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Abstract  
 

 

 

Drought forecasting is a critical component of drought risk management. The 

presented thesis analyses the forecasting drought indices with Artificial Neural 

Network (ANN). The indices used are the Standardized Precipitation Index (SPI), the 

Standardized Precipitation Evaporation Index (SPEI) and the Standardized Soil 

Moisture Index (SSI). Tested neural network was multilayer perceptron with two 

hidden layers and was trained using backpropagation algorithm. I used the data 

obtained from 13 meteorological stations, located in different parts of Czech Republic. 

The records were from the period 1.1.1982 – 1.12.2015. For all three indices, a number 

of different models with the lead time of 1 to 12 months have been tested out. The best 

models have the R2 values of 0,83 – 0,98, it is also show that forecasts of SSI were 

superior. The result of drought indices forecast, explained by the values of four model 

performance indices, such as Mean Error (ME), Mean Square Error (MSE), Root Mean 

Square Error (RMSE) and coefficient of determination (R2). Artificial Neural Network 

model show excellent results for forecasting drought.  
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1 Introduction 

 

Drought is a global and local problem that induce other problems in various ways. It 

causes huge losses in agriculture and other negative influences on Earth. Drought can 

last for many years, that’s why calls degradation of soils and desertification and other 

social problems, for example famine, impoverishment (Nicholson et al., 1990; Pickup 

1998).  

Determination may be very difficult when a drought begins or ends. A drought can be 

short, lasting just a few months, or persist for years before climatic condition return to 

normal.  

Drought has affected 50 % of the 2.8 billion between 1967 and 1992 people who 

suffered from all natural disasters (Obasi G., 1994). Many important applications have 

been made to develop methodologies to quantify different aspects related to drought. 

Most of it to develop drought indices, which allow an earlier identification of droughts, 

their intensity and surface extent.  

During the 20th century, few of drought indices were developed, based on different 

parameters and variables. It is a challenge to predict the future drought periods and 

their intensity and extremity. Various tool, methods and statistical models for drought 

forecasting have been suggested in different countries. Application the last one has a 

long history in forecasting of drought. A wide usage of new statistical technique known 

as Artificial Neural Network (ANN) show the superior performance for any time 

period. Generally, forecasting of precipitation and drought with ANN is based on past 

observed data of these variables (Asrari E., et al., 2014; Morid S. et al., 2007).  
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1.1 Main goals  

Forecasting drought indices using the artificial neural network was analysed within 

this thesis due to its advantages. The ANN was successfully used in many real-life 

case studies.  

Main goals of this diploma thesis are: 

• provide a literature review about impacts of drought in the world, 

drought indices, their limitation and comparison  

• describe the forecast of selected drought indices using the neural 

network models. 

• apply models of ANN on case study using MLP  
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2 Literary Research  

2.1 Drought definition 

Drought is an insidious natural hazard that results from a deficiency of precipitation 

from expected or “normal” that, when extended over a season or longer period of time, 

is insufficient to meet the demands of human activities and the environment. Drought 

must be considered a relative, rather than absolute, condition (Wilhite D. et al., 2009). 

Not only on the atmosphere is the reason of occurrence of drought. Also on the 

hydrologic processes which feed moisture to the atmosphere.   

There are several reasons why drought differ from other natural hazards:  

- First, the start and the end of a drought is difficult to determine. That’s why, a 

drought is often referred to as a creeping phenomenon.  

- Second, the drought does not have the universal definition because it is difficult 

to define.  

- Third, impacts of drought are not structural and spread over large geographic 

areas than damages that can result from other natural hazards. In compare with 

hurricanes, earthquakes, tornadoes a drought affects water bodies of water 

resources structure and it seldom results in structural damage.  

- Fourth, human activities can cause a drought. Other natural hazards, which are 

like drought in terms of their rank, are tropical cyclones, regional floods, 

volcanoes and earthquakes. (Mishra A. K. et al., 2010).   

2.2 Classifications of drought 

Droughts are commonly classified by type as meteorological, agricultural, and 

hydrological. Droughts differ from one another in three essential characteristics: 

intensity, duration, and spatial coverage (Wilhite D., 2009).  

The flow chart in Tab. 1 shows as the propagation of drought and how it is dependent 

on meteorological factors like precipitation and temperature from one region to 

another (Tallaksen et al., 2004).  
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There are four categories of the drought (Wilhite D., et al., 1985; American 

Meteorological Society, 2004): 

- Meteorological drought  

- Hydrological drought 

- Agricultural drought 

- Socio-economic drought 

 

Tab. 1 Flow chart, based on Stahl K., et al.,(2001); Peters E., et al.,  (2003): 

Meteorological 

situation 

“rain” season 

low Precipitation (and high 

ET) 

“snow” season 

low T or high T + low 

P 

 ↓ 

↓ Meteorological drought Precipitation deficiency 

 ↓ 

Soil moisture drought Low soil moisture 

 ↓ ↓ 

Hydrological drought Low discharge ↔ Low ground-water storage 

 

Meteorological drought 

The first one, meteorological drought, is defined as a lack of precipitation over a region 

for some period of time. Some of the studies analysed drought using monthly 

precipitation data, other analyse drought duration and intensity in relation to 

cumulative precipitation shortages. It caused by persistent anomalies, for example, 

high pressure in large-scale atmospheric circulation patterns, which are often caused 

by anomalous tropical sea surface temperatures or it can be other conditions (Mishra 

A. K. et al., 2010; Dai A. et al., 2011). 

Hydrological drought 

The second one, hydrological drought, is related to a period with inadequate surface 

and subsurface water resources for established water uses of a given water resources 

management system, such as lakes, reservoirs. Hydrological drought is a global and 
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international phenomenon, with spatial and temporal characteristics that very 

significantly from one region to another. It develops more slowly because it involves 

stored water too. For hydrologic drought analysis, have been widely used a streamflow 

data (Tallaksen et al., 2004; Mishra A. K. et al., 2010; Dai A., 2011). 

Agricultural drought  

Soil moisture is often use as an indicator of agricultural drought monitoring, and 

sometimes in some studies used in different forms, for example, the soil moisture 

percentile or normalized soil moisture. On several factors depends the soil moisture, 

which usually affect meteorological, hydrological drought and the differences between 

Evapotranspiration (ET) and Potential Evapotranspiration (PET). Few of drought 

indices, based on a combination of precipitation, temperature and soil moisture, have 

been developed to study agricultural drought. SSI and SPI are very effective in 

showing seasonal trends in precipitations and that’s why they are good indicators of 

agricultural drought (AghaKouchak A., 2014; Belayneh A. et al., 2012;  Mishra A. K. 

et al., 2010). 

Socio-economic drought 

Socio-economic drought is driven by unbalances in supply and demand of economic 

goods due to the physical characteristics. Usually socioeconomic drought will not 

occur without other categories of drought. The socio-economic impacts of drought 

disasters can be a serious obstacle to the development of many less developed 

countries with losses equivalent to several years of national growth gains. (American 

Meteorological Society, 2004; UN. ESCWA, 2005). 

Ground water drought  

Usually these are just four categories of drought used to classify the drought. But exist 

one more type of drought, it is ground water drought. When groundwater systems are 

affects by droughts, first recharge is ground water, and later groundwater levels and 

groundwater droughts are generally occurred on time scale of years or months or even 

weeks. It is very difficult to define the total amount of water available. But even if it 

is defined, in most of them, negative impacts of storage depletion can be felt, long 

before the total storage is depleted (Mishra A. K. et al., 2010).  
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2.3 Impact of drought around the world  

Before I began to summarize the impacts of drought, I want to mention that the drought 

is a serious socio-economic challenge to many countries in the world. Long-term 

droughts caused mass migration and humanitarian crises. Even thought, people are 

trying to minimalize the effects of drought to a greater extent by extending irrigation 

facilities and adopting crop rotation methods. Failure to develop strategies results in 

loss of production and livelihood to people. The assessment of future meteorological 

risks has become important to policymakers. Climate change may affect the energy, 

water and nutrient balance of forest ecosystems (Juana J.S. et al., 2014; Rebetez M. et 

al., 2006). 

At least 330 million people are affected by drought in India. This number is likely to 

rise and temperature there crossing 40ºC for days. Every year hundreds of people, 

mainly the poor, die at the height of summer in India, but temperatures have risen 

earlier than normal, increasing concerns about this year’s toll.  Out of 795 million ha 

of geographical area in India about 260 million ha of land are subjected to different 

degrees of water stress and drought conditions (Mishra et al., 2006).  

Another country that affected by drought is Botswana. Botswana is a semi-arid country 

in the centre of Southern Africa, with total area of 58 173 000 ha. This country is really 

water stressed with an average annual precipitation rate of 416 mm/year. The problem 

of drought in Botswana is explained by the persistent recurrence of drought. Drought 

is characterized by low precipitation, low humidity, high temperatures and high wind 

velocity. Drought causes low water supplies that are inadequate to support economic 

activities (Juana J.S. et al., 2014). 

Summer 2003, was exceptionally hot over most of central and western Europe, from 

Spain to Hungary and from Iceland to Greece. This illation based on historical 

climatology data show that it was by far the hottest summer since at least AD 1500. 

Based on mean surface air temperatures, the hottest region was centred over Germany, 

France, northern Italy and western Switzerland. Besides July, two months June and 

August showed the largest deviation from mean air temperatures compared to the 

climate standard period (1961 - 1990). July was less extreme except Sweden, Finland 

and Norway. On the other part of the Europe both minimum and maximum air 

temperature were between 1 and 3 ºC above normal. May was hotter and maximum 
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temperatures were more than 4 ºC above normal from Italy to Bulgaria. Forest 

ecosystems were exposed to drought in many European countries (Rebetez M. et al., 

2006).   

For Czech Republic in the last 15 years, drought was not essential issue, besides 

periods 1993 – 1995 and 2003 – 2004. In 1997, 2002 and 2013 the large part of the 

country was significantly affected by extreme floods. A significant drought developed 

in the summer of 2015. August 16th could be identified as the peak of the summer 2015 

drought. Rainfall total reached 353 mm from the beginning of January to the end of 

August. It makes it the second lowest rainfall total since 1961, except 2003, when the 

total precipitation was 335 mm (CHMI, 2015; UNISEF, 2008).  
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3 Material and Methods 

3.1 Drought indices  

In this chapter I want to describe drought indices, their usefulness, limitations and 

comparison between them. Before I began to describe indices, it is important to define 

what is the difference between indicators and indices. Indicators are variable of 

parameters to describe the drought condition, for example: precipitation, temperature, 

soil moisture, streamflow, groundwater and snowpack. Indices are computed 

numerical representations of drought severity, assessed using climatic or hydro 

meteorological inputs. They have been created for measurement the qualitative state 

of drought on the landscape for a given time period.  In combination with additional 

information on exposed assets and their vulnerability characteristics are essential for 

tracking and anticipating drought-related impacts and outcomes. It plays critical role, 

especially depending on the index, that they can provide a historical reference for 

planners or decision-makers (Svoboda et at., 2016, Mishra A. K. et al., 2010). 

In the past, scientists used just one indicator or index, because that was the only one 

measurement available to them and they had a limited time to acquire data and 

compute derivative indices or other deliverables (Svoboda et al., 2016).  

Commonly, there are three main methods for monitoring drought and quidding early 

warning and assessment (Jacobi et al., 2013): 

- Using a single indicator or index 

- Using multiple indicators or indices 

- Using composite or hybrid indicators 

In recent years, a few different indices have been developed to identify a drought, but 

each of them has its own strengths and weaknesses. Usually they include a lot of them: 

The Palmer Drought Severity Index (PDSI; Palmer, 1965), Rainfall Anomaly Index 

(RAI; Van Rooy, 1965), Crop Moisture Index (CMI; Palmer, 1968), National Rainfall 

Index (NRI; Gommes And Petrassi, 1994), The Soil Moisture Index (SMDI; Hollinger 

Et Al., 1993), Standardized Precipitation Index (SPI; Mckee Et Al., 1993), 

Standardized Precipitation Evapotranspiration Index (Vicente-Serrano Et Al., 2010), 

Standardized Soil Moisture Index (Aghakouchak A., 2014). , but in my research I will 

describe just few of them: SPI, SPEI and SSI. Some of them are perceived to be more 
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useful and easy to implement and had a long history of usage within the drought 

community. In medium-range climate forecasting there are two predictands commonly 

used: El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation indices 

(NAO). The ENSO is an anomalous large-scale ocean-atmosphere system associated 

with strong fluctuations in ocean currents and surface temperatures. NAO is a main 

mode of winter climate variability in the North Atlantic region ranging from central 

North America to Europe and much into Northern Asia. The ENSO is an excellent 

indicator to drought in Australia. (Mishra et al.,2010; Choi et al., 2012). 

 Almost all drought indices use precipitation either singly or in combination with other 

meteorological variables, such as temperature, soil moisture, but SPI use only 

precipitation (Mishra A.K., 2010).  

3.1.1   The Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI), outlined by McKee et al. (1993) and 

Guttman (1999), measures normalized anomalies in precipitation and has been 

proposed as a key drought indicator by the World Meteorological organization (WMO) 

and universal meteorological drought index by the Lincoln Declaration on Drought 

(Hayes et al., 2011). SPI is recommended as a probabilistic drought index, which is 

simple and spatially consistent in its interpretation (Guttman et al., 1998; Hayes et al., 

1999).  

The standardized precipitation index based on the precipitation probabilistic approach 

and has found wide using for describing and comparing drought among defend time 

periods and regions with different climatic conditions. SPI has been used for studying 

in different aspects of drought, like forecasting, frequency analysis, climate impacts 

studies and temporal analysis, the reason for that, is comparable in time and space 

(Vicente-Serrano et al., 2009, 2010; Cancelliere et al., 2007; Mishra et al., 2010). 

First step in calculating the SPI is to determine a probability density function that 

describes the long-term series of precipitation observations. The series can be for any 

time duration. Once it determined, the cumulative probability of an observed 

precipitation amount is computed. The inverse normal (Gaussian) function with mean 

zero and variance one, is then applied to the cumulative probability. The result is SPI 

(Guttman et al., 1998; Guttman et al., 1999).  
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Positive SPI values show wet conditions with greater median precipitation, and 

negative values of SPI shows dry conditions with lower than median precipitation. The 

SPI values split the range, as shown on Tab. 2 ((Belayneh et al., 2012; Maca P. et al., 

2015). 

Tab. 2 Drought severity classification, SPI  

 Index value Class 

Non drought SPI ≥ 2,00 Extremely wet 

 1,50 ≤ SPI < 2,00 Very wet 

 1,00 ≤ SPI < 1,50 Moderately wet 

 -1,00 ≤ SPI < 1,00 Near normal 

Drought -1,50 ≤ SPI < - 1,00 Moderate drought 

 -2,00 ≤ SPI < -1,50 Severe drought 

  SPI < -2,00 Extreme drought 

 

The calculating of the SPI is based on the long-term precipitation record (at least 30 

years) for any region. Those long-term precipitation time series is then fitted to a 

gamma distribution, which is then transformed through an equal probability 

transformation into a normal distribution. There some of commonly used distributions, 

like: gamma distribution, Pearson Type III distribution, lognormal, extreme value and 

exponential distributions (Guttman et al., 1999; McKee et al., 1993). 

In 2009, World Meteorological Organization (WMO) recommended this Index as the 

main meteorological drought index that countries should use to follow and monitor 

drought (Hayes et al., 2011).   

3.1.1.1 Limitation of SPI 

The main criticism of the SPI is that its calculations based only on precipitation data. 

The length of precipitation record and characteristic of probability distribution has a 

significant impact on the SPI values. The index does not include other variabilities like 

temperature, evapotranspiration (Mishra et al., 2010).  

3.1.1.2 Comparison 

In 1998 Gutman and Hayes et al. in 1999 compared the Standardized Precipitation 

Index with Palmer Drought Severity Index and they both concluded that SPI has 

advantages of statistical consistency and the ability to describe both, the short-term 
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and long-term impacts of drought through the different time scales of precipitation 

anomalies. Especially, for carrying out drought risk analysis, the SPI is considered as 

ideal candidate for that. At all six criteria of performance, like robustness, tractability, 

transparency, sophistication, extendibility and dimensionality, SPI shows just 

indicates strengths over PDSI. Eventually, often SPI is chosen due to its simplicity, 

ability to represent drought on multiple time scales and especially because it’s 

probabilistic drought index (Guttmann, 1999; Cancelliere A. et al., 2007; Belayneh et 

al., 2012).   

3.1.2 The Standardized Precipitation Evapotranspiration Index (SPEI) 

The more recently recommended Standardized Precipitation Evapotranspiration Index 

(SPEI) was developed by Vicente-Serrano et al. in 2010 at the Instituto Pirenaico de 

Ecologia In Zaragoza, Spain. It is a relatively new index, that utilizes a similar concept 

as SPI, but instead normalizes accumulated climatic water balance anomalies, defined 

as the difference between precipitation and potential evapotranspiration (PET). SPEI 

can be used to identify and monitor conditions associated with a variety of drought 

impacts (Vicente-Serrano et al., 2010; Begueria et al., 2013).  

The standardized precipitation evapotranspiration index very easy to calculate and is 

based on precipitation and PET. This new index is particularly suited to detecting, 

monitoring and exploring the consequences of global warming on drought condition 

(Vicente-Serrano et al., 2009, 2010).  

In studying droughts using standardized drought indicators, most of them classified 

drought events into different categories. The SPEI values split the range, as shown on 

Tab. 3 (Maca P. et al., 2015; USDM, 2017). 

Tab. 3 Drought severity classification, SPEI 

 Index value Class 

Non drought  -1,00 ≤ SPEI < 1,00 Near normal 

Drought -1,50 ≤ SPEI < - 1,00 Moderate drought 

 -2,00 ≤ SPEI < -1,50 Severe drought 

 SPEI < -2,00 Extreme drought 
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Mathematically, the SPEI is similar to the SPI, but includes the role of temperature. 

The first step in calculation of the SPEI is evapotranspiration (ET), the most difficult 

thing, because of the involvement of numerous parameters, including surface 

temperature, ground-atmosphere latent, sensible heat fluxes etc. (Allen et al., 1998; 

Vicente-Serrano et al., 2010). 

Actual term evapotranspiration is usually used to describe two processed of water loss 

from land surface to atmosphere, evaporation and transpiration. Evaporation is a 

simply process by which liquid turns into water vapor (vaporation) and removed from 

sources such as the soil surface, wet vegetation, pavements, water bodies and etc. 

Transportation is a discharge of water vapor from the leaves of plants and subsequent 

loss of water as vapor through leaf stomata. There is a difference between 

evapotranspiration and potential evapotranspiration. Potential evapotranspiration is 

value of maximum amount of water that would be evapotranspired, if enough amount 

of water is available. Actual evapotranspiration is how much water is actually 

evaporatranspired and it’s limited by the amount of water that is available. Actual 

evapotranspiration is always less or it can be equal to potential evapotranspiration, so 

that’s why PET is used for water demand component of the drought equation (NOAA, 

2016; Zotarelli et al., 2010).  

There are a lot of methods for calculating PET from meteorological parameters 

measured at weather stations.  One of them for example is Penman-Monteith method 

(PM). This method requires a big amount of data because its calculation involves 

values for solar radiation, temperature, wind speed, evapotranspiration and soil water 

capacity. But in many regions these data are not available. The simplest method to 

calculate is Thornthwaite method (Vicente-Serrano et al., 2009). 

3.1.2.1 The Thornthwaite Method 

As was mentioned before the SPEI is an extension of the widely used SPI. The SPEI 

was create to count both precipitation and potential evapotranspiration in determining 

drought. The SPEI captures the main impact of increased temperatures on water 

demand and can be calculated on a big range of a timescales from 1-48 months. At 

longer timescales, especially more than 18 months, the SPEI index has been shown to 

correlate with the self-calibrating PDSI. But when only limited data are available, PET 

can be estimated with the simple Thornthwaite method. This method based on not 
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accounted variables, which can affect PET, for example wind speed, surface humidity 

and solar radiation (UCAR, 2017). Following this simple method, the monthly PET 

(mm) is obtained by (Vicente-Serrano et al., 2009): 

 

 𝑃𝐸𝑇 = 16𝐾
10𝑇

𝐼

𝑚
 

 

(1) 

where T is the monthly-mean temperature (oC),  

I is a heat index, which is calculated as the sum of 12 monthly index values i,  

K is a correction coefficient computed as a function of the latitude and month,  

m is a coefficient depending on i. 

The difference between the precipitation P and PET for the month i is calculated by: 

 

   𝐷𝑖 =  𝑃𝑖 −  𝑃𝐸𝑇𝑖 (2) 

  

For calculation of the SPI at different time scales a probability distribution of the 

gamma family is used. Even though two-parameters distribution is using for 

calculation the SPI such as gamma distribution, a three-parameter distribution is 

needed to calculate the SPEI, such as Pearson III, Log-normal, General Extreme Value, 

Log-logictic. (Vicente-Serrano et al., 2009). 

L-moments ratio diagrams are analogous to conventional central moments, but they 

are able to characterize a wider range of distribution function and are most robust in a 

relation to outliers in the data.  

3.1.2.2 The Penman-Monteith method 

 

Lately, there are many empirical methods have been developed to estimate 

evapotranspiration from different climatic variables. Some of them were derived from 

now well-known Penman equation to determine evapotranspiration from open water, 

bare soil and grass based on a combination of an energy balance and an aerodynamic  
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formula, given as (Penman, 1948; Zotarelli et al., 2010): 

𝜆𝐸 =  
[𝛥(𝑅𝑛 − 𝐺) + (𝛾𝜆𝐸𝑎)]

(∆ +  𝜆)
 

 

(3) 

where λE – evaporative latent heat flux, 

Δ – slope of the saturated vapor pressure curve, 

𝑅𝑛 – net radiation flux, 

𝐺 – sensible heat flux into the soil, 

E – vapor transport of flux. 

Various derivation of the Penman equation included a bulk surface resistance term and 

the resulting equation is now called the Penman-Monteith equation, which is expressed 

by following formula (Monteith, 1965; Zotarelli et al., 2010): 

𝜆𝐸𝑇0 =  
∆(𝑅𝑛 − 𝐺) + [86,400 

𝜌𝑎𝑐𝑝(𝑒𝑠
0 − 𝑒𝑎)

𝑟𝑎𝑣
]

∆ +  𝛾 (1 +  
𝑟𝑠

𝑟𝑎𝑣
)

 

 

(4) 

 

where ρa – air density, 

Cp – specific heat of dry air, 

𝑒𝑠
0 – mean saturated vapor pressure, 

rav – bulk surface aerodynamic resistance for water vapor, 

ea – mean daily ambient vapor pressure, 

rs – the canopy surface resistance. 

3.1.2.3 Limitations of SPEI 

Main limitations of this index that is require more data than the precipitation SPI. It is 

also sensitive to the method to calculate potential evapotranspiration. And the last 

limitation, is that as with other drought indices should be used a long-base period (30-

50 years) that samples the natural variability (NCAR, 2017).  
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3.1.2.4 Comparison  

In calculation, the SPEI reminds of SPI, but important role play the temperature. As 

the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer 

Drought Severity Index (sc-PDSI). Relative to the sc-PDSI, the SPEI has the advantage 

of being multi-scalar, which is crucial for drought analysis and monitoring. The SPEI 

combines sensitivity of PDSI to changes in evaporation demand with the simplicity of 

calculation and the multi-temporal nature of SPI (Vicente-Serrano et al., 2010). 

3.1.3 The Standardized Soil Moisture Index (SSI) 

As was describing before, the drought is classified as agricultural, meteorological and 

hydrological have been developed to describe different aspects of drought. Many of 

them are based on soil moisture, precipitation and runoff. Soil moisture is often used 

as an indicator of agricultural drought monitoring. The standardized soil moisture 

index can be defined in a same way to the popular standardized precipitation index, 

which is widely used in a variety of studies. The SSI is estimated using a nonparametric 

approach in which the empirical probability (p) of the historical soil moisture data is 

derived using the empirical Gringorten plotting position. Generally, instead of fitting 

a distribution function to soil moisture data, the probabilities are obtained empirically 

using the empirical Gringorten approach: (i – 0.44)/(n + 0.12), where n denoted the 

sample size and i refers to the rank of soil moisture data from the smallest to the largest. 

(AghaKouchak, A., 2014; Gringorten, I., 1963).  

Tab. 4 Drought severity classification, SSI (USDM, 2017). 

 Index value Class 

Drought -0,5 ≤ SSI< -0,7 Abnormally dry 

 -0,8 ≤ SSI < -1,2 Moderate drought 

 -1,3 ≤ SSI < -1,5 Severe drought 

 -1,6 ≤ SSI < -1,9 Extreme drought 

 SSI < -2,0 Exceptional drought 
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3.2 Artificial Neural Network (ANN)  

The recent development of artificial neural network has a significant impact on the 

application of techniques for the forecasting of drought indices. An artificial neural 

network can be defined as a data processing system consisting of a large number of 

simple, highly interconnected processing elements, that calls artificial neurons, in an 

architecture inspired by the structure of the cerebral cortex of the brain (Tsoukalas et 

al., 1997; Maca et al., 2015).  

3.2.1 Definition. What is a Neural Network? 

Artificial Neural Network is an information processing approach that corresponds the 

structure and operation of the brain. In recent years, they have become a very popular 

thing for prediction in many of areas, for example forecasting in finance and medicine. 

First who introduce the concept of artificial networks were McCulloch and Pitts in 

1943. ANNs are being used increasingly to predict and forecast water resources 

variables. One of the advantages of the ANN is that there is no need for the modeler 

to fully define the intermediate relationships, like physical processes, between inputs 

and outputs. This feature makes ANNs especially suitable for analysis of complex 

processes, like drought forecasting, where relationships of a large number of input 

variables with the output need to be explored. In my thesis, I will use Multilayer 

Perceptron, nowadays the most widespread topological tool (Maier et al., 1992, 2000; 

Morid S., et al., 2007).   

3.2.2 The Neuron model 

A neuron is an information-processing unit that is fundamental to the operation of a 

neural network. In a schematic drawing of a biological neuron (Fig. 1) we may see the 

tree-like communication network of nerve fibber called dendrites. They bring the 

inputs to the cell body (the soma) that contains the cell nucleus. Another received 

signal, from another neuron for example, passed through a synapse by way of a 

difficult complex chemical process, in which specific transmitter substances are 

released from the sending side of the junction. The aim is to lower or to raise the 

electrical protentional inside the cell body. If it reaches a threshold, an action potential 

of fixed strength and duration is transmitted down the axon of the neuron. Then we 

can say that neuron has “fired” (Haykin S., 2008; Prieto A., 1991).  
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Fig. 1 Schematic comparison between a biological neuron and artificial (Leverington 

D., 2009).  

A single artificial neuron (Fig. 1) can be described as a processing unit which gets a 

stimulation from its neighbours and respond to a given activation function. The 

operation of the artificial neuron is analogous to the operation of the biological neuron. 

Activations from other neurons are summed at the neuron and passed through an 

activation function, after which the value is sent to other neurons. The first static 

simple model of neuron is a binary threshold unit, which operates according to the 

following equation, was written by McCullogh-Pitts (Prieto A., 1991):  

 

𝑥𝑖(𝑡 + 1) = 𝑠𝑡𝑝(∑ 𝑤𝑖𝑗𝑥𝑗(𝑡) −  𝜃𝑖
𝑗

) 

 

(5) 

where 𝑥𝑖(𝑡) is the output of neuron i at time t, 

𝑤𝑖𝑗 is the weight of the synapse between neurons i and j. 

 

3.2.3 Network architectures 

In general, there are three different classes of network architectures (Haykin S, 2008): 

▪ Single-Layer Feedforward Networks 

▪ Multilayer Feedforward Networks 

▪ Recurrent Networks 

3.2.3.1 Single-Layer Feedforward Networks 

Network called a single-layer network, if it has the designation single layer referring 

to the output layer of computation nodes. The input layer of source nodes does not 

count because no computation is performed there (Haykin S., 2008). As illustrated in 

Fig. 2, the case of three nodes in both the input and output layers. 
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Fig. 2 Feedforward network with a single layer of neurons (Chrislb, 2005). 

3.2.3.2 Multilayer Feedforward Networks 

Usually processing elements are organized into a sequence of layers with full or 

random connections between them. A typical neural network is “fully connected”. That 

means that there is a connection between each of the neurons in any given layer with 

each of the neurons in the next layer. Every neural network includes: input layers(s), 

hidden layer(s) and output layer(s). The input layer is a buffer which presents data to 

the network. This layer doesn’t have weights and any activation function, and that’s 

why it is not a neural computing layer. The top layer is the output layer which presents 

the output response to a given input. The rest of the layers, or it can be just one layer 

are called the intermediate or hidden layer because it usually has no connections to the 

outside world. The simple neural network is a fully connected, feedforward network 

with three neurons in the output layer, four in the middle or hidden layer, and two in 

the output layer. This architecture of the artificial neural networks called Multilayer 

Perceptron (MLP). Feedforward network means that there are no lateral connections 

between neurons in given layer and none back to previous layers. In all cases, these 

connections have weights and they had to be trained (Morid et al., 2007; Tsoukalas et 

al., 1997).  

 

Fig. 3 Fully connected Multilayer Perceptron with one hidden layer (DeepLearning 

0.1 Documentation, 2017) 
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The neural network in Fig. 3 is said to be fully connected, that means that every node 

in each layer of the network is connected to every other node in the adjacent forward 

layer. If some of the synaptic connections are missing, we called that network is 

“partially connected” (Haykin S., 2008). 

3.2.3.3 Recurrent neural networks 

A recurrent neural network, in a difference with a feedforward neural network is that 

it has at least one feedback loop. For example, a recurrent network may consist of a 

single layer of neurons with each neuron feeding its output signal back to the outputs 

of all other neurons (Haykin S., 2008).  

3.2.4 Back-Propagation Algorithm  

The most important tasks are to clearly define the choice of the numerical method used 

for determining optimal connection weights, or training algorithm.  The Back-

propagation (BP) algorithm has been used in many studies. Backpropagation is a 

systematic algorithm for training multiple layer artificial neural networks. The first 

who developed backpropagation training was Werbos (1974) as a part of his Ph.D. 

dissertation at Harvard University. The elucidation of this training algorithm in 1986 

by Rumelhart, Hinton and Williams was the key step in making neural networks 

practical in many real-world situations. But, the BP algorithm can suffer from a few 

problems, the majority of which are the need for selection of several internal model 

parameters (momentum, learning rate and transfer function) and slow convergence 

speed. Despite this, 80% of all application utilize this backpropagation algorithm in 

one from another, because it has a strong mathematical foundation (Maier et al., 1998). 
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4 Results  

4.1 Dataset description 

Neural Network prediction for the drought indices, I used the data obtained from 13 

meteorological stations (Tab. 5), located in different parts of Czech Republic. The 

records that I used from the period 1.1.1982 – 1.12.2015.  

Tab. 5 Dataset used for prediction drought indices. 

Identifier Name 
Name of the 

station 

Area 

[km2] 

Number of 

hydrological 

sequence 

1980 Berounka Beroun 8 286,23 
1-11-04-0560-0-00-

30 

2110 Teplá Cihelny 262,58 
1-13-02-0210-1-00-

60 

2400 Labe Děčín 51 120,34 
1-14-04-0010-0-00-

70 

2940 Odra Bohumín 4 663,74 
2-03-02-0220-0-00-

30 

3450 Morava Raškov 349,79 
4-10-01-0450-0-00-

60 

3511 Desna Šumperk 240,63 
4-10-01-0850-0-00-

50 

3540 Moravská  Sázava Lupěné 445,21 
4-1-02-0420-0-00-

70 

3550 Morava Moravičany 1 561,19 
4-10-02-0650-0-00-

70 

4215 Morava Strážnice 9 144,83 
4-13-02-0340-0-00-

30 

4410 Svratka Borovnice 127,97 
4-15-01-0070-0-00-

70 

4530 Křetínka Letovice 126,59 
4-15-02-0340-2-00-

30 

4540 Svitava Letovice 423,78 
4-15-02-0350-0-00-

30 

4650 Jihlava Dvorce 307,35 
4-16-01-0270-0-00-

50 
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4.1.1 Time series of drought indices 

The indices of drought are essential tools for explaining the severity of drought events. 

Usually they are presented in a form of time series and used in drought modelling and 

forecasting. A time series also provides a framework for evaluating drought parameters 

of interest (Maca P. et al., 2015; Mishra A. et al., 2010). Time series of all three 

standardized indices for every meteorological station are shown in attachments, Fig. 4 

– 16.  

 

Fig. 4 Time series for Berounka, on x axis is time in month, on y axis is a range of 

drought indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 

 

Fig. 5 Time series for Teplá, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 
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Fig. 6 Time series for Labe, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 

 

Fig. 7 Time series for Odra, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 
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Fig. 8 Time series for Morava (Raškov), on x axis is time in month, on y axis is a range of 

drought indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 

 

Fig. 9 Time series for Desna, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 

 

Fig. 10 Time series for Moravská Sázava, on x axis is time in month, on y axis is a range 

of drought indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 
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Fig. 11 Time series for Morava (Moravičany), on x axis is time in month, on y axis is a 

range of drought indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI 

index. 

 

 

Fig. 12 Time series for Morava (Strážnice), on x axis is time in month, on y axis is a 

range of drought indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI 

index. 
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Fig. 13 Time series for Svratka, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 

 

Fig. 14 Time series for Křetínka, on x axis is time in month, on y axis is a range of 

drought indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 
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Fig. 15 Time series for Svitava, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 

 

Fig. 16 Time series for Jihlava, on x axis is time in month, on y axis is a range of drought 

indices. The black line: SPI, the blue line: SPEI and the yellow line: SSI index. 

 
 

4.1.2 Statistical evaluation of input data 

Usually they are used to summarize a set of observations. The five-number summary 

is a useful measure of variation for observed data. This include the mean or median of 

numeric data, minimum and maximum, 25% of values fall below the 1st quartile and 

25% of values fall above the 3rd quartile. I also included Standard Deviation, which 

shows a measure of dispersion of a set of data from its mean. This range called the 

interquartile range (Mangiafice S.S., 2016). 

On Tab 6 represented basic statistics of precipitation for every meteorological station. 

Maximum and minimum value of precipitation was on 3450 Morava (Raškov). 

On Tab. 7 to Tab. 9 represented basic statistics of every drought index and every 

meteorological station.  
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Tab. 6 Summary statistics of precipitation 

DBC 

Rain  

Min 1st Qu. Median Mean 3rd Qu. MAX 

1980 1,199 36,33 56,05 60,01 75,75 200,2 

2110 1,434 3,08 47,24 52,17 67,6 205,6 

2400 1,141 34,34 52,09 55,91 71,18 204,8 

2940 0,550 37,11 55,34 65,52 85,84 393,5 

3450 0,433 49,86 71,22 79,67 101,6 455,8 

3511 0,508 49,9 72,16 78,6 100,1 431,5 

3540 0,536 38,64 58,89 64,52 83,84 328,6 

3550 0,536 42,99 62,61 68,2 87,33 352 

4215 0,496 35,55 53,6 58,86 78,58 309,4 

4410 0,649 39,28 61,56 67,11 86,9 361,2 

4530 0,477 31,34 48,16 54,65 71,23 314,9 

4540 0,469 31,35 46,55 54,11 69,84 324,3 

4650 1,516 33,21 53,17 57,29 75,26 213,5 

As seen on Tab. 7 the maximum value of Standardized Precipitation Index was on 

2940 (Bohumin), the minimum value of SPI was on 4410 (Borovnice).   

Tab. 7 Basic statistics for SPI 

DBC 

SPI  

Min 1st Qu. Median Mean 3rd Qu. MAX sd 

1980 -2,2900 -0,6358 0,0528 -0,0027 0,5689 3,0240 0,9827 

2110 -2,4440 -0,6412 0,0517 -0,0022 0,6882 2,5310 0,9798 

2400 -2,5070 -0,6929 0,0526 0,0007 0,6054 2,7350 0,9746 

2940 -2,3280 -0,6570 0,0097 -0,0041 0,5524 3,2670 0,9866 

3450 -2,4330 -0,6256 -0,0061 -0,0009 0,6592 3,0350 0,9728 

3511 -2,1460 -0,6579 -0,0194 0,0002 0,5397 2,7650 0,9728 

3540 -2,3660 -0,7096 -0,0373 -0,0004 0,7092 2,0330 0,9633 

3550 -2,2960 -0,7023 0,0111 -0,0006 0,6571 2,4800 0,9675 

4215 -2,4600 -0,6429 0,0149 -0,0008 0,6521 2,8400 0,9736 

4410 -3,1460 -0,6675 0,1113 -0,0014 0,7136 2,3400 0,9939 

4530 -2,8630 -0,7693 0,0539 -0,0006 0,7550 2,4610 0,9724 

4540 -2,9510 -0,7531 0,1207 -0,0009 0,7079 2,5920 0,9760 

4650 -2,5390 -0,6948 0,0584 0,0008 0,6748 2,8550 0,9801 
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A histogram is a display of statistical information that uses rectangles to show the 

frequency of data items in successive numerical intervals of equal size. A histogram is 

the easiest method for determining the density of the data. In Fig. 17 there is a 

histogram of SPI.  

 

Fig. 17 Histogram of SPI, on x axis there is a range of SPI, on y axis is the frequency of SPI 

Empirical distribution function is a formal direct estimate of the cumulative 

distribution function. In hydrology, empirical distribution functions are commonly 

labelled duration curves, in which case all the values in a time series are included 

(Tallaksen et al., 2004). For SPI, empirical distribution is shown in Fig. 18. 
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Fig. 18 Empirical distribution function of SPI, on x axis there is a range of SPI, on y axis is 

the density of SPI 

On Tab. 8 the maximum value of Standardized Precipitation Evapotranspiration Index 

was the same on two meteorological stations: on 2940 (Bohumin) and 4530 (Letovice). 

The minimum value of SPEI was on 2400 (Děčin). 

Tab. 8 Basic statistics for SPEI 

DBC 

SPEI  

Min 1st Qu. Median Mean 3rd Qu. MAX sd 

1980 -2,3670 -0,7106 0,0305 -0,0052 0,7386 2,5320 0,9777 

2110 -2,3680 -0,6837 0,0011 -0,0049 0,7353 2,4200 0,9774 

2400 -2,4940 -0,6423 0,0040 -0,0005 0,6717 2,1860 0,9817 

2940 -2,3370 -0,6906 -0,0238 -0,0027 0,6436 2,5500 0,9815 

3450 -2,0850 -0,6758 0,0106 -0,0025 0,6795 2,3330 0,9776 

3511 -2,2060 -0,7357 0,0271 0,0015 0,6519 2,3090 0,9794 

3540 -2,2030 -0,7583 -0,0071 -0,0026 0,7533 1,9988 0,9783 

3550 -2,1410 -0,7475 0,0074 -0,0018 0,6954 2,2450 0,9772 

4215 -2,1780 -0,6982 -0,0393 -0,0019 0,7067 2,3530 0,9779 

4410 -2,0510 -0,6436 -0,0098 -0,0091 0,6882 2,4230 0,9804 

4530 -2,0820 -0,8344 0,0561 -0,0074 0,7633 2,5500 0,9807 

4540 -2,0960 -0,7993 0,0221 -0,0073 0,6915 2,5050 0,9801 

4650 -2,1760 -0,8063 0,0393 -0,0008 0,7669 2,0770 0,9816 
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In Fig. 19 is shown the histogram of SPEI, where shown the most frequently occurring 

value of SPI. 

 

Fig. 19 Histogram of SPEI, on x axis there is a range of SPEI, on y axis is the frequency of 

SPEI 

For SPEI empirical distribution is shown in Fig. 20.  

 

Fig. 20 Empirical distribution function of SPEI, on x axis there is a range of SPEI, on y axis 

the density of SPEI 
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As seen on Tab. 9, the maximum value of the Standardized Soil Moisture Index was 

on 2110 (Cihelny) and minimum was on 3511 (Šumperk).  

Tab. 9 Basic statistics for SSI 

DBC 

SSI  

Min 1st Qu. Median Mean 3rd Qu. MAX sd 

1980 -2,7480 -0,6956 0,0407 -0,0018 0,7525 1,9010 0,9765 

2110 -2,9910 -0,6070 0,1521 -0,0019 0,7837 2,2800 0,9965 

2400 -2,5950 -0,7293 0,0861 0,0002 0,6717 2,1860 0,9730 

2940 -3,4490 -0,6522 0,1123 -0,0044 0,7036 1,9370 1,0040 

3450 -3,6120 -0,2961 0,1763 -0,0032 0,7360 1,4940 1,0517 

3511 -3,9670 -0,4850 0,1157 -0,0035 0,7738 1,6310 1,0595 

3540 -2,8200 -0,6071 0,1341 -0,0019 0,7804 1,5510 0,9916 

3550 -3,0350 -0,5663 0,0953 -0,0018 0,8572 1,6540 0,9982 

4215 -2,9920 -0,6538 0,0699 -0,0018 0,7856 1,8430 0,9855 

4410 -3,3330 -0,5579 0,1487 -0,0014 0,7695 1,7660 1,0057 

4530 -2,7260 -0,6907 0,1651 -0,0017 0,8561 1,8910 0,9880 

4540 -2,6940 -0,7128 0,1570 -0,0021 0,8161 1,9350 0,9923 

4650 -2,2960 -0,7552 0,0998 0,0003 0,6912 1,9560 0,9658 

 

In Fig. 10 is represented histogram of SSI, where represented the most frequently 

occurring value of SSI. 
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Fig. 10 Histogram of SSI, on x axis there is a range of SSI, on y axis is the frequency 

of SSI 

For SSI empirical distribution is shown in Fig. 11.  

 

Fig. 11 Empirical distribution function of SSI, on x axis there is a range of SSI, on y axis is 

the density of SSI 
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4.1.3 Correlation 
 

Correlation is a means of defining the strength of the relationship between two 

variables (Gordon et al., 2004). On presented below Tab. 12 - 14 shown correlation 

for every drought index between every meteorological station.  

On Tab. 12 presented correlation between every meteorological between themselves. 

I created correlation with function “cor” in R studio. This function use to produce 

correlations. It shows which station correlated least of all or most of all respectively.  

So, the best correlation was between two: 4530 Křetínka and 4540 Svitava. The worst 

correlation was between 2940 Odra and 2110 Teplá.  
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Tab. 12 Correlation between every meteorological station for SPI 

 

SPI 1980 2110 2400 2940 3450 3511 3540 3550 4215 4410 4530 4540 4650 

1980 1.0000000 0.8728238 0.9375858 0.3960404 0.5137150 0.5287840 0.6442335 0.6059368 0.5092400 0.5480717 0.4669775 0.4734340 0.7108672 

2110 0.8728238 1,0000000 0.8123412 0.2499089 0.4610982 0.4623020 0.5876634 0.5380100 0.3919514 0.4876570 0.3650726 0.3661687 0.5562124 

2400 0.9375858 0.8123412 1,0000000 0.5721255 0.6755776 0.6815247 0.7920660 0.7578538 0.6822235 0.7220234 0.6426313 0.6510615 0.8484320 

2940 0.3960404 0.2499089 0.5721255 1,0000000 0.7981413 0.8510411 0.7055393 0.7855098 0.9159901 0.7428212 0.8036784 0.8417420 0.6162213 

3450 0.5137150 0.4610982 0.6755776 0.7981413 1,0000000 0.9600741 0.9128380 0.9710352 0.8784856 0.8857412 0.8157133 0.8426761 0.6813828 

3511 0.5287840 0.4623020 0.6815247 0.8510411 0.9600741 1,0000000 0.8793485 0.9526949 0.8859241 0.8523864 0.7920046 0.8271838 0.6956120 

3540 0.6442335 0.5876634 0.7920660 0.7055393 0.9128380 0.8793485 1,0000000 0.9738079 0.8592510 0.9036221 0.8474664 0.8643942 0.7927169 

3550 0.6059368 0.5380100 0.7578538 0.7855098 0.9710352 0.9526949 0.9738079 1,0000000 0.9016321 0.9005201 0.8512262 0.8741139 0.7553708 

4215 0.5092400 0.3919514 0.6822235 0.9159901 0.8784856 0.8859241 0.8592510 0.9016321 1,0000000 0.8364865 0.8779059 0.9091073 0.7107785 

4410 0.5480717 0.4876570 0.7220234 0.7428212 0.8857412 0.8523864 0.9036221 0.9005201 0.8364865 1,0000000 0.8629777 0.8899930 0.8039669 

4530 0.4669775 0.3650726 0.6426313 0.8036784 0.8157133 0.7920046 0.8474664 0.8512262 0.8779059 0.8629777 1,0000000 0.9889975 0.7400209 

4540 0.4734340 0.3661687 0.6510615 0.8417420 0.8426761 0.8271838 0.8643942 0.8741139 0.9091073 0.8899930 0.9889975 1,0000000 0.7422361 

4650 0.7108672 0.5562124 0.8484320 0.6162213 0.6813828 0.6956120 0.7927169 0.7553708 0.7107785 0.8039669 0.7400209 0.7422361 1,0000000 
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Tab. 13 Correlation between every meteorological station for SPEI 

 

 

SPEI 1980 2110 2400 2940 3450 3511 3540 3550 4215 4410 4530 4540 4650 

1980 1,0000000 0.8570078 0.9484637 0.5110974 0.5650604 0.5694894 0.6658586 0.6335750 0.5805557 0.6173511 0.5647843 0.5676920 0.7583200 

2110 0.8570078 1,0000000 0.8020349 0.8020349 0.3470008 0.5300419 0.5294301 0.6021576 0.5710847 0.4459268 0.5454741 0.4355611 0.5954598 

2400 0.9484637 0.8020349 1,0000000 0.6637150 0.7071501 0.6954472 0.8004950 0.7724295 0.7397798 0.7595886 0.7214635 0.7230899 0.8702612 

2940 0.5110974 0.3470008 0.6637150 1,0000000 0.8194729 0.8321298 0.7578355 0.8024214 0.9243832 0.8275237 0.8596001 0.8867395 0.7062046 

3450 0.5650604 0.5300419 0.7071501 0.8194729 1,0000000 0.9659541 0.9171517 0.9650331 0.8779648 0.8944881 0.8312689 0.8510077 0.7181675 

3511 0.5694894 0.5294301 0.6954472 0.8321298 0.9659541 1,0000000 0.8926061 0.9493465 0.8667433 0.8643041 0.8118889 0.8313309 0.7289256 

3540 0.6658586 0.6021576 0.8004950 0.7578355 0.9171517 0.8926061 1,0000000 0.9806322 0.8869468 0.8908308 0.8683731 0.8799351 0.8047525 

3550 0.6335750 0.5710847 0.7724295 0.8024214 0.9650331 0.9493465 0.9806322 1,0000000 0.9080040 0.8909364 0.8648854 0.8795497 0.7814645 

4215 0.5805557 0.4459268 0.7397798 0.9243832 0.8779648 0.8667433 0.8869468 0.9080040 1,0000000 0.8824468 0.9160335 0.9371208 0.7808398 

4410 0.6173511 0.5454741 0.7595886 0.8275237 0.8944881 0.8643041 0.8908308 0.8909364 0.8824468 1,0000000 0.8968086 0.9160811 0.8229426 

4530 0.5647843 0.4355611 0.7214635 0.8596001 0.8312689 0.8118889 0.8683731 0.8648854 0.9160335 0.8968086 1,0000000 0.9910685 0.8058816 

4540 0.5676920 0.4346248 0.7230899 0.8867395 0.8510077 0.8313309 0.8799351 0.8795497 0.9371208 0.9160811 0.9910685 1,0000000 0.7979794 

4650 0.7583200 0.5954598 0.8702612 0.7062046 0.7181675 0.7289256 0.8047525 0.7814645 0.7808398 0.8229426 0.8058816 0.7979794 1,0000000 
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Tab. 14 Correlation between every meteorological station for SSI 

SSI 1980 2110 2400 2940 3450 3511 3540 3550 4215 4410 4530 4540 4650 

1980 1,00000000 0.7992789 0.9401559 0.5614409 0.5791229 0.5192501 0.6692899 0.6314326 0.6115355 0.6994082 0.5976261 0.6223244 0.7122266 

2110 0,79927890 1,00000000 0.7517926 0.3689268 0.4356029 0.3778477 0.5171956 0.4676631 0.4469007 0.5661465 0.5149367 0.5322844 0.6074354 

2400 0.9401559 0.7517926 1,00000000 0.7031231 0.7258986 0.6608905 0.8176956 0.7851808 0.7709317 0.8211116 0.7303493 0.7555599 0.8488799 

2940 0.5614409 0.3689268 0.7031231 1,00000000 0.7870941 0.7879118 0.7656412 0.7739040 0.8737551 0.8430494 0.8177489 0.8443992 0.6943587 

3450 0.5791229 0.4356029 0.7258986 0.7870941 1,00000000 0.9411812 0.9210170 0.9503902 0.8443927 0.8926297 0.7547143 0.7877488 0.7563751 

3511 0.5192501 0.3778477 0.6608905 0.7879118 0.9411812 1,00000000 0.8920939 0.9382115 0.8547776 0.8424598 0.7761524 0.7973329 0.7526104 

3540 0.6692899 0.5171956 0.8176956 0.7656412 0.9210170 0.8920939 1,00000000 0.9845790 0.9033048 0.9115780 0.8533182 0.8757793 0.8409045 

3550 0.6314326 0.4676631 0.7851808 0.7739040 0.9503902 0.9382115 0.9845790 1,00000000 0.9074059 0.8933791 0.8258587 0.8479345 0.8267518 

4215 0.6115355 0.4469007 0.7709317 0.8737551 0.8443927 0.8547776 0.9033048 0.9074059 1,00000000 0.8823712 0.8990791 0.9162061 0.8140824 

4410 0.6994082 0.5661465 0.8211116 0.8430494 0.8926297 0.8424598 0.9115780 0.8933791 0.8823712 1,00000000 0.8755764 0.9022519 0.8150983 

4530 0.5976261 0.5149367 0.7303493 0.8177489 0.7547143 0.7761524 0.8533182 0.8258587 0.8990791 0.8755764 1,00000000 0.9926909 0.7821424 

4540 0.6223244 0.5322844 0.7555599 0.8443992 0.7877488 0.7973329 0.8757793 0.8479345 0.9162061 0.9022519 0.9926909 1,00000000 0.7908612 

4650 0.7122266 0.6074354 0.8488799 0.6943587 0.7563751 0.7526104 0.8409045 0.8267518 0.8140824 0.8150983 0.7821424 0.7908612 1,00000000 
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On Fig. 12 – 14 presented correlations between every drought indices, where was the 

best correlation between SPEI and SPI. 

 

Fig. 12 Correlation between SSI and SPEI, on x axis is SPEI index, on y axis is 

SSI index 

 

Fig. 13 Correlation between SPI and SSI, on x axis is SSI index, on y axis is SPI 

index 
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Fig. 14 Correlation between SPEI and SPI, on x axis is SPI index, on y axis is 

SPEI index 

 

4.2 Neural Network Models 

 
In my research, I used MLP with two hidden layers and one output layer (Fig. 15). 

MLP is one of the most popular ANN architecture. It consists of weighted connections 

and neurons arranged in layers. Each neuron collects the values from all of its input 

connections and produces a single output passing through an activation function. In 

practical usage, the MLPs are known for their ability to approximate non-linear 

relations. (Mareš T., 2012; Morid S., 2006; Savaci et al., 2005). 
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Fig. 15 Multilayer perceptron with two hidden layers (Nielsen M. et al., 2017) 

 

For training, designing and using a neural network to classify I used the R package 

“AMORE”. There is other way for creating a simple feedforward neural network with 

using package “neural”. Comparing with the package “AMORE”, the second one is 

rather slow (Wee-Jin Goh, 2006). 

First, I had to prepare the input data. It means that I had to normalize the input data, so 

that all the inputs are at a comparable range. It is very important step, because it may 

lead to useless results or to a very difficult training process (Michy A., 2015).  

Then I began design and train a Neural Network. Neural network has 10 iterations, due 

to initialization of weights. Number of iterations shows the number of times data 

passed through the algorithm, in case of ANN it means the “forward pass” and 

“backward pass”. But there is a different between an epoch and an iteration. One epoch 

is a one forward or backward pass of all training examples. For 0,0001 global learning 

rate there are 5,000 tested training epochs, where best training epoch is 2, 252 (Kim et 

al, 2003; Morid el at., 2007).  

Error criterium argument specifies the way you will determine, at each iteration, how 

close the network is to predicting its target. As the best option, I used LMS (for least 

mean squares) because it works well in many cases.  

As an activation function of the hidden layer neurons I used a hyperbolic tangent 

sigmoid transfer function “tansig”. For output layer, I used a transfer function 

“purelin”.  
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Adaptive gradient descent, with the momentum term included (“ADAPTgdwm”), 

specifies solution strategy for converging on weights within the network (Wilson et 

al., 2001). 

Before training the neural network, I had to divide data on two parts: first was for 

calibration, second for validation. Calibration is the process of estimating model 

parameters by comparing model predictions for a given observed dataset in same 

conditions. Once the training, optimisation, faze is completed, the performance of the 

trained network has to be validated. It is important to know, that the validation dataset 

not have been used as part of the training process. Validation involves running a model 

using input parameters measured or determined during the calibration process (Maier 

et al., 1999; Morasi et al., 2006).  

Then I began training NN with backpropagation algorithm. Basically, this algorithm 

is based on error-correction learning rule. This error-propagation process consists of 

two passes through the different layers of the network. In the first pass, an input vector 

is applied to the neurons and its effect propagates through the network, layer by layer. 

A set of output is produced as the actual response of the network (Kim et al, 2003; 

Maier et al., 1998; Tsoukalas et al., 1997).   

The process of optimising the connection weights is training algorithm. The weights 

are different in the hidden and output layers, and their values can be changed during 

the process of network training (Kim. et al., 2003). 

After, I had to simulate the calibration and validation data with trained neural network. 

All the results of forecasting every drought indices are shown on Fig. 16 - 54. 

Forecasting SPI, SPEI and SSI was based on past observed data of these drought 

indices for every meteorological station using MLP. 
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4.2.1 Forecasting SPI 
 

  

Fig. 16 Result of SPI forecasting using MLP, Berounka. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  

Fig. 17 Result of SPI forecasting using MLP, Teplá. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  

Fig. 18 Result of SPI forecasting using MLP, Labe. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 
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Fig. 19 Result of SPI forecasting using MLP, Odra. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  

Fig. 20 Result of SPI forecasting using MLP, Morava (Raškov). On x axis is time in 

month (396 month), on y axis is a range of SPI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 

  

Fig. 21 Result of SPI forecasting using MLP, Desna. On x axis is time in month (396 

month), on y axis is a range of SPI index (-2.14,2.76). The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 
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Fig. 22 Result of SPI forecasting using MLP, Moravská Sázava. On x axis is time in 

month (396 month), on y axis is a range of SPI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 

  
Fig. 23 Result of SPI forecasting using MLP, Morava (Moravičany). On x axis is time in 

month (396 month), on y axis is a range of SPI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 

  
Fig. 24 Result of SPI forecasting using MLP, Morava (Stražnice). On x axis is time in 

month (396 month), on y axis is a range of SPI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 
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Fig. 25 Result of SPI forecasting using MLP, Svratka. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  

Fig. 26 Result of SPI forecasting using MLP, Křetínka. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  

Fig. 27 Result of SPI forecasting using MLP, Svitava. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 
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Fig. 28 Result of SPI forecasting using MLP, Jihlava. On x axis is time in month (396 

month), on y axis is a range of SPI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP,  points: observations 
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4.2.2 Forecasting SPEI 
 

  
Fig. 29 Result of SPEI forecasting using MLP, Berounka. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  
Fig. 30 Result of SPEI forecasting using MLP, Teplá. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  
Fig. 31 Result of SPEI forecasting using MLP, Labe. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 
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Fig. 32 Result of SPEI forecasting using MLP, Odra. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  
Fig. 33 Result of SPEI forecasting using MLP, Morava (Raškov). On x axis is time in 

month (396 month), on y axis is a range of SPEI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 

  
Fig. 34 Result of SPEI forecasting using MLP, Desna. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 
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Fig. 35 Result of SPEI forecasting using MLP, Moravská Sázava. On x axis is time in 

month (396 month), on y axis is a range of SPEI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 

  
Fig. 36 Result of SPEI forecasting using MLP, Morava (Moravičany). On x axis is time in 

month (396 month), on y axis is a range of SPEI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 

  
Fig. 37 Result of SPEI forecasting using MLP, Morava (Stražnice). On x axis is time in 

month (396 month), on y axis is a range of SPEI index. The red line: simulated calibration 

data from MLP model, the blue line: simulated validation data from MLP, points: 

observations 
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Fig. 38 Result of SPEI forecasting using MLP, Svratka. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  
Fig. 39 Result of SPEI forecasting using MLP, Křetínka. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

  
Fig. 40 Result of SPEI forecasting using MLP, Svitava. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 
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Fig. 41 Result of SPEI forecasting using MLP, Jihlava. On x axis is time in month (396 

month), on y axis is a range of SPEI index. The red line: simulated calibration data from 

MLP model, the blue line: simulated validation data from MLP, points: observations 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

4.2.3 Forecasting SSI 

  

Fig.42 Result of SSI forecasting using MLP, Berounka. On x axis is time in month (396 month), on 

y axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue 

line: simulated validation data from MLP, points: observations 

  

Fig. 43 Result of SSI forecasting using MLP, Teplá. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 

  

Fig. 44 Result of SSI forecasting using MLP, Labe. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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Fig. 45 Result of SSI forecasting using MLP, Odra. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP,  points: observations 

  

Fig. 46 Result of SSI forecasting using MLP, Morava (Raškov). On x axis is time in month (396 

month), on y axis is a range of SSI index. The red line: simulated calibration data from MLP model, 

the blue line: simulated validation data from MLP,  points: observations 

  

Fig. 47 Result of SSI forecasting using MLP, Desna. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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Fig. 48 Result of SSI forecasting using MLP, Moravská Sázava. On x axis is time in month (396 

month), on y axis is a range of SSI index. The red line: simulated calibration data from MLP model, 

the blue line: simulated validation data from MLP,  points: observations 

  

Fig. 49 Result of SSI forecasting using MLP, Morava (Moravičany). On x axis is time in month (396 

month), on y axis is a range of SSI index. The red line: simulated calibration data from MLP model, 

the blue line: simulated validation data from MLP, points: observations 

  

Fig. 50 Result of SSI forecasting using MLP, Morava (Stražnice). On x axis is time in month (396 

month), on y axis is a range of SSI index. The red line: simulated calibration data from MLP model, 

the blue line: simulated validation data from MLP,  points: observations 
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Fig. 51 Result of SSI forecasting using MLP, Svratka. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 

 
 

Fig. 52 Result of SSI forecasting using MLP, Křetínka. On x axis is time in month (396 month), on 

y axis is a range of SSI index.The red line: simulated calibration data from MLP model, the blue 

line: simulated validation data from MLP, points: observations 

  

Fig. 53 Result of SSI forecasting using MLP, Svitava. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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Fig. 54 Result of SSI forecasting using MLP, Jihlava. On x axis is time in month (396 month), on y 

axis is a range of SSI index. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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4.3 The Performance of ANN models 

Then I must evaluate models with evaluation statistics. For calculating additional 

statistical analyses, I used “hydroGOF” package. Goodness-of-fit function for 

numerical and graphical comparison of simulated and observes time series, mainly 

focused on hydrological modelling: Mean Error (ME), Percent Bias (PBIAS), Root 

Mean Square to Standard Deviation (RSR), Nash-Sutcliffe Efficiency (NSE), Mean 

Absolute Error (MAE),  Ratio of Standard Deviations (rSD), Modified Nash-Sutcliffe 

efficiency (mNSE), Relative Nash-Sutcliffe efficiency (rNSE), Index of Agreement 

(d), Modified Index of Agreement (md), Relative Index of Agreement (rd), Coefficient 

of persistence (cp), Kling-Gupta Efficiency (KGE), Volumetric Efficiency (VE), 

Coefficient of Determination (R2).  

Coefficient of determination (R2) 

The coefficient of determination R2 describe the degree of collinearity between 

simulated and measured data. In other words, it describes the proportion of the 

variance in measured data explained by the model. It ranges from -∞ to 1. Typically, 

when the values are greater than 0,5, it considered as acceptable (Maca P., 2015; 

Moriasi et al., 2006).  

 

𝑅2 =  1 −
∑ (𝑄𝑜𝑏𝑠 −  𝑄𝑠𝑖𝑚)2𝑁

𝑖=1

∑ (𝑄𝑜𝑏𝑠 −  Ǭ)2𝑁
𝑖=1

 

 

(6) 

where Ǭ =  
1

𝑁
∑ 𝑄𝑜𝑏𝑠

𝑁
𝑖=1  

where 𝑄𝑜𝑏𝑠 is the observation,  

𝑄𝑠𝑖𝑚 is simulated value,  

Ǭ is the mean of observed data for the constituent, 

N is a total amount of observations. 

Mean Error (ME) 

Mean error estimates the systematic errors. Usually when the values are close to 0, it 

shows a perfect fit of model (Maca P. et al, 2015).  
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𝑀𝐸 =  
1

𝑁
 ∑(𝑄𝑜𝑏𝑠 −  𝑄𝑠𝑖𝑚)

𝑁

𝑖=1

 

 

(7) 

 

𝑄𝑠𝑖𝑚 is simulated value,  

𝑄𝑜𝑏𝑠 is the observation, 

N is a total amount of observations. 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) 

They are also called error indices, which usually used in model evaluation. It includes 

three indices: The Mean Absolute Error (MAE) and The Root Mean Squared Error 

(RMSE). They range from 0 to ∞, values of 0 indicates a perfect fit. MSE is a network 

performance function, it measures the performance of the network according to the 

mean squared errors. From the MSE we can create square root, the result is the RMSE. 

The Mean Absolute Error is used to measure how close forecast values are to the 

observed values. It is the average of the absolute errors (Belayneh A., 2013; Maca P. 

et al., 2015; Moriasi et al., 2006).  

𝑀𝐴𝐸 =  
1

𝑁
∑ 𝑄𝑜𝑏𝑠 −  𝑄𝑠𝑖𝑚

𝑁

𝑖=1

 

 

(8) 

The Root Mean Squared Error (Belayneh A., 2013): 

𝑅𝑀𝑆𝐸 =  √
𝑆𝑆𝐸

𝑁
 

 

(9) 

Where SSE is the sum of squared errors and N is the number of samples used, SSE is 

given by (Belayneh A., 2013): 

𝑆𝑆𝐸 =  ∑(𝑄𝑜𝑏𝑠 −  𝑄𝑠𝑖𝑚)2

𝑁

𝑖=1

 

 

(10) 

where 𝑄𝑜𝑏𝑠 is the observation,  

𝑄𝑠𝑖𝑚 is simulated value,  
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Ǭ is the mean of observed data for the constituent, 

N is a total amount of observations. 

For better understanding, in Tab. 15 represented summary of selected functions which 

are usually using in hydrological modelling.   

Tab. 15 Summary of selected functions  

Criteria Range The best 

ME [-∞;+∞] 0 

MAE [0; +∞] 0 

RMSE [0; +∞] 0 

R2 [-∞; 1] 1 

 

4.4 Analysis of models performance 

I was tested out autoregressive model, which had a different number of length. LAG 

is effectively the lead time of the forecast, which varied from 1 to 12 months. Because 

it is a medium-range and the long-range forecasts that are critical for drought 

preparedness (Morid et al., 2007).  

All the model evaluation statistics, described above, are represented in Tab. 16 - 18. 

On tab. 16. At calibration of SPI forecasting the highest coefficient of determination 

was in 2110 Teplá (Cihelny), the lowest was in 6 meteorological stations: 2940 Odra 

(Bohumín), 4215 Morava (Strážnice), 4410 Svratka (Borovnice), 4530 Křetínka 

(Letovice), 4540 Svitava (Letovice), 4650 Jihlava (Dvorce). At validation of SPI 

forecasting the highest coefficient of determination was in two meteorological 

stations: 2940 Odra (Bohumín) and 4540 Svitava (Letovice), the lowest was in 3: 1980 

Berounka (Beroun), 3540 Moravská Sázava (Lupěné), 3450 Morava (Raškov). 
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Tab. 16 Results of SPI forecasting 

DBC 

  Calibration  Validation 

LAG 

[month] 

ME  

→0 

MAE 

→0 

RMSE 

→0 

R2 

→1 

ME 

→0 

MAE 

→0 

RMSE 

→0 

R2 

→1 

1980 7 0,00 0,29 0,38 0,85 -0,02 0,32 0,44 0,73 

2110 10 0,00 0,28 0,36 0,88 0,03 0,35 0,45 0,63 

2400 10 0,00 0,31 0,40 0,82 -0,01 0,35 0,48 0,77 

2940 8 0,00 0,28 0,39 0,81 0,00 0,43 0,54 0,83 

3450 11 0,00 0,32 0,41 0,82 0,07 0,38 0,48 0,73 

3511 9 0,00 0,29 0,39 0,84 0,04 0,34 0,43 0,81 

3540 12 0,00 0,30 0,40 0,84 0,03 0,36 0,44 0,73 

3550 4 0,00 0,29 0,39 0,84 0,04 0,37 0,45 0,77 

4215 8 0,00 0,30 0,41 0,81 -0,04 0,43 0,55 0,78 

4410 9 0,00 0,33 0,45 0,81 0,09 0,38 0,50 0,67 

4530 7 0,00 0,31 0,42 0,81 -0,02 0,36 0,48 0,80 

4540 8 0,00 0,31 0,42 0,81 0,03 0,34 0,45 0,83 

4650 8 0,00 0,35 0,44 0,81 0,05 0,32 0,43 0,74 

 

At calibration of SPEI forecasting the highest coefficient of determination was in 

2110 Teplá (Cihelny), the lowest in four stations: 3450 Morava (Raškov), 4215 

Morava (Strážnice), 4530 Křetínka (Letovice) and 4540 Svitava (Letovice). At 

validation of SPEI forecasting the highest coefficient of determination was in two 

meteorological stations: 4530 Křetínka (Letovice) and 2940 Odra (Bohumín), the 

lowest was in 2110 Teplá (Cihelny).  

Tab. 17 Results of SPEI forecasting 

DBC 

  Calibration Validation 

LAG 

[month] 

ME 

→0 

MAE 

→0 

RMSE 

→0 

R2 

→1 

ME 

→0 

MAE 

→0 

RMSE 

→0 

R2 

→1 

1980 10 0,00 0,34 0,44 0,81 0,05 0,32 0,43 0,75 

2110 8 0,00 0,31 0,40 0,84 0,01 0,34 0,45 0,71 

2400 7 0,00 0,31 0,41 0,82 -0,02 0,33 0,47 0,78 

2940 6 0,00 0,29 0,40 0,82 0.01 0,38 0,45 0,86 

3450 8 0,00 0,35 0,44 0,80 0,05 0,37 0,47 0,75 

3511 9 0,00 0,31 0,40 0,82 0,05 0,35 0,44 0,81 

3540 11 0,00 0,32 0,42 0,82 0,05 0,35 0,44 0,77 

3550 12 0,00 0,33 0,42 0,81 0,01 0,33 0,42 0,81 

4215 7 0,00 0,31 0,42 0,80 -0,01 0,40 0,48 0,82 

4410 7 0,00 0,34 0,46 0,78 0,03 0,38 0,49 0,73 

4530 8 0,00 0.31 0,43 0,80 0,04 0,31 0,40 0,86 

4540 7 0,00 0.31 0.42 0,80 0,01 0,33 0,45 0,85 

4650 10 0,00 0,33 0,42 0,82 0,05 0,31 0,41 0,80 
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It is clear, that all statistics are better of SSI index. On Tab. 18 at calibration of SSI 

forecasting the highest coefficient of determination was in 7 stations, the lowest was 

just in 3550 Morava (Morvičany). At validation, the highest coefficient of 

determination was in two stations: 4530 Křetínka (Letovice) and 4540 Svitava 

(Letovice), the lowest at validation was in 2110 Teplá (Cihelny). 

 

Tab. 18 Results of SSI forecasting  

DBC 

  Calibration Validation 

LAG 

[month] 

ME 

→0 

MAE 

→0 

RMSE 

→0 

R2 

→1 
ME →0 

MAE 

→0 

RMSE 

→0 

R2 

→1 

1980 9 0,00 0,10 0,13 0,98 -0,03 0,11 0,16 0,94 

2110 7 0,00 0,13 0,18 0,97 -0,01 0,15 0,21 0,93 

2400 9 0,00 0,11 0,14 0,98 -0,02 0,11 0,15 0,96 

2940 8 0,00 0,10 0,13 0,98 0,00 0,13 0,17 0,97 

3450 7 0,00 0,15 0,20 0,97 0,01 0,14 0,21 0,93 

3511 7 0,00 0,13 0,18 0,97 0,01 0,14 0,20 0,94 

3540 7 0,00 0,12 0,16 0,98 0,00 0,12 0,18 0,94 

3550 8 0,00 0,12 0,18 0,94 0,00 0,12 0,18 0,94 

4215 9 0,00 0,12 0,16 0,98 0,01 0,13 0,18 0,94 

4410 10 0,00 0,13 0,17 0,97 -0,01 0,12 0,17 0,94 

4530 9 0,00 0,10 0,14 0,98 0,00 0,10 0,14 0,98 

4540 9 0,00 0,10 0,14 0,98 -0.01 0,02 0,15 0,98 

4650 10 0,00 0,00 0,17 0,97 -0.01 0,11 0,16 0,96 
 

 

4.5 The best ANN models 

Monthly rainfall recorded at 13 meteorological stations had been used as the input data 

to train and test the neural network. The rainfall data recorded over the time 1982 – 

2015. 

For calculation SPI, SPEI and SSI was used the “SPEI” R package. For calculation 

SSI were used data with water content in layer 0 – 100 cm. The probability distribution 

was expressed using the three-parameters log - logistic probability distribution, the SPI 

probability distribution was calculated using the Gamma distribution. For SSI, the 

probabilities are obtained empirically using the empirical Gringorten approach.  
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In this thesis, drought conditions were predicted by attempting to forecast future SPI, 

SPEI and SSI values. Through testing various network and learning methodologies, 

the Feedforward Neural Network with standard back propagation algorithm was found 

to be the most suitable.  Those values were calculated for a range of time lags from 1 

to 12 months. A drought lag time parameter was introduced to quantify the time 

between the start of a moisture anomaly and the onset of drought.  

The evaluation of the accuracy of model forecasts was carried out using Root Mean 

Square Error, Mean Average Error, Mean Error and Coefficient of determination. 

So, I had to choose the best model according to LAG. For those 13 meteorological 

stations that I had, the best models for all drought indices are represented on Tab.  19. 

Coefficient of determination at SPI forecasting was the best at calibration when LAG 

equals 10 month.  

Coefficient of determination at SPEI forecasting was the best at validation when the 

LAG equals 6 months.  

SSI shows the best results of forecasting. All statistical analysis show very good 

simulation. When the LAG equals 9 two meteorological stations show at calibration 

and validation the closest to the perfect fit results 

Tab. 19 The best models of SPI forecasting 

   R2 

 DBC LAG Calibration Validation 

SPI 

2110 10 0,88 0,63 

2940 8 0,81 0,83 

4540 8 0,81 0,83 

SPEI 2940 6 0,82 0,86 

SSI 
4530 9 0,98 0,98 

4540 9 0,98 0,98 

 

The results show the mathematical similarity of values of SPI and SPEI drought 

indices. It can be seen, that SPI and SPEI produce very close values. Small differences 



65 
 

between two Standardised Indices of drought show the fact that the temperature trends 

were not visible.  

The results indicate that soil moisture exhibits higher persistence that precipitation.  

 

  
Fig. 55 Calibration and validation results of SPI forecasting for the best model according 

to LAG, Teplá. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations  

 

  

Fig. 56 Calibration and validation results of SPI forecasting for the best model according 

to LAG, Odra. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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Fig. 57 Calibration and validation results of SPI forecasting for the best model according 

to LAG, Svitava. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 

 

 

 

  
Fig. 59 Calibration and validation results of SSI forecasting for the best model according 

to LAG, Křetínka. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 

  

Fig. 58 Calibration and validation results of SPEI forecasting for the best model according 

to LAG, Odra. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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Fig. 60 Calibration and validation results of SSI forecasting for the best model according 

to LAG, Svitava. The red line: simulated calibration data from MLP model, the blue line: 

simulated validation data from MLP, points: observations 
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5 Discussion 

 

Drought is hard to detect and describe. Most of the recent drought prediction models 

which are based on statistical or artificial neural network. Application of statistical 

models has a long history in drought forecasting. First who used Markov and 

regressions models for drought forecasting were Gabriel and Neumann (1962) and 

Torranin (1976) (Morid et al., 2007).  

But nowadays new statistical technique called Artificial Neural Network show the 

superior performance for forecasting in many areas. A lot of studies presented their 

good results with using ANN. For example, Morid et al. (2007) used ANN for drought 

forecasting and time series of drought indices in the Tehran Province of Iran. In their 

study, they used two drought indices: The Standard Precipitation Index and The 

Effective Drought Index (EDI). As input data, they used monthly and daily rainfall 

data from meteorological stations from January 1970 to December 2000. Both of their 

best models have the coefficient of determination in range of values 0.66 – 0.79 for a 

lead time of 6 month. The EDI show better performance. In my case, the coefficient 

of determination was 0.98 for SSI index, which shows the superior results.  

Sonnadara and Illeperuma (2009) used ANN to forecast drought in Sri Lanka. 

Predictions were made using the Standardized Precipitation Index as the drought 

monitoring index. In their study the highest correlation coefficient was found 0.94 for 

3-month time window. As input data, they used the rainfall data from 13 climatological 

stations from 1870 to 1980. The results of his work show that neural network models 

trained on SPI can be used to forecast water scarcity.  

Other example using artificial neural network approach for modelling rainfall-runoff 

due to typhoon by Che. Wang and Tsou (2013).  They used rainfall data from a river 

basin of 27 typhoons between the years 2005 and 2009 in Taiwan. The feed forward 

back propagation network and conventional regression analysis were employed their 

performances were presented in their study. From the statistical evaluation, the 

coefficient of determination was 0.969 for feed forward back propagation network and 

0.284 conventional regression analysis.  
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Zulifgar Ali et al., (2017) used ANN for forecasting SPEI. They used monthly time 

series data of Standardized Precipitation Evapotranspiration Index for 17 

climatological stations: (Balakot, Kotli, Chirat, Chilas, Islamabad, Gupis, Pechawar, 

Saidu Shareef, Muzafarabad, Bunji, Di Khan, Drosh Gari Dubata, Dir, Gligit and 

Kakul) located in Northern Area and Pakistan including capital territory from 1975 to 

2012. Time series data o observed SPEI with 1,3, 6 and 12-month time scales. The 

result of their work shows that ANNs have the power to capture the variation in 

selected drought indices with one month time scale.  

There are a lot of other examples with using ANN for forecasting natural hazards. Kim 

and Valdes (2003) forecasted drought using dyadic wavelet transforms and neural 

network. Mishra et al. (2007) used SPI to compare the forecasting performance of 

ANN and linear stochastic model in the Kansabati River basin, India. Bacamli et al. 

(2009) investigated SPI and used Adaptive Neuro-Fuzzy Inference System for drought 

forecasting.  

I’m sure that in near future using ANN in forecasting drought or other areas will 

develop more. People will create other indices for calculating drought. For example, 

in March 2017, Minister for Primary Industries Nathan Guy has welcomed a new tool 

to monitor drought in New Zealand’s regions, The New Zealand Drought Index 

(NZDI). It combines four commonly-used drought indices: The Standardized 

Precipitation Index, Soil Moisture Deficit, Soil Moisture Deficit Anomaly and 

Potential Evapotranspiration Deficit. NZDI was created for showing levels of dryness 

and time when it turns into drought conditions (Guy N., 2017).  
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6 Conclusion  

In recent years, a lot of studies were created to analyse the spatial patterns of drought 

risk and a big attention was drawing to this problem. 

Regularly numerous number of natural indicators have to be controlled and monitored 

to determine the onset, ending and spatial characteristics of drought. Some of them 

must be valuated on frequent time steps (Wilhite D. et al., 2009). 

Along with a drought effective drought early warning systems must integrate others 

climatic parameters such as snow pack, lake levels, soil moisture into a comprehensive 

assessment of current and future drought and water supply conditions (Wilhite D. et 

al., 2009). 

In the first part of this thesis I describe the drought, its classifications and impacts of 

drought. Then I analysed three indices, which were developed to identify a drought. 

First of them, is The Standardized Precipitation Index, which based only on 

precipitation data. Second of them is The Standardized Precipitation 

Evapotranspiration Index. It is based on precipitation and potential evapotranspiration. 

And the last one was The Standardized Soil Moisture Index. Soil moisture is a main 

indicator for agricultural drought monitoring. 

Then I describe Artificial Neural network and the procedure for drought forecasting 

using the MLP and its application in Czech Republic. Three drought indices – the 

SPEI, the SPI and SSI – have been used as the predictands. The SPI, SPEI and SSI 

neural network forecast was based on data obtained from January of 1982 to December 

of 2015 from 13 meteorological station situated in different parts of Czech Republic.  

Tested Artificial Neural Network was Multilayer Perceptron with two hidden layers 

and was trained using Back-propagation algorithm. After evaluating the ANN models 

performance, the results of all three model performance indices were superior. The 

best results show The Standardized Soil Moisture Index.   

Two of indices SPEI and SPI are using the precipitation data have some similarity, but 

just because they mathematically the same, just the SPEI include PET. 
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