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Motto

’To see what is general in what is particular, and what is permanent in what

is transitory, is the aim of scientific thought.’

Alfred North Whitehead, 1911.



Annotation

Liquid chromatography (LC) in tandem with mass spectrometry (MS) is a

measurement tool for obtain information about the compounds in the investigated

extracts. There were already developed methods for processing and analysis of

measured data sets. However, only partial problems of processing/analysis task

were handled independently.

Therefore, the first part describes existing methods and techniques commonly

used in the LC-MS for the processing and analysis today.

In this thesis an approach based on the theory of systems is used for descrip-

tion of abstract model above the measured data. This model encapsulated all

processing/analysis steps into appropriate and consistent mathematical space. The

creation of this model via description of the measurement device and data outputs

is introduced.

Abstract model of LC-MS data set is used to decompose the measurement

into three partial contributions, the analyte signal, the random noise and the

systemic noise. The separation process of the signal could be estimated using the

probabilistic approach.

That probabilistic approach to the LC-MS analysis was implemented in the

developed software, which was published in the Bioinformatics Journal.



Anotace

Kapalinová chromatografie (LC) ve spojení s hmotnostním spektrometrem

(MS) představuje měřící techniku, která umožňuje získat informace o látkách ve

zkoumaném extraktu. V minulosti již bylo vyvinuto mnoho metod, jak ke zpra-

cování, tak k analýze naměřených dat. Nicméně byly řešena pouze část prob-

lematiky a to nezávisle na ostatních.

Tudíž první část práce se zabývá popisem existujících metod a technik použí-

vaných v současné době k analýze a zpracování měření z LC-MS.

Tato disertační práce představuje přístup založený na teorii sytému, jímž

popisuje abstraktní model naměřených dat. Takto vytvořený model uzavírá

veškeré kroky ke zpracování i k analýzy na vhodné a odpovídající matematické

místo. Tvorba modelu je ukázána během popisu měřícího zařízení a jeho výstupů.

Abstraktní model LC-MS dat je použit k rozdělení naměřených dat na jeho

tři částečné příspěvky, vlastní signál analytu, náhodný šum a systémový šum.

Rozdělení na jednotlivé příspěvky lze odhadnout pomocí pravděpodobnostních

metod.

Pravděpodobnostní přístup k analýze LC-MS měření je implementován v soft-

ware, který byl vyvinut a publikován v Bioinformatics Journal.
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1 Introduction

Contemporary paradigms of real systems assume that any natural or arti-

ficial process under study fulfills the general set of nature laws. Those laws are

a priori stochastic (probabilistic) descriptions, where a deterministic case is just a

special case of stochasticity (with the probabilities equal to one). The stochastic

behavior is given by our inability to measure (observe) exact values of all system

attributes with infinite accuracy. All individual objects of interest are ordered

to the proper subtraction of general laws, usually just by parameterization. It

is necessary to mention that any thought construction above the object behavior

never works with the real object itself, only with the abstract object. Thus, the

abstract objects in every single theory are created as more or less homomorphic

models of the real objects [32].

Every model is created for a reason. One of the most justified purpose is

to discover (literally emphasize) congruent description (and parameterization) of

known general law in the given case of study. This process verifies or rejects both

the generality of the law in nature observation and hypothesis of exact instance

of this law in the object of interest. The situation that rejects generality demands

modification of paradigms and it is not considered in this thesis. On the other

hand, the exact instance should be verified statistically by huge amount of measure-

ments (observations) and their fits to the model.

The states of the LC-MS dataset model are not stationary nor invariant

in some attribute. Also, they are not periodic (however, state of the sub-system

could be periodic, like pumping contribution on the baseline) or zero. Therefore,

they are also not ergodic. There is not any average metric that could be the

limit value for the state variables. The variables should be limited only in set of

possible values. The states are just stochastic and this stochasticity is causal and

1



Jan Urban Introduction

dependent (on injection peak, column history, etc.).

However, even the measured data were obtained by measurement device

which was designed according to some model of physical (chemical, biological,

mathematical) process of the measure and they are always quantized in the value

domain. It is done by analog-digital converters on the input of (control, storage

and processing) computers and at many other instances which reflects primarily

our inability to measure with infinitesimal accuracy and precision. Therefore, all

possible datasets are already models according to the theory of systems. More-

over, proper description of the mathematical space results in description of the

abstract model. The initial hypothesis in this work is that model of data from

Liquid Chromatography in tandem with Mass spectrometry (LC-MS) fulfills the

contemporary paradigms.

The abstract model of dataset itself and its intuitive construction is

presented in this thesis via the description of measurement process. A compre-

hensive abstract model of measured data is necessary for consequential processing

or analysis. The reason of mathematically described data model is to encapsulate

behavior hypothesis into appropriate mathematical space. Layout of the possible

domain values ensures that created behavior models also fulfill the mathematical

presumptions of data model. Furthermore, outputs of the processing and analysis

are therefore also consistent with the theory of abstract systems.

Thus, a following hypothesis is assumed and tested:

(a) Raw measurement data output of LC-MS consist of three partial contributions,

the analyte signal, the random noise and the systemic noise.

(b) Partitioning process of data into individual signal source contribution could be

estimated using the probabilistic approach.

(c) All necessary information for the processing and analysis are already present in

the data model and arise from the model structure according to the probabilistic

theory. In another words, evaluation of individual probabilities is unsupervised.

The presumption for this hypothesis as well as current state of processing

approaches are discussed. The estimated probabilities are then used for subsequent

measurement decomposition and analytes spectra filtration.

2



2 Current state of LC-MS data

processing and analysis

Liquid chromatography (LC) in tandem with Mass spectrometry (MS) is

widely used in many chemical and biochemical analytical setups, especially in so-

called omics science to analyze the content of measured samples ([68, 73]). Output

of omic sciences is utilized as basis for systemic approach to organism analysis, the

systems biology([74]). The omics technologies make the systems biology realistic

and experiment-based science. They reveal hidden properties of the compounds

present in biological samples. Metabolomics ([20], [60], [11],[63], [51], [52], [61]),

proteomics ([77],[78]) or lipidomics ([15],[17],[16]) profiling lies in the heart of gene

products profile identification ([4]). Inclusion of metabolomics and proteomics into

systems biology often assumes certain relatively high degree of comprehensiveness

and quantitative estimation. Complete experimentation to meet this requirement

is seldom achieved. In this thesis the data reliability is examined, measured and

utilized in practice.

LC-MS measurement is one of the key tool for the biochemical pathways

analysis ([75]). Difficulties in finding the correspondence between the experiment

and the biochemical-model-based predictions of systems biology lead towards the

definition of integrative biology with ’greater emphasis on the process of developing

such models ’ ([5]). This leads to inclusion of biological experiments modeling on

the basis of its description as an abstract system as legitimate way of description

of biological experiment. The advantage of this approach is the naturalness with

which the characteristics of the biological model ([6, 7, 8]) and that of the experi-

ment itself may be integrated together. Nevertheless, it would be clearly missing

the target of creation of biological models if the two models, model of technical

3



Jan Urban Current state of LC-MS data processing and analysis

experiment and model of biological experiment, would not be dissected.

Various approaches were developed for LC-MS data processing and data

analysis. Those two terms are often interchanged and definitions are unclear.

However, Katajama ([127]) separates the data handling tasks into processing and

analysis in reasonable way. Filtering, feature detection, alignment and normal-

ization tasks belong to data processing group. The processing is necessary step

before the analysis. It transforms the raw data into more transparent format for

the analysis. The analysis is then interpretation of the processed data.

In this thesis, the creation of abstract model, the time alignment, evaluation

of the probabilities and peak detection are considered as processing tasks. The

separation of the measurement into analyte signal, random and systemic noise

using the probabilities has character of both processing and analysis. It is filtration

from the noise removal (or level tuning as will be explained later) point of view.

It is also the analysis from the content identification (what is noise) point of view.

Exactly the same question may be asked in peak detection problem. Determination

of retention time, molecular ion or full width at half maximum are features, and

therefore data processing. Integrative spectra, compounds identified as parallel

peaks and distinguish between overlapping peaks are data analysis. Fortunately,

it is clear that comparison tasks across the samples is definitely analysis, even

using probability based processing. Therefore, both data processing and data

analysis are described in this thesis. The terms processing and analysis may be

misinterpreted or join sometimes, because of fuzzy border between definitions or

points of view.

There is one important philosophical question that requires discussion.

Common definition of data processing is that any processing changed the data

content. This is obviously true in filtration and alignment case. However proba-

bilistic approach adds the information about probabilities to every single point of

the data. Use of this additional information in further computations changes the

data content (removes low probability signal). Therefore, the basis of probabilistic

approach should be considered as data analysis and the instances of data handling

according to this probabilities are data processing.

Of course, both processing and analysis could be also together considered

as chemometrics ([42, 43]). Chemometrics as a whole is a set of approaches for
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extraction of information from chemical or biochemical systems using methods of

applied mathematics. It consists of two main tasks a) modeling relationships and

structure of the system and b) predicting new properties or behavior of the system.

Chemometrics uses techniques as calibration, classification, pattern recognition,

clustering, multivariate analysis, experimental design, signal processing, etc.

Figure 2.1: The relationship of chemometrics. Source: B. G. M. Vandeginste,
Analytica Chimica Acta, 150 (1983) 199-206.

The processing steps could be simply interpreted as transformation of the

raw data into more transparent format for the analysis, and includes modeling.

The analysis itself is just the interpretation of the processed data sets, especially

5
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comparison, clustering, decomposition and identification. The current state of

individual steps of both data processing and data analysis are described in this

section.

2.1 Data filtering

Liquid chromatography in tandem with mass spectrometry (LC-MS)

produce terabytes of measurements daily around the world [45, 77, 78]. Systemic

(instrumental and chemical) and random noise complicate the dataset. Correct

interpretation of mass spectrometry (MS) is affected by presented noise across all

kinds of MS techniques. The noise addition may produce fake peaks or hide small

intensities in the measurements. Thus, LC-MS data are ’crowded’ and have a

uneven baseline [76]. It is a common subject in the chromatography produced by

both mobile phase and column bleeding. This systemic noise causes extraneous

peaks or rising baseline during gradient elution [46]. The interpretation of LC-MS

is not trivial mainly because of the vast amount of noise especially in complex

samples ([14]).

It is necessary to consider approaches for denoising and baseline subtrac-

tion [45]. Common algorithms based on thresholding or wavelet transforma-

tion (([44]),[76]) are not resistant to the losses of information from their prin-

ciple. Thresholding methods, even in the adaptive form, still discard parts under

threshold level(s) from the whole measurement. The wavelet transformations

directly change the information content and are sensitive to the window length.

Therefore, some information could not be used for for further analyzing process,

including peak detection.

Omitting the presence of baseline (also called background, systemic noise

or mobile phase) in Liquid chromatography - Mass spectrometry (LC-MS) impedes

objective analysis. That contribution has to be removed from the signal response.

Behavior of the baseline content is not constant in time axis. As is also often

necessary for experiments with gradient changes. The results may be measured by

increase of data mining output, both qualitatively and quantitatively.

The filtration is necessary processing step to emphasize features which are

relevant for other steps, especially segmentation of the measurement into indi-
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vidual eluted compounds. Sooner or later, the segmentation task leads to the

feature detection problem. This features are related to the data peaks which repre-

sent compounds, ideally (see chapter 2.2). Strong peak candidates give the align-

ment additional flexibility [85, 87]. Robust peak detectors require advanced anal-

ysis like noise filtration, baseline subtraction, pattern recognition or curve fitting

[87, 88, 84]. Noise additions are produced not only by random errors (random

noise) but also by influence of baseline from the Liquid chromatography. Sum of

the noise and the signal may produce false interpretation or hide the signal under

reasonable level. Therefore, baseline in LC-MS negatively affects the measurement

analysis and represents the systematic noise in nonlinear level on the time axis.

However, the LC-MS data are complex and algorithms based only on filtering in

chromatographic domain (Total Ion Current - TIC) or only in individual mass

spectra can not have performance as good as algorithms which incorporate infor-

mation from both domains together. Generally, any filtration which uses hard

fixed threshold values are problematic. Its results are often inconsistent between

runs, instrumentation and methods because the values from nearest threshold

neighborhood may be easily misclassified.

The baseline contribution is related to the instrument and to the particular

experiment. However, the baseline is always presented in any analyte measure-

ment, even in the blank measurement. In the context of this thesis, the blank is

considered as the chromatographic measurement without addition of the sample.

So, it is usually just the mixture of solvents. Hence, the blank is easily obtained

for every kind of experiment and it is often done without any further use. Thus,

methods to baseline subtraction based on direct subtraction of the blank from the

measurement are used. However, their results are not optimal because of random

influences which add additional noise into the measurement. Moreover, the base-

line characteristic in the blank is not chemically affected by analysed substances.

Chemical noise (e.g. sodium adducts) results from mobile phase impu-

rities. It is more difficult to remove then random noise, because they have a

pattern similar to the signal. Chemical noise can reduce mass accuracy by shifting

peaks centroids. Denoising model for chemical noise was developed by Andreev

et al. ([21]). Noise produced by random errors is caused by minor variation of

the distribution surface. Systemic errors become more noticeable as they create

7
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borders effects, that are systematically over or underestimated ([58]). The baseline

removal and data smoothing are usually the basic preprocessing steps ([76]).

2.2 Feature detection

The comprehensive comparison of complex mixtures of similar compounds

by HPLC-MS has been major issue in 1980s and 1990s ([69, 71, 72, 70]) and became

again highly interesting with extension of so-called -omics approach from genomics

to proteomics and metabolomics. There, LC-MS is one of the prime experimental

tools.

There is a wide spread of features which are extracted from the LC-MS

measurements. In time alignment tasks, there are markers to be aligned in warp

techniques (2.3). The most investigated features are compounds or mass peaks.

The peaks are signal rising in time above the baseline or noise signal with a priori

unknown time, shape and characteristics.

Peak detectors are important processing steps in LC-MS. Their perfor-

mance directly affects the subsequent process (alignment, identification). The

major problem in detecting peaks of low amplitude is complexity of the signal and

different noise sources ([76]). Peaks are assumed to have characteristic shapes and

patterns determines by geometric construction. Unfortunately the most expected

shape is Gaussian or its derivative (so-called Mexican hat). Even in the matching

in the wavelet space. Common understanding of peak is defined by peak maximum

and by the ratio of height and width of peak at half its maximum height (cite-

GoldBook). However, the correct model of the peak shape has to consist of tail

which expressed the left side of peak ([13]). The uncertainty in enrichment anal-

ysis is caused by the stochastic nature of the results obtained by high-throughput

experimental techniques ([64]). The interesting smoothing algorithm based on m/z

distances to the nearest neighbor was introduced by Stolt et al. ([14]);

Seemingly, it is correct and preferable approach to use of internal standards

(IS), i.e. the addition of known substance(s) into the sample(s) ([73, 80, 81]).

At the best, these samples should be isotopically labeled versions of the same

compound. This approach may become extremely expensive, time and exper-

imentally demanding. Often, the design of standards follows certain logic, i.e.

8
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hydrophobicity index ([82]). There is no universal set of standards which would

map the behavior of any solvent mixture on any column. As well, there is no

idealized column which would separate compounds only according to one chemical

parameter, often also idealized. Also dynamic parameters, rate of binding of a

compound to the column and release from it and column capacity affect the reten-

tion time of all compounds which interact with the column at a time. From this

point of view, some combination of standard compounds may even be misleading.

In practice, IS are much less often applied than they would be needed. In some

cases, they are not applicable due to lack of adequate standards on uniqueness of

the sample.

Addition of known substance to the measured sample relieves to quality

of measurement ([95]). However, the addition itself is not obviously easy, exact

substances selection depends on the current measurement ([96]). It has to differ

from analyte, which could be a priori unknown in study of chemical fingerprints of

specific processes like metabolite profiles ([97]). Obtained data output still require

computation to fit internal standards response from slightly different measure-

ments together. This step can not be skipped and the addition helps only (but

substantially) to locate the marker data points or statistical parameters ([80]) for

the retention time alignment.

2.3 Alignment

The compounds of interest (analytes) are found as complex mixture in the

sample an LC decrease the complexity by improving analyte separation. That

produce the time element of the measurement, called retention time (RT). Separa-

tion process shows shifts and distortions in the RT when two or more measurements

are compared. This fact makes the assignment of similar compounds difficult, since

the mapping to each other is not known in advance. But it is crucial to correct

for those warps. Otherwise, it is hard or even impossible to find the corresponding

partners ([79]).

In many cases of complex samples, it is recognized as crucial, difficult

and nontrivial task to compare two or more measurements obtained by LC-MS.

Even the measurements of samples identical in content but differing in amounts
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of applied quantity on the same chromatographic column with the same experi-

ment settings are affected by nonlinear shifts in retention times. Therefore, the

’same’ results do not fit together in the time axis. Comparison of samples requires

transformation (normalization) function(s) to compare retention time values and

other characteristics. Because of nonlinearity of the shift(s), also the normalization

function has to be nonlinear.

Current philosophies for time normalization are divided into two major

categories: Statistical models (MVA, DTW, Peak detection) and empirical rules

based on internal standards. Actually, there is no restriction for the model to be

based on internal standards (IS). Recently, there were developed methods for esti-

mation of semi-optimal set of single or multiple IS, like NOMIS ([80]) or excellent

idea of Linear solvation energy relationships (LSERs ([81])). The LSERs is based

on selection of open windows in the chromatograms for prediction of IS candidates.

This is time (and standards) saving approach which minimize the errors of samples

and IS compounds mutual influence or competitions. However, both ways (NOMIS

and LSERs) demands to think about it before the own measurements. Also a few

of forgone experiments to choose the proper set of standards for given samples,

column or method(s) are required. This increases the amount of necessary sample,

experiment time and significantly the costs. Either of this, but typically mainly

the experiment time, is often limiting.

On the other hand, the non-supervised models and derived algorithms are

based on time warping approaches ([79]). It all started with the Dynamic time

warping (DTW) in speech recognition tasks. The main idea is on partial shrinking

and stretching of the time axis. Naturally, reference set or piecewise transformation

differ in several warping techniques. Namely, the parameters for the transforma-

tion function are in Linear time warping, Fast dynamic time warping, Parametric

Time Warping (PTW) and Correlation Optimized Warping (COW) determined

by maximizing or minimizing the sum of coefficients between data segments in

pairs of samples ([79, 83, 84, 85, 86]). Time warping algorithms separate the time

dimension into segments but preserve the temporal order.

The segmentation task leads to the peak detection problem. All methods

using peak detection for time alignment are error propagating. Any error from the

peak detection process is propagated into the further processing, obscure initial
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errors may emphasize errors in the output ([123]). This is called a power-law

dependence. Let assume two peak features X and Y, where both values are uncer-

tain.

• The square of the uncertainty in the sum or difference of two features is eval-

uated as sum of the squares of individual absolute errors (a priori unknown).

Therefore, the uncertainty of the result (e.g. full-width at half-maximum) is

larger than either individual uncertainty of the features X and Y.

• The relative uncertainty as a result of multiplication or division is evaluated

as the square root of the sum of the squares of the relative uncertainties in

the individual features.

• When an uncertain value is multiplied by a constant, the absolute uncertainty

on the result is the constant times the uncertainty of the original feature.

• The relative uncertainty on value raised to an exponent is the exponent times

the relative uncertainty of the original feature.

• Complicated functions applied on the original features demand application

of the rules given above for each mathematical operation (so-called Chain

rule).

While the peak dependent methods are effective for simple samples, they could be

insufficient for more complex biological analytes ([87]), for the given reason.

The time alignment strictly depends on correct peak definition and detec-

tion. Incorrect peak definition and detection brings dangerous presumptions into

account, if incorrect. For example, in XCMS ([124]) toolbox for R is used infor-

mation from blank signals for time alignment. The ability of XCMS time align-

ment depends on initial matching of peaks into reasonable groups ([124]). XCMS

approach of filtration also changes the shape of the peak according to the ideal-

ized model. Another example, a pre-processing tool for PARAFAC modeling

([125],[53]) slightly extend the COW algorithm by correct idea of using covari-

ance instead of correlation. However, the PARAFAC modeling (([57], [56])) is

more proper analytical tool for LC-MS/MS. It uses regression analysis, while MS-

Resolver ([54]) uses pattern recognition and Mass Works ([55]) uses calibration
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(internal) standards. The piecewise alignment similar to the COW was intro-

duced by Pierce [126] with over-combined feature selection. However, warps might

be easily confused by single metabolite, as it will be shown later. Exhausting

overview of both, commercial and freely available softwares for metabolomic data

processing as well as time alignment was done by [127]. Some level of peak detec-

tion or binning is assumed in most of the available products. For completeness

sake, exhausting survey of possible alignment approaches was done by ([92], [93]

and [127]).

An attempt to two dimensional semi-parametric warping as alignment of

retention time as well as mass spectra was modeled by de Boer ([94]). Here,

the series of bicubic splines poses a linear constraint on the warping coefficients

limiting their variability.

2.4 Comparison

Despite the best efforts, there still remains the problem of comparison of

metabolite profiles obtained, for example, under different instrumental setups, or

simply enough, at different amount of sample loaded on the column and arriving

simultaneously to the ion source. From that point of view, the data analysis

standardisation ([3]) may be incomplete.

Nowadays extremely popular approach is principal Multivariate data anal-

ysis (MVA), especially its Principal component analysis (PCA) ([90, 91, 88, 12, 60,

61]). It is a method of classification based on correlation and linear combination.

It finds a new coordinate system from the original variables. PCA advantages are

mainly the reduction of dimensionality of the data sets and better visualization

of major trends in the data. It has to be realized, that two principal components

would be comparable only if they represent exactly the same linear combination.

That is hardly fulfilled in completely different mass spectra (with possible excep-

tion only for noise contribution). However, PCA is powerful mathematical tool

when it is used with wisdom. Linear scaling, normalization and transformations

failed to recombine the groups properly in equivalent problem ([60], [62]).

PCA is not a classification technique, it is an unsupervised clusterring or

data reduction. It determines an optimal linear transformation for a collection of
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data to display the correlation or sample patterns or groups. PCA can help quan-

tify information content. However it is sensitive to experimental noise. There are

many other statistical techniques like partial least squares discriminant analysis, k-

mean clusterring or soft independent modeling of class analogy. Models to correctly

assign chemical compounds also uses heuristic topological or geometric subgraphs

for classifying ([59]). large number of features increasely classify time and determi-

nation can be computationally expensive. Especially in the drug discovery ([59]).

Chemometrics softwares like ParLes ([44]) for multivariate modeling and

prediction were developed to perform transformations a data pretreatments. Cross

validation as well as bootstrap aggregation provides assessment statistics (PCA,

partial least squares regression - PLSR). Methods as multiplicative signal correc-

tion (MSC), standard normal variete (SNV) transform or discrete wavelet trans-

form might be used as preprocessing techniques to improve the robustness of the

PCA and PLSR models ([44]).

Identification of mass spectra becomes important in omics science, Most

tools employ only linear scans or databases. Shared peak count (SPC) does not

account small peak shifts and calibration errors. The improvement was done by

coarse filtering-fine ranking by reducing the matrix space dimensionality ([18]).

Other metrics were used and will be explained later in this thesis (tab. 4.4).

2.5 Omics

Biologically relevant formalism is necessary for common understanding of

biological function. Systems in biology are complicated and have many a priori

unknown attributes to warrant ordinary differential equations (ODE) modeling

(photosynthesis models, metabolomic pathways enumeration, etc.). The resulting

sets of ODE are too complex to be analytically solvable. As an alternative,

dynamic behavior can be approached by stochastic methods. Probabilistic models

can be particularly useful ([1]) as they constitute theory that generate hypothesis.

([19])

Mass spectra represent valuable information used in biology and exper-

imental medicine. Many fields deal with the problem of statistic evaluation of

mass spectra in biology research ([13]). Nowadays, most biochemists and bioin-

13



Jan Urban Current state of LC-MS data processing and analysis

formaticians are familiar with newly emerging ’omics’ (proteomics, metabolomics,

lipidomics, etc.) fields research (analyzing the interactions of biological informa-

tion objects). Metabolomics is the study of the study of their small-molecule

metabolite profiles in a biological cell, tissue, organ or organism, which are the

end products of cellular processes. Proteomics is the large-scale study of proteins,

particularly their structures and functions. Lipidomics may be defined as the

large-scale study of pathways and networks of cellular lipids in biological systems.

Namely, when LC-MS is used in complex lipid mixtures in proteomics,

experiments are poorly reproducible because of low data quality, systemic bias

or stochastic sampling effects. ’The true roots of the phenomenon are presently

incompletely understood’ ([48],[49]). Generic problems are also in databases for

correct characterization of proteins. The search engines cannot distinguish among

different identifiers from the way of database construction. Algorithms to calculate

molecular weight are variable ([49]).

Metabolomics identifies small molecules that participate in the

metabolomic activity of the biological system ([20], [60]). Metabolites and

metabolic pathways outlines the needs in databases, data standards and modeling.

([11],[63]). Metabolomics has two basic approaches. Metabolite profiling ([4]) aims

on compounds identification and quantization. This is dependent on existence of

databases of known compounds. In chemometrics are compounds not necessarily

identified, only their features. Chemometrics holistic approach has strength in

absence selective ignoration or selective inclusion of data in diagnosis. Quantitative

metabolomics has to deal with biases that distort relationship between the orig-

inal measured metabolite concentration ant measured peak area ([50]). Lot of of

effort in metabolomics is invested in the annotation of unknown peaks ([51], [52]).

’Statistical analysis might be biased due to dependency between peaks currently

considered as independent in the metabolomic profiles dataset’ [50]. Many users

are strictly focused only in compounds which are searchable in the databases.

In recent years, movement toward standardization of biological experi-

ments description becomes definite and inevitable step in current data boom

caused mainly by general accessibility of omics technologies ([2],[63]). However,

in scientific papers significant deviations from standard experimentation are still

to be expected as well as division in approach between applied omics and omics

14



Jan Urban Current state of LC-MS data processing and analysis

for basic science. In the standardization of data representation themselves, one

approaches substantial problems coming (a) from the fact that data are signif-

icantly instrument-dependent both in the actual technical setup of the instru-

ment and on the technical setup of the chemical and physico-chemical experiment

preceding the chromatographic analysis and (b) from data handling approaches

which are not standardized either in mathematical principles or in actual provi-

sion. In this thesis is emphasized, and on the case of a metabolomic experiment

demonstrated, that understanding of biological instrumental data as probabilistic

problem, may lead to principally different approach to data transformation which

is not conform with standard terms used in data transformation ([3]).

Real performance of a metabolomic experiment using LC-MS never meets

the expectations of generality included in the term of metabolite profiling. Various

steps in the metabolic profile measurements such as state of the sample, chemical

procedures included in metabolite extraction and the setup of the LC-MS exper-

iment are among the major factors that influence experimental results and relia-

bility. Great effort was made by the metabolomics standards initiative (MSI) ([9])

to standardize the definition of the experiment including its chemical part ([10]).

These efforts shall definitely lead to better comparable datasets from the biolog-

ical and chemical point of view. This contributes to dissection of error and noise

originating in biological or chemical part of the experiment and that originating

from the physico-chemical events in the analytical instrument.

Altogether, there are plenty of softwares, packages, toolboxes, applications,

programs and recommendations for data processing and/or analysis of LC-MS data

sets, as was shown in previous subsections. They vary in the used data source,

data format as well as used methods, techniques or ideas in processing steps.

Some of them are combined with the specific database or focused only on narrow

part of the investigated molecules. The main producers of the measuring device

(LC,MS) or its parts are also producers (or owners) of control and processing

softwares. Short review is attached in the Appendix F. Exhausting overview of

both, commercial and freely available softwares for metabolomic data processing

was done by Katajama [127]. Summary of the metabolomic databases was done

by Wishart ([11]). Browser to explore multidimensional information in omics data

servers was introduced by Toyoda et al ([47]).
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2.6 File formats and arithmetics issues

Usually every kind of data storage require data format according to some

data logic. In principal, there are two main approaches, text file format and binary

file format. Text file format contains only writable characters from the stan-

dard ascii table (character-encoding scheme based on the ordering of the English

alphabet, ISO/IEC 646, ISO/IEC 8859) and control characters (end of line, end

of file, etc.). Ascii files are easy to write, easy to read, however the usage of 8-bits

to store each character leads to the large files.

Binary file format contains any type of data, encoded in binary form. For

example, in ascii file format is each digit of a number encoded by one byte (8 bits)

and in binary file format is one byte enable to encode any integer number from

the range 0-255. There is not only one type of binary encoding ([41]).

As example of ASCII dataset, I discuss DataAnalysis for LC/MSD Trap

from Bruker Daltonic GmbH allows to export measured data in text file format

(ASCII) with intuitive structure of stored data. Each mass spectrum is written

on one line, ended with EOL symbol. As separation marks are used comma and

space. First number is the value of retention time in minutes. Then, there is type

of ionization (sign + for positive and sign − for negative.) Source of ionization

follows after second comma (for example ESI as Electrospray ionization). Next

information describes the level fragmentation (msn, where n is natural number,

excluding zero). Also the range of detectable mass to charge ratios is stored.

Number after seventh comma represents amount of pairs mass and intensity. Then

follows the designated amount of pairs, separated by comma. Mass to charge ratio

and intensity value are separated by space.

Reading of ascii is trivial, however requires to reshape the data after import.

Set M of mass values could be determined after union of all mass values in all mass

spectra. Also whole matrix of Cartesian product M×T is determined when reading

is finished.

Xcalibur from Thermo Scientific works with own raw format ([36]) and

allows to convert stored data into text (ASCII) file with defined structure. It is

started with RunHeaderInfo with information of measuring process, settings and

measurement device, amount of time scans, time duration, low and high detected
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mass value and maximal integer intensity. RunHeaderInfo is followed by indi-

vidual time scans, each with its own ScanHeader. This file format is redundant,

many information are repeated almost every line. Exactly the same data in low-res

m/z could be stored in Bruker Daltonic ASCII with size of 3 MB or in Thermo

Scientific ASCII with size of 70 MB.

ASCII based attempt for file format standardization was done by JCAMP

(Joint Committee on Atomic and Molecular Physical Data). Their DX-JCAMP

Spectroscopic Data Exchange Format is a Standard format for the exchange of ion

mobility spectrometry data ([35]). Further development/refinement of standards

is now under the auspices of IUPAC. However, the support of this format from the

third party in the future is unclear.

Situation in binary file formats is quite a bit wilder. Each software and

hardware producer prefers own file format. Access to the Thermo raw format is

defined in the headings library shared to the customers which bought Thermo

Xcalibur software package ([36]). Nowadays, MzXml data format ([39]) becomes

as a standard, based on eXtensible markup language (XML), especially in the

proteomics. MzXml is extremably redundant and huge (Gigabytes for the same

information stored in few MB in Bruker Daltonic ASCII). It also takes long to

load and save files. ’Xml is like political speeches: it requires a pointless prologue,

establishes no dialog; by attempting to represent everything it ends up representing

nothing; it rambles on about namespace and territory, uses a completely different

language to define it; the precious little information it contains is buried in verbose

noise. . . ’ ([40]).

Some of the file formats should be converted between each other by applica-

tions like Waters Inspector([37]) or Vx capture([38]). However not all file formats

specification are available to the customers or even free. The management, storage

and standardization is absolutely critical ([11]). Standardization lies in making

data more uniformly and exchanged. The self-describing portable machine inde-

pendent file protocol NetCDF was developed by the Unidata Program Center in

Boulder, Colorado. However, MzXML is more preferred, for an unknown objective

reason.
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2.6.1 Overflow

LC-MS measurements stored in different (ASCII or binary) file formats are

processed on binary computers with potentially dangerous arithmetics issues. It is

often possible, that result of arithmetic operations (summing, difference, multipli-

cation, division) cross the lower (underflow) or upper (overflow) bound of repre-

sentable numbers. For example, multiplicity of very big positive numbers will

result as negative number. Therefore, it is necessary to keep in mind, that real

numbers are not encoded with zero error, but rounded to the closest quantized

level. It is caused by inaccuracy during the transformation from decimal to binary

system. Exempli gratia, decimal 0.1 is irrational number in binary with period

1100 ([41]).

Overflow may be also caused by improper order of arithmetic opera-

tions, because associative and distributive law is not valid in digital computa-

tions. Rounding to the closest quantized level causes completely different results

during combination of multiplicity and division in improper order. Moreover,

zero is dangerous number in computation. Expected zero results are not always

equals to the zero value, again because of rounding and possible overflow. That

demands carefully algorithmised operations, even if the analytical equation is

correct. Underestimating of this issue may lead to the errors of computation,

which makes result nonsensical.
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3 LC-MS according to the system

theory

Figure 3.1: Information channel in LC/MS.
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3.1 Liquid chromatography

The International Union of Pure and Applied Chemistry ([95]) defines

chromatography as:

’A physical method of separation in which the components to be separated are

distributed between two phases, one of which is stationary (stationary phase)

while the other (the mobile phase) moves in a definite direction.’

Liquid chromatography is therefore described as:

’A separation technique in which the mobile phase is a liquid. Liquid chromatog-

raphy can be carried out either in a column or on a plane. Present-day liquid

chromatography generally utilizing very small particles and a relatively high inlet

pressure is often characterized by the term high-performance (or high-pressure)

liquid chromatography, and the acronym HPLC.’

A mobile phase in chromatography is described as:

’A fluid which percolates through or along the stationary bed, in a definite

direction. It may be a liquid (liquid chromatography) or a gas (gas chromatog-

raphy) or a supercritical fluid (supercritical-fluid chromatography). In gas

chromatography the expression carrier gas may be used for the mobile phase. In

elution chromatography the expression ”eluent” is also used for the mobile phase.’

Finally, stationary phase in chromatography is described as:

’One of the two phases forming a chromatographic system. It may be a solid, a

gel or a liquid. If a liquid, it may be distributed on a solid. This solid may or

may not contribute to the separation process. The liquid may also be chemically

bonded to the solid (bonded phase) or immobilized onto it (immobilized phase).

The expression chromatographic bed or sorbent may be used as a general term to

denote any of the different forms in which the stationary phase is used. Partic-

ularly in gas chromatography where the stationary phase is most often a liquid,

the term liquid phase is used for it as compared to the gas phase, i.e. the mobile

phase. However, particularly in the early development of liquid chromatography,

the term ’liquid phase’ had also been used to characterize the mobile phase as
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compared to the ’solid phase’ i.e. the stationary phase. Due to this ambiguity, the

use of the term ’liquid phase’ is discouraged. If the physical state of the stationary

phase is to be expressed, the use of the adjective forms such as liquid stationary

phase and solid stationary phase, bonded phase or immobilized phase is proposed.’

The comprehensive description of the liquid chromatography in varying

amounts of detail was done by Meyer ([65]), Robards et al. ([66]), Lindsay ([67]),

Ardrey ([73]) or McMaster ([68]). However, two aspects of the liquid chromatog-

raphy are relevant enough to this thesis:

• LC-MS has not been guaranteed to provide the required analytical informa-

tion.

• The main limitation is in inability to provide identification with any degree

of certainty. ([73])

3.2 Mass spectrometry

Mass spectrometry (MS) identifies a simple molecule by its molecular ion

mass. MS shows the mass of the molecule and the masses of pieces from it. Mass

spectrum is the bar graph, where abscissa indicates the mass to charge ratio (m/z)

and the ordinate indicates the intensity (relative or absolute). They are collected in

sequence as the ratio increases, the ion current is amplified and it is then displayed

by some means. With instruments of low resolution, peaks appear at unit mass

numbers, but at high resolution the masses of individual ions can be measured with

sufficient accuracy for the molecular formula of each to be determined. Molecules

do not fragment in an arbitrary manner but tend to split at weaker bonds, such

as those adjacent to specific functional groups. ([25, 15])

The analytical mass spectrometry was introduced in 1941. But mass spec-

trometry is in fact a much older technique. The basic principle to the separation

of atomic masses have been demonstrated at the end of the 19th century.

The molecules need to be ionized before they reach the detector. There

are several types of ionization (Electrospray ionization -ESI, Matrix assisted laser

desorption/ionization - MALDI, chemical ionization, - CI, atmospheric pressure
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photoionization - APCI, etc.) as well as devices (ion trap, quadrupole, Time of

flight - TOF, Fourier transform/ion cyclotron resonance, Orbitrap) with different

sensitivity ([36, 37, 25, 26, 95]).

The ions are separated according to their individual m/z values in a

vacuum. If an ion collided with another one, its direction of travel could be

changed and it may never reach the detector ([26]). The interpretation of the

mass spectrum is based on the chemistry. Usually there is observed the molecular

ion (single and/or multiply charged), its isotope(s), adducts and fragments. In

complex spectra is hard to select the molecular ion explicitly. It does not have to

be the most intensive ion. Application of chemical rules is also not unique and

failed to be algorithmised so far. Usually the strategy for identifying an unknown

compound is to compare its mass spectrum against a library of mass spectra.

Mass spectrometry data analysis is a complicated subject that is very specific to

the type of experiment producing the data. Results can also depend heavily on

how the sample was prepared . Mass spectrometry cannot give evidence as to the

stereochemistry or configuration of functional groups ([15]).

Limits of detection (LOD) in MS has direct relationship to the repro-

ducibility of measurements. ’A common misconception is that the LOD is the

smallest concentration taht can be measured. instead, it is the concentration at

which we can decide whether an element is present or not - that is, the point where

we can just distinguish a signal from the background’ ([22]). Practical estimation

requires the measurement of the background fluctuation ([23]).

3.3 System theory

System theory represents certain level of scientific though. During the

history were gradually formed two basic approaches, analytical and synthetical.

The analytical approach decomposes phenomenons into partial components mutu-

ally independent. Properties of the components are then used for deduction of the

properties of original phenomenon using logical rules. The analytical approach

started with Descartes ([27]) and resulted into Newton’s laws of physics ([29])

as well as Linné’s classification of biological species ([30]). However, Darwin’s

theory of natural selection ([28]) was based on the synthetical approach and on
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the assumption of stochasticity. In the synthetical approach, the complicated

phenomenon is more then just the sum of its components. The result of synthet-

ical research is a model of appropriate (and full) set of events ([32]). Therefore,

the synthetical approach refuses universality of the nature laws, it only assumes

properties under certain conditions. The problem is, that both approaches had

not gained corresponding position in the science:

• the system has not unique structure

• the system output may contain more information than the system state

• the system is not generally defined for complete set of input functions

• the system is usually described by equations which do not distinguish

oriented and non-oriented causation

• the connection of two isolated theories may not be consistent theory

([33]).

’Inability to discern oriented and non-oriented dependencies between

system variables does not cause essential inconsistences in each solved problem

but usually in some limit cases only. In such situations a deep gap between theo-

retical and experimental conclusions is critical and results in an incredibility to

the system theory as a whole. . .’ ([32]).

Paradigms of the new system theory were introduced by prof. Ing. Pavel

Žampa, CSc. in 1996 ([32, 33, 34]). He wanted to seek for a definition of an

abstract system which would be sufficiently general as to cover any real problem

and, at the same time, sufficiently specialized, as to enable to find an adequate

physical realization to any theoretically given abstract system.

Thus, it is assumed that the real system is such a part of the real world for

which holds that its properties are not affected by the other parts of the world.

The processes of the system are governed by principle and law of causality. The

system behavior is, in its nature, stochastic containing deterministic behavior as

its special case. The system variables have to be primarily defined on finite sets

and can be extended to infinite sets only when a continuity procedure is adopted.
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There are such orientated connections among parts of the system which can be

canceled or restored by a suitable external intervention ([32]).

On this base a new definition leads to the system structure, where:

• Inputs and outputs are elements of the system, even if they are not actually

used.

• The variables which are neither the input nor the output variables are the

inner variables of the system.

• The inner variables are the only system variables which are not accessible to

measurement.

• The properties of any part of the system are conditional and are generally

lost when the part of the system is transferred to another environment.

It offers formulation of a consistent system theory which can solve formerly

non-treatable problems. The system is a unity unaffected by the outside of the

system. From the principal reasons all the system variables were defined on finite

sets only. However, under carefully chosen continuity hypothesis an extension

to infinite sets is straightforward and brings good description of real phenomena

([33]).

3.4 Abstract model

Typical measurement output data from HPLC-MC is discrete set of points

in discrete three dimensional space which is defined by discrete axis: retention time,

molecular mass to charge ratio (mass) and intensity. Analytes elute at every time

point from HPLC column, obviously because of delay caused by some physico-

chemical interaction, and enter the MS ionization chamber. The delay is often

related to a chemical property. Intensity for each detectable mass is measured

inside the MS and this value represents amount of ionized molecules of individual

mass in exact time point.
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The time and mass are the attributes of the system. Let mark those

attributes by sign ak. Whole set of system attributes could be described as

A = {ak | k = 0, 1} , (3.1)

where ak are names of corresponding attribute. Each attribute ak takes on

some value. In abstract systems the value of k−th attribute ak ∈ A is represented

by k−th variable vk ∈ Vk, k = 0, 1, where Vk is domain of definition of k−th variable,

it is set of all values that variable vk can reach.

Attribute A0 represent reference attribute, supposed to be time. For its

variable v0 can be used common sign t ∈ T, T = t0, t1, t2, . . . , te, where is true that

t0 ≺ t1 ≺ t2 ≺ . . . ≺ te, and e is natural number. On the set T could (but do not

have to) be defined a difference which represents the time period from time point

ti to time point tj.

Value of the 2−nd attribute a1 is represent by variable v1 ∈ V1 and means

mass to charge ratio. For its variable v1 can be used common sign m ∈ M,M =

m0,m1,m2, . . . ,mn, instead of [m/z] 1 (just for equations lucidity), where is true

that m0 ≺ m1 ≺ m2 ≺ . . . ≺ mn, and n is natural number. Now, are obtained

two sets which describe the values of two axis: time and mass. Every individual

measurement run generates intensity values for all possible pair time t ∈ T and

mass m ∈M . Therefore, this generation process can be symbolically described as

mapping

y : T ×M → ∪t∈T,m∈M | y(t,m) ∈ I, I = 0, 1, . . . , imax, (3.2)

where I is set of natural numbers with zero and the value of mapping y(t,m) ∈ I
means intensity of mass m ∈ M in time t ∈ T . Exact value of imax is delimited

by saturation level of MS detector and is called Mass limit. Thus, the abstract

system ([32]) is then defined in domain by ordered pair (T,M) with image in I. Let

mark the system by sign Ω. Notice, that Žampa’s system is defined as a Cartesian

product itself and in this sense it can be considered as more general than abstract

system by Mesarović ([31]).

1In biochemistry, it is often used the dalton (Da) as a symbol for a mass unit which represents
1/12th the mass of C12 (the most abundant isotope of carbon). However, it has not been
approved by the International System of Units. Therefore, dalton is not used in this thesis.
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Figure 3.2: Example of LC-MS measurement, extract from alga Stigeoclonium in
70% MeOH.

Hence, could be also defined the state of the system Ω in time t ∈ T as the

exact mapping for each value m ∈M for given time t ∈ T :

y(t) = [y(t,m0), y(t,m1), y(t,m2), . . . , y(t,mn)], (3.3)

this n-tuple is usually called mass spectrum in time t ∈ T and

γ(t) = ||y(t)|| =
n∑
k=0

y(t,mk), (3.4)

is value of total ion chromatogram (TIC) in t ∈ T . The symbol ||y(t)|| means a

metric of y(t), which is the sum in TIC case.
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3.4.1 Mass resolution

MS determines the attribute molecular mass of the molecule by measure of

the mass to charge ratio (m/z) of its ion, marked by sign mξ | ξ = 0, 1, 2, . . . , n (i.e.

m ∈ M) in the system Ω. In the mass analyzer are the ions resolved (separated)

according to the mξ and they are counted into signal y(t,mξ) ∈ I by ion detector.

Therefore, in the single spectrum y(t) (eq. 3.3) is obtained one intensity value

yξ(t) = y(t,mξ) | ξ = 0, 1, 2, . . . , n for each mξ by mapping process (eq. 3.2) in any

time point t ∈ T . But, the mapping (eq. 3.2) is dependent on the ions separating

power (mass resolution R) and the measure of the mξ (mass accuracy) ([24]).

Simply, R of the MS analyzer is the ability of the device to distinguish

between ma and mb in mass spectrum y(t). Let mark the difference between two

masses that can be separated as ∆m:

∆mb = {mb −ma} | m0 � ma ≺ mb � mn ∀ {ma,mb ∈M} ., (3.5)

That definition has to be extended by condition:

if ∃mc : ma ≺ mc ≺ mb =⇒ mc 3M ∧ ¬(a ≺ c ≺ b), ∀a, b, c < e natural, (3.6)

to distinguish two closely adjacent mass values in the first instance (ability to

distinguish any mass values from the measurable range does not require the

extended condition). Then, according to the IUPAC definition ([95]):

R = mξ/∆mξ | m ∈M, ∆m0 ≡ ∆m1, (3.7)

In accordance to common meaning of the term resolution, R gives the count of

measurable mξ in the range (m0,me), the potency ℘ of set M . Its reverse 1/R ∗ η
represents resolution in some cases and denote relative proportion parts per η,

typically η = 106 [ppm], a quantity with the dimensions of 1 (as R itself).

Let remind, that from (eq. 3.7) ∆m is a function of mξ:

∆mξ = mξ/R. (3.8)

Therefore, the set M of system Ω is determined (necessarily but not sufficiently)
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by knowledge of MS resolution R, guaranteed by MS producer, and subsequently

by function (3.8). Thus, the set M will fulfill the condition (3.6). As is clear from

(eq. 3.8) the difference ∆mb > ∆ma, for ma � mb for constant R across the range

(m0,me).

3.4.2 Mass accuracy and mass precission

Mass accuracy basically means the ability of MS to measure exact mass, it

is the fidelity to give the best qualitative response to the true value of measured

molecular mass. In terms of abstract system it transforms the actually measured

m/z into the output data value mξ. The measured a priori unknown mass τ is

affected by the resolution R:

τ ∈ (mξ ±∆m/2). (3.9)

As was shown (in eq. 3.8) ∆m is a function of mξ, so the mass accuracy also differs

in m ∈ M by mξ. It is also obvious, mass can be measured as accurately as the

MS allows and mass accuracy (eq. 3.9) for output data makes sense only in case of

calibrated measurement device. Modification of the (eq. 3.9) to include calibration

inaccuracy is modest:

τξ ∈ (mξ − ε̂ξ ±∆m/2) | ε̂ξ → 0, (3.10)

where ε̂ξ is an average (in repetition, function marked by sign µ) shift between

measured m/z (let mark it by sign mξ′) and true value τξ:

ε̂ξ = µ(mξ′ − τξ), (3.11)

and the calibration process minimize ε̂ξ, using known τξ as MS input. With Ê

(full set of εξ, where ξ = 0, 1, 2, . . . , e) of the potency E equal to the potency of

M should be done the calibration process on the measurement output data:

m
(eq. 3.9)
ξ = m

(eq. 3.10)
ξ − ε̂ξ | ℘E = ℘M, (3.12)
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instead (but preferably) on MS device. Or some fitting transformation has to be

estimated for ℘E < ℘M (with injection from E to M known from the calibration

process). Then only, (eq. 3.9) is relevant for calibrated mξ.

Unfortunately, obtained value from the MS mξ′ (even after the calibration

done) is still not equal to the 2−nd system attribute value mξ, it is as close as

possible because of the standard error of the reported value (imprecision):

||mξ −mξ′|| < ∆m/2 | (eq. 3.9), . (3.13)

On the interval (mξ±∆m/2) it asserts how many decimal places are utile:

mξ = round(mξ′)−mξ′|| < ∆m/2 | (eq. 3.9), . (3.14)

Subsequently, MS device parameters defined by set of ∆mξ and set of εξ
should be considered as extended attributes. However for the purpose of model of

abstract system creation are relevant only for determination of the set M .

Given system is an abstract model of real observed object which does not

always give the same output for given input. Origins of probabilistic behavior are

multiple such as stochastic inputs, randomness in time delays, noise from different

sources and of different characteristics etc. Biological systems, in these cases

inputs, behave as stochastic systems. Different chemical and physico-chemical

manipulation with the sample are other sources of stochasticity. Finally, the sepa-

ration and detection system brings noise of different, generally uneven, character-

istic. This approach is focus primarily on the influence of the noise produced by

the instrument (LC-MS device) on analysis of measurement results. Such analysis

may affect the biological interpretation of the data.
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4 Blank based time alignment

Blank based time-alignment (BBTA) was developed as a strong analytical

approach for treatment of non-linear shift in time occurring in HPLC-MS data.

Need of such tool in recent large dataset produced by analytical instrumentation

and amplified by requirements of so-called omics studies is caused mainly by the

extensive number of datasets from widely variant samples. This overloads the

operators capacity to handle optimal control samples and internal standards. The

only common, and naturally accessible, overall standard is the blank sample. The

approach is based on measurement and comparison of blank and analyzed sample

evident features. In the first step of BBTA procedure, the number of compounds is

reduced by max-to-mean ratio thresholding, which extensively reduce the compu-

tational time. Simple thresholding is followed by selection of time markers defined

from blank inflex points which are then used for the transformation function,

polynomial of second degree, in the example. BBTA approach is compared on real

HPLC-MS measurement with Correlation Optimized Warping (COW) method.

It was proved to have distinctively shorter computational time as well as lower

level of mathematical presumptions. The BBTA is computationally much easier,

quicker (more then 1000×) and accurate in comparison with warping. Moreover,

markers selection works efficiently without any peak detection. It is sufficient to

analyze only baseline contribution in the analyte measurement with sparse knowl-

edge of blank behavior. Finally, BBTA does not required usage of extra internal

standards and due to its simplicity it has a potential to be widespread tool in

HPLC-MS data treatment. BBTA focus on measurements time alignment for

comparison of multiple compounds in similar samples. For that, it is used the

markers from selected spectra and the retention time values.

It is described in details, mathematically and experimentally justify
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approach for time alignment of LC-MS spectra using blank measurement data

as (inherent) internal standards (BBTA). BBTA utilizes solvent contaminants

and other important events (inflex points) detectable both in blank run and the

compared experiment for alignment of multiple 2D chromatograms. Addition of

internal standards may increase number of data points available for calculation

but is not necessary for general laboratory practice. Obvious advantage of BBTA

is its readiness and essentially low expenditure level of its application. All math-

ematical descriptions are derived immediately from the system based description

of the measurement data sets with respect to the common used definitions.

Naturally, the liquid phase interaction during the analyte measurement

are sample dependent. Therefore, issues of those interactions are not necessarily

represented in the blank. However, the processing is based on the opposite point

of view. The compounds, presented in the blank are also still presented in the

analyte measurement. The basis for this are trivial. Semi-similar samples (like in

metabolomics) or concentration curves require sequences of analysis with the same

settings, especially baseline contribution. Therefore, pertinent features pinpointed

from the blank remain in the analyte measurements. They are, usually hidden

in the noise contribution or peaks behavior in Total Ion Chromatogram (TIC),

which is just the summary projection in one axis and therefore mathematically loss

operation. However, in 3D data matrix space are still observable and detectable.

Concisely, what is in the blank have to be also in the analyte measurement when

the same liquid phase is used, out of the question. There should be also some

shift of the retention time for certain elution according to the temperature. Small

changes affect only the distance of the shifts, not the ordering and it is strictly

recommended to keep the conditions constant for repetitive experiments. There-

fore, temperature changes in comparable measurements are also similar from the

principality (and occurred in corresponding parts of the measurement). Theoreti-

cally, ordering transpositions in retention time will be caused by large temperature

changes between the samples. Thus, the presumption of samples similarity is not

fulfilled. Therefore, it can be simply assumed that the temperature attribute is

not important for the time alignment.

When corresponding retention time values are available, there may be

compared peak positions by so-called Dynamic Time Warping (DTW). This
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is a class of signal processing method to measure similarity and find optimal

match between time axes. Warps produce highly reliable output across the

different measurements. Namely, when the dataset is dominated by highly similar

compounds (i. e. standards). However, the algorithms have heavy computational

burden. DTW is based on re-calculation of main part of the original dataset.

Crucial aspects of warps are discussed in detail in section 2.3.

In empty (or blank) run some relevant (inflex and marker) data points

may be identified (not necessarily the peaks). Blank in the context of this thesis

is the chromatographic measurement without addition of the sample. So, it is

usually just the mixture of solvents, sometimes called baseline, mobile phase or

systemic noise. Hence, the blank is easily obtained for every kind of experiment

and is often recorded without any utilization for experiment evaluation. Such

typical data points from blank are also present in datasets from real sample anal-

ysis performed technically under the same conditions. Instead of both DTW and

Internal Standards (IS), information from the blank measurement is available for

simple and immediate comparison of samples.

The key idea of the approach presented here is following: The common view

of the LC-MS data considers that mobile phase complicates (negatively affects)

the analysis of the measurement. It contributes to random noise and it is major

cause of the systemic noise (ridges and interfering peaks) in nonlinear level on

the time axis. Several works are focused on removal of baseline presence from

the measured data ([89, 88]). The blank measurement should be considered as

a permanent standard. The blank time axis has direct relation (homomorphism

in fact) to all of the samples measurements obtained with the same settings, the

same devices and the same mobile phase. Moreover, lower amount of relevant data

points is needed to enter the computation process. These data points represent an

inherent set of internal standards.

This section is focused on the study of the key idea to use the data from

blank measurement directly for time-alignment, without any peak detection. It

is done prior to any further and superfluous analysis and is of general character.

The application of internal standards (IS) only adds additional information to it

(mathematically just increase the amount of inflex points in the measurement). It

is demonstrated on example that blank based approach is very robust, when only
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few presumptions are fulfilled.

For the first step in the whole processing/analysis, the retention time align-

ment, was developed a method which is completely model-independent. This

comparison is naturally more comprehensive than IS and does not require any

compound identification. In some aspects, namely when abundant peaks are

present, it preserves reliability.

With the knowledge of feature detections as well as time alignment issues,

and without any other assumption, it can be put the following question: Where

to look for internal standards fulfilling the condition to be ’friendly’ (different,

detectable, known properties, etc.) to given sample and experiment method?

The most simple answer is usually neglected for no reason. Obviously, the base-

line consist of substances with very relevant features: designated amount (rate,

gradient) of solvents, known or predictable affection to the analyte(s), pertinence

to the column, and therefore to the requested chemical separability and specific

time of elution above all.

Mobile phase in LC-MS affect the measurement analysis, represent the

systematic noise in nonlinear level on the time axis. As is shown here, the omit-

ting presence of the baseline can be turn into the advantage considering it as the

permanent standard addition measurable also alone in the blank. This section

recommends it at the beginning of rough development of semi-optimal sets of

internal standards or advanced comparison algorithms.

The reason, why the set of internal standards present in blank LC-MS

measurement is so extensive, comes from measurement practice. The sample with

solvent mixture is injected into a chromatographic column in LC-MS for the first

separation and, due to the interaction with the column stationary phase, elutes

at different retention times ([73, 79]). It is strictly recommended, but not always

followed, to wash-out (clean up) the column for re-equilibration at the end of

the measurements. The true wash-out takes as much as 24 hours ([68]), for this

reason there are done only partial (short-time) wash-outs to remove the solvents

and other impurities (rests of the sample, phthalate esters from preparation plastic

dishes, etc.) at the end of every measurement. Therefore, it is obtained in most

measurements at least one of these events, solvent (injection) peak (SP) and/or

wash-out tail (WOT). If these part(s) of data were recorded, it is another question,
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let assume the solicitous operator. It can not save the time of measurement to

despise the beginning or end of the data. It is already done, so there is no reason

for uncollect it.

In the blank measurement is SP or WOT (or both, in optimal case) the

semi-dominant part of chromatogram (as is shown in Figure 4.1), even if the

number of solvents in mixture is small. And, because of usage of the same settings,

SP or WOT has to be also presented in the sample(s) measurement, perhaps

less distinguishable. In given experiment series, due to incomplete wash-out of

the column, some of the solvent contaminants may (and do) actually arise from

samples (or blank) themselves. Thus, their use as effective internal standards is

obvious.

Figure 4.1: Two examples of blank measurements. Panel 1A shows the 70%MeOH
mobile phase without solvent peak and with wash-out, panel 1B shows the H20
mobile phase with solvent peak far from ideality and without wash-out.

In this way, the time axis of the blank measurement is considered as refer-

ence time axis. It is congruent for all other sample measurements, which are

done using the same settings and devices. The time-alignment consist of three

main steps, each of them can be investigated by many different methods (already

existed or developed in the future). In the following sections, all steps are extend

in details. All relevant issues are precisely and mathematically described and

justified.
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4.1 Step 1.:Reduction of blank points

The blank measurement as well as any LC-MS measurement (considering

without msn or other extensions) produce data of three discrete axes: retention

time, mass-to-charge ratio and intensity. In other words, there is obtained one

intensity for each time and mass pair. This could be mathematically described as

mapping from the set T of time values t and set M of mass values m into set Y

of intensity values y(t,m). It is more transparent when the sets T , M and Y are

ordered, in the following text is considered that property and all sets are ordered

increasingly. The LC-MS measurement is therefore defined by the sets (T,M, Y ).

Let mark the sets, that defined the blank measurement as (TB,MB, YB) to distin-

guish them in the following text from the experiment (analyte) measurements

(TA1,MA1, YA1), (TA2,MA2, YA2) and so forth.

In the very first step, it is helpful to decrease the number of mass values

in the blank. The reason is obvious, even the blank measurement is affected

by the random noise and mass spikes. Only the true mobile phase compounds

are required for the following computation. Furthermore, it is not a big pay to

lose very small (in amount) compounds. They may not be present in the real

sample measurement(s) for various reasons and contribute to useless increase of

the computation time.

The basic way how to reduce amount of blank data points is to discard

all intensity values under some thresholds value. This threshold could be general

for whole blank or adaptive (different thresholds for different regions of blank),

based only on the intensity value or computed via statistical parameters (PDF

estimation, between-class variance, MVA) and other advanced techniques (entropy,

space transformations, morphological segmentation). Four the purpose to show

the usability of blank measurement for time alignment, is enough to compute

general threshold from statistical moments. Actually, the precision of this step

is not as important as in the next two steps (markers selection and estimation

of transformation function). Decrease of data points for marker selection is more

significant for computer memory (this could be overcome by HDD swapping which

extents the total time) then for the total time of computation, using todays CPUs

and/or GPUs.
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Let analyze individual mass mb ∈ MB in the time axis and compute the

maximal intensity value XY :

XY (mb) = max(y(t,mb)), t ∈ TB, y ∈ YB (4.1)

and mean intensity value µY :

µY (mb) = mean(y(t,mb)), t ∈ TB, y ∈ YB. (4.2)

As an input for thresholding process is used max-to-mean ratio R as stan-

dard method for automated data processing and observation ([128, 98, 99]):

R(mb) = XY (mb)/µY (mb). (4.3)

Now, are computed two numbers from the max-to-mean ratio R (with a

priori unknown distribution) using statistical moments. The number that sepa-

rating the lower half of a sample from the higher half is the median, mathematically

the value α that minimize

E(|R(m)− α|), (4.4)

where function E(ξ) is considered as the average of its argument ξ (and in this

case is ξ = |R(m)− α|). Therefore, median αmed id defined as

αmed : E(|R(m)− αmed|) = min, ∀α ∈ R, (4.5)

where R is set of real numbers. As a measure of the variability is used robust stan-

dard deviation (RSTD), because the max-to-mean ratio R has a priori unknown

distribution:

RSTD = 1.25 ∗ E(|R(m)− αmed|). (4.6)

The threshold value Θ for max-to-mean ratio R is set as

Θ = αmed −RSTD. (4.7)

Consequently, all masses mb with ratio R(mb) lower then threshold Θ are removed

from blank in further computation. Let mark the new set of mass-to-charge ratio
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with max-to-mean ratio R higher then threshold Θ as M̃ :

M̃B = MB − {mb : R(mb) < Θ},mb ∈MB (4.8)

where MB is ordered set of [m/z] values in the blank measurement, R(mb) is max-

to-mean ratio ([128, 98, 99]) and Θ is chosen threshold. Videlicet, M̃B is just a

subset of MB with property R < Θ. However, the data reduction is not strictly

necessary. Thresholding is not initial selection of alignment markers. It is just a

simple random noise filtration.

Also could be the ratio set R separated only to lower and higher region by

threshold equals to median value, whereas with threshold computed by equation

(4.7) retain at least 2/3 of the blank measurement. In the blank with huge level

of impurities may almost all data points pass through the thresholding, at least it

still discards the low relevant of them (in meaning of capability for being markers

in time-alignment).

4.2 Step 2.:Markers selection

The second step is the foot-stone for all comparison tasks and it is known

as the selection of the markers ([106, 92]). In other words, the markers are point

candidates for the alignment itself. The markers in this approach are defined only

from the blank, instead of searching for similar values in compared sets. Without

any hesitation, it is sure that they are present in the sample measurement(s) also.

Therefore, the corresponding data points can be easily pinpointed from the sample,

after finished definition.

As was described above, in every measurement (even in the blank) is

presented at least one of SP or WOT event. Successfully, SP occurs on the first

half (in time axis) of the measurement and WOT on the second half (not consid-

ering peculiar operator errors like two measurements in one data set, stored only

middle of measurement or nothing, etc.). Therefore, one can split the blank in

time into two subparts (time intervals), each possibly containing one expressive

feature. Using gradient changes during measurement offers splitting into more

subparts (not necessary equidistant) with simple selection of cutting times. Just
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be sure, that the distinctive baseline inflex point (local minimum or maximum in

intensity) is somewhere in the middle of selected interval (or leastwise not exactly

on the interval borders). And it is known the exact time value of that inflex point

from the settings of the experiment, as it was designed. Past question, maximal

number of time intervals is equals to the number of measured time points in the

discrete data set, i.e. equals to the cardinality (ℵ) of set TB. The optimal number

of subparts could be determined by statistically appropriate methods ([100, 101]),

in case of equidistant intervals. Let assume that sets TB, fulfill the sampling

theorem ([102, 103, 104, 105]) and split the blank time axis (and therefore whole

blank measurement) into n equidistant subparts, where 2 ≤ n ≤ ℵ(TB). For the

simple illuminating example, is n equals to 3. Now, they were obtain three time

intervals T1B, T2B and T3B (or TϑB, ϑ = 1, ..., n shortly) as the subsets of TB:

(T1B ⊂ TB) ∧ (T2B ⊂ TB) ∧ (T3B ⊂ TB), (4.9)

T1B ∧ T2B ∧ T3B = TB. (4.10)

The intervals are defined with additional properties.

I.) The sets TϑB are increasingly ordered sets.

II.) time interval T1B precede time interval TB2 and time interval T2B

precede time interval T3B:

T1B ≺ T2B ≺ T3B. (4.11)

III.) The cardinalities of the subsets are equal or approximately equal:

ℵ(T1B) ≈ ℵ(T2B) ≈ ℵ(T3B), (4.12)

ℵ(T1B) + ℵ(T2B) + ℵ(T3B) = ℵ(TB), (4.13)

because the time intervals TϑB are equidistant or semi-equidistant (if cardi-

nality of TB is or is not divisible by n = 3 in natural numbers N). In the worst

case, cardinality of the shortest time interval differs to the others only by one.
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The most common and understandable representations of LC-MS measure-

ments are Total Ion Chromatogram (TIC) and mass spectrum. Mass spectrum is

a measure of MS detector signal (intensities y) versus mass-to-charge ratio axis

(m ∈ M or m̃ ∈ M̃B in the example now). One mass spectrum is just a slice

of selected time in the whole measurement. The amount of all individual mass

spectra in the measurement is equal to the cardinality of the set T . Therefore, is

also the amount of mass spectra in each time intervals TϑB equals to the cardi-

nality of the related interval. TIC is a measure of detector signal versus time axis

TB. It is amount of all intensity values y in exact time point t ∈ TB:

γB(t) =
∑
m̃

y(t, m̃), y ∈ YB. (4.14)

So, they are obtained three different sub-TICs γϑB, after splitting the time

axis TB into n = 3 intervals:

γϑB(tϑ) =
∑
m̃

y(tϑ, m̃), tϑ ∈ TϑB, ϑ = 1, ..., n, (4.15)

one blank sub-TIC γϑB for each time interval TϑB.

The splitting of the time set TB into n subparts (time intervals) TϑB and

therefore splitting of TIC γB into sub-TICs γϑB also define the amount of markers

used for time-alignment. There is necessary only one point in each time interval

and it is almost directly selected from the related blank sub-TIC. As a blank

marker is considered the time value τB of the subset TϑB, where the sub-TIC

value is the maximal value of that sub-TIC:

τB(ϑ) | γϑB(τB(ϑ)) = max(γϑB(tϑ)), τB(ϑ) ∈ TϑB. (4.16)

In other words, is in time point τB(ϑ) significant inflex point of blank sub-TIC

γϑB. Equation (4.16) produces the set {τB} of cardinality ℵ = n as the set of

blank markers for transformation function. Blank time axis TB is in this approach

considered as reference time axis for each time-alignment of measurement done

with similar experiment conditions.

It is slightly trickier to identify corresponding markers in analyte measure-
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ment time axis TA. The minimal and maximal values of measurement TIC γA:

γA(t) =
∑
m

y(t,m), y ∈ YA, (4.17)

occurred in different parts of measurement, because of presence of the analyte.

Cardinality of measurement mass-to-charge ratio set MA is bigger then cardinality

of blank mass-to-charge ratio set MB. The reason is obvious, at least one mA value

of the measured analyte was added into the mobile phase to make the experiment

meaningful. Usually, the amount of added mass values is higher than one. There is

not only the analyte molecular ion, but ions of its isotopes, fragments, adducts and

impurities. Therefore, cardinality of the intensities set YA has to be also bigger than

cardinality of set YB. Bigger amount of molecules with bigger amount of possible

mass-to-charge ratios in almost same measurement time length (TA ≈ TB) produce

wider dynamic range of intensity set YA:

ℵ(MA) > ℵ(MB) ∧ ℵ(YA) > ℵ(YB). (4.18)

Surprisingly, the analyte measurement TIC γA is not relevant for selection of the

analyte marker set {τA}. The pinpointing process from sets (TA,MA, YA) differs

from blank.

One more set of information is necessary to extract from blank measure-

ment. With the knowledge of when (in τB(ϑ)) the maximal value of sub-TIC γϑ

was obtained, is also profitable to ask where (in mass). Slice of selected time in

the whole measurement (blank or analyte) represents the mass spectrum as tuple:

y(t) = [y(t,mj)],mj ∈M, y ∈ Y. (4.19)

Not every mass mj was presented in detector in selected spectrum, i.e. some of

the intensity values y(t,mj) are equal to zero in selected time. In mass spectrum,

it is possible that two different and distinguishable mass values reach the exactly

same intensity (y(t,mq) = y(t,mw), q 6= w, t = const.). Equality in non zero

intensity values is not very frequent, however there is nothing bizarre on this fact.

The probability is small, but it does not mean impossibility of the event, especially
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in huge amount of different molecules detected by MS during the measurement.

Hence, the mass spectrum is described as tuple and not as a set.

In time markers {τB} are corresponding n mass spectra tuples y(τB) of the

blank. As a ϑ − th blank mass marker is considered the mass-to-charge value

ηB(ϑ) of the set MB, where in the mass spectrum y(τB(ϑ)) is the maximal value

of intensity:

ηB(ϑ) | y(τB(ϑ), ηB(ϑ)) = max([y(τB(ϑ), m̃b)]), m̃b ∈ M̃B, y ∈ YB. (4.20)

The cardinalities of blank time and mass markers are equal:

ℵ({τB}) = ℵ({ηB}), (4.21)

and time values τB(ϑ) with mass values ηB(ϑ) make set of whole blank markers

as n ordered pairs {(τB, ηB)}.
Analyte measurement time axis TA is also separated into n intervals TϑA,

ϑ = 1..n. Each analyte interval is approximate (means very similar) to blank

interval (TϑA ≈ TϑB) in equidistant case with approximately same start and end

time point of the measurement (TA ≈ TB). It is necessary to carefully choose the

individual interval borders, when the time splitting was based on gradient inflex

points. Corresponding gradient changes have to be situated in corresponding time

intervals. Correct separation task could be simplified by proper timing of all

measurements recording process and equipment synchronization.

Direction of analyte markers selection is opposite to the blank situation -

from mass to time values. As analyte mass markers are considered blank mass-to-

charge ratios {ηB} that are present in the analyte mass set MA:

ηA(ϑ) | ηA(ϑ) = ηB(ϑ), (4.22)

ηB(ϑ) ∈ M̃B ∧ ηB(ϑ) ∈MA ⇔ ηA(ϑ) ∈MA ∧ ηA(ϑ) ∈ M̃B. (4.23)

Mass-to-charge ratios {ηB} are supposed to be in the analyte measurements

set MA. Values ηϑB were taken from the blank set M̃B and belong to the molecules

of mobile phase. Mobile phase is a part of the analyte measurement. This condition
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is always fulfilled if whole blank markers selection was done on mass-to-charge

subset ˜̃MB:
˜̃MB ⊂ M̃B ⊂MB | ˜̃MB = M̃B ∩MA. (4.24)

In other words subset ˜̃MB is defined as intersection of blank mass subset M̃B from

Step1 and analyte mass set MA. Therefore, values ˜̃mb are present also in blank

measurement and analyte measurement:

˜̃mb ∈ ˜̃MB ⇔ ˜̃mb ∈ M̃B ⇔ ˜̃mb ∈MA. (4.25)

Instead of M̃B or m̃b is used ˜̃MB or ˜̃mb respectively in equations (4.14. .4.23). Thus,

is redundant to distinguish signs ηB and ηA, because both tuples are equal. Let

sign mass markers for further purpose only as η:

η(ϑ) = ηB(ϑ) = ηA(ϑ) | ∀ϑ = 1..n⇒ {η} = {ηB} = {ηA}. (4.26)

That is not as trivial as seems to be. Blank mass markers {ηB} are values

m̃b or ˜̃mb from the subset M̃B or ˜̃MB respectively. On the other hand, analyte

mass markers {ηA} are values from the set MA. Therefore indexes b and a are not

equal, even if the value mb equals to the value ma. Obviously, there is forbidden

the exception of special case where set MB or M̃B or ˜̃MB respectively strictly

equals to the set MA, for two serious reasons. At first, set MA contains additional

mass values of the analyte itself, not presented in blank measurement. At second,

some random noise is always presented. The probability is extremely low in our

universe, that two measurements have exactly the same distribution of random

noise occurrence which fits in values and positions. Sign simplification done by

equation (4.26) is allowed just because blank mass subset ˜̃mb is no more necessary

in time-alignment process. However, b and a indexes inequality is important to

consider in algorithm implementation (wrong index is one of the top common

source code mistakes in programs development).

Only a part of analyte measurement is further investigated, once the mass

markers {η} were pinpointed. The behavior of single analyte mass value ma in

time could be described as mapping from that mass value ma ∈ MA and the set

TA into the set YA of intensity values y. This mapping process produce Single Ion
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Figure 4.2: Example of blank markers selection. Panel 2A shows Total Ion Chro-
matogram (TIC) γB(t) separated into n = 3 sub-TICs γ1B, γ2B and γ3B on
time intervals T1B, T2B and T3B. Maximal intensity value γ3B(τB(3)) is in time
interval T3B located on time τB(3). Panel 2B shows mass spectrum in selected
time τB(3). Maximal intensity y(τB(3), ηB(3)) is obtained on mass ηB(3) ∈ M̃B.
Blank time marker value τB(3) is equals to 28.313 [min] and blank mass marker
value ηB(3) is equals to 803 [m/z] in this example. Apparently, there are no visible
relevant features for markers selection. However, the range of intensity axis is 108,
which dissable details in lower intensity values. That is exactly why observation
only of TICs is not wisdom.
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Chromatogram (SIC) as a function of time:

γma(t) = y(t,ma), t ∈ TA , y ∈ YA. (4.27)

Therefore, for each mass value ma from set MA exist one SIC (ℵ({γma}) = ℵ(MA)).

Consequently, the analyte TIC γA(t) is just a sum over ma ∈ MA of all analyte

SICs γma(t):

γA(t) =
∑
ma

γma(t) =
∑
ma

y(t,ma),ma ∈MA, t ∈ TA, y ∈ YA. (4.28)

Note, that this seemingly means skipping the step of analyte measurement

points reduction. In case of mass markers η ∈ MA is necessary only n number of

analyte SICs, just γη(ϑ):

γη(ϑ)(t) = y(t, η(ϑ)), t ∈ TA, y ∈ YA. (4.29)

Therefore, decreasing of amount of points in analyte measurement is greater

in contrast to the blank measurement reduction in Step 1. (ℵ({η}) � ℵ(MA)).

Moreover, not whole SIC γη(ϑ) is required for selection of ϑ−th analyte time marker

τA(ϑ). The analyte measurement time axis TA was separated into n intervals TϑA.

It is quaranted to find the ϑ − th time value τA in time interval TϑA, when the

time set separation was done correctly (TϑA ≈ TϑB). Thus, analyte time markers

pinpointing process works on n sub-SICs, instead of whole analyte measurement

((TA,MA, YA)). The ϑ− th sub-SIC is then defined as a part of mass marker η(ϑ)

SIC γη(ϑ)(t) on time interval TϑA:

γϑη(ϑ)(tϑ) = y(tϑ, η(ϑ)), tϑ ∈ TϑA, y ∈ YA, ϑ = 1, ..., n. (4.30)

As an analyte time marker is considered the time value τA of the subset

TϑA, where the sub-SIC value γϑη(ϑ) is the maximal value of that sub-SIC:

τA(ϑ) | γϑη(ϑ)(τA(ϑ)) = max(γϑη(ϑ)(tϑ)), τA(ϑ) ∈ TϑA. (4.31)

The total space of values to be analyzed is rapidly decreased (from thou-
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Figure 4.3: Example of analyte time marker selection. In the 3 − rd sub-SIC γ3
of the analyte mass η(3) is maximal intensity obtained in the time value τA(3).
Therefore, the 3− rd analyte time marker τA(3) value is equals to 28.31 [min] in
this example. There is no mass spectrum, because SIC consist (by its definition)
of single [m/z] value = η(3).

sands to ones). Process of the selection of the markers is indicated on Figure 4.2.

This is sufficiently robust approach because all blanks have discernible signals,

even a watter (at least injection peak, however there are useful changes in span

on the time axis). Once again, the determination of markers is enough to be done

in blank processing and then pinpoint the corresponding markers in the analyte

measurements.

Again, the cardinalities of analyte time and mass markers are equal:

ℵ({τA}) = ℵ({η}). (4.32)

and mass values η(ϑ) with time values τA(ϑ) make set of whole analyte markers as

n ordered pairs {(τA, η)}. It follows from the equation (4.26) that mass markers η

are the same for blank and analyte. Therefore, (using equations (4.32) and (4.21))

is also the amount of blank time markers equal to the amount of analyte time

markers:

ℵ({τA}) = ℵ({τB}) = n. (4.33)
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This is exactly what is often demand (to have the same cardinality of two corre-

sponding time sets) and makes the next step as easy as possible.

4.3 Step 3.:Transformation function(s)

Finally, the third step works with the time values of the selected markers

from both sets (blank and sample), which are now of the same cardinality and in

the same order. This last step actually produces the transformation function, it

computes the description of the time-alignment. However, the procedure is not

limited to the given algorithm. Nonlinear shifts in the retention time between

measurements arise especially from stochastic changes in column chemistry over

time and minor changes (also stochastic) in mobile phase composition ([88, 87, 93]).

Considering this nonlinearity between time axes leads to the various normalization

rules or shift corrections ([92, 106]). The blank measurement time axis TB is

considered as the reference time axis, in this approach. Generally, any analyte

measurement time axis could be aligned onto blank time axis by a priori unknown

non-linear transformation function F :

tb = F(ta, β), tb ∈ TB, ta ∈ TA, {β} ∈ R, (4.34)

where β denotes unknown parameter(s) of the function F .

There is no strictly restriction for analyte time axis to be also considered

as the reference one. Consequently, the blank measurement time axis could be

aligned onto analyte time axis as by function F̆ :

ta = F̆(tb, β̆), ta ∈ TA, tb ∈ TB, {β̆} ∈ R, (4.35)

and sign β̆ denotes unknown parameter(s) of F̆ , analogously. Function F̆ is in

ideal case (in deterministic world without noise where all processes are purely equi-

libristic infinitesimal changes in non-fractal phase space) identical to the inverse

function F−1 of F . However, it may be misleading to select one of the analyte

measurements time axis. There has to be very pertinent reason for using equation

(4.35). Exempli gratia, using time axis of healthy patient blood sample as refer-
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ence time axis for other ’sick’ patients is just a wish for experiment purpose. The

simplest standard is still represented by the blank for chosen setup of measurement

device (LC column, solvents, gradient changes, MS ionization, detector focus, and

so on). Once again, blank is general basic information independent on the experi-

ment higher-level interpretation. Vice versa, the blank measurement depends only

on the experiment setup and device properties. Therefore, correct and rigorous

blank measurement (TB,MB, YB) describes the experiment. It is the knowledge

ready to be used in time-alignment.

The transformation F is a description for adjustment of time axes relation.

Time markers τB ∈ TB and τA ∈ TA are time values with superb property - the

resemblance between τB(ϑ) and τA(ϑ) is congruent:

τB(ϑ) ∼= τA(ϑ), ∀ϑ = 1, ..., n. (4.36)

In other words, time markers τB(ϑ) and τA(ϑ) match together. For the sake of

completeness, relation between blank time axis TB and analyte time axis TA is

homomorphism (structure-preserving mapping) and relation between time markers

{τB} and {τA} is isomorphism (bijective homomorphism).

The most puzzling issue is the task of function F type specification ([107,

108, 109]), i.e searching for data analysis process for constructing mathematical

mapping, that minimizes displacement of the data points (time values). Common

approach is to create a class of possible models, but it is not always obvious what

models should be used ([110]). Even with the understanding of underlying physical

and chemical properties of the problem is difficult to choose the right model.

Hence, both in linear and nonlinear modeling is used regression analysis ([111])

as investigation of the hypothesis about the relationship between the variables

of interest. Specific cases are various iterative methods for value interpolation

([112, 113]), in which the function must go exactly through the time markers

τ . The objective of regression analysis is to produce an estimate of the hidden

parameters β ([114]). Unfortunately, any parameter analysis can only help in

differentiating between hypothesis or models ([115]). Very strong results still do

not prove that the correct function F was chosen ([116]).

Note, that the linear functions are just the evaluation of polynomial of first
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degree. Consequently, the very first ’non-linearization’ is the polynomial of higher

degree. Insofar that, the most extremely primitive nonlinear function evaluate

polynomial of second degree. The collection of eventual type of relations (models,

mappings, hypothesis, functions, whatever) is huge. Harmonic analysis (wavelets,

fast Fourier transformation, eigenvalues) and MVA are the famous and prevalent

theories nowadays ([117, 118, 91, 90]).

Therefore, the task of the proper transformation function selection is always

nontrivial. For instance, the mentioned simple function was chosen to illuminate

the power of blank measurement. Accordingly, the relation between blank time set

TB and analyte time set TA is considered as polynomial function of second degree:

F(ta, β) : tb = β2ta
2 + β1ta + β0 + εa, tb ∈ TB, ta ∈ TA, βκ ∈ R, k = 0, ..., 2, (4.37)

where εa ∈ R is an unobserved random variable, representing the errors in the

data. Let define the parameters vector [β], blank time markers vector [τB] and

analyte time markers [τA] matrix:

[β] =


βp

βp−1

...

β0

 , [τB] =


τB(1)

...

τB(n)

 ,

[τA] =


τA

p(1) τA
p−1(1) · · · τA(1) 1

...
...

. . .
...

...

τA
p(n) τA

p−1(n) · · · τA(n) 1

 .

where p is degree of the polynomial (and therefore natural number, p ∈ N) and n

is cardinality ℵ of time markers τA or τB (ℵ{τA} = ℵ{τB}). In the example are

p = 2 and n = 3.

The unknown parameters β of polynomial transformation function F could

be then estimated by regression analysis (using equation 4.36):

[β] ' [A]\[B], (4.38)
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where sign \ is defined as matrix left division

[A]\[B] = [A]−1 ∗ [B], (4.39)

because matrix multiplication is not commutative.

The problem is with the error εa, that causes only asymptotic equality

in matrix equation (4.38) and leads to the inexactly specified system of simul-

taneous equations. The solutions is a particular estimation of the values of all

parameters β that simultaneously satisfies all of the equations. Regression analysis

offers numerous parameter estimation methods ([90, 91]), that differ in computa-

tional burdens and robustness depended on the distribution of unobserved error

εa. Frequently used method to solving systems of equations is approach of least

squares ([119, 120]). It is a technique that minimize the Euclidean length of a

vector [ε], defined as:

[ε] = [A] ∗ [β]− [B], (4.40)

This last step actually produces the parameters of transformation function,

it computes the description F of the time-alignment:

t̀a = β2ta
2 + β1ta + β0, (4.41)

where time values t̀a ∈ T̀A are analyte measurement time values ta ∈ TA asymp-

totically aligned to the blank measurement time values:

tb ' t̀a. (4.42)

Furthermore, blank approach allows to align the time axes of all analyte

measurements (TAλ,MAλ, YAλ), λ ∈ N, done on the same chromatographic column

under same experiment conditions. Simply, two given analyte time axis TA1 and

TA2 are independently normalized to the blank time axis TB:

`ta1 = β2(A1)ta1
2 + β1(A1)ta1 + β0(A1), ta1 ∈ TA1, (4.43)

`ta2 = β2(A2)ta2
2 + β1(A2)ta2 + β0(A2), ta2 ∈ TA2, (4.44)
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where βκ(Aλ) are the parameters of polynomial transformation function Fλ of each

analyte time axis TAλ. Normalized time values `taλ are asymptotically aligned to

the time values tb, by analogy of equation (4.42):

tb ' `ta1 ∧ tb ' `ta2. (4.45)

Therefore, also time values `ta1 are aligned to the time values `ta2.

`ta1 ' `ta2. (4.46)

However, equation (4.46) simplify any comparison of given analyte measurement

(TAλ,MAλ, YAλ) using the knowledge of blank measurement (TB,MB, YB) and esti-

mated parameters βκ(Aλ) of functions Fλ.
The last two steps are very similar with DTW or IS. With standards addi-

tion, it is essential to locate their positions in the measurement data sets as input

for time transformation function. The localization is algorithmically the compar-

ison task, which is in principle time consuming and noise affected procedure. Some

(or at least approximate) parameters of IS are known. This a priori information

decreases slightly the complexity of comparison techniques. DTW is more difficult

- the number of corresponding points in measurements is a priori unknown, data

sets are large, impurities may be clear in signal but differ in order. Therefore,

some filtration and preprocessing computation is optional. Of course, DTW could

be also applied on IS to produce robust results, in case that IS are sufficiently

dominant signals. Unfortunately, the strong and stable solutions are still far from

quick and daily use in the rush lab during experiment tunning. As is shown in

this thesis, BBTA has to deal only with minimal amount of selected points which

are readily available.

4.4 Comparison of BBTA with COW

Two analyte measurements A1 and A2 are aligned using BBTA. This

approach is compared with Correlation Optimized Warping ([83]), one of the well

known warping algorithm ([84]). Both experimental samples were prepared by
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mixing methanolic extract of the cyanobacterium Nostoc sp. with the antifungal

drug Nystatin C47H75NO17 (Duchefa Biochemie, cat. no.: 003042.03). Nystatin

was added into measurement A1 in concentration = 0.5[mg/ml] as compound

with known value of molecular ion = 926[m/z]. Nystatin in different concentra-

tion = 0.05[mg/ml] was added into measurement A2.

The samples were analyzed on HPLC-MS (ESI) Agilent ([121]) 1100 Series

LC/MSD Trap using C8 reverse phase column (Zorbax XBD C8, 4.6× 150[mm],

5[µm]) eluted by MeOH / Water gradient with addition of 0.1% formic acid. The

ion trap mass spectrometer was optimized for ions with [m/z] ratio 900 in positive

mode. The data acquisition and exports were performed using ChemStation Soft-

ware (Agilent) under WindowsNT operating system. The data analysis outputs

were obtained by Expertomica metabolite profiling software ([89]) under Windows

XP/Vista operating system.

The spray needle was at a potential of 4.5[kV ], and a nitrogen sheet gas flow

of 20 (arbitrary units) was used to stabilize the spray. The counter electrode was

a heated (200[◦C]) stainless-steel capillary held at a potential of 10[V ]. The tube-

lens offset was 20[V ], and the electron multiplier voltage was −800[V ]. Helium gas

was introduced into the ion trap at a pressure of 1[mTorr] to improve the trapping

efficiency of the sample ions introduced into the ion trap. The background helium

gas also served as the collision gas during the collision activation dissociation

(CAD).

Blank measurement B was obtained without presence of the analyte

mixture (Nostoc extraction, Nystatin). Therefore, Nystatin addition is not consid-

ered as IS due to its absence in the blank measurement. Only the blank itself

represents internal standards in the BBTA approach. The elements of time sets

TA1, TA1 and TB differ to each other as is shown on 4.1. The cardinalities of analyte

measurements are equal (ℵ({TA1}) = ℵ({TA2}) = 322), the cardinality of blank

measurement is lower (ℵ({TB} = 313)).

The TICs of A1 (solid line), A2 (dotted line) and B (dash-dotted line) are

shown on 4.4A. Blank measurement B is quite shorter by terminator of WOT

decay beside to the analyte measurements A1, A2, as is clear from 4.1 and 4.4A.

Analyte measurements time axes were artificially dis-aligned by basic replacement

to emphasize time shifts. In principle, analyte time axes are replaced by blank time
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1 2 3 . . . 312 313 314
ta1 0.0030 0.0963 0.1891 . . . 33.7272 33.8422 33.9575
ta2 0.0042 0.1018 0.1952 . . . 33.8274 33.9436 34.0589
tb 0.0042 0.1444 0.2265 . . . 31.8125 31.9277 ∅

Table 4.1: Values of blank and analytes time sets values.

axis. Let remind, that direct replacement has nothing to do with the alignment.

Actually, it is the opposite process as is described further in this section.

Let denotes by sign ς the maximal amount of time elements in the given

time sets:

ς = max(ℵ({TA1}),ℵ({TA2}),ℵ({TB})), (4.47)

and slightly extend the definition of the reference time axis:

TR | TB ⊆ TR ∧ ℵ({TR}) = ς. (4.48)

The blank time TB is a subset of reference time set TR with cardinality equals to

the ς:

tr ≡ tb | r = b, tr ∈ TR, tb ∈ TB, r, b ∈ {1, ...,ℵ({TB})}. (4.49)

The missing time elements {tℵ({TB})+1, ..., tς} ∈ TR could be set as equidis-

tant continuation:

tr = tℵ({TB}) + ∆t× (r − ℵ({TB})), (4.50)

where ∆t is estimated as averaging of difference between two consecutive

time elements in blank time set TB:

∆t =
1

ℵ({TB})− 1

ℵ({TB})−1∑
1

(tı+1 − tı), tı+1, tı ∈ TB (4.51)

Theoretically, there are more easy ways how to create the reference time

set TR. Maximal operator in equation (4.47) could be change into minimal and

extension of equation (4.50) is no longer necessary. However, minimal reference

set means time data reduction and that is not advisable as it was in mass case

(Step1. in Methods). The pinpointing process of the time markers τ is crucial
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Figure 4.4: Comparison of all TICs. Panel A shows blank and analytes TICs
γB, γA1, γA2 in original time axes TB, TA1, TA2. Panel B shows artificially dis-aligned
analyte TICs γA1, γA2 in reference time axis TR. Panel C shows results of analyte
TICs γA1, γA2 aligned to the blank TIC γB by COW algorithm in reference time
axis TR. Panel D shows results of analyt TIC γA2 aligned directly to the anlyte
TIC γA1 by COW algorithm in reference time axis TR. Panel E shows results of
analyte TICs γA1, γA2 aligned to the reference time axis TR by Blank based time-
alignment in aligned time axes `TA1, `TA2. Solid lines represents analyte TIC γA1,
dotted lines represents analyte TIC γA2, dash-dotted line in panel A represents
blank TIC γB.
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part of time-alignment. Therefore, discarding time elements only for convenience

reasons is dangerous way of thinking. No matter what the time elements values

really are. Another option, the addition at the beginning of the reference set TR is

also possible, but complicated to no avail. The evaluation of missing time values

and ∆t has the same computational burden (as addition at the end). However,

the indexes r has to be shifted and some of the added time elements may obtain

negative values. The plots with negative time units on the reference time axis are

not good exemplary candidates. The solution of setting all values added at the

beginning to zero aims to the mismatch in TICs values. Therefore, is optional to

follow the equations (4.47. . .4.51).

Apparently, in the definition (4.48) are missing some interval conditions.

Time interval determined by minimal and maximal element of the reference time

set TR should be congruently inside the time intervals determined by minimal and

maximal elements of any given time sets. The truth of the matter is that in this

example were the blank time set TB the set with minimal cardinality ℵ(TB) < ς

and cardinalities of analyte measurements are both equal to the ς. Furthermore,

time interval congruent conditions are automatically fulfilled as is clear from the

last row of 4.1.

Equations (4.47. . .4.51) as well as the reference time set TR are necessary

just for the comparison of BBTA with COW, into the bargain. The purpose is to

made this example and comparison as illustrative as possible. Hence, all values of

analyte time elements ta1 and ta2 with indexes a1 and a2 in the range < 1..ς > are

replaced by the reference time values:

taλ := tr | aλ = r, taλ ∈ TAλ, tr ∈ TR, r ∈ {1, ..., ς}, λ = {1, 2}. (4.52)

Previous element values taλ are forgotten. Description in equation (4.52) produces

4.2. All time sets TA1, TA2, TB and TR are now identical with also identical cardi-

nality equals to ς. However, the TIC values γA1(tr) and γA2(tr) corresponding to

the r-th time element tr still differ to each other (γA1(tr) 6= γA2(tr)). The TICs

did not change during time values replacing process:

γAλ(tr) = γAλ(ta) | r = a, tr ∈ TR, ta ∈ TAλ, ∀ r, a ∈ {1, ..., ς}, λ = {1, 2}. (4.53)
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Only the position of the TICs in the time axis has changed (4.4B.).

1 2 3 . . . 312 313 314
ta1 0.0042 0.1444 0.2265 . . . 31.8125 31.9277 32.030
ta2 0.0042 0.1444 0.2265 . . . 31.8125 31.9277 32.030
tb 0.0042 0.1444 0.2265 . . . 31.8125 31.9277 32.030

Table 4.2: Time values of blank and analytes set to the reference time set.

Figure 4.5: Detail of Nystatin part of TICs in DCOW and BBTA. Analyte
measurement A2 TIC (dotted line) was aligned to the analyte measurement A1
TIC (solid line). First of the two peaks after the Nystatin elution in A2 is incor-
rectly aligned to the Nystatin in A1 in DCOW.

The COW algorithm aligns one or more data vector(s) onto reference vector

via small changes in segments lengths on the data vector(s). Only the TICs values

are considered as data vectors. For that reason, join reference time axis is required.

Unfortunately, the time or mass sets are not taken into account in the available

implementation ([83]). Theoretical possibility of COW for all SICs in the measure-

ments collides with input file limitation. There are over 2000 individual SICs in

each measurements B,A1, A2. Two tunable parameters are necessary for COW,

the number of segments (borders) and maximal increase or decrease of segment

length (so-called slack). Optimal values of both parameters are estimated during

the computation. The outputs of COW algorithm are aligned TICs `γA1, `γA2. Two

variants of the COW algorithm were tested. The analyte measurements TICs

γA1, γA2 were aligned to the blank TIC γB in the first one (signed simply as COW,

Figure 4.4C.). In the second one (signed as DCOW), the analyte measurement

TIC γA2 was aligned directly to the analyte measurement TIC γA1 (Figure 4.4D.).
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The BBTA algorithm uses the three steps described in section Methods

with default settings including automatic segmentation into three semi-equidistant

segments and estimation of transformation function as polynomial function of

second degree. Both analyte measurements TICs γA1, γA2 were aligned to the

blank TIC γB independently. The outputs are aligned time sets `TA1, `TA2 (Figure

4.4E.).

It is arduous to objectively evaluate the quality of any time-alignment.

Comparison of the time values only is misguiding. The values in the Table S-2. are

absolutely the same. Nevertheless, the corresponding TICs plots differ evidently

(Figure 4.4B.). Another metric is so-called Peak integration error (Chae) defined

as:

PIE = abs(
areaaligned − areanon−aligned

areanon−aligned
)× 100%, (4.54)

where area is considered as integration of peak intensities. Therefore, area evalu-

ation (and precision) is strictly dependent on used peak detection. Without any

peak detector could be the area of whole measurement considered as input for

equation (4.54), for instance (4.3.). Blank based time-alignment changed only the

time sets of the analyte measurements. There are no changes of the TICs values,

no changes of the peaks (whatever they are), and no changes of the areas. For

these reasons, the PIE is nonsense in this case.

COW DCOW BBTA
reference γB γA1 TR

input data γB, γA1, γA2 γA1, γA2 B,A1, A2

output data `γA1, `γA2 `γA2 `TA1, `TA2

segments 84 30 3
slack 1 13 ∅

time of computation ∼ 3 [min] ∼ 3 [min] ∼ 140 [msec]
PIE 0.32% 0.67% 0.00%

Table 4.3: Comparison of COW, DCOW and BBTA parameters. The main differ-
ence is in time of computation.

More objective metric of two similar LC-MS measurements is spectra

comparison. A distance between a pair of spectra from two measurements in

approximately same time has to be smaller in aligned case than in non-aligned
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one. Also the average distance between all spectra pairs (in corresponding time

values) has to be smaller for aligned measurements. The only remaining question

is the choice of distance evaluation method. It is beyond the scope of this work,

to discuss the properties and pertinences of known distance metrics. The results

of most common used formulas are shown in 4.4. In all cases are the spectra of

BBTA closer together then in the non-aligned measurements. Naturally, optimal

distance is equals to zero. However, the presence of random noise excludes the

optimality in principal always.

eucl. manh. cos. corr. mink. hamm. cheb.
NA 5.1× 106 3.8× 107 0.17 0.18 5.1× 106 0.382 3.7× 106

BBTA 3.4× 106 3.3× 107 0.13 0.14 3.4× 106 0.381 2.2× 106

Table 4.4: Average computed distance between pairs of spectra in non-aligned
(NA) data and blank based time-aligned (BBTA) data. Abbreviation: eucl. -
Euclidean distance, manh - Manhattan distance (absolute difference), cos. - one
minus angular cosine distance between spectra, corr. - one minus spectra linear
correlation, mink. - Minkowski distance (generalization of both eucl. & manh.
distance), hamm. - Hamming distance (% values in spectra that are not identical),
cheb. - Chebychev distance (maximal difference of values in spectra).

Openly, the distinction between BBTA and COW alignment is quite unfair

to the warping. The COW works only with the TICs, not with the whole measure-

ments. However, full COW processing of all SICs exceeds the limits of available

algorithm and may causes the mismatch in spectra. Obviously, the SICs can not

be aligned to each other, the already pass together. The main problem with warps

is more deeper and basic. Time warping is extremely powerful tool looking for

parameters that minimize the distance between vectors. Therefore, it assumes

that the alignment process is done for the same features that differ only in time

duration and noise level. Thus, warp modification could be used as estimation for

normalization function parameters as late as Step3, where the input warp features

correspond to the time markers. Once again, using time warping directly on TICs

confuses the algorithm unavoidably as it is shown on 4.6. On the 2 − nd column

from the left, it is a part of TICs with Nystatin elution, which was described

in Experimental section. The concetration of Nystatin addition differs between

analyte measurements A1 and A2. In COW case, there are analyte TICs aligned
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to the blank TIC. Therefore Nystatin can not affect the results in 3 − rd row

from the top of 4.6. On the other hand, DCOW computes direct alignment of

analyte measurement A2 TIC (dotted line) to the analyte measurement A1 TIC

(solid line). As it is shown, one of the two peaks after the Nystatin elution in

A2 is incorrectly aligned to the Nystatin in A1. That is not product of warping

inefficiency, that is product of improper input.

Figure 4.6: Details of several TICs parts (columns). Rows from top to down:
original TICs, non-aligned TICs, COW alignment, DCOW alignment and BBTA
approach. The results of time alignments were computed on whole measurements.
There are visualized only several parts of final plots to enhance differences between
approaches.

It is necessary to emphasize the information that the BBTA approach works
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not only with the TICs. All markers selection process take into account whole

measurement, therefore 3D matrix in time, mass and intensity space. It is also

important, that markers selected from blank measurement are not usually signif-

icant in analyte measurement TIC, however they are still present in the matrix

data. The BBTA approach is powerful enough to align data with simple blanks

(with no patterns like peaks) even when the blank is just water (with some a priori

unknown impurities) as is shown on 4.7.

Figure 4.7: Example of two mixture of standards (std1 and std2). As blank was
used the same H2O as shown on Fig.4.1B without any standards addition. Panel
A shows measurements before time alignment, panel B shows measurements after
BBTA. Both measurements were aligned only to the blank, therefore there was no
computation between std1 and std2.

In comparison to the advantages of known time alignment methods the

BBTA is also opened for extensions. Using blank as internal standard set is not

in violation of additional standards. The blank measurement (and therefore the

analyte measurements) could easily include addition of compounds estimated by

LSERs ([81]). The markers τ pinpointed as relevant inflex points from blank in

Step2 are just an optional subset of all eventual markers. For example, robust point

matching known as Amsrpm ([92]) is similar to the point of view to the systematic

description of the measurements, used in this thesis. Finally, exact analytical and

parametric model for transformation function is complicated to define. In the

example, in Step3 it is used polynomial of second degree. This primitive function

demonstrate the power of blank based time alignment approach in comparison of

COW. However, mathematically expressed, the space of function is unlimited as

well as criterion evaluation. One of the semi-supervised warps is implemented in
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ChromA ([85]). Unfortunately, ChromA is mainly focused on last step of time

alignment. The BBTA premise measurements obtained by the same settings and

devices. The usage of geometric approach ([79]) is recommended for comparison

of different measurements from different devices.

In summary, it is used one of the most primitive normalization function for

Step3 in the simple example. Even then, the blank based time alignment results

still prove blank usability. Step1 is not crucial for the BBTA approach, it is just for

reduce of total time consumption. The main idea is presented in Step2. Selection of

time markers with equal cardinalities solves problems with presumption fulfilling.

Step3 is only regression analysis question and any algorithm belonging there could

be improved. The idea of using blank measurements as internal standard is the

main objective - the most simple and direct method for time alignment.

Over and above, IS in sufficient amount will also fulfill this approach. Addi-

tional standards in the blank measurement constitute highly significant markers,

if they were distinguishable by the column. However, IS addition is just the exten-

sion of BBTA. Basically, it is not necessary for the time alignment itself. The

common usage is the support for identification. And that is certainly different

problem.

All analysis computations were performed in Matlab ([122]) 2008b on Intel

CPU Centrino 2 P8600, 2.4 GHz, 4GB RAM.

BBTA is not general for comparison of any two or more measurements,

but it is sufficient for measurements from the same chromatographic column with

the same gradient settings. Nevertheless, these types of measurements represent

everyday laboratory experiments in omics science, petroleum chemistry or phar-

macology. One can directly afford the blank based approach, because of simple

presumption. The mass values from the blank measurement are also presented in

analyte measurement (or easily warranted). Moreover, the time behaviors of the

blank mass values are preserved in analyte measurements by the utilized settings.

Hypothetically, if some corresponding time inflex point in the measurement was

caused by the analyte mass, then the experiment was designed wrongfully. This

situation can happen only when the blank mixture contains a compound with

identical mass value to the analyte (but with different elution time).

The aspect of transformation function selection requires more consistent
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theory. However, it is a question of slightly different brand, especially nonlinear

fits, regression analysis or genetic algorithms. This contribution still focused

mainly on mechanism of simple, fast and reasonable markers definition from the

blank measurement.

Theoretically, BBTA approach may also help to deal with the column aging.

Mathematically, it is the problem of estimation of transformation between two

or more blanks. When one of them is selected as the reference one, all other

steps follow the described methods. Therefore, all analyte measurements could be

aligned to the corresponding blank and hereupon aligned to the reference blank

time axis. Unfortunately, data collection for column aging will take at least several

months for everyday used column and years for rarely used column.

BBTA is a mathematically derived and algorithmically simple approach for

time alignment of 2D LC-MS chromatograms which requires blank measurement

data. The principle is more objective than many methods described shortly in

the 2.3, inexpensive and readily available in any measurement series using the

same procedure and devices. Moreover, all measurement spectra are preserved.

Exemplificative transformation function could be easily supercede by any advanced

estimation.
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5 Adaptive filter for baseline

thresholding

Exact time characteristics of the systemic noise vary for each mass. It

is necessary to analyze the characteristics in every mass independently. The

threshold value is the attribute of the measurement, not only an input param-

eter. Moreover, the baseline characteristic in the blank is not chemically affected

by the analysed substances. In other words, the description of the baseline in the

analyte has to be generalized description of the baseline in the blank. Therefore, an

adaptive thresholding as unsupervised method for baseline removal from measure-

ment data based on statistic moments is considered in this section. Behavior

of the baseline content is not perfectly constant in time axis. As is also often

necessary for experiments with gradient changes. However, the behavior could be

parametrized using technique derived from statistical moments. Results on real

analyte measurements are discussed to illustrate the efficiency.

In LC-MS measurement, the compounds elute from the chromatographic

column, separated according to the column specific chemical properties in time

axis. Output of the LC column enters into the ionization chamber in the mass

spectrometry. Molecules are then separated according to the mass and charge

(2nd axis) and detected by the MS detector. The thirds axis of measurement data

represents intensity, amount of the molecules detected on certain position (section

3.3). Peaks created by compounds separated in time occur only in specific short

time interval. On the other hand, the mobile phase, that carry the compounds

through the column is therefore present in longer part of the measurement. In the

blank measurement, presence of the baseline as dominant part of the measurements

is expected. However, there are also random spikes (random errors, random noise)
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and impurities peaks (chemical noise) as is shown on Figure 5.1A. The intensity

scale range suppress contrast between m/z values of low and high occurrence. It

is advisable to change the scale of intensity axis to non-linear (i.e. by logarithm)

to increase the information visibility. On Figure 5.1B, it is observable that some

masses are present during the whole measurement only with small changes in time

axis. Log scale in 3D graph allows to illustrate the flows as emerging pattern with

simple structure. The blank measurement gives there the opportunity to examine

the description that separate the baseline from the peaks and random spikes.

The baseline presence is similar in the analyte measurements as well as in blank.

However, the characteristic is more hidden under analytes affection (presence of

the analyte peak influent the systemic noise, or systemic noise influent the analyte,

it is just the point of view). The threshold value that separates baseline signals

from the analytes is derived from statistical parameters of the whole measurement.

Figure 5.1: 3D Example of blank measurements in decimal (A) and logarithmic
(B) scale.

5.1 Theory and calculation

The hypothesis arises from the following knowledge: analyte masses create

peaks in time axis. Therefore, analytes have rapid increase of maximal signal

above average signal. On the other hands, the baseline has just slow increase or

decrease of signal. One of the standard methods for automated data processing
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and observation is max-to-mean ratio R [99, 98, 128]:

R(mi) = XY (mi)/µY (mi), (5.1)

where mi [m/z] is the i−th mass of the measurement, XY (mi) is maximal intensity

of the i− th mass and µY (mi) is mean intensity of the i− th mass.

Figure 5.2: Example of mass signal max values (A), mass signal mean values (B),
mass signal max-to-mean ratio (C) and max-to-mean ratio histogram in continuous
representation (D) evokes heavy tailed distribution.

Max-to-mean ratio is still just a vector of values paired with the mi. Any

thresholding requires further pre-processing like smoothing or binning to reduce

the effects of minor observation errors. The number of binning intervals bi is

estimated via Sturges rule [101]:

bi = b1.5 + 3.3× log10(ℵ(R))c, (5.2)

where ℵ(R) is the amount of max-to-mean ratio values. Subsequently, the max-
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to-mean ratio R is binned into histogram h according to the estimated number bi

of intervals n. The most important value from the histogram is then the position

p, where is the maximal occurrence in the histogram plot. This position p is

equal to the average value of the max-to-mean ratio in normal distributions of R.

However, the distribution in real samples is more or less shifted and skewed and

also with heavy tails. The position of p is a priori unknown and identification of

the distribution is nontrivial task. The suggestion is to approximate the standard

deviation (positive square root of the second central moment) by weighted function

of interval difference (Equation 5.4.).

The standard deviation for discrete variables x is defined as√√√√ n∑
k=1

[xk − E(x)]2 × pk, (5.3)

where E(x) is mean value of variable x and pk is probability that variable x obtain

value xk.

Therefore, the histogram h represents the probability (non-normalized to

unity) of the max-to-mean ratio R. Then, the position n is average value of interval

defined by Sturges rule. The influence of binning simplification is approximated

by the heuristic [129] constant shift:

s =

√√√√ 1

ℵ(R)− 1

k=bi∑
k=1

[(n(k)− p)2 × h(k)] +
π

2
. (5.4)

Threshold value Th for max-to-mean ratio R depends on relation between the p

value and approximated standard deviation as is shown in Table 5.1. It adapts to

the actual position p via approximated standard deviation s as the compensation

of the histogram h shift from the ideal normal distribution.

if p > 3s > 2.576s > 1.96s > 1.645s > 0.674s = |p− s| < |p− s|
Th p− 3s > p− 2.576s p− 1.96s p− 1.645s p− 0.674s |p− s| p

Table 5.1: Description of adaptive threshold Th selection. Corresponding threshold Th is set to the p higher

then expressions in the first row.
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5.2 Results of baseline filtration

Computed threshold value is used for thresholding measurement mass

values m/z in max-to-mean ratio R domain. In other words, the contribution

of all m/z values with ratio R below threshold Th is classified as baseline. Those

masses are then removed from the measurement. Adaptive thresholding is very

fast analytical method. Total time of computation is about 0.03[sec] (CPU P8600,

2.4GHz, 4GB RAM).

Proposed adaptive thresholding removes baseline affection of individual

m/z values according to their behavior. This method is independent on absolute

intensity values. In other words, there is no fixed threshold on intensity levels.

That is nontrivial property which causes two eminent features. At first, even the

high intensity masses may be evaluated as baseline contribution, if present. And

at second, some small peaks, hidden in the noise, will arise after filtration process

as is shown in Figure 5.3C.

There is still open the question of max-to-mean ratio histogram fitting. Of

course, proper identification of probability density function produces exact values

of relevant central statistical moments instead of any approximation. However,

the task of function type specification [107, 108, 109] it the most puzzling issue.

Unfortunately, any analysis can only help in differentiating between hypothesis

or models [115]. Very strong results still do not prove that the correct function

was chosen [116]. Proposed approach of adaptive threshold method for baseline

removal in LC-MS measurement is focused on statistical approximation of systemic

noise contribution. On a real example, filtration of the m/z values belonging to the

baseline was illustrated. However, mathematically stronger approach is intuitively

developed in the next chapter.
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Figure 5.3: Examples of filtered blank (A) and analyte (B) measurement TICs.
Dash dotted line represents original raw data, doted line is for removed baseline
and solid line are the remaining peaks with random noise. Overlay of all peaks of
analyte measurement after filtration are illustrated on panel C.
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6 Noise filtration via probabilistic

theory

Liquid chromatography with mass spectrometry (LC-MS) detection is one

of the major tools in proteomics and metabolomics. Metabolite transformation by

protein enzymes and protein- and lipid-mediated signal transduction are elements

of the pathways responsible for the non-linear dynamics of living cells. The goal

of experiments in metabolomics and proteomics is to identify the molecule (or its

fragment) and quantify its amount, at the best inside the cell or in a representative

sample of the culture.

The experiment on determination of protein or metabolite concentration in

the sample consist in most cases of steps: 1) of sample collection, 2) set of physio-

chemical and mechanical operation such as filtration, extraction etc., 3) chemical or

biochemical operations such as chemical modification or enzyme cleavage, 4) sepa-

ration of chemical entities by chromatography, various electrochemical methods

etc. and detection. In this section are discussed the information content of LC-

MS measurement which combines chromatographic separation and detection of

the compound identity and quantity.

In LC-MS the compounds are chromatographically separated on the basis

of their physicochemical interactions with the chromatographic column material

in particular solvent system. All separated compounds come to the ion source and

where they are ionized. Resulting ions are resolved by (various types) of inter-

actions with electromagnetic field. The signal is then detected by detectors of

various constructions. Naturally, the various technical setups give rise to various

detailed relations between the nature of the analysed compound - analyte, ulti-

mately its chemical structure, and the signal measured at the detector. Yet, the
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application of general systems theory enable to analyse this, in fact, whole class

of experiments, in one natural generic way.

A novel method is proposed, based on system approach to LC-MS data

analysis. Because the presented noises have to correspond to some probabilistic

distributions, it is possible to approximate the distributions and identify the

parameters. Using this parameters helps to describe measurement more accurately.

This information could be used in addition for filtration or for further analysis

process. In this section, LC-MS measurement data output is described according

to the system approach point of view. Appropriate distributions of random noise

as well as systemic noise are selected and parameters identification is described.

Identified characteristics are used for probability factor evaluation. Two principles

of using of this probability information are illustrated on real measurements.

In this section is therefore demonstrated mathematical definition of the

problem of reliability of a LC-MS experiment, discussed the objective definition of

the origin and character of noise. Probabilistic approach is to correctly describe the

space created by chosen metabolite profile analysis (LC-MS) according to theory

of systems, where the term system means mathematical description of measure-

ment space. However, this approach is not confined to a particular experiment,

it represents a rather more precise description of measurement results generally.

Above all, this implement errors presence into the description. Thus, it put the

question of data interpretation according to probability theory as well as it try to

answer that question.

6.1 Probabilistic approach

Unfortunately, every measurement output data has its errors. Two basic

principals of error occurrence in LC-MS have to be mentioned. The first one, is

known as base line, sometimes called systemic noise, and in LC-MS is produced by

presence of mobile phase, that carry analytes through the LC column into MS. The

effect of the mobile phase is dependent on measurement device (LC), its setup and

mobile phase composition. During the analysis of the measurement, it is necessary

to keep in mind that in measurement output data the base line influence is always

present. The other one, called random noise, includes all unwanted sources of

69



Jan Urban Noise filtration via probabilistic theory

transient disturbances and it is always present too. Both of them affect the signal

transparency and can be also described according to the theory of systems.

Random noise (r) can be described as mapping

r : T ×M → ∪t∈T,m∈M | r(t,m) ∈ I, I = 0, 1, . . . , imax, (6.1)

and base line can be described formally in the same way marked by sign b(t,m):

q : T ×M → ∪t∈T,m∈M |q(t,m) ∈ I, I = 0, 1, ..., imax, (6.2)

The conditions for random noise and base line mappings are equal to condi-

tions for mapping of signal generating process. If one was able to define the gener-

ating process as mapping as well as noise then could be also defined mapping of real

signal of pure analytes (signal) contribution s(t,m). As was shown in eq. 3.3, the

mapping in t ∈ T defines the state. Consequently, the relation between mappings

for random noise (r), base line (q) and signal (s) in t ∈ T is

y(t) = s(t) + q(t) + r(t). (6.3)

Common object of interest is description of s(t) to reduce influence of

presented noise, which can produce false peak or hide signal under reasonable level.

Precise contributions of noise is unknown because of stochastic but the character-

istics may be estimated via probabilistic analysis. Afterwords, with the knowledge

of noise characteristic and measurement output data can be also estimated the

signal state in time t ∈ T :

s̃(t) = y(t)− q̃(t)− r̃(t). (6.4)

For values of estimation q̃(t) and/or s̃(t) are demanded to be the natural

numbers or zero, because there is not measured negative amount of molecules

in the MS detector. The signal is present or not and the contribution of base

line is positive (mobile phase elute during whole measurement). Problematic is

estimation of random noise r(t). Because sometimes the sum of ||q(t)|| and noise

estimation ||r(t)|| could be greater than measured γ(t) and the result of estimation
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||s̃(t)|| will be negative number. Simple solution of this problem is to set the

negative value to zero. Basically, estimations of exact values of the noise may not

be accurate even if the characteristic of noise could be estimated well.

Consequently, quantitative error and two kind of qualitative errors could be

made. In quantitative case, this is the common error of the estimation solutions,

the estimated value of analyte intensity s̃(t,m) differs to real but unknown value

s(t,m). The qualitative errors of estimation are the same as in another detection

tasks or in hypothesis testing. They are known as false reject (false negative in

some literature) and false alarm (false positive, false accept) ([130]).

False reject happens where the analyte is present but s̃(t,m) is equals to

zero. On the other hand, false alarm means positive value of s̃(t,m) when the

analyte is not present. Generally, the quantity is not precise because of random

noise and none processing of the data causes no false reject but remains all of false

alarms. To reduce quantitative errors, it is advisable to replicate the measurement

of the same sample many times. Therefore, it is not the key problem of analysis of

single one measurement. But the estimation of exact values will produce the qual-

itative errors. It can decrease the false alarms but increase the false rejects. The

most of filtration methods is designed to decrease the false alarms. The optimal

rate between false alarms and false rejects is nontrivial question. In metabolomics

research, several tasks vary in sensitivity to this qualitative errors. For example,

false rejects in poison detection may cause wrong interpretation more frequently

then false alarms of unknown analyte spike occurance. From this point of view,

error ratio based directly on given task is more suitable.

The error ratio produced by filtration algorithms could be tuned via some

parameters, but the relation between them is generally not evident. Especially

when there are several steps in the filtration which can be tuned independently.

In this section another approach is proposed. Instead of value estimation

of signal intensities s̃(t,m) which is errorfull, it evaluate probability factor p(t,m)

that the measurement output data y(t,m) is signal s(t,m):

p(t,m) = p [y(t,m) = s(t,m)|λq, λr] , (6.5)

where λq and λr is estimated characteristic of mapping q(t,m) and mapping r(t,m)
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respectively. The probability factor p(t,m) means probability that analyte with

molecular mass m in retention time t has intensity y(t,m). Probability p(t,m) is

multiplication of two independent probabilities ([89]). The first one is probability

pr(t,m) that measurement data output y(t,m) is not produced by random noise

r(t,m). The second one is the probability pq(t,m) that measurement data output

y(t,m) is not produced by systematic noise q(t,m). And the final probability

p(t,m) is

p(t,m) = pr(t,m)× pq(t,m). (6.6)

With probability factor p(t,m) which can be evaluated precisely with good

noise characteristic, the error ratio can be tuned directly for any task. Subsequent

filtration and/or analysing steps can propagate this probability to its outputs via

probability theory formulas.

6.2 Estimation of random noise characteristics

In LC-MS measurement, it is considered as random noise, any unwanted

influence during measuring process which causes imprecise equality of measured

data output y(t,m) to the analyte intensity s(t,m) and it is not the contribu-

tion of mobile phase. Sources of random noise could be small substances eluted

from stationary phase in LC column, impurities of the mobile phase, ionisation

disturbances and short term variation in signal intensity on MS detector [73].

Increasing eluted amount from LC column also increases possibility to error occur-

rence. Therefore, characteristics of random noise vary in every retention time. It

is necessary to analyse the characteristics in every retention time independently.

Thus, it is assumed fixed retention time and as the region of interest becomes only

actual mass spectrum.

This section is focused on random noise mapping characteristic estimation

and its using to evaluate probability factor. Random noise during measuring

process is considered as Gaussian probability distribution function (PDF) with

differentiate in statistic order moments (median, variance, skewness, etc.). This

is implicated directly from the common device feature known as sensitivity. From

physical point of view, it is impossible to develop measurement device able to
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measure precisely in whole range of values w ∈ W = w0, w1, w2, . . . , wmax. It

produce changes not only in accuracy in values w ∈ W close to the range borders

w0 and wmax, which is often considered, but also means that the possibility for

values to be measured is not constant in the detectable range (3.4). There are

several ways how to deal with the limitations. One of the suboptimal solutions

is to separate the whole range W into higher number of intervals. Of course, for

correct interpretation of the measurement data output is demand to know the

PDF. If measuring of ’nothing’, no given reasonable input signal, produce own

PDF, then the signal, value of given mass in given time, is just a disturbance in

noise PDF.

Range of detectable molecular mass is wide and a typical mass spectrum,

produced by LC-MS, contains a few bars of ’high’ intensity and a lot of ’small’

ones. It is advisable to reduce intensity range by a compression function, like

logarithm. Only positive intensity values are taken into account and logarithmic

domain is assumed below

ly(m) = ln [y(m)] . (6.7)

MS detector sensitivity is not strictly constant for various molecular masses

(m/z) and should be normalized. Several methods to reach normalization function

are possible. For example, sensitivity characteristics can be obtained by smoothing

of mass spectrum with low-pass filter.

Probability pr(m) is evaluated as

pr(m) =
p [ly(m)|λls+lq] p(s+ q)

p [ly(m)|λlr] p(r) + p [ly(m)|λls+lq] p(s+ q)
, (6.8)

where p(s+ q) is a priory probability of analyte and mobile phase occurrence, p(r)

is a priory probability of random noise occurrence and sum of p(s + q) and p(r)

is equals to one. λls+lq is characteristic of sum of analyte intensity and system-

atic noise in logarithmic domain, λlr is characteristic of random noise in loga-

rithmic domain. Those characteristics are a priory unknown but may be esti-

mated from normalized logarithmed measurement data output. After analysis

of data histograms, Normal distribution for random noise and shifted Rayleigh

distribution for sum of analyte intensities and mobile phase as appropriate approx-
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imations were chosen. Characteristic parameters of random noise distribution are

mean value µr and standard deviation σr values of whole logarithm mass spectrum.

Usually, there is a lot of small ’noisy’ bars of impurities around main analyte bars

present in mass spectrum. Therefore, analyte intensities are only disturbances in

normal distribution and in logarithmic domain one can assume that

µr [lr(m) + ls(m)] ∼= µ [lr(m)] (6.9)

For λls+lq distribution, its variance parameter is 4σ2
r and offset is µr + σr.

6.3 Estimation of systematic noise characteris-

tics

For analyse characteristics of mobile phase contribution, helpful advan-

tage is at disposal. Measurement with no analyte, but under same condition as

measurement of analytes, called blank could be done. This measurement can not

produce exact values of mobile phase intensities because of random noise and

other disturbances (e.g. chemical influence, ionisation nonlinearities). But the

blank measurement is a valuable information for analysis of its characteristics. It

also can be estimated without the blank measurement but with higher error level.

It gives the molecular masses presented in mobile phase, that are detectable by

MS. Moreover, the run in retention time is available for every molecular mass.

This time-run for every molecular mass which is present in the blank is analyzed

independently. Thus, here is assumed fixed molecular mass and as the region of

interest become only single one time-run below. Then, the approach of analyse

is formally the same as in the random noise case. The logarithmic compression

function

ly(t) = ln [y(t)] , (6.10)

is used to transform blank data output as well as further measurement with

analytes under the same conditions. Mean value µq and standard deviation σq

of ly(t) is computed as parameters of Normal distribution, which is used for esti-
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mation of systematic noise probability pq(t):

pq(t) =
p [ly(t)|λls+lr] p(s+ r)

p [ly(t)|λlq] p(q) + p [ly(t)|λls+lr] p(s+ r)
, (6.11)

where p(s+r) is a priory probability of analyte with random noise occurrence, p(q)

is a priory probability of systematic noise occurrence and sum of p(s+ r) and p(q)

is equals to one. λls+lr is characteristic of sum of analyte intensity and random

noise in logarithmic domain, λlq is characteristic of systematic noise in logarithmic

domain. λls+lr is shifted Rayleigh distribution, its parameters are evaluated in the

same way as in previous section: 4σ2
q and offset is µq + σq.

Probability p(t,m) is then evaluated with estimations of both noises via

equation 6.6.

6.4 Advantages of probabilistic approach

Understanding to the measurement is more straightforward according to the

estimated probability p(t,m) because this information is available for all y(t,m).

Therefore, there is only one parameter which characterizes quality of the measure-

ment data output during interpretation itself. No other parameters like SNR or

intensity levels in blank need to be evaluated and tuned. In praxis, there are

basically two principles how to deal with this probability information.

The first one, a fixed threshold value Th can be tuned for any step of

further output analysis. For example, Th = 0.5 means that all intensity values

y(t,m) with probability p(t,m) lower then 50% will be ignored. When the higher

Th is set, the total number of credible data points decreases as well as number of

false alarms but possibility of false rejects occurrence increases. When the lower

Th is used the oposite situation happens, naturally.

The second principle is to use whole probabilistic information in further

output analysis. This case is more advisable because no part of measurement data

output and no probabilistic information are discarded. Of course, all analysis steps

have to support processing of uncertain data characterized by probability values

p(t,m). Unfortunately, the most of common analysis algorithms assume exact

data only although no real data are accurate and noise-free.
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6.5 Probabilistic filtration of Nystatin in the

Nostoc sp. extract

For clear illustration of the probabilistic approach and two principles how

to deal with p(t,m) information, a simple correlation between three measured

spectra of known substance has been done. Well known antifungal drug Nystatin

[131] was selected (Formula C47H75NO17, mol. mass 926.09, structure is depicted

in Figure 6.1). Every spectrum was selected from individual measurement. The

first measurement was pure analyte in concentration 0.5mg/ml which was taken as

a Reference. The second measurement (marked as Pure) was again pure analyte

but in very low concentration 0.5µg/ml. In both measurements, the noise level is

similar but SNR in much more different because of different concentrations. The

third measurement (marked as Mix ) was mixture of Nystatin in concentration

0.05mg/ml and 70% MeOH extract from cyanobacteria Nostoc sp. This measure-

ment simulated real conditions of unknown analyte detection. Analysed spectra

were selected from retention time where the analyte intensity reached the highest

value. All measurements were analysed by the probabilistic approach and corre-

sponding p(t,m) were computed. Examined spectra and their probabilities are

shown in Figure 6.2.

Figure 6.1: Chemical structure of Nystatin molecule.

Because there are two principles how to deal with probability information

and some basic approaches also, the correlation criterion proposed by Vaněk ([132])
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Figure 6.2: Chromatograms, spectra of Nystatin, probability factors and prob-
ability weighted spectra for all examined examples with thresholds illustration.
The first row shows TIC chromatograms of source measurements (Nystatin peak
is marked). The second row shows original Nystatin spectra in maximum peak
time point. The third row shows evaluated probability factors of spectra from
row two. The last row shows illustration of the spectra intensity according to the
probability factors.
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was used to show the differences:

R(Y1, Y2) =
C(Y1, Y2)√

C(Y1, Y1)C(Y2, Y2)
, (6.12)

where Y1 means reference spectrum and Y2 means filtered spectrum. C(Y1, Y2) is

covariance defined as

C(Y1, Y2) =
1

M − 1

M∑
m=1

[y1(m)− µ1][y2(m)− µ2], (6.13)

where y1(m) and y2(m) are intensity values of m-th molecular mass of spectra Y1

and Y2, respectively. µ1 and µ2 are average values of spectra intensities.

Four different measurement filtrations were examined using correlation

criterion. The first one was original unfiltered data. In the second case, fixed

relative intensity thresholds were used. For example, three various thresholds

were evaluated as 5%, 15% and 30% of maximal intensity in spectrum. In the

third case, the first principle of probabilistic approach was applied. For another

example, the same three thresholds were evaluated but as limiting values of prob-

abilty p(t,m). The last case shows the second principle of probabilistic approach.

The information about p(t,m) is directly used during the correlation evaluation.

The correlation weighted by p(t,m) is defined as

Rp(Y1, Y2, P ) =
Cp(Y1, Y2, P )√

Cp(Y1, Y1, P )Cp(Y2, Y2, P )
, (6.14)

where P is p(t,m) in retention time t and Cp(Y1, Y2, P ) is weighted covariance

Cp(Y1, Y2, P ) =

∑M
m=1 p(m)[y1(m)− µ1][y2(m)− µ2]

(M − 1)
∑M

m=1 p(m)
. (6.15)

All results of correlations of Pure and Mix with Reference are in Table 6.1.

The correlation between reference spectrum and Unfiltered Pure spectrum is pretty

high because in both measurements were presented only analyte alone. The SNR

in Pure was lower then in Reference because of different concentration thus the

correlation is 98.37%. In simulated real-like sample Mix, significantly higher noise
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Table 6.1: Spectra correlation of Pure and Mix with Reference
R(Y1, Y2) Pure Mix
Unfiltered 98.37% 59.03%

Fix. Th. 5% 99.11% 60.37%
Fix. Th. 15% 99.54% 69.64%
Fix. Th. 30% 98.52% 76.23%
Fix. Prob. 5% 99.50% 84.45%
Fix. Prob. 15% 99.54% 90.75%
Fix. Prob. 30% 99.54% 90.68%

Prob.Corr. 99.67% 95.93%

level is presented and decreases the correlation to 59.03%. The results of various

fixed relative intensity thresholds are unstable. A higher thresholds are better

for Mix but not for Pure. The correlation is very sensitive to proper threshold

value. In this case, the balance between false rejects and false alarms is difficult to

tune because filtration results are unpredictable. In first principle of probabilistic

approach, both results and balance between false rejects and false alarms are more

stable. In addition, the correlation criterion is significantly higher especialy in Mix

sample. It is produced by more objective noise characterisation. In the second

principle of probabilistic approach, the correlation results are even better then in

the first principle because no information was lost. Question about false rejects and

false alarms is more complicated because no detected ions are discarded. Instead

of it, probabilities p(t,m) of true detections are still stored for further processing

(see Figure 6.2).

In this section was proposed a probabilistic approach to analyse LC-MS

measurement. This approach is focused on proper characterisation of presented

noise. Noise produced by mobile phase is characterised separately to random

noise contribution. Information about the both of noise characterisations were

integrated into probability factor. Further, two principles of using the probability

information were discussed. On a simple example was illustrated advantage of

the probabilistic approach. Performance between the two principles and between

classical fixed threshold approach was compared.

Recently, was published ([89]) this information-based approach for extrac-
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tion of spectra of LC-MS data. There are reliable detect peaks, random and

systematic noise (ridges) and store them and their statistical properties. Apart

from electrical spikes, the whole spectra may be reconstructed from resulting

dataset without loss of existent information. Certainly it rely on accepted model

of LC-MS process, but are already introduced many amendments to it which can

only make the model compatible with available data.
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7 Conclusion

In this thesis was introduced the system based approach to the description

and processing of LC-MS measurement data. The abstract model was constructed

according to the system theory. Thus, definitions of attributes and their sets of

variables are consistent and explicit for all processing/analysis steps as well as

mapped Cartesian product(s).

In the introduction, hypothesis was assumed in which the raw measurement

data output of LC-MS consist of three partial contributions, the analyte signal,

the random noise and the systemic noise. In LC-MS there are also spike signals of

several mass values in time axis (in SICs). They can be considered as random noise

in the time or may represent the effect of Shannon-Nyquist-Kotelnikov aliasing.

The determination of spikes origin requires construction of complex experiments

which would be difficult to interpret, or even impossible.

The separation process of the data parts (signal and noises) could be

estimated using the probabilistic approach. The verification process was described

on example in the last chapter and in the Appendix A.

Also, the current state of data handling was studied. All the main types

of processing and most popular methods were mentioned. However, the overview

could not be exhausting and finite. Therefore, some literature was recommended

for additional details.

The move toward practical part of this thesis was introduced by the

construction steps of abstract model. Main attributes and properties of the

system (mappings and conditional attributes) were described in a proper math-
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ematical space. The rest of the thesis works with defined system of LC-MS

measurements in certain level.

Blank based time alignment was introduced for LC-MS measurements

obtained under the same conditions, as is usual in metabolomics. This approach

was tested during several experiments and it is implemented in software which

was developed (see Appendix D).

Tools for noise behavior estimation via probabilistic theory were described

in the last section. Computation of probability that the obtained signal is a signal

or one of the noises (random or systemic) allows to separate the measurement into

parts proposed in the introduction. This approach is able to pinpoint the signal

of low intensity hidden in the noise. Moreover, it can be tuned by the operator

which level of probability worth for his consideration.

The probabilistic approach implementation as Matlab runtime application

was published in the Bioinformatics Journal and it is now in use in the Depart-

ment of the Phototropic microorganisms of the Institute of Microbiology of the

Academy of Science of the Czech republic in Třeboň, where helps with analysis

of measured extracts from green algae and cyanobacterias.

’It is also clear that there are still many opportunities for algorithmic devel-

opment’ ([11]). The resolwing power requires theory of direct determination, while

IUPAC peak valley definition fails in low-res measurements. There is still no way

how to fit exactly the function consist of two different PDFs, even the one is usually

estimated from the small set of well known functions. General mathematical defi-

nition of the peak does not exist, it is usually aproximated by the Gaussian or

its derivation, often ignoring fluctuations or tailings. Algorithmization of chem-

ical rules for fragmentation and adducts has problems with huge order of possible

permutations. Useful metric for spectra comparison is also missing.
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Jan Urban is the first author of followed Applications note in Bioinfor-

matics Journal. He designed and performed the data processing, analysis as well

as evaluation of the results. He is also the author of all figures, key idea of the

article and had major contribution in writing of the paper.
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The manuscript Cytotoxicity and Secondary Metabolites Production in

Terrestrial Nostoc Strains, Originating From Different Climatic/Geographic

Regions and Habitats: Is Their Cytotoxicity Environmentally Dependent? was

accepted for publication in Environmental Toxicology.

Jan Urban performed the chromatogram analysis of the measurements in

order to reveal molecular ions of low intensity, and for filtration of noise in the

chromatograms. He also participated on the creation of figures 2., 3., and 6. and

wrote the part of Chromatogram analysis.
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Replicates of different concentration of pure cyanobacterial hepatotoxin

microcystin-LR and its mixtures in extracts of the food additives were measured

in the Nofima Mat, Ås, Norway. The first draft of the manuscript based on that

measurements is on the following pages.

Jan Urban was collaborated with the preparation of Stigeoclonium extract

as well as with the MCYST-LR dilutions. He also performed both, manual and

automatic analysis of measured data. Jan Urban evaluated calibration curves fits

from obtained reports and he is the author of all figures and tables. Together

with Pavel Hrouzek he wrote the draft.

doc. RNDr. Dalibor Štys, CSc.

Institute of Physical Biology

University of South Bohemia
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Appendix D

It was developed a software tool with simple User Graphical Interface in

Matlab 7.7.0 (R2008b) for loading the measurements and/or blank (if available for

discarding peaks presented in blank) and estimate the noise PDFs. Since there

are no user-defined parameters or controls to play, the program runs completely

automatically. It reads the results of the measurement and the results of the

empty run. You specify the confidence level (probability) with which you want

to detect peaks, and the program derives the peaks. The results are shown either

as standard graphs, table of compounds, peaks and their probabilities possibly

as a 3D diagram. These results are highly encouraging, exceeding the ability of

the operator who performed the manual interpretation. The software is still being

continuously adapted to different types of data and instruments. The presented

method is based on a physical model of what happens within the LC-MS instru-

ment, and is therefore superior to other existing methods usually based on general

heuristic rules. The software may be used for multiple purposes: for expert data

assessment, automated generation of the compound databases, performance anal-

ysis of the instrument, for validity assessment of biological models etc. Additional

details are described in the Expertomica Metabolite Profiling manual.
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Expertomica Metabolite Profiling
 

1. Introduction

EDA is Graphical User Interface and Matlab compiled application for filtration of LC-MS or GC-
MS, based on probalistic methods. Including peaks and compounds segmentation with various 
visualizations.

Optimal RAM size installed on computer is 1GB or higher, speed of computations decrease rapidly 
with less amount of memory (caussed by swapping).

 

2. Install

a) Install Matlab(R) Compiler Runtime 7.9 running MCRInstaller.exe.

and follow the instructions



b) Reboot your computer

c) Unpack all files from eda.zip into your folder.

 

3. Start application

Run eda.exe and press Enter, You will see a command line window 

(do not close - closing command line window will terminated whole application!)

and main window of EDA.

 



 

 

 

 

 

 

 

 

 

 

 

 

Initialisation may take a while.

4. Insert measurement into application

EDA can currently read Agillent text files, Thermo text files and JCAMP-DX data files (ascii 
formats, see authors web page for new version or directly contact them for implementation of Your 
own file format).

From menu File \ Load Measurement (or use button Measurement from panel Load 
ascii in EDA main window or hotkey ctrl+m instead) select ascii file with Your measurement 
in one of the supported fortmats and confirm.

 

 

 

 

 

 

 

 

Loading ascii into data matrix takes a while, You will see a progress bar during process.



For loading blank (measurement without sample) use menu File \ Load Blank (or button 
Blank from panel Load ascii in EDA main window or hotkey ctrl+b), select Your ascii file 
and confirm. Again, You will see a progress bar.

Once You have saved the data in mat file (Matlab format, see 5. Save dataset for details), You 
can also load it. From menu File \ Open mat (or button in panel Current mat file in 
EDA main window or hotkey ctrl+o) select mat file with Your dataset and confirm.

Application will check data integrity and content. Depending on Your decision during previous 
saving, can be be opened one of this items:

• Data with Analysis - measurement (and blank, if available) with computed 
probabilities, list of segmented compounds and its peaks



 

• Data only - blank or measurement or both (if available).

EDA will automatically ask You according to dataset presented in mat file.

 

In panel Measurement origin You will see name of file with currently opened/loaded 
measurement (No measurement for none). Measurement can be loaded from ascii file or 
opened from mat file.

In panel Blank origin You will see name of file with currently opened/loaded blank (No 
blank for none). Again, blank can be loaded from ascii file or opened from mat file.

On button in Current mat file panel You will see name of currently opened mat file 
(None... for none)



 

You can easily combine data from loading ascii and opening mat, for example: load measurement 
from ascii file and open only blank from mat file (mat file may include different measurement).



 

 

5. Save dataset

Loaded measurement or blank or both from ascii file can be simply saved in menu File \ Save 
Data (M or B) (or hotkey ctrl+s). Select name (default name is same as loaded ascii file, only 
extension is replaced by mat), where You want to have dataset stored and confirm. 

Computed analysis (see 6. Analysing) of measurement (or measurement with blank) can be also 
saved as mat file. Measurement and blank (if available) used for analysing are stored together with 
analysis. From menu File \ Save analysis (+Data) as and select name for mat file to 
storage Your dataset and confirm.

EDA may stop responding to other actions during saving process.

 

6. Analysing

After loading or opening measurement or measurement with blank or analysis dataset, EDA enables 
panel Analysing

where You can choose by radiobuttons analysis of Measurement + Blank or analysis of 



Measurement only (depends on opened/loaded dataset). Analysis itself is started by clicking 
button Analyse in the panel. Computation of all analysing methods, filtration, probabilities 
computation, peaks and compound segmentation is indicated by progress bar. Speed depends on 
computer memory and processor frequency.

When analysing process finished, EDA enables two result panels - Detected compounds and 
Visualization (For detail information see 7. Visualization or 8.Peaks and Compounds).

 

7. Visualization

Loaded measurement or blank can be ploted using radio buttons in subpanel Data plot in panel 
Visualization, where you can also choose the type of data visualised from the measurement or 
blank. 

All plots are figured after clicking the button Plot. You will see a new figure with two subplots, 
upper one for TIC (Total Ion Chromatogram) and lower one for mass spectrum.



Use mouse right button in TIC to select exact time in upper figure for plottting related mass 
spectrum in lower figure.



 

a) Check box Relative (On) / Absolute (Off) determine scale on y axis.



 

 

b) Check box Colored (Slower) determine using different colours for bars in mass spectrum. 
This option require little bit more computer memory to proceed.

c) Check box Single mass allow to plot selected m/z value in time.



No mass spectrum will be ploted for single mass (it is nonsense).

 

After finishing analysis of Your data, more radio buttons will be enabled in Data plot 
subpanel.

All check boxes are the same as in previous case. Using different radio buttons You can 
plot contribution of Random noise or Systematic noise (base line) in Your 
measurement as well as Measurement without random noise or Measurement 



without systematic noise (means without both noises, random noise was removed 
before the algorithms for systematic noise were applied).

You can also plot only masses, that have peak behaviour in time with certain level of probability 
(cf). For selecting the minimal cf value of ploted peaks use the slider in subpanel Data plot. 
Default value is 75% and maximal value is equal to maximal probability in the whole measurement.

All plots are figured after clicking the button Plot.

8. Peaks and Compounds

After analysing process finished, EDA enables Detected compounds panel.

Between button Plot only compound # then You will see number of detected compounds. 
Using slider on the right-top will select which one of detected compounds You want to see in detail. 
Also the Retention time of compound intensity maximum will be displayed in window 
bellow

Check boxes Colored (Slower) and Relative (On) / Absolute (Off) have 
exactly the same function as in previous case (7. Visualization).

Button Plot only compound # will plot two figures, upper one for TIC (Total Ion 
Chromatogram) and lower one for mass spectrum. Both only for selected compound.



Slider for Peaks with cf> determine value of prabability for ploting TIC and mass spectrum.

Button Plot comp. peaks will plot time behaviour of all masses in selected compound.

Button Integrative spectrum will plot mass spectrum across whole compound.



All mass spectrum plots may be zoomed using icon of macnifying glass and selection of region of 
interest. For zoom reset use double click of left mouse button.



Another icon Data cursor allow to describe plot points. Hold alt on Your keybord to allow 
multiple data cursors.



 

9. Export Data

From menu File/Export Data create a txt file with the results of Analysis (table of 
compounds, peaks and their properities)



10. Main menu

In left upper corner You can find menu toolbar 

where

- File contains items for Open mat, Load Blank, Load Measurement, Save Data, Save Analysis, 
Export Data and Quit (see 4. Insert measurement into application and 5. Save dataset for details)

Before Quit You willbe asked for saving data.

- Edit contains items for Clear blank, Clear measurement, Clear analysis or Clear all from the 
computer memory.

- View items allows to plot 3D mesh of Blank, Measurement, or Analysis in decadic or log scale.



- Tools contains items for Analysis (see 6. Analysing for details) and Set Current directory

- Help allows to read this help and some basic informations about the program.

 

MATLAB(R) is registered trademark of The MathWorks, Inc http://www.mathworks.com



Appendix E

Non-optimized version of the processing/analysis steps was also imple-

mented in C/C++ stand alone application called MetDB. The MetDB in version

2.5 includes database, using C++ Data Object Library 7.1. (DOL, [133]).

Database uses two main classes according to the system based description of the

measurement.

class Slice {

public:

int numion;

float time;

float *mass;

int *intensity;

char Countms;

float precursor;

Slice(); //konstruktor

~Slice(); //destruktor

};

class Measurement {

protected:

int numslices;

Slice **slices;
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public:

int loadThermoTxt(char *name);

int loadAscii(char *name);

int loadJCAMP(char *name);

int load(char *name);

int save(char *name);

Measurement(); //konstructor

~Measurement(); //destructor

};

Every measurement is composed of series of slices - mass spectra in one

time point. Each slice has series of pairs mass and intensity. Integer variable

numion is for amount of pairs.

The MetDB v2.5 is a console application without any GUI (Graphical user

interface) as it is described in the attached user’s guide. The results of the process-

ing/analysis are PRT ascii reports with the some structure as in Expertomica

metabolite profiling. Several functions of this application are still developed.
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MetDB v2.5
User's Manual

MetDB is an object oriented database for storing and filtering metabolomic measurements 
from GC/MS or LC/MC. This version run under MS Dos or Command promt under Windows. 

For start the run of the program please type „metdb stdin“ in your Metdb directory.

1.1 Opening New Database
Type „openNewDB dbPath adminID password“, where
 - dbPath is path to your existing directory for new database files and name for database.
 - adminID is your identification, it is case sensitive
 - password is chain of numbers and letters, it is case sensitive
and press enter. Your new database was created.

1.2 Openig Existing Database
Type „openDB dbPath“, where
 - dbPath is path to your existing directory with some database files.
Press enter and log in „M adminID password“, where M is mode you want to use for 
acces the database. Sellect from control user „C“ which represents database administrator; 
active user „A“ - can make changes in databese; and passive user „P“ - can only watch 
existing data.

2.1 Add measurement into database
As input it use Agilent ascii format or Thermo Xcalibur text format. Once you have opened 
your database, type „import data\file.ext F“.
 data\file.ext is path to the file with the measurement you want to add into database 
and file's name and extension.
F is a symbol for file format, „A“ for Agilent or „T“ for Thermo. Usually Agilent use 
ascii as extension and Thermo txt, but it is not always true.

2.2 Process filtering and peak segmentation
Type „PeaksH measName“ where
measName is a name of measurement you want to process, it is same as the file name, but 
without extension.

2.3 Export results
Type „export measName“.
In your database directory you wil se two new files „measName.svg“ and 
„measName.prt“. Svg is image of 3D represantation of filtered data. Open it in your 
Internet browser. Prt is text file with list of detected substances and their fragments with 
mass, retention time, intensity and statistical characteristics. 

3.1 Save
Type „save“ for saving all changes you made in your database.

3.2 Ending work
Type „exit“ for close your database. Be sure you saved your work before using this 
command.



Jan Urban Appendix E

UML class diagram of the structure of a MetDB system’s classes and their
relationships.
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Appendix F

Software for processing/analysis of LC-MS measurements by

main producers:

Thermo Scientific (www.thermo.com)

• Xcalibur - measurement device controll, basic processing, reports, integration

of external modules.

• Quick Quan drug discovery tool, automatic procedures, high-throughput,

LC-MS/MS.

• BioWorks identification of proteins, SEQUEST searching algorithm.

• Mass Frontier - analysis of measured datasets, especially MS/MS, prediction

of fragmentation, compounds identification, database of fragmentation.

• MetWorks metabolites, structure identification, integration of Xcaluburu

and Mass Frontier properties into one, molecules identification by combina-

tion of precise mass measurement and MS/MS measurement.

Waters Corporation: (www.waters.com)

• Mass Lynx measurement device controll, basic processing of measurements

with rounded mass values, high precision mass values, MS/MS fragmenta-

tion. Consist of peak detector, quantitative estimation, molecular formula

estimation fom high precision mass and isotopes.
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• Inspector - converting tool of several data formats.

Applied Biosystems: (www.appliedbiosystems.com)

• Analyst measurement device controll, basic processing and analysis.

• BioAnalyst identification and characterization of peptides and proteins.

• LightSight searching and identification of metabolites, automatic peak

detection, MS/MS spectra analysis.

• MarkerView tool for experiments analysis, biomarkers searching, statistical

evaluation, changes of metabolites groups.

Bruker Daltonics: (www.bdal.de)

• MetaboliteTools prediction and detection of metabolites changes across

samples, automatic peak detection.

• ProfileAnalyst analysis and statistical comparison of measurement series,

searching for biomarkers.

Agilent Technologies: (www.agilent.com)

• ChemStation visualization of measured datasets, standard application for

reports generator and quantitative analysis.

• Mass Hunter data analysis, metabolite identification, automatic peak

detection, high precission mass values, MS/MS.

Shimadzu: (www.ssi.shimadzu.com)

• LCMSsolution measuremnt device controll and basic processing. Peak

integration for MS, UV and PDA.

F-2



Jan Urban Appendix F

ACD Labs: (www.acdlabs.com)

• MS Processor basic processing of LC-MS/MS measurement.

• IntelliXtract analysis of LC-MS measurements, automatic or manual

peak detection, spectra deconvolution, compounds assembling considering

isotopes as well as fragmentations. Confidential estimation from C12/C13

ratio. Ability to read all main file formats.

• MS Manager overlay of MS Processor and IntelliXtract.

BioAnalyte: (www.bioanalyte.com)

• ProTrawler quick processing, ability to read main file formats, automatic

peak detection, spectra deconvolution.

• Regatta overlay for results from ProTrawler, analysis of measurement

differences, detected peaks comparison.
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