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Abstrakt
Účelem této práce je navrhnout zjednodušené modely klasického a fuzzy regulátoru pro
automatické udržeńı výšky letu a porovnat jejich vlastnosti. Ćılem je vyšetřit, zda fuzzy
regulátor neprojev́ı lepš́ı chováńı než klasický. Prostředkem pro návrh a srovnáńı vlast-
nost́ı obou regulátor̊u je posouzeńı odezev modelu systému letadlo-regulátor na požadavek
změny výšky a modelu turbulence. Simulace jsou realizovány s pomoćı prostřed́ı MAT-
LAB SIMULINK.

Summary
The purpose of this treatise is to design simplified models of classic and fuzzy controllers
for automatic flight level control and compare their qualities. The goal is to investigate
whether fuzzy regulator shows better behaviour then the classic one. Instrument for design
and comparison of qualities of both regulators is examination of responses of the model
aircraft-regulator on requested change of height and on model of turbulence. Simulations
are realized with the aid MATLAB SIMULINK enviroment.
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1. Introduction
This treatise deal with automatic flight control systems especially with comparison of

classic design methods based on linear control theory and new approach of fuzzy linguistic
models. It was chosen the application to height hold system. Design of automatic flight
control systems is very complicated task because aircraft is complex system which we
aren’t able to describe accurately. As it will be seen in the subsequent text there’s needed
to make many limiting assumptions to obtain reasonable description of such such systems.
Therefore it seems natural to expect that the approach of fuzzy logic by which we design
controllers on basis of models of experienced human operator will be quite handy. In the
following chapters will be derived simplified model of aircraft longitudinal dynamics for
the concrete machine. For that model will be designed classic and fuzzy controller. We
put emphasis on simulations of the control process by using the MATLAB SIMULINK
environment. There will investigated behaviour of both regulators in chosen conditions
(atmospheric turbulence, request on change of height) and then compared their qualities.
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2. BASIC TERMS OF AVIATION

2. Basic Terms of Aviation
The aim of this chapter is to describe the flight of an airplane with consideration on

just those data we need to control the flight level. However at the beginning we need to
define basic terms of aviation. Then in chapter 3 we will put together the equations of
motion of an aircraft for concrete machine: Charlie – a very large, four-engined, passenger
jet aircraft.

2.1. Parts of an Airplane

Fuselage – The true body of an airplane.

Wings – This is the part of the airplane which generates most of the lift (i.e. force which
holds the plane in the air).

Horizontal Stabilizers – Two small wings on the plane’s tail which prevent up and
down motion.

Vertical Stabilizer – Small wing on the tail which keeps the nose of the plane from
swinging from side to side.

There are also parts used for manoeuvering the aircraft called control surfaces.
The purpose of those hinged parts is controlling of the aircraft’s motion via their
ability to change the amount of generated force by the wings. Forces and moments
generated by the movement of the plane through the air are determined by geomet-
rical characteristics of it’s parts (It will be discussed in Chapter 2.2 Geometrical
Characteristics of an Airplane.):

Elevator – The hinged part of horizontal stabilizer. By changing the amount of
generated force is able to control up and down motion.

Rudder – Part of vertical stabilizer used for deflecting of the airplane’s tail.

Control surfaces situated on the wings:

Aileron – Roll the wings from side to side.
Spoiler – Can also roll the plane from side to side. Spoilers change the amount

of force generated by the wings because they disrupt the flow over the wing
when deployed and that’s why the lift is decreasing.

Flaps – Situated on the rear of the wing near the fuselage. Used during takeoff
and landing for increasing the amount of produced force.

Slats – On the front and also used during takeoff and landing to produce
additional force.

2.2. Geometrical Characteristics of an Airplane

As it has been said in Chapter 2.1 there are generated forces due to the movement
of the plane through the air on its parts. One of the most important factors affecting
the amount and orientation of generated forces is geometrical characterization of the air-
craft.
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2.2. GEOMETRICAL CHARACTERISTICS OF AN AIRPLANE

2.2.1. Wings

Wing area viewed from above is bounded by leading edge in front, trailing edge in the back
and the wing tips on both sides, finally the shape of the wing area is called a planform.
Furthermore cut of the wing viewed from side is called an airfoil.

Top View:

Span, s – Distance from tip to tip.

Chord, c̄ – Distance between leading and trailing edge.

Centerline – Bisector of two symmetric parts. Situated on axis xB (body-fixed axis
system, it will be discussed in Chapter 2.3 Axis Systems).

The Wing Area, A – Projected area of the planform bounded by leading and trailing
edge.

Aspect Ratio, AR – This is a measurement of how long and slender is a wing from tip
to tip. For rectangular planform is denoted by: AR = s

c

Generally (for various planforms):

AR =
s2

c

Side View: A cut through the wing perpendicular to yb axis (body-fixed axis system,
see Chapter 2.3 Axis Systems) gives side view called an airfoil. This is very important
characteristic because air flow around any object causes generating of aerodynamic forces
(lift and drag). It means that the shape of the airfoil directly affects the amount and
orientation of those forces. Principal of the inception included other influence will be
discussed in Chapter 2.4 Forces and Moments on an Airplane.

Chord Line – Straight line from the leading to trailing edges.

Mean Camber Line – All its points lie halfway between upper and lower surfaces.

Camber – The maximum distance between chord and mean camber lines. This is the mea-
sure of the airfoil curvature.

Thickness – The maximum distance between upper and lower surfaces.

Front View: For better roll stability there is an angle between both the right and
left wing and local horizontal called the dihedral angle.

2.2.2. Fuselage

This part of the plane doesn’t have bigger significance for generating of lift, but of course
increases drag and that’s why optimal shape is needed. The weight of an airplane is dis-
tributed all along the aircraft, but the fuselage with passengers and cargo contribute a sig-
nificant portion of the weight of an aircraft. The most important reason why the fuselage
is discussed here is that center of gravity (c.g. in the following text) is located inside
the fuselage.
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2. BASIC TERMS OF AVIATION

2.3. Axis Systems

They are divided in particular to observational (tightly connected with any observation
post, for example the Earth or galaxy) and dynamic (always dependent in some way on
an airplane and its flight).

The Earth Axis System – It’s used as a reference system, whose origin is regarded as
being fixed at the center of the Earth, and to express gravitational effects, altitude,
horizontal distance and the orientation of the aircraft. The fact that the Earth axis
system is used as a reference system reflects problems with dynamic situation. It
rarely lasts for more than a few minutes so a more convenient inertial reference
frame is needed.

The x-axis points north, the y-axis points east and the orthogonal triad is completed
when the z-axis points down. It’s the observational system and by disregarding of
the Earth rotation we obtain inertial system.

The Body-fixed Axis System – It’s origin is located identically at an aircraft’s c.g.
The x-axis points forward out of nose, the y-axis points out through the starboard
(right) wing and the z-axis points down. This is dynamic system.

The aerodynamic forces and moments depend only upon the angles α and β, which
orient the total velocity vector, ~VT , in relation to the axis XB (the body axis sys-
tem). The angular orientation of the body axis system (XB, YB, ZB) with respect to
the Earth axis system (XE, YE, ZE) depends strictly upon the orientation sequence:

• Rotate XE, YE, ZE through an azimuthal angle, Ψ, about XE to reach interme-
diate axes X1, Y1, Z1.

• Rotate these axes X1, Y1, Z1 through an angle of elevation, Θ, about Y1 to reach
a second, intermediate set of axes X2, Y2, Z2.

• Rotate axes X2, Y2, Z2 through an angle of bank, Φ, about X2 to reach the body
axes XB, YB, ZB.

The Stability Axis System – The XS axis is chosen to coincide with the velocity vec-
tor, ~VT , at the start of the motion. Between XS and XB there is a trimmed angle
of attack, α0. The equations of motion derived by using the stability axis system
are the special subset of the set derived by using the body axis system because it’s
a special version of the body-fixed axis system and is used for characterization of
an airplane movement in the range of small perturbations from the original settled
statement (It’s often considered as symmetrical.).

The Wind Axis System – This is dynamic system oriented with respect to the air-
craft’s flight path and that’s why timevarying terms which correspond to the mo-
ments and cross-products of inertia appear in the equations of motion. This fact
complicates the analysis of motion. Dependent in particular on the way of mass
flowing around an airplane. It’s frequently used in American literature.

The Experimental Axis System – For measuring in the wind tunel. The y-axis, yex.,
is orthogonal to the scales’ and aircraft’s plane of symmetry, the z-axis, zex., is scale
swivel’s axis and finally the x-axis, xex., is dependent only on the system of scales.
Another kind of dynamic system.
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2.4. FORCES AND MOMENTS ON AN AIRPLANE

2.3.1. Movements of an Airplane

The movement of an airplane is described by using the body axis system. It’s an expresion
of resultant force and moment influence on an airplane directed along XB, YB, ZB axes.

U,V,R – These are the forward, side and yawing velocities.

L,M,N – Roll, pitch and yaw moments.

Φ, Θ, Ψ – Roll, pitch and yaw angles.

2.4. Forces and Moments on an Airplane

Weight : This force is generated by the gravitational attraction of the earth on the air-
plane. It can described by the Newton’s second law of motion ~Fg = m.~g. It is always
directed toward the center of the earth (along the zE axis).

Thrust : This force is generated by the propulsion system to move the airplane through
the air (directed along the xB axis).

2.4.1. Aerodynamic Forces and Moments

Lift : This force is generated by the motion of the airplane through the air to overcome
the weight force. Generating of the lift explains Bernoulli’s equation. When fluid flow
around any solid the velocity is increasing because of longer distance that molecules
have to travel around. Bernoulli’s equation says that the static pressure is decreasing
in this case. So the issue is that the velocity of fluid on upper surface is not the same
as on lower surface, identically the pressure. Difference between upper and lower
pressure is overpressure and it gives us the lift. Every part of the airplane generates
lift, but most of it is generated by the wings.

Factors affecting lift:

The Object – Shape and size (geometrical characteristics).

The Motion – Velocity and inclination (expressed by the angle of attack, a) to
flow.

The Air – Mass, viscosity and compressibility.

The Lift Coefficient, cl: Experimentally determined number which express all
the complex dependencies of shape, size, inclination and flow conditions.

Free stream lift coefficient:

cl0 =
2L

ρV 2A

Drag : It’s closely associated with the lift. Same thing is that the drag is generated
by the motion of the airplane through the air. The drag is induced by the friction
between the surface of the airplane and molecules of gas.

note: Both the lift and the drag are components of the same force affecting.
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

3. The Equations of Motion of
an Aircraft
This chapter deals with derivation of the equations of motion of an aircraft for
purposes of automatic flight control system design. It’s a general theory which I
used here just to be obvious how the equations of motion later used was obtained.
I followed theory given in Mc.Lean [1] for derivation of equations.

3.1. The Equations of Motion of a Rigid Body Air-
craft

• The distance between any points on the aircraft do not change in flight.

• The aircraft’s motion has six degrees of freedom which means that the move-
ment of an airplane can be described as the translation of c.g. and turning
around the c.g.

• Generally an airplane’s movement can be divided into longitudinal and lateral
motion.

• Longitudinal motion is projection of general motion to the plane of an airplane
symmetry.

• Lateral motion is projection of general motion to the plane which is orthogonal
to the plane of symmetry.

Deflections of control surfaces:

Longitudinal motion: δE, δTh

Lateral motion: δR, δA

3.1.1. Translational Motion

• Newton’s Second Law of Motion

~F =
d

dt
(m ~VT ) (3.1)

~M =
d

dt
( ~H) (3.2)

Where ~F represents the sum of all externally applied forces, ~M represents the sum
of all applied torques and ~H is the angular momentum. There are three components
in the sum of external forces: aerodynamic (lift and drag), gravitational (weight) and
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3.1. THE EQUATIONS OF MOTION OF A RIGID BODY AIRCRAFT

propulsive (thrust). The last one is produced by expending some of the vehicle mass
but the mass, m, can be assumed as a constant and the thrust which is equal to
the relative velocity between the exhausted mass and the aircraft and the change of
the aircraft’s mass/unit time can be treated as an external force without impairing
the accuracy of the equations of motion. It’s assumed that there will be no change
in the propulsive force and then changes in the aircraft’s state of motion can occur
if and only if there are changes in either the aerodynamic or gravitational forces (or
both).

The sums of applied forces and torques consist of an equilibrium and perturbational
components:

~F = ~F0 + ∆~F = m
d

dt
( ~VT ) (3.3)

~M = ~M0 + ∆ ~M =
d

dt
( ~H) (3.4)

The subscript 0 means equilibrium component and ∆ the component of perturba-
tion. By using the Earth axis system as an inertial reference system the components
of perturbation can be expressed as follows:

∆~F = m
d

dt
( ~VT )E (3.5)

∆ ~M =
d

dt
( ~H)E (3.6)

The equilibrium flight is unaccelerated along a straight path so the linear velocity
vector relative to fixed space is invariant and the angular velocity is zero that’s why
both ~F0 and ~M0 are zero.

The rate of change of ~VT relative to the Earth axis system:

d

dt
( ~VT )E =

d

dt
~VT

∣∣∣∣∣
B

+ ~ω × ~VT (3.7)

Where ~ω is the angular velocity of the aircraft with respect to the body fixed axis
system.

Both velocities can be written as the sum of their corresponding components with
respect to XB, YB, ZB:

~VT = ~iU +~jV + ~kW (3.8)

~ω = ~iP +~jQ + ~kR (3.9)

d

dt
~VT

∣∣∣∣∣
B

= ~iU̇ +~jV̇ + ~kẆ (3.10)
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

and the cross-product, ~ω × ~VT , is given by:

~ω × ~VT =

 ~i ~j ~k
P Q R
U V W

 (3.11)

~ω × ~VT = ~i(QW − V R) +~j(UR− PW ) + ~k(PV − UQ) (3.12)

So the components of the perturbation force can be expressed:

∆~F =~i∆Fx +~j∆Fy + ∆~kFz (3.13)

Now we obtain:

∆Fx = m(U̇ + QW − V R) = ∆X (3.14)

∆Fy = m(V̇ + UR + PW ) = ∆Y (3.15)

∆Fz = m(Ẇ + V P − UQ) = ∆Z (3.16)

The notation ∆X, ∆Y , ∆Z follows the American custom.

3.1.2. Rotational Motion

At first let’s define the angular momentum:

~H = I~ω (3.17)

Where I is the inertia matrix defined as:

I =

 Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Ixz −Iyz Izz

 (3.18)

Iii denotes a moment of inertia and Iij a product of inertia j 6= i.

~M =
d

dt
~H + ~ω × ~H (3.19)

By using transformation from body axes to the Earth axis system the last equation
can be re-expressed as:

~M = I(
d

dt
~ω + ~ω × ~ω) + ~ω × ~H (3.20)

However,
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3.1. THE EQUATIONS OF MOTION OF A RIGID BODY AIRCRAFT

~ω × ~ω = ~0 (3.21)
d

dt
~ω = ~iṖ +~jQ̇ + ~kṘ (3.22)

(3.23)

and

~ω × ~H =

 ~i ~j ~k
P Q R
hx hy hz

 (3.24)

where hx, hy and hz are the components of ~H obtained from expanding equation
~H = I~ω thus:

hx = IxxP − IxyQ− IxzR (3.25)

hy = −IyxP + IyyQ− IyzR (3.26)

hz = −IzxP − IzyQ + IzzR (3.27)

The aircrafts are symmetrical about the plane XZ and consequently it is generally
the case that:

Ixy = Iyz = 0 (3.28)

Therefore:

hx = IxxP − IxzR (3.29)

hy = IyyQ (3.30)

hz = −IzxP + IzzR (3.31)

and

∆Mx = IxxṖ − Ixz(Ṙ + PQ) + QR(Izz − Iyy) = ∆L (3.32)

∆My = IyyQ̇ + Ixz(p2 −R2) + PR(Ixx − Izz) = ∆M (3.33)

∆Mz = IzzṘ− IxzṖ + PQ(Iyy − Ixx) + IzzQR = ∆N (3.34)

The notation ∆L, ∆M , ∆N follows the American custom.
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

3.1.3. Notes

• For flight simulation work is not entirely convenient the derivation
of the equations by using a body axis system.

• In model of large aircraft’s flight (transporters for example) the terms
which characterize the angular motion are frequently neglected be-
cause those aircrafts can’t generate large angular rates (this is the
case of this treatise).

• Equations invoking other assumptions:
1. The body axes coincide with the principal axes. ⇐⇒ Ixz (the prod-
uct of inertia) is sufficiently small to allow of its being neglected.

2. Low maximum values of angular velocity. ⇐⇒ The terms PQ,
QR and P2 −R2 can be neglected.

3. R2 � P2 ⇐⇒ R2 is often neglected.
• The neglecting of such terms can be practised only after very care-
fully consideration of both the aircraft’s characteristics and the AFCS
(Automatic Flight Control Systems) problem.

3.1.4. Axis Transformations

Mutual orientation of the Earth axis system to body-fixed axis system is denoted by
a sequence of three rotations, for each rotation a transformation matrix is applied
to the variables. The total transformation matrix, is obtained by taking the product
of the three matrices, multiplied in the order of the rotations.

So the Earth axis system incorporates the gravity vector,~g, and there’s the way
how it can be expressed in the body-fixed axis system:

1st Rotation – Azimuth Ψ

TΨ =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1

 (3.35)

2nd Rotation – Pitch Θ

TΘ =

 cos Θ 0 − sin Θ
0 1 0

sin Θ 0 cos Θ

 (3.36)

3rd Rotation – Roll Φ

TΦ =

 1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ

 (3.37)
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3.1. THE EQUATIONS OF MOTION OF A RIGID BODY AIRCRAFT

The total transformation matrix T , called the direction cosine array, is defined
as:

T = [TΨ][TΘ][TΦ] (3.38)

So it means that:

T =

 cos Ψ cos Θ sin Ψ sin Θ − sin Θ
(cos Ψ sin Θ sin Φ− sin Ψ cos Φ) (sin Ψ sin Θ sin Φ + cos Ψ cos Φ) cos Θ sin Φ
(cos Ψ sin Θ cos Φ + sin Ψ sin Φ) (sin Ψ sin Θ cos Φ− cos Ψ sin Φ) cos Θ cos Φ


(3.39)

Now the vector ~g will be expressed in the body-fixed axis system as follows:

~g = g(− sin Θ~i + cos Θ sin Φ~j + cos Θ cos Φ~k) (3.40)

3.1.5. The Gravity Contributions to the Equations of Motion

For nonextra-atmospheric flight it’s assumed that gravity acts at the centre of grav-
ity (c.g.). When the centres of mass and gravity coincide in an aircraft, then there
is no external moment produced by gravity about c.g. and that’s why gravity con-
tributes only to the external force vector, ~F , for the body axis system. The gravity
vector, m~g, is directed along ZE axis so there’s needed the projection to body-fixed
axes:

∂X = m~g sin[−Θ] = −m~g sin Θ

∂Y = m~g cos[−Θ] sin Φ = m~g cos Θ sin Φ (3.41)

∂Z = m~g cos[−Θ] cos Φ = m~g cos Θ cos Φ

Where Θ represents the angle of elevation between m~g and the YBZB plane and Φ
represents the bank angle between the ZB axis and projection of m~g on the YBZB

plane.

Now it’s needed to relate two new motion variables, Θ and Φ, and their derivatives to
the angular velocities, P, Q and R, because in general those two angles are not simply
the integrals of the angular velocity, P and Q. In very high speed flight the gravi-
tational vertical is seen as rotating, but aircraft speeds being very low compared to
orbital velocities, so the vertical may be regarded as fixed. The expression depends
upon the angular velocity of the body axes about the vector m~g called azimuth
rate, Ψ̇. The projection of Ψ̇ in the YBZB plane is normal to both Φ̇ and Θ̇.

P = Φ̇− Ψ̇ sin Θ

Q = Θ̇ cos Φ + Ψ̇ cos Θ sin Φ (3.42)

R = −Θ̇ sin Φ + Ψ̇ cos Θ cos Φ
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

also:

Φ̇ = P + Ψ̇ sin Θ

Θ̇ = Q cos Φ−R sin Φ (3.43)

Ψ̇ =
R cos Φ
cos Θ

+
Q sin Φ
cos Θ

Finally by using substitution, it can be easily shown that:

Φ̇ = P + R tan Θ cos Φ + Q tan Θ sin Φ (3.44)

Where Φ, Θ and Ψ are called Euler angles.

3.1.6. Linearization of the Inertial and Gravitational Terms

Now it’s possible to express the resultant force affecting on the aircraft, where equa-
tions (3.14)-(3.16) and (3.32)-(3.34) represent the inertial forces acting on the air-
craft. Equations (3.41) represents the contribution of the forces due to gravity. This
resultant affecting represents the accelerations which would be measured by sensors
located on the aircraft. Input axes of the sensors would be coincident with the body
axes XB, YB and ZB.

So, the external forces affecting is:

X = ∆X + ∂X

Y = ∆Y + ∂Y (3.45)

Z = ∆Z + ∂Z

Which means

X
∆= maxcg = m(U̇ + QW −RV + g sin Θ)

Y
∆= maycg = m(V̇ + RU − PW − g cos Θ sin Φ) (3.46)

Z
∆= mazcg = m(Ẇ + PV −QU − g cos Θ cos Φ)

for forces and

L = Ṗ Ixx − Ixz(Ṙ + PQ) + (Izz − Iyy)QR

M = Q̇Iyy + Ixz(P 2 −R2) + (Ixx − Izz)PR (3.47)

N = ṘIzz − IxzṖ + PQ(Iyy − Ixx) + IxzQR
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3.1. THE EQUATIONS OF MOTION OF A RIGID BODY AIRCRAFT

for moments.

There are also needed the auxiliary equations (3.42) since they relate the Euler
angles, Ψ, Θ and Φ, to the angular velocities, R, Q and P .

Equations (3.46)-(3.47) cannot be solved analytically and would require the use
of a computer. By considering the aircraft to comprise two components (a mean
motion and a dynamic motion which accounts for perturbations about the mean
motion) some simplification is possible. In this form of analysis the assumption of
small perturbations is needed. Those small perturbations are inhibited when the
flight is stable and uninhibited when the flight is unstable(according to the theory
of small oscillations).

So, every motion variable is considered to have two components like:

U
∆= U0 + u

for example.

The trim, or equilibrium, values are denoted by a subscript 0 and the small pertur-
bation values by the lower case letter.

There can’t be translational or rotational acceleration in trim. Hence:

X0 = m(Q0W0 −R0V0 + g sin Θ0)

Y0 = m(R0U0 − P0W0 − g cos Θ0 sin Φ0)

Z0 = m(P0V0 −Q0U0 − g cos Θ0 cos Φ0) (3.48)

L0 = (Izz − Iyy)Q0R0 − IxzP0Q0

M0 = Ixz(P 20 −R20) + (Ixx − Izz)P0R0
N0 = P0Q0(Iyy − Ixx) + IxzQ0R0

Steady rolling, pitching and yawing motion can occur in the trim condition.

The perturbed equations of motion (sines and cosines are approximated to the angles
themselves, the products and squares of the perturbed quantities are negligible):

dX = m(u̇ + W0q + Q0w −R0v − V0r + g cos Θ0θ)

dY = m[v̇ + R0u + U0r − P0w −W0p− (g cos Θ0 sin Φ0)φ + (g sin Θ0 sin Φ0)θ]

dZ = m[ẇ + P0v + V0p−Q0u− U0q + (g cos Θ0 sin Φ0)φ + (g sin Θ0 cos Φ0)θ]

dL = Ixxṗ− Ixz ṙ + (Izz − Iyy)(Q0r + R0q)− Ixz(P0q + Q0p) (3.49)

dM = Iyy q̇ − Ixz(2R0r − 2P0p) + (Ixx − Izz)(P0r + R0p)

dN = Izz ṙ − Ixzṗ + (P0q + Q0p)(Iyy − Ixx) + Ixz(Q0r + R0q)

Where Ψ0, Θ0 and Φ0 represent steady orientations and Ψ, θ and φ the perturbations
in the Euler angles. Sometimes there’s required the components of angular velocity
representing the rotation of the body-fixed axis system relative to the Earth axis
system (half of the set of auxiliary perturbation equations):
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

p = φ̇− Ψ̇ sin Θ0 − θ(Ψ0 cos Θ0)

q = θ̇ cos Φ0 − θ(Ψ̇0 sin Φ sin Θ0) + Ψ̇ cos Θ sin Ψ0 (3.50)

r = Ψ̇ cos Θ0 cos Φ0 − φ(Ψ̇0 cos Θ0 sin Φ0 + Ψ̇0 cos Φ0)− θ̇ sin Φ0 − θ(Ψ̇0 sin Θ0 cos Φ0)

Now the equations (3.49)-(3.50) are linear, but still too cumbersome for general
use, and that’s why considering of flight cases with simpler trim conditions is com-
monly used in AFCS studies.

So a case of great interest is the straight steady, symmetric flight, with its wings
level. Steady flight means, that the rates of the components of linear and angular
velocity are zero. All the trimmed conditions can be expressed as follows:

1. The straight flight is motion with the components of angular velocity being
zero and it implies

Ψ̇0 = Θ̇0 = 0.

2. The symmetric flight is motion with the plane of symmetry fixed in space
during the manoeuvre taking place and it implies

Ψ0 = V0 = 0.

3. Flying with wings level implies

Φ0 = 0.

When those concrete trim conditions are assumed, the aircraft will have particular
values of U0, W0 and Θ0. Moreover it may be assumed that:

Q0 = P0 = R0 = 0

It follows that equations (3.49)-(3.50) can be written in the simplified form. The whole
set is given below in two distinct groups:

1. The Longitudinal Motion:

x = m(u̇ + W0q + g cos Θ0θ)

z = m(ẇ − U0q + g sin Θ0θ) (3.51)

m1 = Iyy q̇

Where m1 is subscripted by 1 not to confuse with the aircraft’s mass, m.

2. The Lateral Motion:

y = m(v̇ + U0r −W0p− g cos Θ0φ)

l = Ixxṗ− Ixz ṙ (3.52)

n = Izz ṙ − Ixzṗ

And the auxiliary equations:

p = φ̇− Ψ̇ sin Θ0
q = θ̇ (3.53)

r = Ψ̇ cos Θ0
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3.2. COMPLETE LINEARIZED EQUATIONS OF MOTION

3.2. Complete Linearized Equations of Motion

In the subsequent text will be discussed only equations of longitudinal motion be-
cause just this set is needed for modelling of a height hold system.

3.2.1. Expansion of Aerodynamic Force and Moment Terms

A Taylor series is used to expand the left-hand side of the equations of motion
about the trimmed flight condition. Besides a contribution from the components
of perturbed forces and moments there is a contribution from control surfaces (for
example: elevator, E; rudder, R; thrust or throttle, T; flaps, F; spoilers, sp, ailerons,
A), and that’s why there’s needed to introduce some additional terms into the Taylor
series. Some terms depending on other motion variables, like θ, are omitted because
they are generally insignificant.

As example, how to expand the left-hand side of the equations of motion, simple case
of straight steady, symmetric flight with wings level is used. Furthermore they are
simplified for longitudinal motion and it is assumed that only elevator deflection is
involved in the control of this motion:

∂X

∂u
u +

∂X

∂u̇
u̇ +

∂X

∂w
w +

∂X

∂ẇ
ẇ +

∂X

∂q
q +

∂X

∂q̇
q̇ +

∂X

∂δE

δE +
∂X

∂δ̇E

δ̇E

= m(u̇ + W0q + g cos Θ0θ)
∂Z

∂u
u +

∂Z

∂u̇
u̇ +

∂Z

∂w
w +

∂Z

∂ẇ
ẇ +

∂Z

∂q
q +

∂Z

∂q̇
q̇ +

∂Z

∂δE

δE +
∂Z

∂δ̇E

δ̇E (3.54)

= m(ẇ − U0q + g sin Θ0θ)
∂M

∂u
u +

∂M

∂u̇
u̇ +

∂M

∂w
w +

∂M

∂ẇ
ẇ +

∂M

∂q
q +

∂M

∂q̇
q̇ +

∂M

∂δE

δE +
∂M

∂δ̇E

δ̇E = Iyy q̇

Simplified notation:

Xx =
1
m

∂X

∂x

Zx =
1
m

∂Z

∂x
(3.55)

Mx =
1

Iyy

∂M

∂x

Where Xx, Zx and Mx are the stability derivatives.

3.2.2. Equations of Longitudinal Motion

Following simplified notation equations (3.54) can be rewritten:
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

u̇ = Xuu + Xu̇u̇ + Xww + Xẇẇ + Xqq + Xq̇ q̇ −W0q − g cos Θ0θ + XδE
δE + Xδ̇E

δ̇E

ẇ = Zuu + Zu̇u̇ + Zww + Zẇẇ + Zqq + Zq̇ q̇ + U0q − g sin Θ0θ + ZδE
δE + Zδ̇E

δ̇E

q̇ = Muu + Mu̇u̇ + Mww + Mẇẇ + Mqq + Mq̇ q̇ + MδE
δE + Mδ̇E

δ̇E (3.56)

and

θ̇ = q (3.57)

It follows from studying the aerodynamic data of a large number of aircraft that not
every stability derivative is significant and a number can be neglected. Before ignor-
ing stability derivatives, it is important to check the appropriate aerodynamic data
because stability derivatives depend both upon the aircraft being considered and
the flight condition which applies. According to McLean [1] those stability deriva-
tives are insignificant and can be ignored without loss of generality:

Xu̇, Xq, Xq̇, Xẇ, XδE
, Xδ̇E

, Zu̇, Zẇ, Zq̇, Zδ̇E
, Mu̇, Mq̇, Mδ̇E

.

The stability derivative Zq is often large but ignored if the trimmed forward speed,
U0, is large. This is just the case of the aircraft modeled in this treatise.

Hence, simplified equations of longitudinal motion are:

u̇ = Xuu + Xww −W0q − g cos Θ0θ

ẇ = Zuu + Zww + U0q − g sin Θ0θ + ZδE
δE (3.58)

q̇ = Muu + Mww + Mẇẇ + Mqq + MδE
δE

θ̇ = q

The motion and control variables, u, w, q, θ and δE, have units m.s−1 and rad.s−1.
Hence the stability derivatives are dimensional.

3.3. Equations of Motion in Stability Axis System

As it has been discussed in Chapter 2 Basic Terms of Aviation the aerodynamic
forces depend upon geometrical characteristics, speed of the airflow and the angle of
attack. Those facts implies that orientation of the airflow is needed. So there’s used
stability axis system to express the forces of lift and drag relative to body-fixed axis
system. The velocity and its components are relative in the sense of airframe to air
mass.

The stability axis system relative to the body-fixed axis system orient the angle of
attack, α, and the angle of sideslip, β.
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3.4. EQUATIONS OFMOTION FOR STEADYMANOEUVRING FLIGHT CONDITIONS

• The velocity components along the body axes:

Uα = VTα cos β cos α

Vα = VTα sin β (3.59)

Wα = VTα cos β sin α

• Symmetric flight in the steady state pointing into the relative wind. V0 and W0

are both zero, so α0 and β0 are zero.

Then:

U0 = VT (3.60)

• Initial inclination to the horizon at some flight path angle, γ0:

Θ0
∆= γ0 + α0 (3.61)

Where α0 is zero of course.

The initial alignment has no effect on the body-fixed character of the axis sys-
tem. There’s held the body-fixed frame of reference while measuring the motion
due to perturbations. The alignment of the stability axis system with respect
to the body-fixed axis system changes as a function of the trim conditions.

In chosen frame of reference, where W0 = 0 and Θ0 = γ0, equations (3.58) may
be expressed as:

u̇ = Xuu + Xww − g cos γ0θ

ẇ = Zuu + Zww + U0q − g sin γ0θ + ZδE
δE (3.62)

q̇ = Muu + Mww + Mẇẇ + Mqq + MδE
δE

θ̇ = q

3.4. Equations of Motion for Steady Manoeuvring
Flight Conditions

It follows from the theory described in Chapter 3.1.6 that trim conditions of steady
flight are used to eliminate initial forces and moments from the equations of motion
and Chapter 3.2 shows how to expand them to contribution from linear and angular
velocities and control surfaces by using the Taylor series. Together the equations of
motion for chosen flight case are obtained.

Commonly used steady flight conditions:

Steady, Straight Flight • All time derivatives are zero and there is no angular
velocity about c.g.

• The assumption of symmetric flight implies that the bank angle, Φ, is zero.
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3. THE EQUATIONS OF MOTION OF AN AIRCRAFT

Steady Turns • All time derivatives are all zero again.

• The Euler angles, Φ and Θ, are also zero.

• The rate of turn, Ψ̇, is constant.

Steady Pitching Flight • V, P, R, Φ and Ψ are all zero.

• The pitching velocity, Q, is constant.

• The linear velocities, U and W , do vary with time.

Steady Rolling (Spinning) Flight • Cannot be easily simplified. So, there’s needed
special methods. See, for example, Thelander (1965) for such methods.

3.4.1. Steady, Straight, Symmetric Flight

There’s not considered lateral motion for the needs of automatic flight level control in
this treatise. So, this is the flight case being hold and the only perturbation involved
is pitching movement.

Hence, the initial conditions are:

X0 = mg sin Θ

Z0 = −mg cos Θ (3.63)

Y0 = L0 = M0 = N0

and the equations of perturbed motion:

x = m(u̇ + W0q + g cos Θ0θ)

z = m(ẇ − U0q + g sin Θ0θ) (3.64)

m1 = Iyy q̇

According to Chapter 3.2 the Taylor series is used to expand the left-hand side
of the equations (3.64). The perturbed forces, x, z and m1 have a contribution from
only one control surface, the elevator. By using simplified notation, ignoring insignif-
icant stability derivatives and adding of needed auxiliary equation, the following set
of equations is obtained:

u̇ = Xuu + Xww + Xqq −W0q − g cos Θ0θ

ẇ = Zuu + Zww + U0q − g sin Θ0θ + ZδE
δE (3.65)

q̇ = Muu + Mww + Mẇẇ + Mqq + MδE
δE

θ̇ = q

Using the stability axis system, in which W0 = 0 and Θ0 = γ0, another set of equa-
tions is obtained:
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u̇ = Xuu + Xww − g cos γ0θ

ẇ = Zuu + Zww + U0q − g sin γ0θ + ZδE
δE (3.66)

q̇ = Muu + Mww + Mẇẇ + Mqq + MδE
δE

θ̇ = q

3.5. Additional Motion Variables

Another motion variables than the primary ones may be interesting for designing
of AFCSs. They are usually those which can be measured by the sensor commonly
available on aircraft.

3.5.1. Longitudinal Motion

Normal acceleration for perturbed motion – Measured at the c.g. of the air-
craft and defined as:

azcg = (ẇ − U0q) (3.67)

– For small angles of attack, α, w ' U0α. Thus:

azcg = U0(α̇− q) (3.68)

– Measured in units of g:

nzcg =
azcg

g
(3.69)

– Normal acceleration due to gravity when an aircraft changes its altitude:

azcg = ẇ − U0q − g (3.70)

– At some point on the fuselage centre line distant from the c.g. by lx:

azx = ẇ − U0 − lxq̇ (3.71)

Height of the aircraft c.g. above the ground – By definition:

ḧcg = −azcg (3.72)

therefore

ḧ = −ẇ + U0q (3.73)

and
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ḣcg = −w + U0θ (3.74)

so, the height of the aircraft c.g. above the ground is:

hcg = U0

∫
θdt−

∫
wdt = U0

∫
γdt (3.75)

from that another variation of normal acceleration is obtained:

nzcg =
−U0γ̇

g
(3.76)

Acceleration sensitivity – This variation of load factor with the angle of attack
is an important aircraft parameter defined as(following McLean [1]):

nzα =
U0
g

(ZδE
Mw −MδE

Zw)

(MδE
− ZδE

Mq

U0
)

(3.77)

' U0
gMδE

(ZδE
Mw −MδE

Zw)

since, for conventional aircraft MδE
Zw � ZδE

Mw this relation become:

nzα =
−ZwU0

g
(3.78)

and for straight and level flight at 1g:

nzα = −ZwU0 =
CLα

CL

(3.79)

where CLα is the lift curve slope and CL is the coefficient of lift.

3.6. State-Space Representation of Aircraft

3.6.1. The State Equation

It’s a natural form in which is possible to represent the equation of motion of
an aircraft and a first order, vector differential equation. Its most general expression
is:

~̇x = A~x + B~u + E~d (3.80)

where ~x ∈ Rn is the state vector of the state variables,~u ∈ Rm is the control vector of
the control input variables, ~d ∈ Rl is the disturbance vector, A is the state coefficient
matrix, B is the driving matrix and E is the disturbance coefficient matrix. The term
E~d introduces to the state equation the influence of various disturbances like atmo-
spheric turbulence. Special methods used for its introduction to the state equation
will be discussed in Chapter 5. In this chapter ~d will be regarded as a null vector.
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3.6.2. The Output Equation

It’s an algebraic equation which depends solely upon the state vector and, occasion-
ally, upon the control vector also. The output equation is needed when the concern
is with motion variables. Its form containing noise effects of the sensors:

~y = C~x + D~u (3.81)

where ~y ∈ Rp is the output vector of the output variables, C is the output matrix, D
is the direct matrix.

3.6.3. Equations of Motion of Steady, Straight, Symmetric Flight

There’s used the stability axis system because, in accordance with McLean [1], this
is most convenient for AFCS work.

Only Deflection of Elevator Involved

According to Chapter 3.4.1 the state vector is defined as:

~x =


u
w
q
θ

 (3.82)

and it is assumed that an aircraft is controlled only by means of elevator deflec-
tion, δE. So, its control vector is defined as:

~u
∆= δE (3.83)

then, there’s obtained from equations (3.66):

A
∆=


Xu Xw 0 −g cos γ0
Zu Zw U0 −g sin γ0
M̃u M̃w M̃q M̃θ

0 0 1 0

 (3.84)

B
∆=


XδE

ZδE

M̃δE

0

 (3.85)

where stability derivative, XδE
, is not ignored.

Then the whole state equation is given by:
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~̇x = A~x + B~u
u̇
ẇ
q̇

θ̇

 =


Xu Xw 0 −g cos γ0
Zu Zw U0 −g sin γ0
M̃u M̃w M̃q M̃θ

0 0 1 0




u
w
q
θ

 +


XδE

ZδE

M̃δE

0

 δE (3.86)

There’s not possible to be terms involving the first (or even higher) derivatives
of any of the state or control variables on the right hand side of the state equa-
tion. Thus, ẇ, which depends only upon ~x and ~u, has to be substituted. This substi-
tution is meaning of tilde in the matrix. Corresponding dependency is:

ẇ = Zuu + Zww + U0q − g sin γ0θ + ZδE
δE (3.87)

and substituting for ẇ in the equation for q̇ gives:

q̇ = M̃uw + M̃ww + M̃qq + M̃θθ + M̃δE
δE (3.88)

where

M̃u = (Mu + MẇZu)

M̃w = (Mw + MẇZw)

M̃q = (Mq + U0Mẇ) (3.89)

M̃θ = (−gMẇ sin γ0)

M̃δE
= (MδE

+ MẇZδE
)

The purpose of this treatise is the flight level control and that’s why corresponding
output variable is the height of an aircraft c.g., hcg.

Using the equation (3.74):

ḣcg = −w + U0θ (3.90)

we introduce new state variable:

x5 = h (3.91)

and that’s why:

~x
∆=


u
w
q
θ
h

 (3.92)
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therefore matrices A and B become:

A
∆=


Xu Xw 0 −g cos γ0 0
Zu Zw U0 −g sin γ0 0
M̃u M̃w M̃q M̃θ 0
0 0 1 0 0
0 −1 0 U0 0

 (3.93)

B
∆=


XδE

ZδE

M̃δE

0
0

 (3.94)

Then the whole state equation is given by:

~̇x = A~x + B~u
u̇
ẇ
q̇

θ̇

ḣ

 =


Xu Xw 0 −g cos γ0 0
Zu Zw U0 −g sin γ0 0
M̃u M̃w M̃q M̃θ 0
0 0 1 0 0
0 −1 0 U0 0




u
w
q
θ
h

 +


XδE

ZδE

M̃δE

0
0

 δE (3.95)

Changes of Elevator and Thrust Involved

Corrections of perturbed motion occur changes in the angle of attack, α, which
affects in cooperation with thrust the amount of lift force. So, it’s useful the thrust
not to be constant but control it as well.

In this case the driving matrix B and the control vector ~u will become:

B
∆=


XδE

XδT

ZδE
ZδT

M̃δE
M̃δT

0 0
0 0

 (3.96)

~u
∆=

[
δE

δT

]
(3.97)

And now the state equation with putting emphasis on the height of an aircraft c.g.
will be:
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u̇
ẇ
q̇

θ̇

ḣ

 =


Xu Xw 0 −g cos γ0 0
Zu Zw U0 −g sin γ0 0
M̃u M̃w M̃q M̃θ 0
0 0 1 0 0
0 −1 0 U0 0




u
w
q
θ
h

 +


XδE

XδT

ZδE
ZδT

M̃δE
M̃δT

0 0
0 0


[

δE

δT

]
(3.98)

Where M̃δT
= (MδT

+ MẇZδT
).

Final Form of the Equations of Motion for a Particular Aircraft and
Flight Conditions

There will be discussed a model of the aircraft referred to as CHARLIE in this
treatise, which is a very large, four-engined, passenger jet aircraft. Name and ex-
perimentally measured data for this airplane were given in Mc.Lean [1]. There is
considered flight condition where the aircraft is flying straight, level and has the
value of γ0 = 0, α0 = 0 and stability derivative, XδE

= 0. It came out during
experiments with the model that forward speed need to be controlled too. So the
equations of motion given by (3.98) take the following form:


u̇
ẇ
q̇

θ̇

ḣ

 =


Xu Xw 0 −g 0
Zu Zw U0 0 0
M̃u M̃w M̃q 0 0
0 0 1 0 0
0 −1 0 U0 0




u
w
q
θ
h

 +


0 XδT

ZδE
ZδT

M̃δE
M̃δT

0 0
0 0


[

δE

δT

]
(3.99)

The block-diagram representation used for modelling in MATLAB SIMULINK is
shown on following figure.
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Figure 3.1: Block-diagram representation of the longitudinal dynamics.

4. Aircraft Stability and
Dynamics
In this chapter will be discussed stability of an aircraft by using the equations of
motion which have been derived in chapter 3. Concern of this treatise lies only with
the longitudinal motion and that’s why the corresponding set of equations will be
used. It is considered that all the assumptions used for deriving of the equations of
motion holds.

4.1. Longitudinal Stability

4.1.1. Short Period and Phugoid Modes

The dynamic stability characterize the eigenvalues of the state coefficient matrix,
A. Those eigenvalues are roots of the equation

|λI − A| = 0 (4.1)

from which by expanding the determinant, the longitudinal stability quartic is ob-
tained:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 (4.2)

Dynamically Stable Aircraft:
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4. AIRCRAFT STABILITY AND DYNAMICS

• All its eigenvalues, being real, have negative values.

• All its complex eigenvalues have negative real parts.

Dynamically Unstable Aircraft:

• Any complex eigenvalue has zero, or positive, value.

Short period and phugoid modes arise from invariable factorizing of the longitudinal
stability quartic into two quadratic factors which can be done according to Mc Lean
[1] in the following manner:

(λ2 + 2ζphωphλ + ω2ph)(λ2 + 2ζspωspλ + ω2sp) (4.3)

Phugoid Mode

It’s characterized by an oscillation of long period. The first factor of the equa-
tion (4.3) corresponds to this mode of an aircraft motion, where ωph is the natural
frequency and ζph is the damping ratio.

Short Period Mode

It’s a rapid, relatively well-damped motion to which corresponds the second factor
of the equation (4.3). The short period mode has frequency ωsp and damping ratio
ζsp.

4.1.2. Longitudinal Stability of the Modeled Aircraft

Data were given in [1], appendix B.2.3, page 559. It’s very large, four-engined,
passenger jet aircraft. There’s considered steady, straight flight, at Mach 0.8 (U0 =
250m

s
) and at a height of 6 100 m. According to equation (3.93) and data corre-

sponding to chosen flight condition we obtain:

A =


−0.0002 0.026 0 −9.81 0
−0.09 −0.624 250 0 0

−0.000007 −0.0045632 −0.843 0 0
0 0 1 0 0
0 −1 0 250 0

 (4.4)

This state coefficient matrix has the eigenvalues:

λ1,2 = −0.734± 1.0628i (4.5)

λ3,4 = 0.0004± 0.0489i (4.6)

λ5 = 0 (4.7)

So the aircraft is dynamically unstable. Note that the eigenvalue, λ5, is stated here
only for completeness. As it can be seen from the equations, the additional equation
for height is linearly dependent. Hence the original 4×4 matrix A describes the same
dynamics and the eigenvalues corresponding to previous theory of aircraft stability
are λ1,2 and λ3,4.
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5. Disturbances Affecting Aircraft
Motion
In this chapter will be shortly described derivation of simplified model of turbulence
used for simulations. The analysis of turbulence uses statistical methods. Follow-
ing theory given in Mc.Lean [1] will be obtained simplified model of atmospheric
turbulence.

5.1. A Discrete Gust Function

According to Mc.Lean [1] the mathematical model with the most general acceptance
for fixed-wing aircraft is given by:

xg(t) =
k

T
(1− cos(

2π

T
)t) (5.1)

T is the duration of the gust.

T =
L

U0
(5.2)

The scale length L is the wavelength of the gust in meters and k is a scaling factor
selected to achieve the required gust intensity. The gust wavelength is traditionally
taken to be equal to twenty-five times the mean aerodynamic chord, c̄, of the wing
of the aircraft.

L = 25c̄ (5.3)

It means L = 207.5m for CHARLIE with c̄ = 8.3m.

5.2. Power Spectral Density Functions

It’s a statistical theory allows us to represent the atmospheric turbulence as a sta-
tionary, random process. The power spectral density (PSD) of any function, x(t),
is a real function which provides information of how the mean squared value of x(t)
is distributed with frequency, ω. It’s defined by the following equation.

Φ(ω) = lim
4ω→0
T→∞

1
T4ω

∫ T

0
x2(t, ω,4ω)dt (5.4)

This PSD function has units of either ms−1 or rads−2.

Dryden PSD Function in Terms of Spatial Frequency
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5. DISTURBANCES AFFECTING AIRCRAFT MOTION

This type is commonly used in AFCS work for its simplicity.

Φ(Ω) =
σ2L

π

(1 + 3L2Ω2)
(1 + L2Ω2)2

(5.5)

It can be transformed to the spectral domain corresponding to chosen aircraft in
particular flight condition by following equation.

Φ(ω) =
Φ(Ω)
U0

(5.6)

5.3. Obtaining the Linear Filter for Continuous
Gust Representation

To generate gust signals with the required intensity, scale lengths and PSD functions,
white noise with a PSD function ΦN(ω), is used to provide an input signal to a linear
filter given by:

Φi(ω) = |Gi(s)|2s=jωΦN(ω) (5.7)

The formulas needed to obtain the linear filters for gust velocities are derived under
following assumptions:

1. According to Mc.Lean [1] the dependence of scale length is defined for heights
greater than L = 207.5m as:

Lu = Lw = 207.5m (5.8)

2. Atmospheric turbulence is a stationary random process.

3. The turbulence field is frozen with respect to time.

4. The statistical characteristics of turbulence are defined for the stability axis
system of the aircraft.

5. The intensity of the three translational components of the turbulence are
isotropic, i.e.:

σ2u
Lu

=
σ2w
Lw

(5.9)

Under those assumptions we obtain following formulas:

Gu(s) =

√
2U0σ2u
Luπ

(s + U0
Lu

)
(5.10)

Gw(s) =

√
3σ2w

LwπU0

s + U0√
3Lw

(s + U0
Lw

)2
(5.11)
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5.3. OBTAINING THE LINEAR FILTER FOR CONTINUOUS GUST REPRESENTATION

For thunderstorms, at any height:

σu = σw = 7ms−1 (5.12)

This results in the linear filters given by:

Gu(s) =
7.51

s + 1.205
(5.13)

Gw(s) =
0.03s + 0.021

s2 + 2.41s + 1.452
(5.14)

The gust velocities are now obtained according to Mc.Lean [1] by:

ug(s) = Gu(s)η(s) (5.15)

wg(s) = Gw(s)η(s) (5.16)

qg(s) = −α̇g (5.17)

Where η(s) is the signal from the white noise source and αg = −wg

U0
because the

translational velocity of turbulence is defined as positive stability axes. The block-
diagram representing this model is shown on following figure. Pulse generator and
switches are added to ensure 50 seconds duration of turbulence.

Figure 5.1: Model of turbulence.
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6. GENERAL THEORY OF CONTROL

6. General Theory of Control

6.1. Introduction

Nowadays automatons, computers and AI components stand in for human activ-
ities. This complicated process, where human activities are replaced by various
machines, is called automation. The automation is not related only to manual
work but various machines. Computers with corresponding programs etc. are able
to substitute human control function. Right this issue is the case of interest of this
treatise because the task of automatic flight level control is to stand in for pilot’s
effort to ensure settled flight.

With the theory of regulation deals the science discipline called cybernetics. As
its founder is regarded the American mathematician Norbert Wiener who as the first
worked on theory of feedback systems of control in his famous book Cybernetic
or Control and Communication in the Animal and the Machines from
the year 1948. Cybernetics is science which investigate general characteristics and
natural relations of control in biological, technical and social systems. Concern of
this treatise lies from all parts of the cybernetics especially with the theory of
automatic control. Now lets define the control term:

Control is aimed affecting on the controlled object in such way to reach
specific prescribed goal.

Control is divided into manual and automatic after the way it’s realized. Nice
example is piloting by human representing manual control and by autopilot on the
other side.

Other and very important dividing is in the sense of the feedback:

Operating – Control without the feedback.

Regulation – Control with the feedback. Regulation is upkeeping of certain physi-
cal quantity on the constant value or on in accordance with any rule changing
value. Actual values of this quantity ascertained during the regulation are com-
pared with the value it should have got. Based on recognized deviations there
are interventions to the regulated process to shift off those deviations.

Now lets notice dividing by principle of affecting on the controlled system:

Logical Control – This type of control use two-valued quantities. It means that
there are always only two possibilities formally expressed by 0 and 1. Relations
between quantities are called logical functions and control circuits working
based on this principle are logical control circuits.

Continuous Control – The action intervence is set continuously and consequently
data about the controlled system are measured as quantities continuous in
time. Continuous control system creates uninterrupted binding between input
and output.
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6.2. CONTINUOUS CONTROL

Discrete Control – This kind of control is a consequence of using of comput-
ers as regulators, although the beginnings are wedded with control of contin-
uous systems discretely measured. The control computers aren’t able to pro-
cess continuous signal and that’s why it’s needed to transfer it to the discrete
signal. Therefore discrete control system creates relation between the inputs
and outputs as relations between progressions of impulses sampled in sequence
which is given by so called sample period. The regulated quantity is not be-
tween the moments of sampling measured and the action quantity is not even
adjusted in this time. The discrete control with very short sampling period is
approximately similar to continuous.

Fuzzy Control – It’s not based on controlled system and its mathematical model. The
system is controlled according to rules like ”if ... then” which correspond to
the orders of an expert who is able to stand in for automatons to control the
system. This type of control is suitable for the systems which we can’t describe
but we can control them and just the difference between the control based on
the mathematical model of the system and on the model of human control is
the issue of this treatise. There’s possible to determine the output without the
knowledge of formulas describing the relations between the input and output.

So that’s enough for basic terms. In the following text will be dealt with continuous
and fuzzy control with the feedback.

6.2. Continuous control

6.2.1. Basic terms

Regulation circuit – The system in which the regulation is realized.

Regulator – Control system which realize regulation by any device.

Regulated system – Controlled system which is the object of regulation.

Regulated quantity, y(t) – The output from regulated system which is kept on
required value by regulator.

Control quantity, w(t) – Used for setting of the regulated quantity value.

Regulatory deviation, e(t) – It’s a difference between regulated and control quan-
tities.

e(t) = w(t)− y(t) (6.1)

Action quantity, u(t) – This is the output quantity of the regulator which is the
input quantity of the regulated system. Used to interfere to the regulated
proces to reach minimal or even zero value of e(t).

Disturbance quantities, v1(t), . . . , vn(t) – Unpredictable influence upon the reg-
ulated quantity. The subject of regulation is balancing of the disturbances
effects.
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6. GENERAL THEORY OF CONTROL

6.2.2. Laplace Transform of the State Equations to the Trans-
fer Matrix

Generally Laplace transform is defined by

G(s) = L[G(t)] =
∫ ∞

0
e−stG(t)dt (6.2)

where G(s) is the transfer matrix of the system.

Solution of the system of ordinary differential equations describing dynamics of the
aircraft is obtained by the inverse Laplace transform given by following equation.

L−1[G(s)] = g(t) =
1

2πi

∫ γ+i∞

γ−i∞
estG(s)ds (6.3)

Where γ is a real number so that the contour path of integration is in the region
of convergence of G(s). Function g(t) describes behaviour of the system and it’s
defined for all t ∈ 〈0,∞).

Definition of the transfer matrix

~Y (s) = G(s)~U(s), (6.4)

where ~Y (s) is the Laplace image of the output vector ~y(t), ~U(s) is the Laplace
image of the input vector ~u(t) and G(s) is the transfer matrix, whose elements are
the transfers between individual inputs and outputs.

State equations of the system

~̇x(t) = A~x(t) + B~u(t) (6.5)

~y(t) = C~x(t) + D~u(t) (6.6)

Laplace transformation of those equations

s ~X(s)− ~x(0) = A ~X(s) + B~U(s) (6.7)
~Y (s) = C ~X(s) + D~U(s), (6.8)

where ~x(0) = ~0 are the initial conditions and by using them we obtain

(sI − A) ~X(s) = B~U(s), (6.9)
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6.2. CONTINUOUS CONTROL

where I is the unit matrix. By using the equation (6.9) it’s possible to determine
the image of the state

~X(s) = (sI − A)−1B~U(s). (6.10)

Therefore the image of the output equation is

~Y (s) = [C(sI − A)−1B + D]~U(s) (6.11)

and now by using the equation (6.4) we obtain the transfer matrix of the system

G(s) = C(sI − A)−1B + D. (6.12)
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7. CLASSIC CONTROLLER

7. Classic Controller

7.1. Mathematical Model of Classic Controller

7.1.1. Transfer Matrix of the System

It has been derived linearized state equations of motion in chapter 3. They will be
used now for obtaining the transfer matrix of the system. Consider state equation
given by (3.98). First we need to calculate the matrix (sI − A)−1:

(sI − A)−1 =
adj(sI − A)
det(sI − A)

(7.1)

Where (sI−A)−1 is n×n matrix and ∆long(s) is simplified notation for determinant
of the system given by:

∆long(s) = (sn + a1s
n−1 + . . . + an−1s + an) (7.2)

Where the coefficients a1, . . . , an are given by evaluating the determinant of the state
coefficient matrix A. Roots of this equation are called poles of the system and
they are those eigenvalues of A that specify longitudinal stability of an aircraft as
was discussed in section 4. So the poles determine phugoid and short period modes
and that’s why resulting aircraft dynamic behaviour too.

7.1.2. Feedback Controller

Following equations describe the generalized linear feedback controller.

~̇xc = Ac~xc + Bc~y (7.3)

~yc = Cc~xc + Dc~y (7.4)

Closed-loop control is achieved when the control law

~u = ~yc (7.5)

is satisfied. Similarly to previous theory we are able to obtain transfer matrix of
the controller and by using block-diagram algebra transfer matrix of the closed-loop
system. The goal is to find such parameters (coefficients) of the controller which
ensure required behaviour of the closed-loop system. It can be done through the
linear control theory. The first step in this process is to define suitable pole locations
in complex domain for the closed-loop system to achieve our requirements (primarily
the poles must have negative real parts for the system to be stable). It was chosen
to find parameters experimentally because we had no expert information which was
proper pole locations for CHARLIE.
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7.1. MATHEMATICAL MODEL OF CLASSIC CONTROLLER

7.1.3. Concept of Classic Controller

As it has been said in previous section, the parameters of the classic controller
were found through experiments with mathematical model. MATLAB SIMULINK
was used for that purpose. This design environment allows to represent dynamical
system in block diagram for analysis and simulation. Classic controller were designed
and adjusted through observations of responses on various disturbances (turbulence
and request for change of height) to ensure the best possible behaviour. Factors
affecting the design process were stability, overshooting, overload (for comfort),
oscillations during the control process and control rate.

Choice of Controlled Variables

There’s not needed to control all the state variables which is called the full-state
feedback. Besides, often it’s not possible to measure all variables. For the purpose
of automatic flight level control is needed to measure height, h, of course. The
second controlled variable is pitch rate, q, because aircraft changes its pitch rate
during the change of height and it’s needed to bring deviation in pitch rate to zero
when approaching required height. Those two variables were used for the control of
elevator (action variable is δE) where signal from pitch rate was used as damping
signal for pitching moment to be stabilized on required height. The third and the
last variable to control is forward speed, u, because it came out during experiments
that the aircraft changed u significantly during the change of height. Signal from
the forward speed determine change in thrust, δT .

Final Form of Control Law

The best response on change of height during turbulence was obtained with proportional-
derivational (PD) regulator for height and proportional (P) regulators for pitch rate
and forward speed. Proportional regulator is simple amplifier of measured regula-
tory deviation, derivational regulator is amplifier of derivative of regulatory devia-
tion and proportional-derivational is their sum. Hence, the final form of control law
for CHARLIE in flight conditions given in previous text is expressed by following
equations.

δE = KPhEh + KDhEḣ + KPqEq = −0.00005h− 0.0004ḣ + q (7.6)

δT = KPuT u = −5000u (7.7)

Where KPhE = −0.00005, KDhE = −0.0004, KPqE = 1 and KPuT = −5000 are
parameters of the controller. Corresponding block-diagram is shown on figure 7.1.

Block-Diagram of the Whole System

The real altimeter has a delay. So there was added according to Mc.Lean[1] simpli-
fied model to reflect that fact. The very same thing is valid for elevator and engine
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7. CLASSIC CONTROLLER

Figure 7.1: Block-diagram of the classic controller.

and furthermore they have physical limits how fast and how big control actions may
be. Engine and actuator delays were added according to Mc.Lean[1] and rate lim-
iters were added to ensure realistic rate of control action. Both are shown on figures.
Maximum magnitude is given by amplification. It means that parameters were cho-
sen to hold control actions in realistic ranges. This will be discussed together with
results in section 7.2.

Figure 7.2: Block-diagram of the engine.

Figure 7.3: Block-diagram of the elevator.

7.2. Results of Simulation

It was chosen for simulation to request the change of height 10m in thunderstorm
turbulence with duration of 150s. As it can be seen from figure 7.5 maximal over-
shoot from requested value of height is around 10.6m and control rate is 300s. In this
time is regulatory deviation lesser than 5%. According to Mc.Lean[1] the available
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7.2. RESULTS OF SIMULATION

Figure 7.4: Block-diagram of the whole system.

excess thrust for CHARLIE is 525KN and only 10% can be used by the actuator.
We have maximum thrust deflection 15KN which is perfectly in the range.

Figure 7.5: Height, pitch rate and forward speed response of classic controller

Figure 7.6: Control actions of classic controller

42



8. FUZZY CONTROLLER

8. Fuzzy Controller
The construction of fuzzy controller is based on methods of fuzzy logic. This new
specialization of mathematic is able to process vague information. When there is
putting emphasis on accuracy of system’s description it always brings many prob-
lems with correct description. It’s coming into view that accuracy is principally
unapproachable so the effort to reach absolute accuracy always leads to the un-
solveable contradiction between relevance and accuracy of any information. This
principal called L.A.Zadeh

The Principal of Incompatibility:

When there is increasing complexity of any system our ability to de-
scribe it accurately is decreasing. It means that after exceeding certain
limit of complexity relevance and accuracy become mutually contrary
characterizations.

Using the methods of fuzzy logic it’s possible to apply vague information from
natural language to control.

The aim of following three section is to shortly describe the basic terms needed to
derive linguistic model of controller. It’s only an extract from theory available in a
number of publications. I’ve tried to hint in this theory what was used for building
the model of fuzzy controller.

8.1. Theory of Fuzzy Sets

8.1.1. Motivation

According to the Russell’s paradox there’s a contradiction in the naive set theory.
For a set S containing sets X that are not members of themselves is not possible to
judge, whether S is member of itself. This problem can be solved when we concede
not only statements like an element pertains or doesn’t to a set but everything
between them. It means that characteristic function of a set can hold not only
values 0 and 1 but continuously all between them, so the borders between sets are
fuzzy. It leads to formulation of the crisp set C for classic set where are only
two possibilities of membership and fuzzy set F where we have more possibilities of
membership.

8.1.2. Membership function

Definition: The membership function µF of a fuzzy set F is given by

µF : U → 〈0, 1〉 (8.1)

where U is universe, the set containing all elements, from which we select.
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Shapes of membership functions: Membership function used in this treatise
are triangular and trapezoidal. Let u, α, β, γ, δ ∈ U .

Λ - function (triangular)

Λ(u, α, β, γ) =


0 u < α
(u− α)/(β − α) α ≤ u ≤ β
(γ − u)/(γ − β) β ≤ u ≤ γ
0 u > γ

(8.2)

Π - function (trapeoidal)

Π(u, α, β, γ, δ) =



0 u < α
(u− α)/(β − α) α ≤ u ≤ β
1 β ≤ u ≤ γ
(δ − u)/(γ − δ) γ ≤ u ≤ δ
0 u > δ

(8.3)

Membership functions as areas: Vague terms like cold, pleasantly and hot for
example is possible to express by shifting a membership function through universe,U .
We use following terms to define areas of universe.

PB – Positive Big

PBS – Positive Big Small

PM – Positive Medium

PSB – Positive Small Big

PS – Positive Small

ZO – Zero

NS – Negative Small

NSB – Negative Small Big

NM – Negative Medium

NBS – Negative Big Small

NB – Negative Big

8.1.3. Basic Properties and Operations

Fuzzy set:

A = {(u, µA(u))/u ∈ U} (8.4)

Support:

S(A) = {x/µA(u) > 0} (8.5)
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8. FUZZY CONTROLLER

Convex fuzzy set:

∀x, y ∈ U and ∀λ ∈ 〈0, 1〉 holds

µA(λx + (1− λ)y) ≥ min(µA(x), µA(y)). (8.6)

Intersection and union:

There are more possibilities how to define intersection and union of fuzzy sets.
General approach uses triangular norms (t-norms) and triangular t-conorms (s-
norms). In this treatise is used Zadeh’s definition.

µA∩B(x) = min(µA(x), µB(x)) (8.7)

µA∪B(x) = max(µA(x), µB(x)) (8.8)

Fuzzy number:

is fuzzy set, A, defined on the real axis with following properties: A is normal,
convex fuzzy set with the limited support.

8.2. Theory of Fuzzy Logic - Approximate Reason-
ing

Approximate reasoning works with fuzzy propositions which have the truth value in
the interval [0, 1]. Its rule with the following form of fuzzy implication has vague
input information.

IF fuzzy proposition THEN fuzzy proposition

Those fuzzy propositions are the linguistic variables and they may consist of many
fuzzy propositions connected by logical conjunctions and, or. The first proposition
is the antecedent and the second is the consequent.

8.2.1. Linguistic Variable

Linguistic variable is the fundamental element representing a knowledge. The one
often used in fuzzy regulation is deviation, e, taking values from the set of terms  Le{
NB, NBS, NM, NSB, NS, ZO, PS, PSB, PM, PBS, PB} for the case of this treatise.
Linguistic variable can be described by ordered quartet:

〈e,  Le, U, Me〉 (8.9)
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8.3. FUZZY REGULATOR

Where e is symbolic name of the linguistic variable,  Le is ordered set of word values
variable can take, U is the universe (numerical range physical variable can take) and
Me :  Le −→ µ Le

is function mapping the word values into the values of universe
(its argument is the word value and returns the meaning of this value in terms of
fuzzy sets).

8.2.2. Fuzzy Propositions

Atomic fuzzy proposition can be obtained from natural language in three steps:

1. Physical variable ”deviation” indicate by e.

2. Its value ”negative big” indicate by NB.

3. Then we obtain an atomic fuzzy proposition e is NB.

The membership function, µNB, defines its meaning and the value of µNB determines
the degree with which the crisp value of physical variable deviation belong to the
fuzzy set NB. Atomic fuzzy propositions can be connected by logical operations.

Fuzzy Conjunction

When there are two atomic fuzzy propositions p : X is A and q : Y is B, where
the fuzzy sets A, B are defined on the same universe, U , then the meaning of the
compound proposition p ∧ q is given by intersection of fuzzy sets µA∩B.

Fuzzy Disjunction

When there are two atomic fuzzy propositions p : X is A and q : Y is B, where
the fuzzy sets A, B are defined on the same universe, U , then the meaning of the
compound proposition p ∨ q is given by union of fuzzy sets µA∪B.

Fuzzy Implication

There are many types of implication in fuzzy logic. The most popular type in
fuzzy regulation and used in this treatise is Mamdani implication. It’s defined by
(p ⇒ q) = (p ∧ q) where operation ∧ uses t-norm min.

8.3. Fuzzy Regulator

Basic terms of continuous control given in section 6.2.1 remain the same. Difference
is that fuzzy regulator is based on another principle where mathematical character-
ization is not needed. It’s sufficient to known way how to control called regulation
strategy which is described by the set of human-like commands of the IF-THEN
type. So the only requirement is knowledge of the regulation strategy and there’s
not needed to look for mathematical description of the regulated process.
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8.3.1. Structure of Fuzzy Regulator

Fuzzyfication component – This modul conducts normalization and fuzzyfica-
tion. Normalization is conversion of physical variables to the normalized uni-
verse based on scale. Fuzzyfication converts sharp values ofnormalized input
variables into the fuzzy sets.

Knowledge basis – It’s the ground of the fuzzy regulator constituted by a lan-
guage description(a set of the IF-THEN rules).

Inference mechanism – This part processes the inputs in accordance with the
knowledge basis which means that the rough deduction is conducted. The
result is the output fuzzy set which represents an action intervention.

Defuzzyfication component – It conducts defuzzyfication of the output fuzzy
set which means that this set is transformed to a concrete number. The result
is specific action intervention. The smallest of maximum method (SoM) was
used to avoid to big control actions.

So the simplified procedure of fuzzy regulation is:

1. Definition of the input and output variables.

2. Choice of the regulator type and the way of the rough deduction.

3. Construction of the knowledge basis.

4. Definition of the language context for all variables.

Types of fuzzy regulators

There’s the same dividing like in classic regulation. We have P, PD, PI and PID
regulators but in the means of the fuzzy logic. Fuzzy regulator is nonlinear function
defined by the IF-THEN rules.

Setting the Regulator Parameters

It’s done through normalization in fuzzyfication component by choice of scale.

8.4. Concept of Fuzzy Controller

Model was built by using MATLAB fuzzy toolbox. Input and output variables
remain the same as for classic controller. Linguistic context was chosen as discussed
in previous text. Fuzzy inference system is of Mamdani type. Membership functions
are triangular near zero value of linguistic variable and trapezoidal otherwise to
ensure fine regulation near requested value. Mapping of the set of terms into universe
is not the same for all variables. Every variable matches different mapping as came
out during experiments with model. See for example figure 8.1. Universe for every
used variables were derived from classic controller then adapted for fuzzy controller
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experimentally and they are given as follows: Uh = 〈−50, 50〉, Uḣ = 〈−6, 6〉, Uq =
〈−10−4, 10−4〉, UδE

= 〈−0.002, 0.002〉, Uu = 〈−10, 10〉, UδT
= 〈−104, 104〉.

8.4.1. Regulation strategy

Type of fuzzy regulator is similar to classic controller but there are some differences.
There was defined the set of 120 coarse rules as common fuzzy PD regulator (see
figure 8.2). Damping signal from pitch rate were used to define the set of 11 fine
rules when h and ḣ are both Z. That’s the reason why the universe of pitch rate
is so small. Control of pitch rate is needed only when approaching requested value
to stabilize aircraft movement. Response of regulator without the set of fine rules
settled in oscillations with constant amplitude and frequency and had permanent
regulatory deviation. The set of fine rules is defined as follows:

For both h and ḣ are Z,

IF q is NB THEN δE is NB,

else IF q is NBS THEN δE is NBS,

else IF q is NM THEN δE is NM,

else IF q is NSB THEN δE is NSB,

else IF q is NS THEN δE is NS,

else IF q is Z THEN δE is Z,

else IF q is PS THEN δE is PS,

else IF q is PSB THEN δE is PSB,

else IF q is PM THEN δE is PM,

else IF q is PBS THEN δE is PBS,

else IF q is PB THEN δE is PB.

Forward speed controller is simple fuzzy P regulator:

IF u is NB THEN δT is PB,

else IF u is NBS THEN δT is PBS,

else IF u is NM THEN δT is PM,

else IF u is NSB THEN δT is PSB,

else IF u is NS THEN δT is PS,

else IF u is Z THEN δT is Z,

else IF u is PS THEN δT is NS,

else IF u is PSB THEN δT is NSB,

else IF u is PM THEN δT is NM,

else IF u is PBS THEN δT is NBS,

else IF u is PB THEN δT is NB.
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8. FUZZY CONTROLLER

The block-diagram of fuzzy controller is shown on figure 8.3. All the other parts of
the system remain the same as for classic controller.

Figure 8.1: Mapping of the set of terms for pitch rate

Figure 8.2: Coarse rules for fuzzy height controller

Figure 8.3: Block-diagram of fuzzy controller
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8.5. RESULTS OF SIMULATION

8.5. Results of Simulation

Simulation was performed under the same conditions as for classic controller. As
it can be seen from figures 8.4 and 8.5 maximum overshoot is around 4.2m and
control rate is around 175s. Maximum thrust deflection is 8KN. Unfortunately we
have still small oscillations in pitch rate that we can’t remove. It’s a consequence
of inaccurate regulation. We don’t have precise value of 0 but certain area given by
the membership function Z. So we can’t never reach the accurate requested value
of controlled variable because there will be always area (smaller than Z) where
controller doesn’t regulate. It should be the task of subsequent research how to
inhibit such oscillations. As it can be seen from figure 8.5 oscillations in pitch rate
causes oscillations of the elevator which can cause detrition.

Figure 8.4: Height, forward speed and pitch rate response of fuzzy regulator

Figure 8.5: Control actions of fuzzy regulator
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9. CONCLUSION

9. Conclusion
As it can be found out from the results of simulations fuzzy controller shows much
better behaviour than the classic one. Maximum overshoot of fuzzy regulator is
approximately 4.2m against 10m for classic controller. The resulting control rate of
fuzzy regulator 175s is very good too especially when we realize that the duration
of simulated thunderstorm turbulence was 150s! On the other side the classic con-
troller has control rate for that simulation 300s. When we notice maximum throttle
deflections of the both regulators fuzzy controller is again markedly better with
8KN which is nearly half of the result of the classic regulator which has 15KN. It
shows possible good economical acceptability of fuzzy controllers. Better stability
of the fuzzy regulator was perceived already during the design process. Universe for
control and action quantities of fuzzy controller was set in the first step to reflect
the structure of the classic regulator. It’s worth to mention that especially possible
deflection of elevator as a result of signal from regulatory deviation was significantly
increased by enlargement of UδE

and the system remained perfectly stable. On the
other side it came out that the fuzzy controller had problems when approaching
the requested value. There remained oscillations in the pitch rate which caused
subsequent oscillations of the elevator. This should be the task for further research
how inhibit those oscillations not to cause detrition of the elevator. Another open
question is what happens when any defect of the aircraft occurs. To simulate such
situation it’s needed to have much more data about the modeled aircraft.
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