

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY

FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS

PROBLEMATIKA SPOLEHLIVOSTI OCELOVÝCH PRUTOVÝCH PRVKŮ CITLIVÝCH NA IMPERFEKCE

PROBLEMS OF RELIABILITITY OF STEEL MEMBERS SENSITIVE TO IMPERFECTIONS

DIPLOMOVÁ PRÁCE DIPLOMA THESIS

AUTOR PRÁCE AUTHOR Bc. ANNA NEZBEDOVÁ

VEDOUCÍ PRÁCE SUPERVISOR prof. Ing. ZDENĚK KALA, Ph.D.

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ

Studijní program	N3607 Stavební inženýrství
Typ studijního programu	Navazující magisterský studijní program s prezenční formou studia
Studijní obor	3607T009 Konstrukce a dopravní stavby
Pracoviště	Ústav stavební mechaniky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Diplomant	Bc. Anna Nezbedová
Název	Problematika spolehlivosti ocelových prutových prvků citlivých na imperfekce
Vedoucí diplomové práce	prof. Ing. Zdeněk Kala, Ph.D.
Datum zadání diplomové práce	31. 3. 2014
Datum odevzdání diplomové práce	16. 1. 2015
V Brně dne 31. 3. 2014	

prof. Ing. Drahomír Novák, DrSc. prof. Ing. Rostislav Drochytka, CSc., MBA Vedoucí ústavu Děkan Fakulty stavební VUT

Podklady a literatura

Galambos T.V. Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons, p.944, 1998.

EN 1993-1-1: Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for building, Brussels, CEN, 2006.

Zásady pro vypracování

Použijte výpočtové postupy nelineární statické analýzy stabilitních problémů ocelových prutových prvků s imperfekcemi pro analýzu spolehlivosti v souvislosti s návrhovými kritérii normy EUROCODE3.

Předepsané přílohy

Licenční smlouva o zveřejňování vysokoškolských kvalifikačních prací

.....

prof. Ing. Zdeněk Kala, Ph.D. Vedoucí diplomové práce

Abstrakt

Diplomová práce se zabývá problematikou spolehlivosti ocelových prutových prvků citlivých na imperfekce. Jsou zde odvozeny vzorce pro nelineární analýzu tlačených a ohýbaných prutů. U tlačených prvků je popsána problematika vzpěru, u ohýbaných klopení. Následně je provedena statistická analýza spolehlivosti těchto problémů a vyhotoveno porovnání s přístupem popsaným v Eurocode 3.

Klíčová slova

nelineární analýza, stabilita ocelových prutů, klopení, vzpěr, spolehlivost

Abstract

This thesis deals with the problems of reliability of steel members sensitive to imperfections. Formulas for nonlinear analysis of compressed and bended members are derived. For compressed elements, there is described the issue of buckling, for bended elements it is lateral-torsional buckling. Then a statistical analysis of reliability of these problems is performed and also comparison with the approach described in Eurocode 3.

Keywords

nonlinear analysis, stability of steel members, lateral-torsional buckling, buckling, reliability

Bibliografická citace VŠKP

NEZBEDOVÁ, Anna. Problematika spolehlivosti ocelových prutových prvků citlivých na imperfekce. Brno, 2015. 116 s. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí práce prof. Ing. Zdeněk Kala PhD.

Prohlášení:

Prohlašuji, že jsem diplomovou práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje.

V Brně dne 16.1.2015

.....

podpis autora Bc. Anna Nezbedová

Poděkování:

Na tomto místě bych ráda poděkovala svému vedoucímu diplomové práce panu prof. Ing. Zdeňku Kalovi, Ph.D. za odborné vedení, cenné rady, připomínky a pomoc v průběhu zpracování této práce.

Obsah

1	ÚV	OD .		11
2	VZ	PĚR		13
	2.1	Stał	pilita a vzpěrná pevnost prutů	13
	2.1.	.1	Eulerovo řešení stability přímého pružného prutu	14
	2.2	Pru	t oboustranně kloubově podepřený	14
	2.3	Pev	nostní pojetí vzpěru a posouzení prutů na vzpěr	17
	2.4	Pru	t s počátečním zakřivením	17
	2.5	Výţ	oočet vzpěrné únosnosti tlačeného prvku podle Eurocode 3	20
	2.5.	.1	Štíhlosti pro rovinný vzpěr	22
	2.5.	.2	Štíhlosti pro vzpěr zkroucením a prostorový vzpěr	23
	2.6	Stat	istická analýza vzpěrné únosnosti	23
	2.6.	.1	Vstupní veličiny	24
	2.6.	.2	Korelace	26
	2.6.	.3	Výpočet	
3	KL	OPE	NÍ	59
	3.1	Klo	pení prutu s počátečním zakřivením	72
	3.2	Vý	počet únosnosti na klopení dle EUROCODE 3	79
	3.3	Stat	istická analýza únosnosti při klopení	
	3.3.	.1	Vstupní veličiny a korelace	
	3.3	.2	Výpočet	
4	ZÁ	VĚF	REČNÁ SHRNUTÍ PRÁCE	110
5	SEZ	ZNA	M POUŽITÝCH ZDROJŮ	111
	5.1	Kni	hy	111
	5.2	Skr	ipta	111
	5.3	Člá	nky v časopisech a sbornících	111
	5.4	Pře	dnášky	
	5.5	No	۳my	113
	5.6	Aka	ademické práce	113
	5.7	Ma	nuály a webové stránky	113
6	SEZ	ZNA	M POUŽITÝCH ZKRATEK A SYMBOLŮ	114

Seznam grafů

Graf 2.1 Závislost vzpěrné únosnosti na délce nosníku průřezu I 80	5
Graf 2.2 Závislost vzpěrné únosnosti na délce nosníku průřezu I 180	5
Graf 2.3 Závislost vzpěrné únosnosti na délce nosníku průřezu I 300	7
Graf 2.4 Závislost vzpěrné únosnosti na délce nosníku průřezu IPE 80	7
Graf 2.5 Závislost vzpěrné únosnosti na délce nosníku průřezu IPE 180	3
Graf 2.6 Závislost vzpěrné únosnosti na délce nosníku průřezu IPE 300	3
Graf 2.7 Vzpěrná únosnost nosníku profilu I 300 v závislosti na délce	2
Graf 2.8 Vzpěrná únosnost nosníku profilu I 300 v závislosti na poměrné štíhlosti	2
Graf 2.9 Vzpěrná únosnost nosníku profilu I 180 v závislosti na délce	3
Graf 2.10 Vzpěrná únosnost nosníku profilu I 180 v závislosti na poměrné štíhlosti	3
Graf 2.11 Vzpěrná únosnost nosníku profilu I 80 v závislosti na délce	1
Graf 2.12 Vzpěrná únosnost nosníku profilu I 80 v závislosti na poměrné štíhlosti	1
Graf 2.13 Vzpěrná únosnost nosníku profilu IPE 300 v závislosti na délce	5
Graf 2.14 Vzpěrná únosnost nosníku profilu IPE 300 v závislosti na poměrné štíhlosti	5
Graf 2.15 Vzpěrná únosnost nosníku profilu IPE 180 v závislosti na délce	5
Graf 2.16 Vzpěrná únosnost nosníku profilu IPE 180 v závislosti na poměrné štíhlosti	5
Graf 2.17 Vzpěrná únosnost nosníku profilu IPE 80 v závislosti na délce	7
Graf 2.18 Vzpěrná únosnost nosníku profilu IPE 80 v závislosti na poměrné štíhlosti	7
Graf 2.19 Pravděpodobnost poruchy nosníku profilu IPE 300 v závislosti na poměrné štíhlosti 49)
Graf 2.20 Pravděpodobnost poruchy nosníku profilu IPE 180 v závislosti na poměrné štíhlosti 49)
Graf 2.21 Pravděpodobnost poruchy nosníku profilu IPE 80 v závislosti na poměrné štíhlosti 50)
Graf 2.22 Pravděpodobnost poruchy nosníku profilu I 80 v závislosti na poměrné štíhlosti 50)
Graf 2.23 Pravděpodobnost poruchy nosníku profilu I 180 v závislosti na poměrné štíhlosti	l
Graf 2.24 Pravděpodobnost poruchy nosníku profilu I 300 v závislosti na poměrné štíhlosti	l
Graf 2.25 Závislost korelace vstupních veličin a výsledné vzpěrné únosnost nosníku profilu IPE 180 na	a
délce nosníku	1
Graf 2.26 Závislost korelace vstupních veličin a výsledné vzpěrné únosnost nosníku profilu I 180 na délca	э
nosníku	4
Graf 3.1 Srovnání průběhu M_{Rd} v závislosti na poměrné štíhlosti s použitím M_{cr} vypočteným dle EC a dle	е
vztahu (3.35)	2
Graf 3.2 Moment únosnosti při klopení v závislosti na délce nosníku průřezu I 80	7
Graf 3.3 Moment únosnosti při klopení v závislosti na délce nosníku průřezu I 180	7
Graf 3.4 Moment únosnosti při klopení v závislosti na délce nosníku průřezu I 300	3
Graf 3.5 Moment únosnosti při klopení v závislosti na délce nosníku průřezu IPE 80	3
Graf 3.6 Moment únosnosti při klopení v závislosti na délce nosníku průřezu IPE 180	9
Graf 3.7 Moment únosnosti při klopení v závislosti na délce nosníku průřezu IPE 300	9

Graf 3.8 Průběh momentu únosnosti při klopení nosníku profilu I 80 po délce	93
Graf 3.9 Momentu únosnosti při klopení nosníku profilu I 80 v závislosti na poměrné štíhlosti	93
Graf 3.10 Průběh momentu únosnosti při klopení nosníku profilu I 180 po délce	94
Graf 3.11 Momentu únosnosti při klopení nosníku profilu I 180 v závislosti na poměrné štíhlosti	94
Graf 3.12 Průběh momentu únosnosti při klopení nosníku profilu I 300 po délce	95
Graf 3.13 Moment únosnosti při klopení nosníku profilu I 300 v závislosti na poměrné štíhlosti	95
Graf 3.14 Průběh momentu únosnosti při klopení nosníku profilu IPE 300 po délce	96
Graf 3.15 Moment únosnosti při klopení nosníku profilu IPE 300 v závislosti na poměrné štíhlosti	96
Graf 3.16 Průběh momentu únosnosti při klopení nosníku profilu IPE 180 po délce	97
Graf 3.17 Moment únosnosti při klopení nosníku profilu IPE 180 v závislosti na poměrné štíhlosti	97
Graf 3.18 Průběh momentu únosnosti při klopení nosníku profilu IPE 80 po délce	98
Graf 3.19 Moment únosnosti při klopení nosníku profilu IPE 80 v závislosti na poměrné štíhlosti	98
Graf 3.20 Průběh poměrné štíhlosti v závislosti na délce	99
Graf 3.21 Pravděpodobnost poruchy nosníku I 80 při klopení	100
Graf 3.22 Pravděpodobnost poruchy nosníku I 180 při klopení	101
Graf 3.23 Pravděpodobnost poruchy nosníku I 300 při klopení	101
Graf 3.24 Pravděpodobnost poruchy nosníku IPE 300 při klopení	102
Graf 3.25 Pravděpodobnost poruchy nosníku IPE 180 při klopení	102
Graf 3.26 Pravděpodobnost poruchy nosníku IPE 80 při klopení	103
Graf 3.27 Závislost korelace vstupních veličin a výsledné momentové únosnosti nosníku profilu IP	E 180
na délce nosníku	105
Graf 3.28 Závislost korelace vstupních veličin a výsledné momentové únosnosti nosníku profilu I 1	80 na
délce nosníku	105

Seznam tabulek

Tabulka 2.1 Součinitele imperfekce pro křivky vzpěrné pevnosti	22
Tabulka 2.2 Přiřazení křivek vzpěrné pevnosti k průřezům	22
Tabulka 2.3 Statistické charakteristiky materiálových veličin	24
Tabulka 2.4 Mezní úchylky rozměrů příčného průřezu tyčí I	25
Tabulka 2.5 Střední hodnoty a směrodatné odchylky IPE profilů	26
Tabulka 2.6 Střední hodnoty a směrodatné odchylky I profilů	26
Tabulka 2.7 Přesnost vzorců pro výpočet momentů setrvačnosti I profilů	31
Tabulka 2.8 Průřezové charakteristiky I a IPE profilů pro výpočet dle EC	32
Tabulka 2.9 Vybrané výsledky vzpěrné únosnosti nosníků průřezů IPE 80 a IPE 180 dle EC	33
Tabulka 2.10 Vybrané výsledky vzpěrné únosnosti nosníků průřezů IPE 300 a I 300 dle EC	34
Tabulka 2.11 Vybrané výsledky vzpěrné únosnosti nosníků průřezů I 80 a I 180 dle EC	35
Tabulka 2.12 Vybrané výsledky vzpěrné únosnosti nosníku průřezů IPE 80 a IPE 180	39

Tabulka 2.13 Vybrané výsledky vzpěrné únosnosti nosníku průřezů IPE 300 a I 300
Tabulka 2.14 Vybrané výsledky vzpěrné únosnosti nosníku průřezů I 80 a I 180
Tabulka 2.15 Korelace vstupních veličin a výsledné vzpěrné únosnosti
Tabulka 2.16 Pravděpodobnosti poruchy nosníků průřezu I 80 pro různé součinitele spolehlivosti 56
Tabulka 2.17 Pravděpodobnosti poruchy nosníků průřezu I 180 pro různé součinitele spolehlivosti 56
Tabulka 2.18 Pravděpodobnosti poruchy nosníků průřezu I 300 pro různé součinitele spolehlivosti 57
Tabulka 2.19 Pravděpodobnosti poruchy nosníků průřezu IPE 80 pro různé součinitele spolehlivosti 57
Tabulka 2.20 Pravděpodobnosti poruchy nosníků průřezu IPE 180 pro různé součinitele spolehlivosti 58
Tabulka 2.21 Pravděpodobnosti poruchy nosníků průřezu IPE 300 pro různé součinitele spolehlivosti 58
Tabulka 3.1 Doporučené hodnoty součinitelů imperfekce pro křivky klopení
Tabulka 3.2 Doporučené přiřazení křivek klopení k průřezům
Tabulka 3.3 Srovnání kritických momentů vypočtených dle EC a dle vzorce (3.35)
Tabulka 3.4 Průřezové charakteristiky I a IPE profilů pro výpočet dle EC
Tabulka 3.5 Vybrané výsledky únosnosti při klopení nosníků průřez I 80 dle EC
Tabulka 3.6 Vybrané výsledky únosnosti při klopení nosníků průřez I 180 dle EC
Tabulka 3.7 Vybrané výsledky únosnosti při klopení nosníků průřez I 300 dle EC
Tabulka 3.8 Vybrané výsledky únosnosti při klopení nosníků průřez IPE 80 dle EC
Tabulka 3.9 Vybrané výsledky únosnosti při klopení nosníků průřez IPE 180 dle EC
Tabulka 3.10 Vybrané výsledky únosnosti při klopení nosníků průřez IPE 300 dle EC
Tabulka 3.11 Moment únosnost při klopení nosníků z profilů IPE 80 a IPE 180
Tabulka 3.12 Moment únosnost při klopení nosníků z profilů IPE 300 a I 300
Tabulka 3.13 Moment únosnost při klopení nosníků z profilů I 80 a I 180
Tabulka 3.14 Korelace vstupních veličin a výsledné momentové únosnosti při klopení 104
Tabulka 3.15 Pravděpodobnosti poruchy nosníků průřezu I 80 pro různé součinitele spolehlivosti 106
Tabulka 3.16 Pravděpodobnosti poruchy nosníků průřezu I 180 pro různé součinitele spolehlivosti 107
Tabulka 3.17 Pravděpodobnosti poruchy nosníků průřezu I 300 pro různé součinitele spolehlivosti 107
Tabulka 3.18 Pravděpodobnosti poruchy nosníků průřezu IPE 80 pro různé součinitele spolehlivosti 108
Tabulka 3.19 Pravděpodobnosti poruchy nosníků průřezu IPE 180 pro různé součinitele spolehlivosti . 108
Tabulka 3.20 Pravděpodobnosti poruchy nosníků průřezu IPE 300 pro různé součinitele spolehlivosti. 109

1 ÚVOD

Tato diplomová práce vychází z bakalářské práce [27] a navazuje na ni.

Při návrhu stavebních konstrukcí je cílem navrhovat konstrukce spolehlivé a hospodárné. U prutových ocelových konstrukcí se snažíme, aby bylo zatížení přenášeno především tahem nebo tlakem, ohybem a méně kroucením. Ocel má vysokou pevnost, a proto bývají stavební konstrukce z ní vyrobené subtilní a lehké, což se příznivě projevuje při přepravě a montáži a vytváří to menší požadavky na základy stavby. V neposlední řadě hraje roli i estetické hledisko. Ocelovými konstrukcemi lze překonat velká rozpětí, dosáhnout velkých výšek a přenést relativně velká zatížení [8]. Při návrhu prutových ocelových konstrukcí je potřeba počítat s nebezpečím zřícení v důsledku ztráty stability dlouhých a štíhlých prutů. Poruchy zapříčiněné stabilitním poškozením jsou velmi záludné zejména proto, že nejsou předem signalizovány zvětšováním deformací a dochází k nim náhle a překvapivě.

V globální analýze konstrukce lze pružnostní výpočet uplatnit vždy, zatímco pro výpočet podle plastické analýzy musí být splněny určité podmínky, viz např. [5], [8]. U prutových ocelových konstrukcí můžeme plastickou analýzu aplikovat především u ohýbaných prvků tehdy, pokud mají průřezy velkou rotační kapacitu pro plastickou redistribuci vnitřních sil. U velmi štíhlých prutů není tato schopnost velká, protože jejich únosnost je limitována především stabilitními jevy.

Ve většině běžných výpočtů staticky zatížených stavebních konstrukcí vystačíme s lineární statickou analýzou, jejíž výstupem jsou vnitřní síly, které jsou základem návrhu ocelových konstrukcí podle norem pro navrhování, viz EUROCODE 3 [24]. Existují ale případy namáhání, kdy je nevyhnutelné použití nelineárního výpočtu. U tlačených prutů se jedná o vzpěr, u ohýbaných o klopení. Únosnost štíhlých prvků řešených s vlivem vzpěru a klopení je snížena vlivem počátečních imperfekcí, jejichž působení musí být ve výpočtech zohledněno.

Pomocí nelineárního výpočtu by bylo možné posuzovat i kroucení nosníků, ale u běžných konstrukcí plně vystačíme s výpočtem lineárním, neboť pootočení běžně nejsou natolik velká, aby bylo s nelinearitami potřeba počítat. Stavební konstrukce se běžně navrhují podle norem, v současné době nejčastěji podle Eurocode. Ale i konstrukce takto správně navržená může selhat. Normy pro navrhování jsou totiž založeny na spolehlivostních součinitelích, které mají zaručit akceptovatelnou pravděpodobnost selhání konstrukce s ohledem na její životnost a následky, které její selhání může přinést. Norma Eurocode také umožňuje plně pravděpodobnostní přístup k navrhování konstrukcí. Takový návrh dává větší přehled o rezervě spolehlivost a pravděpodobnosti poruchy konstrukce. Je ale nutné všechny základní veličiny vstupující do výpočtu popsat vhodným teoretickým modelem rozdělení pravděpodobnosti. [21]

V této práci je provedena statistická analýza problematiky vzpěru a klopení štíhlých ocelových nosníků a následné srovnání s výpočtem podle normy Eurocode 3.

2 VZPĚR

Poznání v oblasti pružné stability začíná objevem švýcarského matematika Leonharda Eulera (1707- 1783) uveřejněném v jeho slavném pojetí "De curvis elasticis" v roce 1744 [1].

2.1 Stabilita a vzpěrná pevnost prutů

Stabilita je schopnost soustavy vracet se do původního stavu, jakmile pomine příčina, která vychýlení vyvolala. Vrátí-li se těleso po vychýlení do původní polohy, hovoříme o stavu stabilní rovnováhy. Při nestabilní rovnováze způsobí malé vychýlení pohyb tělesa, který trvá tak dlouho, dokud těleso nedosáhne stabilní polohy na jiném místě. Mezi těmito dvěma uvedenými případy leží případ rovnováhy indiferentní, při které zůstává těleso po vychýlení v odkloněné poloze. Tyto tři stabilitní stavy rovnováhy jsou znázorněny na Obr. 2.1. [6]

Obr. 2.1 Stabilitní stavy tělesa

2.1.1 Eulerovo řešení stability přímého pružného prutu

Obr. 2.2 Chování centricky tlačeného prutu

Analogicky jako těleso na Obr. 2.1 se bude chovat i centricky zatížený tlačený prut. Kritická síla $F = P_z$ je taková síla, která udrží prut ohnut.

Velikost kritické síly z podmínky rozdvojení rovnováhy ideálního pružného přímého centricky tlačeného prutu stálého prutu popsal v roce 1744 L. Euler, a proto ji nazýváme Eulerovou kritickou silou.

2.2 Prut oboustranně kloubově podepřený

Obr. 2.3 Schéma tlačeného oboustranně kloubově podepřeného prutu

$$M(x) = F \cdot v(x) \tag{2.1}$$

$$v''(x) = -\frac{M(x)}{EI_z} = -\frac{F \cdot v(x)}{EI_z}$$
 (2.2)

$$v''(x) + \frac{F}{EI_z} \cdot v(x) = 0 \tag{2.3}$$

Označíme $\alpha^2 = \frac{F}{EI_z}$

$$v''(x) + a^2 = 0 \tag{2.4}$$

Obecné řešení rovnice je

$$v(x) = c_1 \cdot \sin(\alpha x) + c_2 \cdot \cos(\alpha x) \tag{2.5}$$

Z okrajových podmínek lze určit

$$v(0) = v(L) = 0 \implies c_2 = 0, c_1 \cdot \sin(\alpha L) = 0$$
 (2.6)

Rovnost $c_1 \cdot \sin(\alpha L) = 0$ je splněna pokud:

 $c_1 = 0 \dots$ prut je přímý, jedná se o tzv. triviální řešení

nebo sin(αL) = 0 ... pro vybočený prut, je splněno pro $\alpha L = k\pi$,

kde k = 1, 2, 3, ...

Dosazením do (2.5) lze obdržet řešení ve tvaru

$$v(x) = c_1 \cdot \sin \frac{k\pi x}{L} \tag{2.7}$$

což odpovídá vlastnímu tvaru vybočení.

$$\alpha^{2} = \frac{F}{EI_{z}} \Longrightarrow F = \alpha^{2} \cdot EI_{z} = \frac{k^{2} \cdot \pi^{2}}{L^{2}} \cdot EI_{z} \qquad (2.8)$$

$$P_{z,k} = k^{2} \cdot \pi^{2} \cdot \frac{EI_{z}}{L^{2}} \qquad (2.9)$$

Obr. 2.4 Tvary vybočení prutu podle hodnoty vlastního čísla k

Vlastní číslo je pro k = 1, jedná se o Eulerovu kritickou sílu. Kritická síla nemá přímý význam pro posouzení a návrh konstrukce, ale je horní hranicí únosnosti skutečného imperfektního sloupu namáhaného osovým tlakem.

$$P_z = \frac{\pi^2 E I_z}{L^2} \tag{2.10}$$

Prut vybočí při síle P_z (2.10). Známe tvar vyboření- jedná se o sinusoidu, ale neznáme velikost vybočení, protože c_1 není určeno. $F < P_z$ odpovídá stabilnímu stavu, $F = P_z$ indiferentnímu stavu a $F > P_z$ nestabilnímu stavu.

2.3 Pevnostní pojetí vzpěru a posouzení prutů na vzpěr

- Stabilitní pojetí vzpěru:

Vycházíme z ideálního (přímého), centricky zatíženého prutu.

- Pevnostní pojetí vzpěru:

Vycházíme z reálného prutu s imperfekcemi. Tyto imperfekce lze rozdělit do pěti skupin:

- Pruty nejsou ideálně přímé, ale zakřivené působením různých vlivů při výrobě. Rovněž konstrukce složené z těchto prutů se odchylují od ideálního tvaru předpokládaného v projektu.
- 2. Průřezy prutů také vykazují rozměrové odchylky od nominálního tvaru uvažovaného v projektu.
- 3. Pruty vykazují vlastní pnutí v důsledku výroby, popř. montáže.
- 4. Fyzikálně-mechanické vlastnosti oceli mají určité odchylky.
- 5. Zatížení nepůsobí ideálně v předpokládaných pozicích.

2.4 Prut s počátečním zakřivením

Obr. 2.5 Schéma vybočení prutu s počátečním zakřivením

$$y(x) = v_0 \cdot \sin \frac{\pi \cdot x}{L} \tag{2.11}$$

$$v(x) = v_1 \cdot \sin \frac{\pi \cdot x}{L} \tag{2.12}$$

$$M = F \cdot (y + v) = F \cdot (v_0 + v_1) \cdot sin \frac{\pi \cdot x}{L}$$
(2.13)

$$v''(x) = -\frac{M}{EI_z} \tag{2.14}$$

$$-v_1 \cdot \frac{\pi^2}{L^2} \cdot \sin \frac{\pi \cdot x}{L} = -\frac{F}{EI_z} \cdot (v_0 + v_1) \cdot \sin \frac{\pi \cdot x}{L}$$
(2.15)

$$-v_1 \cdot \frac{\pi^2}{L^2} = -\frac{F}{EI_z} \cdot (v_0 + v_1)$$
(2.16)

$$-v_1 \cdot \frac{\pi^2}{L^2} = -\frac{F}{EI_z} \cdot (v_0 + v_1)$$
(2.17)

$$v_1 = \frac{F \cdot L^2}{\pi^2 \cdot EI_z} \cdot (v_0 + v_1) = \frac{F}{P_z} \cdot (v_0 + v_1)$$
(2.18)

$$v_1 = v_0 \cdot \frac{F}{P_z - F} \tag{2.19}$$

$$v = v_0 + v_1 = v_0 + v_0 \cdot \frac{F}{P_z - F} = v_0 \cdot \frac{1}{1 - \frac{F}{P_z}}$$
 (2.20)

Často se uvažuje, že uvedené imperfekce se nahrazují jedinou ekvivalentní, tzv. výchylkou počátečně zakřiveného prutu. Postup výpočtu je pak následující:

- 1. Nahradíme výchylky ekvivalentní výchylkou.
- 2. Určíme zvětšení konečné výchylky od tlakové síly.
- 3. Napětí v extrémně tlačených vláknech položíme rovno mezi kluzu (tlak uvažujeme kladně).

$$\sigma_{max} = \frac{F}{A} + \frac{M}{W_z} = \frac{F}{A} + \frac{F \cdot v}{W_z} = \frac{F}{A} + \frac{F \cdot v_0}{(1 - \frac{F}{P_y}) \cdot W_z} = f_y \quad (2.21)$$

Označíme-li $\bar{\sigma} = F/A$, pak je možno zakreslit závislost $\bar{\sigma}$ na štíhlosti λ v souladu s [1] takto:

Obr. 2.6 Vzpěrná pevnost a únosnost tlačeného ideálního prutu a prutu počátečně zakřiveného

Zavedeme-li do výpočtu součinitel vzpěrnosti χ, který redukuje tlakovou pevnost, můžeme psát:

$$\sigma_{max} = \frac{F}{\chi \cdot A} = f_y \tag{2.22}$$

Srovnáním vztahů (2.21) a (2.22) lze vyjádřit součinitel vzpěrnosti χ takto:

$$\chi = \frac{W_z \cdot (P_z - F)}{A \cdot v_0 \cdot P_z - W_z \cdot (F - P_z)}$$
(2.23)

Součinitel vzpěrnosti je bezrozměrné číslo klesající od jedničky, jeho průběh v závislosti na poměrné štíhlosti $\overline{\lambda}$ je znázorněn na Obr. 2.8.

Obr. 2.7 Součinitel vzpěrnosti

Ze vztahu vyjádříme sílu F a označíme ji jako vzpěrnou únosnost R v souladu s [12]:

$$R = -\frac{\sqrt{A^2 Q^2 + 2AP_z W_z (|v_0|P_z - f_y W_z) + P_z^2 W_z^2 - AQ - P_z W_z}}{2W_z}$$
(2.24)

kde Q je pomocný mezivýpočet

$$Q = |v_0| P_z + f_y W_z \tag{2.25}$$

A je plocha průřezu

 I_z je moment setrvačnosti k ose z

 W_z je průřezový modul k ose z.

2.5 Výpočet vzpěrné únosnosti tlačeného prvku podle Eurocode 3

Následující kapitola vychází z normy ČSN EN 1993-1-1 [24], ale není kompletním přepisem dané části normy, jsou z ní vybrány a zpracovány informace relevantní pro tuto práci. Veškeré vzorce použité v této kapitole platí pro třídy průřezu 1, 2 a 3.

Tlačený prut se má posuzovat na vzpěr podle podmínky:

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1,0 \tag{2.26}$$

kde N_{Ed} je návrhová hodnota tlakové síly a $N_{b,Rd}$ návrhová vzpěrná únosnost tlačeného prvku.

Návrhová vzpěrná únosnost tlačeného prvku se má vypočítat ze vztahu:

$$N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}} \tag{2.27}$$

kde χ je součinitel vzpěrnosti pro příslušný způsob vybočení.

Pro osový tlak v prutu se má hodnota χ pro odpovídající poměrnou štíhlost $\overline{\lambda}$ určit z příslušné křivky vzpěrné pevnosti z výrazu:

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}} \tag{2.28}$$

ale $\chi \leq 1,0$.

$$\phi = 0.5 \left[1 + \alpha \left(\bar{\lambda} - 0.2 \right) + \bar{\lambda}^2 \right]$$
(2.29)

Poměrná štíhlost $\overline{\lambda}$ se určí:

$$\bar{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}}$$
(2.30)

 α je součinitel imperfekce;

 N_{cr} je pružná kritická síla pro příslušný způsob vybočení, určená pro vlastnosti plného průřezu.

Součinitel imperfekce α pro jednotlivé křivky vzpěrné pevnosti se má určit podle Tabulek 2.1 a 2.2.

Křivka vzpěrné pevnosti	<i>a</i> ₀	а	b	С	d
Součinitel imperfekce α	0,13	0,21	0,34	0,49	0,76

Tabulka 2.1 Součinitele imperfekce pro křivky vzpěrné pevnosti

Při poměrné štíhlosti $\bar{\lambda} \leq 0,2$ nebo pro $\frac{\gamma_M N_{Ed}}{N_{cr}} \leq 0,04$ je možné účinky vzpěru zanedbat a posuzovat pouze průřez na prostý tlak.

Tabulka 2.2 je výňatkem z Tabulky 6.2 z normy [24] na str. 57 pro válcované I průřezy z oceli S235.

Meze		Vybočení kolmo k ose	Křivka vzpěrné pevnosti
	t≤ 10 mm	у-у	а
<i>h/b</i> >1,2	$l_{f} \ge 40$ mm	Z-Z	b
	40 mm≤ <i>t_f</i> ≤ 100 mm	у-у	b
		Z-Z	С
	<i>t</i> ≪ 100 mm	у-у	b
<i>h/b</i> ≤1,2	η_{j-100} mm	<i>z-z</i>	с
	t 8, 100 mm	у-у	d
	<i>if</i> ~ 100 mm	<i>Z-Z</i>	d

Tabulka 2.2 Přiřazení křivek vzpěrné pevnosti k průřezům

2.5.1 Štíhlosti pro rovinný vzpěr

Poměrná štíhlost $\overline{\lambda}$ se stanoví z výrazu:

$$\bar{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \frac{L_{cr}}{i} \frac{1}{\lambda_1}$$
(2.31)

kde *L_{cr}* je vzpěrná délka v uvažované rovině vybočení;

i je poloměr setrvačnosti plného průřezu k příslušné ose.

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} \tag{2.32}$$

2.5.2 Štíhlosti pro vzpěr zkroucením a prostorový vzpěr

U prutů s otevřeným průřezem se má uvážit možnost, že jejich únosnost v důsledku zkroucení nebo prostorového vzpěru může být nižší než při rovinném vzpěru.

Poměrná štíhlost $\bar{\lambda}_T$ pro vzpěr zkroucením nebo prostorový vzpěr se má stanovit z výrazu:

$$\bar{\lambda}_T = \sqrt{\frac{Af_y}{N_{cr}}}$$
(2.33)

kde $N_{cr} = N_{cr,TF}$ ale $N_{cr} < N_{cr,T}$.

 $N_{cr,TF}$ je pružná kritická síla pro vybočení při prostorovém vzpěru;

N_{cr,T} je pružná kritická síla při vybočení zkroucením.

Pro vzpěr zkroucením nebo prostorový vzpěr lze příslušnou křivku vzpěrné pevnosti stanovit z Tabulky 2.2 pro osu *z*.

Kritická štíhlost pro vzpěr zkroucením se vypočte ze vztahu:

$$\lambda_{\omega} = \sqrt{\frac{I_p}{\frac{I_{\omega}}{L_{cr,\omega}^2} + \frac{I_t}{25}}}$$
(2.34)

2.6 Statistická analýza vzpěrné únosnosti

Pro přiblížení a pochopení reálného chování konstrukce je třeba si uvědomit, že vstupní veličiny, které se vyskytují ve vzorcích odvozených v předchozích kapitolách, ve skutečnosti nejsou dány jednou hodnotou, se kterou běžně při navrhování počítáme.

Každá tato veličina má své rozdělení hustoty pravděpodobnosti dané střední hodnotou a směrodatnou odchylkou a může s danou pravděpodobností nabývat všech hodnot rozdělení.

V současnosti jsou stavební konstrukce běžně navrhovány pomocí metody dílčích součinitelů spolehlivosti. Zavedením této metody přineslo větší kontrolu nad výslednou spolehlivostí konstrukce, která závisí na variabilitě mnoha parametrů.

Kvalitativně vyšší úrovní hospodárného návrhu spolehlivých konstrukcí je tzv. plně pravděpodobnostní výpočet, který je v současných normativních předpisech uveden jako platná metoda návrhu konstrukce. Plně pravděpodobnostní výpočet inženýrům v jistém pohledu dává možnost ve výpočtech zohlednit nejistoty plynoucí z náhodného charakteru materiálových parametrů (např. pevnost oceli.) a geometrie (průřezové charakteristiky). [7]

2.6.1 Vstupní veličiny

Určení reálných materiálových vlastností oceli včetně rozptylů jednotlivých veličin je poměrně náročné a je možné pouze větší sérií zkoušek např. na hotových konstrukcích. Tato práce se opírá o výsledky zkoušek ocelí z České Republiky, které byly publikovány v článku [15]. V následujících příkladech je počítáno s ocelí S235. Měření ukázalo, že rozdělení hustoty pravděpodobnosti pevnosti v tahu a tlaku f_y , modulu pružnosti *E* i Poissonova součinitele v odpovídá normálnímu (Gaussovu) rozdělení. Charakteristická hodnota meze kluzu je $f_{yk}=235$ MPa. Tato hodnota by měla odpovídat 5% kvantilu, čili v 95 % případů by měla být hodnota meze kluzu vyšší a v pouze 5 % nižší. Z výsledků zkoušek je ale patrné, že je tato hodnota bezpečná a odpovídá kvantilu méně než 5 %. V Tabulce 2.3 jsou uvedeny statistické charakteristiky výsledků měření, se kterými bude v následujícím textu uvažováno.

Tabulka 2.3 Statistické charakteristiky materiálových veličin

Veličina	Střední hodnota	Směrodatná odchylka
fy [MPa]	296,7	16,8
E [GPa]	210	12,6
v	0,3	0,009

V této práci jsou pro konkrétní výpočty použity tyče profilů IPE 80, IPE 180, IPE 300, I 80, I 180 a I 300. Rozdělení hustot pravděpodobností geometrických rozměrů jsou uvažována jako normální, jak s velkou pravděpodobností potvrzují výsledky měření [15]. Střední hodnoty rozměrů profilu *h*, *b*, t_w , t_f a *r* (r_1 a r_2) jsou uvažovány jako nominální hodnoty pro IPE a I profil. Směrodatné odchylky veličin vychází z Tabulky 2.4, která je převzatá z normy ČSN EN 10034 [22] platné v ČR a udává mezní úchylky rozměrů průřezu. Předpokladem je, že v 95 % případech jsou mezní úchylky dodrženy a pouze 2,5 % hodnot je nižší a 2,5 % vyšší. Je-li kladná a záporná úchylka pro jeden rozměr různá, je uvažována průměrná úchylka. Uvažované střední hodnoty a směrodatné odchylky vstupních veličin jsou uvedeny v Tabulce 2.5 a 2.6.

Výška prů	řezu <i>h</i>	Šířka pří	příruby <i>b</i> Tloušť		stojiny <i>t_w</i>	Tloušťka příruby <i>t_f</i>	
Jmenovitý rozměr	Mezní úchylky	Jmenovitý rozměr	Mezní úchylky	Jmenovit ý rozměr	Mezní úchylky	Jmenovit ý rozměr	Mezní úchylky
mm	mm	mm	mm	mm	mm	mm	mm
1 <100	+3,0	1 <110	+4,0	<i>t</i> _w <7	$\pm 0,7$		+1,5
<i>h</i> ≤180	-2,0	<i>b</i> ≤110	-1,0	7<+<10	+1.0	<i>t_f</i> <6,5	-0,5
100 -1-100	+4,0	110 (1-2)10	+4,0	$I \leq l_W < 10$	±1,0	6,5≤ <i>t</i> _{<i>f</i>} <10	+2,0
180 <i>×n</i> ≥400	-2,0	110505210	-2,0	10<+ <20	+1.5		-1,0
400 <1 <700	+5,0	210 < 1 < 225	14.0	$10 \leq \iota_w \leq 20$	±1,5	10<4<20	+2,5
400 <i>≤n</i> ≤700	-3,0	210505325	±4,0	20<4 < 40	120	$10 \leq t_f \leq 20$	-1,5
42700	15.0	h> 205	+6,0	$20 \leq t_w$ 40	±2,0	20~+ < 20	+2,5
<i>n></i> 700	±3,0	07323	-5,0	10 4 4 6 0	+2.5	20 <u>≤</u> <i>l</i> f \ 50	-2,0
				40 <i>≤l</i> _w \ 00	±2,3	$30 \le t_f < 40$	±2,5
				t >60	+2.0	$40 \le t_f < 60$	±3,0
				$l_w \leq 00$	±3,0	$t_f \ge 60$	$\pm 4,0$

Tabulka 2.4 Mezní úchylky rozměrů příčného průřezu tyčí I

	I	PE 80	IPE 180		IPE 300	
Veličina	Veličina Střední Směrodatná hodnota odchylka		Střední hodnota	Směrodatná odchylka	Střední hodnota	Směrodatná odchylka
h [mm]	80	1,2755	180	1,275	300	1,53
b [mm]	46	1,2755	91	1,2755	150	1,53
tw [mm]	3,8	0,35715	5,3	0,35717	7,1	0,5102
tf [mm]	5,2	0,5102	8	1,0204	10,7	1,0204
r [mm]	5	0,46993	9	0,60652	15	1,0779

Tabulka 2.5 Střední hodnoty a směrodatné odchylky IPE profilů

Tabulka 2.6 Střední hodnoty a směrodatné odchylky I profilů

]	[80]	[180	Ι	300
Veličina	Střední hodnota	Smě rodatná odchylka	Střední hodnota	Smě rodatná odchylka	Střední hodnota	Směrodatná odchylka
h [mm]	80	1,2755	180	1,275	300	1,529
b [mm]	42	1,2755	82	1,2755	125	1,529
t _w [mm]	3,9	0,35715	6,9	0,35717	10,8	0,7653
t _f [mm]	5,9	0,5102	10,4	1,0204	16,2	1,0205
s [%]	14	1,216	14	1,216	14	1,216
r 1 [mm]	3,9	0,35715	6,9	0,35713	11	0,56934
r ₂ [mm]	2,3	0,19889	4,1	0,21221	6,5	0,4606

Počáteční vybočení v_0 je uvažováno Gaussovou funkcí hustoty pravděpodobnosti se střední hodnotou 0 a 2,5% kvantilem, který má velikost *L/1000*. Délka *L* je zadána deterministicky jako parametr.

2.6.2 Korelace

Z výsledků měření [15] a [29] vyplývá, že korelace mezi vstupními hodnotami je velmi malá a lze ji zanedbat. Jedinou veličinou, u které se měřením závislost nezjišťovala, je zaoblení (dáno poloměrem r). Vzhledem k tomu, že hodnota poloměru zaoblení r je velmi blízká tloušťce stojiny pro všechny velikosti IPE profilů a dokonce ve většině

	h	b	tw	tf	r	fy	E	ny	v0	L
h	1	0	0	0	0	0	0	0	0	0
b	-1.0945e-006	1	0	0	0	0	0	0	0	0
tw	-1.668e-006	-5.4257e-006	1	0	0.8	0	0	0	0	0
tf	5.3118e-009	-5.6919e-008	-1.3247e-006	1	0	0	0	0	0	0
r	8.2476e-006	1.0452e-005	0.79732	-1.9516e-006	1	0	0	0	0	0
fy	1.7593e-006	1.8893e-006	5.6882e-006	-3.4588e-006	-6.3321e-007	1	0	0	0	0
Ε	1.746e-006	-1.1805e-006	1.1376e-005	1.3206e-006	-3.839e-006	-3.3768e-008	1	0	0	0
ny	9.6524e-007	-1.9966e-006	-1.6684e-005	-1.0733e-006	8.0539e-006	-2.2025e-006	5.3844e-006	1	0	0
v0	-9.0588e-007	-1.4954e-006	2.5132e-006	1.2595e-006	2.881e-006	3.3857e-007	-8.5e-007	-8.1455e-006	1	0
L	0	0	0	0	0	0	0	0	0	1

případů shodná pro I profily, je mezi nimi předpokládána korelace 0,8. Uskutečněné korelace v software Freet [28] pro příklad nosníku průřezu IPE 180 zachycuje Obr. 2.8.

Obr. 2.8 Korelační matice vygenerovaná softwarem Freet

Obr. 2.9 Rozměry profilů IPE a I

2.6.3 Výpočet

Celá spolehlivostní analýza byla provedena v softwaru Freet. Pro každý průřez bylo provedeno 500000 simulací metodou Latin Hypercube Sampling mean. [28]

Aby bylo možné počítat únosnost prutů IPE a I z náhodných vstupních veličin uvedených v předchozí kapitole, bylo nejprve nutné odvodit vzorce pro výpočet pomocných veličin, s pomocí kterých je únosnost odvozena v Kapitole 2.4. Na tomto místě je uveden i výpočet veličin, které vstupují do vzorců pro únosnost při klopení, které budou využity v Kapitole 3.3. Jedná se o plochu průžeru *A*, momenty setrvačnosti k osám *y* a *z* I_y a I_z , moment tuhosti v prostém kroucení I_t , výsečový moment setrvačnosti I_{ω} a průřezové moduly W_y a W_z . Při běžném výpočtu tyto hodnoty najdeme v tabulce průřezových charakteristik (např. [9]), ale chceme-li zavést náhodnost do výpočtu, nebudou tyto hodnoty konstantní, ale náhodné, protože jsou funkcemi veličin z Tabulky 2.5 a 2.6.

IPE profil je dán méně vstupními rozměrovými veličinami (viz Obr. 2.9), vzorce pro výpočet jeho momentů setrvačnosti jsou tak jednodušší nez v případě I profilu.

$$A = 2bt_f + t_w (h - 2t_f) + (4r^2 - \pi r^2)$$
(2.35)

$$I_{y} = \frac{1}{12}bh^{3} - \frac{1}{12}(b - t_{w})(h - 2t_{f})^{3} + 0.03r^{4} + r^{2}(4 - \pi)\left(\frac{h}{2} - t_{f} - r\frac{3\pi - 10}{3(\pi - 4)}\right)^{2}$$
(2.36)

$$I_{z} = \frac{1}{6}hb^{3} + \frac{1}{12}(h - 2t_{f})t_{w}^{3} + 0,03r^{4} + r^{2}(4 - \pi)\left(\frac{t_{w}}{2} - r\frac{3\pi - 10}{3(\pi - 4)}\right)^{2}$$
(2.37)

Moment tuhosti v prostém kroucení se dá poměrně přesně předepsat jako

$$I_t = \frac{1,22}{3} \left(2bt_f^3 + (h - 2t_f)t_w^3 \right)$$
(2.38)

Výsečový moment setrvačnosti IPE i I profilu je

$$I_{\omega} = I_z \frac{\left(h - 2t_f\right)^2}{4} \tag{2.39}$$

Polární moment setrvačnosti ke středu smyku IPE i I profilu se vypočítá:

$$I_p = I_y + I_z + Aa^2 (2.40)$$

kde *a* je vzdálenost středu smyku od těžiště průřezu, která je u dvouose symetrických průřezů nulová. Polární moment setrvačnosti I a IPE profilu je tedy pouhým sečtením momentů setrvačnosti k osám *y* a *z*.

Vzorce pro výpočet průřezových veličin I profilu jsou v porovnání s IPE profilem složitější, což je dáno náběhy a zaobleními na pásnicích.

Vzorce pro výpočet momentů setrvačnosti jsou částečně zjednodušené, zejména z důvodu uvažování čtvrtkruhových zaoblení, což ve skutečnosti není přesné. Dávají však velmi dobré výsledky v porovnání s tabulkami [9] pro všechny výšky I profilů. U profilů I 80 až I 300 se s tabulkami takřka shodují. Přesnost vzorců (2.36), (2.37), (2.38) a (2.39) zachycuje Tabulka 2.7. Nevětších nepřesností je dosaženo v důsledku velkého zaokrouhlení hodnot ve statických tabulkách. Pokud by bylo provedeno stejné zaokrouhlení, činí odchylky max 0,5 %. V praktickém výpočtu většinou přebíráme hodnoty průřezových charakteristik z tabulek, ale protože v této práci tyto charakteristiky počítáme s vyšší přesností, uvádíme odchylky hodnot vypočtených dle vzorců v této kapitole zaokrouhlených na 7 desetiných míst od tabulkových hodnot. Maximální odchylky je tak dosaženo 2,48 % pro výsečový moment setrvačnosti profilu I 80.

$$A = 2b\left(t_f - 0.01s\frac{b}{4}\right) + t_w\left[h - 2\left(t_f - 0.01s\frac{b}{4}\right)\right] + 0.02s\left(\frac{b - t_w}{2}\right)^2 + (4r_1^2 - \pi r_1^2) - (4r_2^2 - \pi r_2^2)$$
(2.41)

$$I_{z} = \frac{1}{12} \left[h - 2\left(t_{f} - s\frac{b}{4}\right) \right] \cdot t_{w}^{3} + \frac{1}{6} \left(t_{f} - s\frac{b}{4}\right) \cdot b^{3} + \frac{1}{9} s\left(\frac{b - t_{w}}{2}\right)^{4}$$

$$+ s\frac{(b - t_{w})^{2}}{2} \left(\frac{t_{w}}{2} + \frac{b - t_{w}}{6}\right)^{2} + \frac{1}{3}r_{1}^{4} + 4r_{1}^{2} \cdot \left(\frac{t_{w} + r_{1}}{2}\right)^{2}$$

$$- \frac{1}{4}\pi r_{1}^{4} - \pi r_{1}^{2} \cdot \left[\frac{t_{w}}{2} + r_{1}\left(1 - \frac{4}{3\pi}\right)\right]^{2} - \frac{1}{3}r_{2}^{4} - 4r_{2}^{2} \left(\frac{b - r_{2}}{2}\right)^{2}$$

$$+ \frac{1}{4}\pi r_{2}^{4} + \pi r_{2}^{2} \cdot \left[\frac{b}{2} - r_{2}\left(1 - \frac{4}{3\pi}\right)\right]^{2}$$

$$(2.42)$$

$$I_{y} = \frac{1}{12} t_{w} \left[h - 2 \left(t_{f} - s \frac{b}{4} \right) \right]^{3} t_{w}^{3} + \frac{1}{6} b \left(t_{f} - s \frac{b}{4} \right)^{3}$$

$$+ 2b \left(t_{f} - s \frac{b}{4} \right) \left(\frac{h}{2} - \frac{t_{f} - s \frac{b}{4}}{2} \right)^{2} + \frac{1}{9} s^{3} \left(\frac{b - t_{w}}{2} \right)^{4}$$

$$+ s \frac{(b - t_{w})^{2}}{2} \left(\frac{h}{2} - t_{f} + s \frac{b}{4} - \frac{s}{3} \frac{b - t_{w}}{2} \right)^{2} + \frac{1}{3} r_{1}^{4}$$

$$+ 4r_{1}^{2} \left(\frac{h}{2} - t_{f} + s \frac{b}{4} - s \frac{b - t_{w}}{2} - \frac{3r_{1}}{2} \right)^{2} - \frac{1}{4} \pi r_{1}^{4}$$

$$- \pi r_{1}^{2} \left[\frac{h}{2} - t_{f} + s \frac{b}{4} - s \left(\frac{b - t_{w}}{2} - r_{1} \right) - r_{1} \left(1 - \frac{4}{3\pi} \right) \right]^{2}$$

$$- \frac{1}{3} r_{2}^{4} - 4r_{2}^{2} \cdot \left(\frac{h}{2} - t_{f} + s \frac{b}{4} + r_{2} \left(1 - \frac{4}{3\pi} \right) \right]^{2}$$

$$(2.43)$$

		Iy			Iz			I_t			I_{ω}	
	z tabulek	dle vzorců	relativní	z tabulek	dle vzorců	relativní	z tabulek	dle vzorců	relativní	z tabulek	dle vzorců	relativní
	[mm ⁴]	[mm ⁴]	odchylka [%]	[mm ⁴]	[mm ⁴]	odchylka [%]	[mm ⁴]	$[\mathrm{mm}^4]$	odchylka [%]	[mm ⁶]	$[mm^6]$	odchylka [%]
násobitel	10 ⁶	106		10 ³	10 ³		10 ³	10 ³		10 ⁹	10 ⁹	
I 80	0,778	0,7789897	0,13	62,9	62,933673	0,05	8,7	8,6254437	0,86	0,09	0,0877704	2,48
I 120	3,28	3,2797078	0,01	215	214,4652	0,25	27,1	27,067415	0,12	0,69	0,6854752	0,66
I 180	14,5	14,48095	0,13	813	813,91993	0,11	95,8	95,894413	0,10	5,92	5,9249321	0,08
I 220	30,6	30,630008	0,10	1620	1624,317	0,27	186	186,24171	0,13	17,8	17,741342	0,33
I 300	98,0	98,192691	0,20	4510	4505,87494	0,09	568	566,9923	0,18	91,8	91,7672983	0,04
I 320	125,1	125,49096	0,31	5550	5555,2305	0,09	725	725,20093	0,03	129	128,7114	0,22
I 400	292,1	292,34932	0,09	11600	11587,6851	0,11	1700	1696,741	0,19	420	419,54927	0,11
I 450	458,5	459,1501	0,14	17300	17260,8234	0,23	2670	2667,0026	0,11	791	790,9569	0,01
I 500	687,4	688,67823	0,19	24800	24787,825	0,05	4020	4002,9317	0,42	1400	1402,31227	0,17
I 550	991,8	992,27226	0,05	34900	34899,925	0,00	5440	4002,9317	26,42	2390	2386,5354	0,14

Tabulka 2.7 Přesnost vzorců pro výpočet momentů setrvačnosti I profilů

2.6.3.1 Výpočet vzpěru nosníků z IPE a I profilů dle EUROCODE 3

K výpočtu je použita ocel S235 s materiálovými charakteristikami:

 f_y =235 MPa; *E*=210 GPa, γ_{MI} =1,0.

Hodnoty průřezových charakteristik jsou převzaty ze statických tabulek [9] a jsou uvedeny v Tabulce 2.8.

Veličina	Násobitel	I 80	I 180	I 300	IPE 80	IPE 180	IPE 300
<i>A</i> [mm ²]	10 ³	0,76	2,79	6,9	0,764	2,395	5,381
$I_y [\mathrm{mm}^4]$	10 ⁶	0,778	14,5	98	0,8014	13,17	83,56
<i>i_y</i> [mm]		32,1	72,1	119,2	32,4	74,2	124,6
$I_z [\mathrm{mm}^4]$	10 ³	62,9	813	4510	84,9	1009	6038
<i>i_z</i> [mm]		9,1	17,1	25,6	10,5	20,5	33,5
$I_{\omega} [\mathrm{mm}^{6}]$	109	0,09	5,92	91,8	0,12	7,43	125,9
$I_t [\mathrm{mm}^4]$	10^3	8,7	95,8	568	6,98	47,9	201,2
$I_p [\mathrm{mm}^4]$	10^{6}	0,8409	15,313	102,51	0,8863	14,179	89,598

Tabulka 2.8 Průřezové charakteristiky I a IPE profilů pro výpočet dle EC

Průřezy IPE a I jsou dvojose symetrické a může nastat trojí způsob vybočení: ohybem k ose *y*, ohybem k ose *z* nebo zkroucením. Pro všechny tři možnosti vybočení je potřeba vypočítat součinitel vzpěrnosti χ .

Vzhledem k tomu, že posuzujeme nosník prostě podepřený ve všech směrech, bude se kritická délka rovnat skutečné délce nosníku.

Pomocí Tabulky 2.2 přiřadíme průřezům křivky vzpěrné pevnosti. Pro všechny průřezy je to křivka *a* pro vybočení kolmo k ose *y*, čemuž odpovídá součinitel imperfekce α =0,21, a křivka *b* pro vybočení kolmo k ose *z*, čemuž odpovídá součinitel imperfekce α =0,34 (viz Tabulka 2.1).

Výpočet byl proveden pro velké množství délek nosníků, čehož bude využito později při vykreslování grafů. V následujících tabulkách jsou uvedeny některé vybrané výsledky. Vzpěrné únosnosti v závislosti na délce nosníku má pro všechny průřezy podobný průběh. Pro velmi malé štíhlosti prutů se únosnost neredukuje, první redukce začínají při dosažení poměrné štíhlosti $\bar{\lambda}_z$ rovné přibližně 0,5. Ve všech případech je rozhodující rovinný vzpěr, a to kolmo k ose z. Je vidět, že pro velmi velké štíhlosti je únosnost velmi malá, takové konstrukce se v praxi ale zpravidla nenavrhují. Důvodem je nejenom nízká statická únosnost, ale také náchylnost štíhlých prutů k vibracím a s tím související nízká únavová odolnost.

<i>L</i> [m]	$\overline{\lambda}_{\mathcal{Y}}$	$\overline{\lambda}_z$	$\overline{\lambda}_\omega$	φ _y	φ _z	Φ_{ω}	χ_{y}	χz	χω	χ	$N_{b,Rd}$ [kN]
0,1	0,032865	0,101411	0,090465	0,482991	0,488382	0,485471	1	1	1	1	179,54
0,5	0,164323	0,507055	0,36382	0,509755	0,680752	0,594032	1	0,881077	0,940189	0,881077	158,188597
1	0,328647	1,01411	0,501729	0,567512	1,152608	0,67716	0,970704	0,588093	0,883449	0,588093	105,586292
1,5	0,49297	1,521165	0,549727	0,652272	1,88157	0,710554	0,92644	0,334562	0,861504	0,334562	60,0672764
2	0,657294	2,02822	0,570092	0,764033	2,867636	0,725418	0,8669	0,204296	0,851788	0,204296	36,6792507
2,5	0,821617	2,535275	0,580317	0,902797	4,110807	0,733038	0,783118	0,136115	0,846815	0,136115	24,4381255
3	0,98594	3,04233	0,586107	1,068563	5,611083	0,737399	0,675416	0,096845	0,84397	0,096845	17,3875284
4	1,314587	4,05644	0,59204	1,481101	9,382949	0,741902	0,462237	0,056042	0,841034	0,056042	10,0617902
5	1,643234	5,070551	0,594847	2,001649	14,18324	0,744046	0,318004	0,036458	0,839636	0,036458	6,54559642
6	1,971881	6,084661	0,596389	2,630204	20,01194	0,745226	0,228791	0,025591	0,838867	0,025591	4,59458595
<i>L</i> [m]	$\overline{\lambda}_{y}$	$\bar{\lambda}_z$	$\overline{\lambda}_{\omega}$	φ _v	φ _z	φω	χ _y	χz	χω	χ	N _{b,Rd} [kN]
<i>L</i> [m] 0,1	λ _y 0,014351	λ _z 0,051942	λ _ω 0,046456	φ _γ 0,48061	φ _z 0,476179	φ _ω 0,474977	χ _y 1	χ _z 1	χ _ω 1	χ 1	<i>N_{b,Rd}</i> [kN] 562,825
<i>L</i> [m] 0,1 0,5	λ _y 0,014351 0,071753	λ̄ _z 0,051942 0,259711	$\bar{\lambda}_{\omega}$ 0,046456 0,225427	φ _γ 0,48061 0,489108	φ _z 0,476179 0,543876	φ _ω 0,474977 0,529731	χ _y 1 1	χ _z 1 0,978726	χ _ω 1 0,990978	χ 1 0,978726	<i>N_{b,Rd}</i> [kN] 562,825 550,851293
<i>L</i> [m] 0,1 0,5 1	 λ̄_y 0,014351 0,071753 0,143506 	λ̄z 0,051942 0,259711 0,519422	$\overline{\lambda}_{\omega}$ 0,046456 0,225427 0,414748	φ _y 0,48061 0,489108 0,504365	φ _z 0,476179 0,543876 0,689202	φ _ω 0,474977 0,529731 0,622515	χ _y 1 1 1	χ _z 1 0,978726 0,87551	χ _ω 1 0,990978 0,920179	χ 1 0,978726 0,87551	<i>N_{b,Rd}</i> [kN] 562,825 550,851293 492,759191
L [m] 0,1 0,5 1 1,5	$\overline{\lambda}_{y}$ 0,014351 0,071753 0,143506 0,215259	λ̄z 0,051942 0,259711 0,519422 0,779133	$\overline{\lambda}_{\omega}$ 0,046456 0,225427 0,414748 0,555055	φ _y 0,48061 0,489108 0,504365 0,52477	¢z 0,476179 0,543876 0,689202 0,901977	φ _ω 0,474977 0,529731 0,622515 0,714402	χ _y 1 1 0,996652	χ _z 1 0,978726 0,87551 0,737237	χ _ω 1 0,990978 0,920179 0,858986	χ 1 0,978726 0,87551 0,737237	N _{b,Rd} [kN] 562,825 550,851293 492,759191 414,935688
L [m] 0,1 0,5 1 1,5 2	$\overline{\lambda}_{y}$ 0,014351 0,071753 0,143506 0,215259 0,287012	λ̄₂ 0,051942 0,259711 0,519422 0,779133 1,038845	λ̄ω 0,046456 0,225427 0,414748 0,555055 0,652717	φ _y 0,48061 0,489108 0,504365 0,52477 0,550324	¢z 0,476179 0,543876 0,689202 0,901977 1,182203	Φω 0,474977 0,529731 0,622515 0,714402 0,789982	χ _y 1 1 0,996652 0,980509	χ _z 1 0,978726 0,87551 0,737237 0,572581	χω 1 0,990978 0,920179 0,858986 0,809724	χ 1 0,978726 0,87551 0,737237 0,572581	N _{b,Rd} [kN] 562,825 550,851293 492,759191 414,935688 322,263179
<i>L</i> [m] 0,1 0,5 1 1,5 2 3	λ̄ _y 0,014351 0,071753 0,143506 0,215259 0,287012 0,430518	λ̄z 0,051942 0,259711 0,519422 0,779133 1,038845 1,558267	λω 0,046456 0,225427 0,414748 0,555055 0,652717 0,765771	φ _y 0,48061 0,489108 0,504365 0,52477 0,550324 0,616878	¢z 0,476179 0,543876 0,689202 0,901977 1,182203 1,945003	Φω 0,474977 0,529731 0,622515 0,714402 0,789982 0,889383	χ _y 1 1 0,996652 0,980509 0,94457	χ _z 1 0,978726 0,87551 0,737237 0,572581 0,321649	χω 1 0,990978 0,920179 0,858986 0,809724 0,745318	χ 1 0,978726 0,87551 0,737237 0,572581 0,321649	N _{b,Rd} [kN] 562,825 550,851293 492,759191 414,935688 322,263179 181,032072
L [m] 0,1 0,5 1 1,5 2 3 5	 λ̄_y 0,014351 0,071753 0,143506 0,215259 0,287012 0,430518 0,717531 	λ̄z 0,051942 0,259711 0,519422 0,779133 1,038845 1,558267 2,597111	λω 0,046456 0,225427 0,414748 0,555055 0,652717 0,765771 0,852289	Φ _y 0,48061 0,489108 0,504365 0,52477 0,550324 0,616878 0,811766	Φ₂ 0,476179 0,543876 0,689202 0,901977 1,182203 1,945003 4,280002	Φω 0,474977 0,529731 0,622515 0,714402 0,789982 0,889383 0,974087	χ _y 1 1 0,996652 0,980509 0,94457 0,839357	χ _z 1 0,978726 0,87551 0,737237 0,572581 0,321649 0,130175	χω 1 0,990978 0,920179 0,858986 0,809724 0,745318 0,691691	χ 1 0,978726 0,87551 0,737237 0,572581 0,321649 0,130175	N _{b,Rd} [kN] 562,825 550,851293 492,759191 414,935688 322,263179 181,032072 73,2656426
L [m] 0,1 0,5 1 1,5 2 3 5 8	λ̄ _y 0,014351 0,071753 0,143506 0,215259 0,287012 0,430518 0,717531 1,148049	λ̄z 0,051942 0,259711 0,519422 0,779133 1,038845 1,558267 2,597111 4,155378	$\overline{\lambda}_{\omega}$ 0,046456 0,225427 0,414748 0,555055 0,652717 0,765771 0,852289 0,889458	φy 0,48061 0,504365 0,504365 0,52477 0,550324 0,616878 0,811766 1,258554	Φ₂ 0,476179 0,543876 0,689202 0,901977 1,182203 1,945003 4,280002 9,805997	Φω 0,474977 0,529731 0,622515 0,714402 0,789982 0,889383 0,974087 1,012775	χ _y 1 1 0,996652 0,980509 0,94457 0,839357 0,563619	χ _z 1 0,978726 0,87551 0,737237 0,572581 0,321649 0,130175 0,05351	χω 1 0,990978 0,920179 0,858986 0,809724 0,745318 0,691691 0,667954	χ 1 0,978726 0,87551 0,737237 0,572581 0,321649 0,130175 0,05351	N _{b,Rd} [kN] 562,825 550,851293 492,759191 414,935688 322,263179 181,032072 73,2656426 30,1168791
L [m] 0,1 0,5 1 1,5 2 3 5 8 10	$\overline{\lambda}_y$ 0,014351 0,071753 0,143506 0,215259 0,287012 0,430518 0,717531 1,148049 1,435061	λ̄z 0,051942 0,259711 0,519422 0,779133 1,038845 1,558267 2,597111 4,155378 5,194223	λω 0,046456 0,225427 0,414748 0,555055 0,652717 0,765771 0,852289 0,889458 0,898748	Φ _y 0,48061 0,489108 0,504365 0,52477 0,550324 0,616878 0,811766 1,258554 1,659382	Φ₂ 0,476179 0,543876 0,689202 0,901977 1,182203 1,945003 4,280002 9,805997 14,83899	Φω 0,474977 0,529731 0,622515 0,714402 0,789982 0,889383 0,974087 1,012775 1,022661	χ _y 1 1 0,996652 0,980509 0,94457 0,839357 0,563619 0,401198	χ _z 1 0,978726 0,87551 0,737237 0,572581 0,321649 0,130175 0,05351 0,034796	χω 1 0,990978 0,920179 0,858986 0,809724 0,745318 0,691691 0,667954 0,661987	χ 1 0,978726 0,87551 0,737237 0,572581 0,321649 0,130175 0,05351 0,034796	N _{b,Rd} [kN] 562,825 550,851293 492,759191 414,935688 322,263179 181,032072 73,2656426 30,1168791 19,5838802

Tabulka 2.9 Vybrané výsledky vzpěrné únosnosti nosníků průřezů IPE 80 a IPE 180 dle EC

IPE 80

IPE 180

<i>L</i> [m]	$\overline{\lambda}_{y}$	$\overline{\lambda}_z$	$\overline{\lambda}_{\omega}$	φ,	φ _z	Φω	χ _y	χz	χω	χ	$N_{b,Rd}$ [kN]
0,2	0,017092	0,063571	0,017963	0,480941	0,478828	0,469215	1	1	1	1	1264,535
0,5	0,042729	0,158928	0,044878	0,484399	0,505647	0,474636	1	1	1	1	1264,535
1	0,085459	0,317855	0,089542	0,491625	0,570551	0,485231	1	0,957522	1	0,957522	1210,820017
2	0,170917	0,635711	0,177402	0,511553	0,776135	0,511894	1	0,818735	1	0,818735	1035,319575
3	0,256376	0,953566	0,262051	0,538784	1,082751	0,544884	0,987498	0,626706	0,977884	0,626706	792,4917158
5	0,427294	1,589277	0,417049	0,615156	1,999078	0,623863	0,945456	0,311359	0,919252	0,311359	393,7246767
8	0,68367	2,542843	0,60538	0,784487	4,131309	0,752157	0,855274	0,135367	0,83435	0,135367	171,1762126
10	0,854587	3,178554	0,7016	0,933891	6,057957	0,831394	0,763068	0,089166	0,782805	0,089166	112,7533661
15	1,281881	4,767831	0,862899	1,435207	12,64264	0,98499	0,480619	0,041065	0,684943	0,041065	51,92781916
20	1,709174	6,357108	0,952581	2,119102	21,75312	1,081644	0,296575	0,023498	0,627339	0,023498	29,71418135
<i>L</i> [m]	$\overline{\lambda}_{y}$	$\bar{\lambda}_z$	$\overline{\lambda}_{\omega}$	φ _v	φ _z	φω	χ _y	χz	χω	χ	$N_{b,Rd}$ [kN]
<i>L</i> [m] 0,2	λ _y 0,017866	λ _z 0,083189	λ _ω 0,070815	φ _y 0,481036	φ _z 0,483602	φ _ω 0,480546	χ _y 1	χ _z 1	χω 1	χ 1	<i>N_{b,Rd}</i> [kN] 1621,5
<i>L</i> [m] 0,2 0,5	λ _y 0,017866 0,044665	λ̄ _z 0,083189 0,207972	$\bar{\lambda}_{\omega}$ 0,070815 0,172651	φ _y 0,481036 0,484687	φ _z 0,483602 0,522981	φ _ω 0,480546 0,510255	χ _y 1 1	χ _z 1 0,997175	χ _ω 1 1	χ 1 0,997175	<i>N_{b,Rd}</i> [kN] 1621,5 1616,919943
<i>L</i> [m] 0,2 0,5 1	λ _y 0,017866 0,044665 0,08933	 λ̄z 0,083189 0,207972 0,415944 	 λ_ω 0,070815 0,172651 0,318579 	φ _y 0,481036 0,484687 0,49237	φ _z 0,483602 0,522981 0,623215	φ _ω 0,480546 0,510255 0,570905	χ _y 1 1 1	χ _z 1 0,997175 0,919698	χ _ω 1 1 0,957254	χ 1 0,997175 0,919698	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737
<i>L</i> [m] 0,2 0,5 1 2	 λ̄_y 0,017866 0,044665 0,08933 0,17866 	 λ̄z 0,083189 0,207972 0,415944 0,831887 	 λω 0,070815 0,172651 0,318579 0,504478 	Φ _y 0,481036 0,484687 0,49237 0,513719	φ _z 0,483602 0,522981 0,623215 0,953439	φ _ω 0,480546 0,510255 0,570905 0,67901	χ _y 1 1 1 1	χ _z 1 0,997175 0,919698 0,704582	χ _ω 1 0,957254 0,882227	χ 1 0,997175 0,919698 0,704582	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737 1142,479208
L [m] 0,2 0,5 1 2 3	λ̄ _y 0,017866 0,044665 0,08933 0,17866 0,267991	 λ̄z 0,083189 0,207972 0,415944 0,831887 1,247831 	λω 0,070815 0,172651 0,318579 0,504478 0,594193	φ _y 0,481036 0,484687 0,49237 0,513719 0,543048	φ₂ 0,483602 0,522981 0,623215 0,953439 1,456672	Φω 0,480546 0,510255 0,570905 0,67901 0,743546	χ _y 1 1 1 1 0,984868	χ _z 1 0,997175 0,919698 0,704582 0,452855	χω 1 0,957254 0,882227 0,839962	χ 1 0,997175 0,919698 0,704582 0,452855	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737 1142,479208 734,3045793
<i>L</i> [m] 0,2 0,5 1 2 3 4	λ̄y 0,017866 0,044665 0,08933 0,17866 0,267991 0,357321	 λ̄_z 0,083189 0,207972 0,415944 0,831887 1,247831 1,663774 	λω 0,070815 0,172651 0,318579 0,504478 0,594193 0,639086	Φ _y 0,481036 0,484687 0,49237 0,513719 0,543048 0,580358	φ _z 0,483602 0,522981 0,623215 0,953439 1,456672 2,132914	Φω 0,480546 0,510255 0,570905 0,67901 0,743546 0,77886	χ _y 1 1 1 0,984868 0,963695	χz 1 0,997175 0,919698 0,704582 0,452855 0,28839	χω 1 0,957254 0,882227 0,839962 0,816962	χ 1 0,997175 0,919698 0,704582 0,452855 0,28839	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737 1142,479208 734,3045793 467,6249945
L [m] 0,2 0,5 1 2 3 4 5	λ̄ _y 0,017866 0,044665 0,08933 0,17866 0,267991 0,357321 0,446651	 λ̄z 0,083189 0,207972 0,415944 0,831887 1,247831 1,663774 2,079718 	 λω 0,070815 0,172651 0,318579 0,504478 0,594193 0,639086 0,663623 	φ _y 0,481036 0,484687 0,49237 0,513719 0,543048 0,580358 0,625647	Φ₂ 0,483602 0,522981 0,623215 0,953439 1,456672 2,132914 2,982166	Φω 0,480546 0,510255 0,570905 0,67901 0,743546 0,77886 0,799014	χ _y 1 1 1 0,984868 0,963695 0,940068	χ _z 1 0,997175 0,919698 0,704582 0,452855 0,28839 0,195333	χω 1 0,957254 0,882227 0,839962 0,816962 0,803848	χ 1 0,997175 0,919698 0,704582 0,452855 0,28839 0,195333	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737 1142,479208 734,3045793 467,6249945 316,7318037
<i>L</i> [m] 0,2 0,5 1 2 3 4 5 8	λ̄y 0,017866 0,044665 0,08933 0,17866 0,267991 0,357321 0,446651 0,714641	 λ̄z 0,083189 0,207972 0,415944 0,831887 1,247831 1,663774 2,079718 3,327549 	λω 0,070815 0,172651 0,318579 0,504478 0,594193 0,639086 0,663623 0,693681	Φy0,4810360,4846870,492370,5137190,5430480,5803580,6256470,809393	φ _z 0,483602 0,522981 0,623215 0,953439 1,456672 2,132914 2,982166 6,567974	Φω 0,480546 0,510255 0,570905 0,67901 0,743546 0,77886 0,799014 0,824522	χ _y 1 1 1 0,984868 0,963695 0,940068 0,84076	χz 1 0,997175 0,919698 0,704582 0,452855 0,28839 0,195333 0,081762	χω 1 0,957254 0,882227 0,839962 0,816962 0,803848 0,787267	χ 1 0,997175 0,919698 0,704582 0,452855 0,28839 0,195333 0,081762	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737 1142,479208 734,3045793 467,6249945 316,7318037 132,5769586
L [m] 0,2 0,5 1 2 3 4 5 8 8 10	λ̄ _y 0,017866 0,044665 0,08933 0,17866 0,267991 0,357321 0,446651 0,714641 0,893302	 λ̄z 0,083189 0,207972 0,415944 0,831887 1,247831 1,663774 2,079718 3,327549 4,159436 	λω 0,070815 0,172651 0,318579 0,504478 0,594193 0,639086 0,663623 0,693681 0,701217	Φy0,4810360,4846870,5137190,5430480,5803580,6256470,8093930,971791	φ₂ 0,483602 0,522981 0,623215 0,953439 1,456672 2,132914 2,982166 6,567974 9,823558	Φω 0,480546 0,510255 0,570905 0,67901 0,743546 0,77886 0,799014 0,824522 0,831059	χ _y 1 1 1 0,984868 0,963695 0,940068 0,84076 0,738335	χ _z 1 0,997175 0,919698 0,704582 0,452855 0,28839 0,195333 0,081762 0,05341	χω 1 0,957254 0,882227 0,839962 0,816962 0,803848 0,787267 0,783023	χ 1 0,997175 0,919698 0,704582 0,452855 0,28839 0,195333 0,081762 0,05341	N _{b,Rd} [kN] 1621,5 1616,919943 1491,289737 1142,479208 734,3045793 467,6249945 316,7318037 132,5769586 86,60436861

Tabulka 2.10 Vybrané výsledky vzpěrné únosnosti nosníků průřezů IPE 300 a I 300 dle EC

IPE 300

I 300

L [m]	$\overline{\lambda}_{v}$	$\overline{\lambda}_z$	$\overline{\lambda}_{\omega}$	φγ	φ _z	Φω	χ_{y}	χz	χω	χ	$N_{b,Rd}$ [kN]
0,1	0,033172	0,117013	0,100992	0,483033	0,492738	0,488268	1	1	1	1	178,6
0,2	0,066344	0,234025	0,19157	0,488167	0,533168	0,516916	1	0,987917	1	0,987917	176,442047
0,5	0,165859	0,585064	0,366969	0,51017	0,73661	0,595718	1	0,844484	0,938978	0,844484	150,824916
1	0,331718	1,170127	0,466562	0,568849	1,34952	0,654156	0,969964	0,4946	0,898735	0,4946	88,3355803
1,5	0,497577	1,755191	0,495713	0,655037	2,304729	0,673137	0,925023	0,263268	0,886109	0,263268	47,0196669
2	0,663437	2,340254	0,507286	0,768735	3,602238	0,680908	0,864251	0,157711	0,880974	0,157711	24,4931417
2,5	0,829296	2,925318	0,512923	0,909942	5,242046	0,684742	0,778538	0,104254	0,878446	0,104254	18,6198046
3	0,995155	3,510381	0,516066	1,078658	7,224153	0,686893	0,668988	0,073866	0,87703	0,073866	13,1924228
4	1,326873	4,680508	0,519248	1,498618	12,21526	0,689082	0,455534	0,042556	0,875589	0,042556	7,60056907
5	1,658591	5,850635	0,520741	2,028615	18,57557	0,690112	0,312826	0,02762	0,874912	0,02762	4,93292222
[m]	$\overline{\lambda}_{\nu}$	$\overline{\lambda}_z$	$\overline{\lambda}_\omega$	φ _y	φ _z	φω	χ_{y}	χz	χω	χ	$N_{b,Rd}$ [kN]
[m] 0,1	$\frac{\overline{\lambda}_{\nu}}{0,014769}$	λ _z 0,06227	λ _ω 0,053981	φ _y 0,48066	φ _z 0,478525	φ _ω 0,476634	χ _y 1	χ _z 1	χ _ω 1	χ 1	<i>N_{b,Rd}</i> [kN] 655,65
[m] 0,1 0,5	λ _ν 0,014769 0,073843	λ _z 0,06227 0,31135	λ _ω 0,053981 0,251214	Φ _y 0,48066 0,48948	Φz 0,478525 0,567399	Φ _ω 0,476634 0,540261	χ _y 1 1	χ _z 1 0,959929	χ _ω 1 0,981775	χ 1 0,959929	N _{b,Rd} [kN] 655,65 629,377731
[m] 0,1 0,5 1	$\overline{\lambda}_{\nu}$ 0,014769 0,073843 0,147686	λ _z 0,06227 0,31135 0,622699	λω 0,053981 0,251214 0,421947	Φ _y 0,48066 0,48948 0,505413	Φz 0,478525 0,567399 0,765736	Φ _ω 0,476634 0,540261 0,626751	χ _y 1 1 1	χ _z 1 0,959929 0,825506	χ _ω 1 0,981775 0,91727	χ 1 0,959929 0,825506	N _{b,Rd} [kN] 655,65 629,377731 541,242835
[m] 0,1 0,5 1 1,5	$\overline{\lambda}_{\nu}$ 0,014769 0,073843 0,147686 0,221529	λ̄z 0,06227 0,31135 0,622699 0,934049	$\overline{\lambda}_{\omega}$ 0,053981 0,251214 0,421947 0,518303	φ _γ 0,48066 0,48948 0,505413 0,526798	φ _z 0,478525 0,567399 0,765736 1,061012	Φ _ω 0,476634 0,540261 0,626751 0,688431	χ _y 1 1 0,995269	χ _z 1 0,959929 0,825506 0,639264	χ _ω 1 0,981775 0,91727 0,876018	χ 1 0,959929 0,825506 0,639264	N _{b,Rd} [kN] 655,65 629,377731 541,242835 419,133137
[m] 0,1 0,5 1 1,5 2	$\frac{\bar{\lambda}_{\nu}}{0,014769}$ 0,073843 0,147686 0,221529 0,295372	λ̄₂ 0,06227 0,31135 0,622699 0,934049 1,245398	λω 0,053981 0,251214 0,421947 0,518303 0,57171	φ _y 0,48066 0,48948 0,505413 0,526798 0,553636	φ _z 0,478525 0,567399 0,765736 1,061012 1,453226	 Φ_ω 0,476634 0,540261 0,626751 0,688431 0,726617 	χ _y 1 1 0,995269 0,978572	Xz 1 0,959929 0,825506 0,639264 0,454107	χ _ω 1 0,981775 0,91727 0,876018 0,851006	χ 1 0,959929 0,825506 0,639264 0,454107	N _{b,Rd} [kN] 655,65 629,377731 541,242835 419,133137 297,735121
[m] 0,1 0,5 1 1,5 2 3	$\begin{array}{c} \bar{\lambda}_{\nu} \\ 0,014769 \\ 0,073843 \\ 0,147686 \\ 0,221529 \\ 0,295372 \\ 0,443058 \end{array}$	λ̄z 0,06227 0,31135 0,622699 0,934049 1,245398 1,868098	λω 0,053981 0,251214 0,421947 0,518303 0,57171 0,621859	φ _γ 0,48066 0,48948 0,505413 0,526798 0,553636 0,623671	 φ_z 0,478525 0,567399 0,765736 1,061012 1,453226 2,528471 	Φ _ω 0,476634 0,540261 0,626751 0,688431 0,726617 0,765071	χ _y 1 1 0,995269 0,978572 0,941081	Xz 1 0,959929 0,825506 0,639264 0,454107 0,236273	χω 1 0,981775 0,91727 0,876018 0,851006 0,825939	χ 1 0,959929 0,825506 0,639264 0,454107 0,236273	N _{b,Rd} [kN] 655,65 629,377731 541,242835 419,133137 297,735121 154,912088
[m] 0,1 0,5 1 1,5 2 3 5	$\begin{array}{c} \overline{\lambda}_{\nu} \\ 0,014769 \\ 0,073843 \\ 0,147686 \\ 0,221529 \\ 0,295372 \\ 0,443058 \\ 0,73843 \end{array}$	λ̄z 0,06227 0,31135 0,622699 0,934049 1,245398 1,868098 3,113496	λω 0,053981 0,251214 0,421947 0,518303 0,57171 0,621859 0,653238	φ _y 0,48066 0,48948 0,505413 0,526798 0,553636 0,623671 0,829174	 φ_z 0,478525 0,567399 0,765736 1,061012 1,453226 2,528471 5,842223 	 φ_ω 0,476634 0,540261 0,626751 0,688431 0,726617 0,765071 0,79041 	χ _y 1 1 0,995269 0,978572 0,941081 0,828956	Xz 1 0,959929 0,825506 0,639264 0,454107 0,236273 0,092716	χω 1 0,981775 0,91727 0,876018 0,851006 0,825939 0,809445	χ 1 0,959929 0,825506 0,639264 0,454107 0,236273 0,092716	N _{b,Rd} [kN] 655,65 629,377731 541,242835 419,133137 297,735121 154,912088 60,7889682
[m] 0,1 0,5 1 1,5 2 3 5 8	$\begin{array}{c} \overline{\lambda}_{\nu} \\ 0,014769 \\ 0,073843 \\ 0,147686 \\ 0,221529 \\ 0,295372 \\ 0,443058 \\ 0,73843 \\ 1,181488 \end{array}$	λ̄z 0,06227 0,31135 0,622699 0,934049 1,245398 1,868098 3,113496 4,981594	λω 0,053981 0,251214 0,421947 0,518303 0,57171 0,621859 0,653238 0,665139	φ _y 0,48066 0,48948 0,505413 0,526798 0,553636 0,623671 0,829174 1,301013	 φ_z 0,478525 0,567399 0,765736 1,061012 1,453226 2,528471 5,842223 13,72101 	φ _ω 0,476634 0,540261 0,626751 0,688431 0,726617 0,765071 0,79041 0,800279	χ _y 1 1 0,995269 0,978572 0,941081 0,828956 0,54179	χ _z 1 0,959929 0,825506 0,639264 0,454107 0,236273 0,092716 0,037728	χω 1 0,981775 0,91727 0,876018 0,851006 0,825939 0,809445 0,803025	χ 1 0,959929 0,825506 0,639264 0,454107 0,236273 0,092716 0,037728	N _{b,Rd} [kN] 655,65 629,377731 541,242835 419,133137 297,735121 154,912088 60,7889682 24,7361366

Tabulka 2.11 Vybrané výsledky vzpěrné únosnosti nosníků průřezů I 80 a I 180 dle EC

I 80

I 180

L

Průběhy vzpěrné únosnosti nosníků všech zkoumaných profilů v závislosti na délce vypočtené podle Eurocode 3 jsou znázorněny v Grafech 2.1 až 2.6. Současně jsou zde vykresleny průběhy vzpěrné únosnosti vypočtené podle vztahu (2.24), který byl odvozen v Kapitole 2.4. Na tomto místě však ještě není do výpočtu vnesena náhodnost vstupních veličin, jsou použity nominální hodnoty materiálových i geometrických veličin stejné, jako při výpočtu podle Eurocode. Jak je patrné, vzpěrná únosnost podle Eurocode je pro malé poměrné štíhlosti nosníků do hodnoty kolem 0,6 vyšší, od této hodnoty je pak nižší než únosnost vypočtená ze vztahu (2.24). Bezpečnost návrhu bude ověřena v následující kapitole statistickou analýzou, která má věrněji vystihnout skutečné chování konstrukce. Vstupní veličiny jsou uvedeny v Kapitole 2.6.1. Do grafů jsou vykresleny i únosnosti vypočtené dle EC 3 za předpokladu dílčích součinitelů spolehlivosti materiálu 1,1 a 1,15. Tyto budou popsány v Kapitole 2.6.3.5.

Graf 2.1 Závislost vzpěrné únosnosti na délce nosníku průřezu I 80

Graf 2.2 Závislost vzpěrné únosnosti na délce nosníku průřezu I 180

Graf 2.3 Závislost vzpěrné únosnosti na délce nosníku průřezu I 300

Graf 2.4 Závislost vzpěrné únosnosti na délce nosníku průřezu IPE 80

Graf 2.5 Závislost vzpěrné únosnosti na délce nosníku průřezu IPE 180

Graf 2.6 Závislost vzpěrné únosnosti na délce nosníku průřezu IPE 300

2.6.3.2 Výsledné vzpěrné únosnosti z náhodných vstupních veličin

									_			 		_				_	_		_		
Poměrná štíhlost	0,11394	0,34183	0,56972	0,79761	1,1394	1,4813	1,937	2,2789	2,7317	3,4173	5,6972	Poměrná štíhlost	0,058557	0,29278	0,58557	0,76124	0,99546	1,1711	1,7567	2,3423	3,2206	5,8557	7,0268
dle EC	179,54	172,82	158,19	139,7	105,59	75,074	48,743	36,679	26,349	17,388	6,5456	dle EC	562,83	550,85	492,76	448,85	378,27	322,26	181,03	110,13	61,342	19,584	13,743
Rozdělení	Lognormal (3 par)	Birnbaum-Saunders (fatique-life)	Birnbaum-Saunders (fatique-life)	Weibull max (3 par)	Weibull max (3 par)	Gamma (3 par)	Gamma (3 par)	Lognormal (3 par)	Birnbaum-Saunders (fatique-life)	Lognormal (3 par)	Lognormal (3 par)	Rozdělení	Birnbaum-Saunders (fatique-life)	Birnbaum-Saunders (fatique-life)	Birnbaum-Saunders (fatique-life)	OneBounded Normal	Weibull max (3 par)	Gamma (2 par)	Birnbaum-Saunders (fatique-life)	Lognormal (3 par)	Lognormal (3 par)	Lognormal (3 par)	Lognormal (3 par)
Мах	332,17	328,53	322,52	311,98	271,01	178,61	104,66	77,278	55,317	35,514	12,836	Мах	1056,6	1041,3	1010,8	1034,8	998,46	832,44	385,92	222,28	126,02	36,948	25,735
Min	134,28	130,63	118,36	100,38	64,97	39,324	25,069	19,907	14,304	9,2375	3,3699	Min	411,94	396,31	334,11	263,34	197,69	153,81	72,698	48,27	24,211	7,2579	5,0411
Směr. Odchylka	20,324	20,794	22,489	25,952	23,579	14,24	8,3188	6,0211	4,1916	2,694	0,97876	Směr. Odchylka	68,728	69,614	75,957	84,084	90,239	73,629	32,986	18,58	9,8744	3,0184	2,1013
Stř. hodnota [kN]	224,03	217,9	209, 25	194,04	143,57	93,38	56,883	41,698	29,296	18,943	6,9185	Stř. hodnota [kN]	706,03	686, 79	652,41	616,97	528,98	431,61	213,88	123,77	66,635	20,516	14,294
Délka [m]	0,1	0,3	0,5	0,7	1	1,3	1,7	2	2,4	3	5	Délka [m]	0,1	0,5	1	1,3	1,7	2	3	4	5,5	10	12

Tabulka 2.12 Vybrané výsledky vzpěrné únosnosti nosníku průřezů IPE 80 a IPE 180

IbE 80

IPE 180

Délka [m]	Stř. hodnota [kN]	Směr. Odchylka	Min	Max	Rozdělení	dle EC	Poměrná štíhlost
0,1	1590,50	134,58	968,98	2252,60	Birnbaum-Saunders (fatique-life)	1264,50	0,03179
0,5	1564,90	134,88	950,79	2249,80	Lognormal (3 par)	1264,50	0,15895
1	1528,80	139,08	925,06	2245,70	Birnbaum-Saunders (fatique-life)	1210,80	0,3179
2	1409,20	166,91	733,33	2291,30	OneBounded Normal	1035,30	0,6358
3	1089,00	169,75	515,55	1977,10	Weibull max (3 par)	792,49	0,9537
4	693,66	93,87	341,48	1157,20	Gamma (3 par)	557,54	1,271600
5	461,83	58,30	236,35	771,59	Gamma (3 par)	393,72	1,589500
8	187,43	22,34	96,42	318,65	Birnbaum-Saunders (fatique-life)	171,18	2,543200
10	121,13	14,31	65,28	204,36	Lognormal (3 par)	112,75	3,179000
15	54,47	6,38	29,31	91,60	Lognormal (3 par)	51,93	4,768500
20	30,81	3,60	16,57	51,72	Lognormal (3 par)	29,71	6,358000
							-
Délka [m]	Stř. hodnota [kN]	Směr. Odchylka	Min	Max	Rozdělení	dle EC	Poměrná štíhlos
0,1	1590,50	134,57	978,46	2283,60	Lognormal (3 par)	1264,50	0,035819
0,5	1564,90	134,81	970,08	2253,80	Lognormal (3 par)	1264,50	0,1791
1	1528,80	138,93	941,81	2248,90	Lognormal (3 par)	1210,80	0,358190
2	1409,20	166,62	745,79	2154,80	OneBounded Normal	1035,30	0,716390
3	1089,00	169,72	508,44	1941,20	Weibull max (3 par)	792,49	1,074600
4	693,68	93,90	344,63	1195,30	Gamma (3 par)	557,54	1,432800
5	461,84	58,328	233,3	781,25	Gamma (3 par)	393,72	1,791
8	187,43	22,355	96,518	309,15	Lognormal (3 par)	171,18	2,8656
10 121,13		14,3	61,779	198,83	Lognormal (3 par)	112,75	3,5819
15 54,467					i l		
10	54,467	6,3751	29,456	86,991	Lognormal (3 par)	51,928	5,3729

IPE 300

I 300

Tabulka 2.13 Vybrané výsledky vzpěrné únosnosti nosníku průřezů IPE 300 a I 300

Délka [m]	Stř. hodnota [kN]	Směr. Odchylka	Min	Max	Rozdělení	dle EC	Poměrná štíhlost
0,1	222,46	19,248	144,97	321,39	Lognormal (3 par)	178,6	0,11703
0,3	214,7	20,222	131,67	317,83	Lognormal (3 par)	168,79	0,35109
0,7	177,52	27,63	80,48	302,48	Weibull max (3 par)	127,27	0,8192
1,2	81,893	12,603	35,628	154,91	Gamma (3 par)	67,859	1,4043
1,6	47,822	7,1044	22,853	95,296	Lognormal (3 par)	42,036	1,8725
2,1	28,305	4,1441	13,593	55,278	Lognormal (3 par)	25,754	2,4576
2,9	15,055	2,1854	7,1078	28,332	Lognormal (3 par)	14,07	3,3938
3,9	8,3964	1,2148	3,7734	15,974	Lognormal (3 par)	7,9809	4,5641
5	5,1351	0,7426	2,3042	9,2662	Lognormal (3 par)	4,9329	5,8514
6	3,5768	0,51677	1,7039	6,5666	Lognormal (3 par)	3,4575	7,0217
Délka [m]	Stř. hodnota [kN]	Směr. Odchylka	Min	Max	Rozdělení	dle EC	Poměrná štíhlost
0,1	823,78	67,903	491,8	1172,4	Lognormal (3 par)	655,65	0,062279
0,5	793,68	71,364	473,57	1171,7	Lognormal (3 par)	629,38	0,31139
1	730,95	88,182	348,7	1124,1	Weibull min (3 par)	541,24	0,62279
1,5	572,7	96,439	223,61	1046,2	Weibull max (3 par)	419,13	0,93418
2	369,55	57,003	146,1	696,1	Gamma (3 par)	297,74	1,2456
3	175,22	24,963	70,026	334,55	Lognormal (3 par)	154,91	1,8684
4	100,64	14,042	40,406	190,12	Lognormal (3 par)	92,21	2,4911
5	65,101	9,0084	26,225	122,2	Lognormal (3 par)	60,789	3,1139
8	25,795	3,5406	10,931	45,789	Lognormal (3 par)	24,736	4,9823
10	16,583	2,273	7,0125	29,552	Lognormal (3 par)	16,04	6,2279

I 80

I 180

Problematika spolehlivosti ocelových prutových prvků citlivých na imperfekce

Tabulka 2.14 Vybrané výsledky vzpěrné únosnosti nosníku průřezů I 80 a I 180

Graf 2.7 Vzpěrná únosnost nosníku profilu I 300 v závislosti na délce

Graf 2.8 Vzpěrná únosnost nosníku profilu I 300 v závislosti na poměrné štíhlosti

Graf 2.9 Vzpěrná únosnost nosníku profilu I 180 v závislosti na délce

Graf 2.10 Vzpěrná únosnost nosníku profilu I 180 v závislosti na poměrné štíhlosti

Graf 2.11 Vzpěrná únosnost nosníku profilu I 80 v závislosti na délce

Graf 2.12 Vzpěrná únosnost nosníku profilu I 80 v závislosti na poměrné štíhlosti

Graf 2.13 Vzpěrná únosnost nosníku profilu IPE 300 v závislosti na délce

Graf 2.14 Vzpěrná únosnost nosníku profilu IPE 300 v závislosti na poměrné štíhlosti

Graf 2.15 Vzpěrná únosnost nosníku profilu IPE 180 v závislosti na délce

Graf 2.16 Vzpěrná únosnost nosníku profilu IPE 180 v závislosti na poměrné štíhlosti

Graf 2.17 Vzpěrná únosnost nosníku profilu IPE 80 v závislosti na délce

Graf 2.18 Vzpěrná únosnost nosníku profilu IPE 80 v závislosti na poměrné štíhlosti

2.6.3.3 Pravděpodobnost poruchy nosníku při vzpěru

Pravděpodobností poruchy je v následujícím textu uvažován stav, kdy je vzpěrná únosnost vypočítaná podle Eurocode 3 menší, než vzpěrná únosnost vypočtená dle vzorce (2.24) s náhodnými vstupními veličinami. Vzhledem k tomu, že v Kapitole 2.4, ve které je odvozen vzorec (2.24), je uvažováno pouze s pružnostním výpočtem a Eurocode do výpočtu zahrnuje i plastické působení, neznamená v tomto případě pravděpodobnost poruchy zhroucení konstrukce v pružno-plastickém stavu, ale počátek vzniku trvalých deformací. Tato hodnota také vypovídá o bezpečnosti návrhu. Rezerva spolehlivosti je definována jako rozdíl hodnot vzpěrné únosnosti vypočtené dle vzorce (2.24) a dle Eurocode.

Následující Grafy 2.19 až 2.24 zachycují pravděpodobnosti poruchy v závislosti na poměrné štíhlosti nosníku vypočítané třemi způsoby. První způsob je aproximační metoda pomocí Cornellova indexu spolehlivosti. Ten vychází z předpokladu, že rezerva spolehlivosti je normálně rozdělena. Jedná se tedy o přibližné určení pravděpodobnosti poruchy. Druhý způsob je stanovení pravděpodobnost poruchy na základě odhadu statistických parametrů a teoretického modelu rozdělení pravděpodobnosti rezervy spolehlivosti. K odhadu statistických parametrů byla využita numerická simulačních metoda LHS mean [28]. V grafech je tato pravděpodobnost poruchy označena jako *pf*. Třetí způsob určení pravděpodobnosti poruchy je dán podílem *Nf/Ntot*, kde *Nf* je počet případů, kdy dojde k poruše, a *Ntot* je celkový počet simulací. Aby byla tato metoda přesná, je potřeba provést velký počet simulací.

Z výsledků je patrné, že pravděpodobnosti poruchy vypočtené metodou odhadu statistických parametrů a simulační metodou jsou při použitém počtu simulací téměř totožné a v grafech splývají. Hodnoty vypočtené metodou podle Cornella jsou mírně vyšší.

Pravděpodobnosti poruchy jsou pro nosníky do poměrné štíhlosti přibližně 0,8 poměrně malé, a to kolem hodnoty 0,01. Pro větší délky nosníků ale výrazně stoupají. Pro poměrnou štíhlost 3 se pohybují pravděpodobnosti poruchy od 0,24 (pro I 300) až do 0,31 (pro I 80 a I 180). Jak se tyto hodnoty změní, zvýšíme-li dílčí součinitel spolehlivost materiálu γ_{M1} bude popsáno v Kapitole 2.6.3.5.

Graf 2.19 Pravděpodobnost poruchy nosníku profilu IPE 300 v závislosti na poměrné štíhlosti

Graf 2.20 Pravděpodobnost poruchy nosníku profilu IPE 180 v závislosti na poměrné štíhlosti

Graf 2.21 Pravděpodobnost poruchy nosníku profilu IPE 80 v závislosti na poměrné štíhlosti

Graf 2.22 Pravděpodobnost poruchy nosníku profilu I 80 v závislosti na poměrné štíhlosti

Graf 2.23 Pravděpodobnost poruchy nosníku profilu I 180 v závislosti na poměrné štíhlosti

Graf 2.24 Pravděpodobnost poruchy nosníku profilu I 300 v závislosti na poměrné štíhlosti

2.6.3.4 Citlivostní analýza

Cílem citlivostní analýzy je získat představu o relativní citlivosti náhodné proměnlivosti sledované odezvy na náhodnou proměnlivost jednotlivých vstupních veličin. Citlivostní analýza může posloužit k definování dominantních a nedominantních veličin majících vliv na spolehlivost konstrukce [7].

Citlivost je popsána Spearmanovým korelačním koeficientem, který je neparametrický a vychází nikoli z hodnot, ale z pořadí realizací náhodných veličin.

Citlivostní analýza byla provedena pro nosníky s průřezy IPE 180 a I 180. V Grafech 2.25 a 2.26 jsou znázorněny korelace jednotlivých vstupních veličin a výsledné vzpěrné únosnosti. Pro přehlednost nejsou v grafech zachyceny vstupní veličiny, jejichž korelace byly pro všechny délky blízké nule.

Největších korelací dosahuje v obou případech tloušťka pásnice t_{f_5} a to až 0,84 pro nosník průřezu IPE 180 délky 7 m. U krátkých nosníků má velký vliv na výslednou únosnost mez kluzu f_y , a to až 0,67 pro nosník průřezu I 180 délky 0,2 m, tento vliv ale s přibývající délkou klesá. Naopak roste vliv modulu pružnosti, i když jen na hodnotu 0,4. Velkou zápornou korelaci nabývá počáteční vybočení nosníku v_0 . Nejvýše dosahuje hodnoty -0,7, a to pro nosník poměrné štíhlosti 1. Při této štíhlosti naopak nabývá své nejnižší korelace tloušťka pásnice. V případě I profilu je druhé nejvyšší kladné korelace dosaženo s poloměrem zaoblení pásnice r_2 , a to až 0,67 pro délku nosníku 7 m.

<i>L</i> [m]	h	b	t _w	t_f	r	f _y	E	ν	V ₀		
0,4	0,028384	0,065938	0,23031	0,73764	0,19674	0,56008	0,003623	-0,03445	-0,1332		
0,7	0,03005	0,070375	0,20508	0,7139	0,17878	0,52105	0,010038	-0,0462	-0,29104		
1	0,030742	0,074191	0,17035	0,66456	0,1515	0,45164	0,023634	-0,05548	-0,46694		
1,5	0,027773	0,09038	0,076328	0,56241	0,071793	0,25062	0,099392	-0,06567	-0,71779		
2	0,006436	0,1667	0,011835	0,65888	0,015338	0,093325	0,24502	-0,05951	-0,62616		
2,5	0,004861	0,21579	0,001021	0,75369	0,003918	0,047794	0,31525	-0,04844	-0,45695		
3	0,006991	0,23467	0,000314	0,79856	0,001657	0,030629	0,34607	-0,03869	-0,34744		
4	0,007586	0,25048	0,000221	0,83249	-0,00028	0,017206	0,37019	-0,0305	-0,23044		
5	0,008552	0,25725	-0,00016	0,84437	-0,00202	0,014389	0,37923	-0,02383	-0,17151		
		_	-		-		-				-
<i>L</i> [m]	h	b	t _w	t_f	S	r ₁	r ₂	fy	Ε	ν	v _o
0,2	0,021518	0,090926	0,25429	0,64946	0,003931	0,19823	0,5519	0,67369	-0,0035	-0,00961	-0,10114
0,5	-0,0017	0,090134	0,24432	0,61369	-0,00924	0,19265	0,53179	0,62802	-0,00455	-0,0199	-0,30924
1	-0,0364	0,085917	0,18462	0,49018	-0,02914	0,15147	0,44645	0,44287	0,026712	-0,03078	-0,65941
1,5	-0,05404	0,15116	0,083094	0,51208	-0,07471	0,066515	0,47162	0,15437	0,18249	-0,0382	-0,74004
2	-0,03922	0,24823	0,036966	0,67819	-0,09997	0,017564	0,5971	0,05531	0,31698	-0,03298	-0,5097
2,5	-0,0288	0,28485	0,022013	0,74424	-0,10245	0,001671	0,64147	0,030032	0,36751	-0,02504	-0,35848
3	-0,02337	0,29946	0,017143	0,77186	-0,10107	-0,00274	0,65682	0,021037	0,38994	-0,02163	-0,27074
4	-0,01625	0,30969	0,012117	0,79431	-0,09797	-0,00791	0,66806	0,013821	0,40824	-0,0167	-0,17574
5	-0,01162	0,31316	0,009669	0,80221	-0,09521	-0,01066	0,6703	0,011201	0,41636	-0,01293	-0,12638

Tabulka 2.15 Korelace vstupních veličin a výsledné vzpěrné únosnosti

IPE 180

I 180

Graf 2.25 Závislost korelace vstupních veličin a výsledné vzpěrné únosnost nosníku profilu IPE 180 na délce nosníku

Graf 2.26 Závislost korelace vstupních veličin a výsledné vzpěrné únosnost nosníku profilu I 180 na délce nosníku

2.6.3.5 Dílčí součinitel spolehlivosti materiálu

Účelem dílčího součinitele spolehlivosti materiálu u oceli je snížit charakteristickou únosnost R_k na návrhovou R_d ,

$$R_d = \frac{R_k}{\gamma_M} \tag{2.44}$$

kde R_k je charakteristická hodnota dílčí únosnosti průřezu nebo prvku, stanovená z hodnot charakteristické nebo jmenovité materiálové vlastnosti a rozměrů průřezu, která přibližně odpovídá 5% kvantilu pro nekonečný počet zkoušek, γ_M je globální dílčí součinitel spolehlivosti materiálu příslušné dílčí únosnosti, viz ČSN EN 1993-1-1 [24]. Při posuzování stability prutů se uvažuje dílčí součinitel spolehlivosti γ_{MI} . Návrhová statická únosnost by měla být teoreticky dána 0,1% kvantilem náhodné statické únosnosti [23]. Současně platná norma pro navrhování ocelových konstrukcí [24] udává dílčí součinitel spolehlivosti materiálu γ_{MI} roven 1,0. Což by ale znamenalo, že se 5% a 0,1% kvantily rovnají. Motivací je fakt, že charakteristická hodnota meze kluzu je ve skutečnosti podhodnocená, jak vyplývá ze zkoušek, a odpovídá kvantilu menšímu. [14]

V dříve platné normě ČSN 731401 [26] se pro ocel S235 setkáváme s dílčím součinitelem spolehlivosti γ_{MI} =1,15 pro ztrátu stability, v normě, která po ní následovala, tj. ČSN P ENV 1993-1-1 [25], je uvažováno γ_{MI} =1,1. Tyto hodnoty součinitelů byly také použity do výpočtů v Kapitole 2.6.

V Grafech 2.1 až 2.6 jsou vyneseny průběhy vzpěrné únosnosti pro různé délky nosníků a použitím všech tří zmiňovaných dílčích součinitelů spolehlivosti materiálu. Je patrné, že pro hodnoty součinitelů 1,1 a 1,15 jsou vzpěrné únosnosti pro všechny délky menší, než hodnoty vypočtené ze vzorce (2.24).

V Tabulkách 2.16 až 2.21 jsou zaznamenány pravděpodobnosti poruchy ve smyslu Kapitoly 2.6.3.3, a to i pro součinitele spolehlivosti materiálu 1,1 a 1,15. Z výsledků je patrné, že pravděpodobnosti poruchy jsou nejméně dvakrát menší, a to pro dlouhé nosníky s použitím součinitele 1,1. Pro velmi krátké nosníky jsou ale pravděpodobnosti poruchy menší zhruba 20 krát pro součinitel 1,1, ale i 100 krát pro součinitel 1,15. Například pro nosník průřezu I 300 délky 10 m byla původní pravděpodobnost poruchy 0,33 a s použitím součinitele 1,15 klesla na 0,04.

	ү м1 [:]	=1,0		γ _{M1} =1,1			γ _{M1} =1,15			
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]		
0,01	0,00584	0,00575	0,00021	0,00023	96,39	0,00004	0,00002	99,34		
0,05	0,00664	0,00657	0,00028	0,00030	95,82	0,00005	0,00004	99,22		
0,1	0,00837	0,00832	0,00041	0,00040	95,10	0,00008	0,00007	99,03		
0,5	0,00912	0,00918	0,00078	0,00150	91,42	0,00047	0,00045	94,86		
1	0,12780	0,12738	0,02374	0,02305	81,42	0,01227	0,01180	90,40		
1,5	0,21165	0,21104	0,06997	0,06990	66,94	0,03953	0,03945	81,32		
2	0,27939	0,27936	0,10650	0,10540	61,88	0,06287	0,06252	77,50		
3	0,34075	0,34045	0,15071	0,14977	55,77	0,09273	0,09283	72,79		
4	0,38294	0,38255	0,17596	0,17587	54,05	0,11049	0,11049	71,15		
5	0,41141	0,41183	0,19234	0,19204	53,25	0,12229	0,12249	70,28		
6	0,42731	0,42773	0,20384	0,20368	52,30	0,13072	0,13060	69,41		

Tabulka 2.16 Pravděpodobnosti poruchy nosníků průřezu I 80 pro různé součinitele spolehlivosti

Tabulka 2.17 Pravděpodobnosti poruchy nosníků průřezu I 180 pro různé součinitele spolehlivosti

	γ _{M1} =	=1,0		γ _{M1} =1,1		γ _{M1} =1,15			
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	
0,01	0,00351	0,00352	0,00011	0,00012	96,76	0,00002	0,00002	99,50	
0,05	0,00399	0,00405	0,00014	0,00014	96,61	0,00002	0,00002	99,46	
0,1	0,00472	0,00473	0,00017	0,00017	96,40	0,00003	0,00002	99,41	
0,5	0,00878	0,00890	0,00060	0,00064	93,13	0,00014	0,00013	98,36	
1	0,01309	0,01433	0,00100	0,00252	92,38	0,00010	0,00097	99,26	
1,5	0,04218	0,04173	0,01206	0,01135	71,42	0,00621	0,00583	85,28	
2	0,09753	0,09754	0,03200	0,03131	67,19	0,01767	0,01715	81,88	
2,5	0,15948	0,15959	0,05585	0,05559	64,98	0,03152	0,03140	80,24	
3	0,21107	0,21075	0,07784	0,07785	63,12	0,04490	0,04489	78,73	
4	0,28149	0,28104	0,11164	0,11155	60,34	0,06609	0,06588	76,52	
5	0,32560	0,32478	0,13516	0,13516	58,49	0,08160	0,08145	74,94	
8	0,39365	0,39368	0,17569	0,17563	55,37	0,10943	0,10911	72,20	
10	0,41737	0,41774	0,19089	0,19080	54,26	0,12022	0,11958	71,20	

	ү м1 ⁼	=1,0		γ _{M1} =1,1		γ _{M1} =1,15			
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	
0,01	0,001092	0,001074	0,000015	0,000014	98,66	0,000001	0,000001	99,86	
0,05	0,001206	0,001214	0,000017	0,000016	98,63	0,000002	0,000002	99,86	
0,1	0,001373	0,001376	0,000020	0,000016	98,57	0,000002	0,000002	99,85	
0,5	0,004492	0,004488	0,000112	0,000120	97,50	0,000015	0,000024	99,66	
1	0,003372	0,003870	0,000253	0,000184	92,49	0,000055	0,000054	98,36	
1,5	0,006640	0,007606	0,000098	0,000672	98,52	0,000221	0,000214	96,66	
2	0,018140	0,017098	0,002862	0,002570	84,22	0,000953	0,000946	94,75	
2,5	0,034431	0,034190	0,007056	0,006138	79,51	0,003063	0,002484	91,10	
3	0,058174	0,058274	0,012488	0,010978	78,53	0,005588	0,004560	90,39	
4	0,117930	0,118500	0,024157	0,024064	79,52	0,009997	0,009712	91,52	
5	0,174920	0,175130	0,037861	0,038194	78,36	0,015480	0,015454	91,15	
10	0,329060	0,329490	0,089171	0,089298	72,90	0,039557	0,039818	87,98	
15	0,390260	0,390660	0,116230	0,116200	70,22	0,053820	0,053544	86,21	
20	0,422490	0,422830	0,132330	0,132230	68,68	0,062528	0,062686	85,20	
25	0,442410	0,442920	0,142950	0,142890	67,69	0,068915	0,069056	84,42	

Tabulka 2.18 Pravděpodobnosti poruchy nosníků průřezu I 300 pro různé součinitele spolehlivosti

Tabulka 2.19 Pravděpodobnosti poruchy nosníků průřezu IPE 80 pro různé součinitele spolehlivosti

	γ _{M1} =	=1,0		γ _{M1} =1,1		γ _{M1} =1,15			
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	
0,01	0,007808	0,00779	0,000442	0,000413	94,34	0,000098	0,000070	98,74	
0,05	0,009035	0,009018	0,000533	0,000513	94,10	0,000121	0,000092	98,66	
0,1	0,01102	0,010976	0,000692	0,000703	93,72	0,000163	0,000140	98,53	
0,3	0,011827	0,011676	0,000926	0,000947	92,17	0,000252	0,000228	97,87	
0,5	0,009499	0,009242	0,001167	0,00104	87,71	0,000422	0,000328	95 <i>,</i> 56	
0,7	0,01325	0,0134	0,002347	0,002283	82,29	0,000996	0,000930	92,48	
1	0,038032	0,038488	0,009512	0,009753	74,99	0,004630	0,004712	87,83	
1,5	0,12335	0,1235	0,040941	0,041007	66,81	0,021664	0,021682	82,44	
2	0,20545	0,20555	0,073525	0,073707	64,21	0,040834	0,040584	80,12	
3	0,2927	0,29231	0,11691	0,1173	60,06	0,068729	0,068500	76,52	
5	0,36713	0,36747	0,16014	0,16093	56,38	0,098364	0,098226	73,21	
8	0,41129	0,41178	0,18923	0,18915	53,99	0,118600	0,118380	71,16	

	γ _{M1} =	=1,0		γ _{M1} =1,1		γ _{M1} =1,15			
L [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	
0,01	0,012999	0,013152	0,001215	0,001242	90,66	0,000288	0,000268	97,79	
0,05	0,013905	0,013992	0,001114	0,00114	91,99	0,000317	0,000292	97,72	
0,1	0,015156	0,015322	0,001358	0,001384	91,04	0,000364	0,000344	97,60	
0,5	0,021679	0,021824	0,002426	0,00247	88,81	0,000742	0,00072	96,58	
1	0,015553	0,015404	0,00266	0,002466	82,90	0,00109	0,000964	92,99	
1,5	0,031630	0,031304	0,00666	0,006544	78,94	0,003444	0,003198	89,11	
2	0,056549	0,057244	0,019193	0,018224	66,06	0,009545	0,010284	83,12	
3	0,158990	0,159240	0,060338	0,060492	62,05	0,036147	0,035952	77,26	
4	0,235720	0,235130	0,096952	0,096782	58,87	0,059775	0,059516	74,64	
8	0,362620	0,362720	0,16846	0,1678	53,54	0,10899	0,10926	69,94	
10	0,389290	0,389530	0,18546	0,18497	52 <i>,</i> 36	0,1213	0,12148	68,84	
12	0,407450	0,407730	0,19745	0,19681	51,54	0,13011	0,13003	68,07	

Tabulka 2.20 Pravděpodobnosti poruchy nosníků průřezu IPE 180 pro různé součinitele spolehlivosti

Tabulka 2.21 Pravděpodobnosti poruchy nosníků průřezu IPE 300 pro různé součinitele spolehlivosti

	ү м1 ⁻	=1,0		γ _{M1} =1,1			γ _{M1} =1,15	
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]
0,01	0,005005	0,005036	0,000192	0,000196	96,16	0,000035	0,000030	99,30
0,05	0,005272	0,005298	0,000205	0,000212	96,10	0,000038	0,000032	99,29
0,1	0,005634	0,00569	0,000224	0,000228	96,03	0,000041	0,000034	99,27
0,5	0,010215	0,010108	0,000508	0,000518	95,03	0,000103	0,000108	98,99
1	0,008764	0,008714	0,000543	0,000482	93,80	0,000127	0,000106	98,55
1,5	0,007586	0,007348	0,000757	0,000706	90,02	0,000232	0,000178	96,94
2	0,010678	0,009722	0,001812	0,001306	83,03	0,000415	0,000384	96,11
3	0,027326	0,026758	0,0061	0,005532	77,68	0,002727	0,002288	90,02
4	0,066443	0,066634	0,01651	0,015884	75,15	0,007745	0,007080	88,34
5	0,11809	0,11862	0,030562	0,03046	74,12	0,014382	0,014020	87,82
8	0,23765	0,23793	0,071937	0,07177	69,73	0,036115	0,036286	84,80
10	0,28583	0,28554	0,092086	0,092493	67,78	0,047452	0,047768	83,40
12	0,31947	0,3195	0,10759	0,10786	66,32	0,056497	0,056650	82,32
15	0,35449	0,35403	0,12497	0,12548	64,75	0,066945	0,067144	81,12
20	0,39096	0,39089	0,1445	0,14498	63,04	0,079051	0,079008	79,78

3 KLOPENÍ

Jako první se problému stability ohybu pro nosník úzkého (thin) obdélníkového průřezu věnovali nezávisle na sobě Prandtl [3] a Michell [16], a to již v roce 1899. První prakticky významnou analýzu klopení (lateral-torsional buckling) příčně zatížených tenkostěnných ocelových prutů předložil S. P. Timošenko [17] v roce 1905. Zabýval se stabilitou rovinného ohybu nosníku průřezu I s uvážením vlivu ohybové tuhosti pásnic při vybočení z roviny prvotní deformace. Diferenciální rovnice stability řešil mocninovými řadami (power series). V roce 1910 aplikoval na uvedený problém energetickou metodu [17].

V této kapitole je uvedeno analytické odvození stavu napjatosti oboustranně kloubově uloženého nosníku průřezu I namáhaného ohybem. Při řešení jsme vycházeli především z prací [4] a [10]. V této práci je ale uvedeno odvození pomocí rozkladu momentu do dvou sil opačného směru, které je dle autorky názorné a srozumitelné.

Obr. 3.1 Schéma ohýbaného prutu namáhaného klopením

Okrajové podmínky na začátku a na konci prutu zabraňují posuvu v a pootočení φ .

$$(v)_0 = (v)_L = 0 \tag{3.1}$$

$$(\varphi)_0 = (\varphi)_L = 0 \tag{3.2}$$

$$\left(\frac{d^2v}{dx^2}\right)_0 = \left(\frac{d^2v}{dx^2}\right)_L = 0 \tag{3.3}$$

$$\left(\frac{d^2\varphi}{dx^2}\right)_0 = \left(\frac{d^2\varphi}{dx^2}\right)_L = 0 \tag{3.4}$$

Ohybový moment M působící na koncích nosníku nahradíme dvojicí sil F_M , které působí v těžištích pásnic.

$$M = F_M \cdot h_0 \tag{3.5}$$

Obr. 3.2 Nahrazení ohybového momentu dvojicí sil

Při dosažení jisté kritické hodnoty ohybového momentu $M \rightarrow M_{cr}$ dojde u ideálního prutu bez imperfekcí k rozdvojení rovnováhy a prut vybočí ohybem kolem osy z a zkroucením, viz Obr. 3.1 a Obr. 3.2. Analogicky se vztahem (3.5) uvažujeme

Obr. 3.3 Klopení prutu z I profilu

Zdeformovaná část prutu po vybočení je v důsledku působení vnějších a vnitřních sil v rovnováze. Na konci prutu působí dvojice vnějších sil $F_{M,cr}$. Aby bylo dosaženo

rovnováhy na prutu nebo jeho části, musí na paprscích sil $F_{M,cr}$ působit síly stejně velké, ale opačného směru, viz Obr. 3.3. Jako vnitřní síly by tyto síly působily takto pouze v případě nevybočeného prutu, u vybočeného prutu je potřeba je nahradit ekvivalentní soustavou sil, která bude mít v prostoru stejné statické působení a bude působit na prut (průřez) po vybočení.

Uvažujme vnitřní síly působící na průřez, který se v důsledku vybočení pootočí o úhel φ (viz Obr. 3.4). Lokální osy tohoto průřezu označme z' a y' a zapišme momentovou podmínku k ose z'

$$M_{z'} = F_{M,cr} \cdot \Delta v_1 - F_{M,cr} \cdot \Delta v_2 \tag{3.7}$$

$$\frac{\Delta v_1}{\rho_2} = \frac{\Delta v_2}{\rho_1} = \sin \varphi(x) \tag{3.8}$$

Dosazením z (3.8) do (3.7) lze psát

$$M_{z'} = F_{M,cr} \cdot (\Delta v_1 - \Delta v_2) =$$

= $F_{M,cr} \cdot (\rho_2 - \rho_1) \cdot sin\varphi(x) =$ (3.9)
= $F_{M,cr} \cdot h_0 \cdot sin\varphi(x)$

Obr. 3.4 Pootočení klopeného prutu

Předpokládáme velmi malé úhly pootočení, pro které platí, že $sin\varphi(x) \approx \varphi(x)$. S použitím (3.9) a (3.6) dostáváme

$$M_{z'} \doteq F_{M,cr} \cdot h_0 \cdot \varphi(x) = M_{cr} \cdot \varphi(x)$$
(3.10)

Obdobně zapíšeme momentovou podmínku k ose y

$$M_{y'} = F_{M,cr} \cdot \rho_2 \cdot \cos\varphi(x) - F_{M,cr} \cdot \rho_1 \cdot \cos\varphi(x) =$$

= $F_{M,cr} \cdot (\rho_2 - \rho_1) \cdot \cos\varphi(x) =$ (3.11)
= $F_{M,cr} \cdot h_0 \cdot \cos\varphi(x)$

Pro velmi malé úhly platí, že $cos \varphi(x) \approx 1$. S uvážením (3.11) a (3.6) lze psát

$$M_{y'} \doteq F_{M,cr} \cdot h_0 \cdot 1 = M_{cr} \tag{3.12}$$

Zpětnou transformaci sil na rovnovážné momenty M_{cr} (vnější moment) a $M_{cr} \cdot sin\varphi(x) \approx M_{cr} \cdot \varphi(x)$ a $M_{cr} \cdot cos\varphi(x) \approx M_{cr}$ (vnitřní momenty) působící na část vybočeného prutu zobrazuje Obr. 3.5.

Tato rovnováha by však bez dalšího platila pouze pro x = L/2, kde dv/dx = 0. Jestliže platí, že x > 0, $x \neq L/2$ a x < L, je průřez navíc ještě namáhán vnitřním krouticím momentem, který vzniká v důsledku nenulového pootočení dv/dx zdeformovaného prutu v rovině x-y, přičemž $\varphi = 0$, viz Obr. 3.7.

Zdeformovaný prut zobrazený na Obr. 3.6 je v rovnováze. Prut je zatížen silami $F_{M,cr}$ (3.6), jejichž paprsky jsou rovnoběžky.

Obr. 3.5 Prut namáhaný ohybovými momenty

Obr. 3.6 Prut namáhaný dvojicí sil

Obr. 3.7 Schéma označení působících sil, vzdáleností a úhlů

Pokud označíme osy průřezu zdeformovaného prutu na Obr. 3.7 jako \bar{x} , \bar{y} , \bar{z} , můžeme zapsat výsledné hodnoty momentů působících na průřez

$$M_{\bar{y}} = F_{M,cr} \cdot \cos\varphi_z(x) \cdot h_0 = M_{cr} \cdot \cos\varphi_z(x)$$
(3.13)

Pro úhel $\varphi_z(x)$ platí, že $tg\varphi_z(x) = dv(x)/dx$. Pro velmi malé úhly $\varphi_z(x)$ lze psát, že $tg\varphi_z(x) \approx \varphi_z(x)$ a $\cos\varphi_z(x) \approx 1$ a tedy vztah (3.14) lze zapsat jako

$$M_{\bar{y}} = M_{cr} \cdot \cos\varphi_z(x) \doteq M_{cr} \cdot 1 = M_{cr} \tag{3.14}$$

Obdobně zapíšeme momentovou podmínku k ose \bar{x}

$$M_{\bar{x}} = F_{M,cr} \cdot \sin\varphi_z(x) \cdot h_0 = M_{cr} \cdot \sin\varphi_z(x)$$
(3.15)

Pro velmi malé hodnoty $\varphi_z(x)$ lze psát $sin\varphi_z(x) \approx \varphi_z(x)$ a pak

$$M_{\bar{x}} = M_{cr} \cdot \sin\varphi_z(x) \doteq M_{cr} \cdot \varphi_z(x) = M_{cr} \cdot \frac{dv(x)}{dx}$$
(3.16)

Souhrnně lze tedy konstatovat, že na průřez vybočeného prutu působí v rovině prvotního ohybu ohybový moment M_{cr} a dále krouticí moment $M_{\bar{x}}$ (3.16) a ohybový moment $M_{z'}$ (3.10) kolem "měkčí" osy z'.

Známe-li vnitřní momenty působící na průřez, můžeme zapsat diferenciální rovnici ohybové čáry (3.17) a diferenciální rovnici vázaného kroucení (3.18) tenkostěnných otevřených průřezů.

$$EI_z \cdot \frac{d^2 v(x)}{dx^2} = -M_{cr} \cdot \varphi(x)$$
(3.17)

$$EI_{\omega} \cdot \frac{d^{3}\varphi(x)}{dx^{3}} - G \cdot I_{t} \cdot \frac{d\varphi(x)}{dx} = -M_{cr} \cdot \frac{d\nu(x)}{dx}$$
(3.18)

kde *E* je modul pružnosti v tahu a tlaku [Pa].

G je modul pružnosti ve smyku [Pa].

 I_t je moment tuhosti v prostém kroucení $[m^4]$.

 I_{ω} je výsečový moment setrvačnosti $[m^6]$.

Derivováním rovnice (3.18) a dosazením rovnice (3.17) dostaneme

$$EI_{\omega} \cdot \frac{d^4\varphi(x)}{dx^4} - G \cdot I_t \cdot \frac{d^2\varphi(x)}{dx^2} - \frac{M_{cr}^2}{EI_z} \cdot \varphi(x) = 0$$
(3.19)

Okrajové podmínky definující prosté podepření

$$v(0) = v(L) = \varphi(0) = \varphi(L) = 0$$

$$v''(0) = v''(L) = \varphi''(0) = \varphi''(L) = 0$$
(3.20)

Rovnici (3.19) můžeme zapsat ve tvaru

$$\frac{d^4\varphi(x)}{dx^4} - \frac{GI_t}{EI_\omega} \cdot \frac{d^2\varphi(x)}{dx^2} - \frac{M_{cr}^2}{E^2I_\omega I_z} \cdot \varphi(x) = 0$$
(3.21)

Nechť

$$A_1 = \frac{GI_t}{EI_\omega} \tag{3.22}$$

$$A_{2} = \frac{M_{cr}^{2}}{E^{2}I_{\omega}I_{z}}$$
(3.23)

Pak rovnice (3.21) vypadá takto:

$$\frac{d^4\varphi(x)}{dx^4} - A_1 \cdot \frac{d^2\varphi(x)}{dx^2} - A_2 \cdot \varphi(x) = 0$$
(3.24)

Kořeny diferenciální rovnice jsou

$$\varphi(r^4 - A_1 r^2 - A_2) = 0 \tag{3.25}$$

kde

$$r = \begin{bmatrix} \alpha_1 \\ -\alpha_1 \\ i\alpha_2 \\ -i\alpha_2 \end{bmatrix}$$
(3.26)

$$\alpha_1 = \sqrt{\frac{A_1 + \sqrt{A_1^2 + 4A_2}}{2}} \tag{3.27}$$

$$\alpha_2 = \sqrt{\frac{-A_1 + \sqrt{A_1^2 + 4A_2}}{2}} \tag{3.28}$$

Výraz pro úhel pootočení lze zapsat ve tvaru:

$$\varphi(x) = C_1 \cosh \alpha_1 x + C_2 \sinh \alpha_1 x + C_3 \sin \alpha_2 x + C_4 \cos \alpha_2 x \quad (3.29)$$

kde C_1, C_2, C_3, C_4 jsou integrační konstanty závislé na okrajových podmínkách a $i = \sqrt{-1}$. Pokud dosadíme okrajové podmínky (3.20) do (3.29), dostaneme čtyři homogenní rovnice:

$$\begin{bmatrix} 1 & 0 & 0 & 1\\ \alpha_1^2 & 0 & 0 & -\alpha_2^2\\ \cosh\alpha_1 L & \sinh\alpha_1 L & \sin\alpha_2 L & \cos\alpha_2 L\\ \alpha_1^2 \cosh\alpha_1 L & \alpha_1^2 \sinh\alpha_1 L & -\alpha_2^2 \sin\alpha_2 L & \alpha_2^2 \cos\alpha_2 L \end{bmatrix} \begin{bmatrix} C_1\\ C_2\\ C_3\\ C_4 \end{bmatrix} = 0 \quad (3.30)$$

Netriviální řešení dostaneme, položíme-li determinant koeficientů roven nule. Rozložení determinantu vede na následující rovnici:

$$(\alpha_1^2 + \alpha_2^2) sinh\alpha_1 L \cdot sin\alpha_2 L = 0 \tag{3.31}$$

Vzhledem k tomu, že výraz před násobícím znaménkem není roven nule, musí se vlastní číslo nacházet v rovnici

$$\sin \alpha_2 L = 0 \tag{3.32}$$

Rovnice (3.32) platí, pokud $\alpha_2 L = k\pi$, kde k = 1, 2, 3, ...

Nahrazením α_2 výrazem (3.28) dostaneme:

$$A_2 = \frac{k^2 \pi^2}{L^2} \left[A_1 + \frac{k^2 \pi^2}{L^2} \right]$$
(3.33)

Nejnižší vlastní číslo je pro k = 1. Dosazením (3.22) a (3.23) do (3.33) dostaneme

$$M_{cr} = \pm \frac{\pi}{L^2} \cdot \sqrt{EI_z} \cdot \sqrt{\pi^2 EI_\omega + GI_t l^2}$$
(3.34)

Ve vztahu (3.34) je jeden kořen kladný a druhý záporný. Běžně se užívá pouze kladný kořen ve tvaru

$$M_{cr} = \pi \cdot \frac{\sqrt{EI_z \cdot GI_t}}{L} \cdot \sqrt{1 + \frac{\pi^2 EI_\omega}{L^2 GI_t}}$$
(3.35)

3.1 Klopení prutu s počátečním zakřivením

Uvažujeme prut s počátečním zakřivením afinním k tvaru vybočení, odpovídajícímu sinusoidě.

$$v_0(x) = v_0 \cdot \sin \frac{\pi x}{L} \tag{3.36}$$

$$\varphi_0(x) = \varphi_0 \cdot \sin \frac{\pi x}{L} \tag{3.37}$$

Přičemž v_0 a φ_0 jsou amplitudy. V praktickém výpočtu není počáteční imperfekce zadána jako největší vybočení těžiště průřezu, ale jako celkové největší vybočení viz Obr (3.8). Proto je nutné provést přepočet v_0 na e_0 .

Obr. 3.8 Vybočení klopeného I profilu
Pokud je nosník zakřiven podle prvního vlastního tvaru, platí, že

$$v_0 = \frac{e_0}{1 + \frac{h}{2} \frac{P_z}{M_{cr}}}$$
(3.38)

Příslušné diferenciální rovnice mají tvar:

$$EI_{z} \cdot \frac{d^{2}v(x)}{dx^{2}} = -M \cdot (\varphi(x) + \varphi_{0}(x))$$
(3.39)

$$EI_{\omega} \cdot \frac{d^3\varphi(x)}{dx^3} - GI_t \cdot \frac{d\varphi(x)}{dx} = -M \cdot \left(\frac{dv(x)}{dx} + \frac{dv_0(x)}{dx}\right)$$
(3.40)

Rovnice (3.39) představuje upravenou rovnici ohybové čáry (3.18) a druhá rovnice (3.40) vyjadřuje upravenou rovnici vázaného kroucení tenkostěnných otevřených průřezů. Pokud rovnici (3.40) jednou zderivujeme, dostaneme:

$$EI_{\omega} \cdot \frac{d^4\varphi(x)}{dx^4} - GI_t \cdot \frac{d^2\varphi(x)}{dx^2} = -M \cdot \left(\frac{d^2v(x)}{dx^2} + \frac{d^2v_0(x)}{dx^2}\right)$$
(3.41)

Úpravou rovnice (3.39) dostaneme vztah (3.42),

$$\frac{d^2 v(x)}{dx^2} = -\frac{M}{EI_z} \cdot \left(\varphi(x) + \varphi_0(x)\right) \tag{3.42}$$

který dosadíme do rovnice (3.41)

$$EI_{\omega} \cdot \frac{d^{4}\varphi(x)}{dx^{4}} - GI_{t} \cdot \frac{d^{2}\varphi(x)}{dx^{2}} = -M\left(\cdot -\frac{M}{EI_{z}} \cdot (\varphi(x) + \varphi_{0}(x)) + \frac{d^{2}v_{0}(x)}{dx^{2}}\right)$$
(3.43)

Rovnici (3.43) upravíme tak, aby na pravé straně byly obsaženy členy počátečního zakřivení a pootočení.

$$EI_{\omega} \cdot \frac{d^{4}\varphi(x)}{dx^{4}} - GI_{t} \cdot \frac{d^{2}\varphi(x)}{dx^{2}} - \frac{M^{2}}{EI_{z}} \cdot \varphi(x) = -M \cdot \frac{d^{2}v_{0}(x)}{dx^{2}} + \frac{M^{2}}{EI_{z}} \cdot \varphi_{0}(x) \quad (3.44)$$

Řešení (3.44) lze uvažovat ve tvaru

$$v(x) = v_1 \cdot \sin \frac{\pi x}{L} \tag{3.45}$$

$$\varphi(x) = \varphi_1 \cdot \sin \frac{\pi x}{L} \tag{3.46}$$

Dosazením (3.37), (3.38), (3.45) a (3.46) do (3.44) dostaneme

$$EI_{\omega} \cdot \frac{\pi^{4}}{L^{4}} \cdot \varphi_{1} \cdot \sin\left(\frac{\pi x}{L}\right) - GI_{t} \cdot \frac{\pi^{2}}{L^{2}} \cdot \varphi_{1} \cdot \sin\left(\frac{\pi x}{L}\right) - \frac{M^{2}}{EI_{z}} \cdot \varphi_{1} \cdot \sin\left(\frac{\pi x}{L}\right)$$
$$= +M \cdot \frac{\pi^{2}}{L^{2}} \cdot v_{0} \cdot \sin\left(\frac{\pi x}{L}\right) + \frac{M^{2}}{EI_{z}} \cdot \varphi_{0} \cdot \sin\left(\frac{\pi x}{L}\right)$$
(3.47)

Úpravou (3.47) pak získáme

$$EI_{\omega} \cdot \frac{\pi^4}{L^4} \cdot \varphi_2 - GI_t \cdot \frac{\pi^2}{L^2} \cdot \varphi_2 - \frac{M^2}{EI_z} \cdot \varphi_2 = M \cdot \frac{\pi^2}{l^2} \cdot v_1 + \frac{M^2}{EI_z} \cdot \varphi_1$$
(3.48)

Rovnici (3.48) vynásobíme EI_z a dostaneme

$$\begin{pmatrix} EI_z \cdot EI_\omega \cdot \frac{\pi^4}{L^4} - EI_z \cdot GI_t \cdot \frac{\pi^2}{L^2} - M^2 \end{pmatrix} \cdot \varphi_1$$

$$= M \cdot \frac{\pi^2 \cdot EI_z}{L^2} \cdot v_0 + M^2 \cdot \varphi_0$$
(3.49)

Dále upravíme (3.49) tak, aby obsahovala členy z (3.36)

$$\begin{pmatrix} \frac{\pi^2}{L^2} \cdot EI_z \cdot GI_t \cdot \left(\frac{\pi^2}{L^2} \cdot \frac{EI_\omega}{G \cdot I_t} + 1\right) - M^2 \end{pmatrix} \cdot \varphi_1$$

$$= M \cdot \frac{\pi^2 \cdot EI_z}{L^2} \cdot v_0 + M^2 \cdot \varphi_0$$
(3.50)

Rovnice (3.50) v sobě zahrnuje M_{cr} (3.36), tudíž lze psát, že

$$\left(M_{cr}^{2} - M^{2}\right) \cdot \varphi_{1} = M \cdot \frac{\pi^{2} \cdot EI_{z}}{L^{2}} \cdot v_{0} + M^{2} \cdot \varphi_{0}$$

$$(3.51)$$

Pravou stranu rovnice (3.51) upravíme vynásobením prvního členu zlomkem M_{cr}/M_{cr} . Dále vytknutím M^2 na pravé straně obdržíme

$$\left(M_{cr}^{2} - M^{2}\right) \cdot \varphi_{1} = M^{2} \cdot \left(\frac{\pi^{2} \cdot EI_{z} \cdot M_{cr}}{L^{2} \cdot M \cdot M_{cr}} \cdot \nu_{0} + \varphi_{0}\right)$$
(3.52)

Lze psát

$$v_0 = \varphi_0 \cdot \frac{M_{cr} \cdot L^2}{\pi^2 \cdot EI_z} \tag{3.53}$$

Dosazením (3.53) do (3.52) dostáváme

$$\left(M_{cr}^{2} - M^{2}\right) \cdot \varphi_{1} = M^{2} \cdot \left(\varphi_{0} \cdot \frac{M_{cr}}{M} + \varphi_{0}\right)$$
(3.54)

Úpravou (3.54) dostaneme vztah

$$\frac{\varphi_1}{\varphi_0} = M^2 \cdot \frac{\frac{M_{cr} + M}{M}}{{M_{cr}}^2 - M^2} = \frac{M}{M_{cr} - M}$$
(3.55)

Osamostatníme φ_1

$$\varphi_1 = \frac{\varphi_0}{\frac{M_{cr}}{M} - 1} \tag{3.56}$$

a vyjádříme celkové pootočení, které se skládá z počátečního pootočení φ_0 a pootočení v důsledku působení ohybového momentu *M*.

$$\varphi_0 + \varphi_1 = \varphi_0 + \frac{\varphi_0}{\frac{M_{cr}}{M} - 1} = \varphi_0 + \frac{M \cdot \varphi_0}{M_{cr} - M}$$
$$= \frac{M_{cr} \cdot \varphi_0 - M \cdot \varphi_0 + M \cdot \varphi_0}{M_{cr} - M} = \varphi_0 \cdot \frac{M_{cr}}{M_{cr} - M}$$
(3.57)

Tedy pro celkové pootočení lze psát:

$$\varphi_{0} + \varphi_{1} = \frac{\varphi_{0}}{1 - \frac{M}{M_{cr}}}$$
(3.58)

Podobný vztah je třeba získat také pro počáteční a koncové zakřivení. Vyjdeme-li z rovnice (3.39), lze psát:

$$-EI_z \cdot v_1 \cdot \frac{\pi^2}{L^2} \cdot \sin\frac{\pi x}{L} = -M \cdot (\varphi_0 + \varphi_1) \cdot \sin\frac{\pi x}{L}$$
(3.59)

Dosazením (3.58) do (3.59) a úpravou získáme

$$-EI_{z} \cdot v_{1} \cdot \frac{\pi^{2}}{L^{2}} = -M \cdot \frac{\varphi_{0}}{1 - \frac{M}{M_{cr}}}$$
(3.60)

Dále dosadíme za φ_0 z (3.53) a dostaneme

$$-EI_{z} \cdot v_{1} \cdot \frac{\pi^{2}}{L^{2}} = -M \cdot v_{0} \cdot \frac{\pi^{2} \cdot EI_{z}}{M_{cr} \cdot L^{2}} \cdot \frac{1}{1 - \frac{M}{M_{cr}}}$$
(3.61)

Úpravou (3.61) obdržíme

$$\frac{v_1}{v_0} = \frac{M}{M_{cr}} \cdot \frac{M_{cr}}{M_{cr} - M}$$
(3.62)

a tedy obdobně jako (3.55) lze psát

$$\frac{v_1}{v_0} = \frac{M}{M_{cr} - M}$$
(3.63)

Celkové vybočení $v_0 + v_1$ dostaneme po osamostatnění v_1

$$v_1 = \frac{v_0}{\frac{M_{cr}}{M} - 1}$$
(3.64)

jako

$$v_{0} + v_{1} = v_{0} + \frac{v_{0}}{\frac{M_{cr}}{M} - 1} = v_{0} + \frac{M \cdot v_{0}}{M_{cr} - M}$$
$$= \frac{M_{cr} \cdot v_{0} - M \cdot v_{0} + M \cdot v_{0}}{M_{cr} - M} = v_{0} \cdot \frac{M_{cr}}{M_{cr} - M}$$
(3.65)

Tedy pro celkové zakřivení lze psát

$$v_0 + v_1 = \frac{v_0}{1 - \frac{M}{M_{cr}}} \tag{3.66}$$

což je vztah obdobný k (3.58). Dosadíme-li do (3.45) z (3.64), dostaneme

$$v(x) = \frac{v_0}{\frac{M_{cr}}{M} - 1} \cdot \sin\frac{\pi x}{L}$$
(3.67)

a obdobně po dosazení z (3.56) do (3.46) získáme

$$\varphi(x) = \frac{\varphi_0}{\frac{M_{cr}}{M} - 1} \cdot \sin\frac{\pi x}{L}$$
(3.68)

Největší napětí v polovině prutu je od prostého ohybu, sekundárního ohybu a vázaného kroucení

$$\sigma(x) = \frac{M}{W_y} - \frac{EI_z}{W_z} \cdot \left(\frac{d^2\left(v(x) + \frac{h}{2} \cdot \varphi(x)\right)}{dx^2}\right)$$
(3.69)

K selhání nosníku s počátečními imperfekcemi dojde, když bude v polovině rozpětí nosníku dosaženo meze kluzu f_y . Moment únosnosti při klopení může být v souladu s [10] odvozen ze vztahu (3.69) takto:

$$M_{R} = -\frac{\sqrt{\left(4D_{1}^{2} + (D_{4} - D_{5})^{2} + 4D_{1}(D_{4} - 2M_{cr}D_{3})\right)}}{4M_{cr}W_{z}} + \frac{2D_{1} + D_{4} + D_{5}}{4M_{cr}W_{z}} \quad (3.70)$$

kde D1, D2, D3, D4, D5 jsou pomocné mezivýpočty.

$$D_1 = f_y M_{cr} W_y W_z \tag{3.71}$$

$$D_2 = M_{cr} W_z + P_z |v_0| W_y \tag{3.72}$$

$$D_3 = M_{cr} W_z - P_z |v_0| W_y \tag{3.73}$$

$$D_4 = 2P_z^2 I_y |v_0| (3.74)$$

$$D_5 = 2M_{cr}D_2 (3.75)$$

Eulerova kritická síla $P_z = \pi^2 \frac{EI_z}{L^2}$.

3.2 Výpočet únosnosti na klopení dle EUROCODE 3

Návrhový moment únosnosti při klopení $M_{b,Rd}$ nosníku, podepřeného dle Obr. 3.1, se vypočítá dle vztahu:

$$M_{b,Rd} = \chi_{LT} \cdot W_y \cdot \frac{f_y}{\gamma_{M1}}$$
(3.76)

Všechny válcované profily I a IPE zatížené pouze ohybovým momentem náleží do třídy průřezu 1, pro kterou se má do vzorce za W_y dosadit plastický průřezový modul $W_{pl,y}$.

Součinitel klopení χ_{LT} se vypočítá z výrazu (3.77) a maximálně se uvažuje hodnotou 1,0.

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \bar{\lambda}_{LT}^2}}$$
(3.77)

kde

$$\phi_{LT} = 0.5 \cdot [1 + \alpha_{LT} \cdot (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^{2}]$$
(3.78)

Určení součinitele imperfekce při klopení α_{LT} na základě příslušné křivky klopení zachycuje Tabulka 3.1.

Tabulka 3.1 Doporučené hodnoty součinitelů imperfekce pro křivky klopení

Křivka klopení	a	b	С	d
α_{LT}	0,21	0,34	0,49	0,76

Doporučení pro volbu křivky klopení se nachází v Tabulka 3.2.

Průřez	Meze	Křivka klopení
X 7(1,,, (T ,, ° X ,	$h/b \le 2$	a
valcovane i prurezy	h/b > 2	b
Svařované I průřezy	$h/b \le 2$	С
Svarovane i prurezy	h/b > 2	d
Jiné průřezy	-	d

Poměrná štíhlost $\bar{\lambda}_{LT}$ se vypočítá ze vzorce (3.79):

$$\bar{\lambda}_{LT} = \sqrt{\frac{W_y \cdot f_y}{M_{cr}}} \tag{3.79}$$

Pružný kritický moment při klopení k ose $y M_{cr}$ je dán vztahem:

$$M_{cr} = \mu_{cr} \cdot \frac{\pi \cdot \sqrt{E \cdot I_z \cdot G \cdot I_t}}{L}$$
(3.80)

Uvažujeme-li prostě podepřený nosník symetrického průřezu s působištěm zatížení ve středu smyku, dá se bezrozměrný kritický moment μ_{cr} určit ze vztahu:

$$\mu_{cr} = \sqrt{1 + \kappa_{wt}^2} \tag{3.81}$$

kde bezrozměrný parametr kroucení

$$\kappa_{wt} = \frac{\pi}{L} \sqrt{\frac{E \cdot I_w}{G \cdot I_t}} \tag{3.82}$$

Je zajímavé si povšimnout, že pokud provedeme výpočet kritického momentu podle vzorce (3.35) odvozeného v předchozí kapitole, dostaneme zcela jiné hodnoty, než když tento moment vypočteme dle Eurocode. Pro ilustraci je v Tabulce 3.3 uvedeno několik hodnot M_{cr} pro prostě podepřený nosník průřezu *I 180* různých rozpětí.

Tabulka 3.3 Srovnání kritických momentů vypočtených dle EC a dle vzorce (3.35)

	dle EC	dle odvozeného vzorce (3.35)
<i>L</i> [m]	M_{cr} [kNm]	M_{cr} [kNm]
0	∞	\sim
0,01	893041,7	1437933,8
0,1	8958,3	14424,3
1	114,1	183,7
2	41,9	67,5
3	25,7	41,3
5	14,6	23,6
10	7,2	11,5
20	3,6	5,7

Výsledný průběh momentu únosnosti na klopení v závislosti na poměrné štíhlosti je pak však téměř totožný, ať už je vypočítán pomocí odvozeného vzorce (3.35) pro M_{cr} nebo podle vzorce (3.80) daného Eurocodem 3. Jejich srovnání je znázorněno v Grafu (3.1) pro nosník I 180. Jak je vidět, křivky se téměř překrývají, ale body, odpovídající stejnému rozpětí nosníku jsou vzájemně posunuty. Je to dáno tím, že do vztahu pro výpočet poměrné štíhlosti $\overline{\lambda}_{LT}$ vstupuje kritický moment M_{cr} a poměrná štíhlost se tedy pro stejné rozpětí nosníku liší. Na výslednou únosnost ale tato skutečnost nemá vliv.

Graf 3.1 Srovnání průběhu M_{Rd} v závislosti na poměrné štíhlosti s použitím M_{cr} vypočteným dle EC a dle vztahu (3.35)

3.3 Statistická analýza únosnosti při klopení

3.3.1 Vstupní veličiny a korelace

Vstupní veličiny jsou uvažovány stejně jako v Kapitole 2.6.1.

3.3.2 Výpočet

Určení průřezových charakteristik potřebných pro výpočet momentu únosnosti při klopení je již popsáno v Kapitole 2.7.3.

Celá spolehlivostní analýza byla provedena v softwaru Freet. Pro každý průřez bylo provedeno 500000 simulací metodou Latin Hypercube Sampling mean. [28]

3.3.2.1 Výpočet vzpěru nosníků z IPE a I profilů dle EUROCODE 3

K výpočtu je použita ocel S235 s materiálovými charakteristikami:

 f_{y} =235 MPa; *E*=210 GPa, γ_{MI} =1,0.

Hodnoty průřezových charakteristik jsou převzaty ze statických tabulek a jsou uvedeny v Tabulce 3.4.

Veličina	Násobitel	I 80	I 180	I 300	IPE 80	IPE 180	IPE 300
$W_{pl,y} [\mathrm{mm}^3]$	10 ³	22,8	187	762	23,22	166,4	628,4
$I_z [\mathrm{mm}^4]$	10^{3}	62,9	813	4510	84,9	1009	6038
$I_{\omega} [\mathrm{mm}^{6}]$	109	0,09	5,92	91,8	0,12	7,43	125,9
$I_t [\mathrm{mm}^4]$	10 ³	8,7	95,8	568	6,98	47,9	201,2

Tabulka 3.4 Průřezové charakteristiky I a IPE profilů pro výpočet dle EC

Pomocí Tabulky 3.2 přiřadíme průřezům křivky klopení. Průřezům I 80, IPE 80, IPE 180 a IPE 300 náleží křivka klopení *a* (α_{LT} =0,21), průřezům I 180 a I 300 křivka *b*, které odpovídá součinitel imperfekce α_{LT} =0,34 (viz Tabulka 3.1).

Výpočet byl proveden pro velké množství délek nosníku, čehož bude využito později při vykreslování grafů. V následujících tabulkách jsou uvedeny některé vybrané výsledky. Únosnosti při klopení má pro všechny průřezy podobný průběh. Je vidět, že pro velmi velké štíhlosti je únosnost velmi malá, proto se takovéto konstrukce v praxi zpravidla nenavrhují.

<i>L</i> [m]	κ _{wt}	μ_{cr}	M _{cr}	$\overline{\lambda}_{LT}$	Φ_{LT}	X _{LT}	M _{b,Rd} [kNm]	
0,1	5,14492	5,241202	311997,3	0,131047	0,501347	1	5,358	
0,2	2,57246	2,759991	82148,1	0,255389	0,538428	0,98772	5,292203686	
0,5	1,028984	1,434855 17082,7		0,560044	0,69463	0,904522	4,846430813	
1	0,514492	1,12459	6694,435	0,894632	0,973119	0,737465	3,951335955	
1,5	0,342995	1,057187	4195,47	1,130085	1,236205	0,575601	3,084070937	
2	0,257246	1,032558	3073,295	1,320381	1,489343	0,459062	2,459655061	
2,5	0,205797	1,020957	2431,012	1,484594	1,736893	0,379013	2,030750646	
3	0,171497	1,014599	2013,228	1,631379	1,980993	0,322082	1,725716097	
3,5	0,146998	1,010746	1719,072	1,765446	2,222771	0,279854	1,499456823	
4	0,128623	1,008238	1500,455	1,889687	2,462876	0,247379	1,325456118	
4,5	0,114332	1,006515	1331,458	2,006031	2,701713	0,221659	1,187648475	
5	0,102898	1,00528	1196,842	2,11584	2,939553	0,200796	1,075862767	
6	0,085749	1,00367	995,7708	2,319646	3,412941	0,169021	0,90561517	
8	0,064312	1,002066	745,6347	2,680639	4,353379	0,128476	0,688374652	
11	0,046772	1,001093	541,7534	3,144854	5,754264	0,094579	0,506756423	
12	0,042874	1,000919	496,5207	3,284979	6,219468	0,086952	0,465887453	
15	0,034299	1,000588	397,0854	3,673325	7,611359	0,07004	0,375271777	

Tabulka 3.5 Vybrané výsledky únosnosti při klopení nosníků průřez I 80 dle EC

Tabulka 3.6 Vybrané výsledky únosnosti při klopení nosníků průřez I 180 dle EC

<i>L</i> [m]	K _{Wt}	μ _{cr}	M _{cr}	$\overline{\lambda}_{LT}$	Φ _{LT}	XLT	M _{b,Rd} [kNm]
0,1	12,57463	12,61433	8958329	0,070039	0,480359	1	43,945
0,5	2,514925	2,706446	384407,9	0,33811	0,580638	0,949958	41,74589675
1	1,257463	1,606615	114097,1	0,620608	0,76408	0,826584	36,32422524
1,5	0,838308	1,304899	61780,09	0,843394	0,965034	0,697326	30,64397491
2	0,628731	1,181229	41943,74	1,023578	1,163865	0,582133	25,58181636
2,5	0,502985	1,119372	31797,82	1,17559	1,356857	0,491549	21,60109931
3	0,419154	1,084293	25667,77	1,308461	1,544473	0,422826	18,58109455
4	0,314366	1,048249	18610,9	1,536636	1,907854	0,329096	14,46211155
5	0,251493	1,031139	14645,71	1,732206	2,260744	0,26929	11,83393014
6	0,209577	1,021725	12093,33	1,906259	2,606975	0,228034	10,02094269
8	0,157183	1,012278	8986,129	2,211406	3,287096	0,174852	7,683888844
10	0,125746	1,007875	7157,636	2,477821	3,957028	0,142	6,240210527
12	0,104789	1,005475	5950,495	2,717554	4,620534	0,119654	5,258208426
15	0,083831	1,003508	4751,08	3,041295	5,607758	0,096907	4,258575776
20	0,062873	1,001975	3557,866	3,514471	7,239212	0,073702	3,238849545

<i>L</i> [m]	κ _{Wt}	μ_{cr}	M _{cr}	$\overline{\lambda}_{LT}$	Φ_{LT}	χ _{lt}	M _{b,Rd} [kNm]	
0,1	20,33594	20,36051	82925092	0,04647	0,47498	1	179,07	
0,5	4,067187	4,188319	3411670	0,229101	0,531191	0,989671	177,2204146	
1	2,033594	2,266165 922972		0,440471	0,637887	0,909684	162,8971479	
1,5	1,355729	1,684637	457417,1	0,625684	0,768107	0,823962	147,5468852	
2	1,016797	1,42614	290422	0,78523	0,907782	0,733523	131,3519452	
2,5	0,813437	1,289062	210005,7	0,923413	1,049326	0,646113	115,6994825	
3	0,677865	1,208098	164013	1,044894	1,189534	0,568819	101,8583583	
4	0,508398	1,121815	114224,3	1,25208	1,462706	0,450677	80,7027614	
5	0,406719	1,079546	87936,38	1,42701	1,726771	0,370497	66,34489245	
8	0,254199	1,031803	52529,6	1,84633	2,484344	0,241163	43,18498897	
10	0,203359	1,020468	41562,03	2,075693	2,973118	0,196012	35,09995707	
12	0,169466	1,014258	34424,24	2,280758	3,454657	0,165305	29,60117756	
15	0,135573	1,009148	27400,66	2,556412	4,168212	0,13404	24,00261271	
20	0,10168	1,005156	20469,2	2,957747	5,34295	0,102119	18,28636923	
25	0,081344	1,003303	16345,17	3,309914	6,506451	0,082589	14,78928454	

Tabulka 3.7 Vybrané výsledky únosnosti při klopení nosníků průřez I 300 dle EC

Tabulka 3.8 Vybrané výsledky únosnosti při klopení nosníků průřez IPE 80 dle EC

<i>L</i> [m]	κ _{wt}	μ_{cr}	M _{cr}	$\overline{\lambda}_{LT}$	Φ_{LT}	Χ _{LT}	M _{b,Rd} [kNm]
0,1	6,632541	6,707503	415506	0,114598	0,497599	1	5,4567
0,2	3,31627	3,463762	107283,9	0,225527	0,528111	0,994386	5,426063632
0,5	1,326508	1,661212	20581,23	0,514908	0,66563	0,919581	5,017875845
1	0,663254	1,199961	7433,332	0,856788	0,936005	0,761695	4,156339965
1,5	0,442169	1,093396	4515,465	1,099294	1,198649	0,596491	3,254873425
2	0,331627	1,053554	3263,197	1,293134	1,450876	0,474206	2,587600673
2,5	0,265302	1,034594	2563,577	1,458955	1,696465	0,390294	2,129719144
3	0,221085	1,024148	2114,744	1,606335	1,937821	0,330937	1,805824908
3,5	0,189501	1,017797	1801,398	1,740445	2,176321	0,287115	1,566698777
4	0,165814	1,013654	1569,807	1,864412	2,41278	0,253532	1,383448489
5	0,132651	1,00876	1249,782	2,089527	2,881461	0,205526	1,121491817
6	0,110542	1,006091	1038,73	2,291995	3,346281	0,172879	0,94334995
8	0,082907	1,003431	776,9873	2,650074	4,268705	0,131317	0,716554842
10	0,066325	1,002197	620,8256	2,964696	5,185006	0,105946	0,578113062
12	0,055271	1,001526	517,0083	3,24875	6,097306	0,088833	0,484737012
15	0,044217	1,000977	413,3799	3,633209	7,460591	0,071547	0,390412927

<i>L</i> [m]	κ _{Wt}	μ_{cr}	M _{cr}	$\overline{\lambda}_{LT}$	Φ_{LT}	Χ _{LT}	M _{b,Rd} [kNm]
0,1	19,92249	19,94757	11159335	0,059196	0,486968	1	39,104
0,5	3,984498	4,108069	459638	0,291677	0,552164	0,97943	38,29962139
1	1,992249	2,229138	124705,4	0,559974	0,694583	0,904547	35,37140065
1,5	1,328166	1,662536	62005,18	0,794139	0,877713	0,799035	31,24548275
2	0,996125	1,411476	39481,32	0,99521	1,078719	0,66895	26,15861391
2,5	0,7969	1,27869	28613,67	1,169025	1,285057	0,549849	21,50131195
3	0,664083	1,200419	22385,15	1,321693	1,491214	0,458347	17,9231844
3,5	0,569214	1,150654	18391,83	1,458136	1,695185	0,390662	15,27642865
4	0,498062	1,117169	15624,53	1,582002	1,896476	0,339862	13,28997944
4,5	0,442722	1,093619	13595,71	1,695937	2,095174	0,300712	11,75904561
5	0,39845	1,076458	12044,13	1,801868	2,29156	0,269733	10,54763933
6	0,332042	1,053685	9824,437	1,995064	2,678621	0,223914	8,755928779
8	0,249031	1,030542	7206,492	2,329425	3,436699	0,167687	6,55723227
12	0,166021	1,013688	4725,755	2,87657	4,918368	0,112261	4,389852871
15	0,132817	1,008782	3762,306	3,223915	6,014324	0,090159	3,525559207
20	0,099612	1,004949	2811,009	3,729748	7,826132	0,067998	2,658988352

Tabulka 3.9 Vybrané výsledky únosnosti při klopení nosníků průřez IPE 180 dle EC

Tabulka 3.10 Vybrané výsledky únosnosti při klopení nosníků průřez IPE 300 dle EC

<i>L</i> [m]	κ _{wt}	μ_{cr}	M _{cr}	$\overline{\lambda}_{LT}$	Φ_{LT}	XLT	M _{b,Rd} [kNm]
0,1	40,01436	40,02685	112265651	0,036268	0,483466	1	147,674
0,5	8,002872	8,065108	4524135,5	0,180669	0,514291	1	147,674
1	4,001436	4,124499	1156822,2	0,357288	0,580343	0,963703	142,3138887
1,5	2,667624	2,848898	532697,96	0,526516	0,672894	0,915834	135,2448986
2	2,000718	2,23671	313671,58	0,686143	0,786441	0,85415	126,1356826
2,5	1,600574	1,887283	211734,95	0,835133	0,915413	0,77502	114,4502395
3	1,333812	1,66705	155855,71	0,973398	1,054959	0,684137	101,029274
3,5	1,143267	1,518901	121718,58	1,101472	1,201275	0,595	87,86606583
4	1,000359	1,414467	99180,982	1,220219	1,35159	0,517371	76,4022392
4,5	0,889208	1,338167	83405,221	1,330624	1,503996	0,453509	66,97155411
5	0,800287	1,280804	71846,928	1,433666	1,657234	0,401846	59,34225703
8	0,50018	1,118114	39200,503	1,940914	2,566369	0,23555	34,7845786
10	0,400144	1,077086	30209,667	2,210951	3,155301	0,184965	27,31446516
12	0,333453	1,05413	24638,175	2,448205	3,732915	0,152651	22,54260745
15	0,266762	1,03497	19352,264	2,762397	4,584471	0,121312	17,91457489
20	0,200072	1,019818	14301,715	3,21335	5,979209	0,090731	13,39864447
25	0,160057	1,012728	11361,831	3,605188	7,356233	0,07263	10,72551948

Graf 3.2 Moment únosnosti při klopení v závislosti na délce nosníku průřezu I 80

Graf 3.3 Moment únosnosti při klopení v závislosti na délce nosníku průřezu I 180

Graf 3.4 Moment únosnosti při klopení v závislosti na délce nosníku průřezu I 300

Graf 3.5 Moment únosnosti při klopení v závislosti na délce nosníku průřezu IPE 80

Graf 3.6 Moment únosnosti při klopení v závislosti na délce nosníku průřezu IPE 180

Graf 3.7 Moment únosnosti při klopení v závislosti na délce nosníku průřezu IPE 300

3.3.2.2 Výsledné momentové únosnosti při klopení z náhodných vstupních veličin

Poměrná štíhlost	0,094771	0,42588	0,70942	0,91092	1,072	1,3321	1,5463	1,7332	2,1983	2,4593	3,0139		Poměrná štíhlost	0,049258	0,24267	0,4658	0,58616	0,8587	1,1005	1,5018	1,9426	2,1838	2,6894	3,1115
dle EC	5,4567	5,0179	4,1563	3,2549	2,5876	1,8058	1,3834	1,1215	0,71655	0,57811	0,39041		dle EC	39,104	38,3	35,371	33,064	25,153	17,923	10,548	6,5572	5,2546	3,5256	2,659
Rozdělení	Birnbaum-Saunders (fatique-life)	Birnbaum-Saunders (fatique-life)	Weibull min (3 par)	Weibull max (3 par)	Weibull max (3 par)	Gamma (3 par)	Birnbaum-Saunders (fatique-life)		Rozdělení	Lognormal (3 par)	Birnbaum-Saunders (fatique-life)	Birnbaum-Saunders (fatique-life)	OneBounded Normal	Weibull min (3 par)	Weibull max (3 par)	Birnbaum-Saunders (fatique-life)	Gamma (3 par)	Gamma (3 par)	Gamma (3 par)	Gamma (3 par)				
Max	8,6672	8,5854	8,5958	8,5706	8,1596	6,402	5,1546	4,1808	2,6361	2,0466	1,4228		Мах	67,544	66,41	64,954	64,433	63,645	59,623	40,756	27,452	20,927	14,019	10,55
Min	3,488	2,8774	2,37	1,9782	1,7004	1,1558	0,90775	0,74634	0,48584	0,35328	0,25879		Min	20,623	18,993	16,902	16,658	13,245	8,3159	5,4572	3,3725	2,4219	1,6305	1,2315
Směr. Odchylka	0,55006	0,60651	0,70772	0,7856	0,75548	0,55344	0,4249	0,34439	0,2194	0,17668	0,11873		Směr. Odchylka	4,6251	4,7049	5,0842	5,4062	6,2739	5,9654	3,7926	2,4242	1,9564	1,3206	0,99695
Stř. hodnota [kNm]	5,84	5,5031	5,151	4,7189	4,1236	3,0305	2,3449	1,9045	1,2132	0,97605	0,65537		Stř. hodnota [kNm]	42,981	41,467	39,563	38,33	34,292	27,966	17,547	11,076	8,8961	5,9703	4,4961
Délka [m]	0,1	0,5	1	1,5	2	3	4	5	8	10	15		Délka [m]	0,1	0,5	1	1,3	2,1	3	5	8	10	15	20

Tabulka 3.11 Moment únosnost při klopení nosníků z profilů IPE 80 a IPE 180

IPE 180

	31 14 12 14 14 14 14	Conct.,u Conct.,u 31 0,29848 14 0,57427 03 0,81654 42 1,2074 85 1,6399 14 1,8702	Conct. U Conct. U 31 0,29848 14 0,57427 03 0,81654 42 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233	Could by Could b	O/ D/J 2063 31 0,29848 14 0,57427 03 0,81654 1,2074 1,2074 85 1,6399 14 1,8702 15 2,3339 99 2,7233 26 3,0562 26 3,0562	0/ 0,29848 31 0,29848 14 0,57427 03 0,81654 1,2074 1,2074 85 1,6399 14 1,8702 15 2,33399 99 2,7233 26 3,0562 07 0,038275	0/ 0,29848 31 0,29848 14 0,57427 03 0,81654 42 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233 26 3,0562 07 0,038275 08 0,118869	0/ 0,29848 31 0,29848 14 0,57427 03 0,81654 1,2074 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233 26 3,0562 07 0,038275 08 0,13869 07 0,038275 08 0,1869	o/ U, 1,0003 31 0,29848 14 0,57427 03 0,81654 14 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233 26 3,0562 3,0562 3,0562 07 0,038275 08 0,18869 57 0,4569 57 0,4569	o/ 0,29848 31 0,29848 14 0,57427 03 0,81654 14 1,2074 85 1,2074 14 1,8702 15 2,3399 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 90 2,7233 91 0,038275 00 0,18869 00,18869 0,4569 35 0,6466 35 0,6466 35 0,86051	0, 13003 31 0,29848 14 0,57427 03 0,81654 14 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233 26 3,0562 07 0,038275 08 0,13869 07 0,13869 35 0,6466 85 0,6466 70 0,86051	0/ 0,29848 31 0,29848 14 0,57427 03 0,81654 42 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233 26 3,0562 07 0,038275 08 0,13869 07 0,038275 08 0,13869 57 0,4569 85 0,6466 85 0,6466 79 1,1754 79 1,1754	0/ 0,13063 31 0,29848 14 0,57427 03 0,81654 14 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7339 99 2,7339 99 2,7233 99 2,73399 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 90 2,7233 91 0,86051 91 0,4569 95 0,4569 95 0,4569 93 0,36051 79 1,1754 1,71 1,71	0/ 0,29848 31 0,29848 14 0,57427 03 0,81654 14 0,57427 03 0,81654 14 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 99 2,7233 90 0,038275 00 0,038275 00 0,13869 07 0,038275 08 0,13869 85 0,6466 85 0,6466 79 1,1754 1,71 38 1,71 1,71	0/ 0,13063 31 0,29848 14 0,57427 03 0,81654 14 1,2074 85 1,6399 14 1,8702 15 2,3399 99 2,7339 99 2,7339 99 2,7233 90 2,7233 91 2,3399 92 2,7233 93 2,7233 94 1,8702 15 2,3399 99 2,7233 90 2,7233 91 2,7233 92 3,0562 93 0,086051 93 0,18869 93 0,4569 93 0,4569 93 0,4569 79 1,1754 73 1,71 751 1,71 753 2,4367
	ife) 142,31 126,14 101,03 59,342	ife) 142,31 126,14 101,03 59,342 34,785 27,314	ife) 142,31 126,14 101,03 59,342 34,785 34,785 27,314 17,915 13,399	ife) 142,31 126,14 101,03 59,342 59,342 34,785 34,785 27,314 17,915 13,399 13,399 10,726	ife) 142,31 126,14 101,03 59,342 59,342 34,785 34,785 27,314 17,915 13,399 10,726 dle EC	ife) 142,31 126,14 126,14 101,03 59,342 59,342 34,785 27,314 17,915 13,399 13,399 13,399 10,726 dle EC	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 13,399 13,399 13,399 dle EC dle EC 179,07 179,07	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 13,399 13,399 13,399 10,726 dle EC dle EC dle EC	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 13,399 10,726 10,726 10,726 10,726 1179,07 178,08 life) 156,57 life) 136,35	ife) 142,31 126,14 126,14 101,03 59,342 59,342 34,785 27,314 17,915 13,399 13,399 13,399 10,726 dle EC 179,07 179,07 178,08 life) 156,57 136,35 136,35 108,85	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 10,726 dle EC dle EC dle EC 179,07 178,08 1778,08 178	ife) 142,31 126,14 126,14 101,03 59,342 59,342 27,314 17,915 13,399 13,399 13,399 13,399 10,726 dle EC 13,899 10,726 1179,07 178,08 16,57 136,35 108,85 108,85 72,879 84	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 13,399 10,726 dle EC dle EC dle EC 179,07 178,08 178,	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 13,399 13,399 10,726 10,7	ife) 142,31 126,14 126,14 101,03 59,342 34,785 27,314 17,915 13,399 13,399 13,399 10,726 10,726 dle EC 13,399 10,726 13,399 10,726 13,399 10,726 126,57 136,35 136,35 138,35 138,35 138,35 138,35 138,35 138,35 20,866 20,866
	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Gamma (3 par) Gamma (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Lognormal (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift Weibull min (3 par) Birnbaum-Saunders (fatique-lift Weibull min (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift Weibull min (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift Weibull min (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift Weibull min (3 par) Weibull min (3 par) Weibull min (3 par) Weibull min (3 par) Gamma (3 par) 	 Birnbaum-Saunders (fatique-lift-OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Neibull min (3 par) Weibull min (3 par) Weibull min (3 par) Weibull min (3 par) Gamma (3 par) 	 Birnbaum-Saunders (fatique-lift OneBounded Normal Weibull min (3 par) Weibull max (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Gamma (3 par) Lognormal (3 par) Lognormal (3 par) Birnbaum-Saunders (fatique-lift Weibull min (3 par) Weibull min (3 par) Weibull min (3 par) Gamma (3 par)
228,53 Birn	227,01 221,79 195,08	227,01 221,79 195,08 126,57 99,328	227,01 221,79 195,08 126,57 99,328 64,827 48,243	227,01 221,79 221,79 195,08 126,57 99,328 64,827 48,243 38,456	227,01 221,79 221,79 195,08 126,57 99,328 64,827 64,827 48,243 38,456 Max	227,01 221,79 221,79 195,08 126,57 99,328 64,827 48,243 38,456 38,456 Max	227,01 221,79 221,79 195,08 126,57 99,328 64,827 48,243 48,243 38,456 38,456 38,456 Max Max 255,82 255,82	227,01 221,79 221,79 195,08 99,328 64,827 64,827 48,243 38,456 38,456 38,456 38,456 255,82 255,82 255,61 Birn	227,01 221,79 221,79 195,08 99,328 64,827 48,243 38,456 38,456 Max Max 256,82 255,82 255,81 258,81 258,81	227,01 221,79 221,79 195,08 126,57 99,328 64,827 48,243 48,243 38,456 38,456 38,456 Max 256,82 255,97 255,81 8irn 255,61 8irn	227,01 221,79 221,79 195,08 99,328 64,827 64,827 48,243 38,456 38,456 Max Max 256,82 255,82 255,82 253,97 253,97 253,81 253,01 8irn 252,01	227,01 221,79 221,79 221,79 195,08 99,328 64,827 48,243 38,456 38,456 Max Max 255,82 255,82 255,81 255,81 253,97 253,97 253,97 255,81 253,97 255,61 Birn 253,97 2553,97 255,01	227,01 221,79 221,79 195,08 126,57 99,328 64,827 48,243 38,456 38,456 38,456 38,456 138,456 255,82 255,81 255,81 255,81 255,61 Birn 255,01 Birn 255,01	227,01 221,79 221,79 221,79 195,08 99,328 64,827 48,243 38,456 38,456 38,456 38,456 256,82 256,82 255,81 255,61 8irn 255,012,012,012,012,012,012,012,012,012,012	227,01 221,79 221,79 221,79 195,08 99,328 64,827 48,243 48,243 38,456 38,456 38,456 138,456 255,82 255,82 255,82 255,81 255,81 255,81 255,61 Birn 258,81 255,01 255
91,66 73.219	60,46 39,537	60,46 537 39,537 24,898 19,147	60,46 60,46 39,537 24,898 19,147 11,98 8,764	60,46 60,46 39,537 24,898 19,147 11,98 8,764 6,9289	60,46 537 24,898 24,898 11,147 11,98 8,764 6,9289 6,9289 Min	60,46 537 24,898 24,898 11,147 11,98 8,764 6,9289 6,9289 6,9289 134,44	60,46 537 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 11,98 134,44 123,63	60,46 537 24,898 24,898 11,98 8,764 6,9289 6,9289 6,9289 11,98 134,44 1134,44 1123,63 102,8	60,46 537 24,898 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 11,98 11,98 11,98 8,764 11,98 8,764 11,98 89,315	60,46 537 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 6,9289 11,98 134,44 123,63 102,8 89,315 89,315	60,46 537 24,898 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 11,98 134,44 134,44 134,44 123,63 102,8 89,315 89,315 53,789	60,46 537 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 11,98 8,764 134,44 123,63 102,8 89,315 72,096 53,789 89,315	60,46 60,46 24,898 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 134,44 134,44 134,44 132,63 102,8 89,315 53,789 53,789 338,776 338,776	60,46 60,46 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 11,98 8,764 134,44 123,63 102,8 89,315 72,096 53,789 89,315 72,096 53,789 31,973 21,33	60,46 60,46 24,898 24,898 19,147 11,98 8,764 6,9289 6,9289 6,9289 11,98 134,44 134,44 134,44 123,63 102,8 89,315 72,096 53,789 89,315 72,096 53,789 38,776 33,776 33,776 10,133 1
	494 734	21,494 16,734 9,4859 7,4629	21,494 16,734 9,4859 9,4859 7,4629 4,942 3,7156	21,494 16,734 9,4859 7,4629 4,942 3,7156 2,9815	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 3,7156 2,9815 2,9815 2,9815 Směr. Odchylka 14,07	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 3,7156 2,9815 2,9815 2,9815 2,9815 2,9815 14,07 14,07	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 2,9815 2,9815 14,07 14,624 17,516	21,494 16,734 9,4859 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 2,9815 14,07 14,624 14,624 14,624 17,516 20,369	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 14,07 14,07 14,624 17,516 20,369 23,386	21,494 16,734 9,4859 7,4629 4,942 3,7156 2,9815 2,9815 2,9815 14,07 14,624 17,516 14,624 17,516 20,369 23,386 23,386	21,494 16,734 9,4859 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 14,07 14,07 14,624 14,624 14,624 14,624 20,369 23,386 23,386 10,456	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 14,07 14,624 14,624 17,516 20,369 23,386 13,076 10,456 8,2238	21,494 16,734 9,4859 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 14,07 14,07 14,07 14,624 14,07 14,624 14,07 20,369 23,386 10,456 8,2238 8,2238	21,494 16,734 9,4859 7,4629 4,942 3,7156 3,7156 2,9815 2,9815 2,9815 2,9815 14,07 14,624 17,516 17,516 20,369 23,386 13,076 10,456 8,2238 8,2238 5,4411
15,612 18,333	21, 16,				╄╶╄╶╄╶╄╶╋╺┥ ╸┣─ <u>─</u> ─	┼┼┼┼┼┤┠╤╂┤	┼┼┼┼┼┼┼┤┠ <u>╤</u> ┠┼┤								┝┼┼┼┼┼┤┠ _╤ ┠┼┼┼┼┼┼┼┼
145,79 15,612 145,79 18,333	132,09 21, 92,03 16,	132,09 92,03 55,947 44,215	132,09 92,03 55,947 44,215 29,147 21,817	132,09 92,03 55,947 44,215 29,147 21,817 17,459	132,09 92,03 55,947 44,215 29,147 21,817 17,459 17,459 iť. hodnota [kNm]	132,09 92,03 55,947 44,215 29,147 29,147 17,459 17,459 17,459 iř. hodnota [kNm 193,09	132,09 92,03 55,947 55,947 44,215 29,147 29,147 29,147 21,817 17,459 17,459 17,459 17,459 17,459 17,459 17,459 17,459 17,459	132,09 92,03 55,947 44,215 29,147 29,147 21,817 17,459 17,459 17,459 13,09 193,09 187,52 177,33	132,09 92,03 55,947 55,947 44,215 29,147 29,147 29,147 21,817 17,459 17,752 18,752 18,752 17,	132,09 92,03 92,03 55,947 44,215 29,147 29,147 17,459 17,459 17,459 13,09 193,09 193,09 187,52 177,33 154,36 154,36	132,09 92,03 55,947 55,947 44,215 29,147 29,147 21,817 17,459 17,459 193,09 193,09 193,09 193,09 1177,33 177,33 154,36 115,97	132,09 92,03 55,947 55,947 44,215 29,147 29,147 29,147 17,459 17,459 17,459 187,52 187,52 187,52 187,52 154,36 154,36 115,97 76,961	132,09 92,03 92,03 55,947 44,215 29,147 29,147 21,817 17,459 17,459 17,459 133,09 193,09 193,09 187,52 193,09 187,52 154,36 154,36 154,36 154,36 154,36 154,36 154,36	132,09 92,03 55,947 55,947 44,215 29,147 29,147 21,817 17,459 17,459 17,459 187,52 187,52 187,52 187,52 187,52 154,36 115,97 76,961 62,467 62,467	132,09 92,03 55,947 55,947 29,147 29,147 29,147 17,459 17,459 17,459 17,459 187,52 154,36 154,36 154,36 115,97 76,961 62,467 62,467 75,961 62,467 75,961

Tabulka 3.12 Moment únosnost při klopení nosníků z profilů IPE 300 a I 300

IbE 300

1300 I

Stř. hodnota [k	[MM]	Směr. Odchylka	Min	Max	Rozdělení	dle EC	Poměrná štíhlost
5,6696 0,5113	0,5113	\neg	3,4763	8,2171	Birnbaum-Saunders (fatique-life)	5,358	0,10838
5,3197 0,58259	0,58259		2,8115	8,1764	Birnbaum-Saunders (fatique-life)	4,9065	0,46187
4,9917 0,67894	0,67894	_	2,266	8,1694	Weibull min (3 par)	4,1315	0,73701
4,5709 0,74686	0,74686		1,8651	8,1533	Weibull max (3 par)	3,33	0,93077
3,9835 0,70684	0,70684		1,5335	7,9568	Weibull max (3 par)	2,7005	1,0874
2,9287 0,51601	0,51601		1,1572	6,4632	Birnbaum-Saunders (fatique-life)	1,9191	1,3435
2,2679 0,39579	0,39579		0,87907	4,6252	Birnbaum-Saunders (fatique-life)	1,4809	1,5562
1,6835 0,29335	0,29335		0,71124	3,4299	Lognormal (3 par)	1,1022	1,8283
1,1739 0,20455	0,20455		0,46642	2,3565	Birnbaum-Saunders (fatique-life)	0,77328	2,2075
0,94433 0,16461	0,16461		0,37304	1,8917	Birnbaum-Saunders (fatique-life)	0,62464	2,469
0,63393 0,1106	0,1106		0,2567	1,311	Lognormal (3 par)	0,42245	3,025
·		Ŀ					
Stř. hodnota [kNm] Směr. Odchylka	Směr. Odchylka		Min	Max	Rozdělení	dle EC	Poměrná štíhlost
47,261 4,2647	4,2647		28,509	69,656	Skew-Normal	43,945	0,057762
45,291 4,513	4,513		25,538	67,926	Lognormal (3 par)	42,075	0,27876
43,106 5,1241	5,1241		21,384	66,63	OneBounded Normal	37,138	0,51154
40,961 5,7736	5,7736		18,217	62,9	Weibull min (3 par)	32,015	0,6952
38,537 6,3092	6,3092		15,619	64,906	Weibull min (3 par)	27,277	0,84383
32,134 6,1209	6,1209		12,477	62,816	Weibull max (3 par)	20,287	1,0789
21,334 3,9555	3,9555		8,2281	45,014	Gamma (3 par)	13,124	1,4286
13,801 2,5242	2,5242		5,4248	28,067	Gamma (3 par)	8,5795	1,824
11,148 2,0347	2,0347		3,8715	24,304	Birnbaum-Saunders (fatique-life)	6,9813	2,0438
7,5231 1,3726	1,3726		2,572	16,416	Birnbaum-Saunders (fatique-life)	4,7764	2,5087
5,6755 1,0358	1,0358		1,9274	12,376	Birnbaum-Saunders (fatique-life)	3,6373	2,899

08 I

081 I

92

Graf 3.8 Průběh momentu únosnosti při klopení nosníku profilu I 80 po délce

Graf 3.9 Momentu únosnosti při klopení nosníku profilu I 80 v závislosti na poměrné štíhlosti

Graf 3.10 Průběh momentu únosnosti při klopení nosníku profilu I 180 po délce

Graf 3.11 Momentu únosnosti při klopení nosníku profilu I 180 v závislosti na poměrné štíhlosti

Graf 3.12 Průběh momentu únosnosti při klopení nosníku profilu I 300 po délce

Graf 3.13 Moment únosnosti při klopení nosníku profilu I 300 v závislosti na poměrné štíhlosti

Graf 3.14 Průběh momentu únosnosti při klopení nosníku profilu IPE 300 po délce

Graf 3.15 Moment únosnosti při klopení nosníku profilu IPE 300 v závislosti na poměrné štíhlosti

Graf 3.16 Průběh momentu únosnosti při klopení nosníku profilu IPE 180 po délce

Graf 3.17 Moment únosnosti při klopení nosníku profilu IPE 180 v závislosti na poměrné štíhlosti

Graf 3.18 Průběh momentu únosnosti při klopení nosníku profilu IPE 80 po délce

Graf 3.19 Moment únosnosti při klopení nosníku profilu IPE 80 v závislosti na poměrné štíhlosti

V důsledku toho, že byly kritický moment M_{cr} , průřezový modul Wy i mez kluzu f_y ve statistické analýze spolehlivosti, prezentované v této kapitole, počítány z náhodných vstupních veličin, může být i výsledná poměrná štíhlost nosníku daná vzorcem (3.76) uvažována jako náhodná a pro každou délku nosníku dána rozdělením hustoty pravděpodobnosti. Graf 3.20 zachycuje, jak se mění její střední hodnoty, směrodatné odchylky a maximální a minimální hodnoty, dosažené při 500000 simulacích vstupních veličin LHS mean, pro nosníky různých délek průřezu I 300. Je patrné, že reálná poměrná štíhlost při tomto počtu simulací např. pro délku nosníku 15 m může nabývat hodnot od 1,6 do 2,5. V této práci jsou při vykreslování grafů a v tabulkách uváděny vždy pouze střední hodnoty poměrné štíhlosti.

Graf 3.20 Průběh poměrné štíhlosti v závislosti na délce

3.3.2.3 Pravděpodobnost poruchy

Pravděpodobnost poruchy, která je v následujícím textu uvažována, je již popsána v Kapitole 2.6.3.3. Tam jsou také popsány tři způsoby, kterými byla pravděpodobnost poruchy spočítána.

V případě klopení vyšla nejvyšší pravděpodobnost poruchy pro poměrnou štíhlost nosníku okolo 0,25. Od této hodnoty pravděpodobnost klesala a od hodnoty poměrné štíhlosti přibližně 1,2 se ustálila na poměrně nízké hodnotě blízké nule pro průřezy IPE 80, IPE 300 a I 300, hodnotě blízké 0,1 pro průřezy I 80 a I 180 a 0,2 pro IPE 180. Nejvyšší pravděpodobnosti poruchy bylo dosaženo pro malé štíhlosti nosníků průřezů I 300 a I 80, a to 0,27. Naopak nejnižší maximální pravděpodobnosti poruchy bylo dosaženo pro nosník průřezu IPE 300, a to 0,2.

Graf 3.21 Pravděpodobnost poruchy nosníku I 80 při klopení

Graf 3.22 Pravděpodobnost poruchy nosníku I 180 při klopení

Graf 3.23 Pravděpodobnost poruchy nosníku I 300 při klopení

Graf 3.24 Pravděpodobnost poruchy nosníku IPE 300 při klopení

Graf 3.25 Pravděpodobnost poruchy nosníku IPE 180 při klopení

Graf 3.26 Pravděpodobnost poruchy nosníku IPE 80 při klopení

3.3.2.4 Citlivostní analýza

Princip citlivostní analýzy byl již popsán v Kapitole 2.6.3.4.

Korelační koeficienty pro jednotlivé vstupní veličiny a výslednou únosnost pro různé délky nosníků průřezů I 180 a IPE 180 jsou zachyceny v Tabulce 3.14 a v Grafech 3.23 a 3.24. Největší korelace výsledné momentové únosnosti při klopení bylo dosaženo s tloušťkou pásnice t_{f_3} a to až 0,92 pro nosník průřezu IPE 180 a délky 7 m. Druhé nejvyšší kladné korelace 0,73 dosáhl poloměr zaoblení pásnice r_2 při délce 7 m. Vysokou korelaci měla i mez kluzu f_y pro krátké nosníky, s rostoucí délkou ale její vliv na výslednou únosnost klesal. Naopak korelace modulu pružnosti s přibývající štíhlostí rostla. Nejvyšší záporné korelace bylo dosaženo pro počáteční hodnotu vybočení e_0 , a to až -0,73 pro poměrnou štíhlost kolem jedné. V Grafech 3.27 a 3.28 nejsou kvůli větší přehlednosti vykresleny veličiny, jejichž korelace s výslednou únosností se pohybovaly velmi blízko nule.

<i>L</i> [m]	h	b	t _w	t_f	r	fy	Ε	ν	e ₀		
0,2	0,073145	0,094837	0,10663	0,81651	0,090841	0,51637	0,016094	0,006268	-0,1342		
0,5	0,058884	0,11007	0,089655	0,79652	0,071321	0,48187	0,018256	0,007636	-0,32903		
1	0,035713	0,13178	0,065989	0,73137	0,044432	0,40469	0,02648	0,008948	-0,50266		
1,5	0,012814	0,14425	0,046946	0,6594	0,019967	0,32055	0,047426	0,009758	-0,64034		
2	-0,00745	0,15152	0,035006	0,61671	0,002613	0,23093	0,083861	0,008807	-0,69181		
3	-0,01589	0,15588	0,03937	0,71929	0,004989	0,095435	0,1757	0,005517	-0,59115		
4	-0,01149	0,14403	0,056547	0,83479	0,023758	0,053044	0,22024	0,001551	-0,39541		
5	-0,00679	0,13395	0,069256	0,88458	0,035963	0,038183	0,23737	0,000749	-0,26365		
7	-0,00235	0,12274	0,082896	0,92018	0,050833	0,031384	0,24889	-0,00081	-0,17061		
			_								
<i>L</i> [m]	h	b	t _w	t_f	S	r ₁	r ₂	f _y	Ε	ν	e _o
0,2	0,090915	0,13156	0,075931	0,72012	-0,01789	0,068192	0,58565	0,59388	-0,01225	0,003716	-0,2054
0,5	0,066859	0,11946	0,069861	0,69457	-0,0198	0,050105	0,55447	0,53775	-0,00959	0,008559	-0,38905
1	0,036858	0,098127	0,061433	0,64153	-0,02018	0,030368	0,50257	0,4374	-0,00028	0,009277	-0,64469
1,5	0,017236	0,084793	0,054613	0,60947	-0,01729	0,019811	0,47183	0,34857	0,017525	0,004812	-0,69604
2	0,002216	0,081789	0,052421	0,60744	-0,01467	0,015292	0,46898	0,26457	0,046504	-0,00261	-0,73159
3	-0,00888	0,093473	0,055814	0,7139	-0,02005	0,0198	0,56099	0,13155	0,14439	-0,01438	-0,66597
4	-0,00934	0,10995	0,065035	0,81131	-0,0261	0,035595	0,64896	0,075105	0,21161	-0,02123	-0,45861
5	-0,00713	0,12013	0,071047	0,8563	-0,03199	0,046377	0,69313	0,048172	0,24361	-0,02629	-0,37357
7	-0,00131	0,12511	0,077661	0,89153	-0,03673	0,057718	0,7266	0,025613	0,27261	-0,0268	-0,26418

Tabulka 3.14 Korelace vstupních veličin a výsledné momentové únosnosti při klopení

Problematika spolehlivosti ocelových prutových prvků citlivých na imperfekce

IPE 180

I 180

Graf 3.27 Závislost korelace vstupních veličin a výsledné momentové únosnosti nosníku profilu IPE 180 na délce nosníku

Graf 3.28 Závislost korelace vstupních veličin a výsledné momentové únosnosti nosníku profilu I 180 na délce nosníku

3.3.2.5 Dílčí součinitel spolehlivosti materiálu

Problematika dílčích součinitelů spolehlivosti již byla popsána v Kapitole 2.6.3.5. Stejné hodnoty těchto součinitelů byly aplikovány i při výpočtu klopení podle Eurocode a jejich průběhy pro různé délky nosníků jsou znázorněny v Grafech 3.2 až 3.7.

V Tabulkách 3.15 až 3.20 jsou zapsány pravděpodobnosti poruchy pro jednotlivé součinitele spolehlivosti. Je vidět, že použití součinitelů 1,1 a 1,15 velmi výrazně snižuje pravděpodobnost poruchy a to zejména v oblasti malých štíhlostí, kdy je tato pravděpodobnost nejvyšší.

	γ _{M1} =	=1,0		γ _{M1} =1,1			γ _{M1} =1,15	
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]
0,01	0,20972	0,20934	0,03389	0,03392	83,84	0,01126	0,01139	94,63
0,05	0,23805	0,23772	0,04189	0,04197	82,40	0,01451	0,01457	93,90
0,1	0,27597	0,27563	0,05467	0,05496	80,19	0,02012	0,02006	92,71
0,5	0,24041	0,24103	0,06854	0,06925	71,49	0,03367	0,03363	86,00
1	0,10863	0,10558	0,03361	0,03289	69,06	0,01693	0,01752	84,42
1,5	0,04098	0,04068	0,01260	0,01171	69,24	0,00689	0,00591	83,19
2	0,02055	0,02071	0,00544	0,00555	73,55	0,00275	0,00275	86,64
2,5	0,01493	0,01492	0,00367	0,00375	75,43	0,00200	0,00192	86,64
3	0,01301	0,01279	0,00324	0,00322	75,10	0,00171	0,00158	86,87
4	0,01212	0,01213	0,00312	0,00298	74,29	0,00156	0,00148	87,16
8	0,01346	0,01339	0,00361	0,00353	73,17	0,00182	0,00180	86,48
10	0,01428	0,01417	0,00386	0,00379	72,94	0,00195	0,00193	86,32
12	0,01498	0,01481	0,00408	0,00399	72,76	0,00207	0,00202	86,18
15	0,01598	0,01575	0,00435	0,00421	72,80	0,00221	0,00215	86,15

Tabulka 3.15 Pravděpodobnosti poruchy nosníků průřezu I 80 pro různé součinitele spolehlivosti

	ү м1 ⁼	=1,0		γ _{M1} =1,1			γ _{M1} =1,15	i i
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]
0,01	0,18724	0,18733	0,03100	0,03097	83,44	0,01061	0,01039	94,33
0,05	0,20119	0,20127	0,03468	0,03462	82,76	0,01212	0,01181	93,98
0,1	0,21969	0,21985	0,04001	0,03990	81,79	0,01439	0,01406	93 <i>,</i> 45
0,5	0,23994	0,23927	0,05678	0,05641	76,34	0,02466	0,02459	89,72
1	0,12231	0,12407	0,03382	0,03342	72,35	0,01740	0,01661	85,77
1,5	0,06388	0,06229	0,01771	0,01798	72,27	0,00862	0,00939	86,51
2	0,03383	0,03190	0,00858	0,00901	74,65	0,00377	0,00483	88,85
2,5	0,01975	0,01832	0,00615	0,00500	68 <i>,</i> 87	0,00348	0,00268	82,37
3	0,01281	0,01267	0,00357	0,00334	72,11	0,00193	0,00178	84,98
4	0,00866	0,00864	0,00216	0,00227	75,06	0,00109	0,00119	87,40
5	0,00767	0,00778	0,00209	0,00207	72,73	0,00108	0,00108	85,93
8	0,00836	0,00849	0,00221	0,00233	73 <i>,</i> 54	0,00120	0,00122	85,63
10	0,00962	0,00961	0,00248	0,00259	74,23	0,00120	0,00131	87,49
12	0,01044	0,01048	0,00273	0,00282	73,83	0,00134	0,00141	87,18
15	0,01153	0,01154	0,00307	0,00315	73,36	0,00152	0,00161	86,81
20	0,01302	0,01304	0,00354	0,00362	72,81	0,00177	0,00184	86,37

Tabulka 3.16 Pravděpodobnosti poruchy nosníků průřezu I 180 pro různé součinitele spolehlivosti

Tabulka 3.17 Pravděpodobnosti poruchy nosníků průřezu I 300 pro různé součinitele spolehlivosti

	ΥM1	=1,0		γ _{M1} =1,1			γ _{M1} =1,1	5
					relativní			relativní
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	odchylka <i>pf</i>	pf	Nf/Ntot	odchylka <i>pf</i>
					[%]			[%]
0,01	0,13753	0,13728	0,01040	0,01035	92,44	0,00217	0,00213	98,43
0,05	0,14686	0,14650	0,01158	0,01155	92,12	0,00246	0,00244	98,33
0,1	0,15936	0,15885	0,01331	0,01331	91,65	0,00290	0,00285	98,18
0,5	0,26201	0,26175	0,03727	0,03734	85,77	0,01102	0,01091	95,79
1	0,17704	0,17630	0,02760	0,02727	84,41	0,01015	0,00972	94,27
2	0,06069	0,05926	0,01290	0,01232	78,75	0,00492	0,00521	91,89
2,5	0,03527	0,03253	0,00716	0,00657	79,71	0,00255	0,00268	92,77
3	0,01951	0,01730	0,00498	0,00309	74,49	0,00063	0,00123	96,80
4	0,00681	0,00529	0,00136	0,00071	80,07	0,00060	0,00023	91,14
5	0,00226	0,00197	0,00031	0,00020	86,31	0,00012	0,00006	94,81
8	0,00059	0,00056	0,00005	0,00004	92,19	0,00002	0,00002	97,27
10	0,00044	0,00044	0,00004	0,00002	91,72	0,00001	0,00001	97,80
15	0,00043	0,00046	0,00003	0,00002	91,93	0,00001	0,00002	97,89
20	0,00052	0,00056	0,00004	0,00003	91,79	0,00001	0,00002	97,28
25	0,00061	0,00069	0,00006	0,00004	90,83	0,00002	0,00003	97,22

	γ _{M1} =	=1,0		γ _{M1} =1,1			γ _{M1} =1,15	5
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]
0,01	0,19678	0,19672	0,03509	0,03502	82,17	0,01266	0,01245	93 <i>,</i> 56
0,05	0,21803	0,21820	0,04128	0,04117	81,07	0,01528	0,01531	92,99
0,1	0,24658	0,24702	0,05070	0,05038	79,44	0,01954	0,01954	92,07
0,5	0,21328	0,21391	0,05784	0,05782	72,88	0,02756	0,02740	87,08
1	0,08390	0,08099	0,02377	0,02416	71,66	0,01391	0,01202	83,42
1,5	0,02367	0,02294	0,00705	0,00620	70,20	0,00377	0,00319	84,07
2	0,00912	0,00906	0,00235	0,00220	74,27	0,00115	0,00115	87,34
2,5	0,00546	0,00555	0,00125	0,00131	77,13	0,00059	0,00065	89,19
3	0,00411	0,00453	0,00088	0,00103	78,53	0,00051	0,00050	87,70
4	0,00374	0,00382	0,00086	0,00091	76,95	0,00047	0,00042	87,49
5	0,00367	0,00373	0,00087	0,00085	76,40	0,00039	0,00038	89,38
8	0,00392	0,00399	0,00092	0,00093	76,45	0,00046	0,00042	88,31
10	0,00406	0,00415	0,00097	0,00097	76,20	0,00047	0,00046	88,44
12	0,00423	0,00430	0,00104	0,00108	75,49	0,00051	0,00049	87,98
15	0,00447	0,00441	0,00105	0,00106	76,53	0,00053	0,00053	88,13

Tabulka 3.18 Pravděpodobnosti poruchy nosníků průřezu IPE 80 pro různé součinitele spolehlivosti

Tabulka 3.19 Pravděpodobnosti poruchy nosníků průřezu IPE 180 pro různé součinitele spolehlivosti

	γ _{M1} =	=1,0		γ _{M1} =1,1			γ _{M1} =1,15	
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]
0,01	0,18114	0,18183	0,04404	0,04410	75,69	0,01974	0,01948	89,10
0,05	0,19058	0,19079	0,04711	0,04716	75,28	0,02130	0,02111	88 <i>,</i> 82
0,1	0,20217	0,20232	0,05121	0,05091	74,67	0,02345	0,02333	88,40
0,5	0,25328	0,25358	0,07610	0,07590	69,95	0,03834	0,03842	84,86
1	0,20604	0,20648	0,07028	0,07065	65,89	0,03934	0,03922	80,91
2	0,07124	0,06791	0,02957	0,02953	58,49	0,01802	0,01815	74,71
3	0,02794	0,02826	0,01008	0,01019	63,92	0,00634	0,00614	77,31
4	0,01890	0,01902	0,00672	0,00663	64,45	0,00374	0,00400	80,20
5	0,01635	0,01621	0,00586	0,00560	64,15	0,00361	0,00350	77,92
8	0,01510	0,01528	0,00536	0,00553	64,48	0,00324	0,00342	78 <i>,</i> 54
10	0,01557	0,01546	0,00553	0,00564	64,49	0,00336	0,00346	78,43
12	0,01584	0,01568	0,00568	0,00576	64,13	0,00349	0,00340	77,95
15	0,01620	0,01600	0,00587	0,00594	63,79	0,00362	0,00353	77,68
20	0,01671	0,01652	0,00611	0,00616	63,46	0,00378	0,00372	77,41
	γ _{M1} =1,0		γ _{M1} =1,1			γ _{M1} =1,15		
--------------	----------------------	---------	----------------------	---------	--	-----------------------	---------	--
<i>L</i> [m]	pf	Nf/Ntot	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]	pf	Nf/Ntot	relativní odchylka <i>pf</i> [%]
0,01	0,11821	0,11857	0,01601	0,01605	86,45	0,00496	0,00498	95,81
0,05	0,12317	0,12370	0,01699	0,01703	86,21	0,00531	0,00537	95 <i>,</i> 69
0,1	0,12966	0,13020	0,01831	0,01826	85,88	0,00579	0,00585	95 <i>,</i> 54
0,5	0,19360	0,19393	0,03486	0,03497	81,99	0,01254	0,01245	93 <i>,</i> 52
1	0,19007	0,19053	0,04050	0,04045	78 <i>,</i> 69	0,01654	0,01652	91,30
1,5	0,17571	0,17669	0,04413	0,04449	74,89	0,02075	0,02066	88,19
2	0,14363	0,14560	0,04492	0,04331	68,72	0,02382	0,02232	83,42
3	0,07425	0,07087	0,02450	0,02287	67,00	0,01194	0,01183	83 <i>,</i> 92
5	0,01176	0,01172	0,00304	0,00292	74,14	0,00141	0,00120	87,97
10	0,00409	0,00413	0,00080	0,00098	80,58	0,00043	0,00041	89 <i>,</i> 53
15	0,00405	0,00410	0,00090	0,00096	77 <i>,</i> 85	0,00044	0,00044	89 <i>,</i> 05
20	0,00422	0,00426	0,00095	0,00097	77,54	0,00048	0,00045	88,66
25	0,00438	0,00445	0,00099	0,00100	77,32	0,00051	0,00046	88,42
30	0,00451	0,00458	0,00103	0,00100	77,18	0,00053	0,00048	88,26

Tabulka 3.20 Pravděpodobnosti poruchy nosníků průřezu IPE 300 pro různé součinitele spolehlivosti

4 ZÁVĚREČNÁ SHRNUTÍ PRÁCE

V práci jsme shrnuli nejdůležitější vybrané stabilitní problémy štíhlých ocelových prvků citlivých na imperfekce. Byly odvozeny základní vzorce pro analytický výpočet pružné statické únosnosti imperfektních prutů namáhaných tlakem a ohybem. Byly odvozeny vzorce pro výpočet průřezových charakteristik profilů I a IPE. Dále byla provedena statistická analýza spolehlivosti ocelových nosníků těchto profilů namáhaných vzpěrem a klopením a vyhotoveno porovnání s přístupem návrhu řešených prvků daným normou Eurocode 3. Také byla provedena citlivostní analýza obou řešených problémů, ze které vyplynul vliv jednotlivých vstupních veličin na výslednou únosnost. Na závěr byl diskutován problém velikosti dílčích součinitelů spolehlivosti materiálu použitých v normách ČSN 731401, ČSN P ENV 1993-1-1 a ČSN EN 1993-1-1.

5 SEZNAM POUŽITÝCH ZDROJŮ

5.1 Knihy

- [1] BŘEZINA, Vladimír. *Vzpěrná únosnost kovových prutů a nosníků*. Praha: Nakladatelství Československé akademie věd, 1962.
- [2] EULER, Leonhard. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes: Additamentum 1: De curvis elasticis. Lausanne a Ženeva, 1744.
- [3] PRANDLT, Ludwig. *Kipp-Erscheinungen: Ein Fall von instabilem elastischem Gleichgewicht*. Inaugural-Dissertation, Mnichov, 1899.
- [4] TRAHAIR, N.S. *The Behaviour and Design of Steel Structures*. London: Chapman and Hall, 1977. ISBN 0-470-99154-2.
- [5] GALAMBOS, Theodore V. *Guide to Stability Design Criteria for Metal Structures*. USA: John Wiley & Sons, 1998. ISBN 0-471-12742-6.

5.2 Skripta

- [6] KALA, Z.; KALA, J. *Pružnost a pevnost: Modul BD02-M03*. Vysoké učení technické, Fakulta stavební. Studijní opory.
- [7] SADÍLEK, V., DOLEŽEL, J., VOŘECHOVSKÝ, M. *Řešené úlohy z oblasti spolehlivosti stavebních konstrukcí*. Vysoké učení technické, Fakulta stavební. Brno 2010.
- [8] STUDNIČKA, J. *Ocelové konstrukce*, Vydalo České vysoké učení technické v Praze, Nakladatelství ČVUT, Thákurova 1, 160 41, Praha 6.
- [9] STUDNIČKA J., WALD F. *Ocelářské tabulky*, České vysoké učení technické, 1995, .s.235, ISBN 8001012700, 9788001012703.

5.3 Články v časopisech a sbornících

 [10] KALA, Zdeněk. Elastic Lateral-Torsional Buckling of Simply Supported Hot-Rolled Steel I-Beams with Random Imperfections, Procedia Engineering. 2013, 57, 504–514. DOI: 10.1016/j.proeng.2013.04.065

- [11] KALA, Zdeněk. *Fuzzy Probability Analysis of the Fatigue Resistance of Steel Structural Members under Bending*. Journal of Civil Engineering and Management. 2008, 14(1), 67–72. DOI: 10.3846/1392-3730.2008.14.67-72.
- [12] KALA, Zdeněk. Sensitivity assessment of steel members under compression. Engineering structures 31. 2009. 1344-1348.
- [13] KALA, Zdeněk; VALEŠ, Jan. *Lateral-Torsional Buckling of I-Section Beam with Initial Imperfections.* Engineering mechanics. Svratka 2014.
- [14] MELCHER, J.; KALA, Z. K problematice návrhové pevnosti oceli v návaznosti na konverzi norem ENV na EN, sborník referátů z konference Spolehlivost konstrukcí téma Cesta k pravděpodobnostnímu posudku bezpečnosti provozuschopnosti a trvanlivosti konstrukcí. Ostrava 21.3.2001, s. 51-54, ISBN 80-02-01410-3.
- [15] MELCHER, J., KALA, Z., HOLICKÝ, M., FAJKUS, M. ROZLÍVKA, L. Design characteristics of structural steels based on statistical analysis of metallurgical products. Journal of Constructional Steel Research. 2004, vol. 60, 3-5, s. 795-808. DOI: 10.1016/s0143-974x(03)00144-5.
- [16] MICHELL, A.G.M. Elastic stability of long beam under transverse forces. Philosophical Magazine. 1899, č. 48, s. 298-309. DOI: 10.1080/14786449908621336.
- [17] TIMOŠENKO, Stepan Prokofjevič. *Izvěstija S.*-Pětěrburgskogo politěchničeskogo instituta 4, 1905.

5.4 Přednášky

- [18] KALA, Zdeněk. *Pružnost a plasticita I.* Brno: VUT Brno, FAST, Ústav stavební mechaniky, 23.11.2010. Přednáška.
- [19] KALA, Zdeněk. *Pružnost a plasticita I.* Brno: VUT Brno, FAST, Ústav stavební mechaniky, 30.11.2010. Přednáška.
- [20] LEHKÝ, David. *Stavební mechanika*. Brno: VUT Brno, FAST, Ústav stavební mechaniky, 11.3.2013. Přednáška.
- [21] NOVÁK, Drahomír. *Spolehlivost konstrukcí*. Brno: VUT Brno, FAST, Ústav stavební mechaniky, 22.9.2014. Přednáška

5.5 Normy

- [22] ČSN EN 10034. *Tyče průřezů I a H z konstrukčních ocelí. Mezní úchylky rozměrů a tolerance tvaru.* Praha: Český normalizační institut, 1995.
- [23] ČSN EN 1990. *Eurokód: Zásady navrhování konstrukcí*. Praha: Český normalizační institut, 2004.
- [24] ČSN EN 1993-1-1. EUROKÓD 3: Navrhování ocelových konstrukcí- Část 1-1: Obecná pravidla a pravidla po pozemní stavby. Praha: Český normalizační institut, 2006. 96 s.
- [25] ČSN P ENV 1993-1-1. *Navrhování ocelových konstrukcí. Část 1-1: Obecná pravidla a pravidla pro pozemní stavby.* Praha: Český normalizační institut, 2000.
- [26] ČSN 731401. *Navrhování ocelových konstrukcí*. Praha: Český normalizační institut, 1998.

5.6 Akademické práce

[27] NEZBEDOVÁ, A. Nelineární odezva ocelových konstrukcí na statické zatížení. Brno, 2013. 57 s., Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí práce prof. Ing. Zdeněk Kala, Ph.D.

5.7 Manuály a webové stránky

- [28] NOVÁK, D., VOŘECHOVSKÝ, M., RUSINA, R. *FReET* Program Documentation: User's and Theory Guides, Version 1.5, Brno/Červenka Consulting, Česká republika, 2012, http://www.freet.cz.
- [29] JCSS Probabilistic Model Code, Part 3, Resistance Models, Static Properties of Structural Steel (Rolled Sections), JCSS Zurich, 2001, (http://www.jcss.ethz.ch/)

6 SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ

Veličina	Popis	Základní jednotka
a	vzdálenost středu smyku od těžiště průřezu	m
A	plocha průřezu	m^2
A_{1}, A_{2}	pomocné konstanty při řešení diferenciálních rovnic klopení	-
b	šířka pásnic	m
C_1, C_2	integrační konstanty při odvození vzpěru	-
$C_1 C_2 C_3 C_4$	integrační konstanty při odvození klopení	-
$D_1D_2D_3D_4D_5$	pomocné hodnoty pro výpočet momentu únosnosti při klopení	-
E	modul pružnosti v tahu a tlaku	Pa
e_0	největší počáteční vybočení těžiště pásnice	m
F	vnější tlaková síla	Ν
F_M	dvojice sil nahrazující ohybový moment M	Ν
$F_{M,cr}$	dvojice sil nahrazující ohybový moment M _{cr}	Ν
f_y	mez kluzu oceli	Pa
f_{yk}	charakteristická hodnota meze kluzu	Pa
G	modul pružnosti ve smyku	Pa
h	výška průřezu	m
h_0	vzdálenost těžišť pásnic	m
i	poloměr setrvačnosti plného průřezu k příslušné ose	m^4
I_p	polární moment setrvačnosti ke středu smyku	m^4
I_t	moment tuhosti v prostém kroucení	m^4
i_y	poloměr setrvačnosti plného průřezu k ose y	m^4
I_y	moment setrvačnosti k ose y	m^4
i_z	poloměr setrvačnosti plného průřezu k ose z	m^4
I_z	moment setrvačnosti k ose z	m^4
I_{ω}	výsečový moment setrvačnosti	m^6
k	přirozené číslo	-
L	délka prutu	m
L_{cr}	vzpěrná délka v uvažované rovině vybočení	m
M	vnější ohybový moment	Nm
$M_{b,Rd}$	návrhová únosnosti v ohybu při klopení	Nm
M _{cr}	kπucka nodnota vnejsiho onyboveno momentu	Nm New
IVI R		INM
$M_{ar{x}}$	kroutici moment k ose zdeformovaného prutu \bar{x}	Nm

$M_{y'}$	ohybový moment k ose y'	Nm
$M_{ar{y}}$	krouticí moment k ose zdeformovaného prutu \overline{y}	Nm
$M_{z'}$	ohybový moment k ose z'	Nm
$N_{b,Rd}$	návrhová vzpěrná únosnost tlačeného prvku	Ν
N_{cr}	pružná kritická síla	Ν
$N_{cr,T}$	pružná kritická síla při vybočení zkroucením	Ν
$N_{cr,TF}$	pružná kritická síla při prostorovém vzpěru	Ν
N_{Ed}	návrhová hodnota tlakové síly	Ν
N_f	počet případů, kdy dojde k poruše	-
N _{tot}	celkový počet simulací	-
p_f	pravděpodobnost poruchy z odhadu statistických parametrů	-
P_z	Eulerova kritická síla pro vybočení kolmo ose z	Ν
R	vzpěrná únosnost	Ν
<i>r</i> , <i>r</i> ₁ , <i>r</i> ₂	poloměry zaoblení průřezu	m
S	sklon náběhu pásnic I profilu	%
t_f	tloušťka pásnic	m
t_w	tloušťka stojiny	m
Q	pomocná veličina při výpočtu vzpěrné únosnosti	Nm
v	vybočení prutu	m
v_0	počáteční vybočení prutu	m
v_I	vybočení prutu v důsledku působení zatížení	m
Ws	vybočení uprostřed prutu	m
$W_{pl,y}$	plastický průřezový modul k ose y	m^3
W_y	průřezový modul k ose y	m^3
W_z	průřezový modul k ose z	m^3
x	vzdálenost vyšetřovaného místa od počátku	m
у	počáteční vybočení v libovolném místě prutu	m
α	součinitel imperfekce	-
α_{LT}	součinitel imperfekce při klopení	-
α_1, α_2	kořeny diferenciální rovnice	-
<i>үмі</i>	dílčí součinitel spolehlivost materiálu	-
Δv_l	stavu	m
Δv_2	vzdálenost těžiště dolní pásnice původního a vybočeného stavu	m
κ_{wt}	bezrozměrný parametr kroucení	-
λ	štíhlost prutu	-

λ_I	hodnota štíhlosti pro výpočet poměrné štíhlosti	-
λ_{ω}	kritická štíhlost pro vzpěr zkroucením	-
$\overline{\lambda}$	poměrná štíhlost prutu	-
$ar{\lambda}_{LT}$	poměrná štíhlost při klopení	-
$\bar{\lambda}_T$	poměrná štíhlost pro vzpěr zkroucením	-
$\bar{\lambda}_y$	poměrná štíhlost pro vybočení kolmo k ose y	-
$ar{\lambda}_z$	poměrná štíhlost pro vybočení kolmo k ose z	-
μ_{cr}	Součinitel pro výpočet M _{cr}	-
V	Poissonův součinitel	-
$ ho_l$	vzdálenost těžiště dolní pásnice a středu otáčení	m
$ ho_2$	vzdálenost těžiště horní pásnice a středu otáčení	m
σ	napětí	Pa
$\bar{\sigma}$	napětí od prostého tlaku	Pa
σ_{max}	napětí v extrémně namáhaných vláknech	Pa
arphi	pootočení prutu	rad
$oldsymbol{arphi}_0$	počáteční pootočení těžiště průřezu prutu	rad
$oldsymbol{arphi}_1$	pootočení prutu v důsledku působení ohybového momentu	rad
φ_z	pootočení roviny průřezu vybočeného prutu	rad
ϕ	hodnota pro výpočet součinitele vzpěrnosti dle EC	-
ϕ_{LT}	hodnota pro výpočet součinitele klopení dle EC	-
χ	součinitel vzpěrnosti	-
χ_{LT}	součinitel klopení	-
χy	součinitel vzpěrnosti pro vybočení kolmo k ose y	-
χz	součinitel vzpěrnosti pro vybočení kolmo k ose z	-
χω	součinitel vzpěrnosti pro vzpěr zkroucením	-