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1H NMR metabolic signatures of early paediatric Type 1 Diabetes 

 

Abstract  
Background: T1D is an autoimmune disorder marked by the destruction of insulin-

producing β-cells in the pancreas. Faecal metabolites, reflecting factors such as gut microbiota 

composition and dietary influences, may serve as indicative biomarkers for T1D status and 

susceptibility. Analysing faecal metabolomic profiles holds potential in diagnosing and 

identifying increased risk for paediatric T1D, aiming to enhance early detection and 

management of the disease. 

Aim/ Hypothesis: This case-control study hypothesises that children at genetic 

predisposition for developing T1D exhibit distinct faecal 1H NMR metabolic profiles 

compared to healthy children. We propose that these faecal metabolic differences, potentially 

influenced by variations in gut microbiota composition or dietary patterns, may precede the 

clinical onset of T1D. Understanding these variations could offer valuable insights for the 

clinical diagnosis and early detection of T1D.  

Methods: This study analysed 87 faecal samples from 24 children (aged 4.8 years ± 

1.2 years), genetically predisposed to T1D and their matched controls. The faecal metabolic 

profiles were evaluated using 1H NMR spectral analysis. The 1H NMR data were processed 

using NMRProcFlow 1.4 and Chenomx 9.02 software and statistically evaluated using 

MetaboAnalyst 6.0 to identify potential metabolic differences that could signify increased risk 

of T1D.  

Results: The study identified a statistically significant difference (p < 0.05) in the 

levels of the metabolite 3-(3-hydroxyphenyl)propionic acid, which were higher in the T1D-

predisposed group than in the control group. While the specific biochemical function of this 

metabolite is not yet understood, it is speculated that variations in gut microbiota composition 

or dietary patterns among the T1D-predisposed children may account for the observed 

differences in metabolite concentrations.    

Conclusion: Our study findings suggest that differences in faecal metabolic profiles 

could aid in the early detection of T1D in paediatric populations. The identification of specific 

metabolites through 1H NMR spectroscopy underscores its utility as a powerful tool for 

pinpointing biomarkers associated with T1D risk and progression.  

 

Keywords: metabolomics, faecal metabolic profiling, 1H NMR, biomarkers, T1D  
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1 Introduction . 
 

Type 1 Diabetes (T1D) is a chronic autoimmune condition characterised by the 

progressive destruction of insulin-producing β-cells in the pancreas (Piya & Michels 2012). 

Often diagnosed in children and adolescents (Atkinson & Eisenbarth, 2001), T1D requires 

lifelong insulin therapy (Janež et al., 2020) and significantly increases the risk of various 

health complications (White, 2015). The disease appears to be more prevalent in developed 

countries, with a rising global incidence (Gong et al. 2024). Contributing factors to T1D 

include viral infections, dietary habits, environmental toxins, and the composition of gut 

microbiota (Rewers & Ludvigsson 2016).  

 One of the earliest detectable biomarkers for T1D is the presence of islet 

autoantibodies (AAbs) which are now recognized as standard indicators that provide crucial 

insights into the immune response against pancreatic β-cells (Lebastchi & Herold 2012). 

However, the detection of AAbs, signalling active autoimmunity, actually occurs at a 

relatively advanced stage in the progression of the disease (Jin & She 2012). This underscores 

the need to advance research to identify and validate additional, earlier predictive biomarkers 

for T1D (Chai et al. 2022).  

 Recent advancements in biomedical sciences, particularly in metabolomics – the study 

of small molecules in biological samples – have greatly enhanced our understanding of the 

biochemical and molecular mechanisms underlying T1D (Qiu et al. 2023). Metabolomics is 

essential for detecting early disruptions in metabolic processes that precede clinical symptoms 

of the disease (Guasch-Ferré et al. 2016). Nuclear magnetic resonance (NMR) spectroscopy is 

widely recognized for its robustness and precision in identifying metabolic signatures and 

biomarkers (Friedrich 2012), and is crucial for analysing biomolecular structure, dynamics, 

and interactions (Mureddu & Vuister 2019). Despite challenges in detecting low metabolite 

concentrations in natural settings (Peng et al. 2024), NMR remains essential for advancing 

metabolic research and diagnostics (Emwas et al. 2019).  

 The role of gut microbiota in T1D is increasingly recognized as critical due to its 

significant impact on metabolic and immune responses that influence disease progression 

(Zheng et al. 2018). Studies show that individuals at risk for T1D have distinct microbial 

profiles marked by reduced diversity and an imbalance between beneficial and pathogenic 

bacteria (Dedrick et al., 2020) which can affect immune tolerance and inflammation, 

potentially triggering pancreatic β-cell destruction (Wu & Wu 2012). Specific microbial 

metabolites are also implicated in modulating these responses (Mokhtari et al. 2021).  
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Understanding these dynamics offers potential for early interventions and highlights gut 

microbiota as both a crucial factor in T1D pathogenesis and a target for therapy (Zhou et al. 

2020).  

 The primary objective of this thesis is to determine whether children genetically 

predisposed to T1D exhibit distinct metabolic profiles that could serve as early indicators of 

susceptibility to the disease. Through detailed metabolomic analyses using 1H NMR 

spectroscopy of faecal samples, this study compares the metabolic signatures of at-risk 

children to those of healthy controls. This study aims to identify specific metabolites and their 

possible pathways that may indicate an elevated risk of developing T1D. Successfully 

identifying these biomarkers could revolutionise the approach to early diagnosis and 

intervention, potentially altering the trajectory of the disease and improving outcomes for 

those at increased risk of T1D (Liu et al. 2013).  
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2 Scientific hypothesis and objectives of the thesis  

 
 The objectives of this thesis were to evaluate whether metabolic features in the faeces 

of children genetically predisposed to T1D through 1H NMR spectroscopy could serve as 

biomarkers for increased risk of paediatric T1D. 

 

Hypothesis:  

 Children at genetic predisposition for developing T1D exhibit distinct faecal 1H NMR 

metabolic profiles compared to healthy children. 
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3 Literature research  

 
3.1 Pathogenesis of T1D 
T1D develops through a complex pathogenic process, initiated by an abnormal immune 

response that leads to the destruction of β-cells. This process is characterised by the 

development of AAbs that target proteins in the pancreatic β-cells (Piya & Michels 2012). 

Etiologically, T1D is classified into two main types. Immune-mediated diabetes 

predominantly occurs in genetically susceptible individuals, with viral infection or exposure 

to various environmental factors likely serving as precipitating factors for this immune 

response (Morran et al. 2015). The autoimmune origin of the disease is indicated by the 

presence of circulating antibodies, collectively known as islet cell AAbs (Kawasaki 2023). 

These AAbs specifically target glutamic acid decarboxylase (GADA), insulin and proinsulin 

(IAA), cells of Islets of Langerhans (ICA), the tyrosine phosphatase-related protein (IA- 2 and 

IA-2ⲁ) and the zinc transporter 8 (ZnT8) (Pihoker et al. 2005). AAbs emerge during the 

preclinical stage of the disease and serve as key indicators of β-cell destruction 

(Kawasaki2023). Another, idiopathic diabetes is an atypical form with an unknown aetiology 

(Piñero-Piloña & Raskin 2001). It includes the absence of β-cell autoimmune markers and the 

inability to detect antibody responses to common antigens (Redondo et al. 2018). 

T1D progresses through distinct stages before symptoms become evident. In Stage 1, 

autoimmunity is initiated against pancreatic β-cells, primarily involving cytotoxic T cells. 

This immune response leads to early-stage destruction of β-cells, known as insulitis (Pugliese 

2017). During this stage, blood glucose levels remain within the normal range 

(normoglycemia) and overt T1D symptoms are not yet apparent (Akil et al. 2021). Two or 

more islet AAbs characterise this stage, with the five-year and ten-year risk of T1D 

development being 44 % and 70 %, respectively. The lifetime risk of developing T1D reaches 

100 %, underscoring the importance of identifying multiple AAbs as a strong predictor of 

progressing to symptomatic T1D (Kawasaki 2023). In Stage 2, two or more islet AAbs are 

identified, and β-cell destruction progresses, leading to glucose intolerance or dysglycemia. 

The risk of T1D development is approximately 75 % within five years. Stage 3 is marked by 

the manifestation of clinical symptoms and signs of T1D (Akil et al. 2021). These symptoms 

include sudden weight loss, lack of energy, frequent urination, extreme thirst, constant 

hunger, blurred vision, fatigue, and weakness (Simmons 2015). In this end stage, only about 

10 % to 20 % of functioning insulin-producing β-cells remain (Lebastchi & Herold 2012).  
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 AAbs often emerge as early as 9 months of age and peaking before 2 years of age 

(Ziegler & Bonifacio 2012). In children, the onset of T1D commonly begins with the 

emergence of the initial AAbs, typically IAA, followed by the appearance of other AAbs 

within a span of 3 years, with GADA being the second most commonly detected. The 

sequence of AAbs appearance is likely influenced by genetic factors such as an individual's 

HLA genotype (Bonifacio & Achenbach 2019).  

Genes play a pivotal role in antigen presentation to T cells, triggering autoimmunity 

(Morran et al. 2015). As the disease progresses, T cells invade the pancreas, causing 

inflammation and the subsequent destruction of β-cells, resulting in insulin loss and 

hyperglycemia. T cells initiate β-cell destruction and prompt the production of insulin AAbs 

(Rodriguez-Calvo et al. 2021). Once β-cell destruction commences, the immune system 

targets additional antigens, a phenomenon known as epitope spreading. Following insulin, 

glucose-like phosphatase protein becomes a secondary target for the immune response (Piya 

& Michels 2012). Despite ongoing uncertainties surrounding the aetiology and pathogenesis 

of T1D, it is recognized as a multifactorial disease influenced by both genetic and exposomic 

factors, collectively contributing to its onset and progression (Ikegami et al. 2011). 

 

3.2 Incidence of T1D  

 T1D has historically been recognized as a disease predominantly affecting children 

and young adults, often referred to as juvenile diabetes due to its highest occurrence in 

children aged 10–14 (Atkinson & Eisenbarth 2001). However, recent studies indicate that 

children can be affected by the disease at any age (Atkinson & Eisenbarth 2001). Globally, 

both new (incident) and existing (prevalent) cases of T1D are on the rise each year, attributed 

to increasing incidence and improved survival rates in various countries (Ogle et al. 2022). 

Based on the 2022 estimates from the International Diabetes Federation Atlas Reports, 

there were 8.75 million individuals worldwide living with T1D, including 1.52 million 

individuals under the age of 20. This represents an escalating trend compared to 1.21 million 

individuals in 2021 (Ogle et al. 2022).  

In 2021, T1D incidence among children aged 0–14 was highest in Europe (24 700 

cases), Middle East Africa and North Africa (20 500 cases) and North America and the 

Caribbean (18 700 cases) (Graham et al. 2022). In this age group, Nordic countries exhibited 

the highest age-standardised incidence rates. Specifically, Finland reported rates of 52.2 per 

100 000 per year, followed by 44.1 per 100 000 per year in Sweden, and 33.6 per 100 000 per 

year in Norway (Ogle et al. 2022).  
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In 2022, T1D was associated with approximately 182 000 deaths globally, with the 

highest mortality observed in the South-East Asia region, accounting for 42 000 deaths. 

Africa recorded 38 000 deaths, followed by Europe with 34 000. North America and the 

Caribbean, each reported 20 000 deaths (Ogle et al. 2022). Additionally, in 2022, an estimated 

35 000 deaths related to T1D were observed in individuals under 25 years of age who had not 

been previously diagnosed, succumbing within 12 months of symptom onset (Ogle et al. 

2022).  

 

3.3 Functions of insulin  

 Insulin, an anabolic endocrine hormone produced by the Islets of Langerhans in the 

pancreas, performs diverse metabolic functions in the body (Dimitriadis et al. 2011). 

Effects of insulin vary depending on the specific tissue it targets. In muscle tissue, insulin 

enhances the uptake of glucose, promotes glycolysis, stimulates glycogen synthesis, and 

inhibits insulin breakdown (Dimitriadis et al. 2011). In adipose tissue, insulin decreases non-

esterified fatty acids (NEFA) in the blood by suppressing lipolytic processes and reduces 

NEFA oxidation in skeletal muscles and the liver (Dimitriadis et al. 2011). In lipocytes, 

insulin facilitates glucose transport to the cell membrane through the GLUT4 transporter, thus 

aiding glucose uptake (Petersen & Shulman 2018). 

Insulin also plays a crucial role in protein metabolism by promoting protein synthesis 

and inhibiting protein breakdown across various tissues and organs (Dimitriadis et al. 2011). 

In the brain, insulin regulates energy balance within the hypothalamus by reducing food 

intake and increasing energy expenditure by elevating body temperature and activating the 

sympathetic nervous system (Dodd & Tiganis 2017). Furthermore, insulin, binding to specific 

receptors in the hypothalamus, inhibits the expression of neuropeptides involved in hunger 

regulation (Kleinridders et al. 2014). Additionally, in the hypothalamus, insulin influences 

glucose metabolism by signalling AgEP-expressing neurons and by reducing glucose 

production in the liver through nerve impulses (Yung & Giacca 2020). 

 

3.4 Pathology of β-cells  

 In the early stages of T1D development, the immune system becomes activated in 

response to signals associated with danger or viral infections affecting β-cells (Lernmark 

2021). This leads to the production of type I interferon (e.g. IFNa) cytokines by β-cells and 

the involvement of immune cells. Macrophages are critical in initiating a pro-apoptotic 

response in β-cells (Colli et al. 2020). 
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As T1D progresses, the inflammatory environment allows various immune cells, 

including CD8+, CD20+ β-cells, CD4+ T cells, and CD68+ macrophages to invade β-cells 

(Zajec et al. 2022). β-cells respond to cytokines by activating anti-inflammatory pathways and 

immune checkpoint proteins to prevent excessive immune reactions. However, pro-

inflammatory cytokines interfere with β-cell functions, leading to increased production of 

reactive oxygen species and activation of enzymes (caspases) that induce cell death (Zajec et 

al. 2022). Both pro-inflammatory and anti-inflammatory responses persist throughout the 

disease (Colli et al. 2020). 

Pathogenesis of T1D involves complex interactions between pancreatic β-cells and 

immune cells, emphasising their crucial crosstalk (Yi et al. 2018). β-cells actively engage in 

and potentially exacerbate pathogenic processes (Erdem et al. 2021). In response to immune 

stress, β-cells utilise compensatory mechanisms to restore cellular homeostasis by modulating 

endoplasmic reticulum and mitochondrial functions through unfolded protein response (UPR) 

(Vig et al. 2021). Increased protein production can result in misfolded proteins (Zajec et al. 

2022) (inactive proteins which are unable to fold into their native structure and function 

normally) (Moreno-Gonzalez & Soto, 2011). These changes coincide with a decline in 

pathways essential for insulin release and β-cell function maintenance, resulting in their  

reduced activity and a subsequent decrease in insulin production (Zajec et al. 2022).  

 

 
 

Figure 1 Simplified illustration of the effects on β-cell pathology in T1D (Adapted from 

(Zajec et al. 2022) 
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aabs – AAbs, aag – autoantigen, ER – endoplasmic reticulum, EVEs – endogenous viral 

elements, IFNs – interferons, ROS – reactive oxygen species, UPR – unfolded protein 

response 

3.5 Genetics of T1D 

 T1D is considered the most prevalent polygenic disorder. Genetic factors such as 

mutations of key genes, are believed to play a significant role in the disease’s onset (Barrett et 

al. 2009). Among these genetic factors, the HLA (human leukocyte antigen) complex, located 

on chromosome 6, contributes to over 50 % of the genetic risk, associated with T1D 

(Redondo et al. 2018). This complex houses genes responsible for encoding proteins crucial 

for distinguishing between self and foreign antigens and presenting them to immune cells, 

particularly T cells and non-self-antigens. These proteins are important in presenting antigens 

to immune cells – T cells (Simmons 2015). Within the HLA complex, class II genes, notably 

the DQ and DR alleles, are the primary determinants of T1D susceptibility (Simmons 2015). 

Individuals carrying DR4/DQ8 haplotype, for example, are significantly more prone to 

developing T1D, with around 90 % of affected individuals possessing either DR4/DQ8 or 

DR3/DQ2 haplotypes (Simmons 2015). The heritability of T1D within families is estimated 

to be approximately 40-50 % attributed to the HLA complex (Noble & Valdes 2011). 

While other genes like insulin and protein tyrosine phosphatase non-receptor type 22 

(PTPN22) also contribute to T1D risk, their influence is comparatively weaker than that of 

HLA genes (Tandon 2015). PTPN22, involved in regulating antigen receptor signalling and T 

cell activation, and insulin gene polymorphisms, particularly those affecting insulin 

expression in the thymus (Paschou et al. 2018), contribute to about 10 % of the genetic 

predisposition for T1D (Simmons, 2015). Additionally, mutations in the Autoimmune 

Regulator (AIRE) gene, crucial for establishing immunological self-tolerance, can lead to the 

production of antibodies against self-antigens, contributing to conditions like Polyglandular 

Syndrome 1 (APS1), which often includes T1D among its symptoms (Paschou et al. 2018). 

Furthermore, mutations in the Foxp3 gene, associated with an X-linked syndrome, disrupt the 

function and development of T cells essential for maintaining self-tolerance, adding another 

layer of complexity to the genetic landscape of T1D (Redondo et al., 2018). These diverse 

genetic factors collectively shape the intricate aetiology of T1D (Barrett et al., 2009). 
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3.6 Exposomic factors in T1D  

T1D is also acknowledged as a multifactorial disorder. Various environmental 

exposures likely play a crucial role in T1D development influencing genetic alterations 

through factors such as diet, infections, vitamin D intake, gut microbiota and toxins 

potentially contributing to aberrant immune responses and islet autoimmunity (Zullo et al. 

2017). While the specific environmental triggers for autoimmune processes remain unclear, 

identifying them could help define T1D risk, allowing for better prediction and prevention 

(Esposito et al. 2019).   

 

3.6.1 Infections 

Viral infections, including enterovirus, rotavirus, cytomegalovirus, parechovirus, 

influenza, parvovirus, mumps, rubella and human endogenous retrovirus, are implicated in 

initiating AAbs production and subsequent β-cell destruction, thereby contributing to T1D 

progression (Isaacs et al. 2021). Among these viruses, enterovirus infections have received the 

most attention in the context of T1D (van der Werf et al. 2007).  

A systematic review and meta-analysis of observational molecular studies revealed a 

strong association between enterovirus infection and T1D (Yeung et al. 2011). Enteroviruses, 

particularly coxsackievirus B (a group of six serotypes of coxsackievirus within the 

enterovirus family) have been frequently detected in T1D patients compared to healthy 

individuals (Nekoua et al. 2022). Coxsackievirus B, with its single-stranded RNA genome, 

typically spreads through contact with faeces, often via contaminated food or water. Studies 

indicated that individuals often have enteric infection and ongoing gastrointestinal 

inflammation before T1D onset (Morse et al. 2023). Honkanen et al. (2017) investigated the 

association between the presence of enterovirus in the stool of AAbs-positive children (n = 

129) and healthy controls (n = 282) and the onset of islet autoimmunity. They found that 

AAbs-positive children had a higher frequency of enterovirus infections compared to their 

healthy controls (Honkanen et al. 2017).  

Genetic factors also play a role, with certain alleles impacting the immune response to 

enteroviruses and increasing T1D risk (Esposito et al. 2019). Additionally, a higher number of 

T1D diagnoses typically occur during cold months, aligning with the seasonal prevalence of 

enteroviral infections (Glatthaar et al. 1988).  

The mechanism by which viruses contribute to T1D progression remain uncertain and 

vary depending on the type of virus (Jun & Yoon 2003). Firstly, a virus can infect pancreatic 

β-cells, leading to their lysis. Secondly, viral infection might disrupt self-tolerance due to the 
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presence of viral antigens, potentially modifying β-cell antigens and/or increasing MHC-

antigens, cytokines and chemokines that influence the immune system response (Jun & Yoon 

2003). Thirdly, viral infection can activate T cells, including those targeting β-cell antigens 

through autoreaction (van der Werf et al. 2007).    

 

3.6.2 Breastfeeding 

 Breastfeeding offers numerous health benefits to infants, providing essential nutrients 

crucial for growth and development (Vieira Borba et al. 2018). Rich in various bioactive 

compounds, breast milk acts as a powerful source of lifelong immunity, potentially reducing 

the risk of various illnesses, including T1D (Yahaya & Shemishere 2020). 

Research by Lund-Blix et al. (2017) involving 155 392 children in Norway and Denmark 

revealed that those children not breastfed had a twofold increased risk of developing T1D 

compared to breastfed children (Lund-Blix et al. 2017).  

While the precise protective mechanisms of breastfeeding against T1D are not fully 

understood, they likely involve reducing infections associated with T1D development and 

supporting infantile digestive system and gut microbiota development (Vieira Borba et al. 

2018). Breast milk, containing beneficial bacteria and bioactive molecules, plays a crucial role 

in nurturing a healthy gut microbiota, enhancing diversity, reducing permeability, and 

strengthening immune and metabolic functions (Pannaraj et al. 2017). Insulin in breast milk 

aids in gut maturation and reducing permeability, potentially delaying the onset of  T1D 

(Shehadeh et al. 2001). Insulin promotes the diversity of gut microbiota by encouraging the 

growth of Gammaproteobacteria while inhibiting Streptococcaceae bacteria (Lemas et al. 

2016). Additionally, breast milk insulin and leptin influence microbial metabolic pathways, 

suppressing those associated with intestinal inflammation and promoting beneficial pathways 

(Lemas et al. 2016). Oligosaccharides found in breast milk, consisting of indigestible sugars, 

support the growth of beneficial bacteria in the colon, including Lactobacillus and 

Bifidobacterium, maintaining gut health (Vieira Borba et al. 2018). Lactoferrin, a glycoprotein 

in breast milk that binds to iron, limits iron availability to microorganisms, possessing 

antimicrobial properties (Mehta & Petrova, 2011). Additionally, breast milk's abundance of 

Lactobacillus and Bifidobacterium fosters the growth of Firmicutes bacteria (Soto et al. 2014) 

deficient in individuals with T1D (Giongo et al., 2011). This species is crucial for gut 

diversity and maturation (Soto et al. 2014).  



 

16 

Despite some studies suggesting a weak link between breastfeeding and T1D risk, 

advocating breastfeeding remains crucial due to its immunomodulatory components, serving 

protective, developmental, and maturation benefits (Vieira Borba et al. 2018). 

 

3.6.3 Diet 

 The influence of diet on T1D remains incompletely understood. Evidence indicates a 

potential association between cow’s milk consumption and damage to pancreatic β-cells due 

to a protein called bovine serum albumin (BSA) found in milk (Martin et al. 1991). A study 

by Karjalainen et al. (1992) observed elevated levels of BSA antibodies in children with T1D, 

specifically targeting a protein called ABBOS found in albumin. This finding suggests a 

possible interaction involving the β-cell protein p69. This protein plays a crucial role in the 

immune response triggered by dietary milk intake and its adverse impact on β-cells 

(Karjalainen et al. 1992). Additionally, the Finnish Diabetes Prediction and Prevention Project 

(DIPP) study found a direct association between the consumption of fresh cow’s milk 

products and β-cell autoimmunity in children with T1D (Virtanen et al. 2012). Furthermore, 

conflicting results exist, such as those from Atkinson et al. (1993) who found no immune 

response to BSA or ABBOS in T1D patients. This suggests these antigens may not 

significantly contribute to T1D pathogenesis (Atkinson et al. 1993). Furthermore, gluten 

proteins resist an enzymatic breakdown in the intestine, allowing them to persist in the system 

for an extended duration. This characteristic foster continuous interactions with the intestinal 

immune system (Antvorskov et al. 2014). One proposed mechanism is through influencing 

the proportion of immune cells or altering cytokine patterns toward inflammation. This 

underscores the significant role of gluten intake in T1D development (Antvorskov et al. 

2014).  

 

3.6.4 Vitamin D  

The association between vitamin D usage and the incidence of T1D remains a topic of 

debate. Several studies underscore the positive influence of vitamin D supplementation on 

specific autoimmune diseases (Yu et al. 2022).  

Calcitriol, the active form of vitamin D, plays a crucial role in immune regulation, as it 

possesses receptors on all immune cells (Infante et al. 2019). This suggests a potential 

regulatory function for calcitriol within the immune system, impacting both innate immune 

cells, such as dendritic cells and macrophages, and adaptive immune cells, including B and T 

cells. Calcitriol has the ability to induce immune tolerance by inhibiting pro-inflammatory 
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cytokines while enhancing anti-inflammatory cytokines (Infante et al. 2019). Concerning 

T1D, calcitriol may contribute to reducing antibodies and slowing progression of β-cell 

damage, especially during the initial stages of the disease. Evidence supporting the protective 

effect of vitamin D against T1D development stems from a comprehensive case-control study 

conducted across seven European countries. Analysing 820 diabetic patients and 2335 non-

diabetic control children, the study revealed a roughly one-third reduction in T1D risk among 

supplemented children compared to those not receiving supplementation (Dahlquist 1999). 

 

3.6.5 Gut microbiota  

The collection of living microorganisms residing in the human intestine, collectively 

referred to as gut microbiota, encompasses bacteria, archaea, fungi, algae, and small protists 

(Berg et al. 2020). Major bacterial phyla include Firmicutes and Bacteroidetes, with lesser 

amounts of Actinobacteria, Proteobacteria and Verrucomicrobia, alongside methanogenic 

archaea like Methanobrevibacter smithii (Lynch & Pedersen 2016).  

The growth and survival of gut microbiota depends on the host and are vital for 

various physiological functions. It plays a pivotal role in modulating energy metabolism and 

fostering the development and regulation of the immune system. It serves as a frontline 

defence mechanism against pathogens and influences host-cell proliferation and 

vascularization (Lynch & Pedersen, 2016). Gut microbiota contribute to the biosynthesis of 

essential compounds such as vitamin K and specific B-vitamins (Jandhyala 2015) 

neurotransmitters and also metabolises bile salts. Moreover, gut microbiota is integral to 

various metabolic pathways, including those involving branched-chain amino acids (BCAAs) 

and dietary components (Lynch & Pedersen 2016). Throughout food metabolism, gut 

microbiota generates numerous bioactive substances known as "pharmabiotics," exerting 

influence over various physiological and metabolic processes within the human body 

(Patterson et al. 2014). Notably, the isomers of conjugated linoleic acids are recognized for 

their beneficial effects on both T1D and T2D, atherosclerosis, and lipid metabolism. 

Simultaneously, short-chain fatty acids play a critical role in disease prevention and treatment, 

as well as contributing to the host's energy metabolism (Jandhyala 2015; Patterson et al. 

2014).  

The symbiotic relationship between gut microbiota and its host, formed through 

mutual coexistence and co-evolution, is crucial for maintaining homeostasis. Any disruption 

in this balance, known as dysbiosis, can profoundly impact immune responses (Wu & Wu 

2012). 
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The composition of gut microbiota is unique to each individual, shaped by various factors 

including the diversity of microbial strains, their growth rates, structural variations in 

microbial genes, specific host genetic material, and exposure to diverse environmental 

influences (Fan & Pedersen 2021). Gut microbiota begins to form at birth and continues to 

evolve throughout life, with its composition believed to be influenced by factors such as the 

type of birth (vaginal delivery or cesarean section) and whether the child is breastfed (Lynch 

& Pedersen 2016).  

Recent research underscores the significant role of gut microbiota in determining the 

risk of T1D development, especially among individuals genetically predisposed to the disease 

(Zhou et al. 2020). Gut microbiota plays a critical role in T1D development by affecting the 

intestinal permeability, intestinal immunity and inducing molecular mimicry in the intestinal 

epithelium, where microbial antigens may trigger an immune response by resembling self-

antigens (Zheng et al. 2018). An increase in intestinal permeability, due to weakened 

intestinal barrier, allows dietary antigens, immune stimulates (e.g. exogenous antigens) and 

microbial components to enter the bloodstream (Viggiano et al. 2015). This process can lead 

to systemic inflammation and autoimmune reactions, ultimately resulting in the destruction of 

pancreatic β-cells (Zhou et al. 2020).  

Numerous studies emphasise the importance of gut microbiota composition in the 

progression of T1D (Zhou et al. 2020). Kostic et al. (2015) observed a notable reduction in 

microbial diversity in individuals with T1D, while those who did not develop the condition 

and those who develop AAbs experienced a continuous increase in microbial diversity within 

their gut communities (Kostic et al. 2015).  

Gut microbiota primarily comprises two phyla, Firmicutes and Bacteroidetes, which 

collectively make up 90% of its composition. In children, gut microbiota is predominantly 

composed of Bacteroidetes and Firmicutes, with notable levels of Actinobacteria and 

Proteobacteria (Mokhtari et al. 2021). However, the abundance of Firmicutes and 

Bacteroidetes phyla differs between healthy children and those with T1D (Murri et al.2013). 

Healthy children exhibit a higher abundance of Firmicutes compared to those with T1D, 

whereas Bacteroidetes increases in abundance in children with T1D and those predisposed to 

the disease (Giongo et al. 2011). The observed alterations at the phylum level, particularly 

within Firmicutes and Bacteroidetes, are suggested to be linked to changes in specific genera, 

such as Clostridiales and Bacteroides, respectively (Giongo et al. 2011). Bacteroides, a gram-

negative bacterium known for producing acetate and propionate, has been linked to chronic 

inflammation. It is hypothesised that Bacteroides may initiate dysbiosis, impair the function 
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of the epithelial cell barrier, and thereby contribute to the development of T1D (Mokhtari et 

al. 2021). Furthermore, it has been suggested that the genus Bacteroides dorei, in particular, 

produces lipopolysaccharides with immunoinhibitory properties, which may hinder early 

immune development and contribute to T1D development (Mokhtari et al. 2021). 

The abundance of species responsible for producing essential short-chain fatty acids 

(SCFAs) varies significantly. In a study by de Goffau et al. (2013), there was a negative 

relationship observed between certain key SCFA-producing species (such as Bifidobacterium 

adolescentis, Bifidobacterium Peeudocatenulatum, Faecalibacterium prausnitzii, Clostridium 

clostridioforme and Roseburia faecis) in children with diabetes-associated AAbs. This 

suggests that those with four AAbs tend to have fewer species producing SCFAs. 

Additionally, the study found a reduction in the abundance of two dominant Bifidobacterium 

species, while Bacteroides abundance increased in these cases (de Goffau et al. 2013). 

In another case-control study conducted by Murri et al. (2013), T1D children exhibited 

increased levels of Clostridium, Bacteroides, and Veillonella, along with decreased levels of 

Bifidobacterium and Lactobacillus compared to their healthy controls (Murri et al. 2013).  

Additionally, children with T1D exhibited an increased abundance of 12 genera including 

Escherichia, Bacteroides, Clostridium, Veillonella, Ruminococcus, Blautia, Streptococcus, 

Sutterella, Enterobacter, Lactobacillus, Lactococcus and Bifidobacterium (Mokhtari et al. 

2021). The reduced overall diversity observed in T1D may be associated with the prevalence 

of specific genera, such as Ruminococcus, Blautia, and Streptococcus. This association is 

intriguing as these bacterial groups encompass species identified as potential "pathobions” 

which are members of the normal gut microbiota capable of behaving like harmful pathogens 

(Kostic et al., 2015).  

 

 



 

20 

 
 

Figure 2 Dysbiosis of the gut microbiota in T1D (Adapted and modified from Mokhtari et al. 

2021). 

 

3.6.6 Antibiotics  

Antibiotics, commonly used to treat bacterial infections, have a well-documented 

influence on the composition and diversity of gut microbiota. Their usage is associated with a 

reduction in microbial variety within the gut, a factor crucial for the optimal functioning of 

the gut immune system (Korpela et al. 2016). Dysregulation of this system has been 

implicated in the pathogenesis of T1D, suggesting a potential role of antibiotic-induced 

alterations in microbial diversity in T1D development (Hviid & Svanstrom 2009).  

Despite understanding of these effects on microbial communities, the precise implications of 

antibiotics on T1D development remain unclear (Xu et al., 2022). Bokulich et al. (2016) 

conducted a comprehensive study investigating the correlation between infant antibiotics 

exposure and subsequent changes in the microbial diversity. They observed a connection 
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between antibiotic exposure and reduced levels of Clostridiales and Ruminococcus during the 

initial 3 to 9 months of life, along with delayed maturation of gut microbiota (Bokulich et al. 

2016).  

In contrast, a nationwide cohort study conducted by Antvorskov et al. (2020), 

involving over 75 000 infants, revealed no significant association between early antibiotic use 

(within the first 2 years of life) and an increased risk of T1D (Antvorskov et al. 2020). 

Similarly, Mikkelsen et al. (2017) reported no overall correlation between antibiotic use and 

T1D risk in a study comprising 1578 Danish children (Mikkelsen et al. 2017). 

Considering the maternal use of antibiotics is crucial, as infants inherit some of their 

early-life microbiota from their mothers (Cox & Blaser 2015). A study on diabetic children 

unveiled an elevated risk of T1D when mothers were treated with specific antibiotics before 

pregnancy (Kilkkinen et al. 2006). 

 

3.6.7 Stress  

 The stress system comprises a complex network involving both neural and 

physiological components (Chrousos 1992). Critical hormones, such as glucocorticoids and 

catecholamines, serve as intermediaries between the brain and specific bodily functions 

(Sharma et al. 2022). Short-term stress episodes induce an elevation in glucose and insulin 

levels, aiding in the maintenance of normoglycemia (Ingrosso et al. 2023). However, during 

long-term stress, known as allostatic stress, the disruption of glucose homeostasis persists, 

leading to unresolved glucose levels and contributing to chronic insulin resistance. This 

persistent signalling informs β-cells about insulin resistance, culminating in hyperglycemia, 

even under normal β-cell function (Ingrosso et al. 2023).  

 Numerous studies underscore the link between significant childhood life events and 

their potential role in the initiation of T1D (Ingrosso et al. 2023). Sipetic et al. (2007) 

conducted a case-control study involving 105 children diagnosed with T1D and 210 controls, 

matched for age (±1 year), sex, and place of birth (Sipetic et al. 2007). The primary objective 

was to investigate whether psychological dysfunction and stressful life events could increase 

the likelihood of T1D onset. The study suggested that stressful life events significantly 

influence T1D development, and social, psychological and physical triggers may contribute to 

an increased release of catecholamines and cortisol, thereby elevating insulin requirements 

and placing additional stress on β-cells, potentially triggering the onset of T1D (Sipetic et al., 

2007)  

 



 

22 

3.6.8 Air pollution and environmental toxins  

 Elevated exposure to environmental pollutants and particulate matter in the air is 

considered a potential contributing factor to the increased risk of developing T1D (Howard 

2019). These pollutants have the capacity to trigger the autoimmune process or induce β-cell 

autoimmunity, ultimately leading to subsequent apoptosis (Butalia et al. 2016). Air pollution's 

involvement in T1D development encompasses its influence on both humoral and cellular 

immune responses (Choi et al. 2021).  

 Polluted air initiates oxidative stress and inflammation, recognized risk factors for 

various metabolic disorders, resulting in adverse effects such as lipid peroxidation, 

antioxidant depletion, and pro-inflammatory signalling, which contribute to various diseases 

(Zorena et al. 2022). The robust biological connection between air pollution and an elevated 

T1D risk involves inhaling pollutants, leading to disruptions in metabolic functions (Zorena et 

al. 2022). In a study by Hathout et al. (2002) with 61 children having T1D, a connection was 

established between elevated risk and exposure to ozone and particulate matter. The potential 

mechanism involves the formation of free radicals, with ozone exposure producing free 

oxygen radicals, affecting β-cells, and causing their destruction (Hathout et al., 2002) 

 Nitrates, nitrites and N-nitroso compounds present other potential risks for T1D. They 

originate from dietary sources such as processed meats and fish and environmental sources 

including water contaminated by nitrogen-containing fertilisers, sewage, and manure (Butalia 

et al. 2016). These compounds are thought to induce toxicity either directly on β-cells or 

through immunological pathways (Butalia et al. 2016). While the exact mechanism of action 

is not well-understood, one possible pathway involves DNA damage of β-cells leading to their 

destruction (Virtanen et al. 1994).  

 Other environmental toxins including persistent organic pollutants (POPs), endocrine 

disruptors (e.g. bisphenol A, phthalates) or bacterial toxins contribute to β-cell apoptosis 

through alterations in mitochondrial functions and the initiation of oxidative stress. Alongside 

apoptosis, additional mechanisms leading to reduced β-cell mass involve disruptions in β-cell 

replication (Bodin et al., 2015).  

 

  3.7 Complications of T1D  

 Health complications and mortality rates in T1D are closely linked to both 

microvascular and macrovascular complications (Marcovecchio et al. 2010). Microvascular 

issues arise from the damage to small blood vessels in vital organs, including the kidneys, 

retinal tissues of the eye, and nerves (Melendez-Ramirez et al. 2010) driven by chronic 
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hyperglycaemia and metabolic and functional factors (Banday et al. 2020). Endothelial 

dysfunction, common in T1D, is linked to coronary artery disease (Bertoluci 2015). These 

complications significantly increase the risk of cardiovascular disease (CVD) (Zakir et al. 

2023) often starting in childhood and escalate during puberty (Chiang et al. 2018).  

 

3.7.1 Microvascular complications 

 Diabetic Retinopathy is characterised by abnormal blood vessel growth in the retina, 

leading to vision decline (Aiello et al. 1998). Microaneurysms (swellings in tiny retinal blood 

vessels) mark the initial stage and progresses to vessel blockages and new vessel growth. If 

untreated, proliferative retinopathy can cause severe vision impairment or blindness (Aiello et 

al. 1998). 

 Diabetic Nephropathy is a leading cause of end-stage renal disease, impacting 20-40 

% of diabetic patients after 15–20 years of T1D. It begins with microalbuminuria and 

progresses to macroalbuminuria (>300 mg/ 24 h) with metabolic, hypertensive, and genetic 

factors contributing to kidney damage (Dronavalli et al. 2008). 

Diabetic Neuropathy refers to nerve damage, primarily impacting small sensory and 

large motor nerve fibers. Symptoms include numbness, burning, tingling, and pain (Bansal et 

al. 2006). Hyperglycaemia and abnormal lipid levels disrupt nerve function, triggering 

inflammation and affecting nerve growth and survival. DSP prevalence varies from 7–57 % in 

adults and children, with approximately 60–70 % of diabetic adults experiencing progressive 

neuropathy (Trotta et al. 2004). Currently, no specific treatment is available (Zaheer et al. 

2021).  

 

3.7.2 Macrovascular complications 

 Cardiovascular disease (CVD) is the leading cause of mortality among individuals 

with T1D, primarily attributed to atherosclerosis – the accumulation of cholesterol and lipid 

plaques in large blood vessels. This process involves damage to endothelial cells, induced by 

factors like oxidative stress and inflammation, exacerbated by hyperglycaemia (Schofield et 

al. 2019). Persistent inflammation, cell death, and plaque formation result in arterial 

narrowing and increased blood clot risk (H. Sharma et al. 2019). Hyperglycaemia exacerbates 

cell damage by promoting glucose transport, leading to free radical production and advanced 

glycation end products (AGEs), resulting in tissue stiffening and impaired heart function (Du 

et al. 2022). Disruptions in insulin signalling  contribute to diabetic cardiomyopathy, affecting 

various cardiac functions (Frati et al. 2017). 



 

24 

 Epidemiological evidence reveals a higher incidence and earlier onset of CVD events 

among individuals with T1D compared to the general population. However, CVD prevalence 

in T1D varies based on factors such as disease duration, age, and gender (Colom et al. 2021). 

A Swedish registry-based study involving 34 000 T1D patients reported significantly 

increased risks of both total mortality and CVD death rates compared to matched controls. 

The degree of risk elevation correlated with glycated haemoglobin (HbA1c) levels (Lind et al. 

2014). 

3.8 Diagnosis of T1D 

 Biomarkers are crucial in understanding both normal and abnormal physiological 

processes, aiding in the diagnosis of health conditions, prediction of risks, and monitoring of 

treatment responses (Bodaghi et al. 2023). However, identifying biomarkers that accurately 

reflect the state of pancreatic β-cells is challenging due to their small size and limited 

distribution in the pancreas (Kahn et al. 2021). Pancreatic islets, containing β-cells, constitute 

only 1 % to 3 % of the pancreas, with approximately half comprising β-cells (Kahn et al. 

2021). Established biomarkers for T1D diagnosis include glucose levels, AAbs, C-peptide, 

cytokines, or nucleic acid-related biomarkers. These biomarkers are particularly useful for 

predicting the risk of developing T1D (Yi et al. 2018). However, despite advancements, there 

remains a notable gap in identifying biomarkers that accurately assess β-cell function or 

predict T1D progression (Nakayasu et al. 2023).  

 Various factors, genetic and environmental, contribute to the development of T1D, but 

none are definitive for diagnosis. Current diagnostic indicators primarily rely on 

hyperglycaemia, with additional markers distinguishing T1D from other forms of diabetes, 

such as low C-peptide levels or AAbs presence (Yi et al. 2018).  

3.8.1 AAbs 

Consistent research confirms the significance of AAbs against β-cell proteins and 

peptides as a standard tool for predicting T1D (Mathieu et al. 2018). The primary AAbs for 

T1D diagnosis include those targeting glutamic acid decarboxylase (GADA), insulin and 

proinsulin (IAA), cells of Islets of Langerhans (ICA), protein tyrosine phosphatase-like (IA-2 

and IA-2ⲁ), and zinc transporter 8 (ZnT8) (Pihoker et al. 2005). Developing multiple AAbs is 

a critical stage in T1D progression, significantly elevating the risk of developing the disease 

compared to having only a single AAb (Mathieu et al. 2018). 

 In 95 % of T1D cases, at least one AAb is present before hyperglycaemia occurs. 
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However, not all cases of T1D involve the presence of AAbs, making them occasionally 

inadequate for detecting the disease. This inadequacy may stem from less sensitive testing 

methods or other forms of autoantigens (AAgs) initiating β-cell destruction (Yi et al. 2018). 

 Having at least two AAbs in the blood increases the likelihood of developing clinical 

T1D to over 80 % during childhood or adolescence (Bonifacio 2015). The number of AAbs 

an individual possesses becomes more crucial than any specific combination when predicting 

T1D (Winter & Schatz 2011). 

 Children developing T1D at a very young age often exhibit IAA as the first detected 

AAb, while GADA is typically present in those developing T1D later in life (Ilonen et al. 

2022). Notably, AAbs such as IA-2 and ZnT8 are rarely detected at onset but remain 

detectable until T1D diagnosis (Yi et al. 2018). IA-2 and ZnT8 are therefore often regarded as 

substitute markers indicative of β-cell destruction (Kawasaki 2023). Despite uncertainties 

about the exact role of AAbs in causing T1D, they are thought to be more associated with 

disease progression or secondary immune responses rather than being the primary cause. The 

process of seroconversion, when AAbs appear in the blood, is crucial for accurate T1D 

prediction (Yi et al. 2018). Characteristics such as age at seroconversion, number of AAbs, 

their titer, affinity, antigenic specificity, and epitope binding enable categorising individuals 

based on their T1D risk within five years (Achenbach et al. 2004). 

 While AAbs and genetics are valuable for T1D prediction, limitations exist. Testing 

for AAbs is typically recommended for individuals with a family history, yet around 85 % 

developing T1D lack such a history. Moreover, not all AAbs-positive individuals will develop 

clinical T1D, and if they do, the disease progression varies (Yi et al. 2018). This underscores 

the necessity to explore novel markers for predicting different T1D developmental phases and 

determining the optimal timing for treatment (Jin & She 2012).  

 

3.8.2 C-peptide  

 C-peptide is a widely used method for assessing the function of β-cells (Leighton et al. 

2017). When proinsulin, the precursor of insulin, is enzymatically cleaved, both insulin and a 

31-amino acid peptide known as C-peptide are released into the bloodstream in equal amounts 

(Wahren et al. 2012). The choice of measuring C-peptide, as opposed to insulin, is primarily 

attributed to their distinct rates of degradation in the body. C-peptide has a half-life of 

approximately 20 to 30 minutes, compared to insulin's half-life of 3 to 5 minutes. This 

prolonged half-life is a more stable timeframe for monitoring β-cell response (Leighton et al. 

2017).  
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 In individuals without T1D, fasting C-peptide levels typically range from 0.3 to 0.6 

nmol/l and can rise from 1 to 3 nmol/l after meals (Yosten et al. 2014). C-peptide is minimally 

affected by hepatic absorption, as opposed to insulin, which is partly absorbed by the liver. 

This results in consistent elimination of insulin in the bloodstream, posing challenges for 

accurate measurement (Leighton et al. 2017).  

 People with T1D often exhibit low plasma C-peptide levels, typically below 0.2-0.4 

nmol/l, indicative of severe insulin deficiency. However, in cases of adolescent or adult-onset 

T1D, low C-peptide levels may not reliably predict severe insulin deficiency within three 

years of diagnosis. C-peptide levels decline around 30 months before T1D diagnosis, although 

stability is observed in others (Maddaloni et al. 2022). 

 Despite these variations, a study by Sosenko et al. (2009) investigated how C-peptide 

levels respond to oral glucose in T1D progressors. The study revealed a reduced early C-

peptide response can be predictive for T1D development in at-risk children, providing a two-

year lead in T1D prognosis (Sosenko et al. 2010). 

 

3.8.3 Cytokines  

 Cytokines represent crucial proteins in predicting T1D. Cytokines, low molecular 

weight molecules, play a central role in mediating the immune response and are integral to 

complex pathways regulating inflammation processes crucial for managing lesion sites 

(Gouda et al. 2018). They facilitate communication among immune cells, stimulating and 

regulating various immune functions (Yi et al. 2018). Pro- and anti-inflammatory cytokines 

contribute to the pathogenesis of T1D, playing a significant role in the ongoing destruction of 

β-cells by altering the immuno-regulatory environment of the pancreas (Lu et al. 2020). 

 Furthermore, cytokines possess the ability to disrupt glucose uptake in response to 

insulin, initiating the development of insulin resistance (Gouda et al. 2018). Certain cytokines 

exhibit cytotoxic effects on pancreatic β-cells, while others, along with chemokines, regulate 

the inflammatory response within these cells (Lu et al. 2020). Maintaining a balance between 

proinflammatory and anti-inflammatory cytokines is crucial for normal cellular functioning, 

and variations in cytokine genes can lead to changes in cytokine production, contributing to β-

cell inflammation and destruction (M & DR 2014). 

 Numerous well-known inflammatory-promoting cytokines such as IL-1, IL-6 and 

tumour necrosis factor (TNF-α) and IFN family members, have been identified in T1D. This 

discovery has raised significant interest in exploring whether inhibiting these cytokines could 

offer clinical benefits (Lu et al. 2020). TNF-α, a cytokine with diverse roles in various cellular 
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events, has been observed in triggering β-cell apoptosis. Blocking TNF-α is believed to 

contribute to the preservation of β-cell function, particularly in children recently diagnosed 

with T1D (Lu et al. 2020). Cytokines IFN-α and IFN-γ have been associated with both the 

onset and progression of T1D. Elevated levels of IFN-α are observed in the blood of 

individuals with T1D, triggering over-production and increased expression of HLA 

molecules, leading to endoplasmic reticulum stress and cell death – an indication of the direct 

involvement of INF-α in β-cell destruction (Marroqui et al. 2017). In a case-control study 

involving 67 children, screening 65 cytokines and chemokines revealed that 15 cytokines and 

growth factors were higher in children positive for AAbs. Furthermore, two specific 

cytokines, IL-10 and IL-21, demonstrated the capability to distinguish two groups with 

enterovirus infection (Yeung et al. 2012)  

 While cytokines hold potential as biomarkers for T1D, it is important to note their 

limitation in specificity for T1D. Cytokine levels can vary in response to injuries and damage 

in different tissues, as well as in the presence of various inflammatory and immune-related 

conditions, not restricted to T1D (Yi et al. 2018). 

 

3.8.4 Glucose-related biomarkers 

 T1D may be diagnosed in patients exhibiting common symptoms of hyperglycaemia, 

even when the glucose level is below 200 mg/dL. Another indicator of T1D development can 

be observed in patients with consistent positive results from multiple glucose-related tests, 

even in the absence of hyperglycaemia (Yi et al. 2018). These diagnostic tests include 

haemoglobin A1c (HbA1c), fasting plasma glucose (FPG), and oral glucose tolerance test 

(OGTT), each possessing distinct criteria, sensitivity, and specificity (Yi et al. 2018). 

Confirmation of T1D is based on specific threshold values: HbA1C >6.5, FPG >126 

mg/dL, and a 2-hour plasma glucose during OGTT >200 mg/dL (Kahanovitz et al. 2017). 

HbA1c serves as a valuable biomarker for measuring the average blood glucose level over the 

preceding 2 to 3 months. As blood glucose rises, it binds to haemoglobin in a manner 

dependent on its concentration. HbA1c is directly related to current blood glucose levels, 

reflecting chronic hyperglycaemia (Sherwani et al. 2016). However, its precision is relatively 

lower compared to FPG or OGTT. FPG is effective for assessing immediate glucose levels 

but lacks detailed insight into the temporal trends (Sherwani et al. 2016). The results of FPG 

and OGTT may exhibit increased variability when monitoring is conducted frequently to 

ensure accuracy (Yi et al. 2018).  
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3.8.5 Nucleic acid biomarkers  

 Small fragments of DNA are detectable in the bloodstream, likely stemming from cell 

death or other processes not yet fully understood (van der Vaart & Pretorius 2007). These 

DNA fragments harbour genetic variations associated with disease onset and progression, 

serving as valuable biomarkers reflecting pancreatic β-cell activity (Yi et al. 2018).  

In the context of T1D, the focus is placed on unmethylated insulin DNA for the early 

detection of β-cell death. Unique cytosine-guanine sites within the insulin gene remain 

unmethylated in β-cells but are methylated in other tissues (Zhang et al. 2017). Following β-

cell death in T1D, detectable fragments of unmethylated insulin DNA are released into the 

bloodstream, indicating the extent of β-cell loss (Zhang et al. 2017). The method involves a 

non-invasive liquid biopsy detecting circulating free DNA (cfDNA) before hepatic or renal 

clearance (Speake et al. 2020). In T1D, β-cell destruction by T cells releases unmethylated 

insulin DNA into the bloodstream, detectable through this non-invasive method (Zhang et al. 

2017). Herold et al. (2015) observed a notably elevated ratio of unmethylated to methylated 

insulin DNA in T1D patients at disease onset compared to healthy controls. Elevated levels of 

unmethylated insulin DNA correlated with reduced insulin secretion, indicating potential β-

cell destruction and death (Herold et al. 2015) 

Other nucleic acid biomarkers reflecting β-cell health include microRNA (miRNA) 

molecules (Yi et al. 2018). MiRNAs are small, non-coding RNA molecules with crucial roles 

in gene expression regulation and various biological processes (Syed & Evans-Molina 2016). 

Among these processes is glucose metabolism, closely linked to the stability of pancreatic β-

cells responsible for insulin synthesis (Margaritis et al. 2021). Numerous studies aim to 

identify specific miRNA molecules that interfere with the normal functioning of pancreatic β-

cells, leading to their apoptosis. This interference is believed to significantly impact pancreas 

homeostasis and maintenance (Margaritis et al. 2021).  

 

3.9 Metabolomic biomarkers  

T1D exerts a profound influence on various biochemical pathways, particularly those 

involving metabolic substrates. Metabolomics, a discipline within the broader field of “-

omics” sciences (such as genomics, proteomics, and transcriptomics) is applied across diverse 

natural science domains (Pinu et al. 2019). Metabolomics is relatively a new technology (Wu 

et al. 2022) focused on the identification and characterization of low-molecular weight 

molecules known as metabolites (biochemicals like sugars, amino acids, organic acids, 

nucleotides, and lipids) within biological samples (Qiu et al. 2023). The complete set of (Jin 
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et al. 2019) identified metabolites in a system is commonly referred to as the “metabolome” 

(Jin et al. 2019). The metabolome provides a comprehensive record of the specific 

biochemical processes occurring within a sample (Suhre 2014) serving as a direct reflection of 

cellular activity (Kim et al. 2018).  

Metabolomes can be categorised based on their origin. Endometabolomes are 

associated with intracellular metabolism, while exometabolomes, also known as the metabolic 

footprint or secretome, are associated with extracellular metabolism. In mammals, metabolic 

analysis encompasses samples such as serum (or plasma), urine, cerebrospinal fluid, breath, 

tears, saliva, faecal matter, and various other body tissues (Dunn et al. 2011). 

Metabolomics is highly sensitive and focuses on analysing a relatively small set of 

metabolites compared to the vast number of genes or mRNA molecules addressed by other 

methodologies (Friedrich 2012). It captures metabolites representing the end-products of the 

interplay between genes and factors like the environment, lifestyle, or medications. 

Consequently, metabolite levels provide accurate indications of metabolic pathway activity 

which greatly aids in identifying both short-term and long-term changes in cells, tissues, and 

bodily fluids (Friedrich 2012). 

Metabolomics is a comprehensive study of metabolism, avoiding the adherence to a 

specific experiment (Liu & Locasale 2017). It encompasses untargeted screening, which 

involves profiling numerous unknown features to measure differences between two samples 

or populations, without quantifying specific metabolites (Hatzakis 2019). This approach is 

valuable for discovering new, previously unknown metabolites (Liu & Locasale 2017). 

Conversely, targeted experiments provide deeper insights into specific hypotheses. They aim 

to quantify the maximum number of metabolites with statistical analyses based on the 

measurement of absolute concentrations of molecules. Semi-targeted metabolomics combines 

aspects of both approaches, identifying and quantifying numerous molecules without a 

predetermined hypothesis (Liu & Locasale 2017). Nonetheless, identifying and validating the 

properties of metabolites remains challenging due to the physiochemical diversity of the 

metabolome (Kim et al. 2018). 

Given the comprehensive complexity of metabolomics, diverse analytical techniques 

are utilised for analysis. Two well-known techniques used for analysing data from large sets 

of metabolomic samples are NMR spectroscopy and mass spectroscopy (MS) which can be 

further complemented by chromatography or electrophoretic separation before detection 

(Dunn et al. 2011). While both techniques enable exploration of metabolic profiles, they each 

possess distinct advantages and limitations (Suhre 2014). 
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NMR spectroscopy is non-destructive, cost-effective, and reliable, providing quick 

results with minimal preparation time (Suhre 2014). However, its sensitivity is limited to 

detecting a narrow range of metabolites with higher abundance (Pinu et al. 2019). In contrast, 

MS offers high sensitivity and requires only a small sample volume (Jin et al. 2019). Despite 

its ability to qualify numerous molecules, MS is a destructive technique, preventing the 

analysis of live samples and the reuse of previously analysed samples (Emwas et al. 2019). 

In recent years, metabolomics has revealed new mechanisms and biomarkers in the 

fields of foods and nutrition, providing valuable insights into cellular processes within the 

human body. These discoveries have promising implications for healthcare applications 

(Damiani et al. 2020). Metabolomics has the potential to advance healthcare by improving the 

understanding of underlying mechanisms in diseases like T1D. It could serve as a powerful 

tool for identifying new pathways or early biomarkers that indicate metabolic changes 

contributing to T1D development. Using metabolomics in the study of metabolic disorders 

holds significant promise due to the direct relationship between metabolic issues and the 

disease’s primary consequences. This capability of metabolomics is crucial for discovering 

biomarkers (Bervoets et al. 2017). 

 

3.9.1 Metabolomic biomarkers in relation to T1D  

Metabolomic research has unveiled potential metabolic disturbances preceding the 

onset of T1D. Despite advancements, the exact contribution of these metabolic disruptions in 

initiating the disease remains incompletely understood. Nevertheless, various amino acid and 

lipid-based metabolites have been implicated in the progression of T1D (Yi et al. 2018).  

Methionine, a crucial amino acid involved in DNA methylation, has been associated 

with the timing of AAbs development. Pflueger et al. (2011) observed that children who 

developed AAbs before the age of 2 had approximately half the levels of methionine and 

hydroxyproline compared to those who developed AAbs later or those without AAbs 

(Pflueger et al. 2011). Jørgenrud et al. (2017) also noted lower methionine levels in  infants 

with two or three AAbs or T1D compared to healthy individuals, although this difference did 

not reach statistical significance. The authors suggested that the age of the children and the 

duration of breastfeeding could potentially contribute to these observed differences. 

Moreover, the decrease in tyrosine and ornithine levels was not statistically significant after 

adjusting for multiple comparisons (Jørgenrud et al. 2017). Sen et al. (2020) found amino 

acids alanine, aspartate and glutamate were more prevalent in the peripheral blood 

mononuclear cells (PBMCs) of those later developing T1D (Sen et al. 2020). Additionally, 
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Orešič et al. (2008) reported increased levels of glutamic acid and BCAAs such as leucine and 

isoleucine along with reduced levels of ketoleucine before seroconversion. Reduced levels of 

succinic acid in PT1D were also observed (Orešič et al. 2008).  

Analysing the lipidomic profile has proven to be a valuable predictive method for T1D 

development. Orešič et al. (2008) noted a consistent decrease in triglycerides and several 

phospholipids, including phosphatidylcholine and sphingomyelin in children progressing to 

T1D compared to those remaining negative for AAbs. As phosphatidylcholine functions as 

the primary source of choline in the body, it indicates a deficiency in choline among T1D 

individuals since birth (Orešič et al. 2008). Furthermore, Orešič et al. (2013) reported lower 

levels of essential phospholipids, specifically phosphatidylcholine, 

phosphatidylethanolamines, and sphingomyelins, in children who later developed T1D before 

the age of 4 (Orešič et al. 2013). This finding aligns with the understanding that methionine 

plays a crucial role in breaking down choline, a significant building block of phospholipids. 

This correlation supports the notion that inadequacies in methionine during early childhood 

may result in diverse consequences (Overgaard et al. 2016).  

Sen et al. (2020) aimed to identify specific lipids and polar metabolites in PBMCs of 

children who would later develop autoimmunity against β-cells or T1D. Findings showed 

lower levels of most lipids and polar metabolites in PBMCs of children developing T1D or 

seroconverting to at least one AAb compared to a control group of children without AAbs. 

Both groups of children were carefully matched based on similar HLA-associated risk factors, 

age, and sex (Sen et al. 2020). Furthermore, Lamichhane et al. (2018) indicated that plasma 

lipid levels including sphingomyelins, triacylglycerols and phosphatidylcholines were 

predominantly reduced in infants who later developed T1D compared to those with a single 

AAb and healthy controls (Lamichhane et al. 2018).  
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Table 1 Protein and lipid biomarkers associated with progression to T1D.  

 

Authors Year Type of 

participants 

Sample type Protein and lipid biomarkers in 

progressors to T1D  

Orešič et al.  2008 

 

 

PT1D (n = 56); 

NPT1D (n = 73) 

Cord blood, 

serum  

↑ -glutamic acid  

↑ leucine, isoleucine  

↓ ketoleucine  

↓ succinic acid  

↓ triglycerides, phospholipids, 

phosphatidylcholines 

Pflueger et al.  2011 

 

 

AAbs+ (n = 35); 

AAbs– (n = 35) 

Serum  ↓ methionine and hydroxyproline  

↑  polyunsaturated fatty acid-containing 

phosphatidylcholines, specific 

triacylglycerols  

Orešič et al. 2013 PT1D (n = 33);  

3-4 AAbs (n = 31);  

2 AAbs (n = 31);  

1 AAb (n = 48);  

CTR (n = 143)  

Cord blood  ↓ choline-containing phospholipids  

Jørgenrud et 

al.  

2017 PT1D (n = 29);  

CTR (n = 29)  

Plasma  ↓ tyrosine, ornithine, methionine (not 

statistically significant) 

Lamichhnane 

et al.   

2018  PT1D (n = 40);  

P1Ab (n = 40);  

CTR (n = 40)  

Plasma  ↓ sphingomyelins, triacylglycerols and 

phosphatidylcholines  

 

 

 

Lamichhane et 

al.  

 

 

2019 

 

 

PT1D (n = 40); 

P1Ab (n = 40); CTR 

(n = 40)  

  

Plasma  ↓ amino acids, sugar derivatives, fatty 

acids, catabolites of microbial origin 
(1,5-anhydrohexitol, 11-eicosenoic acid, 1-monopalmitin, 

4-hydroxyphenyllactic acid, Arachidonic acid, aspartic acid, 

D-(-)-Lyxofuranose, D-arabinose, glutamic acid, glyceric 

acid, L-5-oxoproline, L-hydroxyproline, linoleic acid, L-

threonic acid, oleic acid, palmitic acid, pentadecanoic acid, 

pyroglutamic acid, ribonic acid, stearic acid, succinic acid, 

tryptophan) 



 

33 

Lamichhane et 

al.  

2019 

 

PT1D (n = 30); 

P1Ab (n = 33); CTR 

(n = 38) 

Cord blood  ↓ phospholipids (sphingomyelins)  

↑ cholesterol esters  

Sen et al.  2020 PT1D (n = 34); 

P1Ab (n = 27); CTR 

(N = 10) 

PBMCs  ↓ phosphatidylcholines, sphingomyelins, 

ceramides, cholesterol esters, 

lysophosphatidylcholines, 

phosphatidylethanolamines and 

triacylglycerols  

Abbreviations 

PT1D = progressors to T1D  

NPT1D = non-progressors to T1D  

P1Ab = progressors to developing a single AAb  

CTR = control (group) 

 

 

3.10 Treatment of T1D  

Insulin replacement is the primary therapy for T1D, involving daily injections or 

continuous subcutaneous insulin infusion (Janež et al. 2020). Achieving optimal glycemic 

control requires tailored insulin therapy, regular glucose monitoring via self-checks or 

Continuous Glucose Monitoring (CGM), and patient education on carbohydrate counting 

(Janež et al. 2020). While absence of insulin is a key factor in T1D, other pancreatic 

abnormalities, particularly issues in glucagon secretion, pose challenges to glucose regulation. 

The increase in glucagon may negatively impact glycemic control, complicating 

implementation of intensive insulin therapy (McCall & Farhy 2013).  

Current T1D treatment combines strict dietary regimes with exogenous insulin 

administration via daily injections or pumps. Novel genetically modified insulin analogs like 

aspart, lispro, and Degludec offer faster action and extended duration, more closely 

mimicking the endogenous human insulin action (Pathak et al. 2019).   

Despite improvements in insulin purity and reduced adverse reactions, animal and 

human insulins still have practical limitations due to their dissimilar timing in lowering 

glucose compared to endogenous insulin patterns (McCall & Farhy 2013). Newer insulin 

analogs, with slight structural and functional variations from human insulin, are gaining 
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popularity despite higher costs and are increasingly used in treating both T1D and T2D 

(McCall & Farhy 2013). 

Rapid-acting insulin, such as insulin aspart, insulin lispro, and glulisine, act quickly 

and have shorter duration compared to endogenous insulin. These analogs undergo minor 

modifications, typically involving changes in one or two amino acids, prevent clumping and 

improve absorption, all while maintaining their intended physiological effects (Hartman 

2008). Long-acting insulin analogs, insulin glargine and insulin detemir, provide continuous 

basal insulin release by undergoing specific molecular modifications that extend their activity 

duration. Changes in a specific amino acid of insulin glargine affect its solubility, resulting in 

stable structures and prolonged absorption. Similarly, detemir's fatty acid side chain slows 

absorption by creating reversible bonds with albumin in the blood, ensuring consistent plasma 

insulin levels (Hartman 2008). 

The Artificial Pancreas (AP) combines continuous glucose monitoring with automated 

insulin delivery, marking a significant advancement in managing T1D (Dermawan & Kenichi 

Purbayanto 2022). This closed-loop system continuously monitors glucose levels and adjusts 

insulin delivery in real-time, improving glycemic control and reducing the need for manual 

interventions (Hovorka 2006).  

Immunotherapy holds promise for modifying the T1D process (Allen & Dayan 2021). 

Current T1D immunotherapies include antigen-independent (non-specific) strategies, which 

modulate the overall immune response (Cabello-Olmo et al. 2019) and antigen-dependent 

strategies that target specific immune dysfunction responsible for β-cell destruction (Zhang et 

al. 2022). Despite notable progress, achieving long-term control remains challenging, 

prompting exploration of combination therapies to address the complex nature of T1D 

pathogenesis (Huang et al. 2023).  

 

3.11 NMR spectroscopy  

 NMR spectroscopy stands as a fundamental analytical technique in metabolomics, 

complemented by gas chromatography with mass spectroscopy (GC-MS) and liquid 

chromatography with mass spectroscopy (LC-MS). Integration of multiple platforms is often 

necessary due to the lack of a single method capable of fully identifying and quantifying all 

metabolites (Emwas et al. 2019). Being 10 to 100 times less sensitive than MS, NMR 

spectroscopy boasts superior reproducibility and the ability to provide detailed structural and 

quantitative insights across diverse chemical classes (Emwas et al. 2019).  
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NMR spectroscopy utilises the magnetic properties of atomic nuclei, including 1H, 
13C, 15N, or 31P. The behaviour of NMR-active nuclei within a magnetic field offers valuable 

molecular insights into substances. Among these nuclei, 1H is the most sensitive and is 

commonly used in metabolomics via one-dimensional 1H NMR analysis (Friedrich 2012). 1H 

NMR spectroscopy was initially employed for analysing plasma, urine, and tissues due to the 

abundance of 1H nuclei. Each compound manifests as a distinct signal in a 1H NMR spectrum 

(Friedrich 2012). However, this technique possesses significant challenges in sample 

quantification, particularly for metabolites with similar chemical structures, resulting in 

spectral overlap (Crook & Powers 2020). Additionally, NMR spectroscopy serves for 

identifying unique metabolites, especially protein-bound metabolites and for measuring 

certain inorganic metabolites or ions (such as metal ions and hydrogen cations via pH), which 

may not be measurable by LC-MS and GC-MS (Emwas et al. 2019) Due to stable isotopes, 

NMR spectroscopy enables a thorough exploration of metabolic pathways, elucidating the 

dynamics and mechanisms involved in the transformation of individual metabolites (Markley 

et al. 2017). 

 

 
 

Figure 3 Schematic illustration of the principal components of a NMR spectrometer (Adapted 

from Antcliffe & Gordon 2016). 
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4 Methods  

 

4.1 Participants and sample collection  

This is a case-control study investigating the differences in the stool metabolome between 24 

children aged 4.8 years ± 1.2 years genetically predisposed to T1D and their matched 

controls.  

Stool samples for metabolite analysis were collected between 2015 and 2016 from 

children enrolled in the Finnish Type 1 Diabetes Prevention and Prediction Study (DIPP) as 

part of the ADELE project. Inclusion criteria were applied during participant selection, 

considering factors such as T1D related AAbs, onset of T1D, dietary factors, antibiotic usage, 

HLA-DQ genotype, age of sampling and date of sampling. A similar set of criteria were 

employed in the matching of T1D-predisposed children (1) with healthy controls (0). 

Additionally, each subject was instructed to provide one sample from the winter and summer 

months. Not all subjects were able to provide both samples. A total of 87 samples (43 samples 

from T1D-predisposed subjects and 44 samples from control subjects) were available for 1H 

NMR analysis. Samples were provided by Tampere University. 

Stool sample collection was carried out at participants' homes, frozen in-home freezers 

(-20°C) and subsequently transported to Tampere University Hospital in a frozen state. The 

samples were then stored for the long term in tanks cooled with liquid nitrogen at -80°C. Two 

stool aliquots were collected at each timepoint. In 2022, the samples were transported to the 

Czech University of Life Sciences in a thermobox filled by dry ice at -80°C and stored within 

the freezer at -80°C until the analysis.  

  

4.2 DIPP Study  

DIPP study, an observational birth cohort study, was initiated in 1994 and is currently 

ongoing across three Finnish universities – Oulu, Tampere, and Turku (Lamichhane et al. 

2023). The primary aim of the DIPP study was to refine methods for preventing T1D and 

develop innovative approaches (Haller & Schatz 2016). Children were included in the study 

based on various risk factors, including a positive T1D family history among first-degree 

relatives and HLA-DRB1-DQB1 genotyping (Veijola 2020).The study employed genetic 

typing through HLA-DQ to identify children with DR3-DQ2 and/or DR4-DQ8 risk 

haplotypes while excluding those with protective haplotypes (Orešič et al. 2008). The study 

follows participants from the age of 3 months to 15 years of age or until a T1D diagnosis. 
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Screening involves 11 000 children annually, with approximately 600–700 children with 

higher genetic susceptibility initiating the follow-up process each year (Veijola 2020). 

In a broader context, the DIPP study is integrated into the Human Exposomic 

Determinants of Immune-Mediated Diseases (HEDIMED) project, which is a component of 

the HORIZON 2020 programme in Europe. HEDIMED represents the most extensive study to 

date in investigating the exposome’s role in the onset of immune-mediated diseases (Laiho et 

al. 2022). The study aims to comprehensively analyse the intricate interactions between 

external and internal exposomes, along with the pivotal molecules and pathways active in 

early life. By doing so, HEDIMED seeks to identify disease mechanisms, as well as exposures 

that pose risks or provide protection, crucial for the development of T1D, celiac disease, 

allergies, and asthma (Laiho et al. 2022).  

        

4.3 Faecal metabolome  

4.3.1 Chemicals  

K2HPO4 (potassium dihydrogen phosphate), NaH2PO4 (sodium dihydrogen 

phosphate), TSP (((3-(trimethylsilyl)-propionate-2,2,3,3-d4)), D2O (deuterium oxide), NaN3 

(sodium azide).  

  

4.3.2 NMR buffer  

The NMR buffer was prepared by combining 200 mg NaN₃ and 86.135 mg TSP in 

beaker 1. Simultaneously, salts for pH adjustment were prepared as follows: 

 

For 1.5 M K₂HPO₄, 22.21 g K₂HPO₄ was dissolved in 85 mL D₂O in beaker 2. 

For 1.5 M NaH₂PO₄, 4.91 g NaH₂PO₄ was dissolved in 31 mL D₂O in beaker 3. 

 

The salt solutions were mixed until a pH of 7.4 was achieved, and then used to 

dissolve the contents of beaker 1. Maintaining a pH of 7.4 is crucial to replicate the pH of a 

stool sample. The buffer, containing TSP as a reference for NMR spectra (see below) and 

NaN3 to halt microbiota activity and stabilise the sample, is subsequently added to the 

sample. 
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4.3.3 Sample preparation for NMR analysis  

      Prior to analysis, the samples underwent a thawing process at room temperature, 

afterwards 1000 µL of ultra-pure water was added, and the mixture was vortexed for 10 

seconds, followed by centrifugation (4°C, 15,000 rpm, 10 min) to facilitate the separation of 

solid and liquid phases. Following centrifugation, 630 µL of the supernatant was collected 

into another Eppendorf microtube. To this, 70 µL of the NMR buffer was added, followed by 

vortexing for 10 seconds. The centrifugation process was repeated at 15,000 rpm for 10 

minutes. If the final solution was not deemed clean, an additional round of centrifugation at 

15,000 rpm for 10 minutes was executed. The clear supernatant (550 µL) was transferred into 

the NMR tube. During the transfer, the NMR tube was held at an approximate 45-degree 

angle to facilitate the smooth sliding of the drop, and the remaining solution was slowly 

added. 

       1H NMR spectra were acquired using a Bruker Avance III spectrometer equipped with a 

broadband fluorine observation SmartProbeTM (BBFO) featuring Z-axis gradients (Bruker 

Biospin GmbH, Rheinstetten, DE), operating at a proton frequency of 500.18 MHz. The 

measurements were conducted at a temperature of 298 K (25°C). To eliminate water molecule 

signals, a standard Bruker 1D NEOSY sequence at 4.704 ppm was employed. Each sample 

underwent a one-dimensional proton experiment with the following parameters: 128 NS 

scans, 32K data points, a spectral width of 16 ppm, an acquisition time of 4 s, a mixing time 

of 0.1 s, and an interscan relaxation delay of 5 s. All samples were acquired using a 1D 

NEOSY pulse sequence with presaturation, calibrated against the internal standard TSP at 0.0 

ppm. Manual phasing was conducted using TopSpin 3.6.4 (Bruker Biospin GmbH, 

Rheinstetten, DE). Subsequent processing took place in the online software NMRProcFlow, 

involving baseline correction and bucketing procedures (Jacob et al. 2017). Bucket annotation 

was performed after an initial subset annotation in Chenomx version 9.02, utilising the 

software's built-in spectral library and the in-house database (Ellinger et al. 2012). The final 

concentration (mg/dL) of each metabolite was determined based on the under-curve area of 

the peak obtained in the NMRProcFlow software and calculated via regression equations 

defined by 10 randomly chosen spectra manually fitted in Chenomx software and obtained 

under-the-curve areas. 
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4.3.4 NMR statistical data analysis  

 The 1H NMR data underwent statistical analysis, which was conducted on the 

normalised bins using principal component analysis (PCA) in MetaboAnalyst 6.0, employing 

log data transformation and auto-scaling. For univariate comparisons, t-test (2-tailed, equal 

variances assumed) was applied within the same software. Additionally, MetaboAnalyst 6.0 

was employed to generate the heatmap (Figure 10). For the hierarchical clustering, we utilised 

the Ward algorithm and Pearson's correlations on log-transformed data (Ewald et al. 2024; Lu 

et al. 2023). 

4.3.5 Freeze-Drying 

       For each sample designated for 1H NMR analysis, a duplicate weighing approximately 

100 mg was prepared and lyophilized for 2 days at -55°C using a laboratory lyophilizer (L4-

55, Gregor Instruments, Sazava, CZ). Freeze-drying, also referred to as lyophilization, is a 

process that involves the direct transformation of water from its solid (ice) state to vapour, 

bypassing the liquid phase, followed by the removal of water from the resulting "dry" layer 

(Nowak & Jakubczyk 2020). The final dataset underwent normalisation based on the dry 

weight of the samples. The dry matter contains all components found in the original stool 

sample, excluding water. This enables the assessment of dilution or concentration of the 

measured metabolites, allowing for the adjustment of the final value for each specific 

metabolite.  
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5 Results and discussion  
 

 In total, 74 metabolites were identified, of which 43 are illustrated in Figure 5, 

whereas the less abundant are omitted for clarity. Some metabolites are stated in the spectrum 

more than once due to multiple peaks of given compound in different spectral regions. 

Additionally, the water region (4.5 to 5.2 ppm) was excluded from the visualisation of the 

spectrum (Figure 5). The profile of identified metabolites through the 1H NMR analysis is 

similar to that in other metabolomics studies (Orešič et al. 2008; Jørgenrud et al. 2017; Sen et 

al. 2020).  

 Among the identified metabolites, SCFAs including acetate, butyrate, and propionate 

were the most abundant group of metabolites, accounting for 40 (% w) of all identified 

metabolites in the spectrum in terms of abundance (Figure 4). The second largest group of 

metabolites comprises amino acids. Glutamate was the most abundant amino acid in the T1D-

predisposed group, comprising 7 (% w) (Figure 4).  

 
Figure 4 Average concentrations of metabolites in T1D-predisposed (1) group.  
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The presented pie chart (Figure 4) illustrates the average metabolite concentrations 

presented as percentages within the T1D-predisposed group. For visual clarity, the names and 

percentage values are only listed for metabolites that have reached or exceeded 2 %; units are 

% w. 

 

In our study, both the T1D-predisposed group and the control group showed a distinct 

SCFAs molar ratio of 9 : 3 : 2 (acetate: butyrate: propionate) which is similar to what has 

been previously postulated by other authors. Previously, 9 : 3: 3 (acetate: butyrate: 

propionate) has been published in healthy subjects (Müller et al. 2021). At individual level, 

SCFAs tend to oscillate in time (Schwiertz et al. 2010).  

The observed discrepancy in the SCFAs ratio within our study, particularly the notable 

difference between butyrate and propionate levels prompts exploration into potential 

influencing factors, particularly dietary practices, and gut microbiota composition in T1D. 

Dietary management plays a significant role in the care of individuals with T1D, alongside 

insulin therapy, serving as a cornerstone of care. Dietary recommendations for T1D 

emphasise fiber-rich foods such as vegetables, legumes, and grains as preferred carbohydrate 

intake, contributing to greater glycaemic stability (Pelikánová & Bartoš 2018). Notably, fiber 

intake and its type significantly influence the production of SCFAs (den Besten et al. 2013). 

O’Keefe et al. (2015) observed in a dietary intervention study that African-Americans 

provided with a low-fat, high-fiber diet had increased butyrate production compared to those 

following high-fat, low-fiber feeding (O’Keefe et al. 2015). Furthermore, the observed 

abundance of SCFAs may be attributed to variations in gut microbiota composition and/or its 

function. Acetate and propionate are mainly produced by the phylum Bacteroidetes, while 

butyrate is predominantly produced by the phylum Firmicutes (den Besten et al. 2013). 

Bacteroides have shown increased levels in numerous studies investigating alterations in T1D 

gut microbiota (Giongo et al. 2011; de Goffau et al. 2013; Murri et al. 2013; Mokhtari et al. 

2021). The influence of Bacteroides on T1D may be attributed to its impact on immune 

system development, potentially through the production of glutamate decarboxylase, a factor 

implicated in GADA autoimmunity (Elhag et al. 2020). While previous research has 

suggested diminished levels of butyrate-producing microbes in T1D, our findings indicate 

elevated butyrate levels, suggesting a nuanced microbiota-metabolite relationship in this 

context. Additionally, various types of Firmicutes and Bacteroidetes species are capable of 

producing butyrate from certain peptides and amino acids (Rowland et al. 2018). In particular, 
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glutamate, the most abundant amino acid in the T1D-predisposed group (Figure 4) may play a 

contributory role in butyrate synthesis (Louis & Flint 2017).  

While our findings are intriguing, it is important to acknowledge their limitations. 

Insights into SCFAs occurrence and ratio should be approached cautiously due to their 

speculative nature. A primary limitation is the absence of detailed dietary records of the 

participating children, particularly regarding adherence to T1D dietary recommendations, 

which emphasise carbohydrate regulation and increased fiber intake. Leveraging our findings 

for longitudinal research, integrating individuals' dietary data, and investigating the influence 

of diet on T1D metabolic profiles could be valuable for future T1D diagnosis. Moreover, 

speculation also arises regarding whether alterations in gut microbiota and dysbiosis in T1D 

may affect SCFAs production. In particular to butyrate synthesis, the process involves the 

collaborative effort of various bacterial species, employing multi-step mechanisms (Del 

Chierico et al. 2022). Utilising these findings for longitudinal research may offer intriguing 

insights, potentially enhancing our understanding of the impact of gut microbiota on 

metabolite profile that could serve as potential T1D biomarkers. Therefore, considering the 

ongoing T1D research within the DIPP study, our findings could potentially contribute to and 

be further enriched by investigations involving T1D microbiota using advanced analytical 

techniques such as GC and LC metabolomics (Zeki et al. 2020) or transcriptomics within the 

DIPP study (Maan et al. 2023).  

In our study, elevated levels of certain BCAAs such as valine and leucine, along with their 

relative amino acid metabolites like glutamate, were observed (Figure 4). Amino acids found 

in faeces are often results from catabolism of non-digestible proteins (Rose et al. 2015). 

Additionally, there is evidence suggesting that amino acids, particularly BCAAs such as 

valine, leucine, and isoleucine, may impair insulin signalling and induce insulin resistance in 

β-cells through the activation of protein kinase mTOR, which facilitates insulin receptor 

activation (Arneth et al. 2019). Orešič et al. (2008) also reported increased levels of BCAAs, 

particularly leucine and isoleucine, in individuals who later developed T1D (Orešič et al. 

2008). Although our study did not show a significant difference in BCAAs levels between the 

two groups (0; 1), it is plausible to assume that BCAAs might be involved in the pathogenesis 

of T1D through the mechanism of insulin signalling impairment (Zhenyukh et al. 2017). 

Despite the complexity of this mechanism and the need for further investigation, specific 

BCAAs may hold promise as potential metabolite predictors of the disease in children who 

eventually develop T1D (Sen et al. 2020). 
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 Figure 5 Representative 1H NMR spectrum.  

 

Furthermore, PCA scores plot illustrated in Figure 6 provides insight into the 

differences in metabolite profiles between the T1D-predisposed group and the control group. 

The x-axis (PC1) captures a significant proportion (23.2 %) of the data variance, while the y-

axis (PC2) contributes to this variation to a lesser extent (11.6 %). The distance between 

points representing the two groups (0; 1) indicates the degree of difference in their metabolic 

profiles. Samples that are closer together suggest greater similarity within each group in terms 

of their metabolite profiles. Samples that are farther apart may exhibit distinct metabolite 

profiles, indicating potential differences between the two groups. Based on the provided PCA, 

the observation suggests that there is limited discrimination between the T1D-predisposed 

group and the control group based on their metabolite profiles, indicating a lack of clear 

distinction between the two groups based on their metabolite profiles.  

The loadings plot (Figure 7) illustrates the contribution of metabolites to the observed 

differences in the metabolomics data. Each point on the plot represents a metabolite, with its 

position and direction indicating its influence on Loading 1 and Loading 2, the principal 

components.  
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Metabolites contributing to the separation between the T1D-predisposed group and the 

control group were identified: Metabolites with the highest positive loading values on 

Loading 1 include methionine (0.147), glutamate (0.144), lactate + threonine (0.143), and 

thymine (0.143). Metabolites with the highest negative loading values on Loading 1 include 

succinate (-0.099), glucose (-0.075), N,N-Dimethylglycine (-0.058), and butyrate (-0.052) 

Examining Loading 2, metabolites like glycine (0.167), valine (0.158), phenylalanine (0.152), 

and tyrosine (0.148) exhibit the highest positive loadings. In contrast, metabolites 2-Hydroxy-

3-methylvalerate (-0.171), caprylate (-0.145), isovalerate (-0.145), and valerate (-0.141), 

exhibit highest negative loadings on Loading 2.  

The spatial distribution of metabolites on the loading plot suggests clustering based on 

shared metabolic pathways, especially those related to proteolytic and saccharolytic 

processes, which could potentially contribute to this group differentiation. Metabolites on the 

right side of the graph are predominantly associated with proteolytic action. Methionine, 

glutamate, and threonine are among the 20 proteinogenic amino acids that are incorporated 

biosynthetically into proteins (Ayon 2020). Thus, they arise as a result of protein catabolism, 

wherein proteins are broken down into their constituent amino acids (Moran 2016). 

Conversely, metabolites on the left side such as glucose, succinate, and butyrate (excluding 

N,N-dimethylglycine) are predominantly linked with saccharolytic action. They function as 

end products of carbohydrate digestion (glucose) (Wong & Jenkins 2007) or microbial 

saccharolytic fermentation (succinate, butyrate) (Hernández et al. 2021). All of these 

metabolites play significant roles in energy metabolism (Remesar & Alemany 2020;  Zhang & 

Lang 2023; Singh et al. 2023). Additionally, metabolites positioned toward the upper side are 

all proteinogenic amino acids (glycine, valine, phenylalanine, tyrosine), thus emerging during 

proteolysis. Consequently, metabolites toward the lower side (valerate, isovalerate, caprylate, 

2-hydroxy-3-methylvalerate) comprise a diverse group of fatty acids. They occur naturally 

and originate from various dietary sources, including caprylate from breastmilk or coconuts 

and isovalerate from plant and essential oils. Valerate, commonly found in human faeces, is 

produced by gut microbiota, primarily by Clostridia species. Similarly, 2-hydroxy-

3methylvalerate is present in urine and blood of healthy individuals (Wishart et al. 2007; 

Wishart et al. 2009). Therefore, accurately categorising these metabolites solely into 

proteolytic or saccharolytic pathways presents significant challenges, as they overlap in both 

pathways (Hernández et al. 2021).  

In conclusion, metabolites illustrated in this PCA Scores plot that are involved in 

proteolytic and saccharolytic pathways tend to group together, thereby contributing slightly to 
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the difference of 95% confidence intervals of the T1D-predisposed group and the control 

group.  

 

 
 

Figure 6 Scores plot of Principal component analysis (PCA) for faecal metabolomic profile of 

T1D-predisposed group (1; red) vs. Control group (0; green).  

 

Figure 7 Metabolite loadings plot of principal component analysis for faecal metabolomic 

profile of T1D-predisposed group vs. control group. Each dot represents one metabolite, 

notable metabolites are annotated. 

  

After the comparison of all metabolites, 3-(3-hydroxyphenyl)propionic acid showed 

statistically different abundance between the T1D-predisposed group (1; green) and the 

control group (0; red). Statistical significance (p < 0.05) of this metabolite´s abundance was 

determined using raw data within t-test. The box-plot (Figure 8) illustrates the distribution of 

3-(3-hydroxyphenyl)propionic acid concentrations (mg/g) in these two groups (0; 1). Each 

box represents the interquartile range (IQR) where the majority of the metabolite abundance 

falls, with the median concentration denoted by the central line. 3-(3-

hydroxyphenyl)propionic acid concentration in the T1D-predisposed group was found to be 

higher than that in the control group. This suggests that a greater proportion of samples in the 

control group has the concentration of the metabolite that closely resemble each other, 

contributing to reduced variability within this group. Conversely, the control group displays a 
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slightly narrower distribution of metabolite abundance, centred around a lower median and 

average concentrations than the T1D-predisposed group, which exhibits a wider spread of 

abundance values and has an elevated median. In contrast, the T1D-predisposed group 

displayed greater variability in metabolite concentrations, as depicted by the wider box-plot.  

3-(3-hydroxyphenyl)propionic acid belongs to the phenol class, characterised by a benzene 

ring with a hydroxyl group (Figure 9). Interestingly, some of the structurally similar 

compounds, such as 4-OH phenylacetic acid, phenylacetic or phenylpropionic acid can also 

be formed by the degradation of aromatic acids, such as of phenylacetate and tyrosine 

(Russell et al. 2013). However, this is not the case of 3-OH derivatives, which are known to 

originate from 3-hydroxy precursors, such as plant phenolics (Havlik et al. 2020). Moreover, 

3-(3-hydroxyphenyl)propionic acid is probably formed through the degradation of caffeic acid  

(Konishi & Kobayashi 2004) and other phenolic compounds, primarily by gut microbiota 

Manso et al. 2009). Specific gut bacteria contribute to its production, associated with the 

consumption of whole grains (Koistinen 2019). The observed significance of this metabolite 

may be hypothetically attributed, at least in part, to variations in dietary patterns within the 

T1D-predisposed group. 3-(3-hydroxyphenyl)propionic acid originates from phenylpropanoic 

acid, derived from the breakdown of lignin and other plant-based compounds (Manso et al. 

2009). Lignin, found abundantly in whole-grain products and cereals, is a major component of 

insoluble fiber (P. & Joye 2020). However, most high-fiber foods contain varying amounts of 

both soluble and insoluble fiber (Barber et al. 2020). Furthermore, the metabolic pathway 

leading to the formation of 3-(3-hydroxyphenyl)propionic acid involves bacterial activity 

(Rowland et al. 2018). Key bacterial genera such as Clostridium, Escherichia, and 

Eubacterium play crucial roles in breaking down dietary fiber and complex carbohydrates, 

ultimately resulting in the production of this metabolite (Rowland et al. 2018). Moreover, 

various studies, such as a study by Mokhatari et al. (2021) have highlighted an increased 

presence of certain microbial genera, including Clostridium and Escherichia, in T1D 

individuals (Mokhtari et al. 2021). Hence, the influence of gut microbiota on 3-(3-

hydroxyphenyl)propionic acid levels in the T1D-predisposed group remains a subject of 

debate. Nevertheless, as previously mentioned, additional research is needed to clarify a direct 

association between gut microbiota composition, this metabolite, and its potential 

implications for T1D.  
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Figure 8 3-(3-hydroxyphenyl)propionic acid concentration (mg/g) box-plot in T1D-

predisposed group (1; green) and the control group (0; red) using raw and normalised data.    

 

Figure 9 3-(3-hydroxyphenyl)propionic acid skeletal formula.   

The heatmap (Figure 10) illustrates correlations among samples within both the T1D-

predisposed group (1; green) and the control group (0; purple) indicating metabolite 

abundance. Each column represents a sample, while each row represents a metabolite. The 

colour scale indicates metabolite abundance, with warmer colours indicating higher 

abundance (positive correlations) and cooler colours indicating lower abundance (negative 

correlations). Distinct patterns and clusters of metabolite abundance emerge across different 

samples within both groups (0; 1), potentially suggesting the involvement of these metabolites 

in different biological pathways. Notably, some samples exhibit increased abundance (cooler 

colours) of several proteinogenic amino acids (alanine, phenylalanine, tyrosine, isoleucine, 

leucine, valine, glycine, threonine, glutamate, methionine), suggesting protein catabolism 

(proteolytic actions) (Moran 2016), while other samples show their decreased abundance. 

Additionally, some samples collected from the same participant in different seasons (winter 

and summer months) cluster together, indicating individual consistency. However, no 

significant seasonal differences in metabolite abundance are observed. Here, speculations 

arise regarding potential variations in metabolite abundance within the same samples 

collected in different seasons, assuming data on participants’ dietary intake were available. 

Differences in metabolite abundance are evident in samples from both groups (0; 1) 
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suggesting that metabolite abundance is not solely influenced by the group to which a 

participant belongs. These observations may be potentially attributed to shared metabolic 

pathways or processes that these metabolites are involved in, reflecting the complex nature of 

biological systems. 

 
Figure 10 Heatmap based on metabolite % relative abundance.   
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6 Conclusion  
 

Our case-control study has effectively demonstrated the potential of 1H NMR 

spectroscopy in differentiating faecal metabolic profiles between children genetically 

predisposed to T1D and healthy controls. Among the 74 identified features, the overall 

metabolic profile showed marginal differences between the T1D-predisposed group and the 

control group. A significant finding was the elevated levels of 3-(3-hydroxyphenyl)propionic 

acid in the T1D-predisposed group, suggesting distinct metabolic pathway activities 

potentially influenced by variations in gut microbiota composition and dietary patterns. This 

study underscores the utility of 1H NMR spectral analysis as a powerful tool in biological 

research for exploring metabolic alterations associated with susceptibility to T1D. The 

identification of specific faecal metabolites highlights their potential as early biomarkers for 

T1D. These biomarkers could significantly assist in the early detection and formulation of 

intervention strategies for paediatric populations at risk of developing T1D. Moving forward, 

future research should focus on integrating comprehensive dietary data and detailed 

microbiota analyses to deepen our understanding of the interrelationships between diet, 

microbiota composition, and metabolic profiles in T1D. Such thorough investigations are 

critical as they could expand our knowledge of the pathophysiological mechanisms 

underlying T1D, providing vital insights that enhance early diagnosis and proactive 

management of T1D in young individuals. 
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