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Abstrakt 
Tato disertační práce se zabývá biometrickým rozpoznáváním 3D obličejů. V úvodu práce 
jsou prezentovány současné metody a techniky pro rozpoznávání. Následně je navržen nový 
algoritmus, který využívá tzv. multialgoritmickou biometrickou fúzi. Vstupní snímek 3D 
obličeje je paralelně zpracování dílčími rozpoznávacími podalgoritmy a celkové rozhodnutí 
o identitě nebo verifikaci identity uživatele je výsledkem sloučení výstupu těchto podalgo-
ritmů. Rozpoznávací algoritmus byl testován na veřejně přístupné databázi 3D obličejů 
F R G C v 2.0 i vlastních databázích, které byly pořízeny pomocí senzorů Microsoft Kinect 
a SoftKinetic DS325. 

This Ph.D. thesis deals with the biometric recognition of 3D faces. Contemporary recogni­
tion methods and techniques are presented first. After that, the new recognition algorithm 
is proposed. It is based on the multialgorithmic fusion. The input 3D face scan is processed 
by the individual recognition units and the final decision about the subject identity is the 
result of combination of involved recognition unit outputs. Proposed approach has been 
tested on the publicly available F R G C v 2.0 database as well as on our own databases 
acquired with the Microsoft Kinect and SoftKinetic DS325 sensors. 
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C h a p t e r 1 

Introduction 

Face recognition is one of the most frequently used biometric techniques. In everyday life, 
we recognize other people by their faces. We are able to localize a face in a very large and 
complicated scene. Also the detection of anatomical features, like nose, eyes, and mouth 
position within the face, does not pose us difficulties. Furthermore, we can recognize faces 
from various angles, even if face expressions are present or a part of a face is covered. Many 
activities that we do completely automatically with no effort become quite difficult if we 
try to describe this process mathematically. 

Nevertheless, a lot of research has been done in the area of the biometric face recogni­
tion, especially in the three-dimensional recognition in recent years. The 2D face biometric 
has become together with fingerprints a part of biometric passports in the European Union 
and all member states of the I C A O {International Civil Aviation Organization). Another 
biometric modality that is used in the biometric passports is the iris. The face was rec­
ommended as the primary biometrics, mandatory for global interoperability in passport 
inspection systems, while the finger and iris were recommended as secondary biometrics to 
be used at the discretion of the passport-issuing state [44]. 

The biometric face recognition, which is the main focus of this work, has a wide applica­
tion in practice, e.g. the biometric passports, as was mentioned above, or in access control 
systems. Because of its nature, which is very similar to the way we usually recognize each 
other, it is very well accepted by users. No special activity is required by the data subject 
and the recognition process is non-intrusive, which means that the data subject is not in 
the direct contact with the sensor. 

1.1 Chapters Overview 

This work is about the biometric face recognition and all connected matters. In the sec­
ond chapter, basic terms related to the biometrics are explained and a general biometric 
system is described. The methods of evaluating the biometric system performance as well 
as general classification of multibiometric systems are also presented in the second chapter. 
The third chapter describes the process of obtaining a three dimensional data. Commercial 
devices that are able to scan human faces are mentioned. Finally, the available three dimen­
sional databases are described. The fourth chapter brings an overview of face recognition 
techniques. In the fifth chapter, a proposal of the 3D face recognition algorithm, which 
is the main goal of this work, is described. The sixth chapter contains an evaluation of 
proposed algorithm and describes the achieved results. 
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C h a p t e r 2 

Biometrics 

In this chapter, biometrics and related terms will be explained. The definitions provided 
here are from the ISO standard Harmonized Biometric Vocabulary [29], the paper [33] by 
Jain and Ross, and the first chapter in their book Handbook of Biometrics [32]. 

Biometrics refers to methods for uniquely recognizing individuals based upon one or 
more intrinsic physiological or behavioral characteristics. The physiological characteristics, 
sometimes called anatomical characteristics, refer to the characteristics that are always 
present on data subject's action independently. Biometric methods based on the physio­
logical characteristics are called static, while biometric methods based on the behavioral 
characteristics are called dynamic. Dynamic characteristics are connected with some data 
subject's action. Each capture in different time can provide different results. Some examples 
of the physiological and the behavioral characteristics are in the Table 2.1. 

2.1 Fundamental Biometric Terms 

There are more terms related to the biometrics and the biometric recognition. A short list 
with explanation of these terms is provided below: 

Identity - The identity of an individual may be viewed as the information associated with 
that person in a particular identity management system. A n individual can have more 
than one electronic identity. 

Identification - The identification is the process when the biometric system recognizes 
an individual by comparing his/her characteristics with all templates stored in the 
biometric database. The result of the identification is the data subject's identity or 
"not recognized". 

Table 2.1: Examples of physiological and behavioral biometric characteristics. 

Physiological characteristics Behavioral characteristics 
Fingerprints Voice 

Face Gait (walk) 
Iris Lips motions 

D N A Signature dynamics 
Palm veins Keystroke dynamics 

4 



Verification - On the other hand, the verification is the process when the data subject 
provides his/her claimed identity and the system has to decide if it is true or not, on 
the basis of his/her biometric characteristics. 

Every biometric feature used in some biometric system should provide these character­
istics: 

Universality - Every person should have the characteristic. 

Uniqueness - No two persons should be the same in terms of the characteristic. 

Permanence - The characteristic should be time invariant. 

Collectability - The characteristic should be measured quantitatively. 

Regarding the 3D face recognition, the universality and collectability is fulfilled. But it 
should be taken into account that hairstyle, clothes covering a part of the face or glasses 
may be quite a challenging problem for a face-based biometric system. The uniqueness 
holds to some extent. Although recognition and identification based only on photographs 
pose no problem to humans, some people, especially twins or siblings are look-alikes. The 
permanence for 3D face is also not ideal. The overall appearance of the face model is stable 
in perspective of several months, however, it rapidly changes during the first years of life 
and during the late age [40]. 

These issues should be also considered when implementing the biometric system: 

Performance - Refers to the achievable identification accuracy. 

Acceptability - Indicates to what extent people are willing to accept the biometric sys­
tem. 

Circumvention - Refers to how easy it is to fool the system by fraudulent techniques. 

From many points of view, face recognition seems to be problematic (uniqueness, per­
manence). What makes it popular is high acceptability. Face recognition is touch-less, it 
can be performed with just a minimal cooperation of the user and the recognition itself is 
similar to the way we recognize each other. The circumvention is a problem especially for 
classical 2D face recognition. Many utilizations of this approach, e.g. the first implementa­
tion of Face Unlock on some Android smart-phones, does not have any liveness detection, 
and the biometric system can be deceived with just a printed photograph. Fooling a 3D 
sensor is much harder as we need precise real-size model with texture. 

The suitability of the biometric characteristic is often expressed with the terms intra-
class variance and inter-class variance. The intra-class variance refers to the diversity 
among individual scans of the same person, while the inter-class variance refers to the 
diversity among various persons. It is good to choose a biometric characteristic which has 
the inter-class variance as high as possible and, on the contrary, the intra-class variance as 
low as possible. 

A generic biometric system consists of two main parts - the enrollment module and the 
identification/verification module. The enrollment module serves to registering new data 
subjects to the system. During this process, a data subject is scanned by the biometric 
reader. If the scan satisfies the defined quality, the repeatable and distinctive numbers 
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Enrollment module 
Identity 

User 
Biometrie reader Quality checker Feature extractor 

\f Template 

Verification 
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One template 

Result e {true, false} 
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User 
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Database 

N templates 

Result e {user's identity, not recognized} 

Figure 2.1: Generic biometric system. 

or labels (biometric features) are subsequently extracted and stored in the database as a 
template. 

The identification/verification module scans the data subject, extracts the features and 
compares them with other templates in the database. In the case of verification, data 
subject provides a claim about his/her identity and the biometric system has to decide 
whether it is true or not. On the other hand, in the case of identification, the recognition 
system has to decide whether the data subject is registered, and if so, which template in the 
database belongs to him/her. While the verification is 1 : 1 comparison, the identification 
is 1 : iV comparison. A generic biometric system is illustrated in Figure 2.1. 

Comparing a template with features extracted from a scan provided by a data subject 
produces the comparison score denoting how the template and the extracted features are 
similar to each other. The decision whether the data subject is accepted or not is based on 
the threshold, which determines the border between the acceptance and rejection. 

2.2 Evaluating Performance of Biometric Systems 

One of the most important properties of a biometric system is how successful in recognition 
it is. There are two main errors that the biometric system can make - false acceptance and 
false rejection. In the case of access control, where the biometric system has to control the 
access to some area or resources, false acceptance means that an intruder has been confused 
with some registered person and has been admitted. On the other hand, false rejection is 
the case when a registered person is rejected from the biometric system. 

The decision if some person is accepted or not is based on the comparison score, obtained 
during the comparison process, and the given threshold. If the score denotes the distance 
between the gallery and the probe scan, the decision algorithm is as follows: 

(i 



score <— getComparisonScore(probe, gallery) 
if score > Threshold then 

reject 
else 

accept 
end if 

Four outcomes might occur: 

True acceptance - The genuine person is truly recognized. 

True rejection - The impostor is truly rejected. 

False acceptance - The impostor is falsely admitted. 

False rejection - The genuine person is not recognized and therefore rejected. 

The goal of every biometric system is to be as secure as possible and also comfortable for 
users. This means that the goal is to minimize the false rejection and false acceptance cases. 
The False acceptance rate (FAR) indicates what proportion of attempts resulted in a false 
recognition. 

^ . ^ different measures classified as the same 
F A R = ^ : — 2.1 

2^ measures of various persons or instances 
The False rejection rate (FRR) indicates what percentage of attempts by legitimate 

users are incorrectly rejected. 

T̂ -n-n 5^ misclassified measures of the same person or instance , . 
r R R = — — ; (2-2) 

2^ measures of the same person or instance 
The F A R and F R R are joined together by the threshold that decides whether the data 

subject is accepted or not. However, a higher threshold leads to a more secure system, 
where the impostors are refused, but genuine data subjects are sometimes refused as well. 
On the other hand, a lower threshold leads to the comfortable system, where most genuine 
data subjects are accepted and sometimes impostors too. 

The Equal error rate (EER) is the value where the F R R and F A R for a given threshold 
are equal. It is often used as a criteria for evaluating performance of the biometric systems. 
The lower the value, the better the system compared to another. The relation between the 
F A R and F R R is illustrated in Figure 2.2. The decision if the data subject is accepted or 
not is strictly based on the retrieved comparison score and the given threshold. 

The relation between the F A R and F R R values at the different thresholds depicted as 
a curve is referred to as Detection Error Trade-off (DET). The example of D E T curve is 
in Figure 2.3. F R R at any given F A R can be easily read from D E T curve for example and 
thus D E T provides much more information about characteristics of the biometric system 
than just the E E R value. 

There are some more terms related to the evaluation of the biometric systems: 

F T A - The failure to acquire rate is the portion of situations when the system is unable to 
acquire the data from the data subject. Its value refers to the biometric sensor and 
its quality checker, especially with the defined quality that each scan should have. 

F T E - The failure to enroll rate is the portion of situations when the system is unable to 
generate the template from the input data. 
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Genuine distribution 

FRR 
Tine-,hold \ Comparison score 

F A R 

Figure 2.2: False acceptance rate and false rejection rate. 

F R R 

FRR(T) 

FAR(T) FAR 

Figure 2.3: Detection error trade-off curve. 

F N M R - The false non-match rate refers to the portion of the false rejected persons. 
Contrary to the F R R the F N M R does not include attempts that had been unsuccessful 
before the comparison started. 

F M R - The false match rate refers to the portion of the false accepted persons. As with the 
F N M R , the unsuccessful attempts before the comparison has started are not counted. 

While the F A R and F M R are related to the system performance, F M R and F N M R describe 
the algorithm performance. 

2.3 Multibiometrics 

Multibiometric systems combine the information presented by multiple biometric sensors, 
algorithms, samples, or units. Besides enhancing recognition performance, these systems 
are expected to improve population coverage and decrease the possibility of spoofing [71]. 

In general, a multibiometric system may be classified into one of the following six 
categories: 

Multisensor systems employ multiple sensors to capture a single biometric trait of a data 
subject. 

Multialgorithm systems involve multiple feature extractors and/or multiple comparison 
algorithms. 
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Multiinstance systems use multiple instances of the same body trait. For example, fin­
gerprints of the left and right index finger are used. 

Multisample systems use a single sensor in order to acquire more samples of the same 
biometric trait. These samples are subsequently fused together. 

In multimodal systems, the identity is established by the evidence of multiple biometric 
traits, for example face and fingerprints. 

Hybrid systems may combine two and more categories mentioned above. 

In this thesis, the emphasis is put on the multi-algorithmic systems. The single modality, 
3D model of the face, is processed with various feature extraction algorithms and the result­
ing feature vectors are mutually compared using several different metrics. The chapter 6 
shows that the utilization of multi-algorithmic approach outperforms unimodal approach 
significantly. 

Once a multibiometric system is employed, a biometric fusion of the obtained infor­
mation should be used. Based on the type of the obtained information, different levels of 
fusion may be defined [58]: 

Sample level fusion : The fusion process fuses the collection of obtained scans from 
multiple sensors into a single sample: 

Sample 1 

Templates 

Sample 2 

Sample fusion Feature extraction Comparison Decision 

Feature level fusion Each of the employed feature extractors outputs the collection of 
features. The fusion process fuses obtained feature vectors into a single vector: 

Sample 1 Feature extraction 

Templates 

Sample 2 Feature extraction 

Feature fusion Comparison Decision 

This fusion approach may also be applied to the multi-algorithmic systems, where 
each employed algorithm processes the input scan and produces a feature vector. The 
easiest solution is when the individual feature vectors are concatenated. However, 
when the feature vectors have different lengths, this yields to neglect of short feature 
vectors. Usually, the feature-level fusion is accomplished by some linear projection to 
a lower-dimensional space where the variability is preserved. More information may 
be found in Sections 4.4.1, 4.4.2, and 4.4.3. 

Score level fusion Each individual biometric process provides a comparison score and 
these scores are subsequently fused. Even this approach may be applied to the uni­
modal multi-algorithmic systems. The problem that comes up, when the score-level 
fusion is involved, is the necessity of score-normalization: 
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Templates 

Sample 1 Feature extraction Comparison 

Sample 2 Feature extraction Comparison 

Score fusion Decision 

Templates 

According to [59], score fusion techniques can be divided into the following three 
categories: 

• Transformation-based fusion - The scores are first normalized (transformed) to 
a common domain and then combined. A weighted sum or just a simple product 
are the representatives of the transformation-based fusion. 

• Classifier-based fusion - Scores from multiple comparison modules are treated 
as a feature vector and a binary classifier is constructed to discriminate genuine 
and impostor scores. The classifier-based fusion may be provided by the Sup­
port Vector Machines (SVM) classifier with linear kernel, Linear Discriminant 
Analysis (LDA) , or logistic regression, for example. 

• Density-based score fusion - This approach is based on the likelihood ratio test 
and it requires an explicit estimation of genuine and impostor comparison score 
densities, for example using Gaussian Mixture Model ( G M M ) . 

Decision level fusion Each involved biometric system provides boolean results whether 
the data subject is accepted or not. The fusion process fuses the output results 
together by boolean operators A N D or OR. It may also take into account additional 
parameters, such as quality of samples or obtained comparison scores: 

Templates 

Sample 1 Feature extraction Comparison Decision 

Sample 2 Feature extraction Comparison Decision 

Decision fusion 

Templates 
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C h a p t e r 3 

Obtaining Three Dimensional Data 

The classic face recognition approach utilizing 2D photographs has to deal with illumination 
and pose variation. This can be solved when the 3D face recognition is used, however, the 
biggest disadvantage of this approach is much higher acquisition costs. 

On the other hand, the expansion of personal depth sensors related to the new ways 
of the human-computer interaction in recent years has markedly lowered the price of 3D 
acquiring devices for personal use, such as Microsoft Kinect 3601 or SoftKinetic DS325 2 

sensors. 
The biggest challenge of the face recognition based on the low-cost depth sensors is the 

quality of acquired scans. While, for example, the Minolta Viv id or Artec 3D M scanners 
provide a highly precise geometry with an outstanding resolution and level of detail, the 
scans retrieved from the Kinect or DS325 sensors are noisy, have a low resolution and 
sometimes contain holes. 

3.1 Structured light 

3D sensors utilizing a structured light approach project a known pattern on a scanned 
object. The depth is calculated based on the deformation of the pattern. The most common 
pattern used in the structured light 3D scanning is many narrow stripes, although other 
strategies of pattern codification may be used [64, 75]. The pattern can be projected either 
in visible light or in infra-red spectra. A n example of the reconstruction process is, for 
instance, proposed in [19], where many coloured stripes in visible light spectra are projected 
on the face surface. In order to minimize the misclassification between the projected lines 
and lines observed from the camera, De Bruijn sequence consisting of seven colors is used 
(see Figure 3.1). This pattern forms image Ppattern-

Figure 3.1: De Bruijn sequence of coloured vertical lines used in the structured light 3D 
scanning [19]. 

1http://www.xbox.com/kinect/ 
2http://www.softkinetic.com/products/depthsensecameras.aspx 
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Figure 3.2: Principle of calculation of depth information with the usage of trigonometry [19]. 

The algorithm of retrieving 3D data from the scanned face surface is as follows: 

1. Take one picture of a scanned subject illuminated with stripes Pcoiored and one without 
Stripes Pdean-

2. Extract projected Stripes: Pcoiored <~ Pcoiored - Pdean-

3. Match the stripes in Pcoiored with the original pattern Ppattern- At this point, dynamic 
programming is used. The cost matching function that we are trying to minimize is 
the sum of possible color misclassification and gaps caused by the topology of the 
scanned surface [19]: 

m 
Cost = colorDif f(i) + jumpWeight(i, i — 1) (3-1) 

i=l 

where colorDif f(i) is the possible difference between ith stripe in Pcoiored and assigned 
stripe from Ppattern, jumpWeight(i, returns the penalty of gap, and m is number 
of observed stripes in Pcoiored-

4. Calculate the depth information from the shift between the observed stripes and the 
original stripes in Ppattern- (See Figure 3.2.) 

3.2 Commercial Solutions 

Minolta V i v i d 

Minolta V i v i d 3 is a laser 3D scanner. Light reflected from the scanned object is acquired 
by C C D camera. After that the final model is calculated using the standard triangulation 

3http://www.konicaminolta.com/instruments/products/3d/non-contact/vivid910/index.html 
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Figure 3.3: The examples of scans obtained with the Artec 3D M scanner. The structured 
light scanners have a problem with scanning shiny objects or a structure where the projected 
pattern is highly distorted. This problem leads to the impossibility of capturing glasses 
(middle scan) or a beard (right scan). 

method. This scanner was, for example, used for acquiring of the F R G C database (see 
Section 3.3.1). 

Artec 3D scanner 

The Artec 3D M scanner4 has a flash bulb and a camera. The bulb flashes a light pattern 
onto the object and the C C D camera records this pattern. The distortion in the light 
pattern, due to the specific curvature of the object, is then translated into a 3D image by 
Artec software. As the user moves around the object, the light pattern changes and the 
software provided together with the camera recognizes these changes. The light pattern is 
projected onto the object with the frame rate 15 frames per second. Individual scans are 
joined together and subsequently form the resulting 3D model. Examples of scans obtained 
with the Artec 3D M scanner are in Figure 3.3. 

A 4 Vision Enrollment Station 

The A4 Vision Enrolment Station 5 is a specialized 3D face acquiring device that is used for 
enrolling users to the face recognition biometric system. It operates in infra-red spectra -
it projects horizontal lines on the scanned face. Although the software and A P I provided 
together with the camera supports the Bio A P I specification6, there is not direct access to 
the scanned 3D data and thus it cannot be used for developing own 3D face recognition 
algorithm. 

Microsoft Kinect 360 

The Microsoft Kinect 360 is a structured light depth sensor operating in infra-red spectra 
utilizing technology developed by PrimeSense, L t d . 7 . It also contains a R G B sensor and 
a directional microphone. Its main purpose is to serve as the motion-sensing input device 
for Microsoft Xbox 360. It enables users to control and interact with their gaming con­
sole /computer without the need for a game controller through a natural user interface using 

4http: / / www.artec3d.com/3d_scanners/artec-m  
5http://www.llid.com/pages/404-3d-face-reader  
6 BioAPI Consortium - http://www.bioapi.org/  
7http://www.primesense.com/ 
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Figure 3.4: Example scans from SoftKinetic (left) and Kinect (right) sensors. 

Sensor name Resolution Technology Ra nge Texture Price 
Minolta Vivid 9i/910 640x480 structured light (non-visible) 0.6 1.2 m yes $25,000 $55,000 

Artec 3D M scanner uses fusion of several 
consecutive scans structured light (visible) 0.4 1 m no $12,000 $22,000 

A4 Vision Enrollment Station manufacturer does not 
provide any information structured light (non-visible) yes $21,150 

Microsoft Kinect 360 640x480 structured light (non-visible) 1.2 3.5 m yes $100 
Occipital Structure Sensor 320x240 structured light (non-visible) 0.4 3.5 m no $379 

Microsoft Kinect 2 512x424 time of flight 0.8 - 4 m yes $199 
DepthSense SoftKinetic 325 320x240 time of flight 0.15 1 m yes $249 

Table 3.1: Overview of some commercial 3D sensors on the market. 

gestures and spoken commands. Example of a scan acquired with the Kinect is in Figure 
3.4. The new updated version of Kinect uses a wide-angle time of flight (ToF) camera. 

DepthSense SoftKinetic 325 

The SoftKinetic 325 is the only sensor in this list utilizing ToF technology. It resolves 
distance based on the known speed of light, measuring the time-of-fiight of a light signal 
between the camera and the subject for each point of the image [21]. The primary purpose 
of the device is hand and finger tracking and thus interacting with devices without touching 
a screen, keyboard, trackball or mouse. A n example scan from the SoftKinetic sensor is in 
Figure 3.4. The overview of all mentioned sensors is in Table 3.1. 

3.3 Available 3D Face Databases 

Developing a face recognition method also includes evaluating performance of the system, 
thus testing data are needed. Several available 3D face databases will be described in this 
section. 

The European Association for Biometrics provides for their members an overview of 
publicly available 2D and 3D face databases. Individual databases are varying in many 
parameters, e.g. number of participating subjects, number of capturing sessions, number of 
samples per each subject, and total number of samples. The overview is in Table 3.2. Some 
of the mentioned databases are more focused on varying facial expressions (ND-2006), while 
others contain subjects captured from varying angles ( N K C U , CASIA-3D). Interesting is 
also ND-TWINS which was captured at the Twins Days Festivals in Twinsburg, Ohio in 
2009 and 2010. 
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Type Name No. of 
subjects 

No. of 
sessions 

No. of 
samples 

Samples/ 
session 

Samples / 
subject 

Reference 

2D BioSecure 667 2 http: //bioseciire.it-siidparis.eii 
2D CASIA-FaceV5 500 2,500 5 Chinese Academy of Sciences 
2D F E R E T Face Dataset 1,199 15 14,126 varies varies http://www.nist.gov/itl/iad/ig/feret.cfm 
2D F R G C v 2.0 (2D) 4,003 1 50,000 6 http://www.nist.gov/itl/iad/ig/frgc.cfm 
2D ND-2006 Dataset 888 13,450 up to 63 http://www.nd.edu/~cvrl/ 
2D ND-TWINS 135 24,050 CVRL/Data_Sets.html 
2D N K C U H<) 2 6,589 37 74 National Cheng Knng University 
2D Sheffield Face Dataset 20 564 up to 64 http://www.sheffield.ac.iik/eee/research/iel/research/face 
3D CASIA-3D FaceVl 123 3 4,624 37 or 38 http: //biometrics.idealtest.org 
3D F R G C 1.0 (3D) 557 3 4,059 3 http://www.nist.gov/itl/iad/ig/frgc.cfm 

Table 3.2: List of publicly available face databases according to E A B . 

Figure 3.5: Acquired scans during one session in F R G C [66]. 

3.3.1 Face Recognition Grand Challenge Database 

Face Recognition Grand Challenge (FRGC) database [66] is a large dataset of three-
dimensional face scans as well as high and low resolution photographs captured in con­
trolled and uncontrolled lighting conditions. It is not freely available, but can be obtained 
for research purposes. 

Data for the F R G C were collected at the University of Notre Dame between autumn 
2003 and spring 2004. Each subject had several sessions. Four images taken under con­
trolled lighting conditions, two images at uncontrolled conditions, and one 3D scan has 
been acquired at each session. The example of one subject session is in Figure 3.5. The 
three dimensional scans were acquired by the Minolta Viv id 910 scanner. 

3.3.2 G a v a b D B 

GavabDB [49] is relatively small, freely available, three dimensional face database that 
consists of 549 scans of 61 individuals. Each person in the database has been scanned with 
the various facial expressions and head orientation. The examples are in Figure 3.6. 

The data in the database contains, except for the facial scans, also noise, spikes, and 
the data that is not part of a face, like clothes and hair. Although it is not desired for 
recognition, it can prove the robustness of the recognition algorithm. Preprocessing tech­
niques should be applied on the data in order to extract the face and eliminate the impact 
of the noise on the recognition performance. 

15 

http://www.nist.gov/itl/iad/ig/feret.cfm
http://www.nist.gov/itl/iad/ig/frgc.cfm
http://www.nd.edu/~cvrl/
http://www.sheffield.ac.iik/eee/research/iel/research/face
http://idealtest.org
http://www.nist.gov/itl/iad/ig/frgc.cfm


(a) GavabDB (b) UWA database 

Figure 3.6: GavabDB facial scans examples (a) and from The University of Western Aus­
tralia Face Database (b). 

Each subject in the database is represented with 9 scans stored in V R M L format. Two 
frontal scans with neutral face expression, four scans with head rotation (up, down, left, 
and right), and three scans with facial expressions are present. 

3.3.3 The University of Western Australia Face Database 

This database contains scans from 106 subjects, but 3D models of some subjects are missing 
because they did not allow their images to be distributed [47]. Example of some scans is in 
Figure 3.6. 
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C h a p t e r 4 

Overview of Face Recognition 
Techniques 

In this chapter, the overview of face recognition methods will be provided. First, some 
essential terms related to the face recognition will be explained. Then various techniques 
of classical two-dimensional as well as three-dimensional approaches will be described. 

The biometric recognition of faces includes the methods and algorithms for the detec­
tion of the face within two-dimensional images and three-dimensional data, locating face 
features, and the recognition itself. The input of the two-dimensional face recognition are 
ordinary photographs, while the three-dimensional face recognition is performed on the spa­
tial data. Although the three-dimensional face recognition may provide better results than 
the two-dimensional approach [25], a special device for acquiring scans from the data sub­
ject should be purchased. This fact leads to a much higher acquisition cost. However, the 
enrollment may be conducted using a 3D scanner and latter verification would be fulfilled 
by conventional 2D cameras [10]. 

The face recognition is, along with the fingerprint and iris recognition, one of the most 
commonly used biometric techniques. It is well accepted by users due to its non-invasive 
character. 

A lot of research work that deals with all parts of the face recognition has been done, but 
many problems have not been resolved sufficiently Some basic tasks for human, e.g., the 
localization of the nose tip, are not easy for computers. Another difficulties are related with 
incomplete input data. Many recognition algorithms fail when some part of data subject's 
face is covered or some facial expressions are present. 

4.1 Face Recognition Difficulties 

The biggest challenge of the biometric face recognition is to deal with relatively big intra-
class variation, which is related to many factors, mostly varying lighting conditions, face 
orientation, and facial expressions. Light direction, color, and intensity have a negative 
influence on the performance of two-dimensional face recognition, where the recognition is 
performed on photographs obtained by commonly used cameras. Head orientation is also 
a big problem in two-dimensional recognition. 

Facial expressions affect both two-dimensional and three-dimensional recognition. Var­
ious techniques that deal with facial expressions have been invented. These techniques are 
described in the following text. Two pictures with varying lighting conditions of the same 
person are shown in Figure 4.1. 
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Figure 4.1: Various lighting conditions [4]. 
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Figure 4.2: The reduction in error rate for state-of-the-art face recognition algorithms as 
documented through the F E R E T , the F R V T 2002, and the F R V T 2006 evaluations. 

4.2 State-of-the-art 

The developed face recognition system should be compared with other actual face recogni­
tion systems on the market. In 2006 the National Institute of Standards and Technology 
in the USA realized the Face Recognition Vendor Test (FRVT) [66]. It has been so far 
the latest in a series of large scale independent evaluations for face recognition systems. 
Previous evaluations in the series were the F E R E T , F R V T 2000, and F R V T 2002. The pri­
mary goal of the F R V T 2006 was to measure progress of prototype systems/algorithms and 
commercial face recognition systems since F R V T 2002. F R V T 2006 evaluated performance 
on high resolution still images (5 to 6 mega-pixels) and 3D facial scans. 

The comprehensive report of achieved results and used evaluation methodology is de­
scribed in [65]. The progress that has been achieved during the last years is depicted 
in Figure 4.2. The results show the achieved false rejection rate at false acceptance rate 
0.001 for the best face recognition algorithms in specific years. This means that in 2006, 
if we admit that 0.1% will be falsely accepted as genuine persons, only 1% of users will be 
incorrectly rejected. 

The best 3D face recognition algorithm that has been evaluated in F R V T 2006 was V i -
isage from the commercial portion of participated organizations [65]. The plot in Figure 4.3 
shows the evaluation results of the participated organizations and their 3D face recognition 
algorithms. The entire F R G C dataset was divided into several subsets. The algorithms 
were evaluated for each subset and the results reported to the box-plot. 
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Figure 4.3: The box-plots of the evaluation of 3D face recognition algorithms participating 
in F R V T [65]. 

4.3 Classification of Face Recognition Methods 

The two-dimensional face recognition as well as the three-dimensional approach can be 
divided into three categories - holistic, feature based, and hybrid [88]. The holistic recog­
nition methods utilize global information from faces in order to perform face recognition. 
The global information is directly derived from the face representations. The feature based 
face recognition, conversely, uses a priori information or local features of faces to select a 
number of features to uniquely identify individuals. Local features may include eyes, nose, 
mouth, chin and head outline. The hybrid approach combines both holistic and feature 
based methods. 

4.4 Projection-based Holistic Face Recognition Methods 

Face recognition is in principle a pattern recognition. Each face is represented as a vector 
that could be located in a multi-dimensional face space, e.g. in the two-dimensional face 
recognition a face could be represented as an image with resolution 150x100 pixels. This 
produces 15,000-dimensional space in which each face scan is stored. Face scans of the 
same person should be situated close to each other, while face scans of another person are 
further away. Calculating distances between the face scans in this multi-dimensional space, 
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Figure 4.4: Principal component analysis. The points from the two classes are projected 
on the new axis u. 

thus comparing faces, is very time consuming due to multi-dimensionality of the space. 
Moreover, there is a lot of unwanted information stored, such as a background, hair or 
clothes. Therefore, various techniques that decrease number of dimensions were invented. 
The best known are the Principal Component Analysis (PCA) , the Linear Discriminant 
Analysis (LDA), and the Independent Component Analysis (ICA). 

4.4.1 Principal Component Analysis 

Principal component analysis was first introduced by Kar l Pearson [63] and covers mathe­
matical methods which reduce the number of dimensions of given multi-dimensional space. 
The dimensionality reduction is based on the data distribution. The first principal compo­
nent describes best the data in a minimum-squared-error sense. Other succeeding compo­
nents describe as much of the remaining variability as possible. 

Model situation is shown in Figure 4.4. Two-dimensional space containing data in two 
classes is reduced to one-dimensional space. Each point is projected to the new dimension u. 
Classification is then based on the position of projected point on the dimension u. 

The calculation of the principal components is unsupervised learning. The class mem­
bership is not taken into account during the learning process. The principal component 
analysis seeks for direction in which the data vary the most. This could cause in some cases 
wrong classification. This problem is illustrated in Figure 4.5. 

The eigenface method [82] is an example of the application of the principal component 
analysis. It is a holistic face recognition method which takes grayscale photographs of 
persons that are normalized with respect to size and resolution represented as vectors. 

Each image is represented as column vector x. First, the mean face from the set of 
training images is calculated. We take the set of p training images x i , X 2 , . . . , x p and the 
mean face x is calculated: 

Then the mean face image x is subtracted from each training image x. 

Xj <— Xj — x Vi £ (1,2, . . . P) (4.2) 

After that, the covariance matrix C is constructed: 
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Figure 4.5: Wrong class separation with principal component analysis - all data points are 
projected to the new axis u and therefore the classes separation is lost. 

C = A A T = [x ix 2 . . . xp] [x ix 2 . . . x p ] T (4.3) 

where A stands for a matrix where each column i contains a corresponding vector Xj 
and AT stands for transposed matrix A . 

The next step is the calculation of the eigenvalues and eigenvectors of the covariance 
matrix. This could be achieved by standard linear algebra methods [22]. Given a matrix M , 
a non-zero vector v is defined to be an eigenvector of the matrix if it satisfies the eigenvalue 
equation 

M x = A v (4.4) 

for some scalar A. In this situation, the scalar A is called an eigenvalue of M corre­
sponding to the eigenvector v [38]. 

However, the covariance matrix might be very large and thus the computation of its 
eigenvectors and eigenvalues would be time and memory consuming. If the amount of 
training images p is sufficiently smaller then the size (dimensionality) n of training images, 
eigenvectors and eigenvalues could be retrieved from matrix C . 

c A T A (4.5) 

The size of matrix C is determined by the size of the training set and it is p x p. The 
first p sorted eigenvalues of matrix C are also eigenvalues of matrix C . The eigenvectors 
of matrix C are calculated by multiplying matrix AT by matrix W . W is the matrix 
containing in each row one eigenvector w ' of the matrix C 

W A T W = A T 
Wf21 w22 

IV, upl Wp2 " w p p 

The resulting matrix W contains one eigenvector of the covariance matrix C in each 
row. These eigenvectors define a set of mutually orthogonal axes within facial space, along 

w Ip 
I 
2p 

W, 

(4.6) 
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Figure 4.6: Eigenfaces obtained from A T & T face database [4]. 

which there is the most variance. The corresponding eigenvalues represent the degree of 
variance along these axes. In Figure 4.6, there are displayed some eigenvectors from A T & T 
face database. Due to the likeness to faces, Turk and Pentland refer them as eigenfaces [25]. 

Projection of the facial image I to the face space is as follows: first the image is trans­
formed to the column vector x and the precomputed mean face x is subtracted from the 
input face x. Then each component oji is calculated by multiplying the corresponding 
eigenvector Wj by the modified input vector. 

Hi Wi (x - x) (4.7) 

y = W1
 (X - X) (4.8) 

The comparison of two faces in this face space is performed by the calculation of the dis­
tance between these two faces. Various distance calculation could be used [25] on projected 
face images y ^ and y#, such as Euclidean distance: 

the city block distance: 

d(yA,YB) £ta Ai - VBi (4.9) 

the cosine distance: 

or correlation distance: 

d(yA, y s ) = ^2 \ y A i ~ y m 

i=l 

d(yA,yß) = l 
y ^ y s 

WaW | |ys | 

(4.10) 

(4.11) 

d(yA,yB) = 1 - E - l ( ^ ; ~ y A ) ( ^ " y B ) (4.12) 

where iV is the size of input column vectors and ||a|| stands for the norm of the vector a. 

22 



A 
y 

X 

Figure 4.7: Linear Discriminant Analysis - data points are projected to the new axis u that 
separates both classes. 

Achieved Results 

If the eigenface method is applied on the pictures with various lighting conditions, much 
of the variation from one image to the next is due to illumination changes. It has been 
suggested that by discarding the three most significant principal components, the variation 
due to lighting is reduced. The assumption is that if the first principal components capture 
the variation due to lighting, then better clustering of projected samples is achieved by 
ignoring them [1]. 

4.4.2 Linear Discriminant Analysis 

Linear discriminant analysis (LDA), introduced by Ronald Aylmer Fisher [20], is an example 
of supervised learning. The class membership is taken into account during learning. L D A 
seeks for vectors that provide the best discrimination between classes after the projection. 
Therefore, the L D A is applicable to the classification problems where P C A fails (Figure 4.7). 

Fisherface method is a combination of principal component analysis and linear discrim­
inant analysis. P C A is used to compute the face subspace, in which the variance is maxi­
mized, while L D A takes advantage of inner-class information. The method was introduced 
by Belhumeur et al. [6]. 

To gain advantage of inner-class variation, a training set containing multiple images of 
the same persons is needed. Training set r is defined as: 

t = {X1,X2,...,Xk} (4.13) 

where K is the number of classes and = { x i , X 2 , . . . }, where Xj stands for individual 
picture of the person from class i with different facial expressions or taken under various 
lighting conditions. 

First, the intra-class (within-class) distribution matrix Sw describing variation inside 
the classes is calculated. 

K 

Sw = Y,Sk (4.14) 
fc=i 

23 



where 

Sfc = ^2 ( X n ~ x f c ) ( x « ~ xfe)T ( 4- 1 5) 
neCk 

Xfc is the mean of class k: 

x* = wk ^ X n ( 4 - 1 6 ) 

and iVfc is the number of scans in class C&. 
After that, the inter-class (between-class) distribution matrix Sb is calculated. This 

matrix describes variation among individual persons from the training set. 

K 

Sb = Y. Nk(*k ~ x) (x f c - x ) T (4.17) 
fc=i 

where X& is the average of class and x is the mean of the entire dataset: 

1 N 

x = ^ E x « ( 4 - 1 8 ) 
n=l 

The objective optimization criterion (Fisher criterion) is given by [9]: 

w = ( 4 . i 9 ) 

The projection matrix W is determined by the eigenvectors of S^ /Ss . The projection 
of the input image x in L D A is similar to the projection in P C A : 

y = W T (x - x) (4.20) 

It has been shown that fisherface method may provide better results than eigenface 
method [6, 25]. This is caused mainly because fisherface method takes the advantage of 
inter-class variation. To achieve significantly better results compared to eigenface method, 
good training set containing various facial expression and lighting conditions is required. 
On the other hand, some researches point out that L D A suffers from overtraining. 

4.4.3 Independent Component Analysis 

Another data projection method is Independent Component Analysis (ICA) first introduced 
by Piere Comon [15]. The definitions and equation presented in this chapter are from paper 
by Hyvaxinen and Oja [28]. Contrary to the P C A , which seeks for the dimensions in which 
data vary the most, I C A is looking for the transformation of the input data that maximizes 
non-gaussianity. A n example of this process is illustrated in Figure 4.8. 

The origin of I C A comes from Blind Signal Separation (BSS) or Cocktail Party Prob­
lem [11]. Suppose that we have two statistically independent sources of speech signal at 
different locations si(t) and S2(t). Both signals are recorded by two microphones situated 
somewhere else in the space. Each of these recorded signals is therefore a weighted sum of 
the original source signals: 
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pdf obtained by projecting the data 

pdf obtained by project­
ing the data on the ver­
tical axis 

Figure 4.8: While the P C A analysis of a given example would yield into the projection on 
the vertical axis, I C A provides projection on the horizontal axis which offers non-gaussian 
probability distribution function (pdf) and thus better cluster separation. 

xi(t) = ansi( t ) +a12s2(t) (4 21) 
x2(t) = a2is1(t) + a22s2(t) 

The main task in the Cocktail Party Problem is to reveal coefficients an , a\2, 021, and 
a22 and estimate the original source signals s\(t) and s2(t). This problem is solvable only 
if the original sources are statistically independent and non-gaussian [28]. 

The coefficients aij form a matrix A that describes an I C A model. Thus, any data 
vector x can be reconstructed from the independent sources as: 

x = As. (4.22) 

Preprocessing Steps Prior to the Computation of I C A 

As well as P C A , I C A expects that data vectors have zero mean. If we have m vectors 
x i , X 2 , . . . , x m in WLN, the mean can be computed as: 

j m 
x = £ { x } = - J > (4.23) 

i=l 
The mean is subtracted from each vector subsequently: 

x <- x - x (4.24) 

The next step in the preprocessing for I C A is whitening the data. Each vector Xj has 
to be linearly transformed in such a way that its components are uncorrelated and their 
variance equal unity. This means that the covariance matrix should be the identity matrix: 

£ { x x T } = I (4.25) 
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This is possible with the usage of the eigenvalue decomposition of the covariance matrix 
S = x x r that is also the core of P C A : 

E = E D E T (4.26) 

where E is the orthogonal matrix containing computed eigenvectors and D is diagonal 
matrix of corresponding eigenvalues. Each data vector x is modified in the following way: 

x <- E \ / D E T x (4.27) 

where \ / D stands for the piece-wise square root of the matrix components. 

FastICA algorithm 

The FastICA algorithm [28] iteratively seeks for the weight vector w such that the projection 
of the input vector w T x maximizes non-gaussianity. Non-gaussianity is measured by the 
approximation of negentropy. The differential entropy for a random vector x is defined 
as [28]: 

H(x) = - J p(x) logp(x)dx (4.28) 

The highest entropy among all random variables of equal variance has gaussian variable. 
This means that any other random variable has a lower entropy. The measurement of the 
non-gaussianity can be therefore expressed as: 

J(x) = H(ygauss) - H(y) (4.29) 

where ygauss is a gaussian random variable with the same covariance matrix as y. 
The Equation 4.29 is called negentropy [28]. In optimization tasks, it is very useful to 
have approximation of negentropy that can be easily and quickly calculated. One such an 
approximation is: 

J(x) cc (E{G(x)} - E{G(u)})2 (4.30) 

where v is random gaussian variable with zero mean and unit variance and G is an 
non-quadratic function. Hyvaxinen and Oja [28, 27] recommend: 

G\(u) = —log cosh a\u 
y ' oi (4.31) 

G2(u) = -exp(-u2/2) 

The FastICA algorithm for the computation of one independent component is as follows: 

1. Choose a random initial weight/projection vector w 

2. w+ <- £ { x g ( w T x ) } - E{g'(wTx.)}w 

3. w <— w + / | |w + | 

4. If not converged, return to 2. 
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Figure 4.9: The example of facial image independent components whose linear combination 
yields a face space [87]. 
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Figure 4.10: L B P operator. The left part of the figure shows a pixel with intensity value 4 
and its 8 neighbors. Each neighbor value is compared with the center value. If it is greater 
or equal the 1 is added to the L B P , 0 otherwise. The resulting binary pattern - 11010011 
is thus extracted. 

The g function in algorithm above is a derivative of function from Equation 4.31. 
In order to find n weight vectors Wj we have to run the algorithm above n times. 

To prevent different initial weight vectors converging to the same maxima, weight vectors 
have to be decorrelated. If we have computed p independent components, the following 
procedure is repeated after every iteration of the FastICA algorithm when we are computing 
independent component p + 1 [28]: 

1. w p + i <- w p + i - Yfj=i w j + 1 w | 

2. w p + i <- W p + i / y / w J + 1 w p + i 

Usage of I C A in Face Recognition 

The independent component analysis has been widely used in the area of 2D face recogni­
tion. Many researchers have shown that it achieves significantly better results than P C A 
on the same dataset [87]. The example of the independent components whose linear com­
bination forms a face space is shown in Figure 4.9. 

4.5 Local Binary Patterns 

The Local Binary Pattern operator (LBP) is a per-pixel operator used for texture descrip­
tion [60], face recognition [3], face detection, and facial expression recognition [77]. It takes 
the intensity value of a particular pixel and compares it to its 8 neighbors - see Figure 4.10 
for more details. The main advantage of the L B P operator is that it is invariant to global 
brightness in the image since it is based on the relative comparisons. The generalization 
of L B P approach to Local Ternary Patterns (LTP) was introduced in [80]. L B P were also 
employed in the 3D face recognition [81]. 

The facial image is usually divided into small cells. The histogram of L B P values is 
calculated within each cell and all histograms are concatenated into one feature vector. 
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Figure 4.11: Facial image divided into 7x7 grid (left) and the weights set for weighted %2 

dissimilarity measure (right). Black squares indicate weight 0.0, dark grey 1.0, light grey 
2.0 and white 4.0 [3]. 

Dividing the image into the grid helps to handle even local changes of the brightness. 
Once the histograms of the L B P values are calculated, and the feature vector is thus 

extracted, there are several options how to compare them. Ahonen [3] suggests histogram 
intersection metric: 

intersection (P, R ) = ^ min(Pj, Ri) (4.32) 
i. 

Log-likelihood statistics: 

d l o g ( P , R ) = - Pi log Ri (4-33) 
i. 

or Chi-square statistic: 

X 2 ( P , R ) = E ( p ^ f (4 )̂ 
i 

where P is the input probe histogram and R is the reference. Ahonen further suggests 
weighting of individual grid cells from which the histograms are created. It can be expected 
that some of the regions contain more useful information than others in terms of distin­
guishing among individuals. For example, eyes seem to be an important cue in human face 
recognition. Weighted Chi-square statistic therefore becomes: 

X 2 ( P , R ) = ^ ^ ( P ^ " ^ ) 2 (4.35) 

The weights computed by Ahonen are illustrated in Figure 4.11. To find the weights 
Wj for the weighted X2, the following procedure was adopted: a training set was classified 
using only one of the cell grid at a time. The recognition rates of corresponding windows 
on the left and right half of the face were averaged. Then the windows whose rate lay below 
the 0.2 percentile of the rates got weight 0 and windows whose rate lay above the 0.8 and 
0.9 percentile got weights 2.0 and 4.0, respectively. The other windows got weight 1.0. 

4.6 Active Models 

Active models are a branch of computer vision algorithms that try to match previously 
learned statistical model to a new image. There are two main concepts involved in this 
process. The first one is the principal component analysis (see Section 4.4.1), the latter 
involved concept is an iterative process of finding the optimal model deformation (instance) 
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that best matches the new image. Active models were introduced by Cootes, Edwards, and 
Taylor [16]. 

There are two main approaches to the active models - Active Shape Models (ASM) and 
Active Appearance Models ( A A M ) . 

4.6.1 Active Shape Models 

The active shape model is a statistical model of contours within the image. During the 
iteration, when the model is deformed in order to match the input image, a relatively small 
neighbourhood around each control point of the contour is investigated. Subsequently, each 
control point is shifted to the position which matches best the training data. In order to 
do that, we must represent a shape and learn how to warp and model the shape variation. 

Procrustes Analysis 

The common representation of the shape formed from d points in n-dimensional space 
M.n is column vector x. For instance, a shape that consists from 4 points in 2D space is 
represented as: 

x T = (xi,x 2 ,x 3 ,x 4 ,2/1,2/2,2/3, Va) (4.36) 

In order to compensate the influence of the global shape transformation that is not 
directly connected with the shape (e.g. scale and rotation), the shapes from the training 
set have to be aligned in a common co-ordinate frame. One such an approach is Procrustes 
Analysis [35]. It aligns each shape such that the sum of distances of each shape to the 
mean shape is minimized. The objective function d where we try to minimize the distance 
between the shape x , and mean shape x is defined as: 

m 
d = ^ ( x - X i ) T ( x - xj) (4.37) 

i=l 
Iterative Procrustes Analysis algorithm is as follows [16]: 
Repeat until there is no significant change of x after the iteration 

1. Translate each shape so that the sum of its components in every dimension is zero. 
2. Choose the first shape as the initial mean x and scale it, such that |x| = 1. 
3. Align all shapes with current x. 

4. Recalculate the mean from the aligned shapes. 
5. Scale the mean, so that |x| = 1. 
6. If not converged, return to 3. 

The key part of the algorithm above is the alignment of shape Xj to the current mean x. 
This involves scaling and rotation. Since our mean estimation is unit vector, for scaling it 
is sufficient if the Xj is also normalized. 

Removing the rotational component is more complex. Suppose that we have two shapes 
a = (xi , x2,..., xd, yi, y2, • • •, Vd) and b = (wi, w2, • • •, wd, z1,z2,..., zd) in two dimensional 
space and we are trying to rotate b by an angle 9 in order to minimize the sum of squares 
error between a and rotation T#(b) = (ui,u2,..., ud, vi, v2,..., vd), where Ui = cos9w\ — 
sin^zi and Vi = s'm9wi + cosOz\. 

The error function is then: 
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E{9) = (ui - xi)2 + (ui - x i ) 2 + • • • + (ud - xd)2 

+(vi - yif + (v2 - V2)2 H V{vd- ydf 
(4.38) 

Taking the derivative of function E{9) with respect to 9 and solving for 9 = 0 gives: 

0 = t an" 1 f^tMVi-^i)\ ( 4 3 9 ) 

\ E i = i ( u ' i a ; » - ziVi) J 
P C A and Modelling Shape Variation 

The key concept of modelling shape variation is P C A that is performed on the aligned 
shapes x i , X 2 , . . . , x s . The P C A produces the projection matrix <I>. The number of chosen 
eigenvectors (columns of the matrix <I>) usually depends on the problem being solved. It 
has been suggested that the number of eigenvectors should catch 98% of the variance in 
the training set [16]. The optimal number of eigenvectors has also been examined in [66]. 

Generating plausible shapes 

Every new shape x can be approximated as 

xRsx + $b (4.40) 

where x is the mean of the training data, $ = ( 0 i , . . . , (f>t) are the eigenvectors, and b 
is t-dimensional column vector of the shape model parameters: 

b = * T ( x - x ) (4.41) 

By applying limits of ±3-/\i to each component 6j of b we ensure that the generated 
shape is similar to those in the original training set. Aj is the ith eigenvalue corresponding 
to the ith eigenvector established by P C A . 

Fitting a Model to New Points 

The model is fully described by the shape parameters b and transformation TxtiYt,s,6 that 
transforms the shape from the model co-ordinate frame to the image co-ordinate frame. 
These transformations involve a translation by vector (Xt,Yt) scaling by s and rotation by 
9. The position of the shape points Y in the image is given by: 

Y = TXtjYtjSj0(x) = TXuYusfi{* + $b) (4.42) 

where 

m fx\ (Xf\ ( scos9 ss'm9\ (x\ /,,„•> 
TXt,Yt,s,e = v + - a a 4 - 4 3 

\V) \*tJ \—ssmv scos9J \yJ 

In order to find the shape and transformation parameters that best fit a model x to the 
new image points Y , we have to specify an error between the desired shape and the current 
shape estimation given by parameters b and TxtlYt,s,0'-

E(b,TXt,Yt,s,e) = \Y- TXuYt^e(yi + &h)\2 (4.44) 
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Figure 4.12: The example of matching the A S M model to a facial image. From left to right: 
the initial rough estimation, after 2 iterations, after 18 iterations [16]. 

The algorithm that is repeated until no significant changes in pose and shape parameters 
are made is below: 

1. Initiate shape parameters b to zero, such that b% = 0 for i = 0 , . . . , t 
2. Generate model instance x = x + $b 
3. Find transformation parameters that best map shape x to shape Y 
4. Invert the transformation parameters and project Y to the model co-ordinate frame: 

5. Project y into the tangent plane to x by scaling by l / ( y T x ) 
6. Update the shape parameters b = <&T(y — x) 
7. Apply constraints on b in order to generate a plausible shape. 

Under s t and ing the image s tructure 

The main task involved in the A S M is to find from the initial rough approximation the 
actual coordinates of the shape points within the given image. The example of this process 
is illustrated in Figure 4.12. 

The following steps are made in every iteration until convergence: 

1. Inspect a normal to shape boundary along each point Xi = (xi,yi) of the shape and 
replace it with X{ from the boundary that matches best the learned data. 

2. Update parameters Txt,Yt,s,6 and b that best fit to the new shape X'. 

A Mahalanobis distance is employed in order to estimate a match between the candidate 
location of the shape point A , and the trained data. During the model training, m pixel 
intensities on either side are sampled at every shape point A j . If we have s training images, 
this process provides s samples g j x , . . . , g j s . After that, their mean a and covariance matrix 
Sj is calculated. The fit quality of a new candidate sample g / is defined as: 

/**(&') = (&' - g J T s - 1 ( g / - a ) (4.45) 

When we are inspecting and sampling a normal to shape boundary along each point 
Xi, we sample k different sample candidates gjfc,..., gj& . The sample that fits the best 
according to the Equation 4.45 to the learned data is chosen as a new point estimation Xj. 
See Figure 4.13. 
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Figure 4.13: The example of sampling the pixel intensities along shape normal. The candi­
date that matches the learned data the best is chosen as a new point of the shape. 

4.6.2 Active Appearance Models 

While the A S M only use limited neighbourhood around each vertex of the mesh, A A M ben­
efits from the entire texture within the mesh [16]. The terminology and notation presented 
in this chapter is from the paper by Iain Matthews and Simon Baker [46]. 

The shape portion of the A A M is similar to A S M . The positions of mesh vertices are con­
trolled by the linear model. This means that the shape can be expressed as a linear combi­
nation of principal components. The shape s is a vector s = {x\, X2,..., xn,y\,y2, • • •, yn)T '• 

2n 
s = s + ^2,PiSi (4.46) 

i=i 

where s is the mean shape, Sj is an ith principal component of the shape linear model, pi 
is its corresponding parameter, and n is the number of used principal components (eigen­
vectors) . 

The appearance portion of the A S M is also defined by the linear model of the texture 
defined within the base mesh so- Let so also denotes the set of pixels x = (x,y)T that are 
contained within the mean mesh so- The appearance is then an image A(x) defined over 
the pixels x 6 so: 

m 

A(x) = A0 + Y^ xiAi(x) Vx G s 0 (4.47) 
i=i 

where Aj are m coefficients associated with the m principal components of the appear­
ance portion of the A A M model. 

The instance of the A A M is then defined by the set of parameters p = {p\,P2, • • • ,Pn)T 

and A = (Ai, A 2 , . . . , A m ) T . The appearance portion of the model is defined within the frame 
of base mesh so. The resulting shape s together with the mean shape so define a piecewise 
affine warp from so to s which is denoted W ( x , p). The final A A M instance, denoted 
M ( W ( x , p)), is computed by warping the appearance A from so to s using W ( x , p). For 
the illustration see Figure 4.14. 
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Figure 4.14: The instatiation of the A A M model. The mesh s together with mean mesh so 
define a warp W(x, p) [46]. 

Initial: 21.8 3 iterations: 18.0 6 iterations: 11.9 

10 iterations: 0.69 15 iterations: 0.09 20 iterations: 0.09 

Figure 4.15: The example of matching an A A M model to a given image [46]. The number 
after the iteration counter represents the current matching error (see Eq. 4.48). 

There are two types of active appearance models, those with an independent shape 
and appearance (referred to as independent A A M ) and those with a single set of linear 
parameters that control both the shape and appearance. In general, latter type of A A M 
can be produced by applying the third P C A on the concatenated p and A parameters. 

A A M Fitting algorithms 

The essential part of the A A M is the ability to fit the shape and appearance of the model 
to the new image. The example of the iterative A A M fitting process is in Figure 4.15. 

Suppose that we have a new input image /(x) and we are trying to fit the A A M . This 
means we are trying to find optimal shape and appearance parameters p and A. The model 
instance M(W(x, p)) = _4(x) and the input image /(x) have to be the same. This leads to 
the following error function: 
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rn 
£ ( x ) = (A)(x) + ^ A i ^ ( x ) ) - / ( W - ^ x ; p ) ) (4.48) 

i=l 

The first part of the error formula is the appearance of the model defined within the 
frame of the base mesh so- The second part is the input image backwards warped onto 
the base mesh. These two parts are subtracted and form the overall fit error function. 
The objective function of the model parameters p and A that we are trying to minimize is 
defined for each pixel x within the base mesh so: 

m 

£ P o ( x ) + £ A i ^ ( x ) ) - I f W - ^ x ; p ) ) ] 2 (4.49) 
xSso i=l 

4.6.3 Active Models and Face Recognition 

The model parameters p and A may be directly used as the input to a classifier. However, 
the parameters capture the class specific information as well as the information about facial 
expression or head rotation. One approach to deal with this problem is the usage of the 
class-specific Mahalanobis distances. The Mahalanobis distance di of the model parameters 

c = (^j I r o m class i is given by: 

di = (c-cl)TC-1(c-cl) (4.50) 

where c7 is the mean of class i and Cj is its covariance matrix. However, this is very 
restrictive because this approach needs a sufficient number of examples for each subject 
enrolled in the biometric system. Another approach is to assume a common within-class 
covariance matrix C. Wi th this assumption, a classification using L D A may be used (see 
Section 4.4.2). 

4.7 3D Face Recognition 

In this section, various approaches of the three-dimensional face recognition are described. 
The three-dimensional adaptation of eigenface and fisherface methods will be described. 
Although these two methods were originally proposed for the two-dimensional recognition, 
they can be applied to the three-dimensional data as well. At the end of the section, some 
purely three-dimensional methods, like the three-dimensional model based face recognition, 
are described. 

The three-dimensional face recognition brings several advantages compared to the two-
dimensional recognition. Mainly because it provides new facilities of discrimination as depth 
data are added. 

Another advantage of the three-dimensional face recognition is related to the data cap­
ture technique. Many three-dimensional cameras operate in the infrared part of the spec­
trum [48] which is independent to lighting conditions, such that the direction of light and 
shadows on the face does not negatively affect the face recognition. 

4.7.1 Representations of the 3D Face Mode l 

A three-dimensional face model could be represented in various forms. Most often point-
clouds [66], meshes [43] and range images [25] are used. Although all of these representations 
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Figure 4.16: Pointcloud, mesh, and range image representations of the same face. 

could be mutually converted to other representations, face recognition technique depends 
on the form of a three-dimensional model. 

The common used representation of the three-dimensional models is a range image. 
Because of their implementation, range images are sometimes called depthmaps. It is an 
array where each element represents the distance from the camera, therefore this array 
could be stored as greyscale bitmap image. Range images are not universal for all types 
of three-dimensional models. Mainly because they cannot store information about points 
that are hidden by other points. Using the range image representation on three-dimensional 
faces is not affected by this limitation because the frontal view of a face does not contain 
many points that are hidden by other parts of the face. 

A l l three representations of the same face (from GavabDB face database [49]) are in 
Figure 4.16. 

4.7.2 Curvature Analysis 

The three-dimensional face model can be described as a surface in the three-dimensional 
space. The curvature analysis can be applied on it. Curvature is the amount by which a 
surface derivates from being flat. 

Assume a parametric curve 7(5'), where S is a parameter which determines tangent 
vector T(S) and a normal vector N(S) at each point of the curve. This parameter also 
determines curvature k(S) and radius of curvature R(S) = ^TW. 

For the analysis of the face surface, the principal curvatures are important. At a given 
point of the surface they measure, how the surface bends by different amounts in different 
directions at that point. A n illustration is in Figure 4.17a. Planes of principal curvatures k\ 
and ki and the tangent plane are orthogonal. 

To express a surface curvature characteristics with only one value at each point on the 
surface, several options are available. 

Gaussian curvature K [76] of a point on a surface is defined as the product of principal 
curvatures k\ and k2-

K =k\ki (4.51) 

Mean curvature H [76] is the average of principal curvatures k\ and k2-

H = -(k1 + k2) (4.52) 
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(a) Principal curvatures. (b) Shape index shapes. 

Figure 4.17: Principal curvatures (a) and shape index shapes (b) [45]. 

Table 4.1: Shape classification based on the sign of mean and Gaussian curvature. 

K J H < 0 = 0 > 0 
< 0 saddle ridge minimal saddle valley 
= 0 ridge flat valley 
> 0 peak (none) pit 

Shape index S [43] is for the classification of the surface into categories. See Figure 4.17b. 

(4.53) S 
1 _ i fa + k2 

— tan — 
ir k l - k 2 

where the principal component fa is greater than k2. 

In Figure 4.18, the original range image, Gaussian curvature, mean curvature, shape index, 
and marked pits and peeks are shown. Pits and peaks and other types of the shape can be 
found by comparison of the signs of the Gaussian and mean curvature [76], see Table 4.1. 
The pit and peak points of the face are also shown in Figure 4.18. 

4.7.3 Facial Landmarks Detection 

Detecting the facial landmarks from the three-dimensional data cannot be performed using 
the same algorithms as on the two-dimensional data, mainly because the two-dimensional 
landmark detection lies on analysing the color space of the input face picture, which is not 
present in the raw three-dimensional data. 

Figure 4.18: From left to right: the original range image, corresponding Gaussian curvature, 
mean curvature, shape index, and pit (blue) and peak points (red) on the face surface. 
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Locating the Nose Tip 

Location of the nose tip is in many three-dimensional facial recognition methods the fun­
damental part of preprocessing [25, 43, 45, 61]. Various techniques of localization of this 
point are used. 

Heseltine [25], during the face preprocessing in his recognition approach, claimed that 
the nose is the most protruding point on the surface. To handle the head rotation, the face 
is iteratively rotated about x and y axes. The result is that the nose tip has the smallest 
z coordinate on more occasions than any other vertex. 

Segundo et al. [76] proposed the algorithm for the nose tip localization that consists 
of two stages. First, the y-coordinate is found and then an appropriate x-coordinate is 
assigned. To find the y-coordinate, two y-projections of the face are computed - the profile 
curve and the median curve. The profile curve is determined by the maximum depth value, 
while the median curve by the median depth value of every set of points with the same 
y-coordinate. Another curve that represents the difference between the profile and the 
median curves is created. Maximum of this curve along y-axis is the y-coordinate of the 
nose. See Figure 4.19. 

1 1 1 1 1 1 1 1 1 1 
'profile curve' 'median curve' 

_____ 

\ 'difference' 

y i. y i i i i 

V j X X . 

-60 -40 -20 0 20 40 60 
y-axis 

Figure 4.19: Localizing the y-coordinate of the nose. 

The x-coordinate of the nose is found by projecting the x-projection of the curvature 
image. This is done by calculating the percentage of peak curvature points of neighbour 
rows centered in the nose y-coordinate of every column. The nose tip x-coordinate can be 
determined by looking for a peak at this projection, as can be seen in Figure 4.20. 

Nose Corners 

A nose corners localization method is similar to the the nose tip localization in principle. 
Segundo et al. [76] recommend to find the maximum variations in the horizontal profile 
curve. The horizontal profile curve is the x-projection that represents the set of points with 
the same y-coordinate value, in this case, the nose tip y-coordinate. To detect the nose 
corners, Segundo et al. calculate gradient information of this curve and look for one peak 
on each side of the nose tip. 

A more accurate nose corner localization could be achieved by the use of x-projection 
data obtained from the curvature analysis. Either searching for minimum values in the mean 
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Figure 4.20: Localizing x-coordinate of the nose. 

curvature projection or searching for the minimum values in the shape index projection is 
possible. See Figure 4.21. 
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Figure 4.21: Localizing nose corners. 

Inner Eye Corners 

Inner eye corners detection proposed by Segundo is based on the curvature analysis again. 
First, the percentage of pit curvature points of every set of points with the same y-coordinate 
is calculated. There are three peaks, representing eyes, nose base, and mouth (Figure 4.22). 
As the nose coordinates are known, each peak can be assigned to its respective facial feature. 
The ^-coordinates of the eye corners are computed from another x-projection curve, where 
is the ratio of the pit curvature points for each x-coordinate calculated. The eyes match to 
the two arches on this curve. 

Finding the facial landmarks is sometimes an iterative process. Detected landmarks are 
then used for normalization of the face orientation and then the landmark detection process 
is applied again. 
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Figure 4.22: Localizing y-coordinate of the eye corners. 

Figure 4.23: Localization of eye corners and nose, projection to generic position and con­
version to the range image [14]. 

4 .7 .4 Face Orientation Normalization 

The face orientation normalization plays an important role during the recognition process 
because it improves the recognition performance. The distance between the aligned face 
scan and the face of the same person stored in the database is much smaller than in the 
case of unaligned face scans. 

Heseltine [25] in his recognition algorithm normalizes the face orientation during the 
landmark detection. First, the nose tip is detected and the face is translated so that the 
nose tip is located at the coordinate origin. Then, the roll correction is performed by 
locating the nose bridge and rotating the whole face about the z-axis to make the nose 
bridge vertical in the x-y plane. After that, the forehead is located and the face is rotated 
about the x-axis to move the forehead directly above the nose tip. The final step of the 
alignment is the rotation about the y-axis to correct the head pan. During this step, the 
symmetry of the face is used. 

Colombo et al. [14] locate both eye corners and nose tip first. Then this triplet is 
projected into the generic position, the whole face is converted to the range image and 
cropped with a mask. The result of this process is the input for eigenface-based face 
recognition. The illustration of this process is in Figure 4.23. 

4 .7 .5 Eigenfaces in Three-Dimensional Face Recognition 

The eigenfaces method applied on three-dimensional face recognition is very similar to its 
two-dimensional variant described in Section 4.4.1. The mean face and afterwards the 
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Figure 4.24: Examples of mapped range images [61]. 

0010 
Figure 4.25: Original range image, Sobel x, Sobel y, and Sobel magnitude [25]. 

calculation of the eigenvectors and eigenvalues from covariance matrix is performed on the 
range images. In this section several improvements of applying eigenface method on the 
three-dimensional data will be described. 

Range Image Processing 

The face recognition method proposed by Pan et al. [61] maps the face surface to a planar 
circle. First, the nose tip is located and a region of interest (ROI) is picked. The ROI 
is a sphere centered at the nose tip. After that, a face surface within the ROI is selected 
and mapped to the planar circle. A function E that measures the distortion between the 
original surface and the plane is used. The transformation to the planar circle is performed 
so that E is minimal. Some examples of mapped range images are in Figure 4.24. 

Heseltine [25] shows that the application of some image processing techniques to the 
range image has a positive impact to the recognition, mainly the application of the Sobel 
filter which increases the recognition performance. In Figure 4.25, the original range image 
and some applied filters are shown. 

4.7.6 Mode l Based 3D Face Recognition 

So far, only the two-dimensional methods or their adaptation to the three dimensions were 
described. 

L u et. al [43] proposed a method that compares a face scan to a 3D model stored in a 
database. The method consists of three stages. First the landmarks are located. L u uses 
the nose tip, the inside of one eye, and the outside of the same eye. Localization is based 
on the curvature analysis of the scanned face. 

These three points obtained in the previous step are used for the coarse alignment to the 
3D model stored in database. A rigid transform of three pairs of corresponding points [85] 
is performed in the second step. 
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Figure 4.26: Process of the model based recognition [43]. 

The fine registration process, the final step, uses the Iterative Closest Point algorithm [8]. 
The root mean square distance minimized by the ICP algorithm is used as the primary 
comparison score of the face scans. Additionally, a cross-correlation between the shape 
index maps are calculated and then used as the second comparison score. The whole 
process of model based recognition is in Figure 4.26. 

4.7.7 Face Recognition Using Histogram Based Features 

The face recognition algorithm introduced by Zhou et al. [89] is able to deal with small 
variations caused by facial expressions, noisy data, and spikes on the three-dimensional 
scans. After localization of the nose, the face is aligned so that the nose tip is situated in 
the origin of coordinates and the surface is converted to the range image. After that, a 
rectangle area around the nose is selected. This rectangle is divided into N equal stripes. 
Each stripe n contains Sn points. Maximal Zn^max and minimal Znjjnin z-coordinates within 
each stripe are calculated and the z-coordinate space is divided into K equal width bins. 
Each binn^ is defined by its z-coordinate boundaries: 

binnji = [ Z n j f c _ i , Znik] (4.54) 

Zn,o — Zn^mini Zn\, • • •, Znx — Zn^max (4.55) 

The feature vector v containing N • K components is calculated: 

\{Pi(xi,yi,Zi)\ pi G 5 „ , Z f c _ i < Zi < Zk}\ 
vk,n = |7T-j (4.56) 

I'-'n I 

where k £ [1, . . . ,K] and n G [1,...,N]. 
The input range image and the corresponding feature vector is shown in Figure 4.27. 

The comparison between two faces is performed by a distance calculation between the two 
corresponding feature vectors. 
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Figure 4.27: Original range image and corresponding feature vector calculated as a his­
togram of z-coordinates in iV stripes. 

Figure 4.28: Iso-depth curves (left, middle) and iso-geodesic curves (right). 

4.7.8 Recognition Based on Facial Curves 

In recent years, a family of the 3D face recognition methods, which is based on the compar­
ison of facial curves, has emerged [30, 31, 7]. In these methods, the nose tip is located first. 
After that, a set of closed curves around the nose is created, and the features are extracted. 

In [31], recognition based on iso-depth and iso-geodetic curves is proposed. The iso-
depth curve is extracted from the intersection between the face surface and the parallel 
plane, perpendicular to the z-axis. The iso-geodesic curve is a set of all points on the 
surface that have the same geodesic distance from a given point (see Figure 4.28). The 
geodesic distance between two points on the surface is a generalization of the term distance 
on a curved surface. 

Contrary to the iso-depth curves, from a given point, iso-geodesic curves are invariant 
to translation and rotation. This means that no pose normalization of the face is needed in 
order to deploy a face recognition algorithm strictly based on iso-geodesic curves. However, 
the precise localization of the nose-tip is still a crucial part of the recognition pipeline. 

There are several shape descriptors used for feature extraction in [31]. A set of 5 simple 
shape descriptors (convexity, ratio of principal axes, compactness, circular variance, and 
elliptical variance) is provided. Moreover, the Euclidian distance between the curve center 
and points on the curve is sampled for 120 points on the surface and projected using L D A 
in order to reduce dimensionality of the feature vector. Three curves are extracted for each 
face. 

The 3D face recognition algorithm proposed in [7] uses iso-geodetic stripes and the sur­
face data are encoded in the form of a graph. The nodes of the graph are the extracted 
stripes and the directed edges are labeled with 3D Weighted Walkthroughs. The walk-
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Figure 4.29: Example of 3D walkthrough between points A and B: k) = (1, —1,1). 

through from point A = (XA, UA, ZA) to B = (XB,VB, ZB) is illustrated in Figure 4.29. It 
is a pair (i,j,k) that describes the sign of mutual positions projected on all three axes. 
For example, if XA < XB A I/A > VB A ZA < ZB holds, then k) = (1, —1,1). For more 
information about the generalization of walkthroughs from points to a set of points, see [7]. 
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C h a p t e r 5 

Proposal of the Recognition 
Algorithm 

This chapter describes the generalized recognition pipeline that takes the input face mesh 
and normalizes it, such that the rotation is compensated for. After that, some image 
representations of the surface, texture, and curvature are generated from the normalized 
mesh. The pipeline continues with the application of specific image filters. Finally, subspace 
projections are used in order to extract features. 

The main idea of the proposed method is the score-level fusion of involved individual 
recognition units. By the application of some filter bank, e.g. Gabor filter bank, on the 
input image we obtain m new images. However, the number of filters within the bank 
is quite high, therefore some optimization selection method is needed in order to improve 
speed as well as remove redundancy. We employ hill-climbing selection and the optimization 
criterion is fusion E E R . 

The similar approach has been proposed by Yang et al. [86]. Yang et al. use AdaBoost 
to select a small set of Gabor features (weak classifiers) in order to form a strong classifier. 
Moreover, he proposed intra-face and extra-face difference space to transform a multi-class 
classification to a binary decision. The task is to assign the input two images to intra-
personal or extra-personal space. 

Su et al. [78] came with an algorithm exploiting both local and global features. The 
global features are extracted from the whole face images by keeping the low-frequency 
coefficients of Fourier transform, which we believe encodes the holistic facial information, 
such as the facial contour. For local feature extraction, Gabor wavelets are applied on the 
face image patches. The resulting classifier is based on the hierarchical feature-level fusion 
utilizing Linear Discriminant Analysis. However, both methods from Yang as well as from 
Su are designated for 2D face recognition. Our proposed method is able to profit from both 
2D texture and 3D shape data. 

5.1 Generalized Recognition Pipeline for Face Recognition 

Biometric recognition pipeline usually consists of data acquisition, preprocessing, feature 
extraction, and comparison that yields to the final decision whether the user is accepted or 
not [84]. 

The recognition pipeline suitable for the face recognition presented in this thesis is 
depicted in Figure 5.1. Individual components are described in the following sections. First, 
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Figure 5.1: Recognition pipeline for 3D face recognition. 

the input mesh is aligned. One can use an automatic landmark detection (see Section 4.7.3) 
followed by translation and rotation of the detected points to some predefined position. 
Another approach might be the ICP align of the entire input face mesh to a reference 
template (see Section 4.7.6). 

Image data are extracted from the aligned face mesh. The mesh is transformed to the 
range image and texture representations. The range image is further processed in order to 
gain 4 new curvature representations - mean curvature, Gaussian curvature, eigencurvature 
and shape index image. 

The alternative to image filters approach are the iso-geodesic curves. A set of curves 
centering at a given point is retrieved from the mesh and converted to a set of points. 

The next step, common to both iso-geodesic curves as well as image filters, is some 
subspace projection of the input data. Image matrix is transformed to the column vector 
representation and projected to the low-dimensional space after that. A set of 3D points 
is transformed to the simple column vector in the same manner. P C A (Section 4.4.1), 
ICA (Section 4.4.3), as well as L D A (Section 4.4.2) are suitable for a subsequent subspace 
projection of the input column vector. 

5.2 Face Alignment 

The proper face alignment is a crucial part of the input face pre-processing. Here, we 
use an alignment based on the reference face template. Input face mesh is aligned to 
the template such that the sum of square differences between the input face mesh and 
corresponding points on the template is minimal. In the following subsections, the creation 
of the reference face template and the alignment itself will be described. 

5.2.1 Reference Template Creation 

The reference face template was created from 100 face scans taken from the F R G C database. 
Nine points were manually annotated on each scan - 2 outer eye corners, 2 inner eye corners, 
nasal bridge, nose tip, outer nose corners, and lower nose corner. Procrustes analysis [30, 16] 
was used in order to align annotated points as well as corresponding scans. The algorithm 
operates in the following steps: 

1. Translate each scan so that its center of gravity (CoG) is at the origin. 
2. Arbitrarily choose one example as an initial estimate of the mean. 
3. Align all scans (using translation and rotation) with the mean. 
4. Re-estimate the mean from aligned scans. 
5. If not converged, return to 3. 
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Figure 5.2: Mean reference face template used for proper registration of input faces. 

The key point during the Procrustes analysis is the alignment of all scans to the reference 
mean face template. The translation is quite simple - scan is moved in such direction that 
its CoG merges with the CoG of the reference mean scan. 

The rotation is performed using Singular Value Decomposition (SVD). Let the X = 
(x i , X 2 , . . . , xg) denotes a set of individual annotated landmarks Xj = (xxi, xyi, xzi)T. The 
similar 3 x 9 matrix Y denotes landmarks from the mean face scan. First, the covariance 
matrix S is calculated: 

S = XYA (5.1) 

The next step is singular value decomposition of S. It seeks for real matrices U and V 
and for diagonal matrix E , such that it holds the equation: 

S = UEVT 

The optimal rotation matrix R from X to Y is finally computed: 

(5.2) 

/ I 

R = V 

\ 

1 
U1 (5.3) 

\ det(VUT)) 

Individual aligned face scans were converted into a range image representation (see 
Section 5.3) and the mean range image was computed. The resulting mean range image 
was cropped such that it contains only the eyes, nose, upper part of mouth, and cheeks. 
The range image was sub-sampled to the resolution 17 x 21 pixels and converted to the 
mesh representation again. The resulting face alignment reference template is shown in 
Figure 5.2. 

5.2.2 Iterative Closest Point Alignment 

The main task of the Iterative Closest Point (ICP) algorithm is to align (using translation 
and rotation) a scanned face to the reference face mesh [8]. Although the scans in our testing 
databases were taken when the subjects were front-facing the capturing device, variations 
in rotation and even more in position are present. 

The algorithm steps are: 

1. Associate all points in the reference template with the corresponding points from the 
input face using the nearest neighboring criteria. 

2. Compute an optimal translation and rotation using least-squares as the optimization 
criteria. 
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3. Translate and rotate the input face mesh. 
4. Iterate until convergence. 

The first problem is that, contrary to the Procrustes analysis align, there is no explicit 
mapping between the points of the input face and the reference template. Moreover, the 
scans in F R G C database contain up to 80,000 vertices. The exhaustive linear search for 
the nearest matching neighbor is thus ineffective. Fast Linear Approximation of Nearest 
Neighbor ( F L A N N ) is therefore used [57]. 

The ICP algorithm may fail if the initial position of the input face requires significant 
translation. The corresponding points are then wrongly estimated and the convergence is 
not assured. In order to avoid this, some rough estimation of the initial translation has to 
be supplied. We use a simple template matching. The input face mesh is gradually moved 
over the reference template and a sum of square differences is calculated between template 
points and appropriate points on the input mesh. The rough initial position estimation is 
at the point where the sum of square differences is minimal. 

The k-means index is used for the nearest neighbor search during the computation of 
the optimal translation and rotation. The problem is that the input face mesh points index 
has to be re-calculated after each ICP iteration. However, this issue can be solved with 
a simple trick: In each ICP iteration the inverse translation and rotation is added to the 
temporary stack. When there is a need to gain a point p on the reference face mesh that is 
the nearest to some arbitrary point on the input face, the inverse transformation is applied 
on the point p first. 

5.3 Source Image Data 

Although many 3D face recognition algorithms operate directly in three-dimensional space 
(see [30, 45]) we propose an approach that converts the input 3D face mesh into a 2D matrix 
on which the subsequent recognition (image filters and feature extraction) operates. Since 
we have texture as well as the 3D model, several representations describing the texture, 
depth, and curvature may be deduced. 

The range image (depthmap) is created from the input face scan in several steps: First, 
the point-cloud representation is transformed to the triangular mesh using Delaunay tri-
angulation [41]. After that, the mesh vertices are projected to the x-y plane and the 
z-coordinate is transformed to a pixel brightness. The brightness of the remaining points 
within the triangles is linearly interpolated. The Pineda algorithm [67] is used for fast 
triangle rasterization. The resulting range image is slightly smoothed with Gaussian kernel 
in order to soften the edges between the triangles. 

The remaining images of the surface representation depend on the calculation of the 
principal curvatures. Curvature k at each point B on the range image is calculated from 
the z-coordinate bz of the point B as well as from its surrounding points A and C and 
their z-coordinates az and cz respectively (see Figure 5.3). The curvature is approximated 
as the signed angle a = TT — \ZABC\. Its sign is deduced from the comparison of bz and 
dz = az+Cz. If the bz < dz then the sign is negative. The principal curvatures k\ and k2 are 
estimated in x axis as well as in y axis direction and swapped eventually such that k\ > k2 • 

Despite the mean curvature, Gaussian curvature, and shape index (see Section 4.7.2) 
eigencurvature [74] is used. It is computed directly from the image point P = (px,Py,Pz) 
and its 8 surroundings ( P i , P 2 , • • •, Ps)- It is based on the P C A of the matrix M : 
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Figure 5.3: Principal curvatures estimation. 

Figure 5.4: Image representations of the face surface. From left to right: texture, range 
image, mean curvature, Gaussian curvature, shape index image, eigencurvature. 

(Px Pu • • P8X 

M = (P P i • • Ps) = Py • P*y 
\Pz Plz • • Psz 

(5.4) 

The P C A reveals 3 eigenvectors and their corresponding eigenvalues IQ, l\, and I2 (IQ > 
h > I2). The eigencurvature Ep is then: 

EF = (5.5) 

The examples of curvature representation images could be found in Figure 5.4. 

5.4 Fil ter Banks 

The image filter banks are widely used technique in the area of texture analysis, segmenta­
tion, and classification. Individual filters in the bank are used in order to remove unwanted 
components or features. The two-dimensional filter (kernel k with size kw x k^) is convoluted 
with the input image i and the response d using the following equation is thus calculated: 

d(x,y)= ^2 ^2 =k(x'>y') -i(x + x' - ax,y + y' - ay) (5.6) 
0<x'<kw 0<y'<kh 

The a = (a x-,Ojy) is the kernel anchor — center of the kernel and is usually set to a — 
[kw/2, kh/2). In fact, the Equation 5.6 does not compute the real convolution since the kernel 
is not mirrored around the anchor point. The image filter banks are set of m 2D kernels 
that are convoluted with the input image (see Figure 5.5). 
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Filter m Response m 

Figure 5.5: General filter bank. 

Figure 5.6: Gabor filter bank. 

5.4.1 Gabor Filter Bank 

The complex Gabor filter is defined as the product of a Gaussian kernel and a complex 
sinusoid: 

g{x,y,u,0,<r) = ^ 2 e " ^ ( e W " e ~ ^ ) ( 5- 7) 

where x and y are coordinates within the Gabor kernel, x' = x cos 9 + y sin 9 and 
y' = —xs'm9 + ycos9. It is often used as an image edge detector with respect to spe­
cific frequencies and orientations. The Gabor space is very useful in image processing 
applications such as optical character recognition [23], iris recognition [17] and fingerprint 
recognition [26]. The complex sinusoid is known as the carrier and the Gaussian-shaped 
function is known as the envelope. The rotation as well as the frequency of the carrier is 
controlled through the parameters 9 and u, respectively. The parameter a controls the 
envelope size. 

The Gabor filter is usually controlled with just two discrete-value parameters - orien­
tation o € ( 0 ,1 , . . . , 7) and scale s G (1, 2 , . . . , 7). The parameters UJ, 9, and a are set to: 
to <— f \/2 s , a <— 2j, and 9 <— gg-. The example of Gabor filter bank is in Figure 5.6. 

The Figure 5.7 shows the application of the complex Gabor filter on the input shape 
index image. The Figure 5.8 shows the superposition ability of Gabor filter bank. 

5.4.2 Gauss-Laguerre Filter Bank 

The Gauss-Laguerre wavelets are polar-separable functions with harmonic angular shape. 
They are steerable in any desired direction by simple multiplication with a complex steering 
factor and as such they are referred to as self-steerable wavelets [2]. Our Gauss-Laguerre 
filter bank consists of 35 filters that were created with parameters n G (1,2, 3,4, 5), k = 0, 
j = 0 with sizes 16 x 16, 24 x 24, 32 x 32, 48 x 48, 64 x 64, 72 x 72, and 96 x 96 pixels. 
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(a) (b) (c) (d) 

Figure 5.7: Application of the complex Gabor filter on the input shape index representation 
of the face surface. From left to right: input image (a), real kernel and imaginary kernels 
(b), real response and imaginary responses (c), and absolute response (magnitude) with 
angle response (d). 

M M EH tfl ft IS! 
K g a D914 H 

Figure 5.8: Superposition of individual absolute responses of complex Gabor filter. 16 
different Gabor filters were applied on the input eigencurvature image (left). The responses 
are shown in the center grid. Four different frequencies (one for each line) and four different 
orientations (one for each column) were applied. The resulting superposition is shown on 
the right side of the figure. 

The 9 has been set to 9 <— atan2(x,y) and r <— \jx2 + y2. See Figure 5.9 for an example 
of Gauss-Laguerre filter bank. 

5.4.3 Other Filters 

Histogram Equalization 

The histogram equalization [73] may improve face recognition based on the classic 2D 
photographs or on thermal imaging. It improves the contrast in an image in order to 
stretch out the intensity range. Equalization implies mapping one distribution (the given 
histogram) to another distribution (a wider and more uniform distribution of intensity 
values) so the intensity values are spread over the whole range. Figure 5.10 shows the 
impact of histogram equalization on the set of images that belong to the same subject but 
the lighting conditions vary. 

Gaussian blur and difference of Gaussians 

Gaussian blur filter may improve recognition robustness against noise and wrong face align­
ment. The Difference of Gaussians (DoG) [80] works as a bandwidth filter. Shading induced 
by surface structure is a potentially useful visual cue but it is predominantly low spatial 
frequency information that is hard to separate from effects caused by illumination gradi­
ents. Suppressing the highest spatial frequencies potentially reduces both aliasing and noise 
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Figure 5.9: Gauss-Laguerre filter bank. 

r r r r c r 
Figure 5.10: The example of application of histogram equalization filter. The upper row 
contains photographs of the same subject in different lighting conditions. The lower row 
contains the same scans with histogram equalization applied. 

without destroying too much of the underlying recognition signal. 

Local Binary patterns 

The Local Binary Pattern (LBP) [81, 80, 24] operator labels the pixels within image by 
thresholding the 3 x 3 neighborhood with the center value and considering the result as a 
binary number. At a given pixel, L B P is defined as an ordered set of binary comparisons 
of pixel properties between the center pixel and its eight surrounding pixels. The decimal 
form of the resulting 8-bit word (LBP code) is used to represent the detail property of the 
center pixel. The example of application of L B P filter is in Figure 5.11. 

Local binary patterns are often used with spatial histograms - the image is divided into 
grid and histograms are calculated within each cell. Concatenated histograms may form 
the feature vector directly or they can be further processed with some subspace projection. 

Figure 5.11: The example of application of the L B P filter. The input images are in the first 
row while the results after filter application are in the second row. 
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Figure 5.12: Iso-geodesic curves. 

5.5 Iso-geodesic curves 

3D Face recognition utilizing iso-geodesic curves and iso-geodesic stripes has been described 
in Section 4.7.8. The extracted curves are sampled to a set of points in 3D space and directly 
processed by some subspace projection technique, i.e., P C A , L D A , and ICA. 

The center of all facial iso-geodesic curves is the nose-tip iV that has been previously 
located during the ICP align, n curves c i , C 2 , . . . , cn with corresponding geodesic distances 
di,d,2, • • • ,dn are thus extracted. Each curve Cj consists of m points: Cj = (pi1}pi2, • • • ,Pim), 

such that dgeo(N,Pij) = di, where dgeo(-, •) denotes geodesic distance. 
The individual points pi. of curve Cj are gained in the following manner: The neighbor­

hood of the center is equally divided into m sectors such that the angle between individual 
sector beams is On each sector beam, a point with a specific geodesic distance from 
the center is denoted. Example of 5 iso-geodesic curves with geodesic distance 1, 2, 3, 4, 
and 5 cm consisting of 100 points is shown in Figure 5.12. 

5.6 Feature Extraction and Metr ic Selection 

Although specific Gabor filter may reveal features important for the subject classification, 
the dimensionality of the face image space remains the same. Moreover, if we apply 10 
Gabor filters on the image with size 50x50 pixels, the resulting dimensionality is 50-50-10 = 
25 000. Therefore, the image is projected to some low-dimensional space using techniques 
described in Section 4.4. 

In plain P C A , the components of the projected vector are proportional to the variability 
that is expressed as the corresponding eigenvalue. This unbalance of individual feature 
vector components may lead to a neglect of those feature vector components that may have 
positive impact on the recognition performance, however, their associated eigenvalue is too 
small. In order to avoid that, individual feature vector components can be normalized after 
the subspace projection using z-score normalization. That is, an arbitrary feature vector 
X = (xi,X2, • • •, xm) is modified such that Xi <— Xi~Xi

; where Xi is the mean value of the 
component i and a% is corresponding standard deviation - see Figure 5.13. 

Usually, the basic Euclidean distance is used in order to compare two feature vectors. 
We have tried other metric functions as well - namely a sum of absolute differences (city-
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Figure 5.13: End of the recognition pipeline - raw feature vectors (iso-geodesic curves, 
processed images) are projected to low-dimensional space and optionally normalized using 
z-score normalization. The comparison is conducted using an arbitrary distance function. 
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Input face mesh Aligned face Range image Eigencurvature Gabor filter P C A projection 

Figure 5.14: The example of one possible recognition unit. The input face mesh is aligned 
first. After that, the range image and subsequently eigencurvature is calculated. On the 
curvature image, Gabor filter is applied. The subspace projection using P C A is made as 
the last step. 

block, Manhattan metric), cosine metric, and correlation metric. 
The alternative to the P C A projection approach is the utilization of spatial histograms 

that are closely related to the LBP-based recognition [80]. After the application of the 
L B P filter, the image is divided into the grid. The grid cell size depends on the specific 
application as well as on the size of the input image. The image is converted to the grayscale 
representation and the histogram of the intensity values is calculated. Individual histogram 
values from all grid cells are concatenated and the resulting feature vector is thus created. 
The size d of the feature vector depends on the cell count: d = r • c • 255, where r and c 
are the numbers of grid rows and columns respectively. The resulting feature vectors are 
directly used for comparison in [3]. However, they can be also further processed with P C A 
and subsequent z-score normalization. 

5.7 Multi-algorithmic Score-level Fusion 

In the previous sections, the face alignment, image data extraction, image filters, iso-
geodesic curves and subspace projections were described. While the face alignment is 
common for all recognition pipelines, image data, filters, and subspace projections are vari­
ables. One example of a possible recognition algorithm (unit in further text) is in Figure 
5.14. 

The basic principles of multi-algorithmic and score-level fusion were already described 
in Section 2.3. In this section, specific problems and issues regarding the practical imple­
mentation will be presented. 
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5.7.1 Score normalization 

One of the most important concerns, when the score-level fusion is involved, is the score 
normalization [68, 70]. Comparison scores of individual units have to be normalized to 
some common domain prior to fusion itself. 

There are several techniques of score normalization. Although the metric should be 
defined so that it satisfies the non-negativity axiom {d{x,y) > 0), a biometric comparison 
score s as well as the normalized value s' may be lower than zero. Let S is the set of all 
comparison scores from some evaluation run. S g e n and Simp are sets of all genuine and 
impostor SCOrGS respectively (>S — Sgen U $impj Sgen Simp — 0) • 

Probably the simplest normalization is min-max: 

max(o) — min( i ) 

Min-max normalization is highly sensitive to outliers. Let Simp and sgen denote the 
mean impostor and genuine scores respectively. The normalized score s' from input score 
s is computed using the following formula: 

a' = S S_9en (5.9) 
Simp Sgen 

The normalization from Equation 5.9 transforms the input score, such that the mean 
impostor comparison value is 1 and mean genuine comparison value is 0. Further robustness 
against outliers may be achieved when the median instead of mean is used: 

s' = - - m e d i a n ( ' V " ) ( 5 1 0 ) 
median (5 j m p ) — median ( 5 s e n ) 

Another frequently used normalization technique is z-score. Let a and s denote standard 
deviation and mean value of S respectively: 

s' = — (5.11) 
a 

The similar normalization technique is based on the Median of Absolute Deviation 
(MAD) [72]. M A D of set S is defined as: 

M A D ( 5 ) = median{|si — median (S) |, \s2 — median (S) | , . . . , \sn — median (S) |} (5.12) 

The MAD-based normalization uses the computed median and M A D of S: 

,_s- median (S) 
S ~ M A D ( S ) ( 5 6 ) 

The normalization based on the hyperbolic tangent is defined as: 

/ 1 / , (s — sN 

2 V V 1 0 0 ( 7 
(tanh ( S—- ) +1 ) (5.14) 
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5.7.2 Classifier-based fusion 

Suppose that we have n recognition units. Each unit employs its own image processing, 
feature extraction using some subspace projection and comparison metrics. The resulting 
comparison scores provided by individual units are normalized using Equation 5.9. The 
task is to combine normalized scores to a single value that can be thresholded in order to 
decide whether an input scan is accepted or not. 

From the machine-learning perspective, the task is to create a classifier C that is capable 
to assign a class label c £ {gen, imp} (genuine or impostor) for a given vector of normalized 
scores s = (si,s2, • • • ,sn) : 

C:s^c (5.15) 

In order to have both the biometric security and user convenience configurable, the vec­
tor of scores is mapped to genuine likelihood or signed distance from the genuine/impostor 
decision hyperplane rather than class label. 

Logistic Regression 

The learning of fusion based on logistic regression requires preprocessing of the training 
data. First, the design matrix $ is created: 

\ i s„y 

(5.16) 

Each row i in $ contains 1 in the first column followed by individual normalized com­
parison scores from i t h comparison. 

The target column vector t contains labels corresponding to individual comparisons: 
t = (ci, C 2 , . . . , Cn)T. Ci is set to 1 if the same (genuine) users were compared. In case of 
different (impostor) comparison holds Cj = 0. 

The projection matrix W is computed after that: 

W = (* T *)" 1 * T t (5.17) 

The genuine/impostor classification of input normalized scores s is based on the fusion 
score gained from the following equation: 

1 + exp(-WTV>) 
(5.18) 

where i/> = (1 s). 

Support Vector Machine (SVM) 

In fact, Support Vector Machine is an optimization problem. S V M attempts to find a 
hyperplane that divides the two classes with the largest margin. The support vectors are 
the points which fall within this margin. If the classes are not linearly separable, soft margin 
S V M is introduced. Parameter C controls the number of points that may stray over the 
line into the margin. 

In this work, the implementation l i b S V M [13] is used. 
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Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis has been described in Section 4.4.2. However, it is used 
as the binary classifier in this case. The n-dimensional space, where n is the number of 
involved units, is projected to one-dimensional line that separates genuine and impostor 
scores clusters the best. 

5 .7 .3 Hill-climbing Unit Selection 

Beside the score normalization, another issue that has to be taken into account is to measure 
the score correlation and performance bias [69, 39]. If the score correlation between the 
involved units is high, the resulting recognition performance of the multi-algorithmic system 
may not be significantly better than the individual units. Moreover, huge performance bias 
between units may reduce the recognition performance. 

The task is to select from the given set of units U = (ui, 112, • • •, un) a non-empty 
subset S that achieves possibly the best recognition performance. The exhaustive search 
of the relatively small set U is simple. However, when the number of units exceeds certain 
thresholds, the exhaustive search is impossible. 

We employ a wrapper selection [37]. This approach has been originally developed for 
feature selection, however, it can be also used for the unit selection in the multi-algorithmic 
fusion. 

The optimization criterion is achieved E E R (EERj) of a particular unit i. The algorithm 
is as follows: 

1. Select the unit b that achieves the best EER&, remove it from the set U and add it to 
the set of selected units S. 

2. For each remaining unit j in U measure fusion E E R of the set S U j. 
3. Select the best unit and add it to S. If there was no improvement of fusion E E R , 

exit. Otherwise return to 2. 

There is a potential drawback of the hill-climbing selection - selected units might be too 
specific for the training set and cannot generalize. Validation on the separate set is therefore 
recommended. However, our further experiments did not reveal any significant performance 
drop between the training and testing data. It has emerged that the hill-climbing is a good 
choice for recognition unit selection. 
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C h a p t e r 6 

Evaluation 

The presented algorithm will be evaluated in this chapter. In order to compare the achieved 
results with other available state-of-the-art algorithms, evaluation is performed on the Face 
Recognition Grand Challenge version 2.0. Detailed methodology, tests as well as achieved 
results are described in the following sections. 

The face recognition algorithm was also tested on the databases obtained with low-
cost 3D sensors - such are Microsoft Kinect 1 and SoftKinetic DepthSense DS325 2 . The 
expansion of personal depth sensors related with the new ways of the human-computer 
interaction in recent years markedly lowered the price of 3D acquiring devices for personal 
use. However, the biggest challenge of the face recognition based on the low-cost depth 
sensors is the quality of the acquired scans. While, for example, the Minolta Viv id or 
Artec 3D M scanners provide a highly precise geometry with an outstanding resolution and 
level of detail, the scans retrieved from the Kinect or DepthSense DS325 sensors are noisy, 
have low resolution and sometimes contain holes. The last two sections of this chapter are 
dedicated to the performance evaluation on those low-cost depth sensors. 

6.1 Database Description and Evaluation Methodology 

The proposed face recognition algorithm was trained and tested on the Face Recognition 
Grand Challenge Database v 2.0 - a standard evaluation database for facial biometrics (see 
Section 3.3.1). This database contains scans captured in spring 2003, fall 2003, and spring 
2004. The Spring 2004 portion (2,114 scans) was divided into five parts, such than each 
part contains the same count of subjects. No subject is present in more than one part. The 
face alignment algorithm presented in the next section failed 36 times and thus these scans 
were removed. See Table 6.1 for the detailed information about dividing the Spring 2004 
portion of the F R G C v2.0 database for evaluation purposes. 

The first part of Spring 2004 was used for the training of the face alignment and the 
training of individual parameters of subspace projections. The second part was used for 
the validation of selected parameters and for the training of final fusion. The last three 
parts were used for evaluation purposes. 

xhttp://www.xbox.com/kinect/ 
2http://www.softkinetic.com/products/depthsensecameras.aspx 
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Table 6.1: F R G C 2 Spring 2004 statistics. 

Part Subjects Scans Purpose 
1 69 416 training 
2 69 451 training, validating 
3 69 414 evaluation 
4 69 417 evaluation 
5 69 380 evaluation 

Table 6.2: Comparison of two face alignment approaches. 

Align approach E E R 
Landmark-based 0.060 

ICP 0.043 

6.2 Face Alignment 

The alignment of the input face mesh is one of the most important tasks in the pre­
processing part of the recognition pipeline. There are two main evaluation characteristics -
precision and speed. The first mentioned can be implicitly evaluated by the evaluation of 
the overall biometric performance. The latter is important for practical purposes. 

The alignment of the face can be performed in several ways. It can rely on the landmark 
detection. The inner corner of the eyes, nose tip, and nose corners are detected and the 
face is aligned subsequently such that the sum of absolute differences between landmarks 
on the input face and landmarks on the reference face template is minimal. Although the 
alignment of the predefined points is simple and fast to compute, the notable downside of 
this approach is the requirement of precise landmark detection. Just a slight inaccuracy 
can lead to a wrong alignment, and the recognition performance is thus negatively affected. 

The second option of the face alignment is the involvement of Iterative Closest Point 
(ICP) algorithm. There is no initial landmark estimation. The entire face mesh model is 
aligned to the reference mean face template. However, this approach consumes much more 
C P U power. 

Both alignment approaches were evaluated on the F R G C database. The first part of the 
Spring 2004 set was used for training and the second part for validation. The recognition 
was performed on the range images of size 120x120 pixels. Features were extracted using 
P C A and individual feature vector components subsequently normalized using z-score. The 
correlation metric was employed for comparing the resulting feature vectors. The evaluation 
results of both approaches are in Table 6.2. 

The alignment utilizing the ICP algorithm outperformed landmark-based approach. 
Therefore it will be used in the following test. On the other hand, the drawback of the 
ICP is much higher C P U usage. The problem comes from the fact that there is no explicit 
mapping between the input face mesh and the mean reference template. In each ICP 
iteration, the points between the input and the reference have to be associated. This can 
be speeded-up when the index (e.g. k-means) of the points from the input face is created. 
However, the points in each iteration are changing their position and the index has to be 
recalculated. This issue might be solved with the inverse transformation trick described 
previously in Section 5.2.2. The comparison of mean duration of ICP alignment for F R G C 
scans is in Figure 6.1. 
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Figure 6.1: Comparison of ICP alignment approaches for F R G C scans. The duration 
(in milliseconds) is drawn for plain ICP as well as for ICP alignment with the inverse 
transformation trick. 

Table 6.3: Selection of eigenvectors for the P C A projection (partial results only). 

Selection threshold (t) Number of eigenvectors (T) Achieved E E R 
0.9 35 0.0751 
0.95 75 0.0526 
0.99 232 0.0425 

0.995 296 0.0416 
1 416 0.0430 

6.3 Particular Parameters of the Recognition Algor i thm 

There are several important parameters common to all recognition units based on some 
filter applied to the image representation of the surface - region of interest, type of sub-
space projection and its specific parameters, and metric selection. The last two are also 
related with the recognition employing the iso-geodesic curves. A l l these parameters will 
be evaluated in this section in order to find the most suitable solution. 

6.3.1 P C A parameters 

First, let us focus on the PCA-related parameters, namely the number of eigenvectors that 
are used for the projection to the P C A subspace. This test was performed on the range 
images with size 120 x 120 pixels. The P C A was trained on the first part of the F R G C 
Spring 2004 set and evaluated on the second part of the same set. The correlation metric 
was employed. 

The selection threshold t that controls the number of selected eigenvectors has been 
consecutively raising from 0.9 to 1 with step 0.001. Suppose that the P C A revealed N 
eigenvalues (Ai, A 2 , . . . , Aat)- The selection of T eigenvalues and corresponding eigenvectors 
was achieved by the fulfillment of the following equation: 

The results are summarized in Table 6.3. The best result was achieved when the selection 
threshold t = 0.995 was used. 
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Table 6.4: ROI selection evaluation. 

ROI width height E E R 

• t M 120 120 0.040 

\ Tl 100 90 0.038 

L J 100 120 0.039 

i i 120 90 0.039 

Later on, the same test was repeated on the shape index images, texture images, and 
iso-geodesic curves. The optimal selection threshold t = 0.995 has been achieved again. 

6.3.2 Region of Interest 

In order to select only the rigid parts of the face that are not affected by the facial ex­
pressions, various Regions of Interest (ROI) were evaluated. The partial results of the 
evaluations are summarized in Table 6.4. The showed results were achieved on the plain 
range images using P C A projection, z-score normalization and correlation metric. 

The best results are achieved when the area of mouth is limited. This is due to the 
fact that mouth is the area of the face that is affected by facial expressions the most. 
On the other hand, nose and eyes are the most stable areas from the intra-class variance 
perspective. 

There is a trade-off between a too large area and a small area. The first can provide 
much more discriminative abilities but, on the other hand, it suffers from a high intra-class 
variance. The latter has a limited abilities for seeking for individualistic features. 

The next question related to the ROI selection is the optimal size of the input image -
if we resize the input image to just 50x45 pixels, will it still contain enough information in 
order to distinguish persons? The test suggests that neither the half size nor the double size 
significantly affects the recognition performance. Moreover, feature vectors extracted from 
the half-size image have much lower dimensionality an thus the evaluation is also faster. 
On the other hand, the double size range image does not contain any additional meaningful 
information. 

6.3.3 Projection and Metric Selection 

The crucial part of the recognition pipeline is also a feature extraction projection and a 
subsequent comparison utilizing some metric. Various metrics on the projected range images 
based on the parameters obtained in previous evaluations were tested - see Table 6.5. 

The first notable conclusion is that the I C A and P C A with z-score normalization (zPCA 
in further text) employing either cosine or correlation metrics outperform any other combi­
nation. The more interesting fact is that they provide almost the same results. See Figure 
6.2 for example of genuine score correlation between these recognition units. 
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Table 6.5: Metric selection. Achieved EERs for each combination of projection and com­
parison metrics are given. 

Projection 
Correlation 

Metric 
Euclidean City-block Cosine 

P C A 0.103 0.135 0.132 0.103 
P C A , z-score 0.038 0.186 0.185 0.038 

Fisherface 0.110 0.132 0.137 0.110 
I C A 0.038 0.185 0.184 0.038 

1.1 i 1 1 1 1 1 1 1 r 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
PCA, z-score normalization, correlation metric 

Figure 6.2: Correlation of genuine scores between P C A with z-score normalization employ­
ing correlation metric and I C A utilizing cosine distance metric. 

If we look deeper, the correlation between z P C A and I C A is less surprising. It has been 
shown earlier that the most important of I C A calculation is the whitening process [87]. 
Moreover, since the individual P C A eigenvectors are decorrelated, the whitening process 
is similar to z-score normalization. The only difference between the cosine and correlation 
metrics is the calculation of mean values of the input vectors when the correlation metric 
is involved. However, for a given input, those mean values are constant and thus have no 
impact on the relative comparison of the two measured comparison scores (distances). 

6.4 Evaluation of Individual Recognition Units 

The individual recognition units were evaluated. Each unit is represented by input image 
data (e.g. texture, depth or curvature representation) on which some filters are applied. 
The resulting filter response is further processed with some feature extraction technique 
(e.g. P C A ) . The following types of units were tested: 

Plain image units - the input image (texture, depth, curvature) is scaled to half of its 
size, processed with P C A subspace projection and z-score normalized. Individual 
feature vectors are compared with correlation metric. 

Image Scale P C A Image Scale P C A 

Gabor-based image units - the input image is processed by Gabor filter with a specific 
size and orientation, scaled to half size, projected using P C A and normalized. Cor­
relation metric is used. Image is optionally equalized before or after the Gabor filter 
application. 
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Image Gabor filter Scale PCA Scale PCA 

Equalization Equalization 

Normalization 

Gauss-Laguerre-based image units are similar to Gabor-based units, except that the 
Gauss-Laguerre filter is used. 

Image Gauss-Laguerre filter Scale PCA Scale PCA 

Equalization Equalization 

Normalization 

L B P units - the input image is equalized optionally. After that, it is blurred slightly with 
Gauss filter. Finally, the L B P filter is applied, the image is scaled to half of its size 
and projected using P C A . Z-score normalized feature vectors are compared with the 
correlation metric. 

Image Gauss blur filter 

Equalization 

Local Binary Patterns Scale PCA Normalization 

L B P units with histogram are similar to the plain L B P units but the resulting image 
after the L B P application is divided into a grid and the histogram of intensity values 
is calculated in each cell of the grid. The resulting histograms are concatenated and 
further processed with P C A . 

Image Gauss blur filter 

Equalization 

LBP Grid Histogram PCA Normalization 

Iso-geodesic curves - 5 iso-geodesic curves are extracted at a specific point with geodesic 
distance 1, 2, 3, 4, and 5 cm. Curves are sampled to 100 points per curve. After 
that, coordinates of individual points are concatenated to one column vector. It is 
compared with other feature vector using the city-block metric or processed with P C A 
and z-score normalized. The correlation metric is used in the second case. 

Mesh — • Iso-geodesic curves extraction — • Sampling 

PCA Normalization 

No further processing 

There were evaluated 1,720 different units. The histogram of achieved equal error rates 
for each of them is in Figure 6.3. Partial results are in Table 6.6 

The best unit consists of the following pipeline. The Gaussian curvature representation 
of the surface is blurred with the Gaussian kernel of size 11 pixels. This image is further 
processed with a local binary patterns filter. The resulting image is divided into 10 hor­
izontal and 9 vertical cells. A histogram of values within each cell of size 10x10 pixels 
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Figure 6.3: Histogram of E E R s for all tested recognition units. 

Table 6.6: Partial results of the units evaluation - the best representatives of each unit type. 

Rank Type Input data Applied filters E E R 
1 L B P histogram Gaussian curvature gaussBlur(7); LBP; histogram(10,9) 0.0247 
7 Gauss-Laguerre Range image gaussLag(48,l,0); scale(0.5) 0.0267 
12 Gabor Eigencurvature gaborAbs(l,2); equalize; scale(0.5) 0.0295 
34 LBP Mean curvature gaussBlur(ll); LBP; scale(0.5) 0.0361 
73 Plain Range image scale(0.5) 0.0416 
759 Iso-geodesic curves 5 curves centered at the nosetip 0.0769 

is calculated. A set of histograms is further processed with P C A in order to reduce the 
correlation of values as well as the number of feature vector components. The entire process 
is depicted in Figure 6.4. 

Another example is 7 t h best unit. A range image (depthmap) is convolved with both 
real and imaginary Gauss-Laguerre kernels of size 48 pixels and parameters set to n = 1 
and k = 0. The absolute response is calculated from real and imaginary responses. The 
resulting image is scaled with factor 0.5 to size 50x45 pixels and finally processed with 
P C A . 

The 12 t h best unit applies Gabor filter with scale 1 and orientation 2 on the eigencur­
vature surface representation. The histogram of absolute response is equalized and scaled 
with factor 0.5. As in the previous cases, P C A is applied on the image to reduce the feature 
vector size. 

Eua 1U9 
Gaussian curvature Gaussian blur Local binary patterns 

Division to 10x9 cells 
Histogram within each cell 

Figure 6.4: LBP-based recognition unit. The input Gaussian curvature image is blurred 
using Gaussian kernel. After that, local binary patterns are calculated. The image is 
divided into a grid and a histogram of intensity values is calculated within each grid cell. 
Individual histogram values are concatenated and further projected using P C A . The feature 
vector is thus created. 

T 1 1 1 1 1 r 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
EER 
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Table 6.7: Hill-climbing selection of individual units for SVM-based score-level fusion clas­
sifier. 

Iteration 
Input data 

Unit 
Filters 

Unit E E R Fusion E E R 

1 shape index GaussBlur(7); L B P ; histogram(10,9) 0.0247 0.0247 
2 range image GaussLag(48,l) 0.0266 0.0114 
3 texture EqualizeQ; GaussLag(64, 4) 0.0963 0.0075 
4 shape index Gabor(3, 2); EqualizeQ 0.0585 0.0063 
5 mean curvature Gabor(2, 4); Equalize() 0.0657 0.0050 
6 texture Gabor(3, 2) 0.1391 0.0043 
7 eigencurvature Gabor(4, 2); Equalize() 0.0522 0.0035 
8 shape index EqualizeQ; GaussLag(48, 5) 0.0881 0.0030 
9 iso-geodesic curves 0.1163 0.0028 
10 range image EqualizeQ; Gabor(7, 7) 0.1079 0.0022 
11 Gaussian curvature EqualizeQ; GaussLag(64, 1) 0.0564 0.00175 
12 mean curvature Gabor(7, 0); EqualizeQ; 0.1014 0.00174 
13 eigencurvature Gabor(l , 0) 0.0642 0.00173 

6.5 Multi-algorithmic Fusion 

6.5.1 Score Normalization Techniques 

Score-normalization is an important task preceding the fusion itself. Individual comparison 
scores have to be transformed into common domain in order to combine them meaningfully. 

Figure 6.5 shows the score normalization result of three different recognition units. 
Each unit employs specific comparison metric and thus the score ranges vary. Every graph 
shows an impostor-genuine distribution of the comparison scores. The red curve belongs 
to the unit employing the correlation metric, the green curve corresponds to the unit with 
the Euclidean comparison and the blue curve corresponds to the unit with the city-block 
comparison metric. The graph in the first row shows the original pre-normalized values. 
Each subsequent graph shows normalized values where the normalization was achieved using 
one of the techniques previously described in Section 5.7.1. 

The good normalization technique is able to align the curves of the impostor-genuine 
distribution that comes from different recognition units having feature vectors of different 
dimensionality and employing various metrics. It can be also measured implicitly by eval­
uation of the overall biometric performance. It has emerged that simple mean min-max 
normalization (see Equation 5.9) is the best choice for our purposes. 

6.5.2 Greedy Hill-climbing Unit Selection 

The greedy hill-climbing unit selection for final fusion was described previously in Chapter 
5.7.3. A l l units from Section 6.4 were used as an input to the hill-climbing selector. The 
score-level fusion was provided by binary S V M classifier. Another classifiers, density-based 
and combination techniques were used as well in further experiments. 

The hill-climbing selector chose 13 units - see Table 6.7. In the first iteration, the unit 
employing the application of L B P histogram on the shape index image was selected. The 
subsequent iteration chose a specific Gauss-Laguerre filter applied on the range (depth) 
image. The equalized texture followed by the application of Gauss-Laguerre filter was 
selected in the third iteration. 
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Figure 6.5: Score normalization techniques - genuine/impostor score distributions for unis 
employing correlation metric (red), city-block metric (green) and Euclidean distance (blue). 
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Table 6.8: Comparison of individual score-level fusion techniques (evaluated on the 3 r d part 
of Spring 2004 portion). 

Fusion E E R on E E R on F N M R at given F M R 
technique training set testing set 0.001 0.0001 0.00001 

sum 0.0096 0.0106 0.0459 0.0968 0.1838 
weighted sum 0.0091 0.0106 0.0424 0.0954 0.1824 

G M M 0.0050 0.0099 0.0353 0.0600 0.1497 
LogR 0.0069 0.0112 0.0332 0.0912 0.1478 
L D A 0.0083 0.0105 0.0424 0.0968 0.1669 
S V M 0.0017 0.0096 0.0388 0.0721 0.1258 

6.5.3 Comparison of Fusion Techniques 

In the subsequent experiment, individual fusion techniques were compared. The selection 
of 13 units gained by the hill-climbing was used as the input to the training of multi-
algorithmic fusion. Moreover, new scans were evaluated in order to test robustness of the 
fusion techniques. The results are shown in Table 6.8. 

The transformation-based fusion is represented by a simple sum rule and the weighted 
sum. The weights of individual units are proportional to the achieved E E R on the training 
set. For example, if the E E R of the unit i is e*, the corresponding weight is set to w = 0.5—ê . 

The only representative of the density-based fusion is Gaussian Mixture Model ( G M M ) . 
The probability density distributions of impostor as well as the genuine scores were modeled 
using 5 Gaussians with diagonal covariance matrices. 

The classifier-based fusion is represented by logistic regression, L D A , and S V M . A plain 
linear kernel was used. The experiments suggest that there is no significant difference in 
recognition performance between the individual fusion techniques. 

6.6 Comparison with the State-of-the-art 

The results of Face Recognition Vendor Test 2006 (FRVT) was based on the evaluation of 
almost the entire F R G C dataset [65]. The performance of a biometric system vary with 
different sets of biometric samples. It is important to measure both the overall performance 
of a biometric system and the scale of the variability to measure statistical uncertainty. In 
the F R V T , the performance variability is measured by partitioning the test images into 
a set of smaller test sets. The performance is then computed on each of the partitions. 
According to the F R V T report, 3,589 out of the 5,000 scans in F R G C were used for the 
evaluation. These scans were divided into 13 partitions with the total count of 330 subjects. 
Unfortunately, the selection of these 3,598 scans is not clear from the report. Therefore, 
we bring the comparison of best algorithms involved in F R V T with our achieved results 
reduced only to Spring 2004 part in this section. 

We have utilized the Spring 2004 F R G C subset such that its evaluation part contains 
1211 scans from 207 individuals designated for the evaluation. This evaluation subset 
was divided into 3 partitions, as it was mentioned earlier in Section 6.1. Table 6.9 shows 
achieved results with a classifier utilizing SVM-based fusion. The comparison with other 
F R V T competitors is in Table 6.10. While the Viisage algorithm outperforms all others, 
our algorithm achieves the second best results. 

However, the presented comparison is for illustration purposes only, since we did not 
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Table 6.9: Achieved results on the Spring 2004 evaluation subset. 

Evaluation F N M R at given F M R 
partition 0.01 0.001 0.0001 

1 0.0091 0.0388 0.0721 
2 0.0098 0.0329 0.0596 
3 0.0167 0.0589 0.1091 

Median 0.0098 0.0388 0.0721 

Table 6.10: Comparison of our method with F R V T competitors. The exact numbers were 
taken from the graphs in appendix section of F R V T report [65]. 

Algorithm Median F N M R at given F M R 
Name / Organization Abbrev. 0.01 0.001 0.0001 

Cognitec Cogl 0.050 0.070 0.160 
Geometrix Geo 0.035 0.085 0.155 

Univ. of Houston H o i 0.030 0.050 0.100 Univ. of Houston 
Ho3 0.025 0.050 0.095 

Tsinghua Univ. T s l 0.035 0.145 -
Viisage 

V 0.005 0.020 0.070 
Viisage 

Va 0.010 0.055 0.170 
Our method 0.010 0.039 0.072 

follow the same evaluation methodology as in the F R V T . One of the goals of this thesis is 
the utilization of low-cost depth sensors for the 3D face recognition. The comprehensive 
evaluation on databases obtained with SoftKinetic DS325 and Microsoft Kinect 360 is 
presented in the next two sections. 

6.7 Evaluation on SoftKinetic Database 

We have created the SoftKinetic database during spring 2014. It contains 398 scans from 
52 individuals. During the capturing, the emphasis was put on following points: 

• Various lighting conditions. 

• Various (but limited) facial expressions - we allowed the subjects to have a slight 
smile, lifted eyebrows or frowned face. 

• Scanning of some subject was splitted into several sessions in different days. 

• A n effort was made to have a diversity in gender, race, and age of scanned subjects. 

The example of some scans in the SoftKinetic database is in Figure 6.6. Contrary to 
the scans acquired with the Minolta Viv id scanner ( F R G C database), the data captured 
with SoftKinetic DepthSense DS325 sensor suffer from high noise among the z axis [42, 18], 
therefore some sort of denoising has to be applied on the 3D models in the preprocessing 
portion of the recognition pipeline. 

Although one can use a stronger Gaussian smooth filter, our experiments show that 
much better, in terms of recognition performance, is the application of the feature-preserving 
mesh denoising algorithm [79]. A n example of application of such filter is in Figure 6.7. 
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Figure 6.6: Example of scans in the SoftKinetic database (processed, aligned, and cropped). 

Figure 6.7: Application of feature preserving mesh denoising - before (left) and after (mid­
dle). Basic Gaussian smoothing is on the right side of the figure. 

The field of view of DS325 sensor is very wide (74° x 58° x 87°) 3 . Therefore, the quality 
and resolution of face scans rapidly decreases when the subject moves away from the sensor. 
Two scans from the same subject acquired from the distance of 35cm and 70cm are depicted 
in Figure 6.8. While the near-scan contains 6,951 verticies, the far scan contains only 1,560 
verticies, which is more than 4 times fewer. 

Figure 6.8: Two scans acquired with the SoftKinetic DS325 sensor captured from 35cm 
(left) and 70cm (right). 

6.7.1 Finding Suitable Smoothing and Denoising Algorithm 

The initial test evaluated recognition performance on the range images and shape index 
images. The scans from the training part of the SoftKinetic dataset were subsequently 
smoothed and aligned using ICP algorithm. After that, range images and shape index 
images were calculated. P C A trained on F R G C depth and shape index images with zScore 
normalization was used in order to extract features. Feature vectors were compared using 
correlation metric. 

Both Gaussian smooth filter (Gauss) and feature-preserving mesh denoising (M-Denoise) 
algorithms with various parameters were evaluated. The results are in Table 6.11. The 
lowest E E R was achieved when the M-Denoise filter was applied. 

3http: / / www.softkinetic.com / en-us / products / depthsensecameras. aspx 
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Table 6.11: Evaluation of mesh smoothing and denosing algorithms on the SoftKinetic 
dataset. 

Smoothing Smooth Smoothing E E R on E E R on shape 
method iterations parameter range images index images 

None - - 0.077 0.135 
M-Denoise 5 0.01 0.053 0.116 
M-Denoise 5 0.02 0.052 0.114 
M-Denoise 5 0.04 0.052 0.108 
M-Denoise 10 0.01 0.044 0.111 
M-Denoise 10 0.02 0.048 0.103 
M-Denoise 10 0.04 0.046 0.105 
M-Denoise 20 0.01 0.041 0.097 

M-Denoise 20 0.02 0.041 0.095 
M-Denoise 20 0.04 0.040 0.096 

Z-Smooth 5 0.2 0.068 0.131 
Z-Smooth 5 0.5 0.061 0.120 
Z-Smooth 5 1.0 0.057 0.114 
Z-Smooth 10 0.2 0.067 0.119 
Z-Smooth 10 0.5 0.061 0.119 
Z-Smooth 10 1.0 0.052 0.110 
Z-Smooth 20 0.2 0.061 0.121 
Z-Smooth 20 0.5 0.053 0.119 
Z-Smooth 20 1.0 0.042 0.111 

6.7.2 Mult i -Algorithmic Fusion 

The multi-algorithmic fusion similar to the fusion used for F R G C (see Section 6.5) was 
trained and evaluated. The hill-climbing optimization selected 10 units. Contrary to the 
F R G C fusion, no iso-geodesic or LBP-based recognition unit is present. The lower quality 
of SoftKinetic scans causes the absence of the iso-geodesic curves unit. On the other hand, 
missing LBP-based unit is not so obvious. The selected units are in Table 6.12. 

The D E T curves from the evaluation of the training as well as test parts of the SoftKi­
netic dataset are in Figure 6.9. The impostor-genuine score distributions are in Figure 6.10 
and the particular achieved F N M R s at given F M R s are in Table 6.13. 

0.4 I — I 1—n—I 1 — n — 1 1 — n — 1 1 — n — r 

FMR 

Figure 6.9: D E T curves from the SoftKinetic evaluation. 
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Table 6.12: Selected recognition units gained from the training part of the SoftKinetic 
dataset. 

Unit Input data Filters 
1 range image GaussLag(72, 2) 
2 texture Equalize(); Gabor(5, 6) 
3 range image Gabor(3, 1) 
4 texture Equalize(); Gabor(6, 0); 
5 eigencurvature GaussLag(24, 5) 
6 texture Gabor(4, 2) 
7 range image GaussLag(48, 0); 
8 shape index GaussLag(96, 1) 
9 shape index Gabor(2, 5) 
10 texture EqualizeQ; Gabor(2, 7) 

Table 6.13: Evaluation on SoftKinetic database results. 

Data E E R 
F N M R at riven F M R 

Data E E R 
0.01 0.001 0.0001 

Train set 0.011 0.012 0.043 0.098 
Test set 0.043 0.087 0.192 0.312 
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Figure 6.11: Scans of one subject from all sessions in SoftKinetic dataset. 

6.7.3 Real-World Scenarios 

The real-world implementation of biometric system has to deal with the problems that are 
not always considered when it is being evaluated in the laboratory conditions. Usually, the 
users are not experienced enough in order to position their face such that the biometric 
system achieves the best results. The lighting conditions vary and the mood of users 
affecting their 3D face appearance also changes. A l l these factors can decrease the biometric 
performance rapidly. 

The most convenient scenario for the users of an access-control biometric system is the 
identification. Users do not need to claim their identity before the scanning process begins. 
Based on their identity, the system decides if they have an authorization to proceed. 

In this subsection, the template aging and identification with respect to the real-world 
application will be evaluated. The enrollment of a new user to the biometric system usually 
consists of acquiring several (four) scans for the creation of a reference template. The 
problem is that these scans are acquired in very short time period (just few seconds) and 
the lighting conditions are still the same. Moreover, the users use the biometric system for 
the first time, they are fully concentrated on the capture process and thus they have no 
facial expressions. When they use the biometric system later, the environment condition 
might change as well as the user's mood might affect mimics of the face. 

Subjects with more than or equal of 15 scans were selected from the SoftKinetic dataset. 
When the dataset was captured, 5 scans were acquired in each session. This means that if 
the subject participated in 4 sessions, 20 scans of this particular subject are stored in the 
dataset. The sessions took place in different days in different places. The example of all 
scans of one subject from all sessions is shown in Figure 6.11. 

The first four scans of each subject were used for creating of the gallery templates. The 
remaining scans were used for the evaluation. When the input probe is compared with the 
gallery templates, the arithmetic mean of individual comparisons between the probe and 
the templates is returned. The time evolution of the comparison scores is in Figure 6.12. 
If the decision threshold is set to 0 or lower, there will be just one false reject - last scan of 
subject subj4. 

Once we have more than one reference template (4 in this case), we can have several 
decision strategies to compare the input feature vector with the stored templates. The 
simplest approach is a 1 : A comparison. The resulting identity is based on the reference 
template with the smallest distance between the input feature vector i and template ti, 
where i £ {1, 2 , . . . , N} (see Figure 6.13 left). The more robust method that can handle 
outlying reference template is in the same figure on the right. The classification is based 
on the average distance to the k nearest reference templates for class Cj. Let the min^ S 
denote the k minimal elements in set S. The distance between input vector X and class 
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Figure 6.12: Time evolution of the comparison scores from SoftKinetic dataset subjects 
with more than or equal of 15 scans. Except for the last scan of the subject 4, all other 
scans were successfully verified with a comparison score lower than zero. 

d(X,d) = C 1 1 a 1 2 

d(X, Ci) = m i n ( d C l l , d C l 2 , . . . ,dClj) 
d(X,C2)=mm(dC21,dC22,...,dC2k) d(X,C2) = 

Figure 6.13: Classification strategies for identification in biometric systems. Basic 1 : iV 
comparison is on the left, more robust approach is on the right hand side. 

— {°ji) cj2) • • •) cjm} l s : 

d , x c v = E m i n f c M ^ , ch),d(X, cj2),djX, cjm)} 

The question is, if the system employing the modified distance metric from Equation 6.2 
outperforms basic 1 : iV comparison. The results are in Table 6.14. There are two ap­
proaches for the creation of the reference templates. The first (denoted without randomiz­
ing) was described previously - the first 4 scans from each subject were used for template, 
remaining scans were used for the evaluation. The latter approach (denoted with random­
izing) randomly selects 4 scans for the template creation among all subject scans. The 
results are a bit surprising. The modified distance metric does not outperform the simple 
1 : iV comparison. Moreover, it is worse, when the randomized templates are used. On the 
other hand, the randomized templates outperform the non-randomized significantly. This 
was, however, expected, as the randomized templates capture more intra-class variability. 

6.8 Kinect Evaluation 

We would like to show that the proposed algorithm is robust enough in order to be easily 
adapted to any depth sensor. Kinect cannot be power supplied by a USB cable and re-
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Table 6.14: Identification evaluation on SoftKinetic dataset. 

Reference template 
count (k) 

without randomizing 
E E R F N M R @ F M R = 0.01 E E R 

with randomizing 
F N M R @ F M R = 0.01 

1 0.147 0.278 0.028 0.052 
2 0.152 0.310 0.052 0.084 
3 0.142 0.321 0.063 0.121 
4 0.142 0.310 0.073 0.136 

Figure 6.14: Range image of the scanned face. Face within the image is marked with the 
white ellipse. 

quires an external power adapter. This restricts its usage in the embedded face recognition 
systems. On the other hand, since it is quite often used in households, the utilization of a 
3D face recognition is shifted from security applications to home entertainment. 

Contrary to the SoftKinetic DepthSense DS325, Kinect sensor is designated for scanning 
of the entire room and full-body capturing. The minimal distance where the depth is 
captured is 80cm, but the practical limit for capturing is rather 120cm. Moreover, the 
fields of view of both the depth sensor and the R G B sensor are very wide such that almost 
entire room is captured. When a subject is scanned with Kinect, just 10% of sensor is used. 
On the other hand, Kinect scans require less denoising treatment than those captured with 
SoftKinetic DS325. Therefore, the biggest challenge of the Kinect dataset is the small 
resolution of the input meshes rather then the noise. For an example of Kinect range 
visualization with a marked face region see Figure 6.14. A n average Kinect face mesh 
contains about 5,000 vertices. 

Our Kinect database consists of 108 scans divided into two parts - training and testing. 
Each part contains 9 different subjects that provided 6 scans. Facial expressions as well as 
varying lighting conditions are present in some scans. The example of Kinect database is 
in Figure 6.15. 

The D E T curve of our recognition algorithm evaluated on the Kinect database is in 
Figure 6.16. S V M classifier has been used for the final fusion of the individual recognition 

Figure 6.15: Some examples from the Kinect database. 
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Figure 6.16: Evaluation of S V M fusion on the Kinect database - D E T curve. 

Table 6.15: Hill-climbing selection of individual units for SVM-based score-level fusion 
classifier on the Kinect database. 

Iteration Input data 
Unit 

Filters Unit EER Fusion EER 

1 texture DoG(5, 3); GaussBlur(ll); LBP; histogram(10,9) 0.0639 0.0639 
2 range image GaussLag(64, 2) 0.0983 0.0337 
3 eigencurvature Gabor(5, 5) 0.3191 0.0210 
4 mean curvature Gabor(2, 6) 0.3601 0.0152 
5 mean curvature Gabor(6, 5) 0.3555 0.0137 
6 shape index GaussLag(64, 2) 0.2778 0.0134 

units. The process of selecting the individual units is in Table 6.15. Iso-geodesic curves 
were not selected for the final fusion. This is probably due to the fact that the Kinect 
scans are quite rough and thus the curves do not contain much discriminative ability. On 
the other hand, a unit utilizing texture images processed with the Difference of Gaussians 
(DoG) filter was selected in the first place. 

6.9 Limitations of Face Biometrics 

6.9.1 Analysis of Facial Mimics 

Our application for acquiring the facial scans is able to deal with slight rotations of the face. 
On the other hand, cooperation is still required from users. Perhaps the biggest challenge 
for secure and convenient face biometric system is dealing with facial mimics. The intra-
class variability for some facial expressions may outweigh the inter-class variability of the 
biometric modality. 

Intra-class (same-class, s) variability of a specific feature vector component can be 
expressed mathematically as the mean of standard deviations within each subject/class. On 
the contrary, the inter-class (between-class, 6) variability can be expressed as the standard 
deviation of the class means. Since it is good to have intra-class variability as low as possible 
and the inter-class variability as high as possible, the Discriminative Ability (DA) of the 
specific feature vector component / could be expressed as: 

DAf = bf-8f (6.3) 

D A tells us how much we can rely, in terms of biometric recognition performance, on 
a specific feature. We can evaluate the discriminative ability of the input face image, 
not just the feature vector. Figure 6.17 shows the graphical representations of D A of 
texture, depth, and curvature images from both F R G C and SoftKinetic datasets. From the 
depth D A image, it is clear that the highest inter-class variability and the lowest intra-class 
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Figure 6.17: Discriminative Abili ty (DA) of face representation images. Brighter pixels 
denote areas with high D A , darker pixels correspond to low D A . 

Figure 6.18: Application of D A weights on the input texture image. 

variability is the nose and nosetip. High D A area is also around eyes. The lowest D A is 
at the mouth area - this in accordance with the face ROI selection experiments that were 
described previously in Section 6.3.2. 

The next question is, whether the D A can be used to improve the recognition perfor­
mance. There are two possible approaches of the involvement of D A . Pixels of the input 
image can be weighted by individual D A components and further processed by P C A and 
the feature vector is thus created (see Figure 6.18). The second possibility is the appli­
cation of D A weights after the P C A projection. We have evaluated both methods and 
compared them with plain PCA-based feature extraction. The correlation metric was used 
for the feature vector comparison. The results are in Table 6.16. It has emerged that the 
utilization of D A does not improve recognition performance significantly. Moreover, when 
the range image or mean curvature was processed with D A , the recognition performance 
slightly decreased. 

There are two major challenges in the face recognition - varying lighting conditions 
and facial expressions. Another challenge comes when the 3D model is involved - glasses. 
Especially low-cost depth sensors have a big problem with glass lenses. The structured light 
pattern is blurred or shifted as it comes through the lens and the reconstructed surface is 
thus imprecise. In the next experiment, we have evaluated all three mentioned challenges 
and evaluated their impact on the recognition performance. 5 scans from the same subject 

Table 6.16: Evaluation of the application of Discriminative Abili ty on F R G C database. 

Image type Plain 
E E R 

D A before P C A D A after P C A 
Range image 0.038 0.044 0.043 
Shape index 0.056 0.043 0.068 

Mean curvature 0.057 0.062 0.066 
Gaussian curvature 0.066 0.064 0.077 

Eigencurvature 0.085 0.066 0.087 
Texture 0.080 0.090 0.079 
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were acquired using SoftKinetic DS325 sensor. The first scan was designated for the creation 
of the reference template. Remaining 4 scans were acquired in order to fulfill these scenarios: 

• Glasses - subject was wearing dioptric glasses 
• Smile - with widely opened mouth 
• Neutral face 
• Different lighting conditions - while the reference scan was captured in the room with 

a natural light source from the outdoors, this scan was captured with a closed curtain 
and artificial light from the lamp. 

A l l 4 probe scans were consecutively compared to the reference scans using a previously 
trained multi-algorithmic classifier. This classifier is slightly different than the one presented 
in Section 6.7.2. Although it does not achieve such recognition accuracy, it contains a wider 
selection of the involved unit types and thus it is more suitable for a survey whether the 
specific unit type is more robust against the face recognition challenges. 

The outcome from this experiment is in Table 6.17. The output score from the S V M 
fusion is in the first line. The S V M classifier is trained such that the output is zero for 
F M R = 0.0001. If the output score is greater than zero, probe scan is rejected. If it is 
lower than zero, the probe scan is accepted as a genuine user. The next lines in the table 
describe the output of the individual involved units (see Section 6.4 for more details). The 
reported values are already normalized using the min-max normalization. If the value is 
lower than zero it is very likely that it belongs to a genuine user (and it is denoted with 
green color in the table). On the contrary, if the normalized score for a particular unit is 
greater than 0.5, it might belong to the impostor and thus it is denoted with red color. It 
can be seen from the table that although some units may reject the user falsely when he 
is smiling, the overall S V M fusion score is still below zero and the user is still recognized. 
Different lighting conditions pose no difficulties either. On the other hand, the presence of 
glasses causes false reject. This is due to the fact that the geometry of the face is highly 
deformed under lenses - see Figure 6.19. There is an evident drop in depth at the frames 
and lenses area. One possible solution is mask out this area for recognition. However, this 
solution neglects a lot of otherwise important information because it was shown earlier that 
the area around nose and eyes have a very high Discriminative Ability. 

Figure 6.19: Three face meshes from the same subject acquired with DS325 sensor - without 
glasses (left), with glasses (center), and smiling (right). 
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Table 6.17: Comparison of output scores of the same subject in different scenarios. 

Unit Glasses Smile 
Different 

Neutral lighting 
conditions 

S V M Fusion 0.028 _2 569 -7.991 -7.368 
Range image 0.351 0 440 -0.118 -0.123 

Texture; L B P histogram -0.287 -0 135 -0.456 -0.195 
Iso-geodesic curves 1.058 0 170 -0.120 -0.118 

Eigencurvature; L B P histogram 0.439 0 046 -0.281 -0.477 
Texture; Gabor 0.276 0 525 -0.542 -0.359 

Mean curvature; Gabor 0.308 0 361 -0.953 -0.493 
Texture; Gabor -0.125 0 185 -0.487 -0.242 

Texture 1.005 0 604 -1.076 -0.244 
Shape index; Gabor -0.118 0 009 0.021 0.117 

Texture; Gabor 0.117 0 519 -0.409 -0.181 
Gaussian curvature; Gabor -0.255 -0 516 -1.004 -0.908 
Texture; Gauss-Lagguere 0.802 0 131 -0.480 0.089 

6.9.2 Tampering a Face Recognition System 

There are many areas where a potential attacker may direct in order to fraud the biometric 
system: 

1. Attack the biometric sensor - present a fake biometric sample to the sensor. 
2. Attack the communication from the sensor - if the sensor and rest of the system is 

separated, attacker may intercept the data sent by the sensor. 
3. Manipulating feature extraction and/or the template creation process - the attacker 

may inject his own feature vector instead of the vector calculated from the input data. 
4. Attack the communication between the feature extraction unit and the comparison 

module. 
5. Attack the comparison unit, e.g. modify the decision threshold for a success verifica­

tion. 
6. Attack the biometric database - attacker may inject his own malicious template di­

rectly to the database and thus bypass the proper enrollment. 
7. Attack the transmission between the database and the comparison module - data 

may be corrupted, intercepted or modified. 
8. Attack the final decision. 

Despite it's popularity and widespread, the face biometric systems, and especially classic 
2D approaches, are vulnerable to presenting a fake input data. Since the other types of 
attack is common to all biometric systems, this subsection will be focused on presenting a 
fake samples to both 2D and 3D face biometric systems. 

Compared to 2D and 2D/3D approaches, the classical 2D approach is easiest to fraud. 
If the system does not involve any liveness detection module, face recognition systems can 
be spoofed by facial pictures such as a portrait photographs [12]. There are several options 
how to recognize fake face sample: 
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Figure 6.20: Fake 3D face model printed with the 3D printer. The data was obtained with 
Artec 3D M Sensor. 

Movement of facial features [34, 62] approach detects eyes in sequential input images. 
Temporal variations of both eye regions are calculated subsequently. The assumption 
is that because of eyelid blinking and uncontrolled movements of the pupils, there 
should be shape variations. 

Variable focusing [36] approach utilizes the variation of pixel values by focusing between 
two images sequentially taken in different focuses. Two sequential pictures focusing 
the camera on facial components are taken. One is focused on a nose and the other is 
focused on ears. A differences of Sums of Modified Laplacians (SML) between these 
two images are used for determination if the presented sample is real or fake. However, 
good camera with small depth of field is needed in order to decide correctly. 

Optical flow estimation [5]. A liveness detection method utilizing differences in optical 
flow fields generated by movements of two-dimensional planes and three-dimensional 
objects. Under the assumption that the test region is a two-dimensional plane, a 
reference field from the actual optical flow field data is obtained. Then the degree 
of differences between the two fields can be used to distinguish between a three-
dimensional face and a two-dimensional photograph. 

The facial features movement analysis may be bypassed with video that is presented 
to the sensor instead of still photograph. The other methods assume that the presented 
fake sample is flat and does not contain any depth information. However, in recent years a 
market with 3D printers emerged and the fabrication of 3D face model is much easier than 
ever before. This is directly related to the 3D face recognition where the liveness detection 
is assumed implicitly. In order to investigate whether our 3D face recognition system is 
resistant to 3D fake samples we had manufactured realistic 3D face models - see Figure 6.20. 
The pure 3D face recognition system may be tampered with this model. However, the model 
has to be painted with similar optical properties as human skin. Otherwise it cannot be 
reconstructed with the 3D sensor properly. 

Our experiments show that it is very hard to achieve the exact optical properties of the 
human skin. Thus it is also very hard to spoof a fake sample to the face biometric system 
utilizing both the shape as well as the texture information. 
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C h a p t e r 7 

Conclusion 

This thesis presented a 3D face recognition approach based on the multi-algorithmic fusion 
of individual units utilizing iso-geodesic curves and specific image filters. The hill-climbing 
selection was used in order to combine only those units that have a positive impact on the 
recognition performance. 

The idea of the multi-algorithmic approach has been published in [50, 55, 51]. These 
two papers and the book present the combination of anatomical soft-biometrics and holistic 
algorithms. It shows that the combination of multiple algorithms improves the recognition 
performance. We have utilized biometrics fusion in [56]. This paper describes the thermal 
face recognition pipeline where multiple subspace projection techniques are combined. The 
further extension of this approach has been presented in [83]. We have added the image 
filters prior to the subspace projections. The overview of the thermal face as well as 3D 
face recognition techniques was described in chapter "3D and Thermo-face Recognition" of 
the book "New Trends and Developments in Biometrics" [52]. 

The utilization of the hill-climbing unit selection was presented in [53]. This paper 
describes the basic idea of the iterative selection of those recognition units into a resulting 
multi-algorithmic system. A more robust selection has subsequently been presented in [54]. 
The main focus of this paper was targeting the 3D face recognition to low-cost depth sensors, 
such are Microsoft Kinect or SoftKinetic DepthSense DS325. 

The presented recognition method requires user collaboration - the scanned subject 
has to be in a specific range from the sensor, look towards the camera and have a neutral 
face expression. A l l the mentioned factors (distance, dramatic facial expressions, and head 
rotation) can decrease the recognition performance although their impact can be reduced 
to some extent. The head rotation and distance from the sensor is easily compensable by 
the ICP registration. Facial expressions are solved implicitly - by selecting only the rigid 
parts of the face and selecting only recognition units robust to deformations caused by facial 
expressions. 

The recognition algorithm was trained and evaluated on publicly available F R G C database. 
Moreover, we have conducted tests on our own databases acquired with Kinect and Depth-
Sense DS325 sensors. Our results suggest that even the low-cost depth sensors that provide 
poor depth accuracy and noisy output can be used for successful identification in a rela­
tively small database (up to 100 users). Our final experiments show that the main face 
recognition challenges - head orientation, facial mimics and varying lighting conditions may 
be solved. On the other hand, dioptric glasses pose difficulties. Recognition of persons 
wearing glasses and twins may be a promising direction for further research. 
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List of Abbreviations 

D E T - Detection Error Trade-off - graphical plot of error rates plotting False Match Rates 
(FMR) against False Non-Match Rates ( F N M R ) . See Section 2.2. 

D o G - Difference of Gaussians - feature enhancement filter that subtracts one blurred 
version of an original image from another, less blurred version of the original. See 
Section 5.4.3. 

E E R - Equal Error Rate is a value where the false rejection rate and false acceptance rate 
for a given decision threshold are equal. It is often used as criteria for evaluating 
performance of the biometric systems. See Section 2.2. 

F R G C - Face Recognition Grand Challenge is a large dataset of three-dimensional face 
scans as well as high and low resolution photographs captured in controlled and 
uncontrolled lighting conditions. See Section 3.3.1 

G M M - Gaussian Mixture Models are formed by combining multivariate normal density 
components. Gaussian mixture models are often used for data clustering. 

ICP - Iterative Closest Point algorithm minimizes the difference between two clouds of 
points by transforming one to the other one. See Section 5.2.2. 

L B P - Local Binary Pattern is a type of feature used for classification in the computer 
vision. See Sections 4.5 and 5.4.3. 

L D A - Linear Discriminant Analysis is a subspace projection technique that seeks for 
vectors that provide the best discrimination between classes after the projection. See 
Section 4.4.2. 

P C A - Principal Component Analysis is a subspace projection where the dimensionality 
reduction is based on the data distribution. See Section 4.4.1. 

I C A - Independent Component Analysis is a subspace projection looking for the transfor­
mation of the input data that maximizes non-gaussianity. See Section 4.4.3. 

S V M - Support Vector Machine is a binary classifier attempting to find a hyperplane that 
divides the two classes with the largest margin. See Section 5.7.2. 
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A p p e n d i x A 

Implementation 

The FaceLib framework was developed as one of the inseparable parts of this thesis. The 
source code is available at https: //github. com/stepanmracek/f ace. It contains the core 
library libFaceCommon as well as other support libraries and executables. It is developed 
in C++ language with the following dependencies: 

• OpenCV - open-source computer vision library - http: //opencv. org/ 

• P O C O - open-source C++ class libraries and frameworks - http: //pocoproject .org/ 

• CMake - cross-platform open-source software designed to build, test and package 
software. - http: //www. cmake. org/ 

• OpenMP (optional dependency) - multi-platform shared memory multiprocessing 
programming in C and C + + http://openmp.org/wp/ 

• Qt (optional dependency) - cross-platform application framework. The application 
has been tested with Qt 4.8.6 and 5.3. - https://qt-project.org/ 

• Qwt (optional dependency) - Qt Widgets for Technical Applications -
http://qwt.sourceforge.net/ 

The dependency graph of FaceLib framework components is illustrated in Figure A . l . 
The only mandatory components are libFaceCommon and appAutoTrainer. The remaining 
libraries and application require optional 3 r d party libraries or sensor drivers. 

libFaceCommon is the core component of the framework. It contains classes and methods 
covering linear algebra, machine learning, biometric data processing and 3D model 
processing. It contains the following namespaces: 

Helpers namespace consists of support various support classes used across the entire 
project. 

LinAlg contains classes and methods for linear algebra and machine learning. 

FaceData is intended for processing of 3D models. 

Biometrics namespace contains classes for modality-independent feature extraction, 
feature vector comparison, evaluation of biometric systems and multibiometrics. 

ObjectDetection is focused on object detection in video and still images 

88 

http://openmp.org/wp/
https://qt-project.org/
http://qwt.sourceforge.net/


libFaceExtras is optional component that uses Qt framework and Qwt library for dis­
playing 3D face models and visualizing the performance of biometric systems. 

libFaceSensors contains interface common to all sensors that may be used within the 
Face Lib framework. 

Kinect is the implementation of libFaceSensors interface for Microsoft Kinect for 
XBox 360 sensor. It relies on freenect driver 1. 

SoftKinetic is the implementation libFaceSensors interface for SoftKinetic Depth-
Sense DS325 sensor2. 

Occipital contains partial support for Occipital Structure.10 sensor as well as other 
OpenNI2 compliant sensors3. 

appAutoTrainer application is used for training of multi-algorithmic face recognition 
system involving score-level fusion. It can also be used reporting of biometric perfor­
mance. 

appScan is intended fot creating of training 3D face database. See screenshot in Fig­
ure A.2. 

appDemo is the demo application that demonstrates the identification as well as verifica­
tion process. See screenshot in Figure A.3. 

1http://openkinect.org/ 
2http://www.softkinetic.com/Support/Download  
3https: //github.com/OpenNI/OpenNI 
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Figure A.3: Screenshot of appDemo application. 
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