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INTRODUCTION 
Sound and music has always been a significant part of human culture, resulting in the natural 

need of recording and storing the music information. However, and audio signals are by nature 

disposed to different types of quality degradation. The degradations may arise directly during 

the recording process, they can be caused by the damage of the medium (such as the wax 

cylinder, L P , C D , etc.) or they can occur during transmission or streaming of the audio file. 

There are many types of signal corruption. One of the most common is noise, which is 

usually described as an interference of the useful signal wi th an undesired signal that carries 

no useful information. Another very common type of signal degradation is clipping, which 

causes l imitation of the dynamic range and thus loss of information in the peaks of the signal. 

The loss of samples can also be considered as a type of audio signal degradation. 

Degradation of the signal does not necessarily need to be caused by accident. It can also 

be performed on purpose in order to reduce the size of the audio file. One may mention the 

quantization of the signal samples in the time domain or the lossy audio compression. 

Typically, the corruption of the signal is irreversible and besides the perceptual quality of 

audio, it also affects several other fields such as automatic speech recognition in voice-controlled 

systems, medical diagnosis based on patient's speech analysis, compression and coding of audio 

signals in transmission systems, and many more. Therefore, to achieve a sufficient (or at 

least improved) perceptual quality, or to enhance the performance of systems that work wi th 

corrupted audio signals, it is necessary to perform restoration of the damaged audio signal. 

The restoration tasks are usually formulated as inverse problems, handling each type of 

degradation individually; the restoration of the noisy signal is referred to as denoising, com­

puting the missing samples is called inpainting, and recovery of the clipped or quantized 

samples is known as declipping and dequantization, respectively. Even though the restoration 

tasks can be approached in a similar way, each task is rather specific and requires satisfying 

different conditions based on the type of the restoration task. For this reason, the Thesis is 

mainly focused on clipping as one of the most common type of audio signal degradation and 

the corresponding restoration task—declipping. However, part of the Thesis is also devoted 

to the adaptation of declipping algorithms to the problem of audio dequantization. 

Focusing purely on declipping, there are several commonly available tools that are able to 

find and repair clipped segments of audio signals. Nevertheless, the greatest weakness of these 

tools is that they are designed to be fast, simple, and user-friendly and thus they are usually 

based on interpolation, which is suitable only for the restoration of mildly clipped signals. In 

the case of moderate or severe clipping, these tools cannot fully remove the negative effects of 

clipping and may even produce artifacts that might degrade the perceived audio quality even 

more than the clipping itself. This further motivates scientists and audio engineers to develop 

new audio declipping methods that are able to deliver the best possible restoration quality wi th 

the lowest possible computational complexity. This work builds on previous research in the 

field of audio restoration and aims at proposing and implementing effective audio restoration 

methods with the primary focus on audio declipping and dequantization. 
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1 CLIPPING AND QUANTIZATION 
This chapter is devoted to the nonlinear damage of the audio signal this Thesis works with, 

i.e., clipping and quantization. The first section discusses clipping and explains the basic 

questions about clipping (what clipping is, where it may arise, why it causes problems, etc.), 

followed by a section, which discusses the general formulation of the declipping problem. Next 

follows the section on quantization, where different types of quantization are outlined and the 

quantization models used in this work are described and illustrated on examples. Similarly to 

declipping, the basic idea of the dequantization problem is specified in the final part of this 

chapter. 

Clipping can be described as a nonlinear form of signal distortion affecting peaks of the signal. 

It usually occurs when a signal exceeds its allowed dynamic range and the signal peaks get 

clipped to the boundaries of the dynamic range. Thus, information located in the peaks is lost. 

From the frequency-domain perspective, such a nonsmooth phenomenon naturally produces 

artificial higher harmonics. The newly-introduced higher harmonics shift the signal energy 

towards higher frequencies, which may cause trouble in some applications. 

Even though clipping may affect any type of signal, the most common occurrence of this 

artifact is wi th audio signals where causes undesirable and perceptually unpleasant artifacts. 

Cl ipping may occur during the recording stage when the input gain on the recording equipment 

is set a bit too high. Also recording loud sounds using microphones with low dynamic range 

(typically integrated in a notebook or mobile phone) may result in clipping. In the analog 

domain, clipping is very often caused in amplifiers by the limited range of output transformers. 

Cl ipping is an undesirable effect that may cause several problems. Not only has clipping 

a significant negative effect on the perceptual quality of the signal [1]. Several studies show 

that it also degrades the accuracy of automatic speech recognition [2, 3, 4], causes problems in 

L P C prediction, resulting in an inaccurate estimation of L P C [5], or degrades the accuracy of 

voice-based Parkinson's disease detection [6]. During reproduction, severe clipping can even 

damage the loudspeaker [7]. 

According to the character of clipping, two different types of clipping can be distinguished— 

hard clipping and soft clipping. The effect of both types is demonstrated on a sine wave both 

in the time-domain (see F ig . 1.1a) and in the magnitude spectrum (see F ig . 1.1b). In the case 

of hard clipping, samples of the signal x e MN are l imited to fit the dynamic range given by 

clipping thresholds [—9C, 6C]. The clipped signal y G WLN can be formally prescribed as 

where the subscript n refers to the n-th sample of the signal, and sgn represents the signum 

Clipping 

function. 
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Fig . 1.1: Demonstration of the hard clipping and soft clipping on a sine wave. The frequency 
of the sine wave is 5 Hz and the sampling frequency is 500 Hz. The clipping threshold for both 
hard clipping and soft clipping was set to 9C = 0.5. The magnitude spectra were generated 
from 20 seconds of audio, and the Blackman window was used to attenuate the side lobes of 
the spectra. 

Declipping 

B y the term declipping, it is meant the inverse task of estimating the original signal x from 

the clipped observation y . The goal of declipping is to provide signals most similar to the 

unknown original reference or at least to remove the disturbing phenomena caused by clipping. 

In line with (1.1), the indexes of signal samples can be divided into three disjoint sets 

R, H and L, such that R\J H U L — { 1 , . . . , T V } , which correspond to the positions of reliable 

(not influenced by clipping) samples, and samples that have been clipped to the high clipping 

threshold 9C and low clipping threshold — 9C, respectively. To select only samples from the 

specific set, the respective restriction operators M R , M H and M L (also called masks) are used. 

These operators can also be viewed as matrices, which are formed from the identity matrix 

N x TV by removing the respective rows that do not belong to the selection. 

In the declipping restoration task, it is natural to desire that the recovered signal x should 

match the clipped signal y at the reliable positions, and at the clipped positions, its samples 

should lie above 9C or below — 9C. Such conditions can be formalized by defining a (convex) 

set of time-domain signals T as follows: 

r = { i e l w M R x = M R y , M H x > 9C, M L x < -9C}, (1.2) 

where the inequalities are considered elementwise. Such an approach, where the reconstructed 

signal x is forced to lie in the set of feasible solutions T, i.e., x e T, is called consistent or fully 

consistent. This approach is necessary to obtain the restored signal x that is as close to the 

unknown original signal x as possible. O n the other hand, it is possible to sometimes break 

the consistency of the solution and allow some deviation on reliable samples. Such solutions 

are referred to as R-inconsistent. 

7 



Quantization 

Quantization is the mapping of continuous amplitude values to the nearest quantization levels 

that can be represented by a finite number of bits [8]. This step is inevitably lossy and a 

quantization error e is introduced, defined as the difference between the original and quantized 

signal. Formally, the general concept of quantization can be prescribed as 

{yq)n = %n e n i (1-3) 

where y q denotes the quantized signal, x is the original signal and e represents the quantization 

error. The Thesis focuses mainly on uniform mid-riser quantization, according to which the 

quantized signal y q G MN is obtained as 

{yq)n = sgn+(x n) • A • :i-4) 

where n denotes the n-th sample of the signal, A is the quantization step given by A = 2 • 

and s g n + denotes the altered signum function, returning 1 also for the zero input. 

Dequantization 

Dequantization, similarly to declipping is the inverse task of estimating the original signal x 

from its quantized observation y q . 

There is a number of reasons why dequantization is an important task and has its applica­

tion. In some cases, where the original audio was recorded wi th low dynamic range or needs 

to be further edited, the standard 16 bps bit depth could be insufficient. Another application 

of dequantization may arise in special cases, where less than the standard bit depth has to 

be used. This can typically occur in communication systems due to bandwidth limitations 

[9, 10]. Recently, the need to enhance the bit-depth of audio signals appeared in artificial 

audio generation using a Flow-based Neural Vocoder [11]. 

From the definition of the uniform quantization, we can assume that the unknown original 

sample xn lied no further than half of the quantization step from its current quantization level 

y^. Thus, the searched unknown vector x e MN should fulfill the following requirement: 

Vn:yl-^<xn<yl + ^. (1.5) 

The dequantization conditions can be formalized by defining the convex set Y as follows: 

T = | x | | | x - y q | | o o < (1.6) 

and then require the dequantized signal to lie in this set, formally x e V. A s in the declipping 

case, strictly forcing x to lie in Y is called the consistent approach but it is also possible to 

extend the allowed interval for each quantization level and thus allow some deviation from Y. 
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2 THESIS AIMS AND OBJECTIVES 
The main aim of the Thesis is to propose and implement effective methods and algorithms for 

the restoration of corrupted audio signals wi th the primary focus on audio declipping. 

To do so, the declipping task wi l l be first formulated as an optimization problem, and then 

optimization algorithms wi l l be chosen to solve the problems. The developed methods can be 

further improved by involving additional information about the signal, such as psychoacoustic 

information or information concerning the characteristics of the clipped samples. A special 

focus is also paid to improving the results obtained by methods inconsistent in the reliable 

part. 

A necessary part of the Thesis is the evaluation of the achieved results, which wi l l be 

performed on a common dataset using several evaluation metrics. Selected algorithms wi l l 

also be applied to the problem of audio dequantization and evaluated using the same metrics 

as in the case of declipping. 

Following the idea of reproducible research, the implementations of the algorithms for 

audio declipping and dequantization wi l l be made publicly available. 

Formulation of the declipping problem 

First , the declipping problem using sparse representations wi l l be formulated. This task seems 

rather simple, but there are sti l l several possibilities how the problem can be formulated. 

A critical role plays the sparsity promoting regularizer. It can be hard thresholding approxi­

mating the nonconvex £c r n orm, soft thresholding being the proximal operator of the convex l\ 

norm or possibly a shrinkage operator promoting a structure of the time-frequency coefficients. 

There are two possible approaches to signal modeling—the synthesis and analysis models. 

The Thesis wi l l explore both signal models and compare them in different modeling schemes. 

Also, the set of feasible solutions can be formulated in multiple ways. The main issue is 

whether the problem should always obey the full consistency according to (1.2) or whether 

a slight deviation on the reliable samples could bring an improved perceptual quality of the 

reconstructed signal. 

Selecting the optimization algorithm 

Since finding the ideal solution to the recovery problem is NP-ha rd in most of the cases, the 

solution is usually approximated and numerically solved using an optimization algorithm. 

For convex optimization problems, the Thesis wi l l focus primarily on proximal splitting 

methods. Nonconvex problems wi l l be approached by the means of A D M M . 

It is also possible to explore and experiment with different types of optimization algorithms. 

The a im is to find an algorithm with sufficient accuracy, fast convergence, robustness, and low 

computational expenses, although restoration quality remains the main goal. 
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Apart from delivering new algorithms, the aim of the Thesis is also to improve existing 

ones. For instance, a one-step projection could significantly speed up the synthesis model-

based restoration tasks. Also, it was found out that in [12], the presented synthesis variant 

of the S P A D E algorithm (S -SPADE) does not fit the A D M M paradigm. Therefore, finding a 

proper synthesis variant of S P A D E is also one of the goals of the Thesis. 

Adding a priori information 

Even though methods purely based on a sparsity assumption can obtain good restoration 

results, there is stil l room for improvement. Considering some additional assumptions about 

the signal may significantly improve the perceived quality of restoration. 

One of the promising ways is to involve psychoacoustics in the restoration task, which 

should help to restore mainly perceptually significant coefficients and thus improve the per­

ceived restoration quality. Also, information about the distribution of spectral components 

introduced by clipping could be used to distinguish the original spectral components and the 

distortion components. 

The Thesis wi l l be looking for ways to obtain and implement the above-mentioned infor­

mation into the restoration algorithms. 

Replacing reliable samples 

Some of the existing audio declipping algorithms produce solutions inconsistent in the reliable 

part wi th the option to force the consistency in the postprocessing step. Such a task naturally 

increases the S D R , however to the best of our knowledge, no study examined what effect 

this postprocessing replacement has on the perceived audio quality. Therefore, this part of 

the Thesis wi l l study the results and consequences of the mentioned replacement. Also, an 

effort wi l l be made to introduce novel methods for quality enhancement of the inconsistent 

declipping methods exploiting the knowledge of reliable samples. 

Evaluation 

A n indispensable part of the Thesis is the evaluation of the obtained results from the im­

plemented algorithms. The results of the methods included in this Thesis wi l l be evaluated 

and compared to other state-of-the-art methods. To evaluate the quality of restoration, clas­

sical error measures such as the signal-to-distortion ratio (SDR) , and perceptually motivated 

objective evaluators like P E A Q or P E M O - Q wi l l be used. 

A majority of previous research papers on audio declipping used various audio datasets, in 

most of the cases sampled at 16 kHz. Such a low sampling frequency has been used mainly for 

computational reasons. One of the goals of this Thesis is to compare existing audio declipping 

approaches on a common dataset with excerpts sampled at 44.1kHz, i.e., the standard audio 

quality. This dataset, created specifically for this task, wi l l be publicly available to enable the 

comparison of the declipping methods developed in the future wi th the already existing ones. 
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Audio dequantization 

As indicated in Chapter 1, audio declipping and dequantization are very similar tasks, although 

audio dequantization has gained far less research interest than declipping. Therefore, as a 

part of the Thesis, the selected audio declipping algorithms wi l l be adapted to solve the 

dequantization problem to examine whether successful audio declipping methods wi l l also 

perform well in the dequantization case. 

Algori thm implementation 

Last but not least, G i t H u b repositories with M A T L A B implementations of the developed 

declipping and dequantization algorithms wi l l be created, containing also the testing audio 

excerpts. Moreover, a supplementary web page for audio declipping wi l l be created, containing 

a comparison of different declipping methods with the option to compare the achieved results 

by listening to the declipped excerpts. 
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3 EXPERIMENT DESIGN AND EVALUATION 
This chapter is devoted to a description of the experiments that wi l l be performed and de­

scribed later in this Thesis, in order to compare the achieved audio quality of the proposed 

restoration algorithms. 

The audio dataset used for all the following experiments and evaluations consists of 10 mu­

sical excerpts in mono wi th an approximate duration of 7 seconds and a sampling frequency 

of 44.1kHz. It was extracted from the database called "Sound Quali ty Assessment Mater ia l 

recordings for subjective tests" ( S Q A M ) 1 provided by European Broadcasting Union ( E B U ) . 

Selected audio tracks were transferred into mono signals by averaging the left and right chan­

nels, cut using the Adobe Audi t ion CS6 to an approximate duration of 7 seconds (depending 

on the content of the excerpts), and saved as uncompressed W A V files wi th 16 bps bit depth 

and a sampling frequency of 44.1 kHz . 

The clipped audio files were created by artificially hard clipping the input signals in agree­

ment with the definition of hard clipping in E q . (1.1). The amount of distortion added into 

the signals is quantified using the Signal-to-Distortion Rat io (SDR) , which is for signals u and 

v defined as 

SDR (u ,v) = 201og 1 0 „ N UN 2„ . (3.1) 
| | u - v | | 2 

We performed several informal listening tests based on which we chose 7 different clipping 

levels, to cover the range from very harsh clipping to mi ld but st i l l noticeable clipping. The 

selected input S D R values are 1, 3, 5, 7, 10, 15, and 20 d B . 

For the dequantization experiments, we exploited the classical uniform mid-riser quantiza­

tion according to E q . (1.4) wi th word lengths ranging from 2 to 8 bps. 

The quality of the restored signal x is evaluated as SDR (x , x), where x represents the 

original signal and the S D R is computed using Eq . (3.1). We also define S D R C , which is S D R 

computed only on the clipped samples, and improvement of the S D R denoted as A S D R . The 

similarity in waveforms may not necessarily imply perceptual quality, therefore, we also use 

perceptually-motivated measures, specifically P E A Q [13] and P E M O - Q [14]. Bo th metrics 

output the Objective Difference Grade ( O D G ) , which measures the degradation of a test 

input relative to a reference input, and ranges from 0 (imperceptible degradation) to —4 (very 

annoying degradation). 

Restoration algorithms based on sparse representations rely heavily on the representa­

tion used. Purely frequency transform, such as Discrete Fourier Transform ( D F T ) , is not 

typically a good representative of the signal since audio signals are not stationary and the 

frequency changes over time. Therefore, we picked the Discrete Gabor Transform ( D G T ) as 

the time-frequency representation, wi th a Hann window as the used window function. For al l 

experiments, the length of the window was set to 8,192 samples (approx. 186 ms) wi th 75% 

overlap and 16,384 frequency channels. 

https://tech.ebu.ch/publications/sqamcd 
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4 AUDIO DECLIPPING ALGORITHMS 
This chapter is devoted to a detailed description and comparison of various sparsity-based 

audio declipping algorithms, which forms one of the main contributions of this Thesis. It 

contains both the original algorithms developed by the author and the adopted algorithms, 

which, nevertheless, have been reimplemented or modified for better performance. Most of 

the algorithms have been published as a part of the audio declipping survey [15]. 

Consistent £\ minimization 

First , we approach the declipping problem using the synthesis variant of £i-relaxed declipping 

problem, which in the uncoinstrained form takes form of 

arg min | | z | | i + tr*(z), (4.1) 
z 

where z e C p denotes signal coefficients in the transformed domain. To solve this problem, it 

is possible to use the Douglas-Rachford (DR) algorithm since the problem takes the form of 

a sum of two convex functions. The two main steps of the algorithm are soft thresholding as 

the proximal operator of £ i -norm, and the projection onto the set T* as the proximal operator 

of the respective indicator function tr*, which for Parseval tight frames (DD* = Id) and a 

box-type set T can be computed using the following closed-form formula: 

p r o j r , (z) = z - D* (Dz - p r o j p p z ) ) , (4.2) 

where the inner projection step is a projection onto a box-type set and in the particular case 

of declipping can be computed as a simple time domain elementwise mapping 

{ yn for n G R, 

max(# c ,x n ) iorneH, (4.3) 

min(—9C)xn) for n G L. 

Before the explicit projector was developed, the projection had to be computed for all three 

sets R, H, and L separately, corresponding to the problem 
arg min | | z | | i + LR*{Z) + tH(Dz) + tL(Dz), (4.4) 

z 

where R* denotes the set corresponding to the reliable samples in the transformed domain, 

formally 

R* = {z e Cp | MRDz = MRy}. (4.5) 

The problem (4.4) can be optimized using the C o n d a t - V u ( C V ) algorithm. The exper­

iments conducted in the Thesis show that both algorithms converge to the same solution, 

however, the D R algorithm converges significantly faster making it the preferred choice. 
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The analysis variant of the consistent t\ relaxation problem is formulated as 

axg m i n | | A x | | i + t r (x) . (4-6) 
X 

To solve this problem, the Chambolle-Pock (CP) algoriothm is used. Two principal steps of 

the algorithm are the clip function and projection onto T. The projection is computed in the 

time-domain, which is the same simple elementwise mapping as in (4.3), and the clip function 

is the result of Fenchel-Rockafellar conjugate of the soft thresholding as the proximal operator 

of the £i -norm. 

The comparison of the D R and C P algorithms presented in the Thesis reveals that the 

synthesis approach tends to converge faster and produces consistently better results in terms 

of A S D R than its analysis variant using the Chambolle-Pock algorithm. 

Reweighted t\ minimization 
The idea of reweighting applied to audio declipping was published by Weinstein and Wakin 

[16] under the acronym R ^ i C C (Reweighted i\ wi th Cl ipping Constraints), and it was shown 

that reweighting can significantly improve the overall declipping performance. Nevertheless, 

the authors assume only the synthesis model of the signal and provide no algorithm to solve 

the optimization problem. The weighted variant of the problems read 

arg min | |w © z | | i + ip*(z), (4.7a) 
z 

arg min | |w © A x | | i + <-r(x), (4-7b) 
X 

and the weights are computed from the current temporary solution z as w = The 

problems are solved via the D R algorithm and the C P algorithm for the synthesis variant 

(4.7a) and analysis variant (4.7b), respectively. 

The experiments conducted in the Thesis show that in the synthesis case, the reweighting 

helps to improve the restoration quality according to the A S D R . However, a significant 

improvement can be observed only for the first three outer iterations. Then the performance 

in terms of A S D R levels out and even drops a little after reaching 8 iterations. O n the 

other hand, the experiments suggest the dominance of the analysis approach, since the results 

improve wi th every outer iteration and outperform the synthesis variant. 

^-inconsistent l\ minimization 
For a long time, the approach proposed by Defraene et al. [17] was the only one to include 

psychoacoustics in declipping (both in the model itself and in the evaluation). The optimiza­

tion task is based on the weighted ^ - n o r m of the coefficients, it allows a deviation on the 

reliable samples and it is formulated as 

arg m i n ( - i - | | M R j D z - M R y | | ^ + | |w © z l d ) s.t. Dz e T H H T L . (4.8) 
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To be more specific about the method, the signal is processed window-by-window, and the 

task (4.8) is solved independently for the signal chunks given by windowing. The optimization 

core of the algorithm (called CSL1) in the original paper [17] was built upon the C V X toolbox 

[18] but no implementation is available. Here, we decided to solve the optimization problem 

using a proximal algorithm, specifically the C o n d a t - V u algorithm. 

Social Sparsity 

Siedenburg et al. [19] utilized the concept of social sparsity. The algorithm is based on solving 

the following optimization problem: 

min fy\MRDz - MRy\\2

2 + ^\\h(MHDz - M H 0 C 1 ) | |1 + 

+ l-\\h{-MhDz - ML6cl)\\l + Aft (z)} , (4.9) 

where the symbol 1 represents the vector of ones, which is as long as the signal. The deviation 

of the clipped samples from the feasible sets T H and T L is penalized using the hinge function 

h. Furthermore, 1Z represents the regularizer of the time-frequency (TF) coefficients. The 

original paper [19] suggests using four types of shrinkage operators—LASSO (L), Windowed 

Group L A S S O ( W G L ) , Empir ical Wiener ( E W ) , and Persistent Empir ica l Wiener ( P E W ) . 

The problem is numerically solved by the Iterative Shrinkage/Thresholding Algor i tm (ISTA). 

In the case of the social shrinkage operators W G L and P E W , it is necessary to specify the 

size of the coefficient neighborhood in the T F plane. For the test case of the experiments, 

the best-performing size of the neighborhood was 3 x 7 (i.e., 3 coefficients in the direction of 

frequency and 7 coefficients in time, symmetrically distributed around the point tf), which 

wi l l be used further in the Thesis. 

The Thesis also studies the convergence speed of the algorithm and exploits different 

strategies (ISTA, F I S T A , Adaptive Restart ( A R ) , and A R wi th threshold) to accelerate the 

convergence of the algorithm. 

Consistent £q approximation 

Another successful approach to audio declipping called Sparse Audio Declipper ( S P A D E ) was 

presented in [12], where the optimization problem is formulated using the £ 0 - n o r m a s 

a r g m i n | | z | | 0 s.t. x e T and ||Ax — z | | 2 < e, (4.10a) 
x,z 

argmin | | z | |o s.t. x G T and ||x — Dz\\2 < e, (4.10b) 
x,z 

where (4.10a) and (4.10b) represent the problem formulation for the analysis and the synthesis 

variant, respectively, and e is a selected parameter. 
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The signal is cut into overlapping blocks and windowed prior to processing. Therefore, in 

(4.10), y should be understood as one (and each) of the signal chunks. The overall resulting 

signal is made up by the overlap-add procedure. A s the transform, S P A D E algorithms use 

the (overcomplete) D F T . 

This Thesis provides a basic derivation of the algorithms. For more details, we refer the 

reader to the report [20] The Thesis also describes exploiting the projection (4.2) to accelerate 

the original synthesis variant S - S P A D E . Later, it was found out that the S - S P A D E is not quite 

a synthesis counterpart of the A - S P A D E because both optimization subtasks are carried over 

z (in the domain of coefficients). It can be shown that the problem formulation corresponding 

to the S - S P A D E algorithm is 

m i n | | z | | 0 s. t. D w G T and llw — z | | 2 < e. (4.11) 
w,z 

Therefore, we developed a new synthesis variant of the S P A D E algorithm, which is t ruly the 

synthesis counterpart of A - S P A D E and solves (4.10b). This new algorithm is referred to as 

S - S P A D E "Done Properly" and was published in [21]. 

Results and discussion 

This section is designed to perform the overall comparison of the algorithms presented in 

this chapter, which are also compared wi th four additional algorithms—Constrained Orthog­

onal Matching Pursuit ( C - O M P ) [22], Dictionary Learning (DL) [23], Nonnegative Mat r ix 

Factorization ( N M F ) [24], and Janssen's method [25]. 

The comparison of the methods is in the Thesis performed using A S D R C , P E A Q , and 

P E M O - Q . The average results of the latter are displayed in F ig . 4.1. 
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Fig . 4.1: Average declipping performance in terms of P E M O - Q O D G . 

Apar t from the restoration quality, the computational complexity of the algorithms is also 

evaluated in the Thesis. The average worst-case computational time per a second of audio 

can vary from 20 seconds for consistent l\ minimization to almost 1 hour for N M F . 
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5 INCORPORATING PSYCHOACOUSTICS INTO 
AUDIO DECLIPPING 

The only algorithm exploiting any additional information based on psychoacoustics was by 

Defraene et al. [17], coined P C S L 1 . The authors utilized the effect of simultaneous masking 

and used the M P E G psychoacoustic model to weight the time-frequency coefficients during 

the ^ -min imiza t ion , solving the problem (4.8). 

In this chapter, we utilize the fully consistent optimization problems based on the weighted 

^-min imiza t ion , are solved using the D R and C P algorithms for the synthesis and analysis 

variant, respectively. Moreover, three possible constructions of the weights are presented— 

based on the absolute threshold of hearing ( A T H ) , on the global masking threshold ( G M T ) , 

and on a quadratic curve. The presented approaches for the synthesis variant using the D R 

algorithm were published in a conference paper [26]. 

Absolute threshold of hearing 
A T H represents a good indicator of the sensitivity of human ear at certain frequencies. There­

fore, the main idea of using the A T H in the declipping task aims at eliminating the negative 

effects of clipping especially at frequencies where the human ear is most sensitive. This can 

be achieved by weighting the T F coefficients such that large weights correspond to frequencies 

wi th low respective A T H values and vice versa. Since the task of creating the vector of weights 

from the A T H is not straightforward, we examine the following three possibilities: 

W A T H I = (t - min(t) + l ) " 1 , (5.1a) 

W A T H 2 = - t + T, (5.1b) 

W A T H 3 = 2 • 10" 5 • 1 0 ( - t + r ) / 2 0 , (5.1c) 

where t represents the vector of the A T H values for equispaced frequencies and r is the 

parameter that sets the maximum value of the A T H in d B . 

Global masking threshold 
The information contained in the G M T can be used to focus on perceptually important compo­

nents of the signal, while less audible components can be tolerated to a greater extent because 

they wi l l be masked and thus not perceived. Consequently, the weights should be constructed 

in a similar way to the case of A T H , i.e., low values of G M T should produce large weights and 

vice versa. To do so, we utilized the same possibilities (5.1), only t now represents the G M T . 

To compute the G M T from the obtained data, a slightly modified M P E G - 1 Psychoacoustic 

Model 1 is used. The official standard is strictly l imited to 512-sample long windows, and the 

used representation works wi th 8,192 samples long windows with 16,384 frequency channels. 

Hence, we used a slightly modified and simplified version of the psychoacoustic model, which 

is not restricted in terms of the block length. 
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Parabola-based weights 
Apart from the A T H and G M T based variants, we also include a third option which is based 

on the idea that most of the energy in audio signals is usually concentrated at lower frequencies 

and that clipping introduces artificial higher harmonics that were not present in the original 

signal. Consequently, the weights are constructed in such a way that the higher harmonics 

are suppressed, while the lower frequencies are preserved. 

A simple and effective approach to addressing this issue is to weigh the coefficients l in­

early, however, better restoration results are obtained when a second-order polynomial is 

used. Formally, these weights are for the real-valued D G T obtained as w p = m © m, where 

m = [ 1 , . . . , y\ + 1]> where M is the number of frequency bins of the D G T . 

Results and discussion 
The experiments conducted in the Thesis show that weighting wi th the G M T is a better idea 

than using a simple A T H curve. Also, the best variant of converting the G M T or A T H curves 

into the actual vector of weights w seems to be the one using the inversion, i.e., E q . (5.1a). 

Nevertheless, among all the choices, the best results by far are obtained by the parabola 

weights, which produce approximately 10 dB better results than the plain l\ minimization. 

The overall P E M O - Q results are illustrated in F ig . 5.1. In this comparison, we include all 

three weight types ( A T H , G M T , parabola) along with the nonweighted variants. For com­

parison, we include Defraene's approaches [17] C S L 1 (nonweighted variant), P C S L 1 (weighted 

using the G M T ) , and we also incorporate the parabolic weights into this algorithm, leading 

to a Parabola-weighted C S L 1 ( P W C S L 1 ) . For reference, the two best-performing algorithms 

from Chapter 4, i.e., SS P E W and N M F , are also part of the evaluation. 
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Fig . 5.1: Average declipping performance in terms of P E M O - Q . 

To briefly summarize the obtained results, we note that the proposed fully-consistent ap­

proaches significantly outperform the C S L l - t y p e algorithms. When weighting is utilized, the 

analysis variant using the C P algorithm marginally outperforms its synthesis counterpart. 

The best results obtained by the l\ C P using the quadratic weights are compatible wi th the 

state-of-the-art methods, and in some cases (very low input SDRs) are even slightly better. 
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6 REPLACING RELIABLE SAMPLES 
Some audio declipping methods produce waveforms that do not fully respect the actual process 

of clipping and allow a deviation from the consistency set T (see its definition in (1.2)). In 

this chapter, the focus is paid to declipping methods producing solutions inconsistent in the 

reliable part (R-inconsistent), for which it generally holds that M R X 7^ M p y , where x e WLN 

represents the reconstructed signal obtained by i?-inconsistent method, and y G MN is the 

clipped observation. 

This chapter examines what effect on perception it has if the output of such ^-inconsistent 

methods is pushed towards consistent solutions by postprocessing. First , a simple method 

based on a straightforward replacement of the reliable samples is described. Consequently, two 

different solutions are introduced to cope with the negative effects of the basic replacement-

one based on audio inpainting and the other exploiting crossfading wi th the clipped signal. 

Basic replacement 
The ^-inconsistent solutions may be easily turned into consistent by straightforward replace­

ment of the reliable samples from the clipped observation called the basic replacement (BR) , 

formally M R X = M-&y. However, the main problem of the B R strategy is the risk of creat­

ing sharp transitions between the reliable samples (newly replaced by parts of the observed 

signal) and the rest of the signal (i.e., the reconstructed peaks). Such a nonsmooth phe­

nomenon results in an undesirable occurrence of broadband spectral components, which may 

have a negative effect on the perceived quality of the restored audio. Nevertheless, the gain 

in the perceptual quality of the declipped audio obtained by the simple replacement strategy 

can outweigh the just described disadvantage. 

Inpainted replacement 
To leverage the knowledge of reliable samples while avoiding the sharp edges at the transitions, 

a method based on audio inpainting was published in [27]. The main idea of this approach 

combines the B R method with audio inpainting, such that a number of samples at the be­

ginning and at the end of each clipped section of the signal are "deleted" and then estimated 

using a selected audio inpainting method, while the "middle" part of the clipped sections along 

wi th the (replaced) reliable samples are fixed. This approach is coined Inpainted replacement 

(IR). 

The experiments conducted in the Thesis show that the IR strategy outperforms the basic 

replacement only for declipping methods that were inferior to prior any replacement. For 

a priori favorable methods, such as SS P E W , this strategy fails. Apar t from the inpainting 

using plain l\ minimization approach, the work [27] also introduces a more complex model 

based on adaptive reliability of the declipped samples. In contrast to the plain IR approach, it 

allows a nonbinary classification of the reliability of the declipped samples. However, it turns 

out that this approach only magnifies both the gains and losses obtained by the plain IR. 
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Crossfaded replacement 
Another method designed to suppress the negative effect of sharp transitions caused by the 

B R method was introduced in [28]. The main principle of this method lies in crossfading the 

inconsistent declipping solution wi th the observed signal such that the reconstructed peaks 

gradually blend into the reliable parts. 

Even though the idea of crossfading is fairly simple, there are several options and parame­

ters to choose from. It is the location of the crossfaded region, type of the crossfade, length of 

the crossfaded section, and a way how to treat segments that are shorter than the predefined 

length. The Thesis studies the best possible setting of these parameters to achieve the best 

possible O D G results. It also shows that the C R method provides significantly better results 

than IR with much lower computational cost and that the C R strategy not only raises the 

limit of the achievable O D G via SS P E W but also that similar perceptual performance can 

be reached with significantly fewer iterations. 

Results and discussion 
The overall P E M O - Q O D G results are illustrated in F ig . 6.1. The results suggest a significant 

improvement of the reconstruction quality when the crossfaded replacement is applied, espe­

cially at medium and high input SDRs . In some cases of very harsh clipping (input S D R of 

1 and 3 dB) , both replacement strategies can decrease the O D G score of the declipped signal 

for some of the methods. Nevertheless, the C R technique dominates for high input SDRs 

and usually provides better results than B R . SS P E W even with applied C R strategy did not 

outperform the N M F . However, the O D G difference between the two was significantly reduced 

after the application of C R , wi th a much lower computational cost. 

• C-OMPrec l=lCSLlrec a P C S L l rec I = | P W C S L 1 rec • S S E W r e c 1=1 SS P E W rec I=|DL rec 
• C - O M P B R M C S L I B R I = I P C S L 1 B R M P W C S L I BR | = | S S E W B R | = | S S P E W B R H D L B R 
• C - O M P C R M C S L 1 C R cziPCSLl C R ^•PWCSLl C R M S S E W C R I=ISS P E W C R H D L C R 

Input SDR (dB) 

Fig . 6.1: Average P E M O - Q O D G values for inconsistent restoration (lightest color shade), B R 
strategy (medium shade) and C R strategy (darkest shade). Dotted lines represent the average 
O D G value of the clipped signals, and the black dashed lines indicate the best O D G result 
obtained by the methods from the previous chapters. 
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7 AUDIO DEQUANTIZATION ALGORITHMS 
This chapter aims at adopting selected sparsity-based methods previously introduced for audio 

declipping to the problem of audio dequantization. Since the set of feasible solutions is for 

both clipping and quantization a box-type set, it is possible to use the same algorithms for 

audio dequantization as for declipping, and the only difference is in the projection step. 

First , the consistent l\ minimization approach to audio dequantization is utilized and 

solved via the D R algorithm for the synthesis variant and the C P algorithm for the analysis 

variant. Al lowing some deviation from the feasible set T leads to an inconsistent approach, 

that penalizes the deviation from F using the squared distance function. The synthesis vari­

ant is in the Thesis solved via F I S T A (using the gradient of the distance function) and the 

D R algorithm (using the proximal operator of the distance function). The analysis variant 

is solved via the C P algorithm, however, two more alternatives ( F I S T A and D R algorithm) 

are introduced, using an approximation via the so-called approximal operator [29]. Finally, 

the consistent heuristic £ o - a P P r o x i m a t i ° n - b a s e d algorithms originally developed for audio de-

clipping as the S P A D E algorithms are adapted to audio dequantization and coined as Sparse 

Audio Dequantizer ( S P A D Q ) . The mentioned algorithms were published in [30, 31]. 

Results and discussion 
The average P E M O - Q results are illustrated in F ig . 7.1. The three optimization problems are 

displayed in different colors (consistent l\ minimization in blue, inconsistent l\ minimization 

in orange, and consistent £o approximation in yellow). Moreover, synthesis variants use lighter 

shades, and analysis variants use darker color shades. Different algorithms are distinguished 

via hatching ( C P and S - S P A D Q D P use gray hatching, and F I S T A uses black hatching). 
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Fig . 7.1: Average dequantization performance in terms of P E M O - Q O D G . 

The results show that audio declipping methods can be successfully adapted to dequan­

tization, however, they suggest no clear winner among the tested methods. The S P A D Q 

algorithms perform well for word lengths of 4-7 bps, but they are outperformed by the convex 

methods for other tested word lengths. 
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CONCLUSIONS AND PERSPECTIVES 
The Doctoral Thesis aimed at the restoration of audio signals corrupted by nonlinear distor­

tions. The focus was primarily devoted to the task of restoring clipped signals, referred to 

as audio declipping. Nevertheless, a part of the Thesis also dealt wi th the problem of audio 

dequantization, which aims at estimating the original signal from its quantized observation. 

The first part of the Thesis treated in more detail various sparsity-based audio declipping 

algorithms. First , we formulated the £i-relaxed declipping problem in both the synthesis and 

analysis variants. The synthesis variant was first solved via the C o n d a t - V u algorithm, which 

computed the projections on all three sets R, H, and L separately. Later, the explicit projector 

onto the whole set of feasible solutions was developed, and thus it was possible to use a simpler 

and faster Douglas-Rachford algorithm. The analysis variant was solved using the Chambol le-

Pock algorithm. Apar t from the plain ^ -min imiza t ion , we also introduced reweighting of the 

coefficients to further enhance the sparsity of the solution. It turned out that reweighting 

significantly improves the results in terms of S D R , especially in the analysis variant. However, 

the effect was completely reversed in terms of O D G , which suggested that coefficient reweight­

ing is not beneficial for humanocentric audio declipping. Inspired by the promising results of 

the work by Defraene et al. [17], we implemented the C o n d a t - V u algorithm to solve the R-

inconsistent l\ minimization-based problem proposed in [17]. Nevertheless, this inconsistency 

in the reliable part brought no improvement over the consistent variants, and according to 

psychoacoustically inspired measures, this algorithm lags significantly behind its consistent 

counterparts. Furthermore, we focused on the ISTA-type declipping algorithm uti l izing Social 

Sparsity. We used the implementation kindly provided by M . Kowalski and slightly accelerated 

its convergence. The results confirmed those from the original paper [19] that using Persistent 

Empir ica l Wiener produces superior restoration quality. The SS P E W algorithm achieved the 

best results in terms of S D R and performed very well in terms of P E A Q and P E M O - Q . F i ­

nally, we examined the S P A D E algorithms originally presented in [12]. We reimplemented the 

algorithms and enhanced their performance by altering the hard thresholding step to respect 

the conjugate structure of D F T and by uti l izing the developed projection lemma, we man­

aged to significantly accelerate the synthesis variant S - S P A D E , which, however, turned out 

not to fully respect the A D M M scheme. Therefore, we developed a new synthesis variant of 

the algorithm, which significantly outperformed the original S - S P A D E . Bo th the analysis and 

the new synthesis variants of the algorithm performed well in terms of all evaluation metrics, 

however, the A - S P A D E tended to achieve marginally better results. 

Furthermore, we investigated the possibilities of incorporating psychoacoustic informa­

tion into audio declipping. The a priori information entered the optimization problem in 

form of weights, which were used to encourage or suppress certain T F coefficients. Whi le 

weights inspired by the absolute threshold of hearing did not bring an expected improvement 

of the perceptual quality, the weights obtained from the global masking threshold (specifically 

a slightly modified M P E G - 1 Psychoacoustic Model 1) improved the declipping results up to 

0.5 on the P E A Q O D G scale and even slightly more on the P E M O - Q O D G scale. However, 
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the best overall results by far were obtained by the parabola-based weights, which aim at 

suppressing the higher harmonics introduced by clipping while the lower frequencies are pre­

served. Such an option brought significant improvement of the restoration quality in all used 

evaluation metrics (up to almost 2 on the P E A Q O D G scale and 1.5 on the P E M O - Q scale) 

wi th no additional computational cost over the nonweighted variant. The results obtained by 

the parabola-weighted analysis variant of the ^-relaxat ion problem solved via the Chambol le-

Pock algorithm were comparable wi th the top-performing audio declipping methods such as 

SS P E W and N M F while being ca 6x and 181 x faster, respectively. 

Next part of the Thesis dealt wi th the possibilities of improving the results obtained by the 

declipping methods inconsistent in the reliable part. A basic method where all the samples in 

reliable positions are replaced wi th the samples from the clipped observation was introduced 

and the perceptual effects of such a replacement were studied. Even though most of the 

inconsistent declipping methods benefited from such basic replacement, at the same time, 

a major disadvantage consisting in the risk of creating sharp transitions on the borders of 

the replaced segments was revealed. To leverage the knowledge of the reliable samples while 

avoiding the sharp edges at the transitions, two other replacement methods were proposed— 

one based on audio inpainting and the other on crossfading. The latter turned out to be 

successful in suppressing the sharp transitions and systematically performed better or at least 

on par wi th the basic replacement. Apar t from the resulting audio quality, it was also shown 

that applying the crossfaded replacement method during the declipping algorithm can be used 

to obtain perceptually satisfying results in fewer iterations. 

Finally, we tackled the problem of audio dequantization and showed that audio declip­

ping methods can be easily adapted to solve dequantization by altering their projection step. 

However, despite the close similarity between declipping and dequantization, it does not hold 

true that methods successful in declipping perform well in dequantization. For instance, the 

S P A D E algorithms for declipping outperformed most of the l\ minimization-based approaches 

but the S P A D Q algorithms did not fulfill the expectations and turned out to perform mostly 

on par or even slightly worse than plain l\ minimization approaches in terms of perceptually 

motivated measures. The results also pointed out the predominance of analysis variants of 

the optimization problems, while no significant difference between the consistent methods and 

methods allowing a deviation from the feasible set was found. A n interesting observation 

was that algorithms exploiting the proximal operator of the differentiable function tend to 

outperform the gradient-based methods. 

To both support the spirit of reproducible research and to stimulate future research in 

this area, the source codes of the methods described in this Thesis were made publicly avail­

able. The M A T L A B implementations of the presented audio declipping algorithms including 

methods aiming at replacing reliable samples are available at the following G i tHub repository: 

https://github.com/rajmic/declipping2020_codes 

and audio dequantization 

https://github.com/zawi01/audio_dequantization. 
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For audio declipping, a supplementary web page was created. It contains a more detailed 

comparison of the audio declipping methods, individual results for each audio excerpt and 

clipping level, and interactive table of the results wi th the possibility to listen to the declipped 

excerpts. This web page is available at: 

https://rajmic.github.io/declipping2020. 

To select the most suitable declipping algorithm facing a real-world restoration task, it is 

necessary to consider several criteria. Some algorithms tend to perform better at low clipping 

levels, while others perform better at high clipping levels. The choice of an algorithm thus de­

pends on the input data and the possible requirement of the solution consistency. Nevertheless, 

the methods based on social shrinkage, nonnegative matrix factorization, l\ minimization wi th 

coefficients weighting, and S P A D E algorithms yield results that make them preferred choices. 

Depending on the application, the computational complexity of the algorithms can be a de­

cisive selection criterion. From this point of view, parabola-weighted l\ C P , and S P A D E are 

attractive. Very good restoration quality wi th slightly higher computational complexity rep­

resents the F I S T A exploiting social sparsity, which can be further improved (or accelerated) 

by applying the crossfaded replacement strategy. If very high computational time is not an 

issue, then N M F seems to provide the best quality in terms of perceptual metrics. 

Following the work presented in this Thesis, we now foresee some ideas and possible di­

rections of further research in the field. A possible way to improve the results is to combine 

successful strategies of the various algorithms discussed in this Thesis. For instance, the social 

sparsity regularizer, the parabola-based weights, or the dictionary learning approach could be 

combined wi th S P A D E or other algorithms. Since the analysis variant of the optimization 

problem turned out to perform slightly better, the problem solved by Social sparsity algo­

r i thm could be reworked into the analysis form. For audio dequantization, other successful 

declipping algorithms could be applied, for example, the Social sparsity algorithm. 

Even though there is st i l l room for improvement, it seems that purely sparsity-based meth­

ods are approaching their limits. In other fields of signal processing like computer vision, 

speech recognition, audio analysis, and many more, it is possible to notice the success of su­

pervised techniques, especially deep learning-based methods. A s mentioned in "State of the 

art chapter" in the Thesis, recent deep learning approaches to speech declipping [32, 33, 34, 35] 

and audio dequantization [11] have shown promising results, and it seems that future research 

wi l l follow this trend. A potential direction is also to combine signal modeling and learning 

from data using the unrolling, or unfolding approach based on the recent finding that the 

structure of proximal algorithms can be unrolled into the form of artificial networks [36]. 
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