C programming. 
Moreover, the code is rigid in terms of adding participants the setup is using only 
for loop structure for storage and communication between Active participants. 

Despite these challenges, the implementation is partially working in scheme (3, 3) 
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as the final signature is successfully verified. However, the implementation is aborted 
as threshold signature as computation of SSS has to have unresolved error or is just 
incompatible with overall A P I as the setup using random generated number instead 
of ID of participant in SSS. 

To enhance the implementation of TSPB, it is important to consider the following 
recommendations: 

• To improve code readability, add clear comments throughout the codebase. 
This will make the code easier to understand and facilitate future maintenance 
and collaboration. 

• Reduce the reliance on global variables by encapsulating data within appropri­
ate data structures. Instead of using global variables, pass data as parameters 
to functions as needed. This will make the code more modular and organized. 

• Refactor the control flow by replacing goto statements with structured control 
flow mechanisms, such as loops and conditional statements. This will improve 
the overall code structure and make it easier to maintain. 

• Modify the participant setup to allow for dynamic addition or removal of 
participants. Currently, the code relies on a fixed for loop structure, which 
limits scalability and adaptability. By making the setup more flexible, the 
codebase can accommodate varying numbers of participants more effectively. 

• Investigate and resolve any errors or incompatibilities in the computation of 
the threshold signature using SSS. Ensure that the proper participant IDs 
are used instead of randomly generated numbers. This will result in a more 
accurate and reliable implementation of the threshold signature functionality. 

By implementing these recommendations and continuously refining the codebase, 
the overall implementation of TSPB can be significantly improved. These improve­
ments will make the system more robust and efficient, enhancing its reliability and 
usability. 
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2.5 Working Environment 

The implementations were performed on a device with the following parameters: 
Processor Intel(R) Core(TM) i5-8250£7 CPU 1.60GHz, ACore(s), 8GB RAM, 
Windows 11 Home x64 based Operate (Host) System. Virtual machine system: 
Ubuntu 22.04.2 LTS with kernel version 5.19.0—38—generic. The Virtual Machine 
was set to 4 GB R A M and 4 C P U processors. Following commands are required for 
installing Openssl, cJSON libraries into system and other dependencies for building 
the projects: 

1 

2 

3 
4 
5 

6 
7 

8 

9 

10 

/ * I n s t a l l OpenSSL i n t o s y s t e m * / 
sudo a p t - g e t i n s t a l l o p e n s s l 
/ • I n s t a l l t he OpenSSL d e v e l o p m e n t h e a d e r s * / 
sudo a p t - g e t i n s t a l l l i b s s l - d e v 
/ * I n s t a l l make f o r b u i l d i n g the p r o j e c t * / 
sudo apt i n s t a l l make 
/ * I n s t a l l gcc c o m p i l e r * / 
sudo apt i n s t a l l gcc 
/ * I n s t a l l c J s o n i n t o s y s t e m * / 
sudo apt i n s t a l l l i b c j s o n - d e v 

Listing 2.4: Installing Project Dependentcies 
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3 Practical Background 

3.1 Programming Language 

The implementation is written and programmed in C programming language. Since 
its the first introduction to public, it has developed into one of the most popular and 
important programming languages, acting as the basis for several other programming 
languages and operating systems. 

The advantages of C include its effectiveness, adaptability, and intimate con­
nection to the underlying hardware. Because it is a low-level language with direct 
access to memory and system resources, it is appropriate for embedded systems and 
systems programming. It also provides high-level structures that enable organized 
and modular programming at the same time. 

For the implementation was chosen mainly because of its portability and ef­
ficiency: C programs can be compiled to run on a wide range of platforms and 
architectures. The language itself is designed to be highly portable, allowing de­
velopers to write code that can be easily ported and executed on different systems. 
Moreover, as C is low-level language, it provides low-level control over memory and 
hardware resources which results in code that is highly optimized for performance. 
Thus, execution speed and memory usage is exceptional. 

The C/CH—h Extension Pack (Version 1.3.0) created by Microsoft was used 
in conjunction with the Microsoft Visual Studio Code editor (Version 1.78.2) for the 
development [45]. The list of extensions included in this package and other used are 
following: 

• C / C + + by Microsoft (Version 1.15.4) for IntelliSense, debugging and code 
browsing, 

• C / C + + Themes by Microsoft (Version 2.0.0) for User Interface (UI) themes, 
• CMake by twxs (Version 0.0.17) for CMake language support, 
• CMake Tools by Microsoft (Version 1.14.31) for extended CMake support in 

the VS Code, 
• GitHub Pull Requests and Issues (version 0.64.0) For editing and managing 

pull requests and issues on the GitHub platform, 
• Clang-Format by Xaver Hellauer to format C / C + + code (version 1.9.0), 
• PlantUML by Jebbs (version 2.17.5) to create sequence diagrams. 
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3.2 Libraries 

3.2.1 OpenSSL Library 

OpenSSL is an open-source project [40] and is maintained by a team of volunteer 
developers. It has a long history and has been widely adopted by the industry 
as a standard cryptographic library. Furthermore, OpenSSL has a well-established 
process for managing vulnerabilities, including coordinated disclosure, C V E assign­
ment, and regular security releases. Its quick response to security vulnerabilities 
and patching has established trust with developers for being a reliable and secure 
software library. 

The software library OpenSSL is frequently used to give applications access to 
cryptographic utilities and functionalities. It is a popular choice for developers that 
need to include cryptography in their applications because of its robust security 
features and wide variety of functionality. 

AES, RSA, and SHA are only a few of the many cryptographic algorithms that 
are supported by OpenSSL. These algorithms, which are among the strongest cur­
rently in use, are used to encrypt data, produce digital signatures, and validate the 
legitimacy of certificates. Strong random number generators, which are necessary for 
many cryptographic operations, are among the security-enhancing features included 
in OpenSSL [40]. 

The library is written in the C programming language, and is available for various 
operating systems, including Linux, Unix, macOS, and Windows [40]. It provides 
a comprehensive set of APIs for developers to incorporate cryptographic functions 
into their applications. 

A l l things considered, OpenSSL is a strong and well-liked software library that of­
fers developers useful cryptographic functionalities. Its vast functionality and robust 
security features make it a popular option for applications that need cryptography, 
and its track record for promptly patching security flaws has made it a reliable op­
tion for security-conscious apps. Therefore, the implementation of FROST signature 
is based on this library. Used version of OpenSSL library is following: OpenSSL 
3.0.7 1; Nov 2022. 

3.2.2 JSON Library 

The cJSON library[46] is a popular JavaScript Object Notation (JSON) library 
specifically designed for C programming. It provides a lightweight and efficient 
solution for parsing, generating, and manipulating JSON data within C code. 

The cJSON library is known for its simplicity and ease of use, making it a popular 
choice among C developers for working with JSON data. It is distributed as a single 
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header file and source file, allowing for easy integration into existing projects. cJSON 

is designed to be lightweight and efficient, with a small footprint and minimal depen­

dencies. It aims to provide fast JSON parsing and generation capabilities, making it 

suitable for resource-constrained environments or performance-critical applications. 

JSON data may be parsed using the cJSON library to create a hierarchical structure 

that is simple to explore and retrieve. It offers tools for extracting values, navigating 

the JSON hierarchy, and working with different data kinds including objects, arrays, 

characters, integers, and booleans. 

3.3 Source Code Dictionary Tree 
For better navigation and organization directory trees of the implementations wi th 
brief information of each file and folder are provided in this section. 

. . / f r o s t root folder 
headers folder with headers of library 

_ g l o b a l s . h 
_ setup.h linking and defining objects participant etc. 
_ s i gn ing .h linking and defining objects aggregator etc. 

src folder with source files 
g l o b a l s . c initialization of EC and D R B G 
macros. c source file for defining of global variables 

_ main. c A P I for testing library 
_ setup. c source file of setup computations 
_ s i gn ing , c source file of signing computations 

b u i l d folder where project is built 
Makefi le file for project compilation 

. . /TSPPB root folder 
headers folder with headers of library 

g l o b a l s . h 
setup.h linking and defining objects participant etc. 
s i gn ing .h linking and defining objects aggregator etc. 
support_functions.h 

src folder with source files 
_ g l o b a l s . c initialization of EC and D R B G 
macros. c source file for defining of global variables 
main. c A P I for testing library 
setup. c source file of setup computations 

_ s i gn ing , c source file of signing computations 
_ support_functions. c source file of Pailler's computations 

b u i l d folder where project is built 
precomputed_values folder with .json files 

precomputation_message.json 
precomputation_noise.j son 

Makefi le file for project compilation 
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Conclusion 
A increasing need for safe and effective cryptographic protocols has been generated 
by the rise of the Internet of Things (IoT), particularly in the context of portable 
devices with constrained resources. This thesis looked at the usage of multisignatures 
for IoT, with a particular emphasis on the implementation of the FROST signature 
scheme based on elliptic curves (more particularly, secp256rl) in the C programming 
language with the OpenSSL library. 

Our research has demonstrated that the FROST signature scheme, which has 
various benefits over other current schemes, is a potential option for lightweight 
multisignatures in IoT applications. The first feature of the concept is distributed 
key generation, which enables the creation of public and private keys without the 
need for a single, trusted authority. Second, it uses elliptic curve encryption in­
stead of more conventional RSA-based techniques, which provides high levels of 
security while using less resources. Additionally, the FROST signature technique 
outperforms other comparable systems in terms of efficiency, notably with regard to 
signature size and verification speed. 

Moreover, the work includes the implementation of Threshold Signature for 
Privacy-preserving Blockchain. This implementation is partially working in scheme 
(3,3). Further work is essential namely in setup part as the code is rigid with 
possible inconsistencies or incompatibilities with overall library and API . 

We have also investigated different elements of elliptic curve cryptography 
throughout our implementation, including the mathematical foundations of elliptic 
curves and their use in cryptographic applications. We have also given security in 
IoT systems some thought, especially the necessity for compact solutions that can 
effectively fend off intrusions. 

In conclusion, the use of lightweight multisignatures for IoT applications has 
been shown to be feasible and potentially useful through the implementation of the 
FROST signature scheme based on elliptic curves in the C programming language 
using the OpenSSL library. Our research has emphasized the need of efficiency 
and security in these systems, and we think the FROST signature scheme offers a 
potential way to satisfy these needs. 
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N F T Non-Fungible Token 

F R O S T Flexible Round-Optimized Schnorr Threshold signature 

IoT Internet of Thing 

RSA Rivest-Shamir-Adleman 

E C Elliptic Curves 

E C C Elliptic Curve Cryptography 

E C D S A Elliptic Curve Digital Signature Algorithm 

E C D L P Elliptic Curve Discrete Logarithm Problem 
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S E C G Standards for Efficient Cryptography Group 

NSA National Security Agency 

SHA-256 Secure Hash Algorithm 256-bit 

PKI Public Key Infrastructure 
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DSS Digital Signature Standards 

DSA Digital Signature Algorithm 

SHS Secure Hash Standard 
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D P L Discrete Logarithm Problem 

BIP Bitcoin Improvement Proposal 

SSS Shamir's Secret Sharing 

D K G Distributed Key Generation 
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O M D L One-More Discrete Logarithm 
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P R O M Programmable Random Oracle Model 

D R B G Deterministic Random Bit Generator 
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T S P B Threshold Signature for Privacy-preserving Blockchain 

API Application Programming Interface 
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