
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

LIGHTWEIGHT MULTI-SIGNATURE SCHEMES FÜR IÜT
ODLEHČENÉ VÍCENÁSOBNÉ PODPISY PRO IOT

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Jakub Jarina
AUTOR PRÁCE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Bachelor's Thesis
Bachelor's study program Information Secur i ty

Department of Telecommunications

Student: Jakub Jarina ID: 230086

Year of
3 Academic year: 2022/23

study:

TITLE O F THESIS :

Lightweight Multi-signature schemes for loT

INSTRUCTION:

The work is focused on the implementation and comparison of multi-signature schemes for Internet of Thing (loT)

environment. The student will analyze current multisignature schemes and compare them from the point of view

of security, computing and memory requirements. The thesis aims to implement, analyze and compare the

threshold signature proposed in [1] and the best state-of-the-art proposal. Since the schemes allow multi-devices

signing, the implemented protocols are expected to be run on different devices with limited computing power,

e.g., microcontrollers.

R E C O M M E N D E D L I T E R A T U R E :

[1] Ricci, S. ; Dzurenda, P.; Casanova-Marques, R.; Cika, P.: Threshold Signature for Privacy-preserving

Blockchain. In Business Process Management: Blockchain, Robotic Process Automation, and Central and

Eastern Europe Forum. Munster, Germany: Springer, 2022. p. 1-15. ISBN: 978-3-031-16167-4.

[2] Komlo C, Goldberg I. F R O S T : flexible round-optimized Schnorr threshold signatures. ^International

Conference on Selected Areas in Cryptography 2020 Oct 21 (pp. 34-65). Springer, Cham

Date of project Deadline for
6.2.2023 26.5.2023

specification: submission:

Supervisor: M.Sc. Sara Ricci, Ph.D.

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

doc . Ing. J a n Hajný, Ph .D.

Chair of study program board

WARNING:

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

ABSTRACT
The focus of this work is to introduce the topic of multi-signatures and subsequently
implement a scheme supported for Internet of Things (loT) devices. The work analyzes
known multi-signature schemes from the perspective of security, computational com­
plexity, and memory requirements. The work includes the implementations of a Flexible
Round-Optimized Schnorr Threshold signature and Threshold Signature for Privacy-
preserving Blockchain in the C programming language.

KEYWORDS
Multi-signature, Threshold signature, Internet of Things, Schnorr signature, Shamir's
Secret Sharing, Distributed Key Generation, Elliptic Curves Cryptography, Security, Proof
of Knowledge, Sigma protocols, Flexible Round-Optimized Schnorr Threshold signatures

ABSTRAKT
Zameraním tejto práce je predstaviť problematiku hromadných podpisov a následne im­
plementovat schému podporovanú pre zariadenia internetu vecí (loT). Práca anlyzuje
známe viacnásobné podpisy z pohľadu bezpečnosti, výpočetnej a pamäťovej náročnosti.
Práca obsahuje implementáciu Flexibilne, optimalizovaného Schnorrovo prahového pod­
pisu a prahového podpisu pre zachovanie súkromia v blockchaine v programovacom
jazyku C.

KĽÚČOVÉ SLOVÁ
Viacnásobné podpisy, Prahové podpisy, Internet vecí, Schnorrov podpis, Shamirovo zdie­
ľanie tajomnstva, Distribuované generovanie Kľúčov, Kryptografia eliptických kriviek,
bezpečnosť, Dôkaz znalostí, Sigma protokoly, Flexibilné, optimalizované Schnorrove pra­
hové podpisy

Typeset by the t h e s i s package, version 4.07; h t t p : / / l a t e x . f e e c . v u t b r . c z

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Zameraním tejto práce je predstaviť problematiku hromadných podpisov a následne
implementovat schému podporovanú pre zariadenia internetu vecí (IoT) zo dôvodu
čoraz väčšej popularite IoT a dôležitosti bezpečnosti pri výmene a ukladaní dát.
ktoré sú často dôverné alebo citlivé. Digitálne podpisy sa ukázali ako sľubné riešenie
na zabezpečenie výmeny dát, ale tradičné schémy jedného podpisu nie sú pre IoT
častokrát vhodné z dôvodu limitácii vo výkonostnej kapacite. Preto cieľom tejto
práce je taktiež analyzovať moderné schémy z pohľadu bezpečnosti, výpočetnej a
pamäťovej náročnosti. Táto práca pozostáva z 3 hlavných častí: teoretická čast,
implementácia a nakoniec pracovné prostredie.

Teoretická časť je napísaná chronologisckou formou, čo znamená od základných
primitív a po tie komplexné pre plné pochopenie hromadných podpisov. Ako prvým
sa teoretická časť zaoberá digitálnym podpisom a jeho hlavnými vlastnosťami v
kapitole 1.1, úvodom do samotnej všeobecnej schémy až po najznámejšie použí­
vané algoritmy. Taktiež táto kapitola predstavuje hash funkcie ako neodmysliteľnú
súčasť digitálnych podpisov, s bliším zameraním na vlastnosti bezpenčných hash
funkcii a následním porovnaním najznámejších používaných hash funkcii z pohľadu
bezpečnosti.

V kapitole 1.2 sa popisuje oblasť kryptografie založená na elitpických krivkách,
z dôvodu neskoršej implementácie v tejto práci. Hlavným dôvodom využitia je ich
efektívnosť, rýchlosť a väčšia bezpečnosť v porovnaní s klasickými kryptografickými
primitívami. Kapitola popisuje funkciu eliptickej krivky, jej štruktúru a základné
vlastnosti. Blišie je vysvetlené funkčnosť a využitie eliptických kriviek v praxi najmä
vďaka násobeniu skalárnej hodnoty a bodu na eliptickej krivke. V neposlednom rade
kapitola sa zameriava na možné útoky ale aj bezpečnosť a ich porovnanie k symet­
rickým algoritmom alebo RSA algoritmu. Nakoniec sú porovnané 2 najpoužívane­
jšie eliptické krivky a to secp256kl a secp256rl. Porovnanie bolo zamerané najmä
vplyv rýchlosti podpisovania a overnia na základe využitej knižnice. Z výsledkov
bol vyvedený záver v prospech eliptickej krivky secp256rl, ktorá je neskôr použitá
pre implementáciu.

V nasledúcej kapitole 1.3 je popísaná digitálny podpis s názvom Schnorrov pod­
pis, ktorý som sebou nesie veľa výhod, ktoré esenciálne v hromadných podpisoch.
Jednými z nich sú práve jednnoduchosť a linearita, ktorá umožňuje spočítať viacero
podpisov dokopy, bez toho aby to bolo možné rozoznať. V kapitole je bližšie opísaný
algoritmus pre podpis a overenie. Kedže práca je založená na eliptických krivkách,
kapitola porovnává rozdiely v schémach založelných na eliptických krivkách a taktiež
popisuje algoritmy podpisu a overenia, ktoré sú použité neskôr v implementácii.

Digitálne podpisy sú kľúčovou súčasťou zabezpečenia IoT zariadení, pretože
umožňujú autentifikáciu a overovanie správ a dát zdieľaných medzi zariadeniami.

Avšak môžu nastať situácie, kde jediný podpis nie je dostatočný a je potrebných vi­
acero podpisov na zabezpečenie platnosti správy. Hromadné podpisy (multipodpisy)
poskytujú riešenie tohto problému, umožňujúc skupine podpisových osôb spoločne
podpísať správu a zabezpečiť, že bude uznávaná len v prípade, že ju podpíše dosta­
točný počet osôb. V tejto práci špecificky kapitola 1.4 sa zaoberá základmi multi-
podpisov, ich klasifikáciou a výhodami a nevýhodami. Multipodpisy pozostávajú z
troch algoritmov: generovania kľúčov, podpisovania a overovania. Proces generova­
nia kľúčov má najväčší vplyv na rýchlosť a bezpečnosť multipodpisových schém,
pretože účastníci musia súhlasiť s privátnymi/verejnými kľúčmi. Po vygenerovaní
kľúčov účastníci používajú svoje súkromné kľúče na generovanie podpisov na správe
a overovač kontroluje platnosť podpisu.

Ako bolo spomenuté vyššie, generovanie kľúčov je najzložitejšou časťou multi-
podpisovných schém. Fakt, že viaceré nedôveryhodné strany musia spoločne pri­
jať a distribuovať verejné a súkromné kľúče bez odhalenia tajných informácií, robí
generovanie kľúčov problematickým. Okrem toho musí byť verejný kľúč koneč­
nou funkciou súkromného kľúča. Inými slovami, generovanie kľúčov musí splniť
požiadavky na súkromie a korektnosť. Existujú dve hlavné techniky, Shamirovo
Bezpečné Zdieľanie a Distribuvované Generácia Kľúčov, ktoré sú bizšie popísané v
podkapitolách 1.5.4 a 1.5.5. Kedže Shamirovo Bezpečné Zdieľanie má nevýhodu v
potrebu distributora čiastočných súkromných kľúčov, ktorý vie rekonštruovať hlavný
súkromný kľúč, čo je považované za bod zraniteľnmosti algoritmu, preto nesko­
ršia implementácia je založená na Distribuvovanej Generácii Kľúčov. Táto schéma
generovania kľúčov pozostáva z inicializácie, distribúcie dielov "shares", ich overnie
a nakoniec generácia kľúčov. Pre rekonštrukciu súkromného kľúča je použitá La-
grangova polynomiálna interpolácia, ktorá je popísaná v kapitole 1.6.

Kapitola 1.7 sa zaoberá Paillierovým kryptosystémom, ktorý je známy ako pravde-
podobnostná asymetrická metóda používaná v kryptografii s verejným kľúčom, za­
ložená na probléme distrkétneho logaritmu. Táto kryptografická metóda má vlast­
nosť aditívnej homomorfie, čo umožňuje kombináciu dvoch šifrovaných textov bez
poškodenia výsledku. Dekryptácia nie je potrebná, pretože výpočet funguje tak,
akoby príslušné otvorené texty boli jednoducho sčítané. Avšak účinnosť Paillierovho
kryptosystému ako homomorfnej šifry je stálym problémom. Na riešenie tohto prob­
lému bolo predložených niekoľko optimalizačných nápadov.

Predosledná teoretická kapitola 1.8 sa zaoberá samotným flexibýlnym rundovo
optimalizovaným prahovým podpisom založený na Schnorrovej schéme známy ako
FROST podpis. Prahové podpisy sú špecifická obnož multipodpisov, pri ktorých je
potrebná minimálna účasť podpisujúcich správu z celkovej množiny možných pod­
pisujúcich, v kapitole sú bližšie zmienené výhody tohoto podpisu. V podkapitolách
je bližšie zmeniená distribucá kľúčov, ktorá je založená na Pedersonovej schéme Dis-

tribuovanej Generácie kľúčov. Tá pozostáva z 2 rúnd, ktoré sú matematickz popísané
v podkapitole 1.8.2. Nakoniec je popisaná schéma samotného podpisu v podkapitole
1.8.3, ktorá pozostáva z 3 fázy: vytvorenie záväzku, výzvy a nakoniec samotného
podpisu.

Posledná kapitola 1.9 sa zaoberá prahovým podpisom pre zachovanie súkromia
v blockchaine. Daný podpis je založený na Paillerovej schéme, Shnorrovom podpise
a Shamirovom Bezpečnom Zdieľaní. Daný podpis má dvojité využitie buď pre jed­
ného používateľa, čo zvyšuje bezpečnosť tým, že vyžaduje podpísanie transakcií v
blockchaine z viacerých zariadení používateľov, alebo pre celú skupinu používateľov,
ktorí spolupracujú, čo podporuje súkromie tým, že umožňuje anonymné podpisy v
mene spoločnej peňaženky v blockchaine.

Druhá časť práce sa zaoberá samotnou implementáciou a dôvodom výberu práve
FROST podpisu. V Kapitole 2.1 je porovnanie najznámejších multipodpisov. Ich
porovnanie je založené z pohľadu bezpečnosti, potrebných interácii pri generovaní
kľúčov a podpisovaní a nakoniec samotnej náročnosti algroritmu na výpočet. Z
výsledkov bol nakoniec usúdený záver v prospech FROST podpisu, ktorý je ideány
kandidát pre implementáciu na IoT zariadenia z pohľadu dostatočnej bezpečnosti,
rýchlosti a nenáročnosti na výpočtovú techniku.

Pre samotnú implementáciu je potrebné splňovať určité bezpečnostné kritéria,
aby sme ju mohli považovať za bezpečnú. Bezpečnosť FROST podpisu ako schémy,
využitie bezpečnej knižnice a následným bezpečných implementováním funkcii. Tak­
tiež je potrebné použiť dostatočne bezpečne kryptografické primitíva a na záver je
potrebné bezpečne alokovat a následné dealokovať pamäť v samotnej implementácii.
Túto širokú časť popisuje práve druhá časť tejto práce.

Implementácia je napísaná v programovacom jazyku C s využitím knižnice OpenSLL.
Kapitola 2.2 bližšie špecifikuje dôvod výberu s obhajobou bezpečnosti knižnice pre
použitie. Pre implementáciu je využitá verzia 3.0, z ktorej sú následne využité
potrebné kryptografické primitíva ako hash funkcia SHA-256, eliptická krivka SECP-
256rl a generátor náhodných čísel. Implementácia využíva najnovších funkcii pod­
porované knižnicou OpenSSL 3.0.

Samotná implementácia FROST podpisu je naprogramovaná formou knižnice,
ktorá pozostáva z .c súborou setup.c, signing.c, globals.c and macros.c, ktoré sú
nalikované na hlavičkové súbory z priečinku ../headers a na hlavičkové súbory
knižnice OpenSSL, ktorá je potrebná v OS pre spustenie projektu. Main.c slúži
ako A P I na testovanie samotnej knižnice. Hlavičkové súbory v ../header sú nasle­
dovné: setup.h, signing.h a globals.h. Celý projekt je spustený pomocou Makejile.
Knižnica má na staroti chod celého podpisu v zmysle , inicializáciu elitptickej krivky
a jej paremetrou, matematických vypočtou až po alokáciu a dealokáciu pamäte. Z
pohľadu A P I má uživatel na staroti volanie funkcii, ktoré slúžia na inicializáciu

potrebných dát a následnú komunikáciu medzi užívateľmi. Pre bližšie pochope­
nie potrebnej komunikácie a samotnej schémy podkapitola 2.3.1 obsahuje diagram
pre generáciu kľúčov a podkapitola 2.3.2 vysvetľuje komunikáciu pri podpisovaní v
danom diagrame. V neposlednom rade podkapitola 2.3.5 zhrňuje celkovú bezpečnosť
implementácie a bližšie opisuje správu pamäte a jej čistenie. Tá bola testovaná
open-source nástrojom Valgrind. V podkapitole 2.3.6 je opísané testovanie FROST
implementácie z pohľadu rýchlosti a vplyvu množstva účinkujúcich pri generovaní
kľúčov a samotného podpisu. Boli testované schémy (2,3), (3,5) a (4,6) pomocou
knižnice Ume.h.

Na záver kapitola 2.4 opisuje samotnú implementáciu prahového podpisu pre
zachovanie súkromia v blockchaine. Implementácia je napísaná v programovacom
jazyku C s využitím knižnice OpenSLL a cJSON. Implementácia z časti naväzuje
na dimplomovú prácu [1], kde bol poskytnutý kód za cieľom využitia počiatočného
nastavenia Zmluvy o autentizačnom kľúči na základe Shamirovho zdieľania tajom­
stva. Implementácia funguje pre schému (3,3) no pokračujúca práca je potrebná
najmä v oblasti generovania kľúčov.

JARINA, Jakub. Lightweight Multi-signature schemes for loT. Brno: Brno University

of Technology, Faculty of Electrical Engineering and Communication, Department of

Telecommunications, 2023, 62 p. Bachelor's Thesis. Advised by M.ScSarra Ricci, Ph.D.

Author's Declaration

Author: Jakub Jarina

Author's ID: 230086

Paper type: Bachelor's Thesis

Academic year: 2022/23

Topic: Lightweight Multi-signature schemes for

loT

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, bachelor's thesis I furthermore declare that, with respect to the creation

of this paper, I have not infringed any copyright or violated anyone's personal and/or

ownership rights. In this context, I am fully aware of the consequences of breaking

Regulation §11 of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as

amended, and of any breach of rights related to intellectual property or introduced within

amendments to relevant Acts such as the Intellectual Property Act or the Criminal Code,

Act No. 40/2009 Coll. of the Czech Republic, Section 2, Head VI, Part 4.

Brno

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to express my deepest gratitude and appreciation to all the individuals who

have supported me throughout the process of completing my bachelor's thesis. I would

like to thank my supervisor M.Sc Sarra Ricci Ph.D. for professional guidance, patience

and suggestions. Many thanks to my colleague Dmitrii Bulashevich for sharing his

valuable knowledge and leading me in programming.

Contents

Introduction 16

1 Background 17
1.1 Elliptic Curve Cryptography 17

1.1.1 Context 17
1.1.2 Principle 17
1.1.3 Security 18
1.1.4 Comparison of Secp256rl and Secp256kl 20

1.2 Digital Signature 21
1.2.1 Hash function 22
1.2.2 Secure Hash Algorithm 256-bit 22
1.2.3 Digital Signature Scheme 23
1.2.4 Digital Signature Algorithms 24

1.3 Schnorr Signature 24
1.3.1 EC-Schnorr Signature 25

1.4 Multi-signatures 26
1.4.1 Classification 27

1.5 Multi-signature Key Generation 28
1.5.1 Shamir's Secret Sharing 28
1.5.2 Distributed Key Generation 29

1.6 Lagrange Polynomial Interpolation 29
1.7 Pailler Cryptosystem 30

1.7.1 Homomorphic Properties 30
1.7.2 Pailler Scheme 1 31

1.8 FROST signature 31
1.8.1 Context 31
1.8.2 D K G in FROST 32
1.8.3 Signing in FROST 33

1.9 Threshold Signature for Privacy-preserving Blockchain 34
1.9.1 Setup Algorithm 34
1.9.2 Signing Algorithm 35

2 Implementation 37
2.1 Multi-signature Comparison 37
2.2 Implementation of OpenSSL Library 39

2.2.1 Implementation of SHA-256 39
2.2.2 Implementation of Secp256rl 40

2.2.3 Randomization 42
2.3 FROST Implementation 43

2.3.1 FROST Setup 43
2.3.2 FROST Signing 44
2.3.3 FROST Verification 45
2.3.4 Implementation of Link List 45
2.3.5 Security of the Implementation 47
2.3.6 FROST Benchmark 48

2.4 Implementation of TSPB 50
2.4.1 Results 50

2.5 Working Environment 52

3 Practical Background 53
3.1 Programming Language 53
3.2 Libraries 54

3.2.1 OpenSSL Library 54
3.2.2 JSON Library 54

3.3 Source Code Dictionary Tree 55

Conclusion 56

Bibliography 57

Symbols and abbreviations 61

List of Figures
1.1 Visualisation of E C 19
2.1 Signing Algorithm for 2-round FROST [2] 38
2.2 FROST Setup Diagram 44
2.3 FROST Signing Diagram 46
2.4 Summary of Memory Leak 48

List of Tables
1.1 Algorithm Size Comparisons for Security [3] 20
1.2 Elliptic Curve Speed Comparison [4] 21
1.3 Security Comparison of secp256kl and secp256rl [5] 21
1.4 Security Comparison of Hash Functions [6] 23
1.5 Comparison of Different Types of Schnorr Signature 25
2.1 Comparison of Multi-signatures 37
2.2 Frost Setup Benchmark 49
2.3 Frost Signing Benchmark 49

Listings
2.1 Implementaion code of SHA-256 40
2.2 Implementaion code of Secp256rl 41
2.3 Generation of 32-byte Random Number 42
2.4 Installing Project Dependentcies 52

Introduction
Over the last few decades, the Internet has reached its full potential and has had a
significant impact on our everyday lives. Only recently has the Internet unlocked a
new feature of digital ownership that transforms our current economy. Nowadays, a
trend of owning physical assets is tending to be replaced by the online world, where
people can hold different types of ownership. [7] A good example of this can be seen
in digital rights or art, commonly associated with Non-Fungible Tokens (NFTs), and
any type of cryptocurrency. They are all based on the principles of cryptography,
more specifically digital signatures.

Digital signatures employ asymmetric cryptography, which operates with private
and public keys and hash functions. [6] The main goal is to securely conduct data
with a proof of integrity, authenticity, and non-repudiation over the Internet. Signing
schemes, where a single user issues signatures, may suffer from potential threats as
only one signer is considered a point of failure. A solution can be found in a specific
type of digital signature known as multi-signatures, where two or more people can
sign documents together as a group.

This thesis is concerned with multi-signature schemes with a major focus on
multi-sig and threshold signatures. They caught public attention after blockchain
technology was invented and implemented in the cryptocurrency such as Bitcoin. [8]
Blockchain is used by Bitcoin as a ledger to keep track of all network transactions
that are made primarily on-chain by multi-sig. However, it brings some drawbacks
that threshold signatures are able to solve.

The main goal of the thesis, therefore, is to analyze different types of current
multi-sig and threshold schemes and compare them in the area of security and com­
putational complexity. Moreover, the thesis covers the implementation of the cur­
rently best-known multi-signature called Flexible Round-Optimized Schnorr Thresh­
old signatures (FROST) [2] and threshold signature [9] in the C programming lan­
guage. These implementations are focused on the suitable usage of multi-signatures
in the of the Internet of Things (IoTs).

16

1 Background
This chapter focuses on the theoretical aspects necessary for understanding the topic
and its subsequent implementation. While some general knowledge of cryptography
is welcomed, it is not required, as all the necessary information is presented in
chronological order to provide a deeper understanding.

1.1 Elliptic Curve Cryptography

1.1.1 Context

The classical era and the modern era can be used to divide the history of cryp­
tography. The Dime-Hellman key exchange algorithm and the introduction of the
Rivest-Shamir-Adleman (RSA) algorithm in 1977 mark the turning point between
the two. The principle of modern cryptography is that the key is used to encrypt
data can be made public, while the key you need to decrypt data can be kept secret.
Therefore, these systems are called public-key cryptography, which is also known as
asymmetric cryptography. RSA is the first system of this type and is still widely
used publicly. It is equipped with strict security proofs based on effective trap­
door functions that make the algorithm powerful. In general, trap-door functions
are algorithms that are easy in one direction and difficult in the other. The easy
technique in the case of RSA multiplies two prime numbers [10]. If multiplication
is the easy algorithm, then decomposing the multiplication product into its two
prime components is the difficult pair algorithm without a private key [10]. This
principle is based on a mathematical statement about the difficulty of factorizing
large prime numbers. After the development of RSA and Diffie-Hellman, researchers
investigated other similar mathematically based cryptographic methods, which led
to the study of Elliptic Curves (ECs) and the development of a new branch of
asymmetric cryptography known as Elliptic Curve Cryptography (ECC). This is a
public key encryption method based on E C theory that can be an alternative to
RSA for instance. This method allows cryptographic keys to be generated faster,
more efficiently, and in smaller sizes with equivalent level of security with respect to
traditional cryptographyfll]. Due to its advantages, it is most often used for digital
signatures and in cryptocurrencies such as Bitcoin.

1.1.2 Principle

As opposed to the RSA conventional method of generation as the product of big
prime numbers, E C C creates keys through the characteristics of an E C equation.

17

The points on the graph, used in later generation of private/public keys, can be
expressed using the following equation from a cryptographic perspective:

Equation 1.1 is simplified version of E C also known as Short Weierstras Curve
[11]. E C C uses this form of curve with two possibilities: E C over the finite field
Fp or F2m, where p is a prime number and p > 3, respectively. For F2m 'p' is size
of 2 _ m _ that indicates the EC's points can only have integer coordinates within
the field, which is a square matrix of size p * p [12]. Every algebraic operation
performed on the field, such as point addition and scalar multiplication, yields a
new point. A l l points belonging to E C can be expressed by cyclic algebraic group or
non-overlapping cyclic subgroups (each including a portion of the E C points on the
curve). A l l EC's points are described by equation n = h*r where; n is order of the
curve, h is number of subgroups (known as co-factor) and lastly r is the number of
points in each subgroup (called order of the subgroups) [11]. By detail examination
of the E C displayed on the figure 1.1, it is possible to notice some of remarkable
aspects. First of all, curves are horizontally symmetric. Secondly, any non-vertical
line will only cross the curve three times, which is a more intriguing characteristic.
As a feature can be noticed from the figure 1.1, addition of two point A , B creates
a new point that reflects over x-axes resulting in C point. The feature is known
as E C point addition that idea can be enhanced. By adding A point k times, also
known as E C multiplication,new point is created in really quick way [11]. It is good
theoretical example, but in practice point A is replaced with generator point G
that bring useful properties. Since E C over finite field form cyclic algebraic group or
non-overlapping cyclic subgroups, generator G is used for generating any other point
from group/subgroup by multiplying with integer in range of [0...r], where r is order
of the cyclic subgroup. This leads to creating public key describes by equation:

where P is public key, k is secret key and G is generator.

1.1.3 Security

EC's security is based on mathematical principle called The Elliptic Curve Dis­
crete Logarithm Problem (ECDLP) . Definition is derived from generalized discrete
logarithm problem as follows: [13];

Definition 1 Given a finite cyclic group of points G of order n of an EC over a
finite field, a generator A of G, and an element B e G. Find the integer x, 0 < x <
n-1: [x]A = B

y2 = xs + ax + b

P = k*G

18

Fig. 1.1: Visualisation of E C

The E C D L P problem lacks an effective solution for carefully selected finite fields
and ECs, according to cryptographers, although there is no exact mathematical
proof that E C is secure [12]. System security is of the utmost importance. A mini­
mum of 128 bits of security should be provided by contemporary systems, according
to the majority of cryptographic specialists. This is not the key length, though.
The unique algorithm and its key length work together to provide security. This
means that at least a 2*k-bit curve is required in order to obtain a k-bit security
strength because the quickest known technique to solve the E C D L P for a key of size
'k' requires steps [12]. Because of this, 256-bit ECs typically offer security strength
of about 128 bits. One common example is the belief that AES-128, EC-256 and
RSA-3072 bits can provide 128 bits of protection. As the amount of computation
accessible to attackers continues to grow, keys typically get longer over time. Table
1.1 clearly shows an efficiency of E C security regards of key length.

19

Minimum Size of Public Keys (Bits)
Security Bits Symmetric Algorithm RSA E C C

80 Skipjack 1024 160
112 3DES 2048 224
128 AES-128 3072 256
192 AES-192 7680 384
256 AES-256 15360 512

Tab. 1.1: Algorithm Size Comparisons for Security [3]

1.1.4 Comparison of Secp256rl and Secp256kl

As signature is computed by IoT devices in this work, a decision of choosing ap­
propriate computing method of signing and verifying is crucial. Limited computing
capacity has to be taken into consideration. Therefore, balance between sufficient se­
curity and fast computing is required. Because of its effectiveness and solid security
guarantees, E C C is widely employed in commercial environments. Curves, which
are established by the National Institute of Standards and Technology (NIST)[14],
are the most often utilized ECs in E C C . In numerous cryptographic protocols and
systems, these curves are commonly used and approved. Based on their sizes, the
NIST curves are separated into three groups: P-256, P-384, and P-521. The key
sizes for these curves are 256 bits, 384 bits, and 521 bits, respectively. The most
used curve, the P-256 curve, strikes a fair mix between security and effectiveness.
Our requirements sorted possible candidates into two options: E C secp256rl also
known as prime256vl or its sibling secp256kl. Secp256rl heavily used publicly as it
is standardized by NIST. On the other hand, secp256kl is created and standardized
by Standards for Efficient Cryptography Group (SECG) [15]. However, this curve
was not added as NIST standard in the last publication FIPS 186-5 yet [16].That
led to public comment raised by block-chain community included E T H Foundation
[17]. In spite of this fact, secp256kl has some benefits over secp256rl. The benefits
comes from its fundamental structure of curve that is defined by equation 1.3:

y

2 = x

3 + 7 (1.3)

As The Weierstrass coefficients (a,b) are static with set values of (0,7), it results
in using interesting features that resulted secp256kl to be curve with fast scalar
multiplication. Table 1.2 compares secp256kl and secp256rl in terms of signing
and verification in Elliptic Curve Digital Signature Algorithm (ECDSA) provided
by OpenSSL and Libsecp256kl libraries.

According to benchmark in table 1.2, speed of the ECs are critical on selection of
library as Openssl library is optimized for secp256rl and libsecp256kl was primaly

20

OpenSSL
secp256rl

OpenSSL
secp256kl

Libsecp256kl
secp256kl

excl. endomorphism

Libsecp256kl
secp256kl

incl. endomorphism
sign 33000/s 2000/s 22000/s 22000/s
verify 12000/s 2300/s 15000/s 21000/s

Tab. 1.2: Elliptic Curve Speed Comparison [4]

created for secp256kl curve. When it comes to security, next table 1.3 shows security
difference that has currently no effect as both curves are 256 bits.

Curve secp256kl secp256rl
Security 127.03 127.83
Automorphism Order 6 2
Parameters a 0 3
Cost for a combine attack 2 ^109,5 2 ^120,3

Tab. 1.3: Security Comparison of secp256kl and secp256rl [5]

In terms of security, both ECs are considered secure, with small lead of secp256rl.
Since then, secp256rl has been advocated by standards organizations like the Na­
tional Security Agency (NSA) and NIST and is increasingly frequently adopted and
used in cryptographic protocols and systems. secp256rl was chosen for implemen­
tation of this work since secp256kl is predominantly used in bitcoin and blockchain
applications and may not be as extensively accepted in different environments.

1.2 Digital Signature

In the digital realm, there is a need for an equivalent representation of a hand-written
signature with all its properties. A digital signature serves as a unique behavioral
biometric that enables easy authentication and guards against signature alteration
or accurate falsification. Additionally, it encompasses a valuable attribute known as
non-repudiation, which prevents the signer from denying their own signature in the
future. Digital signature, a mathematical scheme used for verifying digital messages
[6], satisfies the requirements of authentication, integrity, and non-repudiation. It is
generally regarded as a signature created using cryptographic methods, specifically
employing asymmetric cryptography and hash functions.

21

1.2.1 Hash function

A hash function is a mathematical procedure that converts a numeric input value
into another value. [18] Hash values, or simply hashes, can be understood as repre­
sentations of fixed-length messages of any length. To create hashes, a hash function
operates on two fixed-size blocks of data, typically ranging between 128 bits and
512 bits. The entire process functions as a chain with rounds, where the output of
one hash function becomes the input of another. This results in a desirable effect
known as the avalanche effect [19]. Nearly identical messages that differ by only one
bit produce completely different hashes.

A reliable hash algorithm must satisfy several criteria, as they are commonly used
in digital signatures, authentication systems, and databases. One essential property
is speed. Additionally, a hash function should possess the following properties. Pre-
image resistance ensures that it is difficult to reverse the hash algorithm and deduce
the original input from the output. Second Pre-image resistance refers to the concept
that given an input and its hash value, finding a different input with the same hash
value should be challenging [20]. Since a hash function is a compression function
with a specific hash length, collisions are unavoidable. Therefore, comparing two
inputs of different lengths that result in the same hash value, commonly known as
collision resistance, should be challenging.

The NIST compares the security of the most popular hash functions in the
SHA-3 Standard publication [21]. The comparison is presented in the table 1.4. In
definition 1 the security strength against second pre-image attacks on a message M
is stated as:

Definition 1 /o(?2(/en(M)/'B), where B is the block length of the function in bits,
i.e., B = 512 for SHA-1, SHA-224, and SHA-256, and B = 1024 for SHA-512 [21].

1.2.2 Secure Hash Algorithm 256-bit

Secure Hash Algorithm 256-bit (SHA-256) is a widely used cryptographic hash func­
tion that belongs to the SHA-2 family. It was designed by NSA and later on pub­
lished by NIST in 2001. In order for SHA-256 to work, the input message must be
divided into 512-bit blocks. Next, each block must undergo a series of cryptographic
operations that combine and alter the bits. These procedures include conditional
assignments, modular arithmetic, bitwise logical operations, and message expansion
[22]. These operations provide a 256-bit hash value that is unique to the input
message as the end result.

One of SHA-256's major characteristics is its resistance to collisions, which means
that finding two separate input messages that give the same output hash value

22

Security Strengths in Bits

Function
Output

Size
Collision Preimage 2nd Preimage

SHA-1 160 <80 160 160-L(M)
SHA-224 224 112 224 min(224, 256-L(M))

SHA-512/224 224 112 224 224
SHA-256 256 128 256 256-L(M)

SHA-512/256 256 128 256 256
SHA-384 384 192 384 384
SHA-512 512 256 512 512-L(M)

SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512

Tab. 1.4: Security Comparison of Hash Functions [6]

is computationally impossible. Moreover, SHA-256 is considered as deterministic
which results by same input same output. Because of these characteristics, SHA-
256 may be used for a variety of cryptographic tasks, including password storage,
digital signatures, and message authentication codes.

1.2.3 Digital Signature Scheme

The most commonly a digital signature scheme consists of three-stage process [6]; a
key generation, signing and a signature verification. The key generation is an algo­
rithm that creates a pair of private and public key. The pair of keys is tied to one
entity, who signs a document by private key that is kept in secret. Then, public key
is sent to other entity for verification. Signing is generated by hashing document.
A outcome of hash function is signed by private key in order to create digital signa­
ture and then to be transmitted with document to a receiver. Finally, the signature
verification is done by decryption using public key. Algorithm states acceptance or
rejection of signature authenticity. Problem can be found in distribution of public
key from one entity to another as that is no evidence of key authenticity. More­
over, public key can be tampered by third party. Public Key Infrastructure (PKI)
solves this problem by creating third party organization, trusted by both entities,
also known as Certificate Authority (CA). they issue certificate on entity and its
legitimate key pairs.

23

1.2.4 Digital Signature Algorithms

Due to the presence of various types of digital signatures, NIST specifies approved
digital signature algorithms in the publication Digital Signature Standards (DSS)
[14]. This includes the Digital Signature Algorithm (DSA) developed by NIST, as
well as the recently added RSA [10] and ECDSA. A l l of these algorithms work in
conjunction with approved hash functions specified in the Secure Hash Standard
(SHS) [23] or the SHA-3 Standard [21].

Moreover, alternative digital signatures gains popularity these days. The Schnorr
Signature [24] is a relatively old algorithm created by Claus Schnorr, which was under
patent protection until 2008. In the same year, Bitcoin was created, and its creator
decided to implement E C D S A using the E C secp256kl due to its optimization and
public awareness [25]. However, E C D S A has some drawbacks that the Schnorr
Signature solves. Therefore, developers decided to implement the Schnorr signature
in the taproot upgrade that took place in November 2021.

1.3 Schnorr Signature

Public key signature techniques are essential for authenticating sensitive messages
such as electronic funds transfers and managing access to communication networks.
Since the development of RSA, research has focused on improving the effectiveness of
these techniques. In 1991, Claus Schnorr introduced a new signature scheme, known
as Schnorr signature, with main purpose of minimizing computation for smart cards
due to a lack of computing power [26]. The Schnorr signature is a digital signa­
ture protocol known for its ease of use, effectiveness, and concise signatures. It is
based on the idea of public keys and is widely used in many different cryptosystems.
The Discrete Logarithm Problem (DLP), extracted from the Schnorr identification
method using the Fiat-Shamir heuristic, serves as the basis for the scheme [27]. The
scheme's security has been investigated and proven in the Random Oracle Model
(ROM). It has been demonstrated to be strongly resistant to forging during adap-
tively chosen-message attacks[27]. One of the advantages, that has noticeable effect
is linearity that is desirable in multi-party computation. This useful attribute en­
ables the creation of another valid Schnorr signature by combining two Schnorr
signatures, resulting of possible algebraic operations in signatures. Following algo­
rithms describe signing and verification process in Schnorr signature [26]. Let H be
a cryptographic hash function that maps to Z* and let G be a group with generator
g and prime order q. The following actions are taken to generate a Schnorr signature
over a message m:

24

Algorithm 1 Signing Algorithm for Schnorr Signature [26]
1. Select random nonce k ER 1*Q

2. Calculate the commitment R <— gk G G
3. Calculate the challenge c = H(m, R)
4. Calculate the response with secret key Sk z = k + Sk * c G Z g

5. Signature is defined as a = (z, c)

Algorithm 2 Verification Algorithm for Schnorr Signature [26]
1. Parse a into (z, c)
2. Calculate R' = gz * P f c

_ c | Pk = gSk {Public key)
3. Calculate z' = H(m, R')
if c = z' then

output is 1; Valid
else

output is 0; Rejected
end if

1.3.1 EC-Schnorr Signature

Since introduction of basic Schnorr signature by Claus Schnorr, another versions of
this type were proposed. Significant improvement is provided by collaboration with
E C C , where E C are used for calculating parameters in result of faster computing. As
a consequence, small changes are done in signing and verifying algorithm. Following
table compares some types of Schnorr signatures.

Scheme Schnorr Sig. E C - S D S A E C - F S D S A
Schnorr Sig.

BIP 340
1. Component H(m, R) H(Rx\\Ry\\m) Rx\\Ry Rx
2. Component k + Sk * h k + Sk * h k + H(Rx\\Ry\\m)*Sk k + H(Rx\\PKx\\m)*Sk

Sign. Size b+2b 2b+2b 4b+2b 2b+2b
Public Key gsk -Sk*G -Sk*G Sk*G
Reference [26] [28] [29] [30]

Tab. 1.5: Comparison of Different Types of Schnorr Signature

Nowadays, one of the most breaking news in cryptography is implementation
of EC-Schnorr signature into Bitcoin that took place in November 2021. It was
well-grounded by Bitcoin Improvement Proposal (BIP), more specifically BIP 340
[30]. It is considered as standard for 64-byte EC-Schnorr signature algorithm that is
performed over secp256kl E C . Following algorithms show how signing and verifying
is done in this work:

25

Algorithm 3 Signing Algorithm for EC-Schnorr Signature
1. Select random nonce k ER Z 9

2. Calculate the point on curve R = k * G
3. Calculate hash c = H(R\\m)
4. Calculate the challenge with secret key Sk s = k + c * Sk

5. Signature is defined as a = (s, c)

Algorithm 4 Verification Algorithm for EC-Schnorr Signature
1. Parse a into (s, c)
2. Calculate R' = s * G - c * Pk \ Pk = G * Sk

3. Calculate hash z' = H(R'\\m)
if z' — c then

output is 1; Valid
else

output is 0; Rejected
end if

The main difference between Schnorr Signature and EC-Schnorr Signature is fact
that exponentiation is replaced by simpler and faster multiplication in EC . Lastly,
generator G, public commitment R and public key Pk are points on EC.

1.4 Multi-signatures

In order to secure communication and data sharing on IoT devices, digital signa­
tures are essential. However, situations might arise in terms of communication where
there is a need to have several signatures since one signature might not be sufficient
for verifying its validity. Multisignatures provide a solution to this issue by enabling
a group of signers to jointly sign a message. This ensures that the message is only
recognized as legitimate if the necessary number of signers have signed it. With
multisignature, multiple signers can each add their own signature to a message, cre­
ating a single signature that can be verified by anyone with access to the public key.
Blockchain technology, digital certificates, encrypted communications, and authen­
tication protocols all make extensive use of multisignatures. Multisignature systems
have the major benefit of increasing security and accountability while also offering
flexibility and scalability. The drawbacks of conventional digital signatures, which
only permit one signer to sign a message, can be solved by multisignature. Similarly
to conventional digital signatures, multi-signatures consist of three algorithms: key
generation, signing, and verification. The biggest impact on speed and security of
multisignature schemes is key generation, as participants have to agree on private

26

and public keys. After that, participants use their private key to generate a signa­
ture on the message, and finally, a verifier, usually one entity, checks the validation
of the signature.

1.4.1 Classification

Threshold multisignature schemes and distributed multisignature schemes are the
two basic kinds of multisignature schemes.

1. For Threshold signature to be legitimate, a certain minimum number of
signers must take part in the signing process according to this method. Two
more classes may be added to the classification of threshold multisignature
schemes:

• Secret sharing-based multisignature methods proposed by Shamir
Using Shamir's secret sharing technique, the message is first divided into
shares, and each side creates a partial signature on their corresponding
share. A reconstruction procedure is used to combine the partial sig­
natures to create the whole signature. With this strategy, the signing
job is divided among the signers, but the shares must be created and
distributed by a reputable dealer.

• Schnorr's threshold signature-based multisignature schemes: In
this method, each party signs the message partially using their private
key, and the partial signatures are then merged with a threshold signature
algorithm to create the final signature. While Shamir's secret sharing-
based schemes have a lower computational overhead, this strategy does
away with the requirement for a trusted dealer.

2. Distributed multisignature techniques permit any subset of signers to co­
operatively create a signature on the message rather than requiring a minimum
number of signers to participate in the signing process. Two more classes may
be added to the classification of distributed multisignature schemes:

• Multisignature techniques based on ring signatures use a public key
ring that contains the public keys of all signers, each party creates a ring
signature on the message in this method. Using a verification technique,
the ring signatures are combined to get the final signature. Although
this method offers signers anonymity, it has a higher computational cost
when compared to other multisignature schemes.

• Aggregate signature-based multisignature schemes depends on each
participant as they create a unique signature on the message using their
private key, and these signatures are then merged to make the final signa-

27

ture using an aggregate signature algorithm. This method has a minimal
computational cost and is appropriate for devices with limited resources,
but it needs a reliable third party to combine the signatures.

1.5 Multi-signature Key Generation

As in previous section was mentioned, key generation is the most complicated part
in multisignatures. The fact, that multiple untrusted parties have to jointly accept
and distribute public and private key without leaking secret information makes key
generation problematic. Moreover, final public key has to be a function of secret
key. In other words, key generation has to fulfill terms of privacy and correctness.
There are 2 main techniques that are used in Multi-signature key generation.

1.5.1 Shamir's Secret Sharing

Shamir's Secret Sharing (SSS) is a cryptographic procedure that divides a secret
into shares, with the result that the original secret can only be recreated if enough
shares are joined. Adi Shamir created it in 1979 [31], and today it is extensively
used for many different purposes, such as secure communications and multi-party
calculations.

The key concept underlying SSS is to create shares of a secret via polynomial
interpolation. To be more precise, we can produce N points on a random polynomial
of degree TV — 1, where the secret value S is the constant term, given a secret value S
and a positive integer N [31]. In order to prevent any party from learning anything
about the secret value from only their share, these N points can be divided to TV
separate parties. Any T or more parties are able to combine their shares using
polynomial interpolation in order to recreate the secret value. In other words, we
can calculate the special degree T — 1 polynomial that goes over any T shares (where
T is less than or equal to N). The secret value S serves as the polynomial's constant
term.

SSS is secure since an attacker cannot discover any information about the secret
value from less than T shares. The reason for this is that any polynomial with degree
less than T — 1 may be constructed to pass through an endless number of points,
hence the shares by themselves are meaningless in revealing the secret [31]. It has
many advantages and useful properties such as: scalability, flexibility, robustness
and efficiency as only simple arithmetic algorithms are required.

SSS has the drawback of requiring a reliable dealer to create and distribute the
secret shares. In order to maintain the confidentiality of the shared secret, the
dealer must be trustworthy and cannot collaborate with any of the parties. If the

28

dealer is dishonest or malevolent, they may distribute the wrong shares or disclose
information that compromises the secrecy of the secret. Therefore, in some schemes
is not desired to have centralized power in hand of one entity that brings us to point
of failure.

1.5.2 Distributed Key Generation

A cryptographic technique called Distributed Key Generation (DKG) is used to
create cryptographic keys in a distributed and safe way without depending on a
reliable dealer. D K G enables a group of participants to collectively produce a shared
secret that may be used as a cryptographic key for a variety of purposes, including
encrypted communication or digital signatures.

The Pedersen D K G protocol, first forward by Torben Pedersen in 1991 [32],
serves as a prime example of D K G . SSS and E C C are used in the Pedersen D K G
protocol to provide a shared secret key that is safely generated. Generaly any D K G
scheme, Pedersen D K G included, consist of following stages:

1. Initialization: The parties decide on a generating point on a shared EC. In
order to calculate their matching public key on the E C , each side produces a
random value [32].

2. Share distribution: The parties divide their random value into shares and
provide those shares to the other members of the group using SSS. Each party
obtains shares from every other participant and computes its own polynomial
interpolated reconstructed private key [32].

3. Share verification: The parties calculate a shared public key on the EC
using their private keys that they have rebuilt. They then trade promises to
their rebuilt private keys, using these commitments to confirm the authenticity
of the shared public key.

4. Key generation: If the key verification procedure is successful, the parties
utilize their shared public key to create their cryptographic keys. The parties'
respective public keys are used to form the shared public key, which is then
used to generate the matching reconstructed private keys.

1.6 Lagrange Polynomial Interpolation

A mathematical method called Lagrange polynomial interpolation is used to identify
a polynomial function that traverses a collection of known points on graph [33]. In
various fields, including cryptography and its cryptographic systems like SSS, which
is used to safely divide a secret into numerous shares, the Lagrange polynomial
interpolation is utilized.

29

The general form of the Lagrange polynomial interpolation is [33]:

n
(1.4)

i=0
where U{x) is the zth Lagrange basis polynomial, defined as [33]:

n
u(x)= n (1.5)

The characteristic of the Lagrange basis polynomials is that for any j i, k(xi) = 1
and li(xj) = 0. This indicates that the point (xj, y*) is the only point through which
the polynomial function P(x) passes and not any other points [33].

The Paillier cryptosystem is a probabilistic asymmetric method used in public-key
cryptography, and it was developed by Pascal Paillier in 1999 [34]. A trapdoor
mechanism developed from the family of trapdoors based on the D L P is shown in
Paillier's work [34] with an emphasis on composite residuosity classes.

This cryptographic method has the additive homomorphic characteristic, which
allows two ciphertexts to be combined without impairing the outcome. Decryption
is not required since the computation operates as if the appropriate plaintexts were
simply added.

However, for any homomorphic encryption technique, the effectiveness of the
Paillier cryptosystem is an an ongoing concern. To solve this problem, several op­
timization ideas have been presented up. Paillier himself, for instance, suggested
Scheme 3 as a modification of the initial Scheme 1. Moreover, another way of im­
provement includes computing certain values in advance, such as exponentiating
either the message gm or the noise rn, as suggested in the article [35].

1.7.1 Homomorphic Properties

The additive and multiplicative homomorphic qualities of the Paillier scheme are its
major features. These characteristics make it possible to simulate addition and mul­
tiplication operations on ciphertexts while computing addition and multiplication
operations on plaintexts. This is stated mathematically as follows [1]:

• adding homomorphically the two related plain-texts together is identical
to decryption the product of two ciphers (or the product of a cipher and a
generator g raised to the power of the plain-text):
- D(E(mi,ri) • E(m,2,?"2)n2) = (mi + m 2) (mod n)
- D(E(mi,ri) • gm2 (mod n 2)) = (mi + m 2) (mod n)

1.7 Pailler Cryptosystem

30

• plaintexts are multiplied homomorphically. Decrypting the result in this
instance reveals the multiplication of the two plaintexts when a ciphertext is
raised to the power of a plaintext:
- D(E(mi,ri)m2 (mod n 2)) = (mim 2) (mod n)
- D(E(rri2, r2)™ (mod n 2)) = (roiro2) (mod n)

1.7.2 Pailler Scheme 1

The following procedure is used to create the public key pk and secret key sk in
Scheme 1. P and Q, two large prime numbers, are first chosen at random to ensure
their independence from one another. Both primes must be of similar length in order
to ensure a certain property (GCD(PQ, (p— l)(q — 1)) = 1). The parameter is then
calculated as the least common multiple of (p — 1) and (q — 1) and the parameter
n is then calculated as the product of P and Q [1]. The parameter g is then drawn
at random from the set Z* 2 after that. It's crucial to confirm that n divides g by
looking for a modular multiplicative inverse, given by the symbol. At this stage, it
is necessary to ensure that n divides the parameter g by verifying the existence of a
modular multiplicative inverse denoted as p showed in equation 1.4 [1].

fi = (L(gx (mod n 2))) - 1 (mod n) (1.6)

where L(x) = ^—^ The public key pk is defined as the ordered set consisting of the
parameters n and g. On the other hand, the secret key sk is defined as the ordered
set containing the parameters A and p. The encryption of message m is done as
in equation 1.5 [1].

c = gm-rn (mod n 2) (1.7)

On the other hand, the decryption of cipher-text is done as in equation 1.6 [1].

m = (L(cx (mod n 2))) • p (mod n) (1.8)

1.8 FROST signature

1.8.1 Context

FROST signature is a method for cryptographically signing communications that
enables many users to sign messages using a single secret key. It is based on the
Schnorr signature technique and generates the shared secret key using the Pedersen
D K G protocol. In January 2020, Chelsea Komlo and Ian Goldberg described FROST
in a research article. [2] It has drawn interest from the cryptography community
because to its efficiency and security trade-offs, as well as its potential application
in decentralized systems like block-chain networks.

31

FROST has several advantages:
1. Threshold security: FROST offers threshold security, which implies that

in order to access the private key, an attacker would need to successfully
compromise a significant number of signers.

2. Flexibility: FROST may be modified to meet various threshold and signer
criteria due to its adaptability.

3. Efficiency: FROST uses less bandwidth and has a high processing efficiency

[2]-
4. Round-optimized: FROST is created to reduce the number of rounds that

are necessary for communication between the signers [2].

1.8.2 DKG in FROST

D K G is used to generate and distribute the shared secret key among all participants
for later signing. Pedersen D K G protocol serves as the foundation for the D K G
in FROST. Each participant in this procedure creates a random polynomial whose
degree is equal to the threshold value t — 1. The other coefficients are selected at
random, and the polynomial's constant term is set to their secret share. Following
that, each participant broadcasts their polynomial to the entire group. After receiv­
ing polynomial from all participants, polynomials are verified with previously shared
commitments that consists of random values chosen by participant. If verification
holds, participant moves on for key generation, otherwise protocol is aborted. Secret
key of participant is generated by sum of all received polynomial, while public key
is computed as a linear combination of the individual public keys using Lagrange
polynomial interpolation. Specifically, each participant evaluates their polynomial
at a designated point, and then computes their individual public key as a scalar
multiple of the group generator raised to the participant's secret share. Pedersen
D K G is done in 2 rounds. Since FROST in this thesis is based on E C computations,
D K G is done as following (Please, consider a use of ECC) :
Round 1

t-i
• Every participant Pj computes polynomial fi(x) = J2 ciij*x^ (mod Q) where

j o
dij is random number [2].

• Every participant Pj computes public commitment and send it to every par­
ticipant: Xi = (0 i j O , 0 i , (t - i)) , where 4>id = aid *G \ 0 <j < t - l

Round 2

• Every participant Pj securely sends to all participants Pj a secret share (j, fi(j))

[2]-
• Every participant Pj verifies secret share from participant Pj as follow:

32

G * fj(i) = J2 <Pj,k * ik (mod Q). If verification does not hold protocol is
fc=0

aborted.
• Generate keys as following:

n
— Secret share: Sj = J2 fj(i) (mod Q) [2]

i=i
— Verify share: Yi = G * Si

n
— Public key: Y — <f>jo

1.8.3 Signing in FROST

FROST proposal introduce 2 options of signing. Standard signing is done within
2 rounds. Alternatively, option with 1 round signing is presented that is done by
preprocess stage and by adding entity commitment server [2]. By that, commitment
phase is not counted to signing part as it is done before signing considered as pre­
requisite to participate in signing operation. Overall, both versions are based on
same computations.

Secondly, FROST has options of signing in terms of aggregator role [2]. Without
an aggregator, each signer contributes their own signature to the message. The
total of the individual signatures is then calculated to create the signature. This
indicates that the signing procedure requires the presence of all participants, and
the signature cannot be calculated if any member is unavailable or unresponsive.

A n aggregator is a single participant who gathers the partial signatures from the
other participants while using this method of signing. The incomplete signatures
are then combined by the aggregator to create a complete signature. The benefit of
this strategy is that just the aggregator has to be present when signing documents.
The signature procedure may be postponed until the aggregator is back online or
responsive if it is unavailable. It has also disadvantage that, aggregator has to be
honest, but to ensure security aggregator can be made randomly and changed for
each signing process.

Signing part can be divided into 3 phases (Please, consider a use of ECC) :
1. Commitment phase

• Selected number of participants t out of n participate in signature, where
they calculate each single-use public commitments share Di = G * di ; di
is random number. Then the commitments are sent to aggregator.

• Aggregator checks if all selected participants t have sent commitment
shares. If not protocol is aborted, Otherwise, public commitment is cre-

t
ated as: R = J2 A (mod Q)

i=l
• Aggregator sends tuple (m, R, S) to all participants t, where S is set of

participants t [2]

33

2. Challenge phase
• every participant p computes challenge c = H(R\\m) [2]
• every participant Pj computes signing share Zi = di + \i*Si*c (mod Q).

where \ is coefficient of Lagrange polynomial interpolation [2].
• every participant Pj send signing share to aggregator and deletes di,Di

3. Signature phase
• Aggregator verifies each response by checking:

G * Zi = Di + Yi * c * \i (mod Q). If verification does not hold, protocol
is aborted.

t
• Aggregator computes group's response z = zi (mod Q)

i i

• Release signature a = (z, c) along with message m [2]
Released signature a is verified as standard EC-Schnorr signature by public key Y
with algorithm 4 in subsection 1.3.1.

1.9 Threshold Signature for Privacy-preserving Blockchain

Threshold signature presented in [9] abbrev. (TSPB) is focused on increasing se­
curity and privacy in blockchain technology. [9] provides a method for distributing
a Blockchain wallet across several devices safely. It is possible to implement this
divide for either a single user, which increases security by requiring multiple user's
devices to sign Blockchain transactions, or for an entire group of users that collab­
orate, which promotes privacy by allowing anonymous signature on behalf of the
shared Blockchain wallet [9]. The signature is based on cryptographic primitives
that have been demonstrated to be secure, including the Schnorr signature, Pailler
cryptosystem, and SSS.

1.9.1 Setup Algorithm

The proposed approach necessitates the collaboration of a subset of registered de­
vices, specifically t out of n, in order to retrieve the secret key. To achieve this, an
utilization of SSS scheme along with the Paillier cryptographic scheme is essential in
setup part. This combination ensures a secure distribution of the client authentica­
tion secret key, which is computed as the sum of individual secret keys sk belonging
to the devices and the client. The resulting share is then employed as the secret key
for the respective device.

A polynomial made up of randomly generated values (di, t) is created throughout
the distribution process. Here, % stands for the device number, while t stands for the
threshold value, which is related to the degree of the polynomial. The polynomial

34

is defined in accordance with a system of TV devices by following equation 1.7.

N
f(x) = (d M + ... + dN^xl + ... + (dN:1 + ... + dN:t)x + (L9)

i=l

where J2iLi Ki the client device as well as other devices' secret keys are added up. By
adding the terms of the polynomial di^x* + ... + di^x + Hi, where each value of x is
encrypted using the Paillier scheme, one can obtain the summations of di^, • • • djq,t
and Ki. The authentication sk calculation may be partially executed on each device
thanks to this encryption, guaranteeing that none of the secret keys ever leave their
respective devices.

Setup algorithm can be divided into 2 rounds computed by number of n partic­
ipants:

1. Parameter Generation
• generate random values dijt,.. .d]yjt

• generate the Pailler's key pair (pkpj,skpj)
• generate random secret kj
• calculate pkj = gkj

The entire secret distribution process proceeds as follows for the calculation
of each f(xj) where j ranges from 1 to n. Consider the variable h, which is
defined as j + 1:

2. Polynomial Evaluation
• Dh generates random value and compute x — Encpkpj(xj,rh)
• Dh generates random value Vj^ and compute

ch = Xj% Xj% *•••* XjX * Encikj, vjih) (1.10)

• if h — j + 1, then Dh sends Ch to Dh+i
• if h 7̂ j, then h — h + 1 (mod n) and go to first step of the polynomial

evaluation
• if h = j, then Dj computes:

f{xj) = Dec(c3_x) + + • • • + dfxj + kj (1.11)

1.9.2 Signing Algorithm

Signing part and later on verification of final signature is identical with FROST
scheme in this article. First of all, t out of n participants need to be agreed to
issue signature a. In proposed work [9] participants are divided into Main Device
(MD), who has enabled signing mode and Secondary Device (SD) with co-signing
mode. Therefore, for optimization and better understanding M D can be considered

35

as participant and aggregator in one entity as M D participates in setup and signing
part. Then, signing algorithm is followed in subsection 1.8.3 consisted of 3 phases:
Commitment, Challenge and Signature phase.

Released signature a is verified as standard EC-Schnorr signature by public key
Y with algorithm 4 in subsection 1.3.1.

36

2 Implementation
This chapter is dedicated to the practical part of the thesis, focusing on the com­
parison of different types of multi-signature schemes in terms of computational com­
plexity and efficiency Based on the obtained results, the most suitable signature
scheme is selected and implemented for IoT. The next section focuses on the imple­
mentation of multi-signature in the programming language C, with carefully chosen
and included essential libraries.

2.1 Multi-signature Comparison

During the research on the defined problem, five potential candidates were selected
for further implementation of multi-signature for IoT. IoT devices can be consid­
ered secondary devices that extend the functionality and connectivity of standard
devices such as laptops or smartphones. In most cases, they have limited computing
capacity, which plays a significant role in choosing an appropriate multi-signature
scheme. Therefore, the main attention was given to the number of rounds required
by each scheme and the size of exponentiation computed during the process. The
optimal solution can be found by striking a balance between the speed of the scheme
and sufficient security. The following table 2.1 describes the number of iterations
and the computational complexity of each part of the scheme for each scheme.

Signature scheme F R O S T 1 round F R O S T 2 round MuSig2 BN06 m B C J

Complexity O M D L + P R O M O M D L + P R O M O M D L D L + R O M D L + R O M
KeyGen (# iter.) 2 2 n n n
KeyGen (# exp.) 3n + nt + t + 1 3n + nt + t + 1 1 1 2

Sign (# iter.) 1 2 2 3 2
Sign (# exp.) 2 t + 2 n + 3 1 4

Verify (# exp.) 2 2 n + 2 n+1 8
Type Threshold Threshold Mu-Sig Mu-Sig Mu-Sig

Party Involved (n,t) (n,t) (n,n) (n,n) (n,n)

Life-time N / A N / A N / A N / A N / A

Tab. 2.1: Comparison of Multi-signatures

Table compares 5 different types of securely-proven multi-signatures. A l l sig­
natures are compatible with Schnorr signature except mBCJ . They can be divided
into 2 main types of Threshold and Multi-Signature (Mu-Sig). Result of that is the
different number of parties involved for signature as Mu-Sig requires all number of
participants n and on the other hand, threshold requires only group of participant
t from all participants n. A representative of threshold is FROST that is precisely

37

presented in Komlo and Goldberg [2] with 2 variants; FROST requiring 1 (FROST
ver. 1) or 2 (FROST ver. 2) iterations for signing. FROST security is based on
One-More Discrete Logarithm (OMDL) and Programmable Random Oracle Model
(PROM) assumptions [36]. A valuable tool for demonstrating cryptography methods
and highlighting probable assumptions that might or might not hold true in prac­
tice is the security model. According to P R O M , the execution environment (which
executes the adversary and simulates answers to the adversary's oracle queries) is
permitted to program the random oracle, but only if the programming is identical
to all other truly random responses [36]. In FROST key generation is done by D K G
with protocol called Pedersen's D K G that takes 2 iterations [2]. Difference between
FROST with 1 round and 2 rounds is that 1 round misses generation of public
share commitments that is done in preprocess stage autonomously operated as a
requirement to take part in next signing processes. Therefore, all participants must
have access to the commitment server role since it manages and stores the partici­
pant's commitment shares [2]. Moreover, it changes and reduce signing rounds with
slightly different structure in FROST 2 rounds. As an example can be shown picture
of FROST 2 rounds signing algorithm with steps for calculating of exponentiation:

Round 1

1. The signature aggregator A initializes a signing operation by sending a re­
quest for a commitment share to each participant Pi : i e S.

2. Each Pi samples a fresh nonce di ê j 7Lq.
3. Each Pi derives a corresponding single-use public commitment share Di =

4. Each Pi returns Di to A, and stores (dj, Dt) locally.

Round 2

1. The signature aggregator A computes the public commitment R =
Yli(ES Di for the set of selected participants.

2. For i e S, A sends Pt the tuple (m, R, S).
3. After receiving (rn, R, S), each participant Pi for i 6 S first validates the

message m, aborting if the check fails.
4. Each Pi computes the challenge c = H(m, R).
5. Each Pi computes their response using their long-lived secret share 3i by

computing Zi = dt + A; • • c, using S to determine A.;.
6. Each Pi securely deletes (di,Di), and then returns zt to A.
7. The signature aggregator A performs the following steps:

7.a Verifies the validity of each response by checking gZi = Di • Yf'Xi for
each signing share z i , . . . , zt. If the equality does not hold, first iden­
tify and report the misbehaving participant, and then abort. Otherwise,
continue.

7.b Compute the group's response z = £3 zt
7.c Publish the signature a = (z, c) along with the message rn.

Fig. 2.1: Signing Algorithm for 2-round FROST [2]

38

Round 1 is mainly set up of public commitment that in FROST ver. 1 preprocess
stage deals with it. As every single participant t has to calculates single-use public
commitment first exponentiation is equal to t participants. Round 2 is practically
similar for both FROST versions. Public group commitment is computed by the
signature aggregator who also verifies response validity of participants that contains
2 exponentiation. This is also done in FROST ver. 1, but single-use commitments
are taken commitment server.

The best representative of Mu-sig group is MuSig2, introduced in Nick et al.
article [37], with sufficient security based on O M D L assumption. MuSig2 is fast and
robust, but requires all participants that in some occasions is not the ideal option.
Another Multi-signature scheme is BN06 (brings in Bellare and Neven article [38])
based on DLP, regarded as a "standard assumption" in the field of cryptography,
supported with R O M , presuming that hash function outputs are identical to random
values. Lastly, multi-signature m B C J , firstly mentioned by M . Drijvers et al. [39].
It is in many ways similar to BN06, but does not support Schnorr signature, thus
for this implementation is not appropriate.

2.2 Implementation of OpenSSL Library

This section clearly reveals functions and cryptography's methods implemented for
further signature including hash function, E C curve and generator of random num­
bers based on the library. The implementation is done in globals.c and is called
when is needed.

OpenSSL [40] is a strong and well-liked software library that offers developers
useful cryptographic functionalities. Therefore, the implementation of FROST sig­
nature is based on this library. More information about the library itself can be
found in chapter 3. Used version of OpenSSL library is following: OpenSSL 3.0.7 1;
Nov 2022. OpenSSL version 3 has some new updated functions that replace older
deprecated function.

2.2.1 Implementation of SHA-256

SHA-256 was chosen for use in the implementation for ensuring integrity and pre­
vent tampering as it is a popularly used cryptographic hash algorithm that accepts
arbitrary-length input messages and generates a fixed-size output (256 bits) that is
specific to the input.

Hash function is used for concatenation of message and public commitment for
creating signing share in signing part. Moreover, hash function is also needed for ver­
ification of final signature. Hash function implementation satisfy the latest changes

39

in OpenSSL library as functions replacing deprecated functions are implemented as

in the listing 2.1:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

/ • d e c l a r e s an a r r a y of u n s i g n e d c h a r a c t e r s
to s t o r e the v a l u e of 256 b i t s * /
u n s i g n e d cha r hash [SHA256_DIGEST_LENGTH] ;

/ * s t r u c h o l d i n g the c o n t e x t f o r a message d i g e s t o p e r a t i o n * /
EVP_MD_CTX* m d c t x ;

/ • s t r u c t , t h a t r e p r e s e n t s the message d i g e s t a l g o r i t h m * /
c o n s t EVP_MD* md;

/ • s e l e c t the SHA-256 a l g o r i t h m * /
md = E V P _ s h a 2 5 6 () ;

/ • a l l o c a t e s and i n i t i a l i z e s a new s t r u c t * /
mdctx = EVP_MD_CTX_new () ;

/ * i n i t i a l i z e s the message d i g e s t c o n t e x t * /

E V P _ D i g e s t I n i t _ e x (m d c t x , md, N U L L) ;

/ * u p d a t e s the message d i g e s t c o n t e x t w i t h the i n p u t d a t a * /
E V P _ D i g e s t U p d a t e (m d c t x , c o n c a t _ s t r i n g , h a s h _ l e n) ;

/ * f i n a l i z e s c o m p u t a t i o n and s t o r e s hash v a l u e i n t o a r r a y * /
E V P _ D i g e s t F i n a l _ e x (m d c t x , h a s h , N U L L) ;

/ • f r e e a l l o c a t e d memory^/
E V P _ M D _ C T X _ f r e e (m d c t x) ;

Listing 2.1: Implementaion code of SHA-256

2.2.2 Implementation of Secp256rl

The E C employed, the hash function, and the structure of the code with adequate

parameters all play major roles in the security of the final signature implementation.

E C secp256rl, also known as prime256vl, is a widely used E C C curve. It is defined

over a prime field, and its parameters are standardized by NIST. The curve equation

is defined as [15]:

y2 = xs — ax + b

where parameter a, b are defined as:
a = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF

40

FFFFFFFF FFFFFFFC
b = 5AC635D8 AA3A93E7 B3EBBD55 7698865C 651D0650 CC53B0F6
3BCE3C3E 27D26045

On the other hand, obtaining appropriate parameters is essential. The emphasis
is on a suitably big modulo P, as the parameters (a, b) are constant. This application
makes advantage of the modulo "P" of the size of 2 2 2 4 (2 3 2 - 1) + 2 1 9 2 + 2 9 6 - 1 that
co-responds with S E C G recommendation [15]. Generator G, order Q and modulus
p are initialized as in the listing 2.2. The point is serialized into a byte array since
function a EC _PO I NT _point2bn has been deprecated since OpenSSL 3.0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

v o i d i n i t i a l i z e _ c u r v e _ p a r a m e t e r s () {
/ / i n i t i a l i z e c u r v e
ec_group =

E C _ G R O U P _ n e w _ b y _ c u r v e _ n a m e (N I D _ X 9 _ 6 2 _ p r i m e 2 5 6 v l) ;

/ / r e t r i e v e s p o i n t of the EC group
p _ g e n e r a t o r = E C _ G R O U P _ g e t 0 _ g e n e r a t o r (e c _ g r o u p) ;
/ / s e r i a l i z e the p o i n t i n t o a b y t e a r r a y
s i z e _ t b u f _ l e n = E C _ P 0 I N T _ p o i n t 2 o c t (

ec_group , p . g e n e r a t o r , POINT_CONVERSION_UNCOMPRESSED ,
N U L L , 0 , N U L L) ;

u n s i g n e d cha r * buf = 0 P E N S S L _ m a l l o c (b u f _ l e n) ;
E C _ P 0 I N T _ p o i n t 2 o c t (e c_g roup , p _ g e n e r a t o r ,
P0INT_C0NVERSI0N_UNC0MPRESSED, b u f ,

b u f _ l e n , N U L L) ;

/ / c r e a t e a BIGNUM from the b y t e a r r a y
b _ g e n e r a t o r = B N _ b i n 2 b n (b u f , b u f _ l e n , N U L L) ;

o r d e r = E C _ G R 0 U P _ g e t 0 _ o r d e r (e c _ g r o u p) ;
modulo = E C _ G R O U P _ g e t O _ f i e l d (e c _ g r o u p) ;

/ / f r e e the memory a l l o c a t e d f o r b u f f e r
0 P E N S S L _ f r e e (b u f) ; >

Listing 2.2: Implementaion code of Secp256rl

The implementation uses uncompressed generator G in form [15]:
G = 04 6B17D1F2 E12C4247 F8BCE6E5 63AU0F2 77037D81 2DEB33A0

F4A13945 D898C296 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE33
57 6B315ECE CBB64068 37BF51F5

41

Finally, the order Q is defined as following [15]:
Q = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD
A7179P84 F3B9CAC2 FC632551

2.2.3 Randomization

The implementation uses generation of multiple random numbers that have to be
securely generated with unpredictability. Generation of random numbers relies on
function RAND_bytes() that is implemented in library OpenSSL.

The specified R A N D method, a collection of instructions for producing random
numbers, determines the algorithm used by RAND_bytes() [41]. The Deterministic
Random Bit Generator (DRBG) technique is used as the default R A N D method in
OpenSSL 3.0 from NIST SP 800-90A [42]. D R B G belongs to a group of Pseudo-
Random Number Generators (PRNGs) that are cryptographically safe. To produce
pseudo-random output, a number of cryptographic primitives are used, such as
hash functions, block ciphers, and Message Authentication Codes (MACs) [41]. The
process is referred to be deterministic since only the seed value and any other inputs,
such customization or entropy, have any bearing on the final result. Even with a
compromised internal state, the D R B G algorithm is built to offer a high level of
security and predictability. However, it is important to implement randomization
securely with later memory cleaning. Function generate_rand() is called every
time, 32 byte random number is needed. Function is implemented as in listing 2.3:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BIGNUM* g e n e r a t e . r a n d () {
u n s i g n e d cha r b u f f e r [N U M _ B Y T E S] ;
BN_CTX* c t x = B N _ C T X _ n e w () ;
BIGNUM* r e s u l t = B N _ n e w () ;
/ / g e n e r a t e random b y t e s

i f (R A N D _ b y t e s (b u f f e r , NUM_BYTES) != 1) {
p r i n t f (" E r r o r u g e n e r a t i n g u r a n d o m u b y t e s \ n ") ;
e x i t (E X I T _ F A I L U R E) ; >

/ / c o n v e r t b u f f e r t o a b ignum mod Q
BIGNUM* rand_num = B N _ b i n 2 b n (b u f f e r , NUM_BYTES, N U L L) ;
BN_mod (r e s u l t , r and_num, o r d e r , c t x) ;

O P E N S S L _ c l e a n s e (b u f f e r , s i z e o f (b u f f e r)) ;
B N _ C T X _ f r e e (c t x) ;
B N _ c l e a r _ f r e e (r a n d _ n u m) ;
r e t u r n r e s u l t ; }

Listing 2.3: Generation of 32-byte Random Number

42

2.3 FROST Implementation

FROST signature is implemented in C, since it is low level program language that
is resulting high performance and possibility for IoT device implementation. Im­
plementation consists of following .c files: main.c, setup.c, signing.c, globals.c and
macros.c. .c files are then linked with header files located ../headers and with head­
ers of OpenSSL library that has to be downloaded to OS. Header files in ../header
are following: setup.h, signing.h and globals.h. Whole project is built by Makefile.

The project is meant to be programmed as library with A P I that is run by
main.c which tests whole library with a result of released signature and its ver­
ification. Structure of A P I and communication between participant is showed in
following subsection. Please, be aware of (2, 3) FROST is showed in the thesis for
simplicity, but implementation is defaulted set as (3,5). Since communication be­
tween participants is needed link list algorithm is used for storage and later use of
packets.

2.3.1 FROST Setup

Setup of FROST is basically implementation of Pedersen-DKG that is done withing
2 rounds. At the beginning function init_pub_commit() is called by every partici­
pant Pj. Public commit packet is created by this function holding index of sender,
length of public commit array and finally public commit array. Within the function
init_coef f_list() is trigged which results in creation of array of random numbers
that has length of n. 32 bytes random numbers are used in later public commit­
ment. As every Pj created own public commitment, broadcast to all participants Pj
is done. After the packets are received by all the participants, every participant calls
function init_sec_share() for each n participant for creating polynomial. Function
takes parameters such as address of participant Pj that sends secret share and in­
dex of participant Pj that will receive the share. Please, be aware of participant
Pj sending secret share itself as it is not done internally. When participant Pj cre­
ated secret share for participant Pj, secret share is verified and accepted/denied by
Pj with function accept_pub_commit(). Mathematical function mentioned in sec­
tion 1.7.2 is used for verification of secret share by function accept_pub_commit().
If verification hold participant p secret share is accepted and stored, otherwise
the protocol is aborted. When all participants Pj finished verification of all secret
shares, key generation is done with function gen_keys(). Secret share, verify share
and public key are generated for all participants that are stored for later signing.
Setup diagram is showed on following figure 2.2:

43

Pani' i c i p a n t _ Q P a r t i c i p a n t ! P a r t i c i p a n t _ 2

i n i t _ p u b _ c o m m i t i n i t _ p u b _ c o m m i t i n i t _ p u b _ c o m m i t

b r o a d c a s t

r end of
b r o a d c a s t

j m b _ c o m m i t _ p a c k e t

j i u b c o m m i t p a c k e t j m b c o m m i t p a c k e t

init s e c s h a r e init s e c s h a r e

:
s e c _ 5 h a r e [fO(l)) ^ ve r i f y s h a r e

init s e c s h a r e

s e c _ s h a r e (f0(2)) ver i f y s h a r e

ver i fy s h a r e s e c s h a r e [f l (0)) s e c s h a r e f f l (2)) ve r i f y s h a r e
1 > < 1

ver i fy s h a r e see s h a r e [f2(0))

g e n _ k e y s

5 = 1

ver i fy s h a r e E e c s h a r e [f2 (l))

C ± J " m

g e n _ k e y s g e n _ k e y s

P a r t i c i p a n t _ Q P a r t i c i p a n t ! P a r t i c i p a n t ^

Fig. 2.2: FROST Setup Diagram

2.3.2 FROST Signing

After setup of FROST is successfully finished, signing part is started by pre-selected
number of t participants p located in array threshold_set\\. Every participant
Pi calls function init_pub_share() that results in creation of public share packet.
The packet consist of index of sender Pi: Pj's verify share, single use commitment
share and public key. The packets are then received by aggregator with function
accept_pubshare(). Received data are stored and next step is to generate tuple
with function init_tuple_packet() by aggregator. Within this function other 2
functions are trigged R_pub_commit_compute() and pub_share_mul() that pro­
vide check if all public share packets were received from treshold_set\\ participants.

44

If yes, R is computed by function pub_shares_mul(), otherwise protocol is aborted.
Tuple packet consists of message m, size of m, public commitment R, set of par­
ticipants t and size of set. Tuple is received by every participant Pj with function
accept_tuple(). As long as tuple data are stored, function init_sig_share() is called
by every participant Pj. Function is in charge of creating partial signature for every
Pj. Hash_func() and lagrange_coef ficientQ functions are called by the function
as essential part for partial signature. When all partial signatures are created, they
are sent to aggregator by participants Pj. For verification and acceptance of partial
signature accept _sig_share() is called. Verifying is done by function described in
subsection 1.7.3 followed by storing the partial signature if verification holds or by
aborting the protocol if function is broken. At the end, signature packet is created
by called function signature(). Gen_signature() is called within library for sum
of all partial signatures. Then packet is published as signature and hash. Exact
sequence of signing is showed on diagram with figure 2.3.

2.3.3 FROST Verification

The EC-Schnorr signature verification algorithm is a process used to verify the
validity of an EC-Schnorr signature on a message that is more clearly described
in subsection 1.3.1 by Algorithm 4. Idea behind the verification is in comparison
of the calculated hash value z' with the value of c in the signature. If the values
match, then the signature is considered valid. Otherwise, the signature is rejected.
Verification of signature works by reconstructing the point Rl from the signature
components and the public key, and then verifying that its hash value matches the
value of c in the signature. If the hash values match, it provides strong evidence
that the signature was produced by the holder of the private key corresponding to
the public key used in the verification process.

2.3.4 Implementation of Link List

For storing and organizing data, a fundamental data structure was chosen in the
implementation, called singly linked list. In this kind of linked list, there is only one
way in which the linked list may be traversed, where each node's next pointer links
to a different node, but the last node's next pointer points to NULL. Two main
operation are applied in the implementation: insertion with time complexity 0(1)
and search with time complexity 0(n).

During setup part link list is applied as participants communicates between each
other as they need to share pub_commit_packets and later sec_shares. For ac­
cepting pub_commit_packets each participant p stores the last node of packet. By
function accept_pub_commit() one of 2 functions is trigged; create_node_commit()

45

A g g r e g a t o r Pa r t i c i pan t ! Participant_2

i n i t _pub_Eha re i n i t _pub_Eha re

p u b _ s h a r e _ p a c k e t
i< I

p u b _ s h a r e _ p a c k e t
~(

i n i t t u p l e _ p a c k e t

B r o a d c a s t

a d c a s t
E n d
B r o a d c a s t

t u p l e _ p a c k e t

i n i t _ s e c _ s h a r e i n i t _ s e c _ s h a r e
a n d a n d
d e l e t e (d ,D) de le te (d ,D)

:
ver i fy s e c _ s h a r e _ p a c k e t

ver i fy s e c s h a r e p a c k e t

g r o u p r e s p o n s e

<^pubi5h_sigy

A g g r e g a t o r Pa r t i c i pan t ! Participant_2

Fig. 2.3: FROST Signing Diagram

function, if participant did not accept any pub_commit_packet, otherwise
insert_node_commit() is used. Every participant Pj after all pub_commit_packets
are stored is searching in its list in accept_sec_share() function, as the verifi­
cation of sec_shares from participants Pj is validated towards earlier accepted
pub_commit_packet from participant Pj. Similar methodology is used for storing
sec_shares by function accept_sec_share() that calls once function
create_node_share() and then every time insert_node_share() is used. Searching
in this list is not necessary. Finally, traversing of both lists is necessary during gen­
eration of public key and participant's secret share in functions gen_sec_share()

46

and gen_pub_key().
In signing part, link list algorithm is used during communication of participants

with aggregator as he need to store pub_share_packets and later on sig_shares.
pub_share_packets are stored by function accept _pub_share() with help of func­
tions create_node_pubshare() and then insert_node_pub_share(). Each
pub_share_packet from participants Pi has to be search in the list for later ver­
ification of sig_share_packet of participants Pi. Finally, aggregator stores each
sig_shares by function accept_sig_share() with similar steps of calling function
create_node_sig_share() and then insert_node_sig_share(). At the end, aggre­
gator traverses this list for sum of all received sig_shares to create final signature.

2.3.5 Security of the Implementation

For overall security of the implementation, security of protocol, used secure cryp­
tographic primitives, used secure library with proper functions and lastly secure
allocation/de-allocation of memory has to be taken into account. Since FROST
is considered as secure, in previous sections were defensed secure cryptographic
primitives such as E C with proper parameters, secure hash function and random
generator. Also the implementations is based on secure OpenSSL library where
functions with the highest precision were chosen to satisfy updated library of version
3.0. Therefore, the last thing for considering the implementation as secure, alloca­
tion/deallocation of memory has to be proven. Library is designed to free memory
for used, therefore no action is needed in A P I from user. Memory is allocating and
then freed simultaneously within the functions in the most cases. However, library
and also participants operates and store sensitive data that in case of some leak
or attack would be destructive for protocol. Therefore, 3 main clearing are done
by library, despite of simultaneous freeing of unnecessary variables. At the end of
setup, after generation of keys, all secret shares, commitments, coefficient lists and
polynomials are securely freed. Lastly, after initializing of partial signature every
participant deletes all data followed by aggregator after publishing the final group
signature. Lastly, parameters of E C are freed after verification of the signature. For
memory free of sensitive data function BN_clear_free() is used. The big num­
ber (BN) library in OpenSSL has the BN_clear_free() function, which is used to
deallocate memory allocated to a large number once it is no longer required. This
function is written as a macro that first uses the BN _clear{) function to clear the
contents of the big number and then uses the OPENSSL_free{) function to re­
lease the memory. While the OPENSSL_free() method deallocates the memory
allocated to the big number itself, the BN_clear() function resets the value of the
large number to zero and releases any memory allocated to retain the value [43].

47

For memory testing Valgrind open-source tool was used [44]. It is tool used for
debugging and profiling programs including memory leaks based on Linux and other
Unix-based operating systems. The results are followed in the next figure:

•== HEAP SUMMARY:
i n use at e x i t : 2,728 bytes i n 89 b l o c k s

•== t o t a l heap usage: 9,166 a l l o c s , 9,977 f r e e s , 1,144,581 bytes a l l o c a t e d

== LEAK SUMMARY:
d e f i n i t e l y l o s t : 456 bytes In 21 b l o c k s
i n d i r e c t l y l o s t : 2,272 bytes i n 68 b l o c k s

•== p o s s i b l y l o s t : 9 bytes i n 9 b l o c k s
s t i l l r eachable: 9 bytes i n 9 b l o c k s

suppressed: 9 bytes i n 9 b l o c k s
•== Rerun w i t h - - l e a k - c h e c k = f u l l t o see d e t a i l s of leaked memory

•== For l i s t s of detected and suppressed e r r o r s , rerun w i t h : -s
= = ERROR SUMMARY: 9 e r r o r s from 0 co n t e x t s (suppressed: 0 from 9)

Fig. 2.4: Summary of Memory Leak

It can be noticed that library does keep 30 blocks per participant after ending of
the protocol. These blocks are mainly allocated memory of final signature and public
attributes such as, public key and verify key. Finally, each computed secret share of
participant can be kept for potential later use in another signature. Overall, all data
that could lead to reconstruction of keys or final signature are securely freed during
the protocol. Therefore, the implementation can be considered as secure, depending
under deeper circumstances of later use in production.

2.3.6 FROST Benchmark

Benchmark was done by library time.h on setup and then signing part separately.
Each participant had index set to size of up to 2 3 0 bit number. Main purpose is to
notice an impact of number of participants in each operation. 3 different schemes
are compared in following table in seconds:

It can be noticed that all iterations were very consist with small difference in
time by each scheme. Setup is done by all participants n due to construction of
keys. Therefore, setup by 3,5 and 6 participants is compared by table. However, it
can be noticed as more participants are involved in setup average time is slightly
increased. After computation, an average increment of adding one participant to
setup is 1.3850583 milliseconds. Setup part of FROST signature is the most com­
plicated part with high consumption of device performance. On the other hand,
the signing part is much faster in every scheme then the setup part due to lower
mathematical difficulty as it can be noticed on following table 2.3. The average
increment per participant is calculated with the result of 0.351 milliseconds.

48

Itr.\(t,n) (2,3) [ms] (3,5) [ms] (4,6) [ms]
1 6.874 2.452 6.147
2 3.385 14.967 17.827
3 6.232 13.609 16.278
4 4.63 13.115 17.585
5 6.865 4.349 11.094
6 7.668 4.77 3.56
7 7.287 9.466 9.513
8 3.23 12.291 3.851
9 18.552 12.412 10.508
10 3.704 13.466 20.307
11 2.55 12.095 12.803
Avg. 6.45245 10.272 11.77027

Tab. 2.2: Frost Setup Benchmark

Itr.\(t,n) (2,3) [ms] (3,5) [ms] (4,6) [ms]
1 0.561 0.398 1.555
2 0.794 1.044 0.726
3 0.949 1.093 0.524
4 0.355 0.585 2.804
5 0.591 0.569 0.775
6 0.565 0.816 1.288
7 0.587 1.557 1.856
8 0.64 1.583 2.458
9 0.652 0.595 0.565
10 0.871 1.658 1.011
11 0.392 1.62 2.109
Avg. 0.723 1.047 1.425

Tab. 2.3: Frost Signing Benchmark

49

2.4 Implementation of TSPB

The TSPB signature is implemented in C, since it is low level program language
that is resulting high performance and possibility for IoT device implementation.
Implementation consists of following .c files: main.c, setup.c, signing.c, globals.c,
support_functions.c and macros.c. .c files are then linked with header files lo­
cated ../headers and with headers of OpenSSL library and JSON library that
have to be downloaded to OS. Header files in ../header are following: setup.h,
signing.h, support_f unctions.h and globals.h. Lastly, the project contains a folder
precomputedvalues. In the folder can be found 2 .json files precomputationmessage
and precomputationnoise.The whole project is built by Makefile.

The implementation partially is followed up master thesis [1] as a code of the
thesis was provided with goal to use an setup part of Secret Sharing Authentication
Key Agreement and optimize it for TSPB.

The project is meant to be programmed as library with A P I that is run by main.c
which tests whole library with a result of released signature and its verification.
Structure of A P I and communication between participant is very similar to the
FROST implementation as singing part is identical with the communication during
the signing process. Therefore, signing communication is pictured in figure 2.3.
Moreover, verification of the final signature is done by the same algorithm 4 from
subsection 1.3.1.

2.4.1 Results

After investing significant time and effort, I have managed to make progress with
the C code obtained from the master thesis [1]. Although the code lacked clear
comments and was challenging to comprehend, I successfully executed it, albeit only
partially, by identifying and rectifying errors in obtain in public key. As verification
was always aborted by public key from function _get_pk_c() even after point was
changed from point to uncompressed bignum form, the changes were made in this
part. New public key is computed as sum of all verification shares that are computed
as PKi = G * Si, where Si is the session key of participant Pi. Moreover, global
variables were moved to macros.c as provided code was not able to build due to
errors of multiple definitions. It is worth noting that the original code exhibited
several undesirable characteristics, such as excessive use of global variables and the
presence of goto statements, which are generally discouraged in C programming.
Moreover, the code is rigid in terms of adding participants the setup is using only
for loop structure for storage and communication between Active participants.

Despite these challenges, the implementation is partially working in scheme (3, 3)

50

as the final signature is successfully verified. However, the implementation is aborted
as threshold signature as computation of SSS has to have unresolved error or is just
incompatible with overall A P I as the setup using random generated number instead
of ID of participant in SSS.

To enhance the implementation of TSPB, it is important to consider the following
recommendations:

• To improve code readability, add clear comments throughout the codebase.
This will make the code easier to understand and facilitate future maintenance
and collaboration.

• Reduce the reliance on global variables by encapsulating data within appropri­
ate data structures. Instead of using global variables, pass data as parameters
to functions as needed. This will make the code more modular and organized.

• Refactor the control flow by replacing goto statements with structured control
flow mechanisms, such as loops and conditional statements. This will improve
the overall code structure and make it easier to maintain.

• Modify the participant setup to allow for dynamic addition or removal of
participants. Currently, the code relies on a fixed for loop structure, which
limits scalability and adaptability. By making the setup more flexible, the
codebase can accommodate varying numbers of participants more effectively.

• Investigate and resolve any errors or incompatibilities in the computation of
the threshold signature using SSS. Ensure that the proper participant IDs
are used instead of randomly generated numbers. This will result in a more
accurate and reliable implementation of the threshold signature functionality.

By implementing these recommendations and continuously refining the codebase,
the overall implementation of TSPB can be significantly improved. These improve­
ments will make the system more robust and efficient, enhancing its reliability and
usability.

51

2.5 Working Environment

The implementations were performed on a device with the following parameters:
Processor Intel(R) Core(TM) i5-8250£7 CPU 1.60GHz, ACore(s), 8GB RAM,
Windows 11 Home x64 based Operate (Host) System. Virtual machine system:
Ubuntu 22.04.2 LTS with kernel version 5.19.0—38—generic. The Virtual Machine
was set to 4 GB R A M and 4 C P U processors. Following commands are required for
installing Openssl, cJSON libraries into system and other dependencies for building
the projects:

1

2

3
4
5

6
7

8

9

10

/ * I n s t a l l OpenSSL i n t o s y s t e m * /
sudo a p t - g e t i n s t a l l o p e n s s l
/ • I n s t a l l t he OpenSSL d e v e l o p m e n t h e a d e r s * /
sudo a p t - g e t i n s t a l l l i b s s l - d e v
/ * I n s t a l l make f o r b u i l d i n g the p r o j e c t * /
sudo apt i n s t a l l make
/ * I n s t a l l gcc c o m p i l e r * /
sudo apt i n s t a l l gcc
/ * I n s t a l l c J s o n i n t o s y s t e m * /
sudo apt i n s t a l l l i b c j s o n - d e v

Listing 2.4: Installing Project Dependentcies

52

3 Practical Background

3.1 Programming Language

The implementation is written and programmed in C programming language. Since
its the first introduction to public, it has developed into one of the most popular and
important programming languages, acting as the basis for several other programming
languages and operating systems.

The advantages of C include its effectiveness, adaptability, and intimate con­
nection to the underlying hardware. Because it is a low-level language with direct
access to memory and system resources, it is appropriate for embedded systems and
systems programming. It also provides high-level structures that enable organized
and modular programming at the same time.

For the implementation was chosen mainly because of its portability and ef­
ficiency: C programs can be compiled to run on a wide range of platforms and
architectures. The language itself is designed to be highly portable, allowing de­
velopers to write code that can be easily ported and executed on different systems.
Moreover, as C is low-level language, it provides low-level control over memory and
hardware resources which results in code that is highly optimized for performance.
Thus, execution speed and memory usage is exceptional.

The C/CH—h Extension Pack (Version 1.3.0) created by Microsoft was used
in conjunction with the Microsoft Visual Studio Code editor (Version 1.78.2) for the
development [45]. The list of extensions included in this package and other used are
following:

• C / C + + by Microsoft (Version 1.15.4) for IntelliSense, debugging and code
browsing,

• C / C + + Themes by Microsoft (Version 2.0.0) for User Interface (UI) themes,
• CMake by twxs (Version 0.0.17) for CMake language support,
• CMake Tools by Microsoft (Version 1.14.31) for extended CMake support in

the VS Code,
• GitHub Pull Requests and Issues (version 0.64.0) For editing and managing

pull requests and issues on the GitHub platform,
• Clang-Format by Xaver Hellauer to format C / C + + code (version 1.9.0),
• PlantUML by Jebbs (version 2.17.5) to create sequence diagrams.

53

3.2 Libraries

3.2.1 OpenSSL Library

OpenSSL is an open-source project [40] and is maintained by a team of volunteer
developers. It has a long history and has been widely adopted by the industry
as a standard cryptographic library. Furthermore, OpenSSL has a well-established
process for managing vulnerabilities, including coordinated disclosure, C V E assign­
ment, and regular security releases. Its quick response to security vulnerabilities
and patching has established trust with developers for being a reliable and secure
software library.

The software library OpenSSL is frequently used to give applications access to
cryptographic utilities and functionalities. It is a popular choice for developers that
need to include cryptography in their applications because of its robust security
features and wide variety of functionality.

AES, RSA, and SHA are only a few of the many cryptographic algorithms that
are supported by OpenSSL. These algorithms, which are among the strongest cur­
rently in use, are used to encrypt data, produce digital signatures, and validate the
legitimacy of certificates. Strong random number generators, which are necessary for
many cryptographic operations, are among the security-enhancing features included
in OpenSSL [40].

The library is written in the C programming language, and is available for various
operating systems, including Linux, Unix, macOS, and Windows [40]. It provides
a comprehensive set of APIs for developers to incorporate cryptographic functions
into their applications.

A l l things considered, OpenSSL is a strong and well-liked software library that of­
fers developers useful cryptographic functionalities. Its vast functionality and robust
security features make it a popular option for applications that need cryptography,
and its track record for promptly patching security flaws has made it a reliable op­
tion for security-conscious apps. Therefore, the implementation of FROST signature
is based on this library. Used version of OpenSSL library is following: OpenSSL
3.0.7 1; Nov 2022.

3.2.2 JSON Library

The cJSON library[46] is a popular JavaScript Object Notation (JSON) library
specifically designed for C programming. It provides a lightweight and efficient
solution for parsing, generating, and manipulating JSON data within C code.

The cJSON library is known for its simplicity and ease of use, making it a popular
choice among C developers for working with JSON data. It is distributed as a single

54

header file and source file, allowing for easy integration into existing projects. cJSON

is designed to be lightweight and efficient, with a small footprint and minimal depen­

dencies. It aims to provide fast JSON parsing and generation capabilities, making it

suitable for resource-constrained environments or performance-critical applications.

JSON data may be parsed using the cJSON library to create a hierarchical structure

that is simple to explore and retrieve. It offers tools for extracting values, navigating

the JSON hierarchy, and working with different data kinds including objects, arrays,

characters, integers, and booleans.

3.3 Source Code Dictionary Tree
For better navigation and organization directory trees of the implementations wi th
brief information of each file and folder are provided in this section.

. . / f r o s t root folder
headers folder with headers of library

_ g l o b a l s . h
_ setup.h linking and defining objects participant etc.
_ s i gn ing .h linking and defining objects aggregator etc.

src folder with source files
g l o b a l s . c initialization of EC and D R B G
macros. c source file for defining of global variables

_ main. c A P I for testing library
_ setup. c source file of setup computations
_ s i gn ing , c source file of signing computations

b u i l d folder where project is built
Makefi le file for project compilation

. . /TSPPB root folder
headers folder with headers of library

g l o b a l s . h
setup.h linking and defining objects participant etc.
s i gn ing .h linking and defining objects aggregator etc.
support_functions.h

src folder with source files
_ g l o b a l s . c initialization of EC and D R B G
macros. c source file for defining of global variables
main. c A P I for testing library
setup. c source file of setup computations

_ s i gn ing , c source file of signing computations
_ support_functions. c source file of Pailler's computations

b u i l d folder where project is built
precomputed_values folder with .json files

precomputation_message.json
precomputation_noise.j son

Makefi le file for project compilation

55

Conclusion
A increasing need for safe and effective cryptographic protocols has been generated
by the rise of the Internet of Things (IoT), particularly in the context of portable
devices with constrained resources. This thesis looked at the usage of multisignatures
for IoT, with a particular emphasis on the implementation of the FROST signature
scheme based on elliptic curves (more particularly, secp256rl) in the C programming
language with the OpenSSL library.

Our research has demonstrated that the FROST signature scheme, which has
various benefits over other current schemes, is a potential option for lightweight
multisignatures in IoT applications. The first feature of the concept is distributed
key generation, which enables the creation of public and private keys without the
need for a single, trusted authority. Second, it uses elliptic curve encryption in­
stead of more conventional RSA-based techniques, which provides high levels of
security while using less resources. Additionally, the FROST signature technique
outperforms other comparable systems in terms of efficiency, notably with regard to
signature size and verification speed.

Moreover, the work includes the implementation of Threshold Signature for
Privacy-preserving Blockchain. This implementation is partially working in scheme
(3,3). Further work is essential namely in setup part as the code is rigid with
possible inconsistencies or incompatibilities with overall library and API .

We have also investigated different elements of elliptic curve cryptography
throughout our implementation, including the mathematical foundations of elliptic
curves and their use in cryptographic applications. We have also given security in
IoT systems some thought, especially the necessity for compact solutions that can
effectively fend off intrusions.

In conclusion, the use of lightweight multisignatures for IoT applications has
been shown to be feasible and potentially useful through the implementation of the
FROST signature scheme based on elliptic curves in the C programming language
using the OpenSSL library. Our research has emphasized the need of efficiency
and security in these systems, and we think the FROST signature scheme offers a
potential way to satisfy these needs.

56

Bibliography
[1] Pavla Ryšavá. Secret sharing authentication key agreement. Master's thesis.

V U T Brno, 2022. U R L : https://www.vut.cz/www_base/zav_prace_soubor_
verejne.php?file_id=241101.

[2] Chelsea Komlo and Ian Goldberg. Frost: flexible round-optimized schnorr
threshold signatures. In International Conference on Selected Areas in Cryp­
tography, pages 34-65. Springer, 2020.

[3] Chelsea Komlo. Rsa vs. ecc comparison for embedded systems. 2020. U R L :
https://wwl.microchip.com/downloads/en/DeviceDoc/00003442A.pdf.

[4] CoinEx Chain Team. Acceleration of ecdsa verification
with endomorphism mapping of secp256kl. Medium, Jan­
uary 2, 2020. U R L : https://coinexsmartchain.medium.com/
acceleration-of-ecdsa-verification-with-endomorphism-mapping-of-secp256kl-12

[5] Azine Houria, Bencherif Mohamed Abdelkader, and Guessoum Abderezzak.
A comparison between the secp256rl and the koblitz secp256kl bitcoin curves.
Indonesian Journal of Electrical Engineering and Computer Science, 13(3):910-
918, 2019.

[6] Jonathan Katz. Digital signatures: Background and definitions. In Digital
Signatures, pages 3-33. Springer, 2010.

[7] Dominic Chalmers, Christian Fisch, Russell Matthews, William Quinn, and
Jan Recker. Beyond the bubble: Wi l l nfts and digital proof of ownership em­
power creative industry entrepreneurs? Journal of Business Venturing Insights,
17:e00309, 2022.

[8] Bitcoin Core. Technology roadmap-schnorr signatures and signature ag­
gregation. URL: https://bitcoincore. org/en/2011/03/23/schnorrsignature-
aggregation/(visited on 06/07/2020), 2017.

[9] Sara Ricci, Petr Dzurenda, Raúl Casanova-Marqués, and Petr Cika. Thresh­
old signature for privacy-preserving blockchain. In Business Process Manage­
ment: Blockchain, Robotic Process Automation, and Central and Eastern Eu­
rope Forum: BPM 2022 Blockchain, RPA, and CEE Forum, Munster, Ger­
many, September 11-16, 2022, Proceedings, pages 100-115. Springer, 2022.

[10] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

57

https://www.vut.cz/www_base/zav_prace_soubor_
https://wwl.microchip.com/downloads/en/DeviceDoc/00003442A.pdf
https://coinexsmartchain.medium.com/
https://bitcoincore

[11] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

[12] Ján Jančár. Security considerations for elliptic curve domain parameters selec­
tion.

[13] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. C R C press, 2018.

[14] National Institute of Standards and Technology. Digital signature standard
(dss), 2013-07-19 2013. doi :https ://doi. org/10.6028/NIST .FIPS. 186-4.

[15] Daniel R L Brown. Sec 2: Recommended elliptic curve domain parameters.
Standards for Efficient Cryptography, 2010.

[16] National Institute of Standards and Technology. Digital signature standard
(dss), 2019-10-31 2019. U R L : https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-5-draft.pdf.

[17] Shailee Adinolfi. Public comments received on draft hps 186-
5: Digital signature standards (dss). January 27, 2020. U R L :
https://csrc.nist.gov/CSRC/media/Publications/fips/186/5/draft/
documents/fips-186-5-draft-comments-received.pdf.

[18] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory of computing.
pages 106-112, 1977.

[19] A F Webster and Stafford E Tavares. On the design of s-boxes. In Conference on
the theory and application of cryptographic techniques, pages 523-534. Springer,
1985.

[20] Bart Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit te Leuven Leuven, 1993.

[21] Morris J Dworkin et al. Sha-3 standard: Permutation-based hash and
extendable-output functions. 2015.

[22] FIPS Pub. Secure hash standard (shs). Fips pub, 180(4), 2012.

[23] Quynh Dang. Secure hash standard, 2015-08-04 2015. doi: https: //doi . org/
10.6028/NIST.FIPS.180-4.

[24] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3): 161-174, 1991.

58

https://nvlpubs.nist.gov/nistpubs/FIPS/
https://csrc.nist.gov/CSRC/media/Publications/fips/186/5/draft/

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentral­
ized Business Review, page 21260, 2008.

[26] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161-174, 1991.

[27] Be Antonin Dufka. Schnorr Signatures with Application to Bitcoin. PhD thesis,
Master's thesis, Masaryk University Faculty of Informatics, Czech Republic,
2020.

[28] British Standards Institution. Elliptic curve cryptography. Techni­
cal Guideline BSI TR-03111, 2018. U R L : https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/

BSI-TR-03111_V-2-l_pdf.pdf?__blob=publicationFile&v=l.

[29] ISO/IEC 4888-3:2018. IT Security techniques — Digital signatures with ap­
pendix — Part 3: Discrete logarithm based mechanisms. International Organi­
zation for Standardization, 2018.

[30] Tim Ruffing Pieter Wuille, Jonas Nick. Schnorr signatures
for secp256kl, last update on aug 23, 2022. last commit is
3998dbbc8a3ab3bfabblb2e90a4840ad93a84adb. U R L : https ://github.
com/bitcoin/bips/blob/master/bip-0340.mediawiki.

[31] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612—613, nov 1979.
doi:10.1145/359168.359176.

[32] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party.
In Advances in Cryptology—EUROCRYPT'91: Workshop on the Theory and
Application of Cryptographic Techniques Brighton, UK, April 8-11, 1991 Pro­
ceedings 10, pages 522-526. Springer, 1991.

[33] JL Lagrange. Legon cinquieme: sur l'usage des courbes dans la solution des
problemes. Seances des Ecoles Normales recueillies par les stenographes et
revues par les professeurs, Reynier, Paris, 1795.

[34] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT '99,
pages 223-238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg, [cited
10-12-2021].

[35] Christine Jost et al. Encryption performance improvements of the paillier cryp­
tosystem. Cryptology ePrint Archive, Report 2015/864, 2015. [cited 17-05-2022].
U R L : https://ia.cr/2015/864.

59

https://www.bsi.bund.de/
https://ia.cr/2015/864

[36] Chelsea Komlo. On security assumptions underpinning recent schnorr threshold
schemes. Ethereum Foundation, 2022. U R L : https://crypto.ethereum.org/

blog/schnorr-threshold-blogpost#user-content-fn-2.

[37] Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: simple two-round
schnorr multi-signatures. In Annual International Cryptology Conference, pages
189-221. Springer, 2021.

[38] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Proceedings of the 13th ACM conference
on Computer and communications security, pages 390-399, 2006.

[39] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1084-1101. IEEE, 2019.

[40] OpenSSL. OpenSSL Project, 2021. Accessed: May 16, 2023.

[41] OpenSSL. OpenSSL RAND_DRBG. OpenSSL, 2021. Accessed: May 16, 2023.

[42] National Institute of Standards and Technology. NIST Special Publication 800-
90A: Recommendation for Random Number Generation Using Deterministic
Random Bit Generators. National Institute of Standards and Technology, 2012.
Accessed: May 16, 2023.

[43] OpenSSL. OpenSSL OPENSSL_malloc. OpenSSL, 2021. Accessed: May 16,
2023.

[44] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89-100, 2007.

[45] Microsoft. C /C++ Extension Pack - Visual Studio Marketplace. Visual
Studio Marketplace. U R L : https: //marketplace. visualstudio. com/items?
itemName=ms-vscode.cpptools-extension-pack.

[46] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martin Ugarte, and Domagoj
Vrgoc. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, pages 263-273. International World Wide Web
Conferences Steering Committee, 2016.

60

https://crypto.ethereum.org/

Symbols and abbreviations
N F T Non-Fungible Token

F R O S T Flexible Round-Optimized Schnorr Threshold signature

IoT Internet of Thing

RSA Rivest-Shamir-Adleman

E C Elliptic Curves

E C C Elliptic Curve Cryptography

E C D S A Elliptic Curve Digital Signature Algorithm

E C D L P Elliptic Curve Discrete Logarithm Problem

NIST National Institute of Standards and Technology

S E C G Standards for Efficient Cryptography Group

NSA National Security Agency

SHA-256 Secure Hash Algorithm 256-bit

PKI Public Key Infrastructure

C A Certificate Authority

DSS Digital Signature Standards

DSA Digital Signature Algorithm

SHS Secure Hash Standard

R O M Random Oracle Model

D P L Discrete Logarithm Problem

BIP Bitcoin Improvement Proposal

SSS Shamir's Secret Sharing

D K G Distributed Key Generation

Mu-Sig Multi-Signature

O M D L One-More Discrete Logarithm

61

P R O M Programmable Random Oracle Model

D R B G Deterministic Random Bit Generator

P R N G Pseudo-Random Number Generators

M A C Message Authentication Code

T S P B Threshold Signature for Privacy-preserving Blockchain

T S P B Threshold Signature for Privacy-preserving Blockchain

API Application Programming Interface

JSON JavaScript Object Notation

62

