ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta agrobiologie, potravinových a přírodních zdrojů Katedra pedologie a ochrany půd

MOŽNOSTI VYUŽITÍ SPEKTROSKOPIE VE VIDITELNÉ A BLÍZKÉ INFRAČERVENÉ OBLASTI PRO PREDIKCI VLASTNOSTÍ LESNÍCH PŮD

Dizertační práce

Autor práce: Ing. Josef Kratina Školitel: prof. Dr. Ing. Luboš Borůvka Konzultanti: Ing. Lenka Pavlů, Ph.D., Ing. Lukáš Brodský, Ph.D.

Prohlášení

Prohlašuji, že jsem dizertační práci na téma "MOŽNOSTI VYUŽITÍ SPEKTROSKOPIE VE VIDITELNÉ A BLÍZKÉ INFRAČERVENÉ OBLASTI PRO PREDIKCI VLASTNOSTÍ LESNÍCH PŮD" vypracoval samostatně a použil jen pramenů, které cituji a uvádím v přiložené bibliografii.

V Praze dne 1. října 2015

.....

PODPIS

Poděkování

Děkuji školiteli Prof. Dr. Ing. Luboši Borůvkovi, Ing. Aleši Klementovi, Ph.D, Ing. Jakubu Houškovi, Ph.D, Ing. Radimu Vašátovi a dalším členům katedry pedologie a ochrany půd za pomoc při zpracovávání této doktorské dizertační práce.

SEZNAM ZKRATEK

ASD	Analytical Spectral Devices, Inc.					
ASTER	Advanced spaceborne thermal emission and reflection radiometer					
Al_AR	Hliník extrahovaný lučavkou královskou					
Al_BaCl ₂ (VYM)	Výměnné kationty (hliník), výluh BaCl2					
Al_dit	Hliník extrahovaný dithioničnanem					
Al_KCl	Hliník extrahovaný roztokem KCl					
Al_ox	Hliník extrahovaný šťavelanem					
Ca_AR	Vápník extrahovaný lučavkou královskou					
Ca_BaCl ₂ (VYM)	Výměnné kationty (vápník), výluh BaCl ₂					
Ca_M3	Vápník extrahovaný roztokem Mehlich III					
Cd_AR	Kadmium extrahované lučavkou královskou					
Cox	Obsah oxidovatelného uhlíku					
CR	Continuum removal					
Cr_AR	Chrom extrahovaný lučavkou královskou					
Cu_AR	Měď extrahovaná lučavkou královskou					
CV	Cross-validation					
DPZ	Dálkový průzkum Země					
DRS	Diffuse reflectance spectroscopy					
DWT	Discrete wavelet transform					
Fe_AR	Železo extrahované lučavkou královskou					
Fe_BaCl ₂ (VYM)	Výměnné kationty (železo), výluh BaCl ₂					
Fe_dit	Železo extrahované dithioničnanem					
Fe_KCl	Železo extrahované roztokem KCl					
Fe_ox	Železo extrahované šťavelanem					
JHU	John Hopkins University					
JPL	Jet Propulsion Laboratory					
K_AR	Draslík extrahovaný lučavkou královskou					
K_BaCl ₂ (VYM)	Výměnné kationty (draslík), výluh BaCl ₂					
K_M3	Draslík extrahovaný roztokem Mehlich III					
KVK	Kationtová výměnná kapacita					
MARS	Multivariate adaptive regression splines					
Mg_AR	Hořčík extrahovaný lučavkou královskou					

$Mg_BaCl_2(VYM)$	Výměnné kationty (hořčík), výluh BaCl ₂
Mg_M3	Hořčík extrahovaný roztokem Mehlich III
MLR	Multiple linear regression analysis
Mn_AR	Mangan extrahovaný lučavkou královskou
$Mn_BaCl_2(VYM)$	Výměnné kationty (mangan), výluh BaCl ₂
Mn_dit	Mangan extrahovaný dithioničnanem
Mn_KCl	Mangan extrahovaný roztokem KCl
Mn_ox	Mangan extrahovaný šťavelanem
MRA	Multiple regression analysis
Na_AR	Sodík extrahovaný lučavkou královskou
Na_BaCl ₂ (VYM)	Výměnné kationty (sodík), výluh BaCl ₂
NIR	Near infrared – blízké infračervené
NN	Neural Network – neuronové sítě
P_AR	Fosfor extrahovaný lučavkou královskou
P_M3	Fosfor extrahovaný roztokem Mehlich III
Pb_AR	Olovo extrahované lučavkou královskou
PCA	Principal component analysis
PCR	Principal component regression
pH_CaCl ₂	Výměnná půdní reakce ve výluhu $CaCl_2$
pH_H ₂ O	Aktivní půdní reakce
pH_KCl	Výměnná půdní reakce ve výluhu KCl
PLSR	Partial least squares regression
R^2	Koeficient determinace
RBFN	Radial basis function networks
RMSE	Root mean square error – střední kvadratická chyba
RP	Rizikové prvky
Si_dit	Křemík extrahovaný dithioničnanem
Si_ox	Křemík extrahovaný šťavelanem
SMLR	Stepwise multiple linear regression
SSL-CZ	Czech soil spectral library
SVM	Support vector machines
USGS	United States Geological Survey
UV	Ultraviolet - ultrafialový
VA	Výměnná acidita Al+H, výluh BaCl ₂
VIS	Visible – viditelné

VIS – NIR	Visible and near infrared – viditelné a blízké infračervené
VNIR	Visible and near infrared – viditelné a blízké infračervené
Zn_AR	Zinek extrahovaný lučavkou královskou
Zn_M3	Zinek extrahovaný roztokem Mehlich III

SEZNAM TABULEK

SEZNAM OBRÁZKŮ

1.	ÚVOD		1			
2.	LITERÁRI	NÍ REŠERŠE	2			
	2.1 S	Spektroskopie	2			
	2.2 I	Difúzně reflexní spektroskopie	2			
	2.3 F	Predikce půdních vlastností pomocí VNIR spektroskopie	4			
	2.3.1	Půdní vlhkost	7			
	2.3.2	Obsah organické hmoty a organického uhlíku	8			
	2.3.3	Obsah rizikových prvků	10			
	2.3.4	Obsah biogenních prvků	13			
	2.3.5	Půdní reakce (pH)	13			
	2.3.6	Zrnitostní složení	14			
	2.3.7	Kationtová výměnná kapacita	15			
	2.4 I	esní půdy	16			
	2.4.1	Predikce vlastností lesních půd	16			
	2.5 F	Předzpracování spektrálních dat	16			
	2.6 Používané statistické metody pro tvorbu modelů					
	2.7 S	Spektrální půdní knihovny	18			
3.	HYPOTÉZ	A CÍLE	20			
4.	METODIK	ΞΑ	21			
	4.1 F	Použité půdní vzorky – původ a zpracování	21			
	4.1.1	Jizerské hory	22			
	4.1.2	Novohradské hory	22			
	4.1.3	Moravskoslezské Beskydy - Jablunkovsko	22			
	4.1.4	Žofínský prales	23			
	4.1.5	Soubor vzorků z celé ČR	23			
	4.1.6	Lesní školky	25			
	4.2 Z	Zpracování dat	25			
5.	VÝSLEDK	Y A DISKUZE	27			
	5.1 (Celý datový soubor a jeho rozdělení podle horizontů a oblastí	27			

5.1.1 Vliv oblastí odběru a horizontu na úspěšnost predikce	30
5.1.1.1 Jizerské hory, Novohradské hory, Moravskoslezské Beskydy	30
5.1.1.2 Velký datový soubor (celá ČR)	32
5.1.2 Shrnutí	32
5.2 Vliv použité jemnozemě na úspěšnost predikce	33
5.3 Vliv použité statistické metody na úspěšnost predikce	34
5.4 Predikce jednotlivých vlastností	44
5.4.1 Půdní reakce (pH)	44
5.4.1.1 pH_H ₂ O	45
5.4.1.2 pH _CaCl ₂	46
5.4.1.3 pH_KCl	47
5.4.2 Obsah oxidovatelného uhlíku (Cox)	48
5.4.3 Kationtová výměnná kapacita (KVK)	50
5.4.4 Nasycení sorpčního komplexu bázemi	51
5.4.5 Obsah dusíku	52
5.4.6 Obsah fosforu	53
5.4.7 Obsah draslíku	53
5.4.8 Obsah vápníku	55
5.4.9 Obsah hořčíku	56
5.4.10 Obsah sodíku	57
5.4.11 Obsah manganu	58
5.4.12 Obsah železa	60
5.4.13 Obsah hliníku	62
5.4.14 Výměnná acidita	65
5.4.15 Obsah křemíku	65
5.4.16 Shrnutí	66
5.5 Testování a úprava nalezených modelů	69
5.5.1 Lesní školky	70
5.5.2 Horizont B – Žofínský prales	71
ZÁVĚR	75
LITERATURA	76
PŘÍLOHY	84

6. 7.

8.

SEZNAM TABULEK

Tab. 1 Přehled literatury srovnávající předpovědi půdních vlastností pomocí spektroskopie
Viscarra Rossel et al., 2006)
Γab. 2 Výsledky predikce půdní vlhkosti při terénním měření (Stenberg et al., 2010)8
Γab. 3 Souhrn odhadů koncentrací RP v půdách pomocí VNIR spektroskopie (Tiezhu, et al.,
2014)
Γab. 4 Výsledky validace – potenciálně toxické prvky (Gholizadeh et al., 2015)13
Γab. 5 Odhad půdní zrnitosti (Curcio et al., 2013)14
Γab. 6 Výsledky validace pro obsah jílu, prachu a písku (Stenberg et al., 2010)15
Tab. 7 Porovnání predikcí vybraných vlastností použitím různých statistických metod,
algoritmů a jejich kombinací (Viscarra Rossel a Behrens, 2010)18
Γab. 8 Stanovené půdní vlastnosti na souboru vzorků z celé ČR24
Гаb. 9 Oblasti odběrů – okresy25
Γab. 10 Popisné statistické charakteristiky – souhrnný soubor dat
Гаb. 11 Úspěšnost predikce – souhrnný soubor dat29
Гаb. 12 Výsledky predikce – horské lesní půdy31
Γab. 13 Úspěšnost predikce podle horizontů – velký soubor32
Tab. 14 Srovnání predikce podle použité jemnozemě
Γab. 15 Popisné statistické charakteristiky – velký soubor, minerální horizonty
Tab. 16 Shrnutí úspěšnosti predikce jednotlivých vlastností podle použitých stat. metod –
ninerální horizonty
Tab. 17 Popisné statistické charakteristiky – velký soubor, organické horizonty
Tab. 18 Shrnutí úspěšnosti predikce jednotlivých vlastností podle použitých stat. metod –
organické horizonty
Γab. 19 Popisné statistické charakteristiky – A horizonty, Žofínský prales41
Tab. 20 Shrnutí úspěšnosti predikce jednotlivých vlastností podle použitých stat. metod – A
norizonty, Žofínský prales43
rab. 21 Nejlepší metody pro predikci půdní reakce45
Гаb. 22 Predikce podle metody a pásma – pH_H ₂ O46
Гаb. 23 Predikce podle metody a pásma – pH_CaCl ₂ 47
Гаb. 24 Predikce podle metody a pásma – pH_KCl47
Гаb. 25 Predikce podle metody a pásma – Cox, minerální a organické horizonty49

Tab. 26 Predikce podle metody a pásma – Cox, A horizonty, Žofínský prales	
Tab. 27 Predikce podle metody a pásma – KVK, minerální horizonty	51
Tab. 28 Predikce podle metody a pásma – BS, minerální horizonty	51
Tab. 29 Predikce podle metody a pásma – N	
Tab. 30 Predikce podle metody a pásma – P, minerální a organické horizonty	
Tab. 31 Predikce podle metody a pásma – K	
Tab. 32 Predikce podle metody a pásma – Ca	
Tab. 33 Predikce podle metody a pásma – Ca_vym	
Tab. 34 Predikce podle metody a pásma – Mg	
Tab. 35 Predikce podle metody a pásma – Na	
Tab. 36 Predikce podle metody a pásma – Mn	
Tab. 37 Predikce podle metody a pásma – Fe	61
Tab. 38 Predikce podle metody a pásma – Al (KCl, BaCl ₂ , AR)	
Tab. 39 Predikce podle metody a pásma – Al (ox, dit)	64
Tab. 40 Predikce podle metody a pásma – formy A1	64
Tab. 41 Predikce podle metody a pásma – výměnná acidita	65
Tab. 42 Predikce podle metody a pásma – Si	66
Tab. 43 Nejlepší predikce podle metody a pásma – shrnutí	66
Tab. 44 Shrnutí nejlepších statistických modelů pro predikci jednotlivých vlastností	68
Tab. 45 Porovnání základního modelu s nalezeným modelem – lesní školky	
Tab. 46 Predikce po úpravě modelů – lesní školky	
Tab. 47 Porovnání základního modelu s nalezeným modelem – B horizonty, Žofín	ský prales
	71
Tab. 48 Predikce po úpravě modelů – B horizonty, Žofínský prales	73
Tab. 49 Nejlepší univerzální statistické modely pro predikci jednotlivých vlastností.	74

SEZNAM OBRÁZKŮ

Obr. 1 Elektromagnetické spektrum	3
Obr. 2 Systém DRS se skládá ze světelného zdroje, sondy a spektrometru	3
Obr. 3 Vliv vlhkosti na průběh spektra (Klement et al., 2011)	8
Obr. 4 Vliv obsahu organického uhlíku na průběh spektra (Nocita et al., 2014)	9
Obr. 5 Úspěšnost predikce obsahu organického uhlíku v přirozeném stavu a s přid	laným
pískem pro orné půdy, pastviny, lesy a organické půdy (Nocita et	al.,
2014)	9
Obr. 6 Příklad aplikace Continuum removal (Youngentob et al., 2011)	17
Obr. 7 Struktura české půdní spektrální knihovny (Brodský et al., 2011)	19
Obr. 8 Spektrometr FieldSpec® 3	21
Obr. 9 Znázornění spekter – souhrnný soubor dat	27
Obr. 10 Statistické rozdělení četností – souhrnný soubor dat	28
Obr. 11 Grafické znázornění predikce Cox – souhrnný soubor dat	29
Obr. 12 Naměřená spektra – Jizerské hory (44 vzorků)	30
Obr. 13 Příklad předpovědi – pH_KCl (minerální horizonty)	31
Obr. 14 Průběh spektrálních křivek, různé způsoby předzpracování – velký soubor, min	erální
horizonty	36
Obr. 15 Průběh spektrálních křivek, různé způsoby předzpracování – velký soubor, orga	ınické
horizonty	39
Obr. 16 Průběh spektrálních křivek, různé způsoby předzpracování – Žofinský p	orales,
A horizonty	42
Obr. 17 Šum v UV části spektra	44
Obr. 18 Příklad rozdílu v průběhu spektrálních křivek mezi organickým a miner	álním
horizontem	. 50

1. ÚVOD

Informace o půdních vlastnostech jsou vyžadovány pro různé účely, například pro precizní zemědělství či lesnictví, pro hodnocení kvality půdy, pro její mapování či ochranu. Při zkoumání půd je zapotřebí získat velké množství analytických dat. Odebírání a následné analyzování půdních vzorků tradičními metodami je časově náročné a finančně nákladné (Kooistra et al., 2001). Stále častěji se proto využívá nepřímých měření a predikcí půdních vlastností pomocí matematických modelů.

Princip většiny nepřímých metod spočívá v senzorovém měření. Senzory identifikují změnu sledované půdní vlastnosti, či vlastnosti, která je s ní úzce vázána a kterou je možné převést do elektronického záznamu. Mezi výhody nepřímých metod patří nižší finanční nákladnost, rychlost stanovení a intenzivní prostorové pokrytí. V praxi se používají různé typy senzorů, nejčastěji elektrické, elektromagnetické a mechanické (Lukas, 2009).

Jednou z metod nepřímého měření půdních vlastností je spektroskopie ve viditelné a blízké infračervené oblasti (VNIR nebo VIS-NIR). Použití VNIR spektroskopie jako alternativy k tradiční analýze půd se ve světě zkoumá již řadu let a výzkumy ukazují, že poskytuje levnou a dostatečně přesnou predikci chemických, fyzikálních a biologických vlastností půd (Hanuš et al., 2008, Brown et al., 2006). V ČR se tento způsob půdní analýzy teprve rozvíjí.

Většina prací se zabývá půdami zemědělsky využívanými, které mají odlišné vlastnosti než půdy lesní. Cílem práce je zhodnocení použitelnosti metody pro predikci vlastností lesních půd v České republice.

2. LITERÁRNÍ REŠERŠE

2.1 Spektroskopie

Spektroskopie je fyzikální obor, který se zabývá interakcí elektromagnetického záření se vzorkem (emise, absorpce, odraz, nebo rozptyl) a je využíván v celé řadě vědních i ostatních oborů. Elektromagnetické záření pokrývá široký rozsah vlnových délek od radiových vln (od jednoho milimetru až po tisíce kilometrů), po gama záření (kratší než 124 pikometrů). Změna intenzity elektromagnetického záření s jeho vlnovou délkou se projevuje při absorpci, odrazu záření, nebo jeho emisí. Pro označení poloh absorpčních pásů se používá veličina vlnová délka (jednotka µm nebo nm). Intenzity pásů jsou vyjádřeny jako transmitance (množství světla určité vlnové délky, které prošlo vzorkem), reflektance (odraz), nebo absorbance (pohlcení) (Stužka, 1993, Hollas, 2004).

Výstupem spektroskopického měření je spektrální křivka. Tvar spektrální křivky materiálů je definován jejich odrazivostí a absorbancí při různých vlnových délkách. Je dán přechody elektronů v atomech a vibračním natahováním či smršťováním strukturních skupin atomů, které tvoří molekuly a krystaly (Brown et al., 2006). Základním modelem pro popis vibračního pohybu molekuly je lineární harmonický oscilátor, za který můžeme považovat už i dvoujadernou molekulu. V molekulách vibrují jednotlivé atomy, čemuž odpovídá určitý vibrační stav molekuly, který se absorpcí některé části elektromagnetického záření může změnit. Intenzita absorpce je důležitou měřitelnou veličinou (Milata et al., 2008).

2.2 Difúzně reflexní spektroskopie

Difúzně reflexní spektroskopie ve viditelné a blízké infračervené části záření je metodou, která se pro svou jednoduchost a přesnost využívá v mnoha oborech, stále častěji i v pedologii. Záření je povrchem absorbováno na základně Lambert-Beerova absorpčního zákona.

Hyperspektrální průzkum používá senzory, které jsou schopny snímat obrazová data skládající se z desítek až stovek úzkých spektrálních pásem ve viditelné (VIS 400-700 nm) a blízké infračervené (NIR 700-2500 nm) části spektra (obr. 1).

Obr. 1 Elektromagnetické spektrum

VNIR spektroskopie je použitelná nejen v laboratoři, ale i v terénu a to jak kontaktně, tak bezkontaktně. Terénní bezkontaktní spektroskopie se používá při dálkovém průzkumu Země. Práce je zaměřena na kontaktní senzorické měření, proto bude dále popisován pouze tento způsob měření. Schéma spektrometru je znázorněno na obrázku 2. VNIR spektroskopie se ukazuje jako dobrá alternativa ke konvenčním půdním analýzám a může být použita k jejich doplnění, protože překonává některá z jejich omezení (např. časovou a finanční zátěž). Spektroskopie je rychlá, méně nákladná, jednoduchá a někdy i přesnější než konvenční metody. Literatura například uvádí, že poskytuje přesnější výsledky než analýza konvenční při stanovování obsahu organického uhlíku nebo pH půdy a potřeby vápnění (Viscarra Rossel et al., 2001). Kromě toho umožňuje charakterizaci mnoha půdních vlastností z jednoho spektra (Viscarra Rossel et al., 2006).

Obr. 2 Systém DRS se skládá ze světelného zdroje, sondy a spektrometru.

2.3 Predikce půdních vlastností pomocí VNIR spektroskopie

Bylo prokázáno, že půdní charakteristiky lze odvozovat ze spektrálních dat při laboratorním i terénním měření (Viscarra Rossel et al., 2006, Brown et al., 2006, Bilgili et al., 2010). Půdní odrazivost je ovlivňována mikromorfologií a drsností povrchu, barvou (Metternicht, 1998), půdotvorným substrátem (Reeves a van Kessel, 1999, Shepherd a Walsh, 2002) a při terénním měření především vlhkostí (Chang et al., 2005, Mouazen et al., 2006).

Ve světové literatuře se uvádějí korelace například mezi spektrálními znaky a půdní zrnitostí, půdní reakcí, kationtovou výměnnou kapacitou, obsahem přístupných živin (vápník, draslík, hořčík, fosfor), obsahem hliníku, vlhkostí, elektrickou vodivostí (McBratney et al., 2006, Brown et al., 2006, He a Song, 2006, Shepherd a Walsh, 2002, Viscarra Rossel et al., 2006). Dále byla zjištěna vysoká úspěšnost předpovědi obsahu jílu (Brown et al., 2006), obsahu organického a anorganického uhlíku a dusíku (Reeves et al., 2002), Fe₂O₃, Al₂O₃, CaCO₃ (Ben-Dor a Banin, 1995), potenciálně mineralizovatelného dusíku (Morón a Cozzolino, 2002, Reeves a Van Kessel, 1999), poměru C:N a biologických vlastností půd (Chodak et al., 2004, Ludwig et al., 2002). VNIR spektroskopie je také úspěšnou metodou při stanovování obsahů některých rizikových prvků, například niklu, chromu, mědi, rtuti, olova, zinku, antimonu, železa nebo arsenu (Wu et al., 2005, Cozzolino a Morón, 2003, Kooistra et al., 2001, Udelhoven et al., 2003).

Úspěšnost stanovení jmenovaných půdních vlastností VNIR spektroskopií je velmi dobrá. Koeficient determinace R^2 (validační) často překračuje 0,9 (Viscarra Rossel et al., 2006). Brown et al. (2006) velmi úspěšně předpověděli obsah jílu ($R^2 = 0,91$), kationtovou výměnnou kapacitu ($R^2 = 0,83$), obsah organického uhlíku ($R^2 = 0,95$) a obsah anorganického uhlíku ($R^2 = 0,97$). Při zkoumání obsahu rizikových prvků a kovů byly nejvyšší hodnoty R^2 zjištěny u As ($R^2 = 0,84$), Fe ($R^2 = 0,72$), Hg ($R^2 = 0,96$), Pb ($R^2 = 0,95$) a Sb ($R^2 = 0,93$) (Kemper a Sommer, 2002).

Pro předpověď některých vlastností je vhodné použít hodnoty absorbance z celé viditelné a blízké infračervené části spektra, jiné se lépe projeví při použití užšího spektrálního rozsahu. Tabulka 1 znázorňuje potenciál kvantitativní spektroskopické analýzy, včetně spektrálních rozsahů, které jsou pro predikci vybraných vlastností nejvhodnější.

Půdní vlastnost	Část spektra	Rozsah (nm)	Statistická metoda	RMSE	R ²	Autor
Acidita; cmol/kg	VIS-NIR	400–2498	PCR	24,4	0,65	Chang et al. (2001)
Biomasa (N); mg/kg	NIR	1100–2300	PLSR		0,71	Reeves a McCarty (2001)
Biomasa (N); mg/kg	NIR	1100–2498	PLSR		0,79	Reeves et al. (1999)
Biomasa; mg/kg	VIS-NIR	400–2498	PCR	389.71	0,6	Chang et al. (2001)
C (anorg.) g/kg	NIR	1100–2498	PLSR		0,87	McCarty et al. (2002)
C (anorg.); g/kg	VIS-NIR	400–2498	PLSR	0.15	0,96	Chang a Laird (2002)
C (celk.); g/kg	NIR	1100–2498	PLSR		0,86	McCarty et al. (2002)
C (celk.); g/kg	NIR	1100–2498	PLSR		0,96	Reeves et al. (1999)
C (celk.); g/kg	VIS-NIR	400–2498	PLSR	0.65	0,91	Chang a Laird (2002)
C (celk.); g/kg	VIS-NIR	400–2498	PCR	0.79	0,87	Chang et al. (2001)
C : N	VIS-NIR	400–2498	PLSR	0.21	0,88	Chang a Laird (2002)
Ca (vým.); cmol(+)/kg	VIS-NIR	350–2500	MARS	28	0,88	Shepherd a Walsh (2002)
Ca (vým.); cmol(+)/kg	VIS-NIR	400–2498	PCR	40	0,75	Chang et al. (2001)
Ca; g/kg	VIS-NIR	400–2500	PLSR		0,9	Cozzolino a Moron (2003)
Ca; mmol(+)/kg	NIR	700–2500	PCR		0,72	Islam et al. (2003)
Cu_M3; mg/kg	VIS-NIR	400–2498	PCR	5,37	0,25	Chang et al. (2001)
Cu; mg/kg	VIS-NIR	400–2500	PLSR		0,82	Cozzolino a Moron (2003)
EC; µS/cm	VIS-NIR	400–2400	SMLR		0,65	Shibusawa et al. (2001)
Fe (volné); %	NIR	700–2500	PCR		0,49	Islam et al. (2003)
Fe_M3; mg/kg	VIS-NIR	400–2498	PCR	61.4	0,64	Chang et al. (2001)
Fe; mg/kg	VIS-NIR	400–2500	PLSR		0,9	Cozzolino a Moron (2003)
Jíl; %	NIR	1000–2500	MRA		0,56	Ben-Dor a Banin (1995)
Jíl; %	NIR	700–2500	PCR		0,75	Islam et al. (2003)
Jíl; %	VIS-NIR	400–2498	PCR	4,6	0,67	Chang et al. (2001)
Jíl; %	VIS-NIR	400–2500	PLSR		0,86	Cozzolino a Moron (2003)
Jíl; g/kg	VIS-NIR	350–2500	MARS	7,5	0,78	Shepherd a Walsh (2002)
K (příst.); mg/kg	VIS-NIR	400–1100	NN		0,8	Daniel et al. (2003)
K (vým.); cmol/kg	VIS-NIR	400–2498	PCR	4,2	0,55	Chang et al. (2001)
K; g/kg	VIS-NIR	400–2500	PLSR		0,72	Cozzolino a Moron (2003)
KVK; cmol(+)/kg	NIR	1000–2500	MRA		0,64	Ben-Dor a Banin (1995)
KVK; cmol(+)/kg	VIS-NIR	400–2498	PCR	38.2	0,81	Chang et al. (2001)
KVK; cmol(+)/kg	VIS-NIR	350–2500	MARS	38	0,88	Shepherd a Walsh (2002)
KVK; mmol(+)/kg	NIR	700–2500	PCR		0,67	Islam et al. (2003)
LR; t/ha	NIR	700–2500	PLSR		0,73	Janik et al. (1998)

Tab. 1 Přehled literatury srovnávající předpovědi půdních vlastností pomocí spektroskopie (Viscarra Rossel et al., 2006)

Půdní vlastnost	Část spektra	Rozsah (nm)	Statistická metoda	RMSE	\mathbf{R}^2	Autor
Mg_VYM; cmol(+)/kg	VIS-NIR	350–2500	MARS	11	0,81	Shepherd a Walsh (2002)
Mg_VYM; mg/kg	VIS-NIR	400–2498	PCR	12,8	0,68	Chang et al. (2001)
Mg; g/kg	VIS-NIR	400–2500	PLSR		0,9	Cozzolino a Moron (2003)
Mg; mmol(+)/kg	NIR	700–2500	PCR		0,59	Islam et al. (2003)
Mn (Mehlich III); mg/kg	VIS-NIR	400–2498	PCR	56.4	0,7	Chang et al. (2001)
N (aktivní); mg/kg	NIR	1100–2300	PLSR		0,84	Reeves a McCarty (2001)
N (aktivní); mg/kg	NIR	1100–2498	PLSR		0,92	Reeves et al. (1999)
N (celk.); %	NIR	1100–2500	MLR		0,92	Dalal a Henry (1986)
N (celk.); g/kg	VIS-NIR	400–2498	PLSR	0.04	0,86	Chang a Laird (2002)
N (celk.); g/kg	VIS-NIR	400–2498	PCR	0.06	0,85	Chang et al. (2001)
N (celk.); mg/kg	NIR	1100–2300	PLSR		0,94	Reeves a McCarty (2001)
N (celk.); mg/kg	NIR	1100–2498	PLSR		0,95	Reeves et al. (1999)
N (miner.); mg/kg	NIR	1100–2498	PLSR		0,08	Reeves et al. (1999)
N (NO ₃); mg/100g	VIS-NIR	400–2400	SMLR		0,54	Shibusawa et al. (2001)
N; mg N/kg	VIS-NIR	400–2498	PCR	26,5	0,72	Chang et al. (2001)
Na (vým.); cmol/kg	VIS-NIR	400–2498	PCR	1,3	0,09	Chang et al. (2001)
OC (acidif. půda); g/kg	NIR	1100–2498	PLSR		0,8	McCarty et al. (2002)
OC; %	NIR	1100–2500	MLR		0,93	Dalal a Henry (1986)
OC; %	NIR	1100–2500	RBFN	0.32	0,96	Fidêncio et al. (2002)
OC; %	NIR	700–2500	PCR		0,68	Islam et al. (2003)
OC; g/kg	NIR	1100–2498	PLSR		0,82	McCarty et al. (2002)
OC; g/kg	VIS-NIR	400–2498	PLSR	0.62	0,89	Chang a Laird (2002)
OC; g/kg	VIS-NIR	350–2500	MARS	0.31	0,8	Shepherd a Walsh (2002)
OC; g/kg	VIS-NIR	350–1050	PLSR	0.36		Viscarra Rossel et al. (2003)
OC; mg/kg	NIR	1100–2300	PLSR		0,94	Reeves a McCarty (2001)
Org. hmota; %	NIR	1000–2500	MRA		0,55	Ben–Dor a Banin (1995)
Org. hmota; %	VIS-NIR	400–1100	NN		0,86	Daniel et al. (2003)
Org. hmota; %	VIS-NIR	400–2400	SMLR		0,65	Shibusawa et al. (2001)
P (příst.); mg/kg	VIS-NIR	400–1100	NN		0,81	Daniel et al. (2003)
рН	NIR	1100–2300	PLSR		0,74	Reeves a McCarty (2001)
рН	NIR	1100–2498	PLSR		0,73	Reeves et al. (1999)
рН	VIS-NIR	350–2500	MARS	0.43	0,7	Shepherd a Walsh (2002)
pH_CaCl₃	VIS-NIR	400–2498	PCR	0.56	0,56	Chang et al. (2001)
pH_H ₂ O	NIR	700–2500	PCR		0,7	Islam et al. (2003)

Tab. 1 Pokračování

Půdní vlastnost	Část spektra	Rozsah (nm)	Statistická metoda	RMSE	\mathbf{R}^2	Autor
pH_H₂O	VIS-NIR	400–2400	SMLR		0,54	Shibusawa et al. (2001)
pH_H₂O	VIS-NIR	400–2498	PCR	0.55	0,57	Chang et al. (2001)
Písek; %	VIS-NIR	400–2498	PCR	11,93	0,82	Chang et al. (2001)
Písek; %	VIS-NIR	400–2500	PLSR		0,7	Cozzolino a Moron (2003)
Písek; g/kg	VIS-NIR	350–2500	MARS	10,81	0,76	Shepherd a Walsh (2002)
CO ₂ –C; kg/den	VIS-NIR	400–2498	PCR	205.37	0,66	Chang et al. (2001)
Prach; %	VIS-NIR	400–2498	PCR	9,51	0,84	Chang et al. (2001)
Prach; %	VIS-NIR	400–2500	PLSR		0,8	Cozzolino a Moron (2003)
Prach; g/kg	VIS-NIR	350–2500	MARS	4,1	0,67	Shepherd a Walsh (2002)
Uhličitany; %	NIR	1000–2500	MRA		0,69	Ben-Dor a Banin (1995)
Vlhkost (vysuš); %	VIS-NIR	400–2400	SMLR		0,66	Shibusawa et al. (2001)
Vlhkost (vysuš); %	NIR	1000–2500	MRA		0,62	Ben-Dor a Banin (1995)
Vlhkost (vysuš); %	NIR	1100–2500	MLR		0,97	Dalal a Henry (1986)
Vlhkost (vysuš); g/g	NIR	700–2500	PCR		0,8	Islam et al. (2003)
Vlhkost; kg/kg	VIS-NIR	400–2498	PCR	0.005	0,84	Chang et al. (2001)
Zn_M3 ; mg/kg	VIS-NIR	400–2498	PCR	15.28	0,44	Chang et al. (2001)

Tab. 1 Pokračování

Označení statistických metod: multiple regression analysis (MRA), stepwise multiple linear regression (SMLR), multivariate adaptive regression splines (MARS), radial basis function networks (RBFN), principle components regression (PCR), partial least-squares regression (PLSR), neural networks (NN)

2.3.1 Půdní vlhkost

VNIR spektroskopie je účinná metoda ke stanovení půdní vlhkosti. Vlivem jejího zásadního vlivu na průběh spektrální křivky ovšem vlhkost znesnadňuje predikci jiných charakteristik při terénním měření. Stále tedy vznikají modely, které se snaží vliv vlhkosti půdy eliminovat. Se vzrůstající vlhkostí vzorku dochází ke snížení intenzity odrazivosti ve všech spektrálních pásmech mezi 400 a 2500 nm. Tiezhu et al. (2014) uvádějí, že voda v půdě se nejvíce projevuje kolem vlnových délek 1400 a 1900 nm. Úspěšnost předpovědí vlhkosti půdy vyjádřená koeficientem determinace překračuje hodnotu 0,9 (DeMatte et al., 2006, Mouazen et al., 2006). Úspěšnosti předpovědí jednotlivých autorů jsou shrnuty v tabulce 2. Vliv různé vlhkosti jednoho vzorku půdy na průběh spektrální křivky je znázorněn na obrázku 3.

Původ	Rozsah (nm)	R ²	RMSE	Autor
Izrael	350 - 2500	0,98	1,1	Ben-Dor et al., 2008
lowa	400 - 2498	0,74	2,0	Chang et al., 2005
Kansas	920 - 1718	0,4 - 0,65	3,6 - 2,8	Christy, 2008
Illinois	1603 - 2598	0,88	6,4	Hummel et al., 2001
Belgie	300 - 1700	0,98	1,6	Mouazen et al., 2005
Kalifornie	1400 - 2400	0,96	1,0	Slaughter et al., 2001
Illinois	1630 - 2650	0,94	1,9	Sudduth a Hummel, 1993

Tab. 2 Výsledky predikce půdní vlhkosti při terénním měření (Stenberg et al., 2010)

Obr. 3 Vliv vlhkosti na průběh spektra (Klement et al., 2011)

2.3.2 Obsah organické hmoty a organického uhlíku

Obsah organické hmoty má vliv na zbarvení půdy. Vliv obsahu organického uhlíku na průběh spektrální křivky je na obrázku 4. Islam et al. (2003) a Fystro (2002) uvádějí, že je lepší použít celé VNIR spektrum než pouze NIR. Ben-Dor a Banin (1995), Dalal a Henry (1986) dosáhli nejlepších výsledků při použití spektrálních pásem kolem 1 100, 1 600, 1 700 – 1 800, 2000 a 2 200 – 2 400 nm.

Nocita et al. (2014) uvádějí, že predikce organického uhlíku se zlepšuje s rostoucím podílem písku a že je přesnější při zkoumání orných půd a půd pastvin (obr. 5). Předpověď z minerálních půd lesních byla horší. Stenberg (2010) oproti tomu došel k závěru, že vyšší obsah písku nepřesnost predikce zvyšuje. Brodský et al. (2013) predikovali množství organického uhlíku s úspěšností $R^2 = 0.8$, Brown et al. (2006): $R^2 = 0.8$, Bartholomeus et al. (2011): $R^2 = 0.84$.

Obr. 4 Vliv obsahu organického uhlíku na průběh spektra (Nocita et al., 2014)

Obr. 5 Úspěšnost predikce obsahu organického uhlíku v přirozeném stavu (spc) a s přidaným pískem (spc+sand) pro orné půdy, pastviny, lesy a organické půdy (Nocita et al., 2014)

2.3.3 Obsah rizikových prvků

VNIR spektroskopie je úspěšnou metodou pro stanovení kontaminantů, jako jsou těžké kovy a další rizikové prvky (RP) v půdě. Umožňuje efektivní dlouhodobé zkoumání těchto látek na velkých plochách (Tiezhu et al., 2014).

Pokud jsou těžké kovy obsaženy v půdě v extrémně vysokých koncentracích, mohou samy vykazovat absorpční schopnosti a jsou tak v půdě spektroskopicky přímo stanovitelné. Například Wu et al. (2007) uvádějí, že při koncentraci Cr a Cu > 4000 mg . kg⁻¹ jsou tyto prvky dobře stanovitelné ve spektrálních pásech 610 a 830 nm. Ve středních a nízkých koncentracích ($\leq 1000 \text{ mg } \text{kg}^{-1}$) jsou těžké kovy spektrálně nevýrazné, nebo dokonce nedetekovatelné (Wang et al., 2014). Jejich koncentrace do značné míry závisí na sorpčních vlastnostech půdy, které jsou úzce spojeny s obsahem jílu a organické hmoty (Middelkoop, 1997), rovněž mohou být snadno vázány ne Fe – oxidy (Tiezhu, et al., 2014). Koncentrace těžkých kovů pak může být nepřímo odhadována z těchto půdních složek. To ve své studii uvádějí Liu et al. (2011), kteří zkoumali vztahy mezi obsahem těžkých kovů a organické hmoty v půdě. Kooistra et al. (2001) zkoumali kontaminaci nivních půd zinkem a kadmiem pomocí VNIR spektroskopie s úspěšností předpovědi R² = 0,94 (Cd) a R² = 0,95 (Zn), další výsledky jsou znázorněny v tabulce 3.

RP	Druh plochy	Koncentrační	Regresní	R ²	Počet	Autor
		rozmezí (mg kg ⁻¹)	metoda		vzorků	
As	Říční delta	6,13 - 13,30	PLSR	0,72	61	Wu et al., 2007
As	Příměstská oblast	5,57 - 47,07	PLSR	0,65	120	Wu et al., 2005
As	Říční delta	3800 - 16600	PLSR	0,455	122	Song et al., 2012
As	Říční sedimenty	0,6 - 220	PLSR	0,92	117	Moros et al., 2009
As	Kontaminované plochy	7-442	ANN, MLR	0,858; 0,837	214	Kemper a Somer, 2002
As	Zemědělská plocha	19,33 - 403,77	PLSR	0,58	33	Ren et al., 2009
As	Dobývací prostory	292,2-826,9	SMLR, EMLR	0,84; 0,88	49	Choe et al., 2008
As	Opuštěný důl	52,4-1.493,8	SMLR, EMLR	0,372; 0,598	29	Choe et al., 2009
CD	Říční delta	0,22-0,54	PLSR	0,2	61	Wu et al., 2007
CD	Důlní oblast	0,17-34	PLSR	0,96	70	Siebelec et al., 2004
CD	Říční delta	0,081-1,441	PLSR	0,302	122	Song et al., 2012

Tab. 3 Souhrn odhadů koncentrací RP v půdách pomocí VNIR spektroskopie (Tiezhu, et al., 2014)

RP	Druh plochy	Koncentrační	Regresní	R ²	Počet	Autor
		rozmezí (mg kg ⁻¹)	metoda		vzorků	
CD	Lužní lesy	-	PLSR	0,88	69	Kooistra et al., 2001
CD	Jezerní sedimenty	-	PLSR	0,629	169	Malley a Williams, 1997
CD	Kontaminované plochy	0,05-14,8	ANN, MLR	0,494; 0,510	214	Kemper a Somer, 2002
Co	Říční delta	11,5-19,7	PLSR	0,8	61	Wu et al., 2007
Cr	Říční delta	31,0-108,9	UR	0,58	122	Jia et al., 2010
Cr	Říční delta	-	MARS	0,93	120	Wu et al., 2011
Cr	Příměstská oblast	28,70 - 105,00	PLSR	0,76	120	Wu et al., 2005
Cr	Říční sedimenty	5-175	PLSR	0,66	117	Moros et al., 2009
Cr	Říční delta	60,8-104,0	PLSR	0,85	61	Wu et al., 2007
Cr	Říční delta	30,990-113,90	PLSR	0,988	122	Song et al., 2012
Cu	Příměstská oblast	9,60 - 73,40	PLSR	0,62	120	Wu et al., 2005
Cu	Říční delta	9100 - 55500	PLSR	0,924	122	Song et al., 2012
Cu	Zemědělská půda	31,83 - 190,51	PLSR	0,36	33	Ren et al., 2009
Cu	Říční sedimenty	15-575	PLSR	0,72	117	Moros et al., 2009
Cu	Lužní lesy	1,670-332,18	UR	0,61	30	Liu et al., 2011
Cu	Jezerní sedimenty	-	PLSR	0;906	169	Malley, Williams, 1997
Cu	Kontaminované plochy	17,5 - 521	ANN, MLR	0,446; 0,540	214	Kemper a Somer, 2002
Cu	Říční delta	26,5-55,3	PLSR	0,67	61	Wu et al., 2007
Cu	Opuštěný důl	21,9-252,6	SMLR, EMLR	0,245; 0,813	29	Choe et al., 2009
Cu	Lužní	8-1823	PLSR	0,57	109	Vohland et al., 2009
Cu	-	0,3 AZ 130,6	PCR	0,25	761	Chang et al., 2001
Hg	Říční delta	0,030-0,330	PLSR	0,832	122	Song et al., 2012
Hg	Říční delta	0,04-1,26	PCR	0,71	105	Wu et al., 2005
Hg	Příměstská oblast	0,04-1,26	PLSR	0,59	120	Wu et al., 2005
Hg	Kontaminované plochy	0,01-13,9	ANN, MLR	0,929; 0,957	214	Kemper a Somer, 2002
Ni	Říční delta	-	MARS	0,91	120	Wu et al., 2011
Ni	Příměstská oblast	10,60 - 57,50	PLSR	0,86	120	Wu et al., 2005
Ni	Jezerní sedimenty	-	PLSR	0,876	169	Malley a Williams, 1997
Ni	Říční delta	27,3-50,6	PLSR	0,81	61	Wu et al., 2007
Sb	Kontaminované plochy	196-3362	ANN, MLR	0,927; 0,929	214	Kemper a Somer, 2002

Tab. 3 Pokračování

RP	Druh plochy	Koncentrační	Regresní	R ²	Počet	Autor
		rozmezí (mg kg ⁻¹)	metoda		vzorků	
Pb	Městské Oblasti	187-412	UR	0,69	8	Pandit et al., 2010
Pb	Říční delta	11120 - 89680	PLSR	681	122	Song et al., 2012
Pb	Příměstská oblast	22,30 - 208,00	PLSR	0,66	120	Wu et al., 2005
Pb	Říční delta	21,4-42,8	PLSR	0,55	61	Wu et al., 2007
Pb	Lužní	0-605	PLSR	0,56	109	Vohland et al., 2009
Pb	Dobývací prostory	1.412,7-18.811,3	SMLR, EMLR	0,53; 0,615	49	Choe et al., 2008
Pb	Jezerní sedimenty	-	PLSR	0,814	169	Malley a Williams, 1997
Pb	Říční sedimenty	21-445	PLSR	0,77	117	Moros et al., 2009
Pb	Lužní	2480 - 50920	UR	0,66	30	Liu et al., 2011
Pb	Opuštěný důl	56,8-152,5	SMLR, EMLR	0,275	29	Choe et al., 2009
Pb	Kontaminované	17,5-3.331,5	ANN, MLR	0,940; 0,944	214	Kemper a Somer, 2002
	plochy					
Zn	Říční delta	68,8-120,0	PLSR	0,56	61	Wu et al., 2007
Zn	Lužní	40-1322	PLSR	0,52	109	Vohland et al., 2009
Zn	Dobývací prostory	200,9-728,1	SMLR, EMLR	0,546; 0,596	49	Choe et al., 2008
Zn	Kontaminované plochy	94-3887	ANN, MLR	0,220; 0,234	214	Kemper a Somer, 2002
Zn	Lužní	-	PLSR	0,9	69	Kooistra et al., 2001
Zn	Lužní	73,76 - 269,53	UR	0,79	30	Liu et al., 2011
Zn	Jezerní sedimenty	-	PLSR	0,927	169	Malley a Williams, 1997
Zn	-	0,1 AZ 373,3	PCR	0,44	762	Chang et al., 2001
Zn	Říční sedimenty	40-2060	PLSR	0,59	117	Moros et al., 2009
Zn	Příměstská oblast	43,90 - 625,00	PLSR	0,62	120	Wu et al., 2005
Zn	Důlní oblast	14-4500	PLSR	0,97	70	Siebelec et al., 2004

Tab. 3 Pokračování

Oznančení statistických metod: PLSR = partial least squares regression (regrese částečných nejmenších čtverců); ANN = artificial neural network (umělé neuronové sítě); MLR = multiple linear regression (vícenásobná lineární regrese); EMLR = enter-MLR; SMLR = stepwise-MLR; MARS = multivariate adaptive regression splines (vícerozměrné adaptivní regresní spline); PCR = principal component regression (regrese hlavních komponent); UR = univariate regression (jednorozměrná regrese) Gholizadeh at al. (2015) predikovali obsah potenciálně toxických prvků (PTE) Cu, Mn, Fe, Cd, Pb, Zn a As v půdách pocházejících z výsypek, pomocí metod PLSR (*partial least square regression*) a SVM (*support vector machines*). Výsledky jsou znázorněny v tabulce 4.

PTE			PLSR			SVMR			
	п	R ² _{cv}	RMSEPev	RPD	R ² cv	RMSEPev	RPD		
Cu	115	0.50	6.28	1.45	0.78	4.08	2.29		
Mn	264	0.44	116.43	1.45	0.58	101.25	1.75		
Fe	264	0.48	1619.03	1.32	0.71	1141.08	2.04		
Cd	104	0.57	0.11	1.68	0.78	0.08	2.31		
Pb	148	0.51	3.12	1.50	0.66	2.24	1.97		
Zn	115	0.45	21.84	1.42	0.71	14.51	2.16		
As	104	0.61	2.98	1.81	0.89	1.89	2.63		

Tab. 4 Výsledky validace – potenciálně toxické prvky (Gholizadeh et al., 2015)

2.3.4 Obsah biogenních prvků

Prvky jako K, N, P, Ca, Na, Mg, Fe jsou důležité pro výživu rostlin. Jejich koncentrace je velmi variabilní a tak i predikce je více či méně úspěšná. V literatuře se uvádí úspěšnost předpovědi $R^2 = 0,20 - 0,99$ (N), 0,23 - 0,92 (P), 0,11 - 0,55 (K), 0,68 - 0,89 (Ca), 0,09 - 0,44 (Na), 0,53 - 0,82 (Mg) a 0,64 - 0,91 (Fe) (Cheng et al., 2001, Udelhoven et al., 2003, Mouazen et al., 2006).

2.3.5 Půdní reakce (pH)

Další důležitou půdní vlastností je její pH. Jeho znalost je důležitá například při výpočtu potřeby vápnění půdy. pH nemá na průběh spektrální křivky přímý vliv, ale dá se předpovídat nepřímo z jiných, spektrálně detekovatelných vlastností, jako je obsah organických látek nebo jílu (Chang et al., 2001). Stejně jako při zkoumání většiny ostatních vlastností se i zde ukazuje, že územní rozsah odběru může ovlivnit úspěšnost predikce. Pro menší území odběru, kde můžeme očekávat menší heterogenitu půdního pokryvu, je úspěšnost predikce jiná, než při zkoumání větších územních celků naráz. Může to být důsledek rozdílného statistického rozdělení hodnot, nestálostí průměru (absence homoskedasticity), existencí "ovlivňujících bodů" (*influential data points*), atd.

Chang et al. (2001), dosáhli úspěšnosti předpovědi $R^2 = 0,56$ a Shepherd a Walsh (2002): $R^2 = 0,70$ v celém VNIR spektru (400 – 2500 nm). Užší spektrální pásmo (1100 – 2498 nm) použili pro odhad Reeves et al. (1999) s úspěšností $R^2 = 0,73$, ve spektrálním rozsahu 1100 – 2300 předpověděli hodnoty pH Reeves a McCarty (2001) s úspěšností $R^2 = 0,74$. Nižší hodnoty koeficientu determinace jsou způsobeny úzkým rozsahem hodnot pH, přesto je pH předpovídáno velmi dobře.

2.3.6 Zrnitostní složení

Zrnitost půdy je velmi důležitou vlastností půd v životním prostředí, jelikož hraje klíčovou roli při degradaci půd, transportu vody, produktivitě půdy atd. (Hillel, 1980). Je potřeba velkého množství vzorků, aby bylo možné přiměřeně odhadnout prostorovou variabilitu této charakteristiky. V literatuře se nejvíc setkáváme s odhadem obsahu jílu, jelikož ten úzce souvisí s jinými vlastnostmi (např. obsah těžkých kovů, …), navíc má zásadní vliv na tvorbu agregátů (Stenberg et al., 2010). Curcio et al. (2013) uvádějí, že uspokojivé úrovně predikce zrnitostního složení lze dosáhnout pouze použitím statistické metody PLSR (regrese částečných nejmenších čtverců). Jejich výsledky jsou znázorněny v tabulce 5, výsledky ostatních autorů v tabulce 6.

	Kalibrad	ce (70 vzorků)	Validace (30 vzorků)		
	R ² RMSE		R ²	RMSE	
Jíl	0,87	6,60	0,87	5,80	
Prach	0,82	5,40	0,60	7,20	
Písek	0,89	8,00	0,80	7,70	

Tab. 5 Odhad půdní zrnitosti (Curcio et al., 2013)

Původ	Půdní informace	Spektrální rozsah (nm)	R ² (validace)	RMSE (validace)	Autor			
Jíl								
Israel; aridní a semiaridní oblast	A horizont	1000 - 2500	0,56	10,3	Ben-Dor a Banin, 1995			
Globální (90 % z USA)	profil	350 - 2500	0,73	9,5	Brown et al., 2006			
USA	ornice	1300 - 2500	0,67	4,1	Chang et al., 2001			
Východní a jižní Afrika	ornice	350 - 2500	0,78	7,5	Shepherd a Walsh, 2002			
Austrálie	ornice a podorničí	250 - 2500	0,72	8,9	Islam et al., 2003			
Austrálie (pole 17 ha)	ornice	1000 - 2500	0,6	1,9	Viscarra Rossel et al., 2006			
Kanada	profil	1100 - 2498	0,81	8,6	Malley et al., 2000			
Švédsko (pole)	ornice	1100 - 2500	0,94	3,9	Stenberg et al., 2002			
Texas	profil	350 - 2500	0,84	6,2	Waiser et al., 2007			
Švédsko (tři oddělená pole)	ornice	780 - 2500	0,86	3,9	Wetterlind et al., 2008			
Švédsko (farma, 100 ha)	ornice	350 - 2500	0,81	3,7	Wetterlind et al., 2008			
		Prach						
USA	ornice	1300 - 2500	0,84	9,5	Chang et al., 2001			
Východní a jižní Afrika	ornice	350 - 2500	0,67	4,9	Shepherd a Walsh, 2002			
Austrálie	ornice a podorničí	250 - 2500	0,05	9,8	Islam et al., 2003			
Austrálie (pole 17 ha)	ornice	1000 - 2500	0,41	2,3	Viscarra Rossel et al., 2006			
Kanada	profil	1100 - 2498	0,36	13,2	Malley et al., 2000			
		Písek						
Globální (90 % z USA)	profil	350 - 2500	0,57	17,6	Brown et al., 2006			
USA	ornice	1300 - 2500	0,82	11,9	Chang et al., 2001			
Východní a jižní Afrika	ornice	350 - 2500	0,76	4,9	Shepherd a Walsh, 2002			
Austrálie	ornice a podorničí	250 - 2500	0,53	14,5	Islam et al., 2003			
Austrálie (pole 17 ha)	ornice	1000 - 2500	0,59	3,3	Viscarra Rossel et al., 2006			
Kanada	profil	1100 - 2498	0.65	17.6	Malley et al., 2000			

Tab.	6 Výsledky v	validace pro	obsah jílu,	prachu a písku	(Stenberg et al.,	2010)
------	--------------	--------------	-------------	----------------	-------------------	-------

2.3.7 Kationtová výměnná kapacita

Kationtová výměnná kapacita – KVK (*cation exchange capacity* – CEC) udává schopnost půdy vázat kationty v půdním komplexu. Je přímo závislá na množství jílu a organické hmoty v půdě. Cheng et al. (2001) a Sheperd a Walsh (2002) predikovali KVK s úspěšností $R^2 = 0.81$ a $R^2 = 0.88$. Zornoza et al. (2008) a Bilgili et al. (2010) byli ve své predikci ještě úspěšnější: $R^2 = 0.92$.

2.4 Lesní půdy

2.4.1 Predikce vlastností lesních půd

Modely, které jsou zveřejněny v literatuře, nejsou univerzální, jsou specifické pro dané podmínky, nebo pro určitou skupinu půd. Proto musí být před širším využitím v praxi učiněno detailní testování a ověřování modelů a jejich modifikace a validace. Většina prací se zabývá půdami zemědělsky využívanými, které mají odlišné vlastnosti než půdy lesní. Lesní půdy mají nadložní humus, jsou neobdělávané, bývají mělčí s méně mocnými horizonty, mohou se nacházet v prudkých horských svazích. Nejsou využívány zemědělsky, ale lesnicky, nebo jsou člověkem nevyužívány a vyvíjejí se přirozeně. Vrcholným rostlinným společenstvem je zde les. Lesní půda působí na lesní porost a ostatní rostlinnou vegetaci, a naopak zase dřeviny i s vegetací působí zpětně na půdu chemicky i fyzikálně (Pelíšek, 1956).

Některé studie prokázaly, že VNIR spektroskopie je vhodnou metodou i pro zkoumání lesních půd. Byly úspěšně předpovězeny například obsahy různých forem uhlíku (Ludwig et al., 2002, Tatzber et al., 2010), dusíku a poměr C/N (Ludwig et al., 2002). Hodnoty koeficientu determinace se často pohybovaly kolem 0,9. Tyto studie však často zkoumají lesní půdy ve vzdálených oblastech (např. Austrálie či Asie), kde panují zcela odlišné podmínky než u nás. Prací, které se zabývají lesními půdami střední Evropy, je málo. Komplexnější průzkum pomocí VNIR spektroskopie a následně vytvořené predikční modely pro odhad vlastností půd vyvíjejících se v našich podmínkách zatím chybí.

2.5 Předzpracování spektrálních dat

Před vlastní kalibrací statistického modelu je třeba provést předzpracování dat. Mezi tyto úkony patří například *Splice correction*, což je funkce, která vyhlazuje spektrální křivku. Vyhlazením spektrálních křivek jsou eliminovány šumy, vzniklé při měření, a zmírněny ostré přechody mezi jednotlivými spektrálními pásy (700 nm, 1 400 nm a 2 100 nm). Mezi další možnosti předzpracování dat patří první a druhá derivace, které mohou zvýraznit absorpční vlastnosti (Martens a Naes, 1989), nebo metoda *continuum removal*, která slouží k lepší interpretovatelnosti a srovnatelnosti absorpčích pásů. Provádí se normalizací spekter na společnou základnu (*baseline normalization*) tvorbou křivky (*convex hull*) vytvořené kolem spektrální křivky a následnou projekci poměrů mezi oběma křivkami (obr. 6.).

Obr. 6 Příklad aplikace Continuum removal (Youngentob et al., 2011)

2.6 Používané statistické metody pro tvorbu modelů

Nejčastěji využívanou metodou pro tvorbu modelů pro predikci půdních vlastností je regrese částečných nejmenších čtverců (PLSR). Metodu představili Wold et al. (1983). Jedná se o metodu vícerozměrné regrese, která kombinuje prvky analýzy hlavních komponent a vícenásobné regrese. To je zvláště užitečné, když potřebujeme předvídat sadu závislých proměnných z velmi velké sady nezávislých proměnných, tedy v případech, kdy použití jednoduché regrese není možné (například z důvodů multikolinearity). Podmínkami pro použití regresní metody jsou normální rozdělení dat, absence heteroskedacticity, normalita reziduí, atd. V opačném případě je třeba zvolit jinou statistickou metodu, např. *support vector machines* (SVM).

Dalšími používanými metodami jsou: regrese hlavních komponent (PCR), vícerozměrné adaptivní regresní spliny (MARS), analýza hlavních komponent (PCA), kroková vícenásobná lineární regrese (SMLR), umělé neuronové sítě (ANN), regresní stromy (RT) a další.

Viscarra Rossel a Behrens (2010) srovnali úspěšnost předpovědí organického uhlíku, obsahu jílu a aktivní půdní reakce (pH_H₂O) použitím šestnácti různých statistických metod. Výsledky (znázorněné v tabulce 7) ukazují, že nejvhodnějšími predikčními metodami jsou PLSR a SVM, dále pak kombinace metod, především DWT (diskrétní vlnková transformace) s metodami MARS (vícerozměrné adaptivní regresní spline), SVM, RF (*random forests*) a dalšími.

Tab. 7 Porovnání predikcí vybraných vlastností použitím různých statistických metod, algoritmů a jejich kombinací (Viscarra Rossel a Behrens, 2010)

	Orga	nický uhlí	k		Jíl				pH_H	l2O		
	р	RMSE/%	R ²	AIC	P	RMSE/%	R ²	AIC	р	RMSE/%	R ²	AIC
PLSR	876	0.96	0.82		876	7.77	0.83		876	0.63	0.73	
MARS	876	1.02	0.80		876	7.79	0.83		876	0.63	0.72	
SVM	876	0.92	0.84		876	7.63	0.84		876	0.61	0.75	
BT	876	1.49	0.62		876	9.44	0.75		876	0.77	0.62	
RF	876	1.23	0.71		876	8.93	0.77		876	0.73	0.63	
DWT-PLSR	72	1.03	0.81		132	7.82	0.82		137	0.63	0.72	
DWT-MARS	72	0.88	0.85		132	7.59	0.84		137	0.63	0.73	
DWT-SVM	72	0.87	0.86		132	7.35	0.85		137	0.62	0.75	
DWT-BT	72	0.99	0.83		132	8.37	0.81		137	0.66	0.70	
DWT-RF	72	0.93	0.84		132	7.53	0.84		137	0.63	0.72	
DWT-MLR _{QP}	72	0.91	0.84		132	7.73	0.83		137	0.62	0.74	
FS _{vip} -MLR _{op}	29	0.98	0.82		31	7.63	0.84		29	0.61	0.74	
FSMARS-MLROP	14	0.99	0.81		13	7.35	0.85		11	0.60	0.75	
DWT-ANN	72	0.75	0.89	- 3078	132	6.42	0.88	-2470	137	0.53	0.81	- 2247
FS _{var} -ANN	29	0.83	0.87	- 3052	31	6.80	0.87	-2608	29	0.56	0.79	-2402
FSMARS-ANN	14	0.82	0.87	- 3095	13	7.08	0.86	- 2600	11	0.58	0.77	-2399

PLSR - Partial least squares regression (regrese částečných nejmenších čtverců), MARS - Multivariate adaptive regression splines (vícerozměrné adaptivní regresní spline), SVM - Support vector machines, BT - Boosted regression trees (regresní stromy), RF - Random forests, DWT - Discrete wavelet transform (diskrétní vlnková transformace), FS - Feature selection, MLR - Multiple linear regression (vícenásobná lineární regrese), ANN - Artificial neural network (umělé neuronové sítě)

2.7 Spektrální půdní knihovny

Spektra se archivují ve spektrálních knihovnách, které lze později využít jako zdroj referenčních dat. Jedná se o soubory dat, které obsahují údaje o odrazivosti různých typů povrchů v závislosti na vlnové délce. Součástí knihoven jsou kromě půdních vlastností i data o měření (půdotvorný substrát, mateční hornina, souřadnice odběru vzorku, informace o klimatu, morfologické znaky, rostlinný pokryv apod.) (Shepherd a Walsh, 2002).

V současné době existuje několik spektrálních knihoven. Knihovna Jet Propulsion Laboratory (JPL) a knihovna Johns Hopkins University (JHU), zahrnuté do knihovny ASTER (Advanced Spaceborne Thermal Emission Reflection Radiometer), obsahují kromě spekter půd i spektra umělých materiálů, hornin, minerálů, meteoritů, vegetace, sněhu a ledu. Půdních spekter ale obsahuje velmi malé množství, stejně jako ostatní knihovny, jako například termální emisní spektrální knihovna horninotvorných minerálů (Christensen et al., 2000) nebo Ramanova spektrální knihovna minerálů (Raman, 2006). Specializovaná půdní knihovna (Global Soil Spectral Library) je teprve vyvíjena a v současné době obsahuje kolem 5000 půdních spekter.

I v České republice jsou snahy o vytvoření spektrálních knihoven. Vznikající knihovna Soil spectral library of the Czech soils (SSL-CZ) obsahuje přes 500 archivovaných spekter a je kompatibilní s Global Soil Spectral Library. Struktura české spektrální knihovny je znázorněna na obrázku 7. Skládá se z osmi tabulek. Tabulka s názvem *General* obsahuje identifikační číslo, datum záznamu, případně jeho aktualizace, zkratku názvu místa odběru, nebo terénního měření. Tabulka *Spatial* obsahuje prostorové informace, *Soil class* půdní klasifikaci, *Environmental* půdní podmínky, *Auxilliary* pomocné informace o vzorcích, *Soil analysis* laboratorně stanovené vlastnosti, *Methods* obsahující informace o použitých metodách analýzy a *Spectra* obsahující odkazy na odděleně uložené soubory spekter odrazivosti (Brodský et al., 2011).

Obr. 7 Struktura české půdní spektrální knihovny (Brodský et al., 2011)

3. HYPOTÉZY A CÍLE

Hypotézy:

- Existuje popsatelný vztah mezi spektrálními znaky lesních půd (ve viditelném a blízkém infračerveném spektru) a jejich vlastnostmi.
- VNIR spektroskopie může sloužit pro predikci vlastností lesních půd.
- Je možné vytvořit univerzální predikční model aplikovatelný na různé oblasti odběru.

Cíle práce:

- Ověření platnosti známých korelací mezi spektrálními znaky a vlastnostmi půd i pro účely zkoumání půd lesních.
- Nalezení dalších predikovatelných vlastností lesních půd, které lze spektroskopií odhadovat.
- Tvorba modelů pro účely zkoumání lesních půd.

4. METODIKA

4.1 Použité půdní vzorky – původ a zpracování

Při zpracování dizertační práce bylo použito více než 5200 vzorků odebraných z celých půdních profilů pomocí sondýrky nebo z kopaných půdních sond. Část půdních vzorků pochází z vlastní diplomové práce, část ze zdrojů katedry, ostatní vzorky byly zapůjčeny z jiných pracovišť. Místa odběrů byla zvolena tak, aby bylo pokryto celé území ČR a aby byly do zkoumání zahrnuty různé lesní půdní typy (podzol, kryptopodzol, kambizem, pseudoglej, luvizem). Odběrová stanoviště jsou umístěna v různých nadmořských výškách, v lesích s různou druhovou skladbou. Práce se nezabývá měřením v terénu, jsou používány pouze vysušené vzorky upravené na jemnozem I (2 mm), případně jemnozem II (0,2 mm) (Zbíral, 2002). Tímto je eliminován vliv vlhkosti půdy, který je na průběh spektrálních křivek zásadní a značně znesnadňuje terénní použití metody. Na půdních vzorcích byly provedeny vybrané analýzy konvenčními laboratorními metodami (viz níže).

Obr. 8 Spektrometr FieldSpec® 3

Měření spekter a analytické stanovení půdních vlastností je prováděno na vzorcích upravených na jemnozem I (II) v Petriho miskách v laboratořích KPOP ČZU v Praze spektrometrem FieldSpec® 3 s High Intensity Contact Probe (Obr. 8). Rozsah spektrometru je 350 - 2500 nm.

4.1.1 Jizerské hory

První soubor vzorků pochází z vlastní diplomové práce a ze zdrojů katedry pedologie a ochrany půd ČZU. Jedná se o 348 vzorků z nadložních i minerálních horizontů a půdotvorných substrátů z Jizerských hor (Smědava, Bukovec, Paličník). Mateční horninou je ve většině případů typická Jizersko-Krkonošská výrazně porfyrická středně zrnitá biotitická žula. Pouze vrch Bukovec (1005 m n.m.) se nachází na výlevu ultrabazického olivinického nefelinitu. Nejčastějším půdním typem je zde kambizem modální, či rankerová. Dále se zde nachází podzol, kryptopodzol, ojediněle i další půdní typy.

Na tomto souboru vzorků bylo tradičními laboratorními metodami stanoveno: aktivní a výměnná půdní reakce (Zbíral, 2002), obsah přístupných živin (Ca, Mg, K, P) ve výluhu Mehlich III, kationtová výměnná kapacita podle Bowera (Zbíral, 2002), obsahy hliníku a formy hliníku ve výluhu H_2O (Al_{H2O}) a 0,5 M KCl (Al_{KCl}) (Drábek et al., 2003).

4.1.2 Novohradské hory

Novohradské hory jsou příkladem mimořádné vysokého stupně zachovalosti přírodního prostředí. Na území těchto jihočeských hor bylo odebráno celkem 116 vzorků nadložních i minerálních horizontů, na kterých bylo laboratorně stanoveno: aktivní a výměnná půdní reakce (Zbíral, 2002), obsah oxidovatelného uhlíku modifikovanou Tjurinovou metodou (Pospíšil, 1964), obsah přístupných živin (Ca, Mg, K, P) ve výluhu Mehlich III, kationtová výměnná kapacita podle Bowera (Zbíral, 2002), obsahy hliníku a formy hliníku ve výluhu H₂O (Al_{H2O}) a 0,5 M KCl (Al_{KCl}) (Drábek et al., 2003), kvalita humusových látek (barevný kvocient Q_{4/6}) spektrofotometrickým proměřením alkalického výluhu půd (Chen et al., 1976).

4.1.3 Moravskoslezské Beskydy - Jablunkovsko

Oblast se nachází ve východním Slezsku. Bylo zde odebráno celkem 97 vzorků nadložních i minerálních horizontů, na kterých bylo laboratorně stanoveno: aktivní a výměnná půdní reakce (Zbíral, 2002), kvalita humusových látek (barevný kvocient Q_{4/6}) spektrofotometrickým proměřením alkalického výluhu půd (Chen et al., 1976) a obsahy Ca,

Cd, Cu, Fe, K, Mg, Mn, Na, Pb, Si a Zn, které byly stanoveny v připraveném vodním výluhu metodou ICP – OES (optická emisní spektrometrie s indukčně vázaným plazmatem).

4.1.4 Žofínský prales

Žofínský prales je národní přírodní rezervace v Novohradských horách. Od poloviny 18. století se na většině tohoto území vyvíjí prales bez jakéhokoliv zásahu člověka. Vzorky byly zapůjčeny z Výzkumného ústavu Silva Taroucy pro krajinu a okrasné zahradnictví (VÚKOZ) v Brně. Jedná se o 309 vzorků z horizontů A a 310 vzorků z horizontů B ve frakci 2 mm a stejný počet vzorků ve frakci 0,2 mm. Celkem je to tedy 1238 vzorků, na kterých bylo laboratorně stanoveno:

- Al, Mn, Fe (výluh KCl) (Drábek et al., 2003)
- Výměnná acidita (VA) (Gillman a Sumpter, 1986)
- Al, Mg, Fe, Mn, Ca, Na, K (výluh 1M BaCl₂) (Bernhardt, 1994)
- Al $(x)^{1+}$, Al $(x)^{2+}$, Al $(x)^{3+}$ (výluh KCl) (Drábek et al., 2003)
- Al, Mn, Fe, Si (extrakce šťavelanem) (Courchesne a Turmel, 2008)
- Al, Mn, Fe, Si (extrakce dithioničnanem) (McKeague et al., 1971)
- pH_{KCl} (Gillman, 1979)
- Obsah oxidovatelného uhlíku (C_{ox}) (Zbíral, 2002)
- Kationtová výměnná kapacita podle Bowera (Zbíral, 2002)

4.1.5 Soubor vzorků z celé ČR

Velmi cenný soubor vzorků a dat (dále jen velký soubor) byl zapůjčen z ÚHÚL -Ústavu pro hospodářskou úpravu lesů, ÚKZÚZ - Ústředního kontrolního a zkušebního ústavu zemědělského a IFER – Ústavu pro výzkum lesních ekosystémů. Jedná se o 3500 vzorků nadložních i minerálních horizontů odebraných z celého území ČR. Stanovené vlastnosti jsou znázorněny v tabulce 8. Jednotlivé okresy, ve kterých byly vzorky odebírány, jsou vypsány v tabulce 9.

Horizont L, F, H - organický								
Označení	název	metoda	jednotky					
pH_VYM	ph/CaCl₂							
N_NIR_HH	Dusík	NIR	%					
COXNIRHH	Сох	NIR	%					
AI_AR	Hliník	výluh lučavka královská	mg/kg					
Ca_AR	Vápník	výluh lučavka královská	mg/kg					
Cd_AR	Kadmium	výluh lučavka královská	mg/kg					
Cr_AR	Chrom	výluh lučavka královská	mg/kg					
Cu_AR	Měď	výluh lučavka královská	mg/kg					
Fe_AR	Železo	výluh lučavka královská	mg/kg					
K_AR	Draslík	výluh lučavka královská	mg/kg					
Mg_AR	Hořčík	výluh lučavka královská	mg/kg					
Mn_AR	Mangan	výluh lučavka královská	mg/kg					
Na_AR	Sodík	výluh lučavka královská	mg/kg					
P_AR	Fosfor	výluh lučavka královská	mg/kg					
Pb_AR	Olovo	výluh lučavka královská	mg/kg					
Zn_AR	Zinek	výluh lučavka královská	mg/kg					
	Horizont A1, A2 -	minerální						
Označení	název	metoda	jednotky					
pH_VYM	ph/CaCl ₂							
pH_H2O	ph/H ₂ O							
COXNIRMH	Cox	NIR	%					
N_NIR_MH	Dusík	NIR	%					
AI_M3	Hliník	výluh Mehlich III	mg/kg					
P_M3	Fosfor	výluh Mehlich III	mg/kg					
K_M3	Draslík	výluh Mehlich III	mg/kg					
Ca_M3	Vápník	výluh Mehlich III	mg/kg					
Mg_M3	Hořčík	výluh Mehlich III	mg/kg					
VA	Výměnná acidita Al+H	výluh BaCl₂	mekv./kg					
AC_VYM	Výměnná acidita		mekv./kg					
K_VYM	Výměnné kationty (draslík)	výluh BaCl₂	mekv./kg					
Ca_VYM	Výměnné kationty (vápník)	výluh BaCl₂	mekv./kg					
Mg_VYM	Výměnné kationty (hořčík)	výluh BaCl₂	mekv./kg					
Na_VYM	Výměnné kationty (sodík)	výluh BaCl₂	mekv./kg					
Mn_VYM	Výměnné kationty (mangan)	výluh BaCl₂	mekv./kg					
AI_VYM	Výměnné kationty (hliník)	výluh BaCl₂	mekv./kg					
Fe_VYM	Výměnné kationty (železo)	výluh BaCl₂	mekv./kg					
кук	Aktuální kationtová výměnná kapacita	výluh BaCl ₂	mekv./kg					
BS	Nasycení sorpčního komplexu bazemi	výluh BaCl₂	%					

Tab. 8 Stanovené půdní vlastnosti na souboru vzorků z celé ČR

Benešov	Cheb	Louny	Praha-západ	Teplice
Beroun	Chomutov	Mělník	Prachatice	Trutnov
Blansko	Chrudim	Mladá Boleslav	Prostějov	Třebíč
Brno	Jablonec n. Nisou	Most	Přerov	Uherské Hradiště
Bruntál	Jeseník	Náchod	Příbram	Ústí nad Labem
Břeclav	Jihlava	Nový Jičín	Rakovník	Vsetín
Česká Lípa	Jindřichův Hradec	Olomouc	Rokycany	Vyškov
České Budějovice	Karlovy Vary	Opava	Rychnov nad Kněžnou	Zlín
Český Krumlov	Kladno	Pardubice	Semily	Znojmo
Děčín	Klatovy	Pelhřimov	Sokolov	Žďár nad Sázavou
Domažlice	Kolín	Písek	Strakonice	
Frýdek-Místek	Kroměříž	Plzeň-jih	Svitavy	
Havlíčkův Brod	Kutná Hora	Plzeň-město	Šumperk	
Hodonín	Liberec	Plzeň-sever	Tábor	
Hradec Králové	Litoměřice	Praha-východ	Tachov	

Tab. 9 Oblasti odběrů – okresy

4.1.6 Lesní školky

Půdy lesních školek nepatří mezi typické zástupce lesních půd a jsou v práci zahrnuty pouze pro ukázku dalšího možného praktického využití VNIR spektroskopie. Data nejsou použita při tvorbě predikčních modelů, mohou však sloužit pro jejich praktické testování.

371 vzorků pochází z lesních školek, nacházejících se v různých částech republiky -Česká Lípa, Křivoklát, Hořice, Praha, Moravská Třebová, Nové Město na Moravě, Planá nad Lužnicí, Budišov, Zadní Bor, Cikar, Brno, Český Rudolec, Vlčí Luka, Dvory nad Lužnicí. Na vzorcích byla v laboratořích stanovena aktivní a výměnná půdní reakce (Zbíral, 2002), obsah oxidovatelného uhlíku modifikovanou Tjurinovou metodou (Pospíšil, 1964), obsah přístupných živin (Ca, Mg, K, P) ve výluhu Mehlich III, celkový obsah dusíku.

4.2 Zpracování dat

Veškerá vstupní data je nutné nejprve podrobit kontrole, která musí být velice důkladná, jelikož jakákoliv nesmyslná hodnota v tabulce o rozměrech až cca 4100 x 2500 buněk (tedy přes deset milionů hodnot) může vést k závažným chybám. Takovou nesmyslnou hodnotou je míněna taková, která je evidentně špatně zapsaná nebo stanovená, nikoliv nehodící se, ale správně naměřená. Cílem práce je objektivně zhodnotit použitelnost spektroskopické metody při predikci vlastností půdy, která je přirozeně velmi heterogenním prostředím.
Ke stanovení základních statistických popisných charakteristik je používán program Statistica 12. K předzpracování spektrálních dat, konkrétně k vyhlazení spektrálních křivek (*splice correction*) je používán program ViewSpec Pro 6.0 (ASD Inc.). Program R (R Core Team, 2012) je využit pro úpravu spekter pomocí *Continuum Removal*. Pro jejich kalibraci (*partial least squares regression* - regrese metodou částečných nejmenších čtverců, *support vector machines, principal components regression*) slouží programy Unscrambler X 10.3 (CAMO Software) a R (R Core Team).

Je statisticky hodnocen vztah spektrálních znaků a půdních vlastností, které byly získány tradičními laboratorními metodami. Je testována vhodnost použití různých metod přípravy dat, jako je první a druhá derivace, nebo *Continuum Removal*. Publikované modely pro predikci půdních charakteristik ze spektrálních znaků jsou testovány, upraveny jejich parametry, případně jsou tvořeny nové modely pomocí statistických metod PLSR, PCR a SVM. Pro statistické hodnocení jsou používána nejen všechna data dohromady, ale jsou rovněž dělena do podsouborů podle oblastí odběrů a podle horizontů, aby bylo možné popsat nejvhodnější způsob zadávání dat pro úspěšnou predikci. Dále je testován vliv použitého spektrálního pásma na úspěšnost předpovědi. Některé vlastnosti jsou lépe predikovatelné při použití celého VNIR spektra, pro jiné je vhodnější použití pouze určitého vybraného spektrálního pásma, které je vybíráno buď pokusně, nebo na základě literatury (viz tabulka 1, strana 5).

Nové modely jsou ověřovány (validovány). Uváděné předpovědi vyjádřené hodnotami R^2 a RMSE, jsou výsledkem cross validace, při které se soubor dat rozdělí na více podsouborů, jeden (10% z celku) se vyjme a zbylé se použijí pro kalibraci modelu, následně je model aplikován na soubor, který byl před tím vyjmut, jsou srovnány hodnoty predikované modelem a změřené v laboratoři. To se opakuje pro všechny podsoubory. Následně jsou spočítány parametry R^2 a RMSE.

Pro takto vzniklé skupiny bude kalibrován model. Posléze budou nové modely ještě podrobeny externí validaci, při které bude model aplikován na jiný soubor dat a zjišťována úspěšnost predikce.

5. VÝSLEDKY A DISKUZE

Jelikož je úspěšnost metody při predikci půdních vlastností vysoce závislá na vhodném způsobu zadávání vstupních dat a jejich statistickém předzpracování a vyhodnocování, je celá kapitola *Výsledky a diskuze* rozdělena na podkapitoly, ve kterých jsou jednotlivé způsoby testovány a rozšiřují výsledky podkapitoly předcházející. Cílem je najít tímto způsobem nejvhodnější kombinaci způsobu zadávání, statistického předzpracování a zpracování spektrálních dat pro dosažení nejlepších výsledků předpovědi půdních vlastností. Pokud nebude uvedeno jinak, jsou parametry R^2 (koeficient determinace) a RMSE (střední kvadratická chyba) výsledkem cross validace.

5.1 Celý datový soubor a jeho rozdělení podle horizontů a oblastí

Jako první byl statisticky hodnocen souhrnný datový soubor (Jizerské hory, Novohradské hory, Moravskoslezské Beskydy, Žofínský prales, velký soubor) bez ohledu na příslušnost k oblasti odběru, či horizontu. Byla použita spektra bez předzpracování v celém rozsahu 350 – 2 500 nm. Statistickou metodou byla, v literatuře často doporučovaná, regrese částečných nejmenších čtverců (PLSR). Na obrázku 9, který znázorňuje všecha spektra dohromady vidíme velkou variabilitu jejich průběhu, která může být způsobena mj. rozdílným množstvím organické hmoty v minerálních a organických horizontech.

Obr. 9 Znázornění spekter – souhrnný soubor dat

Byly hledány vlastnosti společné pro co největší množství měřených vzorků. Konkrétně se jednalo o množství oxidovatelného uhlíku – Cox (4102 vzorků), celkový obsah dusíku (3485 vzorků) a výměnnou půdní reakci - pH CaCl₂ (3466 vzorků). Popisné charakteristiky těchto vlastností jsou znázorněny v tabulce 10.

Výsledky pro nedělený datový soubor po predikci pomocí metody PLSR jsou znázorněny v tabulce 11. Výsledky se zdají být velice dobré, jejich publikace by však byla správná jen v případě výměnné reakce. Jak je patrné na obrázku 10, který znázorňuje rozdělení četností dat jednotlivých vlastností, normální rozdělení je pouze v případě výměnné půdní reakce. Výsledky obsahu oxidovatelného uhlíku a dusíku tvoří dva shluky. Ty pak, jak lze vidět na obrázku 11, poskytují při proložení regresní přímkou vysokou hodnotu koeficientu determinace. Výsledky jsou ale zkreslené, nelze je správně interpretovat. Predikce výměnné reakce je i přes nižší hodnotu koeficientu determinace úspěšnější. Jelikož je pro uplatnění PLSR normální rozdělení dat podmínkou, bude třeba soubor podrobit jinému statistickému zpracování, viz další kapitoly. V literatuře se však někdy metoda používá, aniž byla normalita rozdělení dat testována, jelikož PLSR vykazuje vysoké hodnoty koeficientu determinace.

	N platných	Průměr	Minimum	Maximum	Sm.odch.
COX (%)	4102	21,33	0,18	52,71	16,89
pH_CaCl₂	3466	3,74	2,41	9	0,66
N (mg.kg ⁻¹)	3485	0,95	0,01	2,53	0,64

Tab. 10 Popisné statistické charakteristiky – souhrnný soubor dat

Obr. 10 Statistické rozdělení četností - souhrnný soubor dat

Tab. 11 Úspěšnost predikce – souhrnný soubor dat

	pH_CaCl₂	Cox (%)	N (mg.kg⁻¹)
R ² - validační	0,51	0,92	0,77
RMSE - validační	0,46	4,77	0,309

Obr. 11 Grafické znázornění predikce Cox – souhrnný soubor dat (stanovené x predikované honoty)

5.1.1 Vliv oblastí odběru a horizontu na úspěšnost predikce

5.1.1.1 Jizerské hory, Novohradské hory, Moravskoslezské Beskydy

Na obrázku 12 jsou pro příklad zobrazeny spektrální křivky vzorků z Jizerských hor. Průběžné výsledky jsou znázorněny v tabulce 12, příklad úspěšnosti předpovědi v prostředí programu Unscrambler X na obrázku 13.

Obr. 12 Naměřená spektra – Jizerské hory (44 vzorků)

Výsledky ukazují, že při zkoumání tohoto datového souboru je úspěšnost predikce půdních vlastností u organominerálních a minerálních horizontů vyšší než u horizontů nadložních. V případě dělení souboru podle příslušnosti k lokalitě nevykazují výsledky jednoznačný trend a nelze tedy takové dělení nadále chápat jako zásadní způsob přípravy dat, vedoucí k úspěšnější predikci.

Tab. 12 Výsledky predikce – horské lesní půdy

				R ² (vali	dační)		
	Počet vzorků	pH_H₂O	pH_KCl	Q 4/6	Cox (%)	KVK (mmol.100g ⁻¹)	Suma bazických kationtů (mmol.100g ⁻¹)
Celý soubor	240	0,34	0,50	0,61	0,72	0,60	0,58
Nadložní horizonty	124	0,43	0,48	0,39	0,78	-	-
Minerální horizonty	86	0,69	0,80	0,53	-	-	-
Novohradské hory	14	0,90	0,87	0,93	-	0,95	0,92
Jizerské hory	44	0,43	-	-	-	0,86	0,86
Jablunkovsko	95	0,31	0,60	0,60	-	-	-

Obr. 13 Příklad předpovědi – pH_KCl (minerální horizonty)

5.1.1.2 Velký datový soubor (celá ČR)

V tabulce 13 jsou znázorněny výsledky predikce výměnné půdní reakce a obsahu dusíku při použití celého souboru a při jeho rozdělení na organické a minerální horizonty. Z výsledků je patrné, že na rozdíl od předchozích výsledků vykazuje celý soubor vyšší hodnotu koeficientu R², avšak spolu s ním roste i střední kvadratická chyba (RMSE), která by měla v ideálním případě naopak klesat.

	R ²	RMSE
pH_CaCl₂ (celý soubor)	0,51	0,46
N (mg.kg ⁻¹) (celý soubor)	0,77	0,31
pH_CaCl ₂ (min. hor.)	0,32	0,44
pH_CaCl ₂ (org. hor.)	0,64	0,44
N (mg.kg ⁻¹) (min. hor.)	0,44	0,11
N (mg.kg ⁻¹) (org. hor.)	0,37	0,25

Tab. 13 Úspěšnost predikce podle horizontů – velký soubor

5.1.2 Shrnutí

Z průběžných výsledků je patrné, že rozdělování datového souboru podle oblastí odběru vzorků nezvyšuje vždy prokazatelně úspěšnost predikce půdních vlastností a nelze tedy tento způsob přípravy dat vždy jednoznačně doporučit. V otázce dělení dat podle příslušnosti k půdnímu horizontu je závěr komplikovanější. V některých případech se takové rozdělení jeví jako výhodnější, v jiných je úspěšnost předpovědí vyjádřená koeficientem determinace výrazně lepší ve prospěch neděleného souboru. V takovém případě je však třeba sledovat i další veličinu popisující úspěšnost predikce, střední kvadratickou chybu, která by měla na rozdíl od koeficientu determinace klesat, k čemuž však ve výše uvedených případech nedochází.

Organické a minerální horizonty mají zásadně odlišný charakter a většinou se u nich laboratorně stanovují rozdílné vlastnosti. Pokud jsou některé vlastnosti společně stanoveny pro horizonty celého půdního profilu, pak jsou na nich jasně patrné rozdíly. Data nemají normální rozdělení (je bimodální) a výsledky nelze správně interpretovat. Tento průběžný závěr bude v dalších kapitolách ověřen použitím metody SVM, která není tak zásadně citlivá na rozdělení dat jako regresní (lineární) metody.

5.2 Vliv použité jemnozemě na úspěšnost predikce

Na vzorcích z Žofínského pralesa je možnost sledovat úspěšnost predikce v závislosti na zrnitosti půdy, jelikož jsou k dispozici vzorky přesáté přes síta o velikosti ok 2 mm a 0,2 mm. Úspěšnost predikce v závislosti na použitém typu jemnozemě je znázorněna v tabulce 14. Výsledky nenaznačují, že by použití jemnozemě II v jakémkoliv případě zvyšovalo úspěšnost predikce, naopak dochází ke zhoršení.

Vlastnost		P	LSR	Vlastnost		PI	LSR
		2 mm	0,2 mm			2 mm	0,2 mm
Сох	R ²	0,41	0,26	Fe_KCl	R ²	0,66	0,40
(%)	RMSE	1,70	1,88	(mg.kg ⁻¹)	RMSE	70,21	93,18
pH_KCl	R ²	0,50	0,35	Al (X) 1+	R ²	0,58	0,31
	RMSE	0,13	0,15	(mg.kg ⁻¹)	RMSE	16,59	21,38
кук	R ²	0,31	0,15	AI (Y) 2+	R ²	0,19	0,03
(mmol+.kg⁻¹)	RMSE	15,10	17,01	(mg.kg ⁻¹)	RMSE	2,90	3,14
VA	R ²	0,49	0,23	AI 3+	R ²	0,57	0,19
(mmol+.kg ⁻¹)	RMSE	16,53	20,57	(mg.kg ⁻¹)	RMSE	92,68	126,89
Al_vym	R ²	0,57	0,23	Al_ox	R ²	0,58	0,30
(mg.kg ⁻¹)	RMSE	122,57	163,49	(mg.kg ⁻¹)	RMSE	655,93	841,23
Fe_vym	R ²	0,62	0,34	Mn_ox	R ²	0,44	0,36
(mg.kg ⁻¹)	RMSE	46,68	61,73	(mg.kg ⁻¹)	RMSE	120,76	128,95
Mg_vym	R ²	0,35	0,16	Fe_ox	R ²	0,58	0,39
(mg.kg ⁻¹)	RMSE	16,15	16,58	(mg.kg ⁻¹)	RMSE	2316,20	2791,6
Mn_vym	R ²	0,42	0,32	Si_ox	R ²	0,30	0,22
(mg.kg ⁻¹)	RMSE	33,62	36,27	(mg.kg ⁻¹)	RMSE	124,14	131,65
Ca_vym	R ²	0,29	0,07	Al_dit	R ²	0,29	0,10
(mg.kg ⁻¹)	RMSE	0,19	0,21	(mg.kg ⁻¹)	RMSE	914,34	1045,40
Na_vym	R ²	0,05	0,03	Mn_dit	R ²	0,45	0,37
(mg.kg ⁻¹)	RMSE	8,46	8,63	(mg.kg ⁻¹)	RMSE	131,85	140,59
K_vym	R ²	0,43	0,18	Fe_dit	R ²	0,65	0,42
(mg.kg ⁻¹)	RMSE	21,93	25,32	(mg.kg ⁻¹)	RMSE	2540,90	3268,5
AI_KCI	R ²	0,61	0,23	Si_dit	R ²	0,17	0,13
(mg.kg ⁻¹)	RMSE	107,87	150,68	(mg.kg ⁻¹)	RMSE	1365,00	1430,1
Mn_KCl	R ²	0,40	0,31				
(mg.kg ⁻¹)	RMSE	60,51	64,84				

Tab. 14 Srovnání predikce podle použité jemnozemě

5.3 Vliv použité statistické metody na úspěšnost predikce

V této kapitole budou data podrobena různým kombinacím předzpracování (bez předzpracování, první a druhá derivace, *continuum removal*) a statistických metod (PLSR, PCR, SVM). Změny průběhu spektrálních křivek podle použitého způsobu předzpravování jsou znázorněny na obrázcích 14,15 a 16. Základní popisné charakteristiky jsou uvedeny v tabulkách 15, 17 a 19. Takto budou pro každou vlastnost vždy vybrány dvě nejúčinnější kombinace, které budou v následující kapitole jednotlivě precizovány. V tabulkách 16, 18 a 20 jsou tyto nejlepší modely zvýrazněny tučným písmem a odlišeny barevným pozadím buňky (nejlepší zeleně, druhý nejlepší žlutě). Korelační matice a histogramy jsou zobrazeny v kapitole Přílohy.

Viscarra Rossel a Behrens (2010) ve své práci určili jako dvě nejúspěšnější metody SVM a PLSR. Výsledky této práce toto potvrzují, především ve prospěch SVM, a dále rozšiřují kombinováním těchto metod s různými způsoby předzpracování. Ve většině případů byla zjištěna nejvyšší úspěšnost predikce při kombinaci první derivace spektrálních dat a metody SVM, dále pak PLSR na datech bez předpracování a SVM po provedení continuum removal. Další úspěšnou kombinací bylo v některých případech použití 2. derivace a SVM. Naopak regresní metody na datech předzpracovaných druhou derivací byly jednoznačně nejméně úspěšné. Regresní metody PLSR a PCR poskytují velmi podobné výsledky, většinou v mírný prospěch PLSR.

	Popisné statistik	ky (minerální hori	izonty)		
	N platných	Průměr	Minimum	Maximum	Sm.odch.
Proměnná					
pH_CaCl₂	1337	3,62	2,8	7,4	0,53
pH_H₂O	1332	4,29	3,3	7,9	0,54
Cox (%)	1334	4,82	0,18	25,20	3,29
DUSIK (mg.kg ⁻¹)	1334	0,20	0,01	1,34	0,15
P_M3 (mg.kg ⁻¹)	1338	17,04	0,01	346	26,52
K_M3 (mg.kg ⁻¹)	1338	90,20	4	561	63,85
Ca_M3 (mg.kg ⁻¹)	1338	405,81	1,50	10400	858,76
$Mg_M3 (mg.kg^{-1})$	1338	70,30	2,27	2280	147,97
VA (me.100g ⁻¹)	1338	14,85	0,01	119	22,79
K_VYM (me.100g ⁻¹)	1338	0,56	0,01	14	1,07
Ca_VYM (me.100g ⁻¹)	1338	5,45	0,01	144	14,81
Mg_VYM (me.100g ⁻¹)	1338	1,47	0,01	34,4	3,44
Na_VYM (me.100g ⁻¹)	1338	0,10	0,01	3,45	0,19
Mn_VYM (me.100g ⁻¹)	1338	0,64	0,01	16,7	1,69
Al_VYM (me.100g ⁻¹)	1338	13,32	0,01	115	20,79
Fe_VYM (me.100g ⁻¹)	1338	0,70	0,01	13,9	1,66
KVK (me.100g ⁻¹)	1338	22,44	0,68	191	32,65
BS (%)	1338	26,32	1,7	135,7	25,59

Tab. 15 Popisné statistické charakteristiky – velký soubor, minerální horizonty

Obr. 14 Průběh spektrálních křivek, různé způsoby předzpracování – velký soubor, minerální horizonty

1229.000	ساري، سارياس	Bez př	edzpra	cování	Contin	uum re	emoval	1.	deriva	ce	2.	deriva	се
1338 V20	rku	PLSR	SVM	PCR									
pH_CaCl ₂	R ²	0,32	0,23	0,29	0,32	0,34	0,25	0,27	0,44	0,08	0,03	0,16	0,00
• = •	RMSE	0,44	0,46	0,44	0,44	0,43	0,45	0,45	0,40	0,51	0,52	0,48	0,53
pH H₂O	R ²	0,29	0,19	0,26	0,30	0,29	0,18	0,27	0,46	0,03	0,03	0,17	0,00
• = -	RMSE	0,45	0,50	0,46	0,45	0,47	0,49	0,46	0,41	0,53	0,53	0,49	0,54
Сох	R ²	0,61	0,65	0,61	0,55	0,64	0,54	0,59	0,69	0,51	0,02	0,47	0,00
(%)	RMSE	2,06	1,96	2,06	2,20	1,97	2,23	2,11	1,85	2,30	3,26	2,42	3,29
Ν	R ²	0,44	0,50	0,45	0,41	0,49	0,40	0,43	0,58	0,38	0,01	0,38	0,00
(mg.kg ⁻¹)	RMSE	0,11	0,11	0,11	0,12	0,11	0,12	0,11	0,01	0,12	0,15	0,12	0,15
P_M3	R ²	0,03	0,04	0,04	0,02	0,06	0,03	0,02	0,10	0,01	0,00	0,02	0,00
(mg.kg ⁻¹)	RMSE	26,08	26,39	25,98	26,21	26,14	26,16	26,29	25,72	26,37	26,55	26,70	26,55
к_мз	R ²	0,17	0,15	0,15	0,15	0,20	0,08	0,18	0,31	0,06	0,00	0,09	0,00
(mg.kg ⁻¹)	RMSE	58,34	59,63	58,77	58,91	58,44	61,14	58,00	53,93	61,82	63,81	60,98	63,91
Ca_M3	R ²	0,25	0,13	0,15	0,32	0,24	0,15	0,28	0,35	0,00	0,02	0,12	0,00
(mg.kg ⁻¹)	RMSE	744,78	853,22	789,58	709,04	795,70	789,32	729,23	729,04	859,42	849,34	830,17	859,53
Mg_M3	R ²	0,19	0,13	0,15	0,26	0,28	0,18	0,21	0,30	0,00	0,00	0,13	0,00
(mg.kg ⁻¹)	RMSE	132,89	154,82	136,61	127,40	143,52	133,78	131,88	137,38	147,93	148,00	154,82	148,13
VA	R ²	0,13	0,08	0,06	0,07	0,28	0,06	0,11	0,59	0,02	0,06	0,57	0,01
(me.100g ⁻¹)	RMSE	21,33	23,01	22,09	21,94	21,55	22,09	21,46	16,47	22,60	22,16	15,94	22,69
K_vym	R ²	0,06	0,06	0,04	0,04	0,20	0,04	0,07	0,42	0,03	0,02	0,37	0,01
(me.100g ⁻¹)	RMSE	1,04	1,09	1,06	1,05	1,02	1,05	1,04	0,88	1,06	1,06	0,90	1,07
Ca_vym	R ²	0,04	0,07	0,05	0,08	0,15	0,05	0,06	0,27	0,01	0,00	0,19	0,00
(me.100g ⁻¹)	RMSE	14,49	14,86	14,47	14,20	14,44	14,47	14,39	13,32	17,73	14,83	13,73	14,79
Mg_vym	R ²	0,05	0,06	0,05	0,07	0,20	0,05	0,07	0,32	0,01	0,01	0,21	0,01
(me.100g ⁻¹)	RMSE	3,36	3,43	3,35	3,31	3,32	3,35	3,32	3,00	3,42	3,42	3,15	3,43
Na_vym	R ²	0,05	0,05	0,03	0,03	0,18	0,03	0,05	0,35	0,01	0,03	0,34	0,01
(me.100g ⁻¹)	RMSE	0,18	0,21	0,19	0,19	0,20	0,19	0,18	0,18	0,19	0,19	0,19	0,19
Mn_vym	R ²	0,05	0,05	0,03	0,05	0,20	0,04	0,04	0,28	0,04	0,01	0,22	0,01
(me.100g ⁻)	RMSE	1,65	1,69	1,66	1,65	0,14	1,65	1,65	1,49	1,66	1,68	1,53	1,68
Al_vym	R ²	0,12	0,07	0,06	0,07	0,27	0,05	0,11	0,59	0,10	0,06	0,56	0,01
(me.100g ⁻)	RMSE	19,51	20,94	20,21	20,07	19,60	20,22	19,64	14,90	19,68	20,20	14,53	20,71
Fe_vym		0,14	0,16	0,14	0,13	0,30	0,12	0,12	0,39	0,12	0,03	0,26	0,00
(me.100g)	RIVISE	1,55	1,63	1,55	1,55	1,53	1,56	1,57	1,37	1,56	1,64	1,48	1,66
KVK		0,08	0,07	0,05	0,05	0,28	0,05	0,10	0,64	0,10	0,04	0,63	0,01
(me.100g)		31,29	32,81	31,90	21,81	30,68	31,86	30,98	22,29	31,06	32,02	21,11	32,46
(%) R2		0,20	24.00	0,17	21.60	24 50	24.09	0,26	20.65	24 55	0,03	0,16	0,00
(%)	RMSE	22,84	24.99	23,25	21,69	24,50	24,08	22,02	20,65	24,55	25,27	24,11	25,57

Tab. 16 Shrnutí úspěšnosti predikce jednotlivých vlastností podle použitých stat. metod – minerální horizonty

	Popisné statistil	ky (organické ho	rizonty)		
	N platných	Průměr	Minimum	Maximum	Sm.odch.
Proměnná					
pH_CaCl ₂ (%)	2129	3,82	2,56	9	0,73
DUSIK (mg.kg ⁻¹)	2151	1,41	0,12	2,53	0,31
Cox (%)	2151	35,94	2,78	52,71	9,16
AI_AR (mg.kg ⁻¹)	2155	4449,44	48,40	33140	4308,76
Ca_AR (mg.kg ⁻¹)	2155	5377,80	0,01	31910	4474,19
$Cd_AR (mg.kg^{-1})$	2155	0,50	0,01	2,6	0,33
Cr_AR (mg.kg ⁻¹)	2155	16,37	0,20	220	15,29
Cu_AR (mg.kg ⁻¹)	2155	16,70	1,30	160	9,75
Fe_AR (mg.kg ⁻¹)	2155	6525,29	0,01	129000	7388,83
K_AR (mg.kg ⁻¹)	2155	1416,89	149,00	10780	968,44
Mg_AR (mg.kg ⁻¹)	2155	1159,12	45,00	28600	1430,06
Mn_AR (mg.kg ⁻¹)	2155	1379,10	0,01	14640	1569,31
Na_AR (mg.kg ⁻¹)	2155	58,83	0,01	761	44,73
P_AR (mg.kg ⁻¹)	2155	986,56	99,00	2319	296,25
Pb_AR (mg.kg ⁻¹)	2155	95,40	0,25	15700	443,91
Zn_AR (mg.kg ⁻¹)	2155	85,33	25,00	489,00	44,86

Tab. 17 Popisné statistické charakteristiky – velký soubor, organické horizonty

Obr. 15 Průběh spektrálních křivek, různé způsoby předzpracování – velký soubor, organické horizonty

2155	مادئ	Bez př	edzpra	cování	Contin	uum re	emoval	1.	deriva	ce	2.	deriva	ce
2155 V20	Drku	PLSR	SVM	PCR									
pH_CaCl₂	R ²	0,64	0,62	0,61	0,66	0,72	0,61	0,59	0,72	0,26	0,16	0,46	0,00
	RMSE	0,44	0,45	0,46	0,43	0,39	0,46	0,47	0,39	0,63	0,67	0,54	0,73
N	R ²	0,37	0,41	0,33	0,35	0,54	0,28	0,25	0,62	0,07	0,05	0,13	0,00
(mg.kg ⁻¹)	RMSE	0,25	0,24	0,26	0,25	0,21	0,27	0,27	0,19	0,30	0,31	0,29	0,31
сох	R ²	0,76	0,79	0,76	0,78	0,83	0,77	0,75	0,83	0,52	0,40	0,66	0,00
(%)	RMSE	4,52	4,21	4,48	4,30	3,76	4,37	4,59	3,72	6,34	7,12	5,49	9,16
AI_AR	R ²	0,58	0,55	0,55	0,61	0,66	0,59	0,60	0,70	0,40	0,31	0,51	0,00
(mg.kg ⁻¹)	RMSE	2785,00	2924,70	2881,50	2707,80	2516,80	2765,80	2,73	2396,90	3344,60	3587,60	3044,00	4309,00
Ca_AR	R ²	0,65	0,56	0,56	0,69	0,73	0,56	0,59	0,76	0,35	0,22	0,50	0,00
(mg.kg ⁻¹)	RMSE	2657,00	2990,80	2975,30	2501,40	2337,90	2971,20	2881,30	2198,40	3615,60	3956,60	3187,30	4478,90
Cd_AR	R ²	0,06	0,09	0,04	0,05	0,17	0,04	0,02	0,24	0,01	0,01	0,13	0,00
(mg.kg ⁻¹)	RMSE	0,32	0,31	0,32	0,32	0,30	0,32	0,32	0,29	0,32	0,32	0,31	0,33
Cr_AR	R ²	0,34	0,34	0,34	0,35	0,39	0,34	0,35	0,41	0,24	0,20	0,30	0,00
(mg.kg ⁻¹)	RMSE	12,40	12,94	12,41	12,32	12,56	12,39	12,35	12,43	13,32	13,67	13,07	15,30
Cu_AR	R ²	0,30	0,33	0,24	0,26	0,33	0,24	0,23	0,38	0,22	0,18	0,27	0,00
(mg.kg ⁻¹)	RMSE	8,18	8,21	8,53	8,37	8,12	8,48	8,56	7,96	8,64	8,83	8,39	9,76
Fe_AR	R ²	0,47	0,44	0,42	0,46	0,49	0,45	0,47	0,51	0,40	0,25	0,39	0,00
(mg.kg ⁻¹)	RMSE	5383,90	5964,10	5610,70	5437,30	5683,40	5474,30	5390,60	5762,60	5960,20	6386,40	6213,30	7390,00
K_AR	R ²	0,38	0,42	0,37	0,44	0,50	0,42	0,31	0,56	0,05	0,02	0,27	0,00
(mg.kg ⁻¹)	RMSE	763,56	761,19	772,79	726,59	696,65	736,35	804,10	659,97	943,53	960,54	832,78	969,10
Mg_AR	R ²	0,30	0,28	0,25	0,35	0,37	0,35	0,30	0,42	0,01	0,02	0,13	0,00
(mg.kg ⁻¹)	RMSE	1195,60	1418,90	1235,30	1151,80	1290,70	1157,10	1195,90	1303,30	1420,10	1451,50	1458,50	1460,00
Mn_AR	R ²	0,27	0,31	0,23	0,37	0,45	0,25	0,02	0,50	0,06	0,05	0,19	0,00
(mg.kg ⁻¹)	RMSE	1337,60	1341,20	1373,80	1245,30	1197,80	1356,60	1398,90	1143,40	1523,30	1533,10	1412,40	1569,30
Na_AR	R ²	0,08	0,08	0,08	0,07	0,13	0,07	0,08	0,23	0,07	0,06	0,21	0,00
(mg.kg ⁻¹)	RMSE	42,94	42,97	43,03	43,04	41,90	43,05	43,02	40,39	43,19	43,31	40,51	44,75
P_AR	R ²	0,12	0,12	0,02	0,09	0,24	0,05	0,03	0,34	0,01	0,02	0,16	0,00
(mg.kg ⁻¹)	RMSE	278,62	280,12	292,78	282,00	260,30	288,79	292,42	243,82	294,75	293,42	271,73	296,37
Pb_AR	R ²	0,02	0,00	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,00
(mg.kg ⁻¹)	RMSE	440,53	825,79	440,59	441,79	814,00	442,02	441,00	793,38	440,91	440,84	759,65	444,28
Zn_AR	R ²	0,06	0,06	0,04	0,07	0,12	0,05	0,04	0,20	0,02	0,02	0,21	0,01
(mg.kg ⁻¹)	RMSE	43,54	43,94	44,01	43,20	42,48	43,82	43,98	40,72	44,44	44,31	40,12	44,76

Tab. 18 Shrnutí úspěšnosti predikce jednotlivých vlastností podle použitých stat. metod – organické horizonty

	Popisné statistil	ky (Žofín, A horiz	conty)		
	N platných	Průměr	Minimum	Maximum	Sm.odch.
Proměnná					
Cox (%)	309	9,39	4,60	19,75	2,22
pH_KCI	309	3,08	2,47	3,80	0,18
pH_KCI	309	3,08	2,46	3,77	0,18
KVK (ekv.kg ⁻¹)	309	133,74	78,10	203	18,10
VA (ekv.kg ⁻¹)	309	130,24	62,0	209	23,25
Al_vym (mg.kg ⁻¹)	309	823,01	272,	1416	185,90
Fe_vym (mg.kg ⁻¹)	309	181,44	29	388	75,44
Mg_vym (mg.kg ⁻¹)	309	63,71	16	213	20,02
Mn_vym (mg.kg ⁻¹)	309	40,02	1	242	44,19
Ca_vym (mg.kg ⁻¹)	309	0,34	0,040	1,99	0,23
Na_vym (mg.kg ⁻¹)	308	13,66	1	85	8,67
K_vym (mg.kg ⁻¹)	309	112,62	42	253	29,13
AI_KCI (mg.kg ⁻¹)	309	688,93	121,7	1127,20	171,61
Mn_KCI (mg.kg ⁻¹)	309	60,57	0,84	424,38	77,74
Fe_KCI (mg.kg ⁻¹)	309	228,03	12,49	625,69	120,26
AI(X) 1+ (mg.kg ⁻¹)	309	118,60	50,133	188,17	25,64
AI(Y) 2+ (mg.kg ⁻¹)	309	11,39	5,315	27,83	3,21
AI 3+ (mg.kg ⁻¹)	309	556,34	64,11	875,4	140,52
Al_ox (mg.kg ⁻¹)	309	4170,70	970,80	7493,2	1006,46
Mn_ox (mg.kg ⁻¹)	309	140,62	0,68	1092,8	161,54
Fe_ox (mg.kg ⁻¹)	309	12202,91	1463,28	30868,24	3559,68
Si_ox (mg.kg ⁻¹)	309	251,50	0	1624	147,86
Al_dit (mg.kg ⁻¹)	309	3473,90	383,75	6848,75	1083,32
Mn_dit (mg.kg ⁻¹)	309	175,63	0	1039,88	177,53
Fe_dit (mg.kg ⁻¹)	309	18039,19	3091,5	37043,5	4269,84
Si_dit (mg.kg ⁻¹)	309	1573,28	0	7085	1503,04

 $\textbf{Tab. 19} \ \text{Popisné statistické charakteristiky} - A \ \text{horizonty}, \ \check{Z} of inský \ prales$

Obr. 16 Průběh spektrálních křivek, různé způsoby předzpracování – Žofínský prales, A horizonty

		Bozz	řodzprac	wání	Cont	inuum ron	aoval		1 dorivace			2 dorivac	
309 vz	orků		svm			svm							
Cox	P ²	0.41	0.42	0.42	0.22	0.44	0.26	0.00	0.49	0.02	0.01	0 17	0.00
(%)	RMSF	1 70	1 70	1.68	1 82	1.66	1 92	2 22	1.63	2 22	2 22	2 03	2 22
pH Kcl	R ²	0.50	0.41	0.50	0.50	0.55	0.41	0.01	0.55	0.01	0.00	0.26	0.01
p	RMSE	0.13	0.14	0.13	0.13	0.12	0.14	0.18	0.12	0.18	0.18	0.16	0.18
кук	R ²	0,31	0,28	0,28	0,10	0,25	0,11	0,00	0,27	0,01	0,02	0,04	0,02
mmol+.kg ⁻¹	RMSE	15,10	15,35	15,40	17,19	15,64	17,11	18,22	15,52	18,04	17,90	17,85	17,97
VA	R ²	0,49	0,48	0,49	0,32	0,32	0,30	0,07	0,36	0,00	0,00	0,12	0,00
mmol+.kg ⁻¹	RMSE	16,53	16,80	16,68	19,25	19,14	19,52	22,42	18,68	23,31	23,30	21,82	23,34
Al_vym	R ²	0,57	0,55	0,56	0,40	0,46	0,39	0,19	0,46	0,00	0,00	0,26	0,00
(mg.kg ⁻¹)	RMSE	122,57	126,32	123,53	144,76	137,01	144,72	167,54	137,45	188,92	186,80	162,03	187,26
Fe_vym	R ²	0,62	0,58	0,62	0,48	0,56	0,46	0,10	0,61	0,01	0,00	0,26	0,01
(mg.kg ⁻¹)	RMSE	46,68	49,31	46,67	54,70	50,33	55,28	71,49	47,74	75,12	76,01	66,06	75,21
Mg_vym	R ²	0,35	0,37	0,35	0,12	0,42	0,11	0,19	0,43	0,00	0,00	0,18	0,00
(mg.kg ⁻¹)	RMSE	16,15	15,91	16,16	18,78	15,34	18,94	18,06	15,22	20,06	20,12	18,21	20,10
Mn_vym	R ²	0,42	0,46	0,43	0,46	0,49	0,39	0,14	0,50	0,02	0,00	0,26	0,02
(mg.kg ⁻¹)	RMSE	33,62	34,20	33,39	32,56	32,59	34,59	41,03	32,33	43,86	44,46	39,27	43,80
Ca_vym	R ²	0,29	0,29	0,29	0,16	0,30	0,14	0,12	0,28	0,00	0,00	0,14	0,00
(mg.kg ⁻¹)	RMSE	0,19	0,19	0,19	0,21	0,19	0,21	0,21	0,19	0,23	0,23	0,21	0,23
Na_vym	R ²	0,05	0,05	0,04	0,01	0,06	0,02	0,05	0,17	0,00	0,00	0,13	0,00
(mg.kg ⁻¹)	RMSE	8,46	8,49	8,52	8,62	8,42	8,61	8,49	7,92	8,70	8,72	8,08	8,72
K_vym	R ²	0,43	0,45	0,44	0,32	0,47	0,26	0,33	0,51	0,00	0,00	0,32	0,00
(mg.kg ⁻¹)	RMSE	21,93	21,69	21,89	24,13	21,18	25,15	23,81	20,31	29,40	29,31	24,45	29,27
AI_KCI	R ²	0,61	0,59	0,59	0,50	0,51	0,46	0,20	0,48	0,00	0,00	0,22	0,00
(mg.kg ⁻¹)	RMSE	107,87	110,73	109,56	121,82	120,44	126,04	153,37	124,49	172,27	172,81	153,03	172,75
Mn_KCl	R ²	0,40	0,41	0,41	0,43	0,44	0,36	0,13	0,47	0,02	0,00	0,24	0,02
(mg.kg ⁻¹)	RMSE	60,51	62,73	59,96	58,79	59,24	62,42	72,80	58,50	77,09	78,19	69,84	77,03
Fe_KCl	R	0,66	0,63	0,66	0,57	0,62	0,58	0,09	0,65	0,01	0,00	0,26	0,01
(mg.kg ⁻¹)	RMSE	70,21	74,30	70,05	78,67	73,78	78,26	114,31	72,04	119,73	121,19	105,08	119,77
AI (X) 1+	R	0,58	0,56	0,58	0,39	0,53	0,40	0,03	0,51	0,00	0,00	0,09	0,00
(mg.kg ⁻¹)	RMSE p ²	16,59	17,07	16,66	20,04	17,53	19,90	25,18	18,02	25,72	25,81	24,39	25,74
AI (Y) 2+	R	0,19	0,16	0,17	0,07	0,23	0,03	0,00	0,22	0,00	0,00	0,03	0,00
(mg.kg)		2,90	2,97	2,93	3,11	2,77	3,17	3,23	2,87	3,23	3,22	0,84	3,22
AI 5+		02.69	0,18	0,50	102.21	101.06	107.29	124.94	2 0,27	141 10	141 22	0,00	141 50
(mg.kg)		92,08	4,00	95,00	102,51	101,90	107,58	124,64	5,62	141,10	141,52	4,51	141,50
$(ma ka^{-1})$	RMSE	655.93	804 14	688.95	711 01	662 70	792 53	981 59	696.89	1011 50	1010 70	901.60	1012 50
Mn ox	R ²	0.44	0.45	0.44	0.52	0.52	0.40	0.07	0.51	0.01	0.00	0.27	0.01
(mg kg ⁻¹)	RMSF	120.76	125.67	120 71	112.08	113 49	125.08	156.01	114 92	161 33	162.90	141 71	160 71
Fe ox	R ²	0.58	0.41	0.46	0.52	0.58	0.37	0.16	0.58	0.00	0.00	0.25	0.00
(mg.kg ⁻¹)	RMSF	2316.20	2742 30	2629.80	2462 10	2314 90	2820.10	3238 50	2362.90	3582 50	3564.00	3125 50	3567 50
Si ox	R ²	0.30	0.22	0.29	0.29	0.34	0.24	0.00	0.35	0.00	0.00	0.18	0.00
(mg.kg ⁻¹)	RMSE	124.14	131.85	125.15	124.91	119.96	128.59	150.73	120.37	148.37	148.13	134.67	148.18
Al dit	R ²	0,29	0,20	0,26	0,23	0,31	0,20	0,11	0,46	0,03	0,00	0,34	0,01
(mg.kg ⁻¹)	RMSE	914,34	974,46	937,49	948,71	900,52	967,57	1021,70	815,90	1071,20	1089,80	893,98	1077,30
Mn dit	R ²	0,45	0,45	0,45	0,52	0,53	0,41	0,10	0,55	0,02	0,00	0,30	0,03
(mg.kg ⁻¹)	RMSE	131,85	137,74	132,04	122,90	124,23	136,95	168,70	122,92	176,08	178,28	152,65	175,02
Fe_dit	R ²	0,65	0,43	0,47	0,57	0,54	0,34	0,11	0,56	0,00	0,00	0,20	0,00
(mg.kg ⁻¹)	RMSE	2540,90	3275,90	3104,70	2803,70	2899,50	3457,80	4023,50	2893,40	4289,40	4285,00	3830,00	4293,50
Si_dit	R ²	0,17	0,04	0,03	0,07	0,28	0,07	0,11	0,56	0,13	0,13	0,57	0,13
(mg.kg ⁻¹)	RMSE	1365.00	1552.00	1477.30	1452.30	1327.90	1448.00	1403.20	1096.30	1405.80	1401.30	1058.20	1399.30

Tab. 20 Shrnutí úspěšnosti predikce jednotlivých vlastností podle použitých stat. metod – A horizonty, Žofinský prales

5.4 Predikce jednotlivých vlastností

V této kapitole bude pro každou vlastnost, na základě literatury a výše uvedených poznatků, hledána nejlepší kombinace použitého typu předzpracování, statistické metody a nově i vybraného spektrálního pásma. Jako trénovací budou použita data z velkého souboru z celé ČR a ze Žofínského pralesa. Pro každou vlastnost budou vybrány dvě nejúspěšnější kombinace metod z tabulek 16, 18 a 20, které budou podrobeny dalšímu testování. Pro všechny vlastnosti bude společná úprava spekter oříznutím pásma 350 – 400 nm, jež je na rozhraní UV a viditelného záření a jak ukazuje obrázek 17, je toto pásmo výrazně rušeno šumem.

Obr. 17 Šum v UV části spektra

5.4.1 Půdní reakce (pH)

Tabulka 21 shrnuje nejúspěšnější kombinace metod pro dosažení nejlepších výsledků. Porovnáním s výsledky ostatních autorů a hledáním vhodných spektrálních pásem bude probíhat snaha o další zlepšení úspěšnosti predikce.

		Bez pi	ředzprac	ování	Contir	nuum rer	noval	1	. derivac	е	2	. derivac	е
		PLSR	SVM	PCR	PLSR	SVM	PCR	PLSR	SVM	PCR	PLSR	SVM	PCR
pH_H₂O	R ²	0,29	0,19	0,26	0,30	0,29	0,18	0,27	0,46	0,03	0,03	0,17	0,00
min. hor.	RMSE	0,45	0,50	0,46	0,45	0,47	0,49	0,46	0,41	0,53	0,53	0,49	0,54
pH_KCl	R ²	0,50	0,41	0,50	0,50	0,55	0,41	0,01	0,55	0,01	0,00	0,26	0,01
hor. A	RMSE	0,13	0,14	0,13	0,13	0,12	0,14	0,18	0,12	0,18	0,18	0,16	0,18
pH_CaCl ₂	R ²	0,32	0,23	0,29	0,32	0,34	0,25	0,27	0,44	0,08	0,03	0,16	0,00
min. hor.	RMSE	0,44	0,46	0,44	0,44	0,43	0,45	0,45	0,40	0,51	0,52	0,48	0,53
pH_CaCl ₂	R ²	0,64	0,62	0,61	0,66	0,72	0,61	0,59	0,72	0,26	0,16	0,46	0,00
org. hor.	RMSE	0,44	0,45	0,46	0,43	0,39	0,46	0,47	0,39	0,63	0,67	0,54	0,73

Tab. 21 Nejlepší metody pro predikci půdní reakce

5.4.1.1 pH_H₂O

Reeves a McCarty (2001) predikovali aktivní půdní reakci pomocí metody PLSR použitím spektrálního pásma 1100 – 2300 nm, $R^2 = 0,74$. Islam et al. (2003) použili kombinaci spektrálního pásma 700 -2500 nm a metody PCR s úspěšností $R^2 = 0,70$, Chang et al. (2001) došli stejnou metodou v pásmu 400 – 2498 nm k výsledku $R^2 = 0,67$. Aplikací těchto modelů na lesní půdy bylo dosaženo výsledků:

- PLSR, 1100 2300 nm: $R^2 = 0,27$, RMSE = 0,46
- PCR, 700 2500 nm: $R^2 = 0$, 24, RMSE = 0,46
- PCR, 400 2498 nm: $R^2 = 0.27$, RMSE = 0.46

Žádný z těchto výsledků nedosahuje úspěšnosti predikce z tabulky 22, která ukazuje, že nejúspěšnější kombinací metod je první derivace a SVM a PLSR na nepředzpracovaných spektrech. Nejlepších výsledků predikce bylo dosaženo kombinací 1. derivace a SVM při použití spektrálního pásma VIS – NIR (400 – 2500 nm). V případě metody PLSR na neupravených spektrech to byla oblast NIR (750 – 2500 nm). Další zužování spektrálních pásem již lepší výsledky neposkytlo. Výsledky jsou znázorněny v tabulce 22.

		Bez předzpracování	1. derivace
spektrální pásmo (nm)		PLSR	SVM
400 - 2500 (vis - nir)	R ²	0,3	0 0,46
	RMSE	0,4	5 0,40
400 - 750 (vis)	R ²	0,2	5 0,29
	RMSE	0,4	7 0,46
750 - 2500 (nir)	R ²	0,3	3 0,44
	RMSE	0,4	4 0,41
1100 - 2500	R ²	0,3	2 0,43
	RMSE	0,4	5 0,42
700 - 1500	R ²	0,2	0,30
	RMSE	0,4	8 0,46

Tab. 22 Predikce podle metody a pásma – pH_H₂O

5.4.1.2 pH _CaCl₂

Výměnnou půdní reakci v suspenzi s chloridem vápenatým predikovali Chang et al. (2001) ve spektrálním pásmu 400 – 2498 metodou PCR s výsledkem $R^2 = 0,82$, RMSE = 0,55. V našem případě byly výsledky při použití tohoto modelu $R^2 = 0,61$, RMSE = 0,46 pro organické horizonty, $R^2 = 0,29$, RMSE = 0,44 pro minerální horizonty a $R^2 = 0,51$, RMSE = 0,46 pro oba horizonty dohromady. V tomto případě lze použít regresní metodu na oba horizonty dohromady, jelikož splňují normální rozdělení dat. V žádném případě nedosáhly výsledky tak vysokého koeficientu determinace, ale střední kvadratická chyba byla v každém případě nižší. Výsledky v tabulce 23 udávají jako nejúspěšnější kombinaci metod predikce výměnné půdní reakce 1. derivaci a SVM v celém VIS – NIR (400 – 2500 nm) spektru a to pro oba dva horizonty, v případě organických pak shodně vychází continuum removal a SVM v celém VIS – NIR spektrálním pásmu. Pro predikci u minerálních horizontů je druhou nejlepší kombinací 1. derivace a SVM v NIR pásmu (750 – 2500 nm),

		Minerální horizonty		Organické horiz	onty
		Continuum removal	1. derivace	Continuum removal	1. derivace
spektrální pásmo (nm)		SVM	SVM	SVM	SVM
400 - 2500 (vis - nir)	R ²	0,34	0,45	0,72	0,72
	RMSE	0,43	0,40	0,39	0,39
400 - 750 (vis)	R ²	0,28	0,33	0,52	0,60
	RMSE	0,45	0,43	0,51	0,46
750 - 2500 (nir)	R ²	0,30	0,42	0,71	0,71
	RMSE	0,45	0,41	0,40	0,40
700 - 1400	R ²	0,18	0,27	0,58	0,53
	RMSE	0,48	0,45	0,48	0,51
1100 - 2500	R ²	0,26	0,40	0,71	0,71
	RMSE	0,46	0,42	0,40	0,40

Tab. 23 Predikce podle metody a pásma – pH_CaCl₂

5.4.1.3 pH_KCl

Výměnná půdní reakce v suspenzi chloridu draselného byla stanovena na vzorcích z Žofinského pralesa. Ve světové literatuře není příliš zmiňována, jelikož se častěji používá výše zmíněná půdní reakce v suspenzi chloridu vápenatého. V domácích podmínkách se však s touto vlastností běžně setkáváme. Stejně jako v předchozích případech, i v tomto byla nejúspěšnější kombinace metod 1. derivace a SVM v celém VIS – NIR pásmu, druhou nejlepší pak *Continuum removal* a SVM, také v celém pásmu 400 – 2500 nm (tabulka 24).

		Continuum removal	1. derivace
spektrální pásmo (nm)		SVM	SVM
400 - 2500 (vis - nir)	R ²	0,54	0,55
	RMSE	0,12	0,12
400 - 750 (vis)	R ²	0,44	0,51
	RMSE	0,13	0,13
750 - 2500 (nir)	R ²	0,46	0,53
	RMSE	0,13	0,13
1100 - 2500	R ²	0,41	0,43
	RMSE	0,14	0,14
700 - 1500	R ²	0,41	0,49
	RMSE	0.14	0.13

Tab. 24 Predikce podle metody a pásma – pH_KCl

5.4.2 Obsah oxidovatelného uhlíku (Cox)

Podle tabulek 16, 18 a 20 je nejvhodnější kombinací metod pro predikci Cox 1. derivace, SVM a nezpracovaná spektra. Jelikož obsah uhlíku jednoznačně souvisí s obsahem organické hmoty, jež je jednou z hlavních a primárně detekovatelných vlastností, je očekávána vysoká úspěšnost predikce. V literatuře se nejčastěji setkáváme s predikcí uhlíku, resp. organické hmoty ve spektrálním pásmu 1100 - 2500 nm, např. Reeves a McCarty (2001): $R^2 = 0.9$, McCarty et al. (2002): $R^2 = 0.82$ a 0.86, Reeves et al. (1999): $R^2 = 0,96$. Islam et al. (2003) predikovali uhlík v NIR pásmu 700 – 2500 s úspěšností $R^2 = 0.68$. V celém VIS – NIR pásmu předpovídali uhlík metodou PLSR Chang a Laird (2002), $R^2 = 0.91$, RMSE = 0.65. Tyto publikované modely, aplikovány na data z lesních půd vykazovaly slušnou predikční schopnost, avšak ne tak dobrou, jako ve zmíněných publikacích a nedosahovaly úspěšnosti jako nové modely v tabulkách 25 a 26. PLSR v pásmu 1100 -2500 nm poskytlo výsledek predikce $R^2 = 0.63$, RMSE = 2.01, ostatní byly méně úspěšné. V případě organických horizontů můžeme sledovat vyšší hodnoty koeficientu R², ale rovněž roste i RMSE, což je způsobeno velkým rozsahem hodnot obsahu uhlíku. Jako nejlepší se jeví kombinace 1. derivace a SVM v celém VIS – NIR pásmu, druhou nejlepší pak 1. derivace a SVM ve spektrálním pásmu NIR (750 – 2500 nm). Důvodem, proč je zde výhodnější použití celého spektrálního pásma, je fakt, že organická hmota ovlivňuje průběh celé spektrální křivky a neprojevuje se výrazněji pouze v některé její části. Na obrázku 18 je rozdíl v průběhu spektrální křivky z organického a minerálního horizontu ve stejné půdní sondě. Rozdíl je způsoben především právě obsahem organické hmoty.

		Cox (%) min. hor.		Cox (%) org. h	or.
		Continuum removal	1. derivace	Continuum removal	1. derivace
spektrální pásmo (nm)		SVM	SVM	SVM	SVM
400 - 2500 (vis - nir)	R ²	0,64	0,68	0,83	0,84
	RMSE	1,97	1,85	3,82	3,71
400 - 750 (vis)	R ²	0,45	0,64	0,75	0,81
	RMSE	2,44	1,98	4,57	3,97
750 - 2500 (nir)	R ²	0,65	0,66	0,81	3,78
	RMSE	1,96	1,92	4,03	3,82
700 - 1400	R ²	0,50	0,57	0,68	0,76
	RMSE	2,36	2,17	5,20	4,48
1100 - 2500	R ²	0,63	0,66	0,81	0,82
	RMSE	2,01	1,93	4,01	3,90

Tab. 25 Predikce podle metody a pásma – Cox, minerální a organické horizonty

Tab. 26 Predikce podle metody a pásma – Cox, A horizonty, Žofínský prales

		Co	ox (%) A hor.
		Continuum removal	1. derivace
spektrální pásmo (nm)		SVM	SVM
400 - 2500 (vis - nir)	R ²	0,43	0,48
	RMSE	1,67	1,63
400 - 750 (vis)	R ²	0,25	0,41
	RMSE	1,93	1,70
750 - 2500 (nir)	R ²	0,42	0,45
	RMSE	1,69	1,67
700 - 1400	R ²	0,34	0,32
	RMSE	1,80	1,85
1100 - 2500	R ²	0,40	0,42
	RMSE	1,72	1,71

Obr. 18 Příklad rozdílu v průběhu spektrálních křivek mezi organickým a minerálním horizontem

5.4.3 Kationtová výměnná kapacita (KVK)

Islam et al. (2003) uvádějí jako nejlepší metodu pro predikci KVK PLSR v pásmu 700 – 2500 nm, Chang et al. (2001) pak PCR, rovněž v pásmu 700 – 2500 nm. Bilgili et al. (2010) predikovali tuto vlastnost s úspěšností R² = 0,79 v celém spektrálním pásmu metodou PLSR. Tabulka 18 potvrzuje, že nejúspěšnější kombinací metod je skutečně PLSR a spektra bez předzpracování, druhou nejúspěšnější pak SVM na stejně zadaném datovém souboru. Zjištění z tabulky 27 potvrzuje výsledky ostatních autorů, tedy že nejúspěšnější je v případě A horizontu Žofinského pralesa predikce na surových spektrech metodou PLSR v celém VIS – NIR pásmu, ovšem zdaleka nebylo v případě lesních půd dosaženo tak vysokých hodnot koeficientu determinace. Jiná situace je v případě vzorků minerálních horizontů z celé ČR. V tomto případě se jako nejlepší použité pásmo ukázalo opět celé VNIR spektrum, ovšem nejvodnější kombinací metod zde byla 1. derivace a SVM. Při sjednocování metod bylo zjištěno, že aplikace PLSR bez předzpracování na vzorky z minerálních horizontů není příliš úspěšná, avšak 1. derivace se SVM je na data ze Žofinského pralesa úspěšně aplikovatelná, proto se jeví jako celkově vhodnější.

		KVK (mmol	.kg ⁻¹) A hor.	KVK (mmol.ml ⁻¹) min. hor.		
		Bez předz	pracování	1. derivace	2. derivace	
spektrální pásmo		PLSR	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,37	0,27	0,64	0,63	
	RMSE	14,37	15,48	22,52	21,16	
400 - 750 (vis)	R ²	0,33	0,30	0,40	0,61	
	RMSE	14,84	15,14	29,65	21,59	
750 - 2500 (nir)	R ²	0,29	0,17	0,63	0,61	
	RMSE	15,19	16,56	22,30	21,59	
700 - 1400	R ²	0,28	0,17	0,57	0,57	
	RMSE	15,45	16,48	23,42	22,26	
1100 - 2500	R ²	0,29	0,07	0,59	0,55	
	RMSE	15,30	17,46	23,31	22,99	

Tab. 27 Predikce podle metody a pásma – KVK, minerální horizonty

5.4.4 Nasycení sorpčního komplexu bázemi

Další vlastností popisující sorpční charakteristiky půd je nasycení sorpčního komplexu bázemi. Tabulka 28 ukazuje, že nejlepší kombinací metod je SVM s první derivací.

		BS (%) min. ho	r.
		Continuum removal	1. derivace
spektrální pásmo (nm)		PLSR	SVM
400 - 2500 (vis - nir)	R ²	0,34	0,44
	RMSE	20,81	20,65
400 - 750 (vis)	R ²	0,16	0,28
	RMSE	23,52	22,96
750 - 2500 (nir)	R ²	0,32	0,41
	RMSE	21,15	20,90
700 - 1400	R ²	0,06	0,21
	RMSE	24,82	23,64
1100 - 2500	R ²	0,27	0,37
	RMSE	21,82	21,83

Tab. 28 Predikce podle metody a pásma – BS, minerální horizonty

5.4.5 Obsah dusíku

V literatuře byl predikován obsah dusíku následovně:

- PLSR $1100 2300 \text{ R}^2 = 0.94 \text{ a } \text{R}^2 = 0.84$ (Reeves a McCarty, 2001)
- PLSR $1100 2500 \text{ R}^2 = 0.95$ (Reeves et al. 1999)
- PLSR $400 2498 \text{ R}^2 = 0.86 \text{ RMSE} = 0.04$ (Chang a Laird, 2002)
- PCR $400 2498 \text{ R}^2 = 0.85 \text{ RMSE} = 0.06 \text{ (Chang et al., 2001)}$

Aplikací těchto modelů při predikci obsahu dusíku v lesních půdách bylo dosaženo výsledků:

- PLSR $1100 2300 \text{ R}^2 = 0.51 \text{ RMSE} = 0.11$
- PLSR $1100 2500 \text{ R}^2 = 0,53 \text{ RMSE} = 0,10$
- PLSR $400 2498 \text{ R}^2 = 0.49 \text{ RMSE} = 0.11$
- PCR $400 2498 \text{ R}^2 = 0,43 \text{ RMSE} = 0,11$

Jak ukazuje tabulka 29, v jednotlivých pásmech bylo dosaženo velice podobných výsledků. Společnou nejúspěšnější kombinací metod pro oba horizonty je 1. derivace a SVM.

		N (mg.kg ⁻¹) min. hor.		N (mg.kg ⁻¹) org. hor.		
		Bez předzpracování	1. derivace	Continuum removal	1. derivace	
spektrální pásmo (nm)		SVM	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,50	0,57	0,54	0,62	
	RMSE	0,11	0,10	0,21	0,19	
400 - 750 (vis)	R ²	0,50	0,50	0,36	0,47	
	RMSE	0,11	0,11	0,25	0,23	
750 - 2500 (nir)	R ²	0,49	0,56	0,53	0,62	
	RMSE	0,11	0,10	0,22	0,19	
700 - 1400	R ²	0,48	0,56	0,31	0,47	
	RMSE	0,11	0,10	0,26	0,23	
1100 - 2500	R ²	0,47	0,55	0,31	0,62	
	RMSE	0,11	0,10	0,26	0,19	

Tab. 29 Predikce podle metody a pásma – N

5.4.6 Obsah fosforu

Chang et al. (2001) předpovídali obsah fosforu stanoveného v roztoku Mehlich III s úspěšností $R^2 = 0,40$, RMSE = 32,28 metodou PCR. Udelhoven et al. (2003) predikovali fosfor s úspěšností $R^2 = 0,54$, RMSE = 0,05 metodou PLSR na nepředzpracovaných spektrech. V případě lesních půd byly tyto metody neúspěšné. Jak ukazuje tabulka 30, obsah fosforu je hůře predikovatelný. Pokud byl stanoven v roztoku Mehlich III, nepřekračuje koeficient determinace hodnotu 0,1, v případě stanovení v lučavce královské je o něco vyšší ($R^2 = 0,34$ při kombinaci metod 1. derivace a SVM), avšak z důvodu vysoké variability koncentrace je velmi vysoká střední kvadratická chyba RMSE.

		P_M3 (mg.kg ⁻¹) min. hor.		P_AR (mg.kg ⁻¹) org. hor.		
		Continuum removal	1. derivace	Continuum removal	1. derivace	
spektrální pásmo (nm)		SVM	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,06	0,10	0,24	0,34	
	RMSE	26,18	25,68	260,31	243,91	
400 - 750 (vis)	R ²	0,04	0,05	0,07	0,16	
	RMSE	26,34	26,26	285,44	272,02	
750 - 2500 (nir)	R ²	0,04	0,09	0,22	0,33	
	RMSE	26,33	25,70	262,83	245,44	
700 - 1400	R ²	0,01	0,08	0,13	0,22	
	RMSE	26,55	25,91	277,80	263,46	
1100 - 2500	R ²	0,04	0,09	0,22	0,32	
	RMSE	26,67	0,29	262,85	246,90	

Tab. 30 Predikce podle metody a pásma – P, minerální a organické horizonty

5.4.7 Obsah draslíku

Draslík se v půdě vyskytuje v nevýměnných, výměnných a vodorozpustných formách, jejichž obsah spolu úzce koreluje. V literatuře se uvádí predikce následovně:

- PLSR $400 2500 \text{ R}^2 = 0.72$ (Cozzolino a Moron, 2003)
- NN $400 1100 \text{ R}^2 = 0.8$ (Daniel et al. 2003)
- PCR $400 2498 \text{ R}^2 = 0.55 \text{ RMSE} = 4.2$ (Chang et al., 2001)

Použití těchto modelů se v případě predikce draslíku v lesních půdách neosvědčilo. V případě minerálních horizontů (draslík ve výluhu Mehlich III) se zdá být nejvhodnější použití kombinací metod 1. derivace a SVM v celém VNIR pásmu, stejně jako v případě horizontů organických (výluh v lučavce královské), u kterých byl koeficient determinace ještě mnohem vyšší, ale z důvodů velkého rozsahu obsahu draslíku velmi vzrostla i střední kvadratická chyba (tab. 31). Druhou nejúspěšnější kombinací metod a spektrálního pásma byla 1. derivace a SVM v pásmu NIR, tedy 750 – 2500 nm. Rozdíly byly většinou minimální a v případě výměnného draslíku v minerálních horizontech byla tato metoda dokonce účinnější, i když pouze minimálně.

		K_M3 (mg.kg ⁻¹) min. hor.		K_AR (mg.kg ⁻¹)	org. hor.
		Bez předzpracování	1. derivace	Continuum removal	1. derivace
spektrální pásmo (nm)		PLSR	SVM	SVM	SVM
400 - 2500 (vis - nir)	R ²	0,22	0,31	0,50	0,57
	RMSE	56,39	54,00	695,89	657,13
400 - 750 (vis)	R ²	0,14	0,20	0,38	0,50
	RMSE	59,40	57,83	784,38	702,35
750 - 2500 (nir)	R ²	0,25	0,30	0,47	0,53
	RMSE	55,38	54,11	722,80	679,24
700 - 1400	R ²	0,14	0,15	0,36	0,40
	RMSE	59,38	58,97	788,04	770,83
1100 - 2500	R ²	0,26	0,26	0,45	0,51
	RMSE	55,04	55,69	730,55	691,24
		K	A hau	K (m. c. 100c ⁻¹)	
	-	K_VYM (mg.kg)	A nor.	K_vym (me.100g)	min. nor.
snektrální násmo (nm)		SVM	SVM	svm	SVM
400 - 2500 (vis - pir)	P ²	0.47	0.51	0.42	0.37
400 - 2300 (VIS - IIII)	RMSE	21.14	20.29	0,42	0,90
400 - 750 (vis)	R ²	0.12	0.44	0.28	0.28
	RMSE	27.31	27.78	0.99	0.93
750 - 2500 (nir)	R ²	0.47	0.50	0.42	0.36
	RMSE	21,19	20,55	0,87	0,90
700 - 1400	R ²	0.34	0.49	0.38	0.35
	RMSE	23,69	20,71	0,90	0,89
1100 - 2500	R ²	0,47	0,49	0,37	0,31
	1 1	•		,	

Tab. 31 Predikce podle metody a pásma – K

5.4.8 Obsah vápníku

Obsah vápníku byl v literatuře predikován s následující úspěšností:

- PCR 700 2500 $R^2 = 0.72$ (Islam et al., 2003)
- PLSR $400 2500 \text{ R}^2 = 0.9$ (Cozzolino a Moron, 2003)
- Ca vym, PCR $400 2498 \text{ R}^2 = 0,75 \text{ RMSE} = 40,0$ (Chang et al., 2001)

Výsledky z tabulek 32 a 33 potvrzují, že pro predikci vápníku je vhodné použít blízké infračervené spektrum (750 – 2500 nm). Pro predikci vápníku v roztoku Mehlich III a výměnného vápníku v horizontech A se jako nejlepší část spektra ukázala dokonce pouze část IR spektra, konkrétně ta v rozmezí 1100 – 2500 nm. Pouze v případě vápníku ve výluhu lučavky královské a výměnného vápníku v minerálních horizontech bylo, i když s minimálním rozdílem, úspěšnější použití celého VNIR spektra.

		Ca_M3 (mg.kg ⁻¹) min. hor.		Ca_AR (mg.kg ⁻¹) org. hor.		
		Continuum removal	1. derivace	Continuum removal	1. derivace	
spektrální pásmo (nm)		PLSR	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,32	0,35	0,73	0,76	
	RMSE	707,69	730,75	2339,50	2198,70	
400 - 750 (vis)	R ²	0,01	0,16	0,50	0,59	
	RMSE	852,71	821,53	3255,50	2877,00	
750 - 2500 (nir)	R ²	0,34	0,32	0,73	0,76	
	RMSE	695,26	745,35	2367,40	2210,50	
700 - 1400	R ²	0,06	0,16	0,44	0,56	
	RMSE	833,24	815,62	3394,30	3001,90	
1100 - 2500	R ²	0,36	0,33	0,73	0,76	
	RMSE	687,14	746,53	2349,30	2216,80	

Tab. 32 Predikce podle metody a pásma – Ca

		Ca_vym (mg.kg ⁻¹) A hor.			Ca_vym (me.100g ⁻¹) min. hor.		
		Bez předzpracování	Bez předzpracování	Continuum removal	1. derivace	2. derivace	
spektrální pásmo (nm)		SVM	PLSR	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,29	0,32	0,31	0,27	0,19	
	RMS E	0,19	0,19	0,19	13,33	13,74	
400 - 750 (vis)	R ²	0,24	0,25	0,17	0,19	0,14	
	RMS E	0,20	0,20	0,21	14,14	13,97	
750 - 2500 (nir)	R ²	0,23	0,32	0,28	0,26	0,16	
	RMS E	0,20	0,19	0,20	13,35	13,81	
700 - 1400	R ²	0,22	0,28	0,17	0,20	0,17	
	RMS E	0,20	0,19	0,21	13,80	13,77	
1100 - 2500	R ²	0,19	0,33	0,30	0,23	0,13	
	RMS E	0,21	0,19	0,19	13,64	13,95	

Tab. 33 Predikce podle metody a pásma – Ca_vym

5.4.9 Obsah hořčíku

Cozzolino a Moron (2003) a Chang et al. (2001) predikovali obsah hořčíku v celém VNIR spektru metodou PLSR ($R^2 = 0.9$), resp. PCR ($R^2 = 0.68$, RMSE = 12.8). Použití celého VNIR spektra se zdá být vhodné i pro případ predikce hořčíku v lesních půdách, ale jak je vidět v tabulce 34, Mg se projevuje především v NIR části spektra, především v jeho části 1100 – 2500 nm. V kombinaci s metodami *continuum removal* a PLSR byl v této části spektra nejlépe predikován Mg stanovený v roztoku Mehlich III a metodami 1. derivace a SVM výměnný hořčík v A horizontech z Žofínského pralesa. Jako tradičně bylo nejvyššího koeficientu determinace dosaženo při predikci Mg v lučavce královské v organických horizontech, ovšem opět s velmi vysokou střední kvadratickou chybou. Zde se jako nejůčinnější kombinace metod jeví 1. derivace a SVM v celém VNIR spektrálním pásmu.

		Mg_M3 (mg.kg ⁻¹) min. hor.		Mg_AR (mg.kg ⁻¹) org. hor.		
		Continuum removal	1. derivace	Continuum removal	1. derivace	
spektrální pásmo (nm)		PLSR	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,28	0,30	0,38	0,43	
	RMSE	143,99	137,10	1287,00	1303,50	
400 - 750 (vis)	R ²	0,01	0,10	0,37	0,36	
	RMSE	156,82	152,03	1372,10	1324,10	
750 - 2500 (nir)	R ²	0,27	0,28	0,36	0,39	
	RMSE	148,27	139,71	1299,60	1311,20	
700 - 1400	R ²	0,00	0,10	0,26	0,25	
	RMSE	157,16	150,84	1395,60	1435,10	
1100 - 2500	R ²	0,32	0,30	0,36	0,39	
	RMSE	146,92	140,11	1309,10	1295,00	
		Mg vym (mg.kg ⁻¹)	Mg vym (mg.kg ⁻¹) A hor.		min. hor.	
		Continuum removal	1. derivace	1. derivace	2. derivace	
spektrální pásmo (nm)		SVM	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,42	0,43	0,32	0,21	
	RMSE	15,30	15,18	3,00	3,15	
400 - 750 (vis)	R ²	0,13	0,29	0,18	0,15	
	RMSE	18,69	16,86	3,27	3,20	
750 - 2500 (nir)	R ²	0,43	0,42	0,26	0,19	
	RMSE	15,19	15,23	13,35	3,16	
700 - 1400	R ²	0,18	0,34	0,24	0,17	
	RMSE	18,15	16,27	3,16	3,17	
1100 - 2500	R ²	0,42	0,43	0,29	0,13	

Tab. 34 Predikce podle metody a pásma – Mg

5.4.10 Obsah sodíku

Obsah sodíku byl stanoven v organických horizontech ve výluhu lučavky královské a výměnný sodík v minerálních horizontech a v A horizontech v Žofínském pralese. Právě výměnný sodík předpovídali Chang et al. (2001), ne příliš úspěšně, v celém VNIR spektru metodou PCR s výsledkem $R^2 = 0,09$, RMSE = 1,3. Jak ukazuje tabulka 35, v případě lesních půd byla predikce výrazně úspěšnější. Jako nejlepší kombinace se ve všech případech jeví 1. derivace a SVM v celém VNIR spektrálním pásmu.

		Na_vym (me.100g ⁻¹) min. hor.		Na_AR (mg.kg ⁻¹) org. hor.		Na_vym (mg.kg ⁻¹) A hor.	
		1. derivace	2. derivace	1. derivace	2. derivace	1. derivace	2. derivace
spektrální pásmo (nm)		SVM	SVM	SVM	SVM	SVM	SVM
400 - 2500 (vis - nir)	R ²	0,35	0,34	0,23	0,21	0,16	0,12
	RMSE	0,18	0,18	40,40	40,51	7,93	8,10
400 - 750 (vis)	R ²	0,20	0,27	0,14	0,14	0,14	0,10
	RMSE	0,19	0,18	41,69	41,69	8,04	8,21
750 - 2500 (nir)	R ²	0,35	0,32	0,22	0,22	0,15	0,10
	RMSE	0,18	0,18	40,36	40,40	7,99	8,21
700 - 1400	R ²	0,34	0,31	0,20	0,19	0,13	0,06
	RMSE	0,17	0,17	40,65	40,64	8,08	8,43
1100 - 2500	R ²	0,33	0,28	0,20	0,19	0,14	0,09
	RMSE	0,18	0,18	40,66	40,67	8,02	8,24

Tab. 35 Predikce podle metody a pásma – Na

5.4.11 Obsah manganu

Chang et al. (2001) predikovali obsah manganu v celém VNIR pásmu pomocí metody PCR s úspěšností $R^2 = 0,7$, RMSE = 56,4. Takto úspěšně mangan v lesních půdách předpovězen nebyl, přesto podle tabulky 36 predikovatelný je. Nejvhodnější se zdá být použití celého VNIR spektrálního pásma. Větší váhu má v případě výměnného Mn v BaCl₂ a manganu ve výluhu lučavky královské evidentně blízká infračervená část, ovšem použití pouze této části spektra nepřineslo další zpřesnění předpovědi. V případě manganu ve výluhu KCl, oxalátu a dithioničnanu je naopak kromě celého VNIR spektra vhodné použití pouze viditelné části, pro Mn v dithioničnanu je předpověď s použitím VIS spektra dokonce mírně úspěšnější. Nejvhodnější kombinací metod je většinou 1. derivace a SVM, pouze v případě Mn v oxalátu je to *continuum removal* a PLSR

		Mn_vym (me.100g ⁻¹) m. h.		Mn_AR (mg.k	g ⁻¹) org. hor.	Mn_vym (mg.kg ⁻¹) A hor.	
		1. derivace	2. derivace	Continuum removal	1. derivace	Continuum removal	1. derivace
spektrální pásmo (nm)		SVM	SVM	SVM	SVM	SVM	SVM
400 - 2500							
(vis - nir)	R ²	0,28	0,21	0,45	0,51	0,49	0,51
	RMSE	1,49	1,53	1196,20	1141,80	32,55	32,22
400 - 750 (vis)	R ²	0,21	0,17	0,27	0,37	0,48	0,49
	RMSE	1,59	1,55	1381,90	1279,70	32,76	32,12
750 - 2500 (nir)	R ²	0,27	0,19	0,43	0,49	0,42	0,47
	RMSE	1,50	1,54	1226,40	1159,00	34,49	33,44
700 - 1400	R ²	0,24	0,19	0,22	0,27	0,42	0,50
	RMSE	1,53	1,53	1430,10	1362,50	34,62	32,23
1100 - 2500	R ²	0,23	0,16	0,41	0,46	0,37	0,40
	RMSE	1,55	1,56	1242,20	1178,50	35,68	35,66
			-		-1		
		Mn_KCI (mg.kg ⁻)	A hor.	Mn_ox (mg.k	g ⁻) A hor.	Mn_dit (mg.kg ⁻)	A hor.
		removal	ı. derivace	removal	removal	removal	derivace
spektrální pásmo (nm)		SVM	SVM	PLSR	SVM	SVM	SVM
400 - 2500	_2						
(vis - nir)	R⁻	0,45	0,48	0,56	0,53	0,53	0,55
	RMSE	59,13	58,28	107,65	112,95	124,05	122,31
400 - 750 (vis)	R ²	0,44	0,47	0,53	0,52	0,52	0,55
	RMSE	59,31	57,76	111,42	113,47	124,98	121,04
750 - 2500 (nir)	R ²	0,38	0,44	0,51	0,45	0,45	0,52
	RMSE	62,76	60,40	113,32	121,97	134,84	126,86
700 - 1400	R ²	0,38	0,47	0,45	0,45	0,43	0,53
	RMSE	62,95	58,88	120,48	122,25	135,35	125,86
1100 - 2500	R ²	0,33	0,36	0,41	0,41	0,40	0,44
1	1	1					1

Tab. 36 Predikce podle metody a pásma – Mn

5.4.12 Obsah železa

Velmi důležitou charakteristikou při hodnocení lesních půd je obsah železa. Pro predikci jsou k dispozici výsledky obsahu železa různými metodami, výměnné železo (BaCl₂, KCl), Fe v lučavce královské, oxalátu, nebo dithioničnanu. Obsah železa v roztoku oxalátu udává množství železa amorfního, krystalického a vázaného. V roztoku dithioničnanu jsou to pak všechny formy volného železa uvolnitelného do roztoku. Pestrost kombinací statistických metod a vybraných pásem je, jak ukazuje tabulka 37, poměrně vysoká. Pro predikci výměného Fe jsou nejvhodnější kombinace metod 1. derivace a SVM, nebo PLSR na nepředzpracovaných spektrech, obojí v celém VNIR pásmu.

Celkový obsah ve výluhu lučavky královské je nejlépe předpovídatelný v celém VNIR pásmu kombinací metod 1. derivace a SVM. Celé VNIR pásmo je nejvhodnější i v případě predikce výměnného železa v roztoku KCl, ovšem nejvhodnější kombinací metod je v tomto případě PCR s PLSR na nepředzpracovaných datech. Železo stanovené v oxalátu a dithioničnanu se nejlépe projevuje v NIR části spektrálního pásma, v případě Fe dit v celém rozmezí 750 – 2500 nm, v případě Fe ox bylo dosaženo nejlepší predikce dalším zúžením tohoto pásma na 1100 – 2500 nm. Další zužování těchto pásem už lepší výsledky nepřineslo.

V literatuře se nejčastěji doporučuje použití celého VNIR spektrálního pásma pro predikci výměnného a celkového obsahu železa. Chang et al. (2001) předpovídali obsah železa metodou PCR s úspěšností $R^2 = 0,64$, RMSE = 61,4. Cozzolino a Moron (2003) předpovídali celkový obsah železa metodou PLSR s velmi vysokou úspěšností $R^2 = 0,9$. Takto výrazného úspěchu v případě predikce Fe v lesních půdách dosaženo nebylo.

		Fe_vym (me.100g ⁻¹) min. hor.		Fe AR (mg.kg ⁻¹) org. hor.		
		1. derivace 2. derivace		Continuum removal	1. derivace	
spektrální pásmo (nm)		SVM	SVM	SVM	SVM	
400 - 2500 (vis - nir)	R ²	0,38	0,25	0,49	0,51	
	RMSE	1,38	1,48	5648,80	5757,50	
400 - 750 (vis)	R ²	0,25	0,19	0,42	0,49	
	RMSE	1,54	1,52	6158,60	5721,50	
750 - 2500 (nir)	R ²	0,35	0,24	0,48	0,50	
	RMSE	1,40	1,49	5696,40	5828,70	
700 - 1400	R ²	0,30	0,25	0,38	0,46	
	RMSE	1,45	1,48	6159,60	6033,70	
1100 - 2500	R ²	0,30	0,20	0,49	0,49	
	RMSE	1,45	1,51	5688,50	5836,90	
		Fe_KCl (mg.k	g ⁻¹) A hor.	Fe_vym (mg.l	g ⁻¹) A hor.	
		Bez předzpracování	Bez předzpracování	Bez předzpracování	Bez předzpracování	
spektrální pásmo (nm)		PLSR	PCR	PLSR	PCR	
400 - 2500 (vis - nir)	R ²	0,67	0,67	0,65	0,65	
	RMSE	68,96	68,64	44,59	44,65	
400 - 750 (vis)	R ²	0,62	0,62	0,57	0,57	
	RMSE	74,14	74,63	49,22	49,42	
750 - 2500 (nir)	R ²	0,65	0,66	0,58	0,58	
	RMSE	71,15	70,79	49,14	49,23	
700 - 1400	R ²	0,66	0,66	0,61	0,59	
	RMSE	70,81	69,73	47,25	48,17	
1100 - 2500	R ²	0,52	0,53	0,40	0,42	
	RMSE	83,29	82,56	58,27	57,69	
		I		ſ		
		Fe_ox (mg.k	g ⁻¹) A hor.	Fe_dit (mg.k	g ⁻¹) A hor.	
		Bez předzpracování	Continuum removal	Bez předzpracování	Continuum removal	
spektrální pásmo (nm)		PLSR	SVM	PLSR	PLSR	
400 - 2500 (vis - nir)	R ²	0,62	0,58	0,67	0,67	
	RMSE	2178,3	2304,90	2435,90	2441,90	
400 - 750 (vis)	R ²	0,45	0,23	0,55	0,48	
	RMSE	2641,60	3170,80	2874,00	3064,70	
750 - 2500 (nir)	R ²	0,63	0,59	0,69	0,60	
	RMSE	2176,00	2278,90	2370,50	2685,40	
700 - 1400	R ²	0,51	0,32	0,67	0,30	
	RMSE	2487,10	2948,50	2462,70	3563,10	
1100 - 2500	R ²	0,68	0,58	0,67	0,59	
	RMSE	2033,40	2312,60	2458,50	2722,50	

Tab. 37 Predikce podle metody a pásma – Fe
5.4.13 Obsah hliníku

Také obsah hliníku je společně se železem velmi sledovanou vlastností lesních půd. K dispozici je opět hliník stanovený různými způsoby. Kromě jeho celkového obsahu (tabulka 38 a 39) je stanoven a predikován i obsah jeho jednotlivých forem (tabulka 40). V literatuře, která se zabývá především zemědělskými půdami, není hliník příliš často sledován. Viscarra Rossel et al. (2006) předpovídali obsah výměnného hliníku (Al_KCl) ve VIS a NIR části spektra zvlášť metodou PLSR s úspěšností:

- VIS: $R^2 = 0.01$, RMSE = 1.31
- NIR: $R^2 = 0,61$, RMSE = 0,86

V případě lesních půd bylo pro Al_KCl dosaženo obdobného výsledku $R^2 = 0,62$, použitím kombinace metod PCR, nebo PLSR na nepředzpracovaných vzorcích, ovšem v celém VNIR spektru. Při jeho dělení na VIS a NIR úspěšnost predikce klesla v obou případech. V případě predikce výměnného Al v BaCl₂ a hliníku v extraktu lučavkou královskou byla nejúspěšnější kombinace metod 1. derivace a SVM v celém VNIR spektru. Výměnný hliník v BaCl₂ byl rovněž stanoven i v půdách Žofinského pralesa, v tomto případě byla nejúspěšnější kombinace metod PLSR bez předzpracování v pásmu 400 – 800 nm, tedy viditelná část a část přechodu mezi viditelným a infračerveným spektrem. Hliník v oxalátu byl nejlépe predikován metodami PLSR a 1. derivace se SVM v celém VNIR spektru.

Jednomocné a dvojmocné komplexy hliníku jsou úzce vázány s obsahem organické hmoty. Jednomocná, vodou rozpustná forma byla nejlépe predikována ve viditelné části spektra. Dalšími úpravami pásma bylo nalezeno to nejvhodnější, kterým je pásmo 600 - 800 nm. Metodou PCR na nepředzpracovaných vzorcích bylo dosaženo výsledku R² = 0,63, RMSE = 15,56. Dvojmocný komplex Al se v půdě vyskytuje ve velice malém množství (Šamonil et al., 2010). Na rozdíl od formy jednomocné se její obsah nejlépe projevoval v NIR pásmu spektra. Nejlepší metodou pro jeho predikci bylo SVM na spektrech podrobených 1. derivaci ve spektrálním pásmu 1500 – 2500 nm. Nejlepší předpovědi bylo dosaženo metodou PCR v celém VNIR spektru.

			g ⁻¹) A hor.	Al_vym (me.100g ⁻¹) min. hor.		
		Bez předzpracování	Bez předzpracování	1. derivace	2. derivace	
spektrální pásmo		PLSR	PCR	SVM	SVM	
400 - 2500 (vis -	P ²	0.61	0.63	0.50	0.56	
1111)		107.03	106.41	1/ 99	14 52	
		107,03	100,41	14,99	14,52	
400 - 750 (VIS)	R	0,58	0,58	0,34	0,40	
	RIVISE	110,90	111,37	19,26	17,08	
750 - 2500 (nir)	R ²	0,52	0,49	0,58	0,55	
	RMSE	119,28	123,06	14,90	14,70	
700 - 1400	R ²	0,57	0,57	0,53	0,54	
	RMSE	113,34	113,46	15,43	14,84	
1100 - 2500	R ²	0,48	0,47	0,55	0,49	
	RMSE	123,93	124,70	15,39	15,59	
		Al_AR (mg.kg ⁻¹) org. hor.		Al_vym (mg.k	g⁻¹) A hor.	
		Continuum removal	1. derivace	Bez předzpracování	Bez předzpracování	
spektrální pásmo		SVM	SVM	PLSR	PCR	
400 - 2500 (vis -	D ²	0.00	0.70	0.57	0.57	
nir)	R	0,66	0,70	0,57	0,57	
	RMSE	2522,60	2395,20	121,/3	121,82	
400 - 750 (vis)	R ²	0,58	0,68	0,58	0,57	
	RMSE	2837,00	2456,60	121,05	122,02	
750 - 2500 (nir)	R ²	0,65	0,68	0,41	0,39	
	RMSE	2560,40	2476,40	142,92	145,03	
700 - 1400	R ²	0,50	0,58	0,50	0,45	
	RMSE	3122,40	2858,10	131,98	137,53	
1100 - 2500	R ²	0,66	0,68	0,35	0,35	
	RMSE	2544,50	2489,20	150,20	149,82	
400-900	R ²	-	-	0,58	0,57	
	RMSE	-	-	120,71	121,81	
400-800	R ²	-	-	0,58	0,57	
	RMSE	-	-	120,53	122,52	

Tab. 38 Predikce podle metody a pásma – Al (KCl, BaCl₂, AR)

		Al_ox (mg.kg ⁻¹) A hor.		Al_dit (mg.kg ⁻¹) A hor.	
		Bez předzpracování	Continuum removal	1. derivace	2. derivace
spektrální pásmo		PLSR	SVM	SVM	SVM
400 - 2500 (vis - nir)	R ²	0,63	0,57	0,45	0,34
	RMSE	617,01	664,22	824,18	896,11
400 - 750 (vis)	R ²	0,57	0,14	0,29	0,15
	RMSE	665,09	941,13	914,01	997,72
750 - 2500 (nir)	R ²	0,54	0,56	0,44	0,34
	RMSE	680,11	672,77	835,86	896,24
700 - 1400	R ²	0,48	0,31	0,32	0,24
	RMSE	730,16	843,03	899,83	942,91
1100 - 2500	R ²	0,56	0,53	0,42	0,29
	RMSE	666,95	694,04	845,32	924,06

Tab. 39 Predikce podle metody a pásma – Al (ox, dit)

Tab. 40 Predikce podle metody a pásma – formy Al

				Al (Y) 2+ (mg.k	g ⁻¹) A		
		Al (X) 1+ (mg.	kg ⁻¹) A hor.	hor.		Al 3+ (mg.kg	⁻¹) A hor.
		Bez	Bez	Continuum	1.	Bez	Bez
		předzpracování	předzpracování	removal	derivace	předzpracování	předzpracování
spektrální							
pásmo		PLSR	PCR	SVM	SVM	PLSR	PCR
400 - 2500	2						
(vis - nir)	R	0,59	0,60	0,27	0,23	0,57	0,58
	RMSE	16,39	16,16	2,76	2,87	91,82	91,29
400 - 750 (vis)	R ²	0,58	0,52	0,05	0,10	0,55	0,55
	RMSE	16,73	17,79	3,15	3,06	94,51	94,67
750 - 2500							
(nir)	R ²	0,55	0,50	0,28	0,21	0,47	0,42
	RMSE	17,22	18,13	2,74	2,90	102,76	107,54
700 - 1400	R ²	0,56	0,54	0,06	0,09	0,53	0,53
	RMSE	17,01	17,36	3,13	3,08	96,83	97,01
1100 - 2500	R ²	0,50	0,47	0,28	0,44	0,46	0,43
	RMSE	18,17	18,65	2,73	19,21	104,04	106,54
600-900	R ²	0,60	0,62	-	-	-	-
	RMSE	16,18	15,81	-	-	-	-
500-800	R ²	0,61	0,54	-	-	-	-
	RMSE	15,95	17,40	-	-	-	-
600-800	R ²	0,62	0,63	-	-	-	-
	RMSE	15,77	15,56	-	-	-	-
1500-2500	R ²	-	-	0,30	0,24	-	-
	RMSE	-	-	2,70	2,83	-	-

5.4.14 Výměnná acidita

Pro stanovení výměnné acidity se jako nejlepší ukázala kombinace metod 1. derivace a SVM v celém VNIR spektru (tabulka 41). Kombinace metod 2. derivace a SVM vykázala jen o jednu desetinu nižší koeficient determinace, ale rovněž mírně klesla i střední kvadratická chyba. Vzhledem ke způsobu prezentace výsledků v literatuře byl jako parametr úspěšnosti predikce preferován koeficient determinace. V případě A horizontu ze Žofínského pralesa byla situace jiná. Nejlepší kombinací metod byla v tomto případě PCR bez předzpracování v celém VNIR pásmu. Při dalším hledání univerzálního modelu pro oba datové soubory byla jako nejleší kombinace modelů určena 1. derivace a SVM.

		VA (mmol.ml ⁻¹) min. hor.		VA (mmol.kg ⁻¹) A horizonty
		1. derivace	2. derivace	Bez předzpracování	Bez předzpracování
spektrální pásmo		SVM	SVM	PLSR	PCR
400 - 2500 (vis - nir)	R ²	0,58	0,57	0,48	0,49
	RMSE	16,58	15,95	16,79	16,64
400 - 750 (vis)	R ²	0,34	0,41	0,48	0,48
	RMSE	21,13	18,75	16,79	16,74
750 - 2500 (nir)	R ²	0,57	0,56	0,39	0,34
	RMSE	16,48	16,17	18,16	18,89
700 - 1400	R ²	0,54	0,54	0,38	0,37
	RMSE	17,02	16,38	18,37	18,45
1100 - 2500	R ²	0,55	0,50	0,30	0,30
	RMSE	17.04	17.20	19.53	19.52

Tab. 41 Predikce podle metody a pásma – výměnná acidita

5.4.15 Obsah křemíku

Byly stanoveny obsahy křemíku ve výluhu oxalátu a dithioničnanu. Jak ukazuje tabulka 42, křemík ve výluhu oxalátu byl nejlépe predikován kombinací metod 1. derivace a SVM v celém VNIR spektrálním pásmu. Křemík v dithioničnanu byl nejlépe detekovatelný ve viditelné části spektra kombinací metod 2. derivace a SVM.

		Si_ox (mg.kg ⁻¹)	A hor.	Si_dit (mg.kg	¹) A hor.
		Continuum removal	1. derivace	1. derivace	2. derivace
spektrální pásmo		SVM	SVM	SVM	SVM
400 - 2500 (vis - nir)	R ²	0,34	0,35	0,56	0,56
	RMSE	120,04	120,40	1105,20	1065,40
400 - 750 (vis)	R ²	0,18	0,26	0,58	0,59
	RMSE	134,18	127,16	1030,80	979,57
750 - 2500 (nir)	R ²	0,33	0,35	0,52	0,51
	RMSE	120,74	120,53	1203,00	1135,80
700 - 1400	R ²	0,20	0,30	0,41	0,49
	RMSE	132,12	124,20	1232,10	1114,70
1100 - 2500	R ²	0,30	0,33	0,44	0,40
	RMSE	123,62	122,55	1258,80	1251,60

Tab. 42 Predikce podle metody a pásma – Si

5.4.16 Shrnutí

V následující podkapitole jsou v tabulce 43 vypsány nejlepší modely pro predikci jednotlivých půdních vlastností, včetně validačního R² a RMSE. V tabulce 44 jsou na základě těchto údajů popsány nejlepší modely pro nejpřesnější predikci jednotlivých půdních vlastností. V případě, že byl pro jednotlivé vlastnosti, stanovené různými způsoby, určen jako nejlepší pouze jeden model, jsou v tabulce shrnuty do jednoho řádku, označeného pouze názvem vlastnosti, bez informace o způsobu jejího stanovení (např. N, P, nebo K). V případě, že byla stejná vlastnost (např. výměnná acidita) na dvou různých souborech dat nejlépe predikovaná odlišnými modely, byl hledán společný, univerzální model, který dostatečně předpovídá danou vlastnost v obou případech.

Vlastnost	Horizont (oblast)	Předzpracování	Statistická metoda	Spektrální pásmo (nm)	R ² validační	RMSE validační
pH_H₂O	min. hor.	1. derivace	SVM	400 - 2500	0,46	0,40
pH_CaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,45	0,40
pH_CaCl₂	org. hor.	1. derivace, CR	SVM	400 - 2500	0,72	0,39
pH_KCl	A horizonty	1. derivace	SVM	400 - 2500	0,55	0,12
Сох	min. hor.	1. derivace	SVM	400 - 2500	0,68	1,85
Сох	org. hor.	1. derivace	SVM	400 - 2500	0,84	3,71
Сох	A horizonty	1. derivace	SVM	400 - 2500	0,48	1,63
кук	A horizonty	Žádné	PLSR	400 - 2500	0,37	14,37

Tab. 43 Nejlepší predikce podle metody a pásma - shrnutí

Vlastnost	Horizont (oblast)	Předzpracování	Statistická metoda	Spektrální pásmo (nm)	R ² validační	RMSE validační
кук	min. hor.	1. derivace	SVM	400 - 2500	0,64	22,52
BS	min. hor.	1. derivace	SVM	400 - 2500	0,44	20,65
Ν	min. hor.	1. derivace	SVM	400 - 2500	0,57	0,10
N	org. hor.	1. derivace	SVM	400 - 2500	0,62	0,19
P_M3	min. hor.	1. derivace	SVM	400 - 2500	0,10	26,68
P_AR	org. hor.	1. derivace	SVM	400 - 2500	0,34	243,91
к_мз	min. hor.	1. derivace	SVM	400 - 2500	0,31	54,00
K_AR	org. hor.	1. derivace	SVM	400 - 2500	0,57	657,13
K_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,51	20,29
K_BaCl ₂	A horizonty	1. derivace	SVM	750 - 2500	0,42	0,87
Ca_M3	min. hor.	CR	PLSR	1100 - 2500	0,36	687,14
Ca_AR	org. hor.	1. derivace	SVM	400 - 2500	0,76	2198,70
Ca_BaCl ₂	A horizonty	Žádné	PLSR	1100 - 2500	0,33	0,19
Ca_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,27	13,33
Mg_M3	min. hor.	CR	PLSR	1100 - 2500	0,32	146,92
Mg_AR	org. hor.	1. derivace	SVM	400 - 2500	0,43	1303,50
Mg_BaCl ₂	A horizonty	1. derivace	PLSR	400 - 2500	0,43	15,18
Mg_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,32	3,00
Na_AR	org. hor.	1. derivace	SVM	400 - 2500	0,23	40,40
Na_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,35	0,18
Na_BaCl ₂	A horizonty	1. derivace	SVM	400 - 2500	0,16	7,93
Mn_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,28	1,49
Mn_BaCl ₂	A horizonty	1. derivace	SVM	400 - 2500	0,51	32,22
Mn_AR	org. hor.	1. derivace	SVM	400 - 2500	0,51	1141,80
Mn_KCl	A horizonty	1. derivace	SVM	400 - 2500	0,48	58,28
Mn_ox	A horizonty	CR	PLSR	400 - 2500	0,56	107,65
Mn_dit	A horizonty	1. derivace	SVM	400 - 750	0,55	121,04
Fe_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,38	1,38
Fe_BaCl ₂	A horizonty	Žádné	PLSR	400 - 2500	0,65	44,59
Fe_AR	org. hor.	1. derivace	SVM	400 - 2500	0,51	5757,50
Fe_KCl	A horizonty	Žádné	PCR	400 - 2500	0,67	68,64
Fe_ox	A horizonty	Žádné	PLSR	1100 - 2500	0,68	2033,40
Fe_dit	A horizonty	Žádné	PLSR	750 - 2500	0,69	2370,50
Al_BaCl ₂	min. hor.	1. derivace	SVM	400 - 2500	0,59	14,99
Al_BaCl ₂	A horizonty	Žádné	PLSR	400 - 800	0,58	120,53
AI_AR	org. hor.	1. derivace	SVM	400 - 2500	0,70	2395,20
AI_KCI	A horizonty	Žádné	PCR	400 - 2500	0,62	106,41
Al_ox	A horizonty	Žádné	PLSR	400 - 2500	0,63	617,01
Al_dit	A horizonty	1. derivace	SVM	400 - 2500	0,45	824,18
Al (X) 1+	A horizonty	Žádné	PCR	600 - 800	0,63	15,56
AI (Y) 2+	A horizonty	1. derivace	SVM	1100 - 2500	0,44	19,21
Al 3+	A horizonty	Žádné	PCR	400 - 2500	0,58	91,29
VA	min. hor.	1. derivace	SVM	400 - 2500	0,58	16,58
VA	A horizonty	Žádné	PCR	400 - 2500	0,49	16,64
Si_ox	A horizonty	1. derivace	SVM	400 - 2500	0,35	120,40
Si_dit	A horizonty	2. derivace	SVM	400 - 750	0,59	979,57

Tab. 43 Pokračování

Vlastnost	Předzpracování	Statistická metoda	Spektrální pásmo (nm)
pH_H₂O	1. derivace	SVM	400 - 2500
pH_CaCl ₂	1. derivace	SVM	400 - 2500
pH_KCl	1. derivace	SVM	400 - 2500
Сох	1. derivace	SVM	400 - 2500
KVK	1. derivace	SVM	400 - 2500
BS	1. derivace	SVM	400 - 2500
Ν	1. derivace	SVM	400 - 2500
Ρ	1. derivace	SVM	400 - 2500
К	1. derivace	SVM	400 - 2500
Ca_M3	Continuum removal	PLSR	1100 - 2500
Ca_AR	1. derivace	SVM	400 - 2500
Ca_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
Mg_M3	Continuum removal	PLSR	1100 - 2500
Mg_AR	1. derivace	SVM	400 - 2500
Mg_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
Na	1. derivace	SVM	400 - 2500
Mn_AR, KCl	1. derivace	SVM	400 - 2500
Mn_ox	Continuum removal	PLSR	400 - 2500
Mn_dit	1. derivace	SVM	400 - 750
Fe_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
Fe_AR	1. derivace	SVM	400 - 2500
Fe_KCl	Bez předzpracování	PCR	400 - 2500
Fe_ox	Bez předzpracování	PLSR	1100 - 2500
Fe_dit	Bez předzpracování	PLSR	750 - 2500
Al_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
AI_AR	1. derivace	SVM	400 - 2500
AI_KCI	Bez předzpracování	PCR	400 - 2500
Al_ox	Bez předzpracování	PLSR	400 - 2500
Al_dit	1. derivace	SVM	400 - 2500
AI (X) 1+	Bez předzpracování	PCR	600 - 800
AI (Y) 2+	2. derivace	SVM	1100 - 2500
Al 3+	Bez předzpracování	PCR	400 - 2500
VA	1. derivace	SVM	400 - 2500
Si_ox	1. derivace	SVM	400 - 2500
Si_dit	2. derivace	SVM	400 - 750

Tab. 44 Shrnutí nejlepších statistických modelů pro predikci jednotlivých vlastností

Jako všeobecně nejlepší se ukazuje kombinace metody předzpracování spektrálních dat pomocí 1. derivace a statistické metody *support vector machine* při použití celého VNIR spektrálního pásma (400 – 2500 nm). Existují ale případy, kdy se jako nejvhodnější ukázaly být jiné kombinace metod a jiná, užší spektrální pásma. Například vápník a hořčík stanovený ve výluhu lučavky královské byl nejlépe predikovatelný metodou PLSR aplikovanou na spektrální data upravená funkcí *continuum removal* v blízké infračervené části spektra 1100 – 2500 nm. Pro prvky stanovené v oxalátu byla místo SVM ve většině případů nejlepší metoda PLSR (Mg, Mn, Fe, Al). Rozmanitost modelů byla sledována především v případě predikce železa a hliníku, tedy dvou velmi sledovaných prvků v lesních půdách. Velmi rozdílná je spektrální detekovatelnost jednotlivých forem hliníku. Nejméně úspěšně predikovatelná dvojmocná forma, která se váže na organickou hmotu, avšak je obsažena v extrémně malých množstvích, lze alternativně predikovat odečtením obsahu jednomocných a trojmocných komplexů od celkového obsahu stanoveného ve společném výluhu, v tomto případě výluhu KCl.

5.5 Testování a úprava nalezených modelů

V této kapitole budou nalezené modely aplikovány na nezávislé soubory dat. Konkrétně se bude jednat o data z lesních školek a o B horizont ze Žofínského pralesa. Budou porovnávány úspěšnosti predikcí jednotlivých vlastností před a po aplikaci modelů. Data uváděná jako ta "před aplikací modelu" byla podrobena standardnímu statistickému zpracování, tedy metodě PLSR v celém VNIR pásmu na nepředzpracovaných spektrech. Modely, které zlepší výsledky predikce (zeleně označené), budou uznány za vhodné a univerzální. Pokud úspěšnost predikce vzroste jen velmi málo, zůstane beze změny (žlutě označené), nebo dokonce klesne (červeně označené), budou hledány jiné modely na základě dosavadních znalostí. Pokud ani toto nepovede k vytvoření univerzálního modelu, nebudou modely vyhodnoceny jako univerzální, ale jako vhodné k použití pro predikci vlastností konkrétní datové skupiny (např. náležící určitému horizontu), případně mohou být určité vlastnosti označený jako spektrálně nedetekovatelné.

5.5.1 Lesní školky

Půdy lesních školek nepatří mezi typické zástupce lesních půd, v tomto případě však byly použity jako nezávislý soubor dat, na kterém byly ověřeny nově vzniklé modely. Jde rovněž o ukázku využití spektroskopické metody v praxi. Jak ukazuje tabulka 45, aplikací modelů z předchozí kapitoly bylo dosaženo významného zpřesnění předpovědi půdních vlastností ve většině případů, pouze v případě vápníku, stanoveného ve výluhu Mehlich III, bylo zlepšení jen mírné. Model na predikci hliníku musel být tedy podroben dalšímu zkoumání, kterým bylo dojito k závěru, že metoda, která byla na trénovacím souboru dat určena jako druhá nejlepší (1. derivace, SVM, 400 – 2500 nm) poskytuje mnohem lepší výsledky v případě predikce vápníku v testovaném souboru, zatímco pokles u souboru trénovacího je minimální. Upravený model lze proto prohlásit za univerzálnější. Zlepšení předpovědi po úpravě modelu jsou znázorněny v tabulce 46. Statistické údaje o tomto souboru jsou v přílohách (přílohy 10, 11 a 12)

	Před aplikací modelu		Po apl	ikaci modelu
	R ²	RMSE	R ²	RMSE
pH_KCl	0,52	0,56	0,70	0,45
pH_H₂O	0,59	0,54	0,75	0,43
N (mg.kg ⁻¹)	0,57	0,04	0,67	0,04
Cox (mg.kg ⁻¹)	0,53	0,89	0,65	0,77
P (mg.kg ⁻¹)	0,19	94,78	0,58	70,07
K (mg.kg ⁻¹)	0,09	70,64	0,28	63,58
Mg (mg.kg ⁻¹)	0,52	95,26	0,61	86,14
Ca (mg.kg ⁻¹)	0,71	580,99	0,73	571,71

Tab. 45 Porovnání základního modelu s nalezeným modelem – lesní školky

Tab. 46 Predikce po úpravě modelů – lesní školky

	Před a	plikací modelu	Po ap	olikaci modelu
	R ²	RMSE	R ²	RMSE
pH_KCl	0,52	0,56	0,70	0,45
pH_H₂O	0,59	0,54	0,75	0,43
N (mg.kg ⁻¹)	0,57	0,04	0,67	0,04
Cox (mg.kg ⁻¹)	0,53	0,89	0,65	0,77
P (mg.kg ⁻¹)	0,19	94,78	0,58	70,07
K (mg.kg ⁻¹)	0,09	70,64	0,28	63,58
Mg (mg.kg ⁻¹)	0,52	95,26	0,61	86,14
Ca (mg.kg ⁻¹)	0,71	580,99	0,81	490,98

5.5.2 Horizont B – Žofínský prales

Modely, natrénované na ostatních datových souborech, budou dále aplikovány i na vzorky z horizontů B odebrané v Žofínském pralese. Výsledky jsou znázorněny v tabulce 47. Ve 13 z 25 případů bylo dosaženo výrazného zlepšení predikce, v 11 případech bylo zlepšení mírné, v jednom případě vedla aplikace modelu ke zhoršení predikce. Statistické údaje o tomto souboru jsou v přílohách (přílohy 7,8 a 9)

	Před ap	likací modelu	Po	aplikaci modelu
	R ²	RMSE	R ²	RMSE
Cox (%)	0,59	0,47	0,72	0,39
pH_Kcl	0,33	0,10	0,62	0,08
KVK (mmol ⁺ .kg ⁻¹)	0,17	17,52	0,34	15,66
VA (mmol ⁺ .kg ⁻¹)	0,37	11,34	0,50	10,16
Al_vym (mg.kg ⁻¹)	0,47	69,10	0,54	64,07
Fe_vym (mg.kg ⁻¹)	0,18	8,45	0,29	7,90
Mg_vym (mg.kg ⁻¹)	0,21	11,20	0,22	11,19
Mn_vym (mg.kg ⁻¹)	0,19	4,25	0,20	6,24
Ca_vym (mg.kg ⁻¹)	0,01	0,38	0,02	0,44
Na _vym (mg.kg ⁻¹)	0,07	9,61	0,28	8,56
K_vym (mg.kg ⁻¹)	0,33	9,92	0,43	9,28
Al_KCI (mg.kg ⁻¹)	0,38	68,48	0,38	68,47
Mn_KCl (mg.kg ⁻¹)	0,41	4,92	0,45	4,75
Fe_KCl (mg.kg ⁻¹)	0,29	6,29	0,30	6,26
Al (X) 1+ (mg.kg ⁻¹)	0,48	2,68	0,55	2,51
AI (Y) 2+ (mg.kg ⁻¹)	0,17	3,94	0,27	3,85
Al 3+ (mg.kg ⁻¹)	0,37	67,30	0,37	67,30
Al_ox (mg.kg ⁻¹)	0,67	2779,00	0,68	2739,20
Mn_ox (mg.kg ⁻¹)	0,26	157,33	0,35	132,52
Fe_ox (mg.kg ⁻¹)	0,51	2553,60	0,51	2544,90
Si_ox (mg.kg ⁻¹)	0,59	552,82	0,64	523,54
Al_dit (mg.kg ⁻¹)	0,57	2327,40	0,57	2317,80
Mn_dit (mg.kg ⁻¹)	0,20	172,76	0,25	167,87
Fe_dit (mg.kg ⁻¹)	0,38	3641,50	0,38	3640,25
Si_dit (mg.kg ⁻¹)	0,24	527,17	0,16	554,55

Tab. 47 Porovnání základního modelu s nalezeným modelem – B horizonty, Žofínský prales

Úspěšnost predikce výměnného hořčíku se aplikací vítězného modelu (1. derivace, SVM, 400 – 2500 nm) zvýšila jen mírně. Aplikace jiných modelů ovšem úspěšnost nezvýšila téměř vůbec, nebo ji dokonce zhoršila. Byla tedy potvrzena vhodnost použití nejlepšího modelu. Stejná situace je i v případě výměnného manganu v roztoku BaCl₂ i KCl. Predikce výměnného vápníku je v tomto datovém souboru velice slabá. Kromě nejlepšího modelu z předchozí kapitoly byly zkoušeny i další, ale žádný z nich předpověď výrazně nezlepšil. Původní model (1. derivace, SVM, 400 – 2500 nm) tedy zůstává jako nejlepší, koeficient determinace přesto nepřekonal hranici $R^2 = 0.02$. Vzorky tohoto datového souboru obsahovaly velmi nízké množství vápníku. Je tedy patrné, že vápník je spektroskopicky detekovatelný pouze při vyšším obsahu v půdě. Predikce hliníku ve výluhu KCl zůstala po aplikaci modelu (PCR, 400 - 2500) bez zlepšení. Byl tedy aplikován druhý nejlepší model (PLSR, 400 -2500), který v případě trénovacího souboru poskytl pouze zanedbatelně horší výsledek, ale u testovacího souboru hodnota predikce stoupla. Model byl uznán univerzálnějším. Stejná situace a stejná změna modelu nastala i v případě trojmocného hliníku. V případě Al_ox ke zlepšení nedošlo, jelikož model PLSR v celém VNIR spektru je uznán jako nejvhodnější. Drobné vylepšení je způsobeno oříznutím spektra ve vlnových délkách 350 - 400 nm z důvodu odstranění šumu. Obdobná situace nastala i v případě Fe_ox, kde byla použita část spektra v rozsahu 1100 – 2500 nm a Fe_dit se zvoleným rozsahem 750 – 2500 nm.

V případě predikce železa ve výluhu KCl vyšly původně jako dva nejlepší modely PLSR a PCR na nepředzpracovaných vzorcích v celém VNIR spektru. V těsném závěsu, co se týče úspěšnosti, byl model 1. derivace, SVM, v celém VNIR spektru. Tento model výrazně zlepšil predikci Fe KCl u testovacího souboru, zatímco u souboru trénovacího predikci zhoršil minimálně. Byl tedy uznán univerzálnějším. Hliník stanovený v dithioničnanu byl aplikací modelu predikován jen s velmi mírným zlepšením, ale žádný jiný model predikci nezlepšil, proto je model (1. derivace, SVM, VNIR spektrum) uznán jako nejlepší a univerzální. Křemík stanovený v dithioničnanu byl pomocí vítězného modelu predikován neúspěšně. Byl tedy hledán takový model, který predikci významně vylepší a zároveň příliš nezhorší predikci u trénovacího souboru. Takovým modelem se ukázala být kombinace metod 1. derivace, SVM, v pásmu 400 – 2500 nm.

Po úpravě modelů v případech, kdy to bylo zapotřebí, byla ve všech případech zvýšena úspěšnost predikce. Výsledky predikce po úpravě modelů jsou znázorněny v tabulce 48.

	Před aplikací modelu		Poa	aplikaci modelu
	R ²	RMSE	R ²	RMSE
Cox (%)	0,59	0,47	0,72	0,39
pH_Kcl	0,33	0,10	0,62	0,08
KVK (mmol ⁺ .kg ⁻¹)	0,17	17,52	0,34	15,66
VA (mmol ⁺ .kg ⁻¹)	0,37	11,34	0,5	10,16
Al_vym (mg.kg ⁻¹)	0,47	69,10	0,54	64,07
Fe_vym (mg.kg ⁻¹)	0,18	8,45	0,29	7,90
Mg_vym (mg.kg ⁻¹)	0,21	11,20	0,22	11,19
Mn_vym (mg.kg ⁻¹)	0,19	4,25	0,20-++	6,24
Ca_vym (mg.kg ⁻¹)	0,01	0,38	0,02	0,44
Na _vym (mg.kg ⁻¹)	0,07	9,61	0,28	8,56
K_vym (mg.kg ⁻¹)	0,33	9,92	0,43	9,28
Al_KCl (mg.kg ⁻¹)	0,38	68,48	0,42	65,95
Mn_KCl (mg.kg ⁻¹)	0,41	4,92	0,45	4,75
Fe_KCl (mg.kg ⁻¹)	0,29	6,29	0,42	5,82
Al (X) 1+ (mg.kg ⁻¹)	0,48	2,68	0,55	2,51
AI (Y) 2+ (mg.kg ⁻¹)	0,17	3,94	0,27	3,85
Al 3+ (mg.kg ⁻¹)	0,37	67,30	0,42	64,53
Al_ox (mg.kg ⁻¹)	0,67	2779,00	0,68	2739,20
Mn_ox (mg.kg ⁻¹)	0,26	157,33	0,35	132,52
Fe_ox (mg.kg ⁻¹)	0,51	2553,60	0,51	2544,90
Si_ox (mg.kg ⁻¹)	0,59	552,82	0,64	523,54
Al_dit (mg.kg ⁻¹)	0,57	2327,40	0,57	2317,80
Mn_dit (mg.kg ⁻¹)	0,20	172,76	0,25	167,87
Fe_dit (mg.kg ⁻¹)	0,38	3641,50	0,38	3640,25
Si_dit (mg.kg ⁻¹)	0,24	527,17	0,47	442,88

Tab. 48 Predikce po úpravě modelů – B horizonty, Žofínský prales

V tabulce 49 jsou znázorněny vítězné modely pro predikci vlastností lesních půd. Kromě úspěšnosti predikce byl kladen důraz i na univerzálnost použití daných modelů. V případě potřeby modelu pro konkrétní oblast, či horizont, jsou tyto modely popsány v předchozích kapitolách. V případě, že byla určitá vlastnost stanovena různými způsoby, avšak model je pro všechny tyto způsoby společný, je v tabulce označena pouze daná vlastnost. Pokud způsob stanovení měl vliv na spektrální detekovatelnost a vyžadoval tedy použití jiného modelu, jsou vlastnosti jednotlivě popsány i se způsobem stanovení.

Vlastnost	Předzpracování	Statistická metoda	Spektrální pásmo (nm)
pH H₂O	1. derivace	SVM	400 - 2500
pH CaCl ₂	1. derivace	SVM	400 - 2500
рН КСІ	1. derivace	SVM	400 - 2500
Сох	1. derivace	SVM	400 - 2500
кvк	1. derivace	SVM	400 - 2500
BS	1. derivace	SVM	400 - 2500
Ν	1. derivace	SVM	400 - 2500
Р	1. derivace	SVM	400 - 2500
к	1. derivace	SVM	400 - 2500
Са	1. derivace	SVM	400 - 2500
Mg_M3	Continuum removal	PLSR	1100 - 2500
Mg_AR	1. derivace	SVM	400 - 2500
Mg_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
Na	1. derivace	SVM	400 - 2500
Mn_AR, KCl	1. derivace	SVM	400 - 2500
Mn_ox	Continuum removal	PLSR	400 - 2500
Mn_dit	1. derivace	SVM	400 - 750
Fe_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
Fe_AR	1. derivace	SVM	400 - 2500
Fe_KCl	1. derivace	SVM	400 - 2500
Fe_ox	Bez předzpracování	PLSR	1100 - 2500
Fe_dit	Bez předzpracování	PLSR	750 - 2500
Al_vym (BaCl ₂)	1. derivace	SVM	400 - 2500
AI_AR	1. derivace	SVM	400 - 2500
AI_KCI	Bez předzpracování	PLSR	400 - 2500
Al_ox	Bez předzpracování	PLSR	400 - 2500
Al_dit	1. derivace	SVM	400 - 2500
AI (X) 1+	Bez předzpracování	PCR	600 - 800
AI (Y) 2+	2. derivace	SVM	1100 - 2500
Al 3+	Bez předzpracování	PLSR	400 - 2500
VA	1. derivace	SVM	400 - 2500
Si	1. derivace	SVM	400 - 2500

Tab. 49 Nejlepší univerzální statistické modely pro predikci jednotlivých vlastností

6. ZÁVĚR

Cílem předložené doktorské dizertační práce bylo objektivní zhodnocení použitelnosti spektroskopie ve viditelné a blízké infračervené části spektra pro predikci vlastností lesních půd. Tyto půdy se od zemědělských zásadně liší svým vzhledem, vývojem, fyzikálními i chemickými procesy, přítomností organických horizontů atd. Také se u nich obvykle sledují jiné vlastnosti. Vždy je nezbytné stanovit před vlastní predikcí základní statistické charakteristiky daného souboru, například normalitu rozložení dat, aby se předešlo chybným postupům a závěrům. Bylo zjištěno, že dělení datového souboru podle oblastí odběru vzorku není významným vstupním kritériem, podstatnější je právě rozložení dat. Z důvodů velké rozdílnosti mezi organickými a minerálními horizonty se v práci doporučuje zkoumání těchto horizontů zvlášť. Testováním, zda je vhodnější použít pro měření spekter a následnou predikci místo jemnozemě I (2 mm) jemnozem II (0,2 mm), bylo zjištěno zhoršení předpovědi a použití jemnozemě II není doporučeno.

Jelikož bylo k dispozici velké množství dat, bylo možné tato data rozdělit na větší soubor trénovací, na kterém byly postupně důkladně trénovány jednotlivé modely, a soubor testovací, na kterém byly tyto modely testovány a na základě výsledků dále případně upravovány. Takto byly pro každou půdní vlastnost nalezeny nejvhodnější kombinace metod statistického předzpracování a zpracování v určitých spektrálních pásmech. Jako všeobecně nejúspěšnější se ukazuje kombinace metod 1. derivace a *support vector machine* v celém VNIR spektrálním pásmu (400 – 2500 nm). V některých případech se však osvědčily modely jiné. Mezi nejlépe predikovatelné vlastnosti ($R^2 > 0,6$) patří pH, obsah oxidovatelného uhlíku, obsahy hliníku, železa, křemíku, nebo vápníku (ve vyšších koncentracích). Nepříliš vysoká úspěšnost predikce ($R^2 < 0,3$) byla zjištěna u ukazatelů, které nabývají nízkých hodnot (obsah sodíku, manganu, nebo dvojmocné komplexy hliníku).

Výsledky ukazují, že VNIR spektroskopie je použitelnou metodou pro predikci vlastností lesních půd. Nemůže zcela nahradit klasickou analýzu, ale může ji velice dobře doplňovat a to především v praxi. Například při půdním mapování může pomoci zahustit síť údajů a zpřesnit informace lépe, než při použití jiných metod prostorového odhadu. Je použitelná v případech, kdy je zapotřebí velké množství údajů v krátkém časovém horizontu a s minimálními náklady. Je vhodná pro sledování trendů v čase, nebo pro rychlý průzkum určité oblasti. Její používání je stále ještě v začátcích. Spolu se zdokonalováním modelů a zlepšováním technických možností však její význam do budoucna poroste.

7. LITERATURA

- Bartholomeus, H., Kooistra, L., Stevens, A., van Leeuwen, M., van Wesemael, B., Ben-Dor,
 E., Tychon, B. (2011): Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation 13, 81 88
- Ben-Dor, E., Banin, A. (1995): Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal 59: 364–372
- Ben-Dor, E., Heller, D., Chudnovsky, A. (2008). A novel method of classifying soil profiles in the field using optical means. Soil Science Society of America Journal 72, 1113 – 1123
- Bernhardt, C. (1994): Particle Size Analysis Classification and Sedimentation Methods. Springer, London
- Bilgili, A.V., van Es, H.M., Akbas, F., Durak, A., Hively, W.D. (2010): Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments 74, 229 - 238
- Brodský, L., Klement, A., Penížek, V., Kodešová, R., Borůvka, L. (2011): Building soil spectral library of the Czech oils for quantitave digital soil mapping. Soil and Water Research, 6: 165 172
- Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D., Reinsch, T.G. (2006): Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132, 273-290
- Courchesne, F., Turmel, M.C. (2008): Extractable Al, Fe, Mn and Si. In: Carter, M.R., Gregorich, E.G. (Eds.), Soil Sampling and Methods of Analysis. 2nd ed. Canadian Society of Soil Science. CRC Press, pp. 307 - 315
- Cozzolino, D., Morón, A. (2003): The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. Journal of Agricultural Science 140, 65 -71
- Curcio, D., Ciraolo, G., Asaro, F.D., Minacapilli, M. (2013): Prediction of Soil Texture Distributions Using VNIR-SWIR Reflectance Spectroscopy. Procedia Environmental Sciences 19, 494 - 503
- Dalal, R.C., Henry, R.J. (1986): Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society of America Journal 50, 120 - 123

- Daniel, K.W., Tripathi, N.K., Honda, K. (2003): Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Australian Journal of Soil Research 41, 47 - 59
- Drábek, O., Borůvka, L., Mládková, L., Kočárek, M. (2003): Possible method of aluminium speciation in forest soils. Journal of Inorganic Biochemistry, 97, 8 15
- Gillman, G.P., Sumpter, M.E. (1986): Modification of the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research 17, 61–66
- Gholizadeh, A., Borůvka, L., Vašát, R., Klement, A., Kratina, J., Tejnecký, V., Drábek, O. (2015): Estimation of potentially toxic elements contamination in anthropogenic aoils on a brown coal mining dumpsite by reflectance spectroscopy: A Case Study. Plos One, 10 (2), e0117457
- Hanuš, J., Malenovský, Z., Homolová, L., Kaplan, V., Lukeš, P., Cudlín P. (2008): Potentials of the VNIR airbone hyperspectral system AISA Eagle. Konference GIS, 2008.
 Ostrava. Dostupné z www:

< http://gis.vsb.cz/GIS_Ostrava/GIS_Ova_2008/sbornik/index.htm >

- He, Y., Song, H. (2006): Prediction of soil content using near-infrared spectroscopy. SPIE Newsroom
- Hillel, D. (1998): Applications of Soil Physics. Academic Press, London. ISBN: 978-0-12-348525-0
- Hollas, J.M. (2004): Modern Spectroscopy, 4th Edition. Wiley, ISBN: 978-0-470-84416-8
- Hummel, J. W., Sudduth, K. A., Hollinger, S. E. (2001): Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture 32, 149–165
- Chang, G.W., Laird, D.A., Hurburgh, G.R. (2005): Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Science 170, 244-255
- Chang, C.-W., Laird, D.A. (2002). Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science 167 (2), 110 116.
- Chang, C.-W., Laird, D.A., Mausbach, M.J., Hurburgh Jr., C.R. (2001): Near-infrared reflectance spectroscopy—principal components regression analysis of soil properties. Soil Science Society of America Journal 65, 480–490

- Chen, Y., Senesi, N., Schnitzer, M. (1976): Information provided on humic substances by E4/E6 ratios. Contribution No. 606. Soil Research Institute, Agriculture Canada, Ottawa, Ont. Canada K1A OC6
- Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, H., Kim, K.W. (2008): Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment 112, 3222 3233
- Choe, E., Kim, K.W., Bang, S., Yoon, I.H., Lee, K.Y. (2009): Qualitative analysis and mapping of heavy metals in an abandoned Au–Ag mine area using NIR spectroscopy. International Journal of Remote Sensing 58, 477 - 482
- Chodak, M., Khanna, P., Horvath, B., Beese, F. (2004): Near infrared spectroscopy for determination of total and exchangeable cations in geologically heterogeneous forest soils. Journal of Near Infrared Spectroscopy 12, 315 - 324
- Christy, C. D. (2008): Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture 61, 10 19
- Islam, K., Singh, B., McBratney, A. (2003): Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Aust. Journal of Soil Research 41, 1101 - 1114
- Kemper, T., Sommer, S. (2002): Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology 36, 2742 - 2747
- Klement, A., Brodský, L., Kodešová, R., Borůvka, L. (2011): Vliv půdní vlhkosti na spektrální vlastnosti půd: Aplikace DPZ pro plošný monitoring půdní vlhkosti. In Sborník abstraktů Hydrologie malého povodí 2011. ISBN: 978-80-02-02290-9
- Kooistra, L., Wehrens, R., Leuven, R.S.E.W., Buydens, L.M.C. (2001): Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Analytica Chimica Acta 446, 97-105
- Liu, Y.L., Li, W., Wu, X.G. (2011): Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data — A case study along Le'an River, China. Geo-spatial Information Science 14, 10–16

- Ludwig, B., Khanna, P.K., Bauhus, P., Hopmans, P. (2002): Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. Forest Ecology and Management 171, 121 132
- Lukas, V. (2009): Podklad pro diferencované provádění pěstebních zásahů. Dizertační práce. Mendelova zemědělská a lesnická univerzita v Brně
- Malley, D. F., Williams, P. C. (1997): Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environmental Science & Technology 31, 3461 - 3467
- Malley, D. F., Martin, P. D., McClintock, L. M., Yesmin, L., Eilers, R. G., and Haluschak, P. (2000): Feasibility of analysing archived Canadian prairie agricultural soils by near infrared reflectance spectroscopy. In "Near Infrared Spectroscopy: Proceedings of the 9th International Conference" (A. M. C. Davies a R. Giangiacomo, Eds.), pp. 579 585. NIR Publications, Chichester, UK
- Martens, H., Naes, T. (1989). Multivariate Calibration, second ed. John Wiley and Sons Ltd, Chichester, UK, 419 pp.
- McBratney, A.B., Minasny, B., Viscarra Rossel, R. (2006): Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 136, 272 278
- McKeague, J.A., Brydon, J.E., Miles, N.M. (1971): Differentiation of forms of extractable ion and aluminum in soils. Soil Science Society of America Journal 35, 33 - 38
- Metternicht, G.I. (1998): Analysing the relationship between groud-based reflectance and environmental indicators of salinity processes in the Cochabamba Valleys (Bolivia). International Journal of Ecology and Environmental Sciences 24, 359 - 370
- Morón, A., Cozzolino, D. (2002): Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay. Journal of Near Infrared Spectroscopy 10, 215 - 221
- Moros, J., Vallejuelo, S.F.O.D., Gredilla, A., Diego, A.D., Madariaga, J.M., Garrigues, S., Guardia, M.D.L. (2009): Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country. Environmental Science and Technology 43, 9314 - 9320

- Middelkoop, H. (1997): Embanked floodplains in the Netherlands, Geomorphological evolution of various time scales, Ph.D. thesis, Utrecht University, The Netherlands
- Mouazen, A.M., De Baerdemaeker, J., Ramon, H. (2006): Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy. Journal of Near Infrared Spectroscopy 14, 189-199
- Mouazen, A. M., Karoui, R., De Baerdemaeker, J., Ramon, H. (2005): Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. Journal of Near Infrared Spectroscopy 13, 231 240
- Nocita, M., Stevens. A., van Mesemael, B., Brown, D.J., Shepherd, K.D., Towett, E., Vargas,R., Montanarella, L. (2014): Soil spectroscopy: an opportunity to be seized. GlobalChange Biology 21, 10 11
- Pandit, C.M., Filippelli, G.M., Li, L. (2010): Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing 31, 4111 - 4123
- Pelíšek, J. (1956): Pedologie lesnická. Státní naladatelství technické literatury Praha
- Pospíšil, F. (1964): Fractionation of humus substances of several soil types in Czechoslovakia. Rostlinná výroba 10, 567-580
- Reeves, J.B., McCarty, G., Mimmo, T. (2002): The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental Pollution 116, 277 284
- Reeves, J.B., McCarty, G.W. (2001): Quantitative analysis of agricultural soils using near infrared reflectance spectroscopy and fibre-optic probe. Journal of Near Infrared Spectroscopy 9, 25 - 34
- Reeves, J.B., Van Kessel, J.S. (1999): Investigations into near-infrared analysis as an alternative to traditional procedures in manure N and C mineralization studies. Journal of Near Infrared Spectroscopy 7, 195 212
- Ren, H.Y., Zhuang, D.F., Singh, A.N., Pan, J.J., Qiu, D.S., Shi, R.H. (2009): Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: a case study. Pedosphere 19, 719 - 726
- Shepherd, K.D., Walsh, M.G. (2002): Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal 66, 988 -998

- Shibusawa, S., Imade Anom, S.W., Sato, S., Sasao, A., Hirako, S. (2001): Soil mapping using the real-time soil spectrophotometer. In: Grenier, G., Blackmore, S. (Eds.), ECPA 2001, Third European Conference on Precision Agriculture, vol. 1. Agro Montpellier, pp. 497 508
- Siebelec, G., McCarty, G.W., Stuczynski, T.I., Reeves, J.B. (2004): Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal kontent. Journal of Environmental Quality 33, 2056 2069
- Song, Y.X., Li, F.L., Yang, Z.F., Ayoko, G.A., Frost, R.L., Ji, J.F. (2012): Diffuse reflectance spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang River Delta, China. Applied Clay Science 64, 75 - 83
- Sudduth, K. A., Hummel, J. W. (1993): Portable, near-infrared spectrophotometer for rapid soil analysis. Transactions of the ASAE 36, 185 193
- Stužka, V. (1993): Instrumentální metody chemické analýzy. Díl 4, Vibrační spektroskopie organických molekul. Univerzita Palackého, Olomouc. ISBN: 8070672919
- Šamonil, P., Tejnecký, V., Borůvka, L., Šebková, B., Janík, D., Šebek, O. (2010): The role of uprooting in Cambisol development. Geoderma 159, 83 98
- Tatzber, M., Mutsch, F., Mentler, A., Leitgeb, E., Englisch, M., Gerzabek, M.H. (2010): Determination of organic and inorganic carbon in forest soil samples by sid-infrared spectroscopy and partial least squares regression. Applied Spectroscopy 64, 1167-1175
- Tiezhu, S., Chen, Y., Liu, Y., Wu, G. (2014): Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials 265, 166 - 176
- Udelhoven, T., Emmerling, C., Jarmer, T. (2003): Quantitative analysis of soil chemic properties with diffuse reflectance spectrometry and partial-least square regression: a feasibility study. Plant and Soil 251, 319 329
- Viscarra Rossel, R. A. Behrens, T. (2010): Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46-54
- Viscarra Rossel, R.A. (2007): Robust modelling of soil diffuse reflectance spectra by "bagging-partial least squares regression". Journal of Near Infrared Spectroscopy 15, 39 - 47

- Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59 - 75
- Viscarra Rossel, R.A., Walter, C., Fouad, Y. (2003): Assessment of two reflectance techniques for the quantification of field soil organic carbon. In: Stafford, J., Werner, A. (Eds.), Precision Agriculture. Fourth European Conference on Precision Agriculture. Wageningen Academic Publishers, Berlin, pp. 697 - 703
- Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O. (2001): Proximal sensing of soil pH and lime requirement by mid infrared diffuse reflectance spectroscopy. In: Grenier, G., Blackmore, S. (Eds.), ECPA 2001, Third European Conference on Precision Agriculture, vol. 1. Agro Montpellier, pp. 497 - 508
- Vohland, M., Bossung, C., Frunf, H.C. (2009): A spectroscopic approach to assess traceheavy metal contents in contaminated floodplain soils via spectrally active soil components. Journal of Plant Nutrition and Soil Science 172, 201-209
- Waiser, T. H., Morgan, C. L. S., Brown, D. J., Hallmark, C. T. (2007): In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Science Society of America Journal 71, 389 - 396
- Wetterlind, J., Stenberg, B., Jonsson, A. (2008): Near infrared reflectance spectroscopy compared with soil clay and organic matter content for estimating within-field variation in N uptake in cereals. Plant and Soil 302, 317–327
- Wu, Y., Chen, J., Ji, J., Gong, P., Liao, Q., Tian, Q., Ma, H. (2007): A mechanism study of reflectance spectroscopy for investigating heavy metals in soils. Soil Science Society of America Journal 71, 918 - 926
- Wold, S., Martens, H. and Wold, H. (1983): The Multivariate Calibration Problem in Chemistry solved by the PLS Method. Proc. Conf. Matrix Pencils, (A. Ruhe and B. Kågström, eds.), March 1982, Lecture Notes in Mathematics, Springer Verlag, Heidelberg, 286 293.
- Wu, Y.Z., Chen, J., Wu, X.M., Tian, Q.J., Ji, J.F., Qin, Z.H. (2005): Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Applied Geochemistry 20, 1051 – 1059

Youngentob, K.N., Roberts, D.A., Held, A.A., Dennison, P.E., Xiuping, J., Lindenmayer, D.B. (2011): Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data. Remote Sensing of Environment 115, 1115 - 1128

Zbíral, J. (2002): Analýza půd I. Ústřední kontrolní a zkušební ústav zemědělský, Brno, 197 s.

Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mataix-Beneyto, J., Gomez, I. (2008): Validating the effectivity and sensisitivity of soil quality indices based on natural soils under Mediterranean conditions. Soil Biology & Biochemistry 40, 2079 -2087

	červeně zi	nač. korelac	e jsou význa:	mné na hlac	ł. p < ,010t	00 počet	platných N:	=1328												
	Průměry	Sm.odch.	PH_CACL2	PH_H20	COX	DUSIK	P_M3	K_M3	CA_M3	MG_M3 /	AL_H_VY	K_VYM	CA_VYM	MG_VYM	NA_VYM N	AN_VYM A	T_VYM F	E_VYM	CEC	BS
Proměnná											M									
PH_CACL2	3,6260	0,5263	1,000000																	
PH_H20	4,2906	0,5398	0,943596	1,000000																
COX	4,8223	3,2914	-0,302063	-0,231287	1,000000															
DUSIK	0,2050	0,1512	-0,138169	-0,110422	0,811301	1,000000														
P_M3	17,1325	26,5907	0,066284	0,080716	0,114709	0,113716	1,000000													
K_M3	90,2515	63,9606	0,361652	0,410233	0,292997	0,381765	0,239955	1,000000												
CA_M3	407,3870	861,4233	0,759959	0,770020	0,001354	0,124753	0,079772	0,518108	1,000000											
MG_M3	70,4526	148,3515	0,571975	0,600898	0,005219	0,083122	0,049830	0,405331	0,705214	1,000000										
AL_H_VYM	14,6550	22,5150	-0,214602	-0,200162	0,213433	0,153708	-0,082743	-0,007121	-0,148127	-0,107083	1,000000									
K_VYM	0,5594	1,0750	0,103996	0,157225	0,193500	0,181946	0,119915	0,505697	0,114473	0,096836	0,518968	1,000000								
CA_VYM	5,4424	14,7969	0,357230	0,386440	0,101982	0,134125	0,127127	0,501469	0,397386	0,298626	0,175006	0,782208	1,000000							
MG_VYM	1,4585	3,3953	0,307143	0,343976	0,136101	0,147947	0,104957	0,454994	0,326811	0,454016	0,320116	0,782131	0,853403	1,000000						
NA_VYM	0,0983	0,1879	-0,077338	-0,054591	0,150497	0,126469	-0,036545	0,117822	-0,006804	0,015551	0,712083	0,539132	0,321378	0,418111	1,000000					
MN_VYM	0,6354	1,6920	0,149831	0,187983	0,093564	0,099600	0,149188	0,414598	0,119808	0,074909	0,286371	0,765599	0,716264	0,608673	0,316866	1,000000				
AL_VYM	13,1433	20,5375	-0,193639	-0,186583	0,189113	0,137766	-0,083478	-0,010644	-0,146900	-0,103990	0,993512	0,506124	0,165422	0,316976	0,702168	0,286449 1	000000			
FE_VYM	0,6889	1,6391	-0,242095	-0,232787	0,253342	0,189883	-0,101365	-0,044479	-0,130629	-0,088329	0,798349	0,307766	0,026816	0,164887	0,491988	0,002696 0	,768479 1	000000		
CEC	22,2115	32,4640	0,049150	0,078248	0,215931	0,189889	0,015366	0,288796	0,116351	0,112637	0,827892	0,834618	0,694230	0,743776	0,707414	0,615908 0	,818212 0	,596142 1	,000000	
BS	26,3583	25,5931	0,696310	0,764406	0,066087	0,178199	0,163841	0,651591	0,768867	0,626181	-0,152182	0,314269	0,546221	0,486271	0,035688	0,335514 -0	,153376 -0	,182900 0	,204902 1	,000000

Příloha 1 Korelační matice, minerální horizonty

Příloha 2 Histogramy, minerální horizonty

Příloha 2 Pokračování

	ZN_AR																				,000000
	S_AR																			1,000000	0,067505 1
	PB_AR																		1,000000	0,014447	0,010329
	P_AR																	1,000000	0,134673	0,005177 -	0,249208
	NA_AR																1,000000	0,156352	0,150240	-0,022050	0,109170
	MN_AR															1,000000	-0,084628	0,345648	-0,153804	0,003999	0,235649
	MG_AR														1,000000	0,095569	0,206831	0,185623	-0,048167	-0,222932	0,212796
	K_AR													1,000000	0,668481	0,163652	0,097818	0,285260	0,244904	0,173506	0,094003
	FE_AR												1,000000	0,298861	0,713248	-0,067156	0,258773	-0,011987	0,272819	-0,172484	0,234912
	CU_AR											1,000000	0,707093	0,232843	0,495274	0,051429	0,278811	0,238914	0,317793	-0,076997	0,300915
	CR_AR										1,000000	0,553397	0,747550	0,495414	0,741194	-0,080226	0,211573	-0,022777	0,161916	-0,241130	0,146450
	CD_AR									1,000000	-0,037690	0,293692	0,106975	-0,028673	0,079856	0,472405	0,046245	0,275170	0,014331	0,049666	0,403797
	CA_AR								1,000000	0,260679	-0,067974	-0,093145	-0,175601	0,471408	0,290911	0,463237	-0,083201	0,336768	-0,427004	-0,070101	0,126072
2155	AL_AR							1,000000	-0,096137	0,070224	0,816160	0,665700	0,927519	0,438374	0,822386	-0,063647	0,265856	-0,021361	0,189977	-0,218445	0,228996
olatných N=	COX_MG						1,000000	-0,791094	0,142801	-0,042984	-0,682966	-0,455021	-0,745108	-0,296383	-0,604384	0,021743	-0,177321	0,168588	-0,303173	0,289361	-0,099378
) počet p	COX_HH					1,000000	1,000000	-0,791094	0,142801	-0,042984	-0,682966	-0,455021	-0,745108	-0,296383	-0,604384	0,021743	-0,177321	0,168588	-0,303173	0,289361	-0,099378
p < ,01000	DUSIK_M	g			1,000000	0,592093	0,592093	-0,467237	0,196680	0,380839	-0,466556	0,058670	-0,398712	-0,216600	-0,337228	0,257540	0,028449	0,580765	-0,087929	0,175215	0,176740
né na hlad.	DUSIK I			1,000000	0,999975	0,591961	0,591961	0,466957	0,196734	0,381039	0,466385	0,058727	0,398414	0,216234	0,337103	0,257532	0,028308	0,580572	0,088115	0,175295	0,177284
sou význami	H_CACL2		1,000000	-0,003470	-0,003223	-0,090988	-0,090988	0,108990 -	0,694285	0,191803	0,163891 -	-0,027426	0,005861 -	0,496938 -	0,387950 -	0,400985	-0,083327	0,218145	-0,360928 -	-0,135262	0,090651
korelace j	m.odch. Pl		6'0	0,4	3973,7	10,9	09202,4	4885,8	5066,8	0,3	15,1	6,4	6870,0	1156,0	1299,1	1854,8	51,8	323,7	72,3	1015,2	41,1
erveně znač	Průměry St		4,1	1,4	14083,5	37,4	374021,4 1	4208,4	7031,1	0'0	14,5	15,6	6417,6	1565,7	1201,4	1711,6	46,2	1027,5	6'09	1787,6	82,7
ŭ		Proměnná	PH_CACL2	DUSIK	DUSIK_MG	COX_HH	COX_MG 3	AL_AR	CA_AR	CD_AR	CR_AR	CU_AR	FE_AR	K_AR	MG_AR	MN_AR	NA_AR	P_AR	PB_AR	S_AR	ZN_AR

Příloha 3 Korelační matice, organické horizonty

Příloha 4 Histogramy, organické horizonty

Příloha 4 Pokračování

	it Sidit																									-	-
	ldit Fedi																								-	161	60 0 16
	Aldit Mn																							-	,098	,540 0,0	130 0 1
	Siox A																						-	0,206	0,378 0	0,322 0	0 083 0
	Feox																					-	0,353	0,533	-0,055	0,862	0 020
	Mnox																				-	-0,052	0,407	0,071	0,972	0,037	0 114
	Alox																		-	2	0 0,194	1 0,697	2 0,570	7 0,623	1 0,165	5 0,682	0 0 201
	+ AI 3+																	-	2	4 0,54	8 -0,32	69 0,59	8 0,16	3 0,48	1 -0,33	8 0,57	0 0 0
	AI(Y) 2																		0,01	0,01	-0,12	0,07	0,00	0,01	-0'0	-0,00	0.06
	AI(X) 1+																-	0,396	0,634	0,143	-0,545	0,403	-0,083	0,219	-0,511	0,329	0 021
	FeKCI															-	0,891	0,276	0,591	-0,035	-0,676	0,339	-0,244	0,094	-0,660	0,245	-0.003
	MnKCI														-	-0,700	-0,547	-0,049	-0,465	0,057	0,901	-0,143	0,280	0,008	0,923	-0,038	0 123
	AIKCI													-	0,526	0,717	0,759	0,119	3 0,972	0,467	-0,416	3 0,584	1 0,087	3 0,444	-0,415	2 0,546	0 007
	< (mg/kg)												-	-0,420	0,269	-0,137	-0,095	0,187	-0,468	-0,333	0,220	-0,418	-0'034	-0,288	0,220	-0,402	0 022
	Na (mg/kg)											-	-0,105	0,226	-0,116	0,264	0,255	0,107	0,197	0,122	-0,073	0,151	0,008	0,022	-0,068	0,186	0 222
	a (g/kg)										-	-0,122	0,450	-0,703	0,500	-0,397	-0,360	0,193	-0,735	-0,264	0,338	-0,322	0,017	-0,263	0,363	-0,285	0 065
	Mn C mg/kg)									-	0,517	-0,133	0,313	-0,540	0,991	-0,705	-0,560	-0,074	-0,476	0,038	0,910	-0,159	0,276	-0,008	0,924	-0,055	0.103
	Mg mg/kg) (۲	0,331	0,720	-0,080	0,664	-0,407	0,307	-0,118	0,001	0,529	-0,484	-0,237	0,195	-0,280	0,040	-0,202	0,227	-0,278	0.021
ch N=30	Fe ng/kg) (-	-0,126	-0,674	-0,413	0,287	-0,156	0,714	-0,675	0,946	0,857	0,264	0,606	0,017	-0,644	0,350	-0,212	0,129	-0,630	0,298	0.101
et platný	Al ng/kg) (r						-	0,795	-0,306	-0,511	-0,572	0,306	-0,352	0,874	-0,500	0,693	0,731	0,180	0,852	0,460	-0,413	0,508	0,076	0,397	-0,411	0,508	0.255
00 poč	EA ekv/kg) (r					-	0,783	0,701	-0,160	-0,402	-0,400	0,234	-0,180	0,769	-0,391	0,681	0,734	0,139	0,735	0,330	-0,334	0,369	0,054	0,324	-0,300	0,377	0.191
p < ,010(CEC tkv/kg) (6				-	0,690	0,455	0,473	0,257	-0,099	0,151	0,207	0,086	0,404	-0,098	0,478	0,581	0,279	0,344	0,140	-0,114	0,188	0,084	0,157	-0,069	0,190	0.141
na hlad.	H KCI			-	0,176	0,328	0,263	0,536	0,136	0,462	0,341	0,105	0,032	0,339	0,469	0,570	0,393	060'0	0,279	0,386	0,443	0,099	0,392	0,096	0,431	0,145	0.073
namné r	H KCI pi		-	0,998	0,174	0,325	0,263	0,532	0,143	0,460	0,347	0,101	0,026	0,341	0,467	0,566	0,390	0,084	0,283	0,385	0,440	0,099	0,388	0,096	0,428	0,146	0.081
jsou výz	Cox p	1	0,448	0,457	0,280 -	0,220 -	0,101 -	0,347 -	0,210	0,281	0,029	0,027 -	0,355	0,205 -	0,292	0,442 -	0,402 -	0,256 -	0,122 -	0,219	0,330	0,017	0,281	0,072	0,330	0,140	0.246
korelace	n.odch.	222282	180213 -	179647	,08672	,27974	6,1206	,47185	,04427	,24606 -	228012 -	570006	,11311	1,8499	86366	0,3382	5,6702	200143	0,7313	06,577	61,694 -	65,437 -	7,9828 -	84,956 -	7,7602 -	76,469 -	04.954
iě znač.	iěry Sm	7565 2,2	3325 0,1	3957 0,1	,813 18	,276 23	3312 18	5526 75	1675 20	9513 44	1948 0,2	5234 8,0	,513 29	1386 17	3864 77	3254 12	5368 2	3,2	1607 14	,558 10	2848 1	2,01 35	1558 14	,854 10	3644 17	36,2 42	.552 15
červer	Průn	9,38;	3,08(3,075	g) 133,	130	823,5	181,(63,74	39,5	0,34	13,6(112	689,1	60,55	228,:	118,(11,4(556,4	4167	140,	1220	251,1	3474	175,3	180	1575
	Proměnná	Cox	pH KCI	pH KCI	CEC (ekv/kg	EA (ekv/kg)	AI (mg/kg)	Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ca (g/kg)	Na (mg/kg)	K (mg/kg)	AIKCI	MnKCI	FeKCI	AI(X) 1+	AI(Y) 2+	AI 3+	Alox	Mnox	Feox	Siox	Aldit	Mndit	Fedit	Sidit

Příloha 5 Korelační matice, A horizonty, Žofinský prales

Příloha 6 Histogramy, A horizonty, Žofínský prales

	Popisné statis	stiky (B2_vlast	nosti)		
	N platných	Průměr	Minimum	Maximum	Sm.odch.
Proměnná					
Cox (%)	309	2,82	0,37	5,62	0,732
pH KCI	309	3,97	3,53	4,26	0,118
pH KCI	309	3,97	3,53	4,26	0,118
KVK (ekv.kg ⁻¹)	309	58,26	11,6	137,3	19,201
VA (ekv.kg ⁻¹)	309	54,97	27	133	14,259
Al_vym (mg.kg ⁻¹)	309	364,86	35,45	736,65	94,554
Fe_vym (mg.kg ⁻¹)	309	14,11	0,78	80,88	9,307
Mg_vym (mg.kg ⁻¹)	309	9,88	1,88	126,54	12,557
Mn_vym (mg.kg ⁻¹)	309	8,67	2,214	38,81	4,712
Ca_vym (mg.kg ⁻¹)	309	0,11	0,01	6,58	0,384
Na_vym (mg.kg ⁻¹)	309	13,35	4,12	96,99	9,975
K_vym (mg.kg ⁻¹)	309	21,97	8,08	95,67	12,090
AI_KCI (mg.kg ⁻¹)	309	394,46	34,40	687,5	86,886
Mn_KCI (mg.kg ⁻¹)	309	6,86	0,17	42,59	6,399
Fe_KCI (mg.kg ⁻¹)	309	8,96	1,19	53,16	7,472
AI(X) 1+ (mg.kg ⁻¹)	309	14,55	5,40	29,01	3,721
AI(Y) 2+ (mg.kg ⁻¹)	309	7,71	2,96	25,56	4,322
AI 3+ (mg.kg ⁻¹)	309	344,85	19,47	657,14	84,566
Al_ox (mg.kg ⁻¹)	309	12137,27	719,6	29484,4	4841,456
Si_dit (mg.kg ⁻¹)	309	1195,63	0	3900	603,982
Mn_ox (mg.kg ⁻¹)	309	198,02	0,82	1010,34	182,914
Fe_ox (mg.kg ⁻¹)	309	12224,19	2570,84	30117,44	3635,073
Si_ox (mg.kg ⁻¹)	309	1294,87	128	5604	863,420
Al_dit (mg.kg ⁻¹)	309	8897,47	377,5	18987,5	3537,962
Mn_dit (mg.kg ⁻¹)	309	278,83	12	1115	193,284
Fe_dit (mg.kg ⁻¹)	309	21019,85	2890,75	38698,75	4619,956

Příloha 7 Popisné charakteristiky, B horizonty, Žofínský prales

(mr. No. (ekv/kg) (ekv/kg)		<	<	ŭ	W	Mn D	India) a	-1		CI MnK		VIVI 1T		T ST	Viov M	Tool Foor	v Cinv	AIAit	Madit E	odit Cidit
	PH Kul	kv/kg) (ek	=A A w/kg) (mg/k	(mg/kg	(mg/kg)	(mg/kg)	a (g/kg)	ng/kg) (mg	k Alh			AI(X) 1+	AI(Y) 2+ +	1 3+ /		IOX LEO		Aldıt		
1,000																				
1,000	1,000																			
77 -0,282	-0,282	1,000																		
01 -0,480	-0,480	0,377	1,000																	
08 -0,520	-0,520	0,407 (0,820 1,0	00																
293 -0,384	-0,384	0,176 (0,451 0,5	04 1,000																
143 -0,397	-0,397	0,174 -(0,030 -0,1	45 0,136	5 1,000															
156 -0,251	-0,251	0,098	0,011 -0,0	94 -0,095	9 0,418	1,000														
021 -0,175	-0,175	0,047 -(0,030 -0,0	134 0,026	5 0,217	0,149	1,000													
020 0,008	0,008	0,002 -(0,153 -0,1	01 0,025	9 0,215	0,049	0,230	1,000												
,109 -0,334	-0,334	0,124 -(0,026 -0,0	75 0,122	2 0,619	0,454	0,261	0,334 1	000											
,505 -0,546	-0,546	0,277 (0,709 0,8	54 0,395	9 -0,219	-0,114	-0,035	-0,117 -0	,165 1,0	000										
,188 -0,221	-0,221	0,023 -(0,123 -0,2	04 -0,158	3 0,427	0,811	0,250	0,241 0	,537 -0,1	173 1,00	0									
0,427 -0,483	-0,483	0,389 (0,587 0,6	64 0,558	3 0,055	-0,254	-0,026	-0,086 0	,030 0,5	581 -0,36	1 1,000									
,613 -0,505	-0,505	0,435 (0,735 0,8	08 0,505	5 -0,084	-0,160	0,011	-0,073 -0	,080 0,7	88 -0,24	15 0,801	1,000								
,145 -0,454	-0,454	0,273 (0,110 0,0	26 0,195	5 0,575	0,230	0,209	0,094 0	,502 0,0	03 0,28	39 0,270	0,100	1,000							
0,493 -0,574	-0,574	0,275 (0,717 0,8	167 0,396	5 -0,205	-0,092	-0,024	-0,111 -0	,144 0,9	92 -0,14	12 0,583	0,779	0,007	1,000						
0,460 0,343	0,343	-0,045 (0,134 0,2	17 0,132	2 -0,441	-0,376	-0,139	-0,098 -0	,376 0,1	150 -0,48	30 0,127	0,257	-0,383	0,113	000'1					
0,240 0,047	0,047	-0,110 -(0,276 -0,3	07 -0,282	2 0,167	0,520	0,123	0,258 0	,290 -0,2	24 0,70	17 -0,470	-0,371	0,038 -(0,199 -(,394 1,	000				
0,427 -0,294	-0,294	0,218 (0,426 0,4	52 0,334	1 -0,007	0,042	0,003	0,007 0	,090 0,4	148 0,00	1 0,490	0,486	0,225 (0,457 (0,206 0,	000 1,00	0			
0,203 0,444	0,444	- 160'0-	0,060 -0,0	128 0,000	1 -0,350	-0,332	-0,118	-0,089 -0	,346 -0,1	113 -0,43	30 -0,023	0,049	-0,357 -(0,151 (,875 -0,	367 -0,11	1 1,000			
0,397 0,340	0,340	-0,116 (0,099 0,2	03 0,116	3 -0,443	-0,359	-0,142	-0,138 -0	,374 0,1	141 -0,46	6 0,081	0,177	-0,372	0,104	0,752 -0,	316 0,07	3 0,654	1,000		
0,179 -0,042	-0,042	-0,020 -(0,156 -0,1	74 -0,227	7 0,141	0,562	0,104	0,147 0	,263 -0,1	105 0,70	3 -0,425	-0,263	0,018 -(0,088 -(,329 0,	782 0,01	0 -0,319	-0,377	1,000	
0,311 -0,071	-0,071	0,147 (0,239 0,3	21 0,186	5 -0,197	-0,018	-0,010	-0,014 -0	,089 0,2	90'0- 683	37 0,214	0,310	0,023	0,279 (0,237 -0,	060 0,40	2 0,050	0,457	-0,014 1	000
0,198 0,276	0,276	-0,222 -(0,049 -0,0	14 0,026	5 -0,230	-0,265	-0,096	-0,102 -0	,204 -0,0	131 -0,27	0 -0,028	0,015	-0,259 -(0,062 (),476 -0,	137 -0,08	7 0,459	0,615	-0,179 0	,180 1,000

Příloha 8 Korelační matice, B horizonty, Žofínský prales

Příloha 9 Histogramy, B horizonty, Žofínský prales

Příloha 9 Pokračování

	Popisné statistiky (Skolky)									
	N platných	Průměr	Minimum	Maximum	Sm.odch.					
Proměnná										
$P_M3 (mg.kg^{-1})$	371	178,216	15	620	105,298					
K_M3 (mg.kg ⁻¹)	371	111,612	20	553	74,026					
$Mg_M3 (mg.kg^{-1})$	371	149,116	12	1015	137,683					
Ca_M3 (mg.kg ⁻¹)	371	1734,819	155	5549	1101,996					
pH_KCI	371	5,431	3,67	7,2	0,804					
pH_H2O	371	5,533	3,55	7,6	0,837					
N (mg.kg ⁻¹)	371	0,192	0,07	0,52	0,067					
Cox (%)	371	3,748	1,2007	9,65	1,299					

Příloha 10 Popisné charakteristiky, lesní školky

Příloha 11 Korelační matice, lesní školky

	červeně znač. korelace jsou významné na hlad. p < ,01000 počet platných N=371									
	Průměry	Sm.odch.	pH_KCI	pH_H2O	N	Cox	P_M3	K_M3	Mg_M3	Ca_M3
Proměnná					(mg.kg ⁻¹)	(%)	(mg.kg ⁻¹)	(mg.kg ⁻¹)	(mg.kg⁻¹)	(mg.kg⁻¹)
pH_KCl	5,431	0,804	1							
pH_H2O	5,533	0,837	0,678	1						
N (mg.kg ⁻¹)	0,192	0,067	0,194	0,175	1					
Cox (%)	3,748	1,299	0,246	0,107	0,850	1				
P_M3 (mg.kg ⁻¹)	178,216	105,298	0,140	0,251	0,472	0,358	1			
K_M3 (mg.kg ⁻¹)	111,612	74,026	0,345	0,195	0,411	0,314	0,295	1		
Mg_M3 (mg.kg ⁻¹)	149,116	137,683	0,396	0,446	0,647	0,606	0,413	0,392	1	
Ca_M3 (mg.kg ⁻¹)	1734,819	1101,996	0,677	0,758	0,548	0,546	0,297	0,202	0,715	1

Příloha 12 Histogramy, lesní školky