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Abstract 
The presented dissertation thesis deals with evaluation of the leading terms of the Williams 
asymptotic expansion describing an in-plane electro-elastic field at the tip of piezoelectric bi-
material notches and interface cracks using the expanded Lekhnitskii-Eshelby-Stroh formalism in 
connection to the pure anisotropic elasticity. It is demonstrated that the expanded Lekhnitskii-
Eshelby-Stroh formalism with modern Python programming concepts represents an effective 
theoretical as well as a practical tool for the fracture analysis of piezoelectric bi-materials. 
The theoretical part of the thesis outlines aspects of anisotropic elasticity and their connection 
with piezoelectric materials. The governing equations focused on special types of monoclinic 
piezoelectric materials, which enable decoupling to the in-plane and anti-plane problem, are 
introduced via the complex potentials. In the practical part of the thesis, the eigenvalue problem 
of a bi-material notch is proposed in order to determine the singularity exponents as well as the 
generalized stress intensity factors by application of the two-state ^-integral. A l l relations and 
numerical procedures are applied to the pure anisotropic and subsequently expanded to the 
piezoelectric fracture problem of bi-material notches and deeply investigated in the numerical 
examples. A special attention is paid to the change of the asymptotic solution connected with the 
transition of a very closed notch into an interface crack. Also the influence of arbitrary oriented 
poling directions upon asymptotic solution is investigated. The accuracy of calculations of the 
generalised stress intensity factors is tested by comparing the asymptotic solutions with results 
obtained by the finite element method using a very fine mesh. Finally, the formalism is modified 
for non-piezoelectric media such as conductors and insulators. 
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Abstrakt 
Předkládaná dizertační práce se zabývá stanovením hlavních členů Williamsova asymptotického 
rozvoje popisujícího rovinné elektro­elastické pole v okolí piezoelektrických bi­materiálových 
vrubů a trhlin na rozhraní za použití rozšířeného Lechnického­Eshelbyho­Strohova formalismu 
v návaznosti na čistě anizotropní pružnost. Je ukázáno, že rozšířený Lechnického­Eshelbyho­

Strohův formalismus představuje spolu s moderními programovacími koncepty v jazyku Python 
efektivní a také praktický nástroj pro lomovou analýzu piezoelektrických bi­materiálů. Teore­

tická část práce popisuje aspekty anizotropní pružnosti a její návaznost na piezoelektrické ma­

teriály. Základní rovnice zaměřené na speciální typy monoklinických materiálů, které umožňují 
oddělení rovinného a anti­rovinného problému, jsou vyjádřeny pomocí komplexních potenciálů. 
V praktické části práce je sestaven problém vlastního hodnot pro bi­materiálový vrub, na jehož 
základě jsou stanoveny exponenty singularity a pomocí dvoustavového í'­integrálu také zobec­

něné faktory intenzity napětí. Veškeré vztahy a numerické procedury jsou následně rozšířeny na 
problém piezoelektrických bi­materiálových vrubů a podrobně prozkoumány v uvedených pří­

kladech. Zvláštní pozornost je věnována přechodu asymptotického řešení téměř zavřených vrubů 
a trhlin na rozhraní. Vliv směru polarizace na asymptotické řešení je také zkoumán. Přesnost 
stanovení zobecněných faktorů intenzity napětí je testována srovnáním asymptotického řešení 
a řešení získaného pomocí metody konečných prvků s velmi jemnou sítí konečných prvků. Na 
závěr je formalismus modifikován pro nepiezoelektrické materiály. 

Klíčová slova 
Bi­materiálový vrub, trhlina na rozhraní, monoklinický materiál, rozšířený Lechnického­Eshelbyho­

Strohův formalismus, piezoelektřina, Vř­integrál, exponent singularity, zobecněný faktor intenzity 
napětí 
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1 Introduction 
Piezoelectric materials have been extensively used as sensors or actuators in smart advanced 
structure design, as well as in many branches of technology. It is well known that piezoelectric 
materials produce an electric field when deformed and undergo deformation when subjected to 
an electric field. This is so called intrinsic electromechanical coupling phenomenon. Commonly 
used piezoelectric materials are ceramics manufactured by conventional ceramic processing. In 
order to insure the reliability and structural integrity of electromechanical devices made from 
these materials, it is necessary to understand their mechanical behaviour. There has been a lot 
of research dealing with behaviour of piezoelectric ceramics. The introduction of the Pak's paper 
[1] is a vignette of primary scientific researches in the field of piezoelectricity, such as [2, 3, 4, 5]. 
Nevertheless, these studies were limited to the linear elastic fracture mechanics without taking 
the electrical effects into account. Modelling of the electro-elastic coupling in combination with 
anisotropic behaviour requires a different approach. 

Firstly, the computational model for general elastic anisotropic bi-materials is investigated. 
The constitutive laws for generally anisotropic materials involve 21 independent elastic constants. 
Stress and displacement fields are described by using two well-known formalisms, based on the 
complex potential theory. The Lekhnitskii formalism [6] starts from expressions for stresses in 
terms of stress functions that satisfy equilibrium and provides a compatibility condition decom­
posed into six operators of the first order. Alternatively, the Stroh formalism [7, 8] shows that 
particular solutions can be found in the form of a certain complex combination of x\ and X2 
coordinate axes. More detailed exposition of the Stroh's solution including numerous examples 
can be seen in [9]. Both the Stroh and Lekhnitskii methods are based on the appropriate lin­
ear transformation of the in-plane coordinates x\, X2- This approach requires special solution 
methods, limited only to plane elasticity problems. 

Many researchers have investigated singular stress fields around a sharp notch in homoge­
neous materials or interface corners [1, 10, 11, 12]. Williams introduced an eigenvector approach 
to examine sharp notches in homogeneous media [13]. Based on this studies, Labossiere and 
Dunn [14], Carpenter [15] and Sinclair et al. [16] used the Betti's reciprocal principle to derive 
the path-independent ^-integral to obtain the stress intensity factors of interface corners be­
tween dissimilar anisotropic materials by using the Stroh formalism. The general solution for 
eigenvalues of anisotropic multi-wedges has been provided by Hwu [17]. 

Stress field in the closed vicinity of multi-material joints has a singular character and stress 
singularity exponents differ from 1/2, a characteristic value for cracks. The degree of anisotropy 
of many advanced materials is lower than the general anisotropy [9]. These materials possess one 
or more symmetry planes, e.g. orthotropic materials with three symmetry planes or transversally 
isotropic materials. In such cases, in-plane and anti-plane strains can be decoupled, which allows 
these cases to have counterparts for plane analysis of cracks in isotropic materials [18]. To avoid 
the difficulty with handling the large number of material constants, the so-called Lekhnitskii-
Eshelby-Stroh (LES) formalism can be implemented [9, 17, 19]. 

Based on the above mentioned anisotropic theories, piezoelectric continuum is governed by 
the expanded equations of linear electromechanical statics. The anisotropy of piezoelectric mate­
rials requires usage of suitable mathematical tools and numerical methods. The expanded Stroh 
formalism has been developed for this purpose, as can be seen in [20, 21, 22]. A detailed study 
was done by Hirai et al. [23] and Abe et al. [24] for bi-material corners including determination 
of the stress intensity factors by using the ^-integral. However, the correspondence with other 
approaches, such as in Ou and Wu [25] or Ou and Chen [26], has not been pointed out. 

In the beginning of the presented thesis, basics of the linear fracture mechanics and its 
generalization to the case of the piezoelectric materials are briefly summarized. The thesis is 
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focused on the Irwin's concept of the stress intensity factors and its generalized form for bi-
material notches. Their evaluation combines analytical and numerical methods, which are put 
together in the so-called ^-integral. The main goal is the deep investigation of the present 
LES formalism for pure anisotropic elasticity and its expansion for problems of piezoelectric 
materials and a subsequent implementation to the eigenvalue problem of the bi-material notches 
and interface cracks. Equivalence of the formalism for the limit case of the geometry - an 
interface crack and the Hilbert problem will be also proved. 

In spite of a large number of studies related to the interface corners and interface cracks in 
jointed dissimilar piezoelectric materials there are only limited data concerning the asymptotic 
solutions around these concentrators. In particular, a transition between the oscillatory and 
non-oscillatory singularity as a function of the notch geometry and poling orientation for various 
dissimilar bi-materials has not been investigated yet. Hence, a wide range of notch geometries, 
material combinations, and poling orientations is considered here to shed some light on these 
problems. 
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(a) (b) (c) 

Fig. 2.1: Three symmetry modes, (a) in-plane opening mode, (b) in-plane shearing mode, (c) anti-plane 
shearing mode. 

2 Linear elastic fracture mechanics 
The theory of fracture mechanics is based on stress distribution and stability criterion assessment 
of a crack in a homogeneous isotropic material. For description of a stress distribution in the 
vicinity of a bi-material notch, we proceed from concepts describing crack properties, because the 
basic type of a failure is the unstable crack propagation. Subsequent relations for a simple crack 
can be then generalized to notches or wedges. The linear elastic fracture mechanics ( L E F M ) can 
be applied, if the relation between stress and deformation is linear, i.e. the material follows the 
Hooke's law [27]. There are two basic approaches for a crack assessment: the Griffith's principle 
of energetic balance and the Irwin's principle of the stress intensity factor (K-conception) [18, 
27]. 

2.1 Symmetry modes 

In 1960, Irwin introduced so-called symmetry modes describing the fundamental crack loading 
states, as illustrates Fig. 2.1. This specification does not impose a limitation on the non-uniform 
loaded notches, because such problems can be solved as a superposition of the three symmetry 
modes [27]: 

1. The opening mode is referred as mode I. The principal load is applied normal to the crack 
plane and tends to open it (Fig. 2.1(a)). 

2. The in-plane shearing mode is referred as mode II. This mode tends to slide one crack face 
with respect to the other (Fig. 2.1(b)). 

3. The anti-plane shearing or sliding mode is referred as mode III. The stresses are parallel 
both with the plane of a crack and with a crack front (Fig. 2.1(c)). 

2.2 Stress and displacement distribution in the vicinity of a crack 

The K-conception, based on the works of Westergaard [28] and Williams [29], is the historically 
oldest method for description of a singularity ahead of the crack front. However, it is practically 
usable if the plastic zone at the crack tip is small. This is called the small-scale yielding concept. 

Let us assume a crack in a continuous linear elastic medium. The crack has a sharp tip 
(the crack tip radius —>• oo), see Fig. 2.2. The stress and displacement ahead of a crack tip can 
be then described as 

CTij = J^=fijk(0), k = I, II, III, (2.1a) 
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(a) (b) 

Fig. 2.2: Definition of the (a) Cartesian and (b) polar coordinate system ahead of a crack tip, the z 
direction is normal to xy-plane. 

2Kk(l + v) 
E I, II, III, (2.1b) 

where K^, k = I, II, III is defined as the stress intensity factor [18]. The functions fijk and gi 
depend only on the polar coordinate 9 and Poisson's ratio v. The relations (2.1a) and (2.1b) 
represent the classical formulation of fracture mechanics problems, where functions describing 
the stress or displacement development are expressed in the form of the product of the normalized 
shape function and the stress intensity amplitude. The amplitude is characterised by the stress 
intensity factor In practice, the mode I is often considered as the most dangerous case. The 
equations (2.1) only for mode I can be then expressed in the form of [30] 

Oy 

{.TxV ) 

- sm 2 sm ^ 
1 + sin § sin y 

sm 2 c o s %~ 
(2.2a) 

ux\ Ki fr~ ( m i c o s i l / o o u (k — cos 9) < . § > , (2.2b) 

where for 

uy J 2G V 2-7T 1 sin 2 

plane strain : k = 3 — 4u, az = v [ox + ay), (2.3) 
plane stress : k = (3 — + v), oz = 0. 

The solution for stresses has the singularity type A^, which approaches infinity for r —> 0. 
The amplitude of the crack-tip field is characterised by the above mentioned stress intensity 
factor Ki, which can be determined from the stresses in (2.2) by setting 9 = 0 [30]: 

Kj = l im V2^av(9 = 0). (2.4) 

For larger distances r from the crack tip, higher (non-singular) terms have to be taken into 
account, as reported in [31, 32, 33]. 
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(e) (f) 

Fig. 2.3: Typical examples of general singular stress concentrators: (a) V-notch in a homogeneous ma­
terial, (b) bi-material V-notch, (c) interface crack or very closed bi-material notch, (d) crack 
terminating at the inclusion surface (e) free edge singularity, (f) example with multiple stress 
singularity concentrators. 

2.3 General singular stress concentrator 

Modern material constructions require application of components with a complicated geometry 
including also a combination of different materials whose presence is generally connected with 
existence of singular stress concentration. There are many types of singularities such as cracks 
with the tip at the bi-material interface, a bi-material laminate, bi-material notches and wedges 
[34], as is schematically shown in Fig. 2.3. 

The stress near the tip of a singular stress concentrator has a singular character, but the type 
of singularity differs from this of cracks. Hence, the standard approach of fracture mechanics 
cannot be applied directly. To establish fracture parameters, the asymptotic analysis of the stress 
and strain fields has been introduced. Considering n singular terms only, the stress distribution 
in the vicinity of a general singular stress concentrator (GSSC) is generally expressed in the 
form of 

n 
= £ -7=r~PkFiJk, (2-5) 

k=i ^27r 

where r, 9 are polar coordinates with the origin at the tip of the concentrator, see Fig. 2.4, 
and Fij^ a r e the functions of a material and geometry. {k = 1,2,.. . ,n) are the generalized 
stress intensity factors (GSIF), which determine the amplitude of the stress distribution and are 
dependent on the external loading, p^ is the stress singularity exponent and it can be determined 
on the basis of boundary conditions prevailing at the notch tip [34]. The value of pt is generally 
complex and since the stress field and strain energy cannot be unbounded, only values located 
in the range of 0 < $l(pk) < 1 are considered. 

In the case of a transversally isotropic bi-material notch, which is the subject of the study, 
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Fig. 2.4: Bi-material notch as a special case of the general singular stress concentrator. The stress and 
displacement field is described by polar coordinate system with the origin in the notch tip. 

the value k = 2 is taken into consideration. The stress singularity exponent pk is given by 

Pk = 1 - h, (2.6) 

in which 5k is the feth eigenvalue (exponent) of the eigenvalue problem established from the 
boundary conditions at the bi-material notch tip. Note that the physical unit of the GSIF is 
[Hk] = M P a - m 1 " ^ . 

The electro-mechanical coupling and anisotropy of piezoelectric materials make the stress 
distribution near a general singular concentrator more complex. The singularity exponent need 
not to be necessary simple root of the corresponding eigenproblem. Moreover, it can be accom­
panied with the logarithmic type of singularity ( I n r ) r 1 _ < 5 . Omitting this kind of solution, the 
stress field can be written as (2.5), but supplemented with the electric displacement field. The 
stress tensor Oij is extended with 

n tt 

Dj = *4j = E -7=rPkFW- (2-7) 

2.3 .1 C o n d i t i o n s o f s t a b i l i t y 

The classical approach of the linear elastic fracture mechanics (the i^-conception) says that an 
unstable fracture occurs if the stress intensity factor reaches its critical value i^icrit) which is 
represented for brittle materials by the fracture toughness K\q. In other words, a crack will 
propagate under the pure mode I whenever the stress intensity factor K\ reaches the material 
constant K\q [18, 27]. A similar situation comes about fatigue crack growth where the range of 
the stress intensity factor AK is lower than the fatigue crack growth threshold A i ^ t h [27]. The 
stability criterion for a crack has the following form 

Ki < KlcTit. (2.8) 

Analogically to cracks, a condition for a general singular stress concentrator can be establish. 
This value expresses circumstances under which no crack is initiated from the GSSC tip. A 
general principle of the stability assessment has been introduced in [34]. Equivalently to (2.8), 
the stability condition for such concentrators can be expressed by means of its critical value 
.fffccrit, that is [34, 35, 36] 

Hk (Cappl) < -Hfccrit- (2.9) 

In practice, there is sometimes a requirement to express the relation between A i c r i t and 
-Hfccrit- We assume that the mechanism of the crack propagation from the tip in a generally 
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anisotropic material is the same as in the case of a crack in a homogeneous media. New control 
variable L with the clear physical meaning is introduced. The second assumption is based on the 
condition that instability (i.e. i£i c rit and -Hfccrit) occurs when the variable L reaches its critical 
value L = Lq, which is identical for both critical parameters [34]. For the bi-material notch 
stability assessment, we proceed from relations derived for cracks. 

2.3.2 M a x i m a l t a n g e n t i a l stress c r i t e r i o n ( M T S ) 

The stability condition for a crack with the singularity exponent different from 1/2 is related 
to the average stress a calculated across a critical distance d ahead of the crack tip [37]. It 
is expected that the crack will initiate from the notch tip when the average stress achieves its 
critical value ac, i.e. [19] 

a e e = ac(e0), (2.10) 

where the averaged stress on the left-hand side is expressed as 

_ 1 fd 

&ee = 3 / <Jee (r, 00) dr. (2.11) 
a Jo 

2.3.3 C r i t e r i o n o f s t r a i n e n e r g y d e n s i t y f a c t o r ( S E D F ) 

The strain energy density factor criterion is based upon the work of Erdogan and Sih [38]. 
The modified criterion was introduced for example in [39] or [40]. The stress field around 
a bi-material notch inherently combines the normal and shear mode of loading. Additionally, 
under an assumption that both materials are perfectly bonded, the crack propagation into either 
material 1 or 2 is supposed. The strain energy density is defined as 

dW f£pi 
Z(r,e) = r— = rJo o ^ d ^ - , (2.12) 

where W is the strain energy, dV is a differential volume and e«j is a strain. The integrand 
in (2.12) has to be the total differential to provide the integral path-independent. The strain 
energy density depends on the distance r from the notch tip. To avoid this dependence, it is 
convenient to introduce a mean value of the S E D F over some distance d, which is defined by 
the relation 

E(r,0) = 3 I E(r,0) dr, (2.13) 
d Jo 

from which the resulting direction is determined and subsequently used for the stability criterion 
estimation defined in Eq. (2.9). A detailed study was reported in [39, 41]. 

2.4 Determination of the singularity exponent 

Let us consider a bi-material notch composed of two generally anisotropic materials. A n ideal 
adhesion along the interface is assumed. The most effective tool for describing problems of 
plane elasticity are methods based on the complex variable theory. Isotropic plane elasticity is 
dominantly treated by employing the Muskhelischvili complex potential theory [17, 42]. But, 
for dealing with generally anisotropic materials, there are two major approaches implementing 
complex potential methods: the Lekhnitskii [6] and Stroh [7] formalism. The expanded Stroh 
formalism for piezoelectric media developed by Barber and Ting [43], Pak [1], Suo et al. [10] 
and Hwu [20, 22], includes both in-plane and anti-plane fields. But, within the dissertation, an 
expansion of the L E S formalism presented by Suo [44] is introduced, based on works [45, 46, 47, 
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48, 49, 50, 51, 52, 53]. The principle of the expanded L E S formalism will be described below in 
section 4.2.8 after introducing the linear theory of piezoelectricity. 

2.5 Determination of the generalized stress intensity factor 

Methods for a stress intensity factor determination of a crack has been well examined and they 
are also available in the commercial F E M software. Determination of the GSIF requires more 
sophisticated methods, such as the direct or integral method implemented for example in [32, 
54, 55]. The latter group involves one special and robust tool for the GSIF computation - the 
two state path-independent ^-integral (in the literature also known as the i7-integral), which is 
based on the Betti's reciprocal theorem. The method of the ^-integral enables determination of 
the local stress field in the vicinity of the crack or notch tip by using the real deformation and 
stress field in the remote points, where the numerical results are more accurate [19]. Neglecting 
the body forces and residual stresses, the ^-integral is expressed in the following form: 

It is path-independent for free-free multi-material wedges when the path T emanates from one 
notch face to the second one in the counter-clockwise direction [17]. The GSIF is then determined 
by virtue of the F E M , regular and auxiliary solutions. 

(2.14) 
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3 Aims of the thesis 
On the basis of the literature survey, the aims of the research conducted within the dissertation 
can be proposed as: 

• Determination of the stress singularity exponents of a sharp piezoelectric bi-material notch 
using the expanded Lekhnitskii-Eshelby-Stroh formalism. 

• Establishing the path-independent ^-integral to determine the generalized stress intensity 
factors. The method of the ^-integral enables to define the local stress field parameters, 
i.e. the generalized stress intensity factors, in the vicinity of the crack or notch tip by 
using a displacement and stress field obtained by the finite element analysis in the remote 
points. 

• Parametric studies of a dependence of the fracture-mechanical parameters on the material 
parameters and boundary conditions. 

One of the goals is to introduce and describe theories in the most general way and after that to 
give simplified relations that often occur in published papers. 
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4 Overview to references relating to the solved prob­
lems 

4.1 Two-dimensional anisotropic elasticity 

A bi-material notch composed of two generally anisotropic materials covers a group of special 
configurations such as orthotropic and isotropic materials or their combinations. Before intro­
ducing the complex potential theories describing stress singularity, some restrictions of material 
symmetry have to be defined. The equilibrium equations can be then simplified and decoupled 
to in-plane and anti-plane counterparts. 

4 .1 .1 G e n e r a l i z e d H o o k e ' s l a w 

Let us assume an elastic material. Additionally, if the relationship between stresses and strains 
is linear, it is usually called the generalized Hooke's law and written as [17] 

&ij = CijkiEkh (4-1) 

where C^ki is the fourth rank tensor characterising elastic behaviour of the solid with 81 in­
dependent constants and i,j,k,l = 1,2,3. Employing the stress tensor properties and material 
symmetry leads to reduction of the independent material constants. 

Since the stress and strain tensor components are symmetric, it implies that [17] 

Cijki = Cjiki, C^ki = Cijik, Cijki = Ckuj. (4-2) 

Foregoing symmetry restrictions lead to 21 independent elastic constants for the most general 
case of anisotropy. 

4 .1 .2 C o n t r a c t e d n o t a t i o n 

It is more convenient to express the generalized Hooke's law by using the contracted notation 
of strains and stresses as 

<Tp = CpqSq, Cpq = Cqp p,q = 1,2,. . . ,6, (4.3a) 

where the indices shrink according to Tab. 4.1. In engineering applications, a\ and £j are usually 
replaced by the engineering stress Tij and engineering strain jij. The definition (4.3a) can be 
expressed in the matrix form as 

a = Ce. (4.3b) 

It is necessary to point out that the quantities ap, Cpq, eq are not tensors1 and their trans­
formation cannot be treated as by tensors. In the literature, Cpq is sometimes called stiffness 
matrix. Its transformation to a new coordinate system will be described in the section 4.1.4. 

The inverse Hooke's law is defined as 

£ij = Sijki<Jki, (4-4) 

1 Note that the material properties written down in the component form Cijki are called elastic constants. A 
bold symbol C is usually called elastic tensor. 
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index ij or kl index p or q 

11 1 

22 2 

33 3 

23 or 32 4 

31 or 13 5 

12 or 21 6 

Tab. 4.1: Contraction of the individual tensor component indices. 

in which Sijki are the compliances, also components of a four rank tensor. The symmetry 
conditions and contracted notation can be specified in the same manner of the previous relations 
(4.2) and (4.3a), i.e. 

Sijki = Sjiku Sijki = Sijik, Sijki = Skuj. (4-5) 

The contracted notation can be also introduced, nevertheless, some additional rules have to be 
added [9]: 

Sijki = Spq, if both p,q < 3, 
2<%fcz = Spq, if either p or q < 3, (4.6) 
4Sijki = Spq, if both p,q > 3. 

Using the above-stated conditions, it is also possible to express the inverse Hooke's law in the 
contracted form as 

£p = Spq<jq, Spq = Sqp p,q = 1,2,. . . ,6 (4.7a) 

and in the matrix form: 

s = S<x. (4.7b) 

Substituting (4.7b) into (4.3b) yields to the important relation 

C S = S C = I, (4.8) 

where I is the unit matrix of the shape 6 x 6 . 

4 .1 .3 M a t e r i a l s y m m e t r y 

Due to the symmetry of the elastic tensor, it is possible to express the relation (4.3b) as 

(?\ " C i i C\2 C l 3 Cu C l 5 C l 6 

C l 2 C22 C23 C24 C25 C26 £2 

< ^ < Cl3 C23 C33 C34 C35 C36 £3 
C l 4 C24 C34 Cu C45 C46 £4 

0-5 C15 C25 C35 C45 C55 C56 £5 
Cl6 C26 C36 C46 C56 C66_ ,£6, 

(4.9) 

The stiffness matrix in Eq. (4.9) has the form characterising the most general anisotropic 
material with no planes of symmetry of the material properties, usually called triclinic material. 
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If a material has some symmetry planes, the number of independent constants will be 
reduced. Without loss of generality, let the symmetry planes coincide with the global coordinate 
planes defined by the Cartesian coordinate system x\, X2, x%. If a material has one symmetry 
plane defined by £3 = 0, the stiffness matrix in (4.9) reduces to 

(4.10) 

and such material is called monoclinic and has 13 independent elastic constants. 
If a material has three mutually orthogonal planes [9], we call it orthotropic (or rhom­

bic) material. Wi th the above introduced condition of principal axes and coordinate system 
coincidence, the matrix of elastic constants has the following form: 

"C11 C\2 C13 0 0 C16 

C12 C22 C23 0 0 C26 

Cl3 C23 C33 0 0 Cm 
0 0 0 C44 C45 0 
0 0 0 C45 C55 0 

Cw C26 Cm 0 0 Cm 

C11 C12 C13 0 0 0 " 
C12 C22 C23 0 0 0 
C13 C23 C33 0 0 0 

0 0 0 C44 0 0 
0 0 0 0 C55 0 
0 0 0 0 0 Cm. 

(4.11) 

which has 9 independent elastic constants. 
A n orthotropic material with one certain plane in which the material is isotropic, is called 

transversally isotropic. If the plane x\ = 0 is the plane of isotropy, the stiffness matrix is 

"C11 C12 C12 0 0 0 " 
C12 C22 C23 0 0 0 

c = C12 

0 
C23 

0 
C22 

0 
0 

C22—C23 
2 

0 
0 

0 
0 

0 0 0 0 C44 0 
. 0 0 0 0 0 C44. 

(4.12) 

with 5 independent constants. A material with elastic constants symmetric to any axis, or in 
other words, material properties are identical in all directions, is called isotropic and the stiffness 
matrix structure is 

(4.13) 

•C11 C12 C12 0 0 0 

C12 C n C12 0 0 0 

C12 C12 Cu 
0 0 0 

0 0 0 Cn— C12 
2 

0 0 

0 0 0 6 Cn—C12 
2 0 

. 0 0 0 0 6 Cu— C12 0 

Such material is characterised by 2 independent Lame constants A and /x defined from Eq. (4.13) 
by [17] 

C n - C\2 . . 
C l 2 , A»= n • ( 4 - 1 4 ) A 

The generalized Hooke's law for an isotropic material can be written as 

&ij = A5jj£fcfc + 2[i£ij, i,j = 1,2,3, (4.15) 
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where Sij is the Kronecker delta. 
Considering an orthotropic or an isotropic material in engineering applications, material 

constants are usually defined, unlike elastic properties of piezoelectric materials, by the Young's 
moduli, Poisson's ratios and shear moduli. They are measured by uniaxial tension and shear 
tests. The structure of the compliance matrix S composed of these engineering constants for a 
general anisotropic material is stated in [17], by using the Chentsov coefficients that have to be 
additionally defined. 

In the following chapters, a bi-material notch composed of at least one transversally isotropic 
solids with fibres parallel to the plane £ 3 = 0 is considered. Such properties can have for 
example unidirectional fibre-reinforced composites consisted of parallel fibres embedded in the 
matrix. The direction parallel to the fibres is generally called longitudinal, referred as L, the 
perpendicular is called transverse direction, referred as T or T'. Note that TT' is the plane where 
the material has isotropic properties, from which it follows that ET = ET>. Let us designate 
a coordinate system LTT' in these principal material directions. The compliance matrix S is 
defined in the principal material axes by using the engineering constants as 

1 - u L T -ULT 

EL El E L 

-VTL 1 — vtti 
E T E T E T 

-VTL — Vt't 1 
E T , Eti ETi 
0 0 0 
0 0 0 
0 0 0 

0 
0 
0 

2(l+vTTt 

0 

0 

0 

0 

0 

0 
1 

Glt 
0 

0 
0 
0 

0 
0 
1 

Glt 

(4.16) 

where the components of the lower triangular matrix have to be recomputed by using the 
symmetry conditions 
Vf = Vf, i,J = L,T,T>. (4.17) 

Assuming an arbitrary fibre orientation defined by the angle 9 (see Fig 4.1), the stiffness, 
or the compliance matrix, respectively, has the form described in Eq. (4.10) for a monoclinic 
material. Let us consider that fibres are oriented so that the principal axes go along with the 
global Cartesian coordinate system defined by the axes x\, X2, £ 3 . To avoid a mismatch in 
the directional indices, we establish that the longitudinal direction L coincides with x\ and the 
transversal direction T with X2, i.e. a = 0. Then the stiffness matrix attains the form (4.11), 
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e.g. the components C\Q, C26, C36 and C45 vanish. 
The most convenient approach to compose the compliance matrix of a transversally isotropic 

material with an arbitrary fibre orientation in the plane x\X2 can be divided into the following 
steps: 

1. Assembly of the compliance matrix S (4.16) by using the engineering constants in the 
principal material coordinate system LTT'. 

2. Rotation of the L-T axes to the global X1-X2 axes about X 3 axis by an angle 9. Note that the 
arrow of the angle determines the positive direction of rotation (counter-clockwise). The 
sign of the angle will be negative when transforming in the opposite direction (clockwise). 

4.1.4 T r a n s f o r m a t i o n o f t h e c o o r d i n a t e s y s t e m 

Before we introduce the conditions for a two-dimensional analysis, an orthogonal transformation 
of the reference coordinate system has to be defined. Transformation of the principal fibre 
directions discussed in the previous section stands for a rigid body rotation about the X3 axis 
by the angle 9. The orthogonal transformation matrix Q, is defined as 

cos 9 sin 9 0 
— sin 9 cos 9 0 

0 0 1 
(4.18) 

Let us pronounce the principal material coordinate system LTT' as x*. Four rank tensor of 
the elastic constants referred to a new coordinate system Xi is expressed under the orthogonal 
transformation Xi = tlijX* as [9] 

C7.1' ijkl. (4.19) 

The identical relation can be written for Sijki- If we introduce the contracted notation (4.3a) or 
(4.7a), using of Eq. (4.19) is not convenient. The stresses and strains in (4.9) are transformed 
according to 

Ker*, (4.20a) 

where the matrix 

K 

cos 
. 9 

sin 
0 
0 
0 

sin 
2 

cos 
0 
0 
0 

( K - ) V , 

0 0 
0 0 
1 0 
0 cos 9 
0 sin 9 

cos 9 sin 9 cos 9 sin 9 0 0 

0 
0 
0 

— sin 9 
cos 9 

0 

2 cos 9 sin 9 
—2 cos ö sin Ö 

0 
0 
0 

cos sin 

(4.20b) 

(4.21) 

defines a rotation about £ 3 axis by the angle 9 (positive in counter-clockwise direction). The 
Hooke's law (4.3b) in the coordinate system x* is expressed as 

C*e*. (4.22) 

Substituting inverse relations (4.20) into (4.22) we get 

K T V = C * K T e . (4.23) 
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Multiplying by K from the left side, the stress-strain relations in the new coordinate system are 
obtained: 

a = K C * K T £ , (4.24) 

where 
C = K C * K T (4.25) 

defines the stiffness matrix transformation from the coordinate system x* to x\. Analogically, 
one can derive a relation for transformation of the compliance matrix: 

s = ( K - ^ S ' K - 1 . 

4 .1 .5 G e n e r a l i z e d p l a n e d e f o r m a t i o n 

(4.26) 

In a body with general anisotropic properties, plane deformation is usually not possible. Consid­
ering a transversely isotropic material enables to solve the problem as two-dimensional (plane) 
problem by asserting that all stress and displacement components depend only on x\ and X2 
[17]. By satisfying this conditions, behaviour of such body is called generalized plane stress or 
generalized plane strain. This state corresponds to given plane state in an isotropic material. 

The state of generalized plane strain is characterised by 

£3 = 0. 

Under this condition, the third row of (4.7a) is rewritten as 

<*3 £ 
q+3 

S33 

Substituting this relation back into (4.7a), we obtain 

£ = aer , 

where 

(4.27) 

(4.28) 

(4.29) 

£ l ~Sn S12 Su S15 5*16 

• , £ ° = < 
£2 

s = 
S12 S22 S24 S25 5*26 

< O4 • , £ ° = < £4 s = Su S24 544 S45 S46 

0-5 £5 <Sl5 S25 S45 S55 "556 
, ° 6 , ^6 , ßie S26 Sag 5*56 "566 

(4.30) 

Components Spq are the reduced elastic compliances defined as 

S. pq s pq 
Sp3S3g 

S33 
s, pq S, 

Similarly, the relation (4.3a) under the condition (4.27) leads to 

<X° = C°£°, 

where 

C° 

n n n 11 W2 W4 W5 W6 
W2 ^22 t>24 (̂ 25 <̂ 26 

14 O24 W4 W5 W6 
C15 C25 C45 C55 C56 

Cl6 C26 C46 C56 Cqq 

(4.31) 

(4.32) 

(4.33) 
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is created from (4.9) simply by deleting the third row and the third column. 
Analogically, the generalized plane stress is defined by 

a3 = 0. (4.34) 

The equations (4.29) and (4.32) are rewritten as follows: 

6° = S°<x°, <x° = C°£°, (4.35) 

where the components of S° are established by eliminating the third row and the third column 
of (4.7). C is the reduced stiffness matrix, which components are defined by 

Cpq = Cpg ^— -, Cpq = Cqp. (4.36) 
^ 3 3 

Similarly to (4.8), it can be proved that 

C°S = 1 S°C = I. (4.37) 

4 .1 .6 D e c o u p l i n g o f i n - p l a n e a n d a n t i - p l a n e r e l a t i o n s 

Let us consider a monoclinic material with symmetry plane parallel to £ 3 and generalized plane 
strain. The constitutive equation (4.9) for (4.10) comes into the shape of 

s \ 
"C11 C\2 0 0 C16 £1 

02 C\2 C22 0 0 C26 £2 
< (T4 > = 0 0 C44 C45 0 < £4 

0-5 0 0 C45 C55 0 £5 

^ 6 , _Cl6 C26 0 0 ^ 6 , 

(4.38) 

in which the in-plane and anti-plane relations are decoupled. Eqs. (4.38) can be written in the 
decomposed form as 

C n C\2 Cl6 
C12 C22 C26 { s2 ) (4.39a) 
Cl6 C26 CQQ 

(?\ 
< <J2 > = < £2 > 

and 

H -
C44 C45 

W " C45 C55 w 
(4.39b) 

The above stated assumptions allow solving the in-plane and anti-plane problem separately. 
This relations can be analogically written for generalized plane stress. 

Most approaches analysing stress singularities are derived for certain singular stress concen­
trators. Bi-material or multi-material anisotropic wedges are modelled by using plane elasticity 
theories based on the Stroh and Lekhnitskii formalism, such as for example [56, 57]. By ex­
ceeding a certain wedge angle, the singularity exponent becomes complex-valued, just as the 
resulting stress intensity factors. The aim of the following paragraphs is to derive an universal 
formalism that would not distinguish whether the singularity exponents are real or complex. 
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4.1.7 C o m p l e x p o t e n t i a l m e t h o d — L e k h n i t s k i i - E s h e l b y - S t r o h f o r m a l i s m 

In the second half of the last century, plane anisotropic elasticity theory based on complex vari­
able functions had been formulated. Lekhnitskii [6] and Stroh [8] presented pioneering works 
for a stress description near singular stress concentrators, which employs advantages of com­
plex variable functions. At the beginning, the Lekhnitskii formalism considers two-dimensional 
stresses, whereas Stroh starts with two-dimensional displacements [17]. The application suit­
ability of the individual approaches depends on the type and degree of the problem. 

Hwu employed the Stroh formalism [8, 9] in his extensive research and introduced the Key 
matrix [58] and the unified definition [59] for stress intensity factors of interface corners and 
cracks. This theory represents a strong mathematical tool for dealing with anisotropic singular 
concentrator. Considering a combination of an orthotropic and isotropic material, the relations 
for complex potentials violate the key matrix. However, Hwu presented a study in [60] that 
concerns with these configurations. 

Besides that, Suo [44] introduced the Lekhnitskii-Eshelby-Stroh formalism (LES). It was 
also based on the studies of Ting [61, 62], where the modified Lekhnitskii formalism was intro­
duced, which was in fact the same principle. When a monoclinic material defined in (4.38) is 
considered, the Lekhnitskii and Stroh formalism are formally indistinguishable. The equivalence 
allows to take an advantage of the clear algebraic results as well as the explicit solutions derived 
from Lekhnitskii's relations. There have been two reasons to use these basic characteristics of 
complex variable functions. Firstly, differentiation in the complex domain can be treated as an 
equivalent of harmoniousness, i.e. when a function has its derivative in a complex domain (in the 
complex theory they are called analytical functions), it fulfils the so called biharmonic equation 
automatically and thus it can be used for an expression of the Airy stress function. Another 
advantage is a complex variable application, which leads to simplification of the elastic variable 
description. In the L E S formalism, material properties of a monoclinic material are charac­
terized only by three material eigenvalues /ij (i = 1,2,3), when both in-plane and anti-plane 
fields are taking into account. When only in-plane fields are considered, material eigenvalues 
are reduced to two. Their definition will be shown in the following paragraphs. 

G o v e r n i n g differential equations 

The basic equations for anisotropic elasticity are the equilibrium equations for static loading con­
ditions (4.40), the strain-displacement relations (4.40b) and the Hooke's law for linear anisotropic 
elastic solids (4.40c). That is 

^ + /? = 0, (4.40a) 

^ ^ o h r + i r . ( 4 - 4 0 b ) 

<Jij = CijkiSki, (4.40c) 

where indices i,j,k,l = 1,2,3, fi designates body forces referred to a unit volume. In order to 
conform with the Lekhnitskii's nomenclature, all parameters will be written out according to 
the conventional notation instead of the contracted notation, i.e. x\ —>• x, X2 —>• y, o\ —>• crx, 
c2 —>• oy, —>• TXY, 0 1 3 —>• TXZ, 0 2 3 —> TYZ. On the basis of two Airy functions <p(x,y) and 
ip(x,y), the stresses are expressed as 

d2ip - d2ip - ^ d2ip ^ dip dtp 
°~x — Q o ~T~ r ; °~y = Tj 9 + t1 , TXy = - —, Txz = — , TyZ = - , (4.41) 

oyz oxz oxoy oy ox 
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where F is the potential of the body forces fx and fy, for which it holds 

dF * dF 

By employing the inverse stress-strain relation (4.40c) and strain-displacement relation (4.40b), 
strain and displacement components can also be written out in terms of the Airy stress function. 

For the sake of brevity, only relevant equations of the formalism will be stated, the reader 
is referred to [17, p. 34] for the detailed derivation. When the displacement compatibility is 
satisfied, the problem leads to a homogeneous system of differential equations: 

(4.43a) 

- d2F A d2F A A d2F 
Uip + L 3 V = ~(Si2 + S 2 2 ) ^ + (S16 + s ^ ) g ^ - (Sn + S12)-^, 

* dF ^ dF 
L3p + L2iP = -2a + A S 3 4 - BS35 + (Su + S M ) + (S15 + S25)-^-, 

where L2, L3, L4 are differential operators of the second, third and fourth order: 

* d2 * d2 * d2 

L2 — £ 4 4 — ^ — 2545———I- S^—-^, 
oxz oxoy oyz 

L3 = S 2 ^ + ( 5 2 5 + S ^ T T ^ T - - ( 5 1 4 + S^j—^ + 5 1 5 ^ , (4.43b) Ox6 ox1ay oxoy1 Oy6 

* <94 - <94 <94 <94 - <94 

£ 4 = « $ 2 2 - ^ - 7 ~~ 2 S 2 6 — ^ — — h ( 2 5 i 2 + SQQ)—T—^ - 2SIQ „ + S I I - ^ - T , 
ax* ox^oy oxLoyL Oxoy^ oy* 

where are the reduced elastic compliances defined in (4.31). A, B, a are the arbitrary 
constants associated with the rigid body motion. 

G e n e r a l so lut ion 

Lekhnitskii [6] assumed the solution in the form 

p = ipiV + <p<P), ^ = V>W + V> ( p ), (4.44) 

where <f^p\ tp^ a r e the particular solutions of the non-homogeneous system (4.43a). Let us first 
find a solution of the homogeneous system 

L3(p(h) + = 0 ) 

where <f^h\ tp^ a r e the homogeneous solutions of the Airy stress functions. Eliminating ip^ 
from both equations in (4.43a), we get an equation of the sixth order: 

( L 4 L 2 - £ 3 ) V(h) = 0. (4.46) 

The sixth order operator L^L2 — L2 can be decomposed into six operators of the first order, i.e. 

D Q D ^ D ^ D ^ = 0, (4.47) 

where 
d d 

D K = — - n k — , k = 1 ,2 , . . . 6 (4.48) 
Oy Ox 
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and Hk are the roots of the characteristic algebraic equation associated with the differential 
equation (4.46), i.e. [62] 

h(jj)h(jj) ~ = 0, (4.49a) 

where 

MaO = Sttix2 — 2S45// + »544, 

hip) = <W - (<Si4 + 46)/x2 + (S 2 5 + S46)/x - S 2 4 , (4.49b) 

h(fi) = Sun4 - 25i6/x3 + (25i 2 + S6e)n2 - 2S26/x + S 2 2 . 

For an anisotropic material and by considering both in-plane and anti-plane stress components, 
there are always three pair of complex conjugate roots of the characteristic equation (4.49a). 
For the subsequent computations, let us arrange the roots in the following order: 

fik+3 = ~Pk> > 0, k = 1,2,3. (4.50) 

Solving the problem (4.47) by successive integration, we obtain the stress functions in the form 

<p{h) = 2$tJ2(Pk(zk), zk = x + Liky (4.51) 
fe=i 

or 
3 

V>W = 2 » (4-52) 
k=l 

when Eq. (4.46) is expressed in terms of i/j(h\ 
At this point, it is convenient to introduce a material assumption which will lead to simpli­

fication of the governing equations. Firstly, for a monoclinic material with the symmetry plane 
at z = 0 (see (4.10)), the elastic compliances in 13(11) all vanish. The sextic equation (4.49a) is 
then reduced to two equations: Z4(/i) = 0 for the in-plane field and i2(/x) = 0 for the anti-plane 
field. Three distinct material eigenvalues split up into fii, /x2 as the roots of Z4(/i) = 0 and 113 
of Z2(/i) = 0. Secondly, when the problem is treated as two-dimensional, with the monoclinic 
material assumption and neglecting of the body forces, the particular solution is zero including 
the arbitrary constants A, B and a. The relation between (pk and ipk is 

^Pk(zk) = rik<p'k(zk), k = 1,2,3, (4.53) 

where 
= zMi^I = Z M M . ( 4 . 5 4 ) 

As Z4(/ii) = Z4(/i2) = 12(^3) = 0, relations (4.54) will lead to be divided by zero or infinity. To 
get non-zero expressions, we use ^ 4 ( ^ 3 ) = fai^i) = ^ 2 ( ^ 2 ) Ý 0. To avoid of using coefficients that 
approach zero or infinity due to the hint) = 0, the expressions for stress functions are defined 
as 

if = 29t{<pi(zi) + tp2{z2) + ^ 3 ( ^ 3 ) } , 

JAI¥>Í(«I) + A 2 ^ 2 ( z 2 ) + ^ 3 ( 2 3 ) J , 
(4.55) 

in which 

Ai = 7/1 = , r , A 2 = i]2 = . . , A 3 = — = — — - . (4.56 
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Since the terms A i , A2 and A3 become zero for a monoclinic material and <ps is an arbitrary 
function, we introduce the new stress functions fk(zk) that absorb the coefficients as follows: 

fl(zl) = V'l(zl), MZ2)=<A(Z2), MZ3) = ^<P'3(Z3). (4-57) 

Inserting Eq. (4.55) into (4.41) with the new functions (4.57) leads to the following expressions 
for stresses: 

vy = 23t{fl(z1) + f!l(z2)}, 

rxy = - 2 B {fiif'M) + M2/a(^)} , ( 4- 5 8) 
Txz = 2M{fi3f!i(z3)}, 
Tvg = -2X{&(z3)}. 

The displacements are expressed by inserting Eq. (4.58) into the inverse stress-strain relation 
(4.29) and consequently to (4.40b), which leads to 

OU -s -s -s -s -s 

— = S\i<Jx + Si2<Ty + SuTyZ + S\^TXZ + SiQTxy, 
dv 

— = S\2&X + S22<Ty + S24Tyz + S2<oTxz + S2QTxy, 
dw A 

— = S\i<Jx + S2A&y + Si4Tyz + 5 4 5 T Z Z + Si§Txy, (4.59) 
(JU) A 

— = S\^ax + S^y + S^Tyz + 5 5 5 T Z Z + S§QTxy, 
du dv ^ ^ ^ ^ ^ 
~dy~'r ~dx = ^1G<Tx ~*~ ̂ 2 6 C r ^ SA§Tyz + 556TZZ + SeeTxy, 

where the contracted notation it i = it, « 2 = W 3 = w was implemented. Considering a 
monoclinic material and generalized plane strain, the reduced elastic compliances vanish, i.e. 

= <Si5 = S 2 4 = §25 = S/lq = Ssq = 0. By integration of these resulting equations, we can 
find the displacements functions as 

u = 29£ J5^ai f c/ f c(z f c) J , 

U = 2 K | E ° 2 * / * ( ; 8 * ) | . (4-60a) 

2»jXjo3fc/fc(«fc)|. 

where 

aik = Mfc-Sii + ^ 1 2 - VkSie, 

a3fc = 0, k = 1,2, 

Ol3 = 0, 
023 = 0, 
a33 = (M3<S45 - 544^ //i3, 

(4.60b) 
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Eshleby et al. [63] presented a similar representation based on the Navier-Cauchy equations. 
It has the same structure as Eqs. (4.60) and (4.58) and it is written in more elegant form as 

r i = - 2 3 f i | ^ L i f c / f c ( z f c ) | , 

a u = -25ft | £ Likixkf'd{zk) j , a 2 i = 2K j £ Likf'k(zk) j , 

(4.61a) 

(4.61b) 

(4.61c) 

where Tj are the components of the stress function vector along the semi-infinite line passing 
through the origin of the coordinate system x\x2- It is convenient to adopt the matrix convention 
from the Stroh formalism. Let us write the complex potentials into a vector as 

f (z) = H(Z2) 

fs(z3) 
>, zk = x + iiky, k = 1,2,3. (4.62) 

Then, the equations (4.61a) and (4.61b) can be written as 

u(z) = 23fJ{Af(z)}, (4.63a) 

T(z) = 2^{Lf(z)}. 

The displacements and stress function vectors have the form: 

(4.63b) 

u(z) 
T3 

(4.64) 

where u = ui, v = u2, u = u3. The matrices A and L have then the following structure: 

a n «12 «13 
«21 «22 «23 
«31 «32 «33 

1 
0 

-M2 0 
1 0 
0 - 1 

(4.65) 

The matrix elements aik are defined in (4.60b). Assuming plane strain, each of the characteristic 
roots fik and each corresponding column of A are solved from the eigenvalue problem from the 
Stroh formalism [7], [44] 

Q + / x f c (R + R T ) +n2
kT 0, 

where 
Qik — Cjlfel: Rik — Cnk2, Tik — Cj2fc2, i,k — 1,2,3. 

Each column of A is multiplied by the arbitrary normalization coefficient, i.e. 

Cian C2012 C3013 
c i a 2 i c 2a 22 c 3a 23 
c i a 3 i c 2a 32 c 3 a 3 3 

-Cl/il -C2/X2 0 
ci c 2 0 
0 0 - c 3 

(4.66) 

(4.67) 

(4.68) 
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Thus, Hk are the roots of the characteristic sixth-order polynomial 

Q+/x f c ( R + R T ) +fi2
kT 

The matrix L is associated with A as 

0. (4.69) 

Lij — ̂ 2 [Rik + fJ-jTik] akj — 0. 
k=l 

(4.70) 

This relation shows that by comparing the uniquely normalized Lekhnistkii matrices (4.65) with 
those in (4.68) derived by Stroh [7], the normalization coefficients are eliminated by using Eq. 
(4.70) and Eshelby's [63] representation (4.61) is uniquely determined by the elastic constants 
of the considered material. 

B o u n d a r y condit ions 

The arbitrary complex functions fk{zk) are determined through the satisfaction of the boundary 
conditions on the lateral surface. The first fundamental problem resides in prescribing the 
tractions tx, ty and tz = 0 along the boundary by 

oxn\ + Txyn2 = ix, Txyni + ayn2 = iy, Txzn\ + Tyzn2 = 0. (4.71) 

The normal vector n of the boundary is defined by 

n\ = —sm9 = — — , n2 = cos6>=——. (4.72) 
ds ds 

The tangential direction s is chosen so that when we face the direction of the increasing s, 
the material lies on the right side (see Fig. 4.2). Inserting (4.41) and (4.72) into (4.71) and 
integrating with respect to s, we get 

-^ = fx(s) + C l , = fy(s) + c2, V = c 3 , (4.73a) 

where c\, c2, C3 are the integration constants and 

Tx(s) = - [ ixds, 
Jo (4.73b) 

Ty(s) = I hds-
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Substituting (4.55) and (4.57) into (4.73a), we obtain 

2X{fi1f1+fi1f1} = fx(s)+c1, 

2M{fi + fi} = Ty(s)+c2, (4.74) 
2K{f3} = c3. 

The second fundamental problem is represented by the displacements prescribed along the 
boundary: 

u = u, v = v, w = w. (4-75) 

Using (4.59), (4.60) and (4.75), one gets 

r 3 ^ 
2SR|E a ifc/fc(^fc) | =u, 

2^\j2a2kfk(zk)) =v, (4.76) 
vfc=l 
' 3 
£ a3kfk(zk) -w. 

,k=l 

4.2 Two-dimensional piezoelectric elasticity 

4.2 .1 B a c k g r o u n d 

Piezoelectricity was discovered by the brothers Jacques and Pierre Curie in 1880. Piezoelectric 
materials possess a property that an electric field is induced when it is subjected to pressure, 
i.e. direct piezoelectric effect. The effect is also reversible, i.e. deformations occur due to the 
applied electric field, which is known as the converse piezoelectric effect predicted by Gabriel 
Lippmann in 1881. The piezoelectric effect can be manifested only when materials have a 
non-centrosymmetric crystal structure, represented by 21 crystal classes. Ten of them exhibit 
spontaneous polarization without mechanical stress due to the permanent dipole moment [64]. 
Such materials are called pyroelectric [65]. If the polarization can be reversed, the material 
is denoted as ferroelectric. Their relations can be seen in Fig. 4.3. Anther non-ferroelectric 
piezoelectric classes do not have a spontaneous polarization, such as quartz, which has a trigonal 
crystal lattice. The piezoelectric effect is then caused by polarization due to the distortion on 
the crystal lattice and creating electrical dipoles, which dismiss during unloading. However, the 
effect is not very strong. In the case of ferroelectric solids, the piezoelectric effect is caused 
by changing the magnitude of polarization also by the lattice distortion, but it is stronger and 
proportional to the initial polarization. These materials are not spontaneously polarized, but 
the polarization can be induced through so called poling [66, p. 27], [67, p. 16]. Ferroelectric 
materials can be crystals, ceramics or polymers. 

Within the dissertation, we introduce a simplification that when we speak about piezoelectric 
materials, we mean a group of ferroelectric piezoelectric materials, i.e. spontaneous polarization 
exists in their structure even in the absence of an electrical field. We focus on piezoelectric 
ceramics whose physical properties are suitable for a wide range of smart technical applications, 
namely zirconate titanate (PZT) series, potassium sodium niobate (PSN) series or perovkites 
characterized by the chemical formula A B O 3 , where A is a mono- or divalent alkaline earth 
metal and B is a tetra- or pentavalent metal [65, 68]. These materials exhibit good strength 
and stiffness and excellent piezoelectricity [69]. Piezoelectric ceramics are produced by pressing 
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dielectrics 

piezoelectrics 

pyroelectrics 

ferroelectrics 

Fig. 4.3: Sorting of dielectric materials [66]. 

/ 

(a) (b) 

Fig. 4.4: Perovskite crystal structure of BaTi03 (a) above the Curie temperature with cubic lattice, (b) 
below the Curie temperature with tetragonal lattice (Curie temperature ~ 130 °C). 

ferroelectric grains, which are provided in a form of a fine powder. During the fabrication process, 
the powder is sintered above the Curie temperature. Over this point, the crystal has a cubic 
symmetry (such materials are called paraelectrics), with no dipole moments. As it cools down, 
it undergoes a phase transformation to the ferroelectric state with a tetragonal or rhomboedral 
crystal symmetry [70]. The process can be illustrated on the barium titanate (BaTiOs) in Fig. 
4.4. The phase transformation at about 130 °C involves movement of the B a 2 + ions to the off-
centre position, which initiates a dipole moment. The electric domains are randomly oriented, 
which leads to zero macroscopic net polarization and all piezoelectric constants would be zero 
(Fig. 4.5(a)). Exposing the ceramic element to a sufficiently strong uni-direction electric field 
usually at the temperature slightly below the Curie temperature causes reorientation of domains 
in the direction of the applied field (Fig. 4.5(b)). After this poling process, domains do not return 
to their initial positions and most nearly remain in alignment with the direction of the applied 
electric field, which is called the poling direction (Fig. 4.5(c)). Now, it is able to induce the 
piezoelectric effect by applying an appropriate electric field, which results to the domain motion 
and consequent lattice deformation [71]. Hence, the poling direction is a significant material 
parameter which plays an important role in a design of piezoelectric devices. Note that the above 
described transformation phase is not the only one. For example, at 0°C (the second transition 
temperature) or at — 90 °C the ferroelectric to ferroelectric phase transformation occurs. 
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r 

(a) (b) (c) 

Fig. 4.5: Poling of a piezoelectric element: (a) prior to polarization, domains are oriented randomly, (b) 
exposing to large uni-direction electric field, (c) state after polarization, almost unidirectional 
polarization of domains. 

4.2.2 P i e z o e l e c t r i c c o n s t i t u t i v e e q u a t i o n s 

In the following paragraphs, the governing equations and boundary conditions for piezoelec­
tric materials by considering the variation principle and thermodynamics are introduced. The 
internal energy stored in any linear-elastic dielectric can be written as [1] 

U = ^aijSij + ^EiDi, (4.77) 

where U is the internal energy density, CTJJ is the stress tensor, Eij is the strain tensor, Di is the 
electric displacement (in the literature also called induction) and Ei is the electric field. The 
internal energy U can be considered as the thermodynamic potential with respect to charges 
on a dielectric. To derive the governing equations with Ei (related to the electric potential 4>) 
instead of Di (related to the electric charge q) as an independent variable, we need to introduce 
another thermodynamic potential with respect to the electric potential. Therefore, the electric 
enthalpy density is defined as [72] 

H = U- DiEi, (4.78) 

where the second term —DiEi has an importance due to the energy variation [1]. Therefore, 
H is the thermodynamic potential when the mechanical displacement and the electric potential 
are taken to be the independent variables. 

To derive the governing equations and boundary conditions for a piezoelectric material, we 
need to employ the following variational form of the relation between the enthalpy (4.78) and 
the work of the external mechanical and electric loads [73]: 

5 f HdV- f (fiSm - qb6<j>) dV- [ (USui - qs6<j>) dS = 0, (4.79) 
Jv Jv Js 

where fi is the body force, Ui is the displacement, qb or qs is the body or applied surface charge, 
which is usually zero, U is the applied surface traction, <fi is the electric potential, V is the 
volume of the material and S is the material boundary. The electric enthalpy density in the first 
integral of (4.79) for a linear elastic piezoelectric material follows from Eq. (4.78) and according 
to [72] it is defined as 

H (Eij,Ei) = -CijkiEijEki - -LOijEiEj - eikiEkiEi, (4.80) 
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where Cijki is the elastic stiffness at constant electric field, uiij is the dielectric permittivity at 
constant strains and e^i is piezoelectric stress/charge tensors [20]. The strain and electric field 
tensors are expressed by 

_ 1 . , 
£ij ~ 2 (uij + uJ,i)> (481) 

Ek = —<t>,k, 

where the comma denotes differentiation with respect to k. By substitution (4 .80) , (4 .81) into 
(4.79) we get the the variational form 

J Cijkiski5uijdV - u)ikEk5(f)tidV - eiH (efcz<50,j + Suk,iEi) dV-

(fiSui - qb5<t>) dV - / (tiSui - qs5<t>) dS = 0, (4.82) 
v Js 

from which, after the integration by parts, one can deduce equilibrium equations: 

(4.83) 
aij,j + fi = 0 

Di,i — Qbi 

and boundary conditions: 

w = u 

Dim = -qs, 

where tii is the outer unit normal vector to the boundary S and the stress and electric displace­
ment are defined by 

OH 
@ij — — Cijk[£ij + ekijEkl 

n » „ ( 4 ' 8 5 > 

—Di = —— = emeu - coijEk-
dEi 

4.2.3 C o n s t i t u t i v e laws for p i e z o e l e c t r i c m a t e r i a l s i n t h r e e - d i m e n s i o n a l s ta te 

There are natural crystals such as quartz that exhibit piezoelectricity. Much more stronger 
piezoelectric coupling exhibit man-made piezoelectric materials, for example barium titanate or 
lead zirconate ceramics. These materials are implicitly in isotropic and non-piezoelectric state. 
Piezoelectric properties can be induced in these ceramics through a process called poling [1], 
during which their mechanical properties change to generally anisotropic. However, most poled 
material become transversally isotropic. 

For an anisotropic and linearly electro-elastic solid, the constitutive laws between the elastic 
field tensors {pij and Sij) and electric field vectors (induction Dj and electric field Ej) are 
represented by four equally important equation systems. They can be written in a tensor 
notation as [20, 74] 

aij = CfjkiSki - ekijEk, 
Dj = ejkiEki +U}jk^k, 

aij = ^ijkl£kl - hkijDk, 

Ej = -hjkiEki + /3jkDk, 

£ij ~ Sijkiaki ~ dkijEk, 
^Dj = djki<Tki + ^jk^k, 

£ij — Sijklakl 9kijDk, 
,Ej = —gjki&ki + PjkE'k, 

(4.86) 
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where Sf^kl and Sf^kl are elastic compliances at constant electric field and induction; C^kl and 
Cijki a r e elastic stiffnesses at constant electric field and induction; cjjk, u)JK and /3Jfc, /3JK are 
dielectric permittivities on non-permittivities at constant strains and stresses; d^ij, ekij> Qkij 
and hkij are piezoelectric strain/charge, stress/charge, strain/voltage and stress/voltage tensors, 
respectively. Due to the symmetry of the stresses and strains and the path-independence of the 
elastic strain energy, the electro-mechanical material constants have the following symmetry 
properties: 

^ijkl — ^jikl 
oE _ oE 

Dijkl — Djikl 
/~tb _ r*D 
^ijkl — ^jikl 
oD _ at) 

Dijkl — Djikl 

r<E 
^klip 
qE 

Dkliji 
r<D 

oD 
Dklij-> 

&kij 
dkij 
hkij 
9kij 

&kjii 
dkji j 
hkjij 
9kjii 

kj' 

P'jk = Pkj-

(4.87) 

4.2.4 C o n t r a c t e d n o t a t i o n 

In order to determine the solution of piezoelectric problems, it is suitable to transform the 
extended tensor notation to the matrices by using the contracted matrix notation introduced in 
section 4.1.1 for pure elastic anisotropic materials. This simplification consists in replacing ij or 
kl by p or q, where i, j, k and I take the values 1, 2 and 3 and p and q take the values 1, 2 , . . . , 
6. The parameters are transformed by the following prescription: 

• if i = j or k = I, then p = i and q = k, for example C1122 = C12 

• if i 7̂  j or k 7̂  I, then p or q is equal to the remaining number from the progression 1,2, 
3 increased of 3, for example C3123 = C54. 

With this assignment and the symmetry properties (4.87), certain transformation rules have to 
be added: 

2Sijki = Spq, if either p or q > 3, 
^Sijki = Spq, if both p and q > 3, (4.88) 
2sij = £p, Idkij = dkp, Ig^ij = g^p if p > 3. 

Using the contracted notation, the constitutive laws (4.86) can be then rewritten in the matrix 
form as [20] 

(4.89) 
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where 

(74 

(76 

C l l 
022 
0"33 

2̂3 
Cl3 
(712 J 

£l 
£2 
£ 3 

£ 4 

£ 5 

£6 

£ 1 1 

£ 2 2 

£ 3 3 

2£23 
2£l3 
2£12J 

W i r<E 
u12 

r<E 
u13 

r<E r<E 
u15 

^16 
u12 r<E 

°22 
r<E 
u23 

r<E 
°24 

r<E 
u25 

r<E 
u26 r< u 13 r<E 

u23 
r<E 
°33 

r<E 
u34 

r<E 
°35 

r<E 
°36 K^E — u14 r<E 

u24 
r<E 
u34 

r<E 
U 4 4 r<E 

u45 
r<E 
u46 °15 r<E 

u25 
r<E 
°35 

r<E 
u45 

r<E 
°55 

r<E 
°56 /~iE 

L^16 r<E 
°26 

r<E 
°36 

r<E 
u46 

r<E 
u56 

r<E 
U66J 

(4.90) 

E 
£ 1 

£ 3 

D £ 2 

en ei2 
e2i e22 
_e3i f'32 

f l w12 w13 
12 w22 w23 
13 w23 w33 

Expressions for the matrices S E , S D , C B , d, g, h , u;C T, /3CT /3e are similar. The superscript T 
denotes a matrix transposition. One set can be recomputed from the other by the following 
equations: 

C E = S P ' , »Jn = 5 N * , pc. = uc-~, p„ = ur 
0 - 1 c D - S " 1 /9e = w e

_ 1 . 
d = = w C T g, e = dCE = 

g = h S D = = /3CTd, h = g C D = /3£e, 

W<7 " - CJe = d C B d T = e S E e T = d e T , 

P e - h S D h T = g C D g T = h g T , 

C r , = eT/3ee = h T c j e h = h T e , 

-- s D = = g TCJ C Tg = dJ/3ad = d T g . 

-1 
''a ) 

(4.91) 

A n inversion of the material characteristics can be also performed by using the matrix identities 

I, (4.92) 'CE e T " S D g T " = I, c D - h r SE -dT 

e -ue . g -Pa_ h -Pe_ d -u)a 

where I is the unit matrix of a shape 9 x 9 . 

4.2.5 M a t e r i a l s y m m e t r y 

Material characteristics of piezoelectric materials are predominantly provided by the elastic 
stiffnesses C-j, piezoelectric constants and dielectric permitivities cofj. The inverse forms can 
be determined by the transformation relations (4.91), or the elastic, piezoelectric and electric 
constants can be merged into a compact matrix as in (4.89) and use the identities (4.92) to get 
the inverse constants. Both operations lead to the same result. 

The stiffness, piezoelectric and permittivity matrices CE, e and u£ in (4.90) characterise 
the most general form of an anisotropic material with piezoelectric properties. We make the 
same deliberation as for the pure anisotropic elasticity in section 4.1.3. The symmetry planes 
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coincide with the global coordinate planes in the Cartesian coordinate system x\, X2, x%. The 
matrix structure of the monoclinic piezoelectric material, i.e. when the material has only one 
symmetry plane defined by £ 3 = 0, is 

vnE ° n r<E 
u12 

r<E 
u13 

0 0 r<E-
u16 r<E 

Ly12 
r<E 
u22 

r<E 
u23 

0 0 r<E 
u26 r<E 

°13 
r<E 
u23 

r<E 
°33 

0 0 r<E 
°36 0 0 0 r<E 

U 4 5 
0 3 

0 0 0 
U 4 5 

r<E 0 
r<E 

L 1̂6 
r<E 
°26 

r<E 
°36 

0 0 r<E 
°66-

e i 3 0 0 ei6 wfl 0 
e23 0 0 e26 w12 w22 0 
0 e 3 4 e 3 5 0 0 0 w33 

(4.93) 

en ei2 
e 2 i e22 
0 0 

It is worth noticing that the stiffness and permittivity matrices are symmetric, but the piezo­
electric matrix is not. 

A n orthotropic material has three mutually orthogonal symmetry planes. Considering a 
poling direction parallel to xi-axis, the material matrices reduce to [75] 

vnE W i u12 r<-E 
u13 

0 0 0 " 
r<E 
°12 °22 CE 

u23 0 0 0 
r<E 
°13 

u23 r<-E 
u33 

0 0 0 
0 0 0 r<E 

° 4 4 
0 0 

0 0 0 0 r<E 0 
. 0 0 0 0 0 r<E 

°66-
ei3 0 0 0 " wfl 0 0 
0 0 0 e26 = 0 -̂ 22 0 
0 0 C 3 5 0 0 0 w33 

(4.94) 

en ei2 
0 0 
0 0 

The initially isotropic ceramic becomes transversally isotropic during the poling process with 
the plane of isotropy perpendicular to the poling axis. This symmetry state plays a significant 
role in investigations of poled piezoelectric materials. The material matrices have the following 
structure: 

en 
0 
0 

ei2 
0 
0 

° i i r*E 
u12 

r<E 
u12 r*E 

°12 
r*E 
°22 

r<E 
u23 r<E 

°12 
CE 
u23 r<E 

°22 
0 0 0 
0 0 0 

_ 0 0 0 

ei2 0 0 
0 0 0 e 

0 
0 
0 

'-'22" 
2 
0 

°.2a 

0 
0 
0 
0 

CE 
° 4 4 

0 
0 
0 
0 
0 

r<E O44 
(4.95) 

0 0 e 2 6 0 

0 0 
0 w22 0 
0 0 w22 

From the above depicted structures we can see that the directional properties depend on the 
poling axis. Since we want to unify the procedure with the pure anisotropic relations, we 
coincide the poling axis with the longitudinal direction of the laminate model. We can observe 
the equality of the stiffness matrices (4.12) and (4.95). Structure of the piezoelectric matrix 
depends on the poling direction, which can attain two limit configurations: coincidence with x\-
axis or with a^-axis. Between this states the structure corresponds to monoclinic (see (4.93)). 



4.2.6 T R A N S F O R M A T I O N OF T H E COORDINATE SYSTEM 45 

It is illustrated in the following scheme: 

en ei2 ei2 0 0 0 
II X\ 0 0 0 0 0 e26 

0 0 0 0 f'26 0 

en ei2 ei3 0 0 ei6 
between e2i e22 f'23 0 0 e26 

0 0 0 f'34 C35 0 

" 0 0 0 0 0 ei6 
II X2 e2i e-22 f'21 0 0 0 

0 0 0 ei6 0 0 

(4.96) 

Let us consider a rotation of the material coordinate system about £ 3 axis by an angle of 90° 
and —90°, i.e. the poling direction coincides with X2 axis. Considering a transversally isotropic 
material in pure anisotropic elasticity, the resulting stiffness matrices will be equal, so will be for 
a piezoelectric material. The difference is only in the piezoelectric matrix, where the absolute 
values of the matrix element will be same, but their signs will be opposite. Structure of the 
permittivity matrices will be also equal. It follows from the above that the poling has an unique 
orientation and contrary to the adopted laminate theory there are no symmetries in rotations 
of the longitudinal directions. More about the matrix structure of individual crystal classes can 
be found in [76, p. 123]. 

4.2.6 T r a n s f o r m a t i o n o f t h e c o o r d i n a t e s y s t e m 

Similarly to pure anisotropic elasticity, we define transformation relations to investigate material 
configurations with a poling axis arbitrary oriented in the plane £ 3 = 0. As was stated in the 
previous section, we coincide the longitudinal direction L with the poling axis and the plane 
of isotropy is defined by transversal directions TT'. Let us designate the principal material 
coordinate system LTT' as x*. We assemble the stiffness, piezoelectric and permittivity matrices 
in these coordinates and perform the inverse by using (4.92) to obtain the compliance matrix 
S|j, piezoelectric matrix g* and non-permittivities 2 j3*a. Then the relation (4.26) can be used to 
transform the compliance matrix of a piezoelectric material, i.e. 

SD= ( K - 1 ) 1 S*DK~ (4.97) 

where the transformation matrix K is defined in (4.21). 
To derive the transformation of the piezoelectric and dielectric constants, we proceed from 

the constitutive equation (4.89)4. Transformation of the electric intensity and electric displace­
ment is realized by using 

D = nu* 
E = ftE*, 

(4.98) 

where the transformation matrix Q, is defined in (4.18). The angle 9 defines a rotation about X3 
axis in the counter-clockwise direction and physically refers to the poling direction, see Fig. 4.1. 

2 Dielectric permittivity has not an inverse quantity. It is stated in some papers that the inverse is electric 
susceptibility \e, but these parameters are not inverse, but it holds that \E = UJ£ — 1. Owing to this fact, we 
adopted the Hwu's non-permittivity [20]. 
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Considering a homogeneous non-dispersive linear anisotropic material, the relation between the 
electric displacement and electric intensity in the coordinate system x* is 

E * = /3;D*. (4.99) 

Inserting (4.98) into Eq. (4.99) we get 

r j _ 1 E = / 3 * n _ 1 D . (4.100) 

After multiplication by Q, from the left we obtain the relation in the new coordinate system: 

E = n / 3 * n _ 1 D = /3CTD, (4.101) 

where 
/3a = ft/^ft"1 (4.102) 

is the transformation of the non-permittivity matrix from the coordinate system x* to x\. 
Analogically, a transformation relation for piezoelectric matrix can be defined. The coupling 

relation between piezoelectricity and elasticity (see ( 4 . 8 9 ) 4 ) in the coordinate system x* is 

- E * = g * e r * . (4.103) 

Substituting (4.98) and (4.20) into (4.103) one obtains 

- n _ 1 E = g * K _ 1 o - . (4.104) 

After multiplication by Q, from the left we get 

E = fig*K-1<T = ger, (4.105) 

from which we get the transformation relation for the piezoelectric constants: 

g = fig*K_1. (4.106) 

4.2 .7 C o n s t i t u t i v e laws for p i e z o e l e c t r i c m a t e r i a l s i n t w o - d i m e n s i o n a l s ta te 

Analytical solutions to fully-coupled piezoelectric problems in three-dimensional systems exist 
under very restrictive geometry assumptions. On the other hand, the numerical solutions are in 
generally computationally expensive. To avoid these limitations, it is convenient to simplify the 
3D problem into a mathematically two-dimensional formulation, which is much easier from both 
analytical and numerical point of view. The problem dealing with piezoelectric materials can 
be simplified to a plane problem when in-plane and anti-plane relations are decoupled. Section 
4.2.5 shows that when a monoclinic piezoelectric material with symmetry axis parallel to £ 3 = 0 
is considered, all assumptions are fulfilled to extend the L E S formalism to piezoelectric mate­
rials. Despite the fact that ideal piezoelectric materials are homogeneous ceramics, its poling 
direction can be apprehended as the longitudinal directions in the sense of dominant material 
properties. This fact enables extension of pure anisotropic elasticity to piezoelectric materials. 
The conception of the principal material directions as an analogy with fibre orientations provides 
a great utility to model the problem. 

In two-dimensional anisotropic plane problems, generalized plane strain ( £ 3 = 0) or gener­
alized plane stress ( 0 3 = 0) can be introduced. As for elastic fields described in section 4.1.5, 
two states for electric fields can also be considered: open circuit condition ( D 3 = 0) when the 
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faces of the piezoelectric body are in contact with a non-conducting media and the top an bot­
tom surfaces are free of charge, and short circuit condition {E% = 0) when the top and bottom 
surfaces are held at the same electric potential [20]. By combining the previous conditions, a 
two-dimensional state of the piezoelectric material can be divided into four different situations, 
i.e.: 

1. Generalized plane strain and short circuit: £ 3 = 0 and E% = 0. 

2. Generalized plane strain and open circuit: £ 3 = 0 and D% = 0. 

3. Generalized plane stress and short circuit: 0 3 = 0 and E% = 0. 

4. Generalized plane stress and open circuit: 0 3 = 0 and D3 = 0. 

The constitutive laws (4.89) under the above plane conditions can be reduced by eliminating 
the terms associated with the zero values of £ 3 , (or 0 3 ) and E3 (or D3) and replacing 0 3 , (or £ 3 ) 
and D3 (or E3) according to the generalized relation for the reduced elastic compliances [9, 17]. 
The matrix form of the constitutive laws for a piezoelectric material in two dimensional state 
are [20]: 

State 1: £ 3 = 0 and E3 0 

C°E e o T " 

l D °J r 
1 

l " E ° J r 

1 _ SE - d T 

1 _ d -u>a_ 

g 

g 

(4.107a) 

where 
0"l £1 °11 r<E 

u12 
r<E 
u14 

r<E 
°15 

u16 
02 £2 r<E 

Ly12 
r<E 
u22 

r<E 
u24 

r<E 
^25 

r<-E 
°26 <x°= < 0 4 > e°=< £ 4 > r ° -

— 
r<E 
Ly14 

r<E 
u24 

r<E 
U 4 4 r<E 

u45 
r<D 
u46 0-5 £ 5 

r<E 
°15 

r<E 
u25 

r<E 
u45 

r<E 
°55 °56 

r<E 
_°16 

r<E 
°26 

r<E 
u46 

r<E 
u56 

r<D 
°66 

E ° = 
[Ex \ . D° = - n 1 

en ei2 ei4 eis ei6 
1 E2 1 \D2 1 e 2 i e22 e24 e25 e26 

w12 
1̂2 

w22 

(4.107b) 

' D 

Q/D Q/D 
11 1 5 12 

Q/D Q/D 
,512 °22 
Q/D Q/D 

1314 "OA 
2̂1 Q/D Q/D 

°15 °25 
Q/D Q/D 

1316 ° ' 26 

Q/D 
14 

Q/D 
^ I S 

Q/D' 
16 Q/D Q/D Q/D 

"->24 °25 D26 
Q/D Q/D Q/D 

o 4 4 o 4 5 o 4 6 

Q/D Q/D Q/D 
°45 °55 °56 
Q/D Q/D Q/D 

<J46 fJRfi »J| 
J66 

g 

P'ia2 

a'n g'12 9u 9 i 5 9 i 6 

921 922 924 925 926 
(4.107c) 

The matrix elements are recomputed by 

Q/D _ QD , 93i93j 

P33 

/D Q/, 
1 5 7' 

9ij 
g|93j 

/333 ' 
Pi7 A .̂ P l ' i 5 (4.107d) 

3 3 



48 4 O V E R V I E W TO REFERENCES RELATING TO T H E SOLVED PROBLEMS 

in which 

A D S. D 
oD QD 

D3iD3j 
$33 

9i3SP 
ji) Qij — Qij 3.7 oD 

D33 
ft P?3 + 

U39j3 
oD 

D33 
0A- (4.107e) 

The expressions for S E , d, u>a, CD, /3£ are obtained analogically. The individual equations in 
(4.107a) are called after the letter of the matrix of piezoelectric coefficients, i.e. e-type, d-type, 
h-type and g-type [66]. Mostly, only the e-type and g-type constitutive laws (4.107a) are used, 
therefore in the other three states only this two equation systems are stated. 

State 2: e 3 

State 3: 03 

State 4: 03 = 0 and D3 = 0 

'E 

-u>' - E u 

-E° 

- E u 

- E u 

-E° 

- E u 

g 

g 

-he 

s', D g 
g 

g ° 

D { 

g oT 

'-Pi 

(4.108) 

(4.109) 

(4.110) 

The remaining material characteristics are considered as follows: 

C •IE e3ie3j IE 

OJ 33 
r ^3ie3j 

OJ: OJ: 
J3iM3j 

OJ 

en = ci 
riEriE 
u 3 J ° 3 j r<E 

° 3 3 

C 

33 

r<E 
° 3 3 

Co'; 

Co' 
5 
33 

ej3e?3 

° 3 3 

Co' 

C; •IE 

s. ID 

w 3 3 

93i93j 

'33 

f,lE 

qlD 

Co'; Co'; 

(4.111) 

Co' 
Co' 33 Co' 33 

.7" 

9ij 
Pirn 

Pi •33 

3/<T 

''.7 
ocr _ ^3»^3J _ 0/0-

7̂ -, #J are defined in (4.107d) and (4.107e). The parameters Sfj, /3?-, 5 ^ 
As in the three-dimensional state, it is sometimes more convenient to use inversion of the 

e-type and g-type compound matrices. Transformation between this two types can be done 
simply by inverting the compound matrix by the same way as in the three-dimensional state 
(4.92), such as for state 1: 

^E g 
il 

-0o 

r</o 

w 

iT - h 
d 

- d (4.112) 

and for state 2, 3 and 4: 

C'E e'T- " s D g T " — T ~CE S'D g ' T " 
e' -u'£_ . g -K. — -1) e -U>£_ y 

g o T " 

e' _g° 

(4.113) 

Note that the order of the coordinate transformation and conversion to generalized plane state 
are commutative operations. In the present algorithm, material characteristic are firstly trans­
formed and then converted to generalized plane state. 
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4.2.8 E x p a n d e d L e k h n i t s k i i - E s h e l b y - S t r o h f o r m a l i s m for p i e z o e l e c t r i c m e d i a 

Solutions presented in [5, 10, 77, 78, 79, 80] show that equations for piezoelectric anisotropic 
problems have the same structure as those for corresponding anisotropic pure elastic materials. 
A closed form solution of a central crack based on the expanded Stroh formalism was derived 
in [5], while a solution for an elliptic inclusion and hole was presented in [11, 80, 81]. A first 
attempt to express material the matrices explicitly was performed in [82]. The most significant 
work was done by Hwu in [20, 21, 22, 83] and also in his monograph [17], where he summed 
up the previous research and expanded the Stroh formalism, the Key matrix, and the unified 
definition [84] to piezoelectric media. Hirai et al. [23] and Abe et al. [24] applied the theory 
to certain bi-material notch configurations including determination of stress intensity factors by 
using the ^-integral method. 

Similar progress was carried out in extending the Lekhnitskii formalism in [45, 46]. A gen­
eral solution for piezoelectric anisotropic materials was derived in [47, 48, 49, 50, 51, 52]. X u and 
Rajapakse [85], Chue and Chen [53] or Chen [86] investigated composite piezoelectric wedges and 
junctions, i.e. bi-materials composed from both piezoelectric and anisotropic materials. Singu­
larity exponents and stress intensity factors of an interface crack in isotropic metal/piezoelectric 
or insulator/piezoelectric bi-materials were computed in [26, 87, 88]. Banks-Sills et al. [12] 
computed stress intensity factors by using the M-integral method. 

Kah Soh et al. [89] or Liou and Sung [90] used the modified Lekhnitskii and Stroh approach 
to find explicit expressions for the Barnett-Lothe tensors. Crack singularity solved by boundary 
integral equations was reported in [91]. Two-dimensional analysis of a semi-infinite crack by 
employing the Green's function was investigated in [50]. A n interesting introduction to non­
linear piezoelectric fracture mechanics was presented by Kuna [92]. Authors in [93] developed a 
new hybrid finite element method for a plane piezoelectric problem. One of the most significant 
method for investigating piezoelectric materials is the boundary element method [94], employed 
for example by L i et al. [95]. 

Suo [44] developed the L E S formalism for evaluating the stress singularity of anisotropic 
bi-material notches. However, its limit case - an interface crack - is primarily treated as the 
Hilbert problem, as can be seen in [25, 80, 96, 97, 98, 99, 100]. The present work employs the 
expanded 3 L E S formalism for a piezoelectric continuum based on the studies [9, 17, 19] and 
applies it to the problem of a piezoelectric bi-material notch and interface crack. 

G o v e r n i n g differential equations 

Deriving of the expanded L E S formalism for piezoelectric materials is based on the fourth set 
of the g-type constitutive equations (4.107a)4. It corresponds to the generalized plane state 
described in section 4.1.5 and short circuit, i.e. £ 3 = 0 and E3 = 0. In the following chapters, 
only this plane state is assumed, all other combinations would be derived analogically. 

In the absence of body forces and free charges, the equilibrium equations are 

d(jjj dDj 
- ^ = 0, ^ = 0, 4.114 
oxj axi 

where the repeated indices imply summation. In contrast to the Lekhnitskii's nomenclature 
used in section 4.1.7, it is more convenient to use the Hwu's variable indexing as in (4.90) for 

3 According to H w u [17], the "expanded" formalism is used for expansion to piezoelectric materials, while 
the "extended" Stroh formalism is used for problems involving temperature. However, the classification is not 
commonly accepted in the research community. For example Fang [66] uses "extended" for both Stroh and 
Lekhnitskii formalism. We suggest to follow the Hwu's classification. 
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piezoelectric materials and rewrite coordinates as x —>• x\, y —>• x2, z —>• £ 3 . The stresses and 
electric displacements can be denoted by two Airy stress functions ip and ip from (4.41) and an 
electric displacement function x by 

d2<p d2<p d2<p dip dip 
aa^ vx\ ox\ox2 0x2 ox\ ,^ 

0x2 OX\ 

which satisfy the equilibrium equation (4.114) automatically. Substituting (4.115) in the consti­
tutive equations (4.107a)4 and then making use of the compatibility equations for piezoelectric 
materials 

— + — - d 2 g 6 = Q ^ £ 5 _ ^ £ i = 0 ^ 1 _ ^ = 0 ( 4 1 1 6 ) 
dx\ dx\ dx\dx2 ' dx2 dx\ ' 8x2 dx\ 

we obtain a system of second order partial differential equations for the unknown stress and 
electric displacement functions (p, tp and % : 

L4cp + M 3 x + LsiP =0, 

M3tp + P2X + M2ip =0, (4.117a) 

L3<p + M2x + L2ip =0, 

where the differential operators L2, L 3 , L 4 , M 2 , M 3 , P2 are defined by [52, 66] 
»2 »2 a2 

R _ A / D A
 0 A/23 ° , A / D A 

«3 »3 »3 »3 
r _ c ' D _ r l 1 / A / D 1 A / D N A / A/23 , A / D N A , A / D ° 

L 3 ~ dxj + ^ + ^ 6 } dx\d~X~2 ' ( M + 5 6 }dx^dxj + S l 5 d x J ' 

T — C>D ^ 4 o c > D ^ 1 (ngiD 1 A/23\ d 4 Q A/23 d 4 , A/23 ° 4 

^ " ^ 2 6 S X ? 5 X 2
 + ( 1 2 + 6 6 ' dx\dx\ 2 b l 6 dxXdx\ + ^ 8x\ 

M3 

, d2
 A / d 2

 A / 3 2 

2 4 d * 2 U l 4 + 9 2 5 ) a a r i ^ a + 9 1 5 dx\ 

d3 , d3
 A) , d3

 A ) d 3 

(4.117b) 

-522 9 x 3 + ( # 2 + 9 2 6 ) gx2idx2 (»21 + ffi6) 9 x i ^ 2 + $11 ^ 3 

^ = " / ? 2 2 # 2 + ~ f&f-Oxf OX1OX2 ox 

G e n e r a l so lut ion 

We assume herein that the partial solutions of the stress functions are zero due to the absence of 
body forces and free charges (see Eqs. (4.44)). Then, by eliminating ip and x from the equation 
(4.117a) one gets 

( L 4 L 2 P 2 + 2 L 3 M 2 M 3 - P2LJ - L4MI - L 2 M | ) <p = 0. (4.118) 

Let us suppose that ip is a function of a complex variable, i.e. 

p = <p(z), z = xi+/iX2- (4.119) 

Substituting it into (4.118) and considering a nonzero solution of ip, we get a characteristic 
equation [20] 

h{n)h{n)p-i{n) + 2Z3(/i)m2(/i)m3(/i) - P2(M)^3(M) - h{li)rr%{n) - h{n)m\{n) = 0, (4.120a) 
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(4.120b) 

where 

l2^) = S'i^-2S'g^ + S'ii, 

is(/x) = s'i^ - (s'° + s'i )n2 + {s'i + s'£)p - s£, 

Ufa) = S'°^ - 2S[^3 + {2S'g + S'g)p2 - 2S'ip + S'i, 

n»2(A») = 9i5^ 2 - ($14 + 025 )/* + 924, 

n»3(A») = 5iiAt 3 - (g'21 + fiie)^2 + (»12 + <72e)M - »22, 

P2(/i) = - t o 2 + 2 f e - ^ 2 2 -

Since the strain energy is positive, the material eigenvalues p,k obtained from the eighth-degree 
eigenrelation (4.120a) occur in four pairs of complex conjugates (in contrast to pure anisotropic 
elasticity described in section 4.1.7, where three pairs of complex conjugates appeared). The 
arrangement condition (4.50) can be extended to 

fik+t = pk, 9/x f c>0, k = 1,2,3,4. (4.121) 

The general solutions ip, ip and x °f (4.117a) have the form [53] 

4 4 4 

tp = 2'R^ipk(zk), V = ^k(zk), X = ^^2xk(zk), zk = xl+p,kx2. (4.122) 
k=l k=l k=l 

The similar material assumptions, as for the pure elastic anisotropic materials, can be 
introduced in order to illustrate the expansion to piezoelectric materials. When considering 
a monoclinic material with symmetry plane at z = 0 (the matrix structure in (4.93)), the 
elastic compliances in 13(11) and piezoelectric coefficients in m2(/i) all vanish. The octic equation 
(4.120a) is then reduced to 

h{li) (U(JJ)P2(JJ) ~ m2M) = 0, (4.123) 

where the product of Z2(/i) and the bracket assures that the in-plane and anti-plane fields can be 
decoupled 4. Then l^P2 — rn| = 0 yields to three material eigenvalues fii, fi2, Pi for the in-plane 
field and anti-plane relation I2 = 0 gives one eigenvalue p^. 

Eliminating x from Eq. (4.117a) with a substitution of (4.119) and consecutive integration 
gives the relation between stress functions: 

ipk(zk) =Xkp'k(zk), for k = 1,2,4, 
1 1 . (4.124) 

^k{zk) =—pk(zk), for k = 3, 

where [52, 53] 

HPk)P2JPk) ~ ra3(/xfc)m2(/Xfc) 
P2(pk)h(pk) ~ mKnk) 

k(Pk)P2(Pk) ~ m3(pk)m2(pk) 
P2(pk)h(pk) ~ ml(nk) 

Afc = 7 — — — ^ 27—^ ' f o r k = 1 ' 2 ' 
l2\ 

A, = - , : i l / , / ; , ^ l ; , ; ' • ; : ; ' ' : i v ^ : ' ' ' ^ ; / , A • , . tor A-= 3. u m » 

A _ k(pk)rri2(pk) ~ h{pk)rri3(pk) fo^ 
m2(pk)h(Pk) ~ m3(pk)l2(pk)' 

4This is not the only case of decoupled in-plane and anti-plane fields. Other cases, such as degenerate case or 
materials with hexagonal symmetry can be found in [53] 
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Similarly, eliminating tp from equations (4.117a) with substitution of (4.119) and consecutive 
integration gives the relation [70]: 

Xk(zk) =£w'k(zk), for k = 1,2,3, 
1 1 , (4.126) 

Xk(zk) =T<Pk(zk), for k = 4, 

where [12, 46, 49, 52, 53] 

h(pk)m3(pk) - kdj-k)m2(lJ-k) 
P2{Hk)h{Hk) -rriKnk) 

h(Vk)m2(nk) ~ 
m3(pk)m2{pk) • - h(Vk)P2(Vk) 
h(pk)m3(pk) ~ k(Pk)m2(Hk) 

k{Hk)h{Hk ) - ll(Pk) 

£k = 7 777 s 27 \ > for fc=1>2> 

P2{Pk)h\.Pk) ~ m^{nk) 

^ = jA{Mk)r^M-hMr^{Mk) for fc = 3 ( 4 _ m ) 

j. v £, \ f-̂  ft, / o \ ft. / o t\j I & \t~^ ft. / p 7 i 
Cfe = T 7 — 7 7 ^ — \ 7T,—\ , for k = 4. 

The stress functions (4.122) can be then rewritten as 

if = 29i{<pi(zi) + p2(z2) + ( ^ 3 ( ^ 3 ) + ^ 4 ( ^ 4 ) } , 

tp = 25ft J A l ^ Z l ) + A2<^2(^2) + ^ ^ 3 ( ^ 3 ) + A 4 < ^ 4 ( ^ 4 ) | , 

X = 23FJ + 6^2(^2) + folate) + T V ^ ) } • 

(4.128) 

Since the terms A i , A2, A3, A 4 and £ 3 , become zero for a monoclinic material and ip3 is the 
arbitrary function, we introduce a new stress function fk(zk) that absorbs the coefficients as 
follows: 

f1(z1) = <p'1(z1), f2(z2) = <p'2(z2), f3(z3) = ^<p'3(z3), U(z4) = ^ ( z 4 ) . (4.129) 
^ 3 £ 4 

Substituting (4.128) into (4.115) by involving the new functions (4.129) and considering a mon­
oclinic material, we obtain the following expressions of the stresses and electric displacements: 

a i = 25ft {filf{(Zl) + 4f2(z2) + ^ £ 4 / 4 ( 2 4 ) } , 

a 2 = 25ft {/ 1(zi) + / ^ 2 ) + £ 4 / 4 ( 2 4 ) } , 

a 6 = -25ft{^i/i(«i) +^2/2(^2) + ^ 4 / 4 ( 2 4 ) } , 

a 5 = 2 5 f t { / W 3 > 3 ) } , ( 4 - 1 3 ° ) 

(74 = - 2 » { / ^ 3 ) } , 
D1 = 25ft {/Xl6/l(^l) + M 2 & / 2 > 2 ) + M4/4(«4)} , 

Z?2 = -25ft |6/l(^l) + £2/2(^2) + H(Z4)} , 

where the prime denotes a first derivative with respect to Zk- Note that a§ = Txy, o<o = TXZ and 
04 = Tyz. 
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The displacements and electric potentials are determined by inserting (4.130) into (4.107a)4, 
which leads to 

du\ 
dx\ 
du2 

dx2 

dus 
dx2 

dus 
dx\ 
du\ 

S'II<TI + S'12a2 + SifoM + S[^a5 + S'ß <7 6 + g'uDi + g'21D2, 

S'v2<yi + S'22cr2 + S 2 4 CT4 + S ' £ cm + StßcTQ + 312-D1 + 922D2, 

S'l^ai + 5 2^cr 2 + S44 cr4 + S 4 f cr5 + S'ßaG + <7l4-Di + S24-t>2, 

S i? 0 " ! + # 2 5 ° 2 + ^ 4 5 o"4 + S'£a5 + 5gf <T 6 + g[5Dl + g'25D2, (4.131) 

o t t o 
<9x2

 + öxt = S ' 1 6 ( 7 1 + ^ e 0 " 2 + + S'ma5 + 5 e 6 a 6 + <716-Di + g'26D2, 

dx\ 

Ox? 

oil 0"! + 9l2<T2 + ffi4°"4 + Sio 0 ^ + g[6<T6 ~ Ä ^ l ~ ß'l2D2, 

g2l°l + 922°"2 + 9 2 4 ö " 4 + g'25a5 + <72 6<76 - ß'l2Dl ~ P2°2D2, 

where ui, u2, U3 are the displacements in xi, x2, £ 3 directions and 4> is the electric potential. For a 
monoclinic material, the following constants are zero: S ' ^ = = S ' ^ = S2$ = S'JQ = S'5Q = 0 
and g 1 4 = g'l5 = g'2i = g25 = 0. Integrating the equations (4.131) we obtain 

Ul 

u2 

U = i 

U = i 

2 » { $ > 3 f c / f c ( z f c ) 
U = i 

23ft I aikfk(zk) 

(4.132a) 

vfc=l 

where 

a-ik 

(12k 

dAk 

a u 

Ö24 

a 4 4 

Ö3A: 

ai3 

Ö23 
Ö43 

Ö33 

ßlS'n + S12 - Mfe^if + f̂c W i i " S21) , * = 1,2 

Mfe^i? + ^22 _ Mfe^f + f̂c (Mfe5l2 - 922) Ißk, 

Ä,92\ + 922 - Vkg'26 + £fc {-/J-kßu + ^ 2 2 ) /Wfc 

( M I ^ U + S[2 - ^ - S ' i f ) £ 4 + /Moil _ Ö 2 D 

( M I ^ I ? + ^22 _ ^S'2Q^ £ 4 + mg'12 - tl'22 / M 4 , 

fc = 1,2 

fc = 1,2 

(M4<?21 + Ö22 - ^492e) & ~ M 4 ^ 2 + 022 //M, 

0, fc = 1,2,4 

0, 
0, 

o, 

(4.132b) 

4 5 — » S 4 4 ) / ß . 
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Leugering [101] published a work that deals with expansion the Eshelby's theorem [63] to piezo­
electricity. By using the notation (4.61), but with k = 1,2,. . . ,4, the Stroh matrix notation is 
adopted once more. Let us write the complex potentials into a vector as 

f(z) zk = x + iiky, k = 1,2,3,4. 

f / i ( * 0 l 

1/3(24) J 

Then the displacements and tractions can be written in the matrix form as follows: 

(4.133) 

u(z) = 2 K { A f ( z ) } (4.134a) 

T(z) = 2^{Lf(z)}. 

The displacements and stress function vectors have the following form: 

u(z) T(z) 

(4.134b) 

(4.135) 

T i , T2, T3 and TJJ are the components of the stress function vector and electric charge q along 
the semi-infinite line passing through the origin of the coordinate system X1X2 and <fi is the 
electric potential. The structure of the matrices A and L is: 

a n «12 «13 «41 
«21 «22 «23 «24 
«31 «32 «33 «34 
0-41 0-42 0-43 0-44 

- M l -A*2 0 - ^ 4 ^ 4 

1 1 0 £4 

0 0 - 1 0 

- 6 - 6 0 - 1 

(4.136) 

while the matrix elements are defined by (4.132b). Assuming generalized plane strain, each of 
the characteristic roots \xk and each corresponding column of A are extracted from the eigenvalue 
problem of the Stroh formalism [7], [44] 

Q+/x
fc
 (R + R T ) +fi2

kT 0, (4.137) 

where the matrices Q, R, T have now the dimension 4 and their elements are defined by 

Qik nE 
— L'ilfel: QiA = QAi = eni , i = 1,2,3, QAA = - w f l 

Rik riE 
— L y i l f c 2 5 

RiA = R41 = ei2«, i = 1,2,3, RAA = -<"12 (4-
riE 

— L y i2 fc2J 
TiA = T±i -= e22«, i = 1,2,3, T44 = -"^22-

The matrix A is multiplied by an arbitrary normalization coefficient, i.e. 

c i a n c 2ai2 c 3 a i 3 c 4 a i 4 

C1021 C2022 C3023 C4Cl24 

c i a 3 i c 2a 32 c 3 a 3 3 c 4 a 3 4 

c i o 4 i C2a42 C3a43 c 4 a 4 4 

-cim - C 2 M 2 0 -c 4// 4^ 4 

Cl 0 
0 0 - C 3 0 

- C 1 6 -C262 0 - c 4 

(4.139) 

Each column is normalized arbitrary by coefficients Cj. The material eigenvalues \xk are the roots 
of the characteristic sixth-order polynomial 

Q+/x
fc

 (R + R T ) +n2
kT 0. (4.140) 
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The matrices L and A are associated with 
i 

Lij = J2 [Rik + HTik\ akj = 0. (4.141) 
k=l 

As for pure anisotropic elasticity, comparing the uniquely normalized Lekhnitskii matrices 
(4.136) with those in (4.139) derived by Hwu [20], the normalization coefficients will be elimi­
nated by using the relations (4.141). 

B o u n d a r y condit ions 

The generalized stress functions Tj are related to the stresses and electric displacements by 

<Tii = - T i i 2 ) <7i2 = Ti , i , » = 1,2,3, L>i = - T 4 , 2 , 1*2 = 24,1. ( 4 - 1 4 2 ) 

The operation denotes derivation with respect to x%. fk(zk) are four holomorphic functions 
of the complex variables zt, which will be determined through the satisfaction of the boundary 
conditions on the lateral surface. The first fundamental problem lies in prescribing the tractions 
tx, ty and tz = 0 along the boundary by 

aim + CT12712 = tl, OYini + 02712 = t2, 013^1 + T23«2 = 0, 
(4.143) 

D\ni + D2n2 = £4, 

where ti, £2, £3 are the prescribed surface tractions and £4 is the prescribed electric displacement 
on the normal direction of the surface. The normal vector n is defined by (4.72). The tangential 
direction s is chosen so that when we face the direction of increasing s, the material lies on the 
right side (see Fig. 4.2). By integration of the prescribed surface tractions from zero to infinity 
along a straight line, we can specify the following boundary conditions for a piezoelectric notch: 

2Sft{/ii/i(zi) + n2f2(z2) + ^ 4 / 4 ( 2 4 ) } =Ti + c i , 

23ft {fl(zi) + f2(Z2) + U(Z,)} =f2 + 02, 

2 » { / 3 ( * 3 ) } =C 3, 

2ft {£1/1 (*i) + 6/2(^2) + ^4/4(24)} =T 4 + 04. 

The second fundamental problem is represented by displacements prescribed along the 
boundary. By using (4.132a) we get 

23? jXjaifc/fc(zfc) J = " i » 

23ft < ^ a2kfk(zk) > =u2, 

\kt ( 4 - l 4 5) 
23ft < ^ a3kfk(zk) \ =Ü3, 

.k=l 
' 4 

23ft < aikfk(zk) 

where ui, u2, U3 are the prescribed displacements and ij> is the prescribed electric potential. 
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5 Methods and results 
5.1 Stress singularity of an anisotropic bi-material notch and in­

terface crack 

In the present work, two types of common general stress concentrators are considered - an in­
terface crack and a bi-material notch. When a monoclinic material is considered, the in-plane 
and anti-plane relations are decoupled. When a sample is loaded in the x\x2 plane, we can focus 
only on the in-plane problem. There are two well known plane elasticity methods for stress 
singularity description - the Lekhnitskii and the Stroh formalism. They are based on the theory 
of complex variable functions. It simplifies the solution so that the elastic variable description 
is shrunk only to three material eigenvalues. The Lekhnitskii formalism [6] was derived for a 
cylindrical body bounded by a cylindrical surface and all relation are in terms of the elastic 
compliances. In addition, the stresses and displacements depend only on xi, x2, which is sat­
isfied only by the assumption of the in-plane loading. The Stroh formalism [7, 8, 9, 63] starts 
with the two-dimensional displacements and its relations depend on the elastic stiffnesses. 

As it was mentioned earlier in section 4.1.7, where a transversally isotropic, or more gen­
erally a monoclinic material is considered, both Stroh and Lekhnitskii formalisms are formally 
indistinguishable, i.e. the material eigenvalues, stress and displacement relations and singularity 
exponents have the same form. Suo [44] introduced the Lekhnitskii-Eshelby-Stroh formalism, 
which linked both techniques together. Its structure is described in section 4.1.7. That approach 
enables simplification in the eigenvalue extraction or eliminating the scaling factors needed in 
the Stroh formalism. The L E S formalism is dominantly used for investigating stress singularities 
of V-notches and transversally isotropic bi-material wedges, of which stress term exponents are 
real values, as was reported for example in [19, 39, 102, 103, 104, 105, 106]. 

A l l previously mentioned authors assumed that the singularity exponents 5 are only real 
values. Then, the relations (4.63) for the stresses and displacements can be expressed as 

u(z) = 2ft { A f (z)} = 2ft { A Z 5 v } , (5.1a) 

T(z) = 2ft{Lf(z)} = 2 f t { L Z 5 v } , (5.1b) 

where 

is the eigenvector corresponding to the singular order 5. Moreover, due to the assumption of a 
monoclinic material, the structure of the material matrices A and L defined in Eqs. (4.65) and 
(4.60b) enables that the in-plane and anti-plane components of the displacements and stresses 
can be decoupled. Then, the following analysis is considered as a two-dimensional in-plane 
problem and the dimension of the material matrices is 2 x 2, i.e. 

- f t } - T ^ l -
The elements aij, i,j = 1,2, are defined in Eq. (4.60b). When the notch angle uii exceeds a 
certain angle, the eigenvalue 5 turns into a complex value and the form in (5.1) is not valid, or 
more precisely, the neglected imaginary components corresponding to the individual singularity 
exponents 8 are not equal and do not mutually subtract. 

a n a i 2 

«21 a22 
1 

-V2 
1 
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Setting the notch angles uii to their limit values 2ir, an interface crack can be modelled. 
This special case has been mostly treated as the Hilbert problem [42, 44, 57, 107, 108]. In such 
case, the singular solution has an oscillatory character and the singularity exponent equals to 

S = \±ie, (5.4) 

where e is so called oscillatory index. Suo [44] proposed the generalized Dundurs parameters 
[109], by which the oscillatory index is expressed as 

2vr + P 

The parameter (5 is derived in [44, 110] only for a material with principal axes coincident with 
the reference coordinate system. Considering a monoclinic material defined in Eq. (4.10), the 
relation (5.5) has to be modified. 

It follows from the survey that in the literature, there has been a gap in investigation of 
the very closed notches whose stress term order become complex-valued. This state can occur 
when the delaminated interface has face angles very close to the interface crack. In the follow­
ing paragraphs it wil l be presented that the L E S formalism described in the previously stated 
papers can be extended through notches with the complex-valued oscillatory index to interface 
cracks. The definitions for the stresses and displacements have a slightly different form. The 
next goal is the expansion of the L E S formalism for piezoelectric materials. However, the theory 
for pure elastic anisotropic bi-materials has to be firstly investigated in order to get limits of its 
application. 

5 .1 .1 F o r m u l a t i o n o f t h e f u n d a m e n t a l e q u a t i o n s d e s c r i b i n g t h e stress s i n g u ­
l a r i t y o f a t r a n s v e r s a l l y i s o t r o p i c b i - m a t e r i a l n o t c h 

Profant et al. [19] proposed the formulation of the orthotropic bi-material notch based on the 
LES formalism and following the Hwu's concept [17] which generalizes Eq. (5.1) to the case of 
the complex singularity exponent 5. Assuming stress singularity at the wedge apex, the complex 
potentials are expressed as 

f(z) = Z V (5.6) 

If the singularity exponent 5 is generally a complex number, the stress function vectors and 
displacements are considered in the following form: 

u(z) = A Z ^ v + A Z V (5.7a) 

T(z) = L Z * v + L Z V (5.7b) 

where A and L have the structure (5.3) and their elements are defined in (4.65) and (4.60b). 
v = {vi,V2} , w = {tt>i,u>2} are the eigenvectors associated with the eigenvalue S, which is 
determined through the satisfaction of the boundary conditions at the notch tip. If 5 is a real 
value, the eigenvectors v and w will be complex conjugate and the displacements and stress 
function vectors are obtained in the form of (5.1). 
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5 .1 .2 T r a n s v e r s a l l y i s o t r o p i c m a t e r i a l s 

The L E S formalism is defined under the assumption of transversally isotropic, or generally 
monoclinic materials if principal material directions L and T are arbitrary oriented in x\x2 

plane. The complex functions Z*5 are of the form 

Z * = diag[4,4] , (5.8) 

where 
Zi = x\ + /j,iX2, i = 1,2. (5.9) 

The material eigenvalues /jj, i = 1,2 are extracted from Eq. (4.49a) for each material. Note that 
if anti-plane relations are taken into account, one more material eigenvalue /J3 is obtained. 

It is more convenient to express the independent variables x\, x2 appearing in 5.9 in terms of 
the polar coordinates r, 9, while the stresses and displacements are considered in the Cartesian 
coordinates x%. We say that the formalism is defined in dual coordinate systems [9, 17]. Wi th 
the origin located at the wedge apex, the transformation relations between the Cartesian and 
polar coordinates are 

xi=rcos6>, x2 = rsin9. (5.10) 

By substitution (5.10) into (5.9), the definition (5.8) holds 

Z 5 = diag r"(cos(9 + /iisin(9) 0,r< ,(cos(9 + /i2sin(9)0 . (5.11) 

To make later differentiation of Z easier, a mathematical simplification introduced by Ting [9] 
is implemented. Let us define the material eigenvalue as a summation of its real and imaginary 
part, i.e. /jj = /4 + itfl- Then, the complex variable 

Zi = (x\ + /i-x2) + i/4'x2 (5-12) 

is a mapping from the xiX2-plane to the complex plane (see Fig. 5.1) [111]. It represents a 
mathematical trick, where the whole space, over which the solution is searched, is deformed 
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X-2 

Fig. 5.2: Geometry of a bi-material notch characterized by two regions I and II. The notch faces are 
defined by angles u>\ and u>2- The material interface is always considered at 9 = 0. The angles 
cx\ and cxi denote the fibre orientation, i.e. the longitudinal material direction. 

in order to avoid the complicated description of an anisotropic continuum properties in a non-
deformed space. The space distortion supplies the material anisotropy and it is proportional to 
[//,//'] [9]. Eq. (5.11) is then defined as follows: 

Z5 = diag [rsR{ J5*1, r5R5
2 ei5*2] , (5.13) 

where 
Rj = (cos6» +/J-sin6»)2 + (//•'sin<9)2 , i = 1,2 (5.14) 

and 

{ arctan ( —a'| S 1 " • a ) for 9 > — ir 
Vcosfl+^sm^ j i = l , 2 . (5.15) 

—IT for 9 = —IT 

Note that in comparison to [19], the relation (5.15) is reduced from four to only two cases. This 
could be done due to using Python's np.arctan2

x

 function, which fixes a discontinuity of the 
arctangent and simulates the complex function Arg(z). The complex conjugation of (5.13) is 
performed simply as 

Z5 = diag \rsR{ e-^1, rsRs
2 e " ^ 2 ] . (5.16) 

5 .1 .3 F o r m u l a t i o n o f t h e e i g e n v a l u e p r o b l e m 

In the previous sections, the fundamental matrices of the L E S formalism were defined as func­
tions of the singularity exponent S, which is a root of the characteristic equation for the notch 
geometry and prescribed notch tip boundary conditions. Let us consider a bi-material notch 
illustrated in Fig. 5.2, where each wedge occupies the region 0 < 9 < oj\ or OJ2 < 9 < 0. The 
notch faces are stress free which imposes the following boundary conditions: 

T'(wi) = 0, 
T T (5-17) 

T n (a ; 2 ) = 0. 

It is assumed that the bi-material interface coincides with x\ axis. The displacement and traction 
continuity conditions are prescribed along the interface 9 = 0 as 

u :(0) = u n (0) , (5.18a) 

l rThe functions is contained in numpy library, of which procedures are based on F O R T R A N L A P A C K functions. 
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T : (0) = T n ( 0 ) . (5.18b) 

A bi-material notch composed of two monoclinic materials with the principal material symmetry 
arbitrary oriented in the plane x3 = 0 is considered. By substituting (5.7) into (5.17) and (5.18), 
one gets eight homogeneous algebraic equations for the exponent 5, which can be written in the 
matrix form as 

' t f z f t L 1 ) - 1 

0 
A ^ L 1 ) " 1 

L'ZJfCL 1 ) 

L ^ / C L 1 ) 

0 
Ä ' Z ^ L 1 ) 

1 L ^ C L 1 ) 

0 
L I I Z 2

H ( L n 

_ A I I Z I I«5 

- L H Z Q I < 5 

o (L 
(L 

^ - l Ll%l5(Luy 
- Ä n z i M ( L ^ 
- L n Z ™ ( L n ^ 

' L V ' 
- 1 L V 

< 

L n v n ' 
/ 

r 1 . r 1 1 i i 
L w 

V J 

(5.19) 

The matrix 0 denotes a 2 x 2 zero matrix on the left-hand side and a 8 x 1 zero vector on 
the right-hand side of the equation (5.19). The subscript denotes the index of the angle uii, 
while the superscript stands for association with the material region. Wi th the reference to the 
assumption that the interface always coincides with x\ axis, i.e. UJQ = 0°, it follows that 

I, II, (5.20) 

where I is a 2 x 2 identity matrix. Introducing 

X L f c Z f (uj (L< X L f c z f (ojj (V (5.21a) 

1 fc = i , 

iAk(Lk)-\ 

the system (5.19) can be rewritten as 

i = 2 

k 
B o 

= 1,2, 
=^ As = II, 

X X 
0 0 

0 0 
x" x. 

-BJ , 1 B, 

L V 1 

L w 1 

L n v n 

r 1 1 II 
L w 

0. 

I I - I - I 

The equations in (5.22) can be reduced to the algebraic system of two equations 

K((5)LV = 0, 

where 0 is now a 2 x 1 zero vector and the matrix K is expressed by 

K = BJ) + B1Y I
1 B ? + B ? Y ? 1 2 I-Y\). 

(5.21b) 

(5.21c) 

(5.22) 

(5.23) 

(5.24) 

The reduction is described in detail in Appendix B. The eigenvectors v 1 are extracted by the 
backward substitution of 5 to K(<5). To avoid computational complications, the eigenproblem 
(5.24) was modified by Desmorat and Leckie [110], presented also in [112], but only for cases 
when 5 is real. The real part of the eigenvector L V 1 is defined as 

K { L V } = - ( L V + L V ) . (5.25) 
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After applying this procedure, it can be proved that if the eigenvalue S is real, the eigenvectors 
v and w are complex conjugate. The relation (B.2a) can be rewritten as 

L V = - Y j L V . (5.26) 

By combination of two previous equations (5.25) and (5.26), the real part (5.25) can be expressed 
as 

ft { L V } = \ ( L V - Y i L V ) = \ (l - Y\) L V . (5.27) 

Substituting L V from Eq. (5.27) into (5.23) we get the modified eigenproblem 

K ( I - Y i
1 ) ~ 1 2 » { L I V I } = 0, (5.28) 

which leads to the equality between the eigenvectors v and w if 5 is real: 

w = v. (5.29) 

The generally complex eigenvector v 1 is evaluated from (5.27) as 

v 1 = (L1)"1 ( i - Y j J ' ^ S R J L V } . (5.30) 

The eigenvector v 1 1 for the second material is computed from (B.5) as 

v " = ( L 1 1 ) - 1 (I - Y?)-1 (I - Y\) L V . (5.31) 

Note that to get an unique value of the stress intensity factor H, we have to normalize the vector 
L V in (5.30). The remaining eigenvectors, i.e. L n v n and L w 1 , L w 1 1 satisfy the normality 
automatically. 

In the case of complex S, the previous formalism can be also used. However, some relations 
have to be modified. Let us start from the right-hand side of Eq. (5.27). Employing the general 
form (B.2a) we get 

\ (I - Y\) L V = \ ( L V + L V ) = L i v i , (5.32) 

where the index a stands for an average value of both eigenvectors with no physical meaning. 
By solving the modified eigenproblem (5.28) for a complex 5, the resulting eigenvector would 
not be purely real. Therefore, Eq. (5.28) can be expanded as 

K ( l - Y I
1 ) " 1 2 L i v i = 0. (5.33) 

The eigenvector v 1 is calculated from the accordingly modified relations (5.30), i.e. 

v I = ( L I ) " 1 ( l - Y I
1 ) " 1 2 L i v I

a . (5.34) 

The eigenvector v 1 1 of the second material is obtained from Eq. (5.31). The values of w 1 and 
w 1 1 are determined from (B.2a) and (B.2b): 

WI = - ( L I ) ~ 1 Y J L I V i , (5.35a) 

w
l l = -(ZUylY2

lLllv11. (5.35b) 
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shear fibre 
Young s modulus [GPa] Poisson's ratio [-] modulus orientation 

[GPa] [°] 

EL ET vLT vTT, GLT Q 

material 1 100 50 0.3 0.3 30 0 
material 2 400 50 0.3 0.3 30 90 

Tab. 5.1: Material properties of transversally isotropic materials. It follows from (4.12) and (4.16) that 
ET = ET1 • 

To get a non-trivial solution of (5.28), the following relation must be held: 

det k 0, (5.36) 

which leads to a nonlinear characteristic equation, which has an unlimited number of solutions 
<5j. In the literature, S is sometimes called eigenvalue. This is not mathematically exact, but 
it fulfils the physical meaning. Since the strain energy cannot be unbounded from the physical 
point of view, eigenvalues from the interval 0 < 3ft {6} < 1 have to be considered. 

The previous procedure has determined the parameters for defining the so-called regular 
solution. It can be proved that Si = —Si also satisfies the characteristic equation (5.33), see 
[113]. This so-called auxiliary solution is a mathematical tool allowing the evaluation the GSIFs 
via the Betti's theorem-based path-independent integral introduced hereafter. It represents a 
stress field at the notch tip with singularity stronger than the regular one and hence it exhibits 
unbounded energy. By reinserting Si into (5.33) and by employing (5.34), the corresponding 
auxiliary eigenvector v 1 can be evaluated as well as the remaining auxiliary eigenvectors v 1 1 , w 1 

and w 1 1 , by application of (5.31), (5.35a) and (5.35b). 

E x a m p l e 1: M a t e r i a l eigenvalues of a transversal ly isotropic m a t e r i a l A transver­
sally isotropic material with fibres oriented in the xiX2-plane by the angle on (see Fig. 5.2) is 
considered. The material properties are stated in Tab. 5.1. In the first step, the determination 
of the material eigenvalues \i\ and fi2 for in-plane field was carried out. Under the assumption 
of the monoclinic material and in-plane problem only, the equation (4.49a) is reduced to 

h(ti) = 0, (5.37) 

where I4 is defined in (4.49b). As the equation is written in the form of a polynomial of the 
unknown variable fi, the Python function polynomial .polyroots from the numpy package is 
suitable to be used instead of a general root-finding algorithm. Nevertheless, the procedure 
requires an attention in its output values. They have to be reordered so that the requirement 
(4.50) is satisfied. If the principal material directions coincide with global Cartesian axes x\ and 
X2, i.e. the longitudinal axis is either parallel or perpendicular to rci-axis, the material constants 

and S26 vanish. For such case, Suo [44] developed an explicit solution for determination of 
the material eigenvalues. The characteristic equation (5.37) can be then expressed in the form 

A/x4 + 2pA^/x2 + l = 0, (5.38a) 

where 

522 
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Mi M2 
material 1, a\ = 0° -0.1478 + 1.1656« 0.1478 + 1.1656« 
material 2, a 2 = 0° 0.7805« 3.4766« 
material 1 a i = 40° -0.1635 + 0.8948« -0.1598 + 1.1522« 

Tab. 5.2: Material eigenvalues for certain material configurations. 

Fig. 5.3: The HSV phase portrait of the characteristic function f(5) = det[K(I —Y*) - 1 ] defined in (5.36) 
and the contour plot for f{5) = 0 for a bi-material notch with geometry u\ = 125°, W 2 = —180° 
and materials defined in Tab. 5.1. The intersections of the curves of different colour give the 
searched roots. 

The roots of the characteristic equation (5.38a) are determined by 

\i\ = i A ~ 4 ( n + rn), U2 = (n — m), for 1 < p < oo, 

pL\ = A ~ 4 (in + m), U2 = A ~ 4 (in — m), for — 1 < p < 1, (5.39) 

Mi = AT2 = «A~4, for p = l , 

where 

(5.40) 

The case p = 1 corresponds to a material with the cubic symmetry and the case A = p = 1 to 
the isotropic material, which are together the so-called degenerated states of anisotropy. 

The material eigenvalues have the form of p i p = +a + bi or they are purely imaginary for 
two fibre configurations described in the previous paragraph. If an arbitrary fibre orientation is 
included, the real and imaginary parts of u\ and U2 become distinct. The compliance matrix 
has to be recomputed by using the transformation relation (4.26). Values for three material 
configurations are stated in Tab. 5.2. 
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Fig. 5.4: The HSV phase portrait of the characteristic function f(S) = det[K(I —Y*) - 1 ] defined in (5.36) 
and the contour plot for f(S) = 0 for an interface crack with geometry ui\ = 180°, W 2 = —180° 
and materials defined in Tab. 5.1. The intersections of the curves of different colour give the 
searched roots. 

E x a m p l e 2: S ingular i ty exponents a n d eigenvectors of a t ransversal ly isotropic b i -
m a t e r i a l notch The characteristic function (5.36) is a complex function, which has generally 
complex roots. A convenient tool to investigate the complex function development is the phase 
portrait described in Appendix A , which is based on the recomputing of a complex number 
in terms of hue, saturation and value. Let us consider a bi-material notch defined by angles 
uii = 125°, ui2 = —180° and material characteristics defined in Tab. 5.1. The complex function 
f(S) = det[K(I - Y * ) _ 1 ] defined in Eq. (5.36) is depicted in Fig. 5.3. It can be seen that 
on the interval 0 < $l{8} < 1 the characteristic function has two real roots, i.e. 5\ = 0.5186 
and 82 = 0.7647. In the interval limits [0,0] and [1,0], which delimit the singular exponents, 
the transcendental characteristic function has two poles. The same root identification can be 
done for a wedge with complex roots. The characteristic function for an interface crack, i.e. 
oj\ = 180°, ui2 = —180° is depicted in Fig. 5.4. It is obvious that there are two complex 
conjugate roots 5\ = 0.5 + 0.02474i, 82 = 0.5 — 0.02474i and two poles in the points 8 = 0 and 
8 = 1. Note that the determinant of the matrix on the left-hand side of (5.19) has roots at 
points 8 = 0 and 8 = 1. 

The root identification algorithm was developed in Python programming language, based 
on the findroot from the mpmath library [114]. The default secant method was used and the 
tolerance error has been set to 1 x 1 0 - 1 5 . It is advised to prove whether the calculated solution 
represents the root. By re-inserting the root into the characteristic equation (5.36) a numerical 
zero has to be obtained. The second possibility is to set verify=True into key arguments of 
the root-finding method. The next verification that could be done is to check continuity of 
displacements and tractions (along the material interface). This will be discussed in the next 
numerical example. 

Fig. 5.5 shows a dependence of the singularity exponents 8 on the notch angle uii while the 
angle 012 = —180 remains fixed. For an unreal limit case ui\ = 0, 8\ is approaching 1, while 
82 goes to 2. The second term 82 is singular for oj\ < 77° only and the eigenvalues 81 and 82 
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F i g . 5.5: T h e exponent <5, dependence on the notch geometry coi, materials are defined i n T a b . 5.1. 

become complex conjugate when u\ > 165°. The notch angle u\ = 180° represents an interface 
crack with 3ft{<5i} = ^{^2} = 0.5. The received results can be compared with Chen [115], in 
which the same values of Si for the varying notch geometry are obtained. 

The right eigenvectors are evaluated by the backward substitution of 6 to (5.28) or (5.33) 
and by using l i n a l g . e i g of s c i p y 2 library. The required eigenvector corresponds to the zero 
eigenvalue of the matrices on the left-hand side of (5.28) or (5.33), respectively. One eigenvector 
for each singularity exponent Si is obtained. In order to get unique stress intensity factors H, 
the eigenvectors have to be normalized properly. Employing (5.28), the eigenvector L V 1 is 
normalized by 

( i - Y l J ' ^ K J L V ) 
L V 

( I - Y ! ) ^ { L V } 
(5.41a) 

or analogically for a complex S 

L V 
( I - V ! ) - 2 L V 

( I - Y Q -
(5.41b) 

Subsequently, the eigenvectors v 1 , v 1 1 , w 1 and w 1 1 are determined by using the definitions (5.30) 
(or (5.34) for a complex eigenvalue), (5.31), (5.35a) and (5.35b). Note that in the numerical 
algorithm, the relations (5.30) and (5.34) are not distinguished and the procedure output is 
either real for real eigenvalues S or complex for complex S and in the text there are written 
separately in order to observe the formality. Tab. 5.3 shows eigenvectors for a bi-material notch 
with real singularity exponents. We can see that the vectors v and w for the individual material 
regions I or II are complex conjugate. Then, the imaginary parts of both addends in (5.7) are 
equal, but with an opposite sign, and the simplified relation (5.1a) can be used. 

The eigenvectors for an interface crack as a special case of the bi-material notch are given 
in Tab. 5.4. The vectors v and w are now distinct, but after substitution to (5.7) we get 
real-valued expressions for displacements u and resultant tractions T . It wil l be discussed in 
the next example in detail. It can be easily proved that the structure of the eigenvectors is not 
changed when the arbitrary fibre orientations a\ and are considered. 

Since the L E S formalism derived in section 4.1.7 considers also an arbitrary fibre orienta­
tion (in the plane x\x<i), an effect of fibre orientation was also studied (see Fig. 5.6(a)). The 
angle of fibre orientation attain the values a\ G (0°, 180°). The state for a\ = 0° and a\ = 180° 

2 B o t h s c i p y and numpy libraries are based on L A P A C K libraries programmed in F O R T R A N language. 
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f0.52054 + 3.40988il f 0.52054 - 3.4098&H f 1.27408 + 0.04509* 1 f 1.27408-0.04509* 1 
1 \0.46619- 3.32334*/ \0.46619 + 3.32334* J \-0.28735 + 0.01257* J \-0.28735 - 0.01257* J 

„ f 4.88166 - 0.76065* \ ( 4.88166 + 0.76065* \ (-0.34464 - 0.89033*1 f-0.34464 + 0.89033*1 
2 \-5.34670 + 0.20628* J \-5.34670 - 0.20628* J \-0.12041 + 0.38015* J \-0.12041 - 0.38015* J 

Tab. 5.3: Eigenvectors corresponding to the singularity exponents S± = 0.5186 and 82 = 0.7647 of a 
bi-material notch with material characteristics defined in 5.1 and ui\ = 125°, W 2 = —180°. 

„ ( 0.83013 + 0.33470* \ ( 5.23087 + 0.28652* 1 f0.50303*l f 1.13871* 1 
1 \-0.83013 + 0.33470* J \-5.23087 + 0.28652* J \0.07000*J \-0.46932* J 

f 6.11052 -0.33470* \ f 0.96972 -0.39098* \ f-1.33020*1 f-0.58763*! 
2 \-6.11052-0.33470*/ \-0.96972 - 0.39098*/ { 0.54824* J \-0.08177*J 

Tab. 5.4: Eigenvectors corresponding to the singularity exponents Si = 0.5 + 0.02474* and 82 = 0.5 — 
0.02474* of an interface crack with material characteristics defined in 5.1 and u)\ = 180°, 
UJ2 = -180°. 
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Fig. 5.6: The exponent <5, dependence on the notch geometry on the angle of fibre orientation a± of a 
bi-material notch defined by (a) u\ = 125° and (b) u\ = 180°, W 2 = —180° and materials 
defined in Tab. 5.1. 

corresponds to the same configuration and the graphs of both stress singularity exponents have 
the same character. These results can be compared with the study done by Chen [115] or by 
Hwu et al. [58] with application of the Stroh formalism. However, there is not clearly distin­
guished which singular exponent belongs to anti-plane field. The same study was done for an 
interface crack (Fig. 5.6(b)). Both eigenvalues have the real part 3ft{<5i} = ^.{82} = 0.5 and 
their imaginary parts are complex conjugate with the minimal value of the oscillatory index for 
a i = 90°. 
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5.1.4 P r o b l e m r e d e f i n i t i o n b y i n t r o d u c i n g t h e s h a p e f u n c t i o n s 

As the in-plane problem of transversally isotropic material leads to two generally complex sin­
gularity exponents öi and 82, the resulting displacements and stress functions are obtained by 
superposition of the individual solutions (5.7) for each Si, where the generally complex valued 
weights represent the GSIFs (see E q (2.5)). 

Displacements and stress functions are expressed as 

u(z) = Hx ( A Z ^ v i + AZSlwi) + H2 (AZ* 5 2 v 2 + A Z ^ 2 w 2 ) , (5.42a) 

T(z) = Hi ( L Z ^ v i + L Z ^ w i ) + H2 ( L Z Ä 2 V 2 + L Z < 5 2 w 2 ) , (5.42b) 

where the indices 1,2 denote association to the eigenvalue 81 or 82, respectively. In order to 
simplify the numerical algorithm and relations for the ^-integral, it is convenient to introduce 
the angular functions rji and Aj , i = 1,2 defined as follows: 

rji(9) = AZ 5 ' ( 0 )v ; + AZSi(9)w (5.43a) 

Si , Xi(9) = LZd>{9)vi + LZ"\9)m, (5.43b) 

where the angular variable 9 in the bracket of Zs(9) emphasizes that the radial variable r& was 
excluded. The complex functions (5.13) and (5.16) can be then rewritten as [19] 

rsZs(9) = r° diag 

rsZS(9) = r5 diag R{ e~töVl, R°2 e 

m e l c i1L2' 

8 „-J<5<Pi r>5 
(5.44) 

Displacements and stress functions can be expressed by using the shape functions (5.43) as 

u(r,9) = -Hir<5l771(#) + H2r52r)2(9), (5.45a) 

T(r,9) = Hir
Sl Ai(ö) + H2rS2X2(9), (5.45b) 

in which 

r1l(9) = K\, Xi(9) = ^ ) , . = 1,2. (5.46) 

E x a m p l e 3: Shape functions of a transversal ly isotropic b i -mater ia l notch The shape 
functions rji, rj2 and A i , A 2 for a bi-material notch uii = 125°, w 2 = —180° (with real singularity 
exponents) are shown in Fig. 5.7. We can see that all imaginary parts (dashed lines) are zero, 
which match up with the statement that imaginary parts of both addends of (5.43a) or (5.43b) 
subtract from each other. A different situation occurs when 8i are complex conjugate. The 
shape functions are then generally complex (see Fig. 5.8), because the eigenvectors v and w 
are not complex conjugate. It implies that the generalized stress intensity factors will be also 
complex, but not complex conjugate. 
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Fig. 5.7: Components of the shape function vectors (a) r)1, r)2 and (b) A i , A2 for a bi-material notch 
wi = 125°, w 2 = -180° (materials defined in Tab. 5.1). 

5.1.5 D e t e r m i n a t i o n o f t h e g e n e r a l i z e d stress i n t e n s i t y fac tors 

Generalized stress intensity factors determine an amplitude of the displacements and stresses 
characterized by the normalized shape functions (5.43). In the present work, GSIFs are deter­
mined by using the ^-integral method outlined in section 2.5. This method was firstly introduced 
by Sinclair et al. [116] or Vu-Quoc and Tran [117], and deeply investigated by Hwu [17]. It 
is based on the theorem of Betti and Rayleigh [118]. Contrary to the J-integral introduced by 
Rice [119], the path-interdependence of the ^-integral is also preserved for multi-material stress 
concentrators. 

The Betti's reciprocal theorem claims that if an elastic body is subjected to two systems of 
body and surface forces, the work that would be done by the first system in acting through the 
displacements due to the second system of forces is equal to the work that would be done by the 
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Fig. 5.8: Components of the shape function vectors (a) t]1, r)2 and (b) A i , A2 for an interface crack 
wi = 180°, LO2 = -180° (materials defined in Tab. 5.1). 

second system in acting through the displacements due to the first system of forces [17]. Let us 
then choose the first system to be regular (actual singular fields) and the second system to be 
the auxiliary (also called complementary). Neglecting the body forces (assumed by Lekhnitskii 
formalism), the ^-integral is characterized as 

j> ( u T t - u T 1 t ds = 0. (5.47) 

The vectors u , t are the auxiliary solutions to the displacements and tractions corresponding to 
the exponent Si = — r5j. It can be proved that each regular solution of the eigenvalue problem 
(5.36), generating the basis functions in (5.45a), i.e. r^rj^O), is associated with the dual solution 
rSii)i{9) of the same eigenvalue problem, where Si = —Si [113]. The auxiliary solutions are defined 
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X\ 

Fig. 5.9: Scheme of a closed ^-integral contour around the bi-material notch tip. The closed path is 
r = r 1 + S i + r 2 + s 2 . 

as 
Ui(r,0) = Hir^f,^), (5.48a) 

Ti(r,e) = Hir-SiXi(e), » = 1,2, (5.48b) 

where Hi = 1. The auxiliary eigenfunctions have the following structure: 

fli(9) = AZ-Si(9)vi + AZ~Si(9)wi (5.49a) 

\i(9) = LZ~Si (9)% + LZ~Si(9)wi. (5.49b) 

The eigenvectors v, w are computed by the same procedure described in Example 2 just by 
substituting Si = —Si into the algorithm. The auxiliary functions for the same above studied 
geometric configurations are depicted in Figs. C . l and C.2 in Appendix C . l . 

The vectors u and t represent either the regular asymptotic or the full-field solution obtained 
numerically. In the first case, the vector u is given by (5.45a) and the vector t is given by the 
derivative of (5.45b) with respect to 9, 

dT dT Te , 
t = j r = - ^ = —-• 5 - 5 0 

os rod r 

The tangential direction s is chosen so that when one faces the direction of increasing s, the 
material lies on the right-hand side. Substituting (5.45b) into (5.50) we get expressions for the 
traction vector in terms of the shape functions: 

-t(r,9) = J H'ir < 5 l - 1 A /
1 (0) + H2rS2~1 X'2(9), (5.51) 

where ()' denotes differentiation with respect to 9. A derivative of X(9) defined in (5.43b) is 

Aj(0) = L (zSi(9))'vi + L~(z < 5 i (0)) 'w i . (5.52) 

where 

V ( 0 ) ) ' = diag [SRf-1 e ^ " 1 ) * 1 [- sm(9) + ^ cos(9)} , 

SR5^1 e ^ " 1 ) * 2 [- sin(9) + /x2 cos(0)]l (5.53) 
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and 

(z*(0))' = diag [dRf-1 e " ^ " 1 ) * 1 [- sin(0) + ft cos(0)] , 

5P4-1 e^5-1^2 [- sm(6) + ft cos(0)]] . (5.54) 

The auxiliary tractions are obtained analogically by employing (5.50): 

-ti(r,9) = Hir-5i-1X/
i(9), (5.55) 

and 
\\{9) = L ( z - ^ f l ) ) ' V i + L ( z - < 5 i ( ^ ) ) ' w i . (5.56) 

T is a closed contour in a simply connected region. Let us consider a contour F = Fi + S i + 
F2 + S 2 as shown in Fig. 5.9. The integral (5.47) can be rewritten as follows: 

J ( u T t - u T t ) ds + J ( u T t - u T t ) ds + J ( u T t - u T t ) ds + y ( u T t - u T t ) ds = 0. 

(5.57) 
Since the notch faces are assumed to be traction free (boundary conditions (5.17)), the terms 
corresponding to the contours S i and S 2 equal to zero and Eq. (5.57) reduces to 

J ( u T t - u T t ) ds + J ( u T t - u T t ) ds = 0. (5.58) 

Let us denote F\ = F\ and T B = — F2, i.e. we changed the orientation of the second contour 
so that both are oriented in the counter-clockwise direction (the paths emanate from 012 to UJ\ ). 
We get 

f ( u T t - u T t ) ds = f ( u T t - u T t ) ds, (5.59) 

which proved that the ^-integral is path-independent for free-free multi-material wedges [59]. 
For simplicity, a circular counter-clockwise paths T A and T B through the region dominated by 
the singular field are chosen, see Fig. 5.10. The ^-integral for a bi-material notch characterised 
by angles oj\ and 002 becomes 

* = fUl (u
Jt - u T t ) rdO. (5.60) 
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Obviously, if the integration contour shrinks to the notch tip, the full-field solution reduces to 
the asymptotic solution (5.45a) and (5.51). Inserting the regular solutions (5.45a), (5.51) and 
auxiliary solutions (5.48a), (5.55) into (5.60), we obtain 

2 

* (u,r-Sir,M) = ( r H ( * ) ' r ~ * W ) ) > i = 1 ' 2 - ( 5 - 6 1 ) 

Since the regular and corresponding auxiliary solutions are orthogonal with respect to the inte­
gral (2.14), it follows for the individual integrals that [17, 117] 

V 1 ° for J / J . 

Applying (5.62), the ^-integral (5.61) computed along a path very close to the crack tip gives 
an important result for the GSIFs evaluation 

* ( u , r - H ( 0 ) ) = * ( V S ^ ) , r - H ( # ) ) = 

= H (Hit^riJiey-6*-1^) - r-^fiJ^Hir6'-1^)) rd6 = 

= Hi r (rSi-Si-l+l
V]\9)K(9) ~ r-Si+Si~1+1fiJ(6)^(6)) d0 = 

J1X12 

= Hi r (vlm'M - vlWWJ) M, (5.63) 
which is independent on the radial coordinate r . The ^-integral with a contribution of the regular 
and auxiliary fields is zero when the contour is not in the singular dominance region. Note that 
the integration path and the boundary defined in 4.2 are oppositely oriented. Reorienting the 
boundary leads to changing the sings of t and t defined in (5.51) and (5.55). 

Making use of the ^-integral path-independence, the GSIFs can be evaluated when the 
right-hand side of Eq. (5.63) is put equal to the ^-integral computed along the remote contour 
which contains a full-field solution to the vectors u and t. In the present work the full-field 
solution is approximated using F E M implemented in A N S Y S software [120]. The integration 
contour is chosen far away from the bi-material notch tip. Let us introduce the integral 

* ( u F E M , r - ^ W ) = j T ( ( u F E M ) T r - ^ 1 A ^ ) + r - ^ J ( ^ ) t F E M ) r c d ^ , (5.64) 

where rc is the radius of the circular path far away from the notch singularity. Note that the 
signs follow from the orientation of the outward normal and the integration contour. Elements 
of the vector u F E M = [ t t F E M , t t F E M ] " ' * are the direct output from the finite element analysis, but 
elements of the vector t F E M on the surface of the contour have to be computed from the stresses 
by using the Cauchy's formula ti = crijrij, in the matrix form written as 

t F E M = ^ F E M ^ ( 5 g 5 ) 

where <jFEM is the two-dimensional stress tensor and n is the outer normal to the domain 
enclosed by a circular integrating path of the radius rc defined as 

^.FEM 
^FEM ^FEM 
°11 °12 ^FEM ^.FEM 
°21 °22 - • <5-66) 
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Note that the normal vector introduced in (5.66) has now a different orientation than in (4.72), 
because it is normal to the domain enclosed by the circular contour. Applying the analogy with 
the standard dot product, the ^-integrals (5.63) and (5.64) project analytical and numerical 
solution of the same problem into the basis function of a dual function space generated by the 
auxiliary solutions (5.49). Hence, both ^-integrals (5.63) and (5.64) are equal and the following 
relations hold 

= (rs
c
lrii(0)KS%(ej) + H2* ( r ^ W , ^ ^ ) ) , i = 1,2. (5.67) 

Applying (5.62), two separate definitions for each index i = 1,2 are obtained: 

* ( u F E M , r - < 5 l i ) i ( ^ ) ) = [ r S M ^ v M ] 

* (uFEM,r-5*r,2(0)) = H2* (rs
c*V2(e),r^r,2(e)] 

from which the generalized stress intensity factors can be extracted as 

iV 
(5.69) 

(5.68) 

* ( u F E M , r - < 5 2 7 ) 2 ( ^ ) 

5.1.6 F i n i t e e l e m e n t m o d e l o f a b i - m a t e r i a l n o t c h 

The knowledge of the character of the stress singularity represented by the exponents Si is nec­
essary for the GSIFs evaluation. The F E M analysis is an important component of the procedure 
that allows one to get a complete description of the singular stress field at the bi-material notch 
tip. A script code in the A P D L programming language in A N S Y S software was created in order 
to gain the output data on the desired circular contour. The geometry of the F E M model is 
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depicted in Fig. 5.11. The finite element mesh in the vicinity of the notch tip consists of two 
regions. The small circle delimited by the radius R\ = 0.001 mm has a free mesh, because 
using of special singular elements would cause a mesh distortion for a finer element length. The 
region between R\ and R2 = 7mm is the area of the interest, from which the stresses and 
displacements are extracted and the mesh here is fine and mapped so that each element has a 
square-like shape. A l l desired nodal results are saved to a text file and consequently imported 
by using a Python script, where the displacement and stress fields are reconstructed by using 
scipy. interpolate package, namely griddata function. This procedure requires a homoge­
neous and well-structured finite element mesh. The data on the circular path are interpolated 
by using scint. splrep and scint. splev libraries. The advantage of this method is that only 
one computation with a fine mesh in A N S Y S is necessary in order to reconstruct a circular 
path with an arbitrary radius. The second advantage is that employing of adaptive integration 
methods for evaluating the ^-integral is available. 

The 8-node quadratic plane element PLANE183 was used with plane strain enabled. As was 
stated in the previous paragraphs, only plane strain state is considered in the studies, because 
from the computational point of view, the constitutive equations for plane stress can be analog­
ically modified (see section 4.1.5). A variable notch geometry is enabled, the face angles uii, UJ2 

could attain values between 0° and 180°, while the bi-material interface remains fixed at UIQ = 0°. 
The fibre orientation is realized by orienting the element coordinate system by angles a\ and 
a2, respectively. Dimensions of the two-dimensional model are a = 180 mm and b = 180mm. 

When investigating a stress concentrator in a technical component by using F E M , the sub-
modelling technique is widely used. This method consists in performing two computations. 
The whole model with a coarse mesh is analysed. Output of this analysis represents boundary 
conditions to a second model, which analyses the singular region more closely, meshed very fine. 
Boundary conditions of the sub-model can be both displacements and forces. In the present 
work, the finite element model is constrained according to Fig. 5.11. Nodes at the bottom 
edge are fixed in the x2 direction and, on top of that, the right lateral node is fixed in the x\ 
direction in order to avoid a rigid body motion. The upper side is loaded with the applied stress 

.̂appl _ iQQjyrp a Displacements u2 on the upper boundary are coupled in order to minimize 
the non-uniform loading. After deformation, the origin of the coordinate system of the finite 
element mesh does not coincide with the origin of the coordinate system of the analytical solution 
(5.45)i. Hence, the notch tip displacements have to be subtracted from all body displacements. 
It has to be reminded that the notch faces have to remain mechanically unloaded (zero tractions 
t). 

E x a m p l e 4: S t u d y of the \I/-integral path- independence for a t ransversal ly isotropic 
b i - m a t e r i a l notch Before we proceed to investigate the path-independence of the ^-integral, 
the finite element model with respect to element size is checked. Let us set the integration radius 
to rc = 2 mm. The only parameter that controls the mesh density is the line division parameter 
A c of the R\ and R2 perimeters related to the arc of 90°. The another divisions, edge lengths 
and spacing ratios are computed based on this value in order to achieve the best mesh topology 
and element shape. It implies from the results in Fig. 5.12 that the most appropriate angular 
division is A c = 60. This value gives us a sufficient angular division, by which reliable results 
are obtained and minimal computational time is achieved. 

A l l integrals were evaluated by using the Romberg's method implemented in the library 
scipy.integrate.romberg. A n advantage of this method, compared to the trapezoidal rule, 
for example, consists in possibility of usage of the adaptive integration step, owing to that a 
better accuracy is achieved. Therefore, an interpolation function for the nodal results is de-
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Fig. 5.12: Study of the minimal mesh density. The governing parameter was the generalized stress in­
tensity factor Hi. The studied cases were (a) a bi-material notch given by u\ = 125° and 
(b) an interface crack (u>i = 180°). The second notch face was u)<i = —180°. The materials 
are defined in Tab. 5.1, the singularity exponents are (a) S± = 0.5186, 82 = 0.7647 and (b) 
«$! = 0.5 + 0.02474i, 52 = 0.5 - 0.02474i. 

fined in order to get an approximative value in each point of the contour. For that purpose, a 
linear interpolation function was used, because the cubic spline caused numerical instabilities 
near boundaries and in the vicinity of the interface. Since the mesh density is very fine, we can 
assume that the error will be minimal. From the computational point of view, the integrals are 
evaluated for each material region separately, because the discontinuity of a n causes a numerical 
error if integration of the whole path from C02 to ui\ is performed. The resulting integrals for the 
whole path are the sum of the particular integrals for the individual material regions. 

The study of ^-integral path-independence was carried out for forty integration radii rc 

between 0.0005 mm and 4 mm. As in the previous studies, two representative cases were in­
vestigated - a bi-material notch with real singularity exponents (UJ\ = 125°, 002 = —180°) and 
an interface crack with complex conjugate singularity exponents (uii = 180°, 012 = —180°). 
To prove the path-independence, the GSIF as the governing parameter was chosen. Since the 
denominator in the definitions (5.69) for GSIFs does not depend on r c , the independence of 
the integrals in the numerator is tested. The results in Fig. 5.13 show that all integrals for 
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Fig. 5.13: Test of path-independence of the GSIFs on the integration contour radius enclosing (a) a 
transversally orthotropic bi-material notch characterized by u!± = 125°, 6± = 0.5186, 82 = 
0.7647 and (b) an interface crack with 6± = 0.5 + 0.02474i, S2 = 0.5 - 0.02474i. Materials are 
defined in Tab. 5.1. 

both notch configurations are path-independent, which is in accordance with [59]. The small 
discrepancy near zero is caused by the finite element mesh, because the first integration radius 
rc = 0.0005 mm lies in the first circle characterized by R\ = 0.001mm, where the mesh is un­
structured and also quite rough comparing to the magnitude of rc. The complex GSIFs in Fig. 
5.13(b) were decomposed to real and imaginary parts, which were investigated separately. For 
the next studies, rc = 2 mm is chosen. 

Here, a sign of the GSIF is discussed. As an experienced reader knows from the Irwin's 
theory, the stress intensity factors for a crack under mode I loading are always positive. The sign 
of the GSIF for a bi-material notch depends on the orientation of their corresponding eigenvec­
tors v and w. In the case of real singularity exponents S, the sign of the GSIF can be changed 
just by multiplying the corresponding eigenvector by —1. A different situation occurs when the 
stress term orders 5 are complex conjugate. The problem leads to two complex and distinct 
stress intensity factors, which cannot be distinguished by virtue of a negative or positive sign. 
Same problem arise when we want to recompute the unit from Pa • m 1 _ < 5 to M P a • m m 1 _ < 5 . The 
value in SI units is multiplied by the constant 1 0 - 6 • lO 3 *- 1 - * 5 - 1 , which is for the first case a real 
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number, but a complex number for the second case. This can cause a sign change by the real and 
imaginary parts of the GSIF. This effect can be eliminated by employing the unified definition 
introduced by Hwu [59]. 

There is a question how to compare the individual fracture parameters among themselves. 
If we change one or both notch face angles u\ and cu2 or a material parameter, we get different 
stress term orders Si, which leads to different units of the generalized stress intensity factors. 
From the engineering point of view, configurations which differ only from the external loading 
can be compared. Other possibility is a comparison of the resulting stress development or a 
change in the potential energy of the body, when it is disturbed by the crack of small finite 
length [19, 121]. 

5.1.7 S t ress a n d d i s p l a c e m e n t fields o f a t r a n s v e r s a l l y i s o t r o p i c b i - m a t e r i a l 
n o t c h 

The displacement field is expressed directly by the Williams' asymptotic expansion (5.45a) 
with the knowledge of the analytical form of the angular function (5.43a). The stresses in 
the coordinate system arbitrary rotated with respect to £ 3 axis are expressed from the stress 
functions as 

asn = - n T T „ = s T T s (5.70) 

where normals n and s are defined by 

{cos6>| [ — sin6>| ,_ _„. 

•of' n = \ of- 5 - 7 1 

sin 0 1 I cos0 I 
Note that the normal n has been introduced in (4.72). The stresses in the Cartesian coordinate 
system given by axes x\, x2 are obtained by setting 9 = 0 in the definitions (5.71). According 
to Fig. 4.2 it holds that s —>• x\ and n —>• x2. Substituting (5.7b) into (5.70) leads to 

1 J T dZs -dZS \ 
a1 = -H { L - — v + L - — w } , 

dx2 dx2 

2 ^ r d z 5 ] 
a = H < L v + L w 

dx\ dx\ I 

(5.72) 

where the stresses are ordered in the vectors as 

- • - f t ; } - ^ t e ) - <" 3 > 

Since Z*5 is expressed in polar coordinates (see (5.8)), we can make these mathematical operation: 

dZ[ = dZ[dz^ = dZ[dzi_ = s z s - i 
dx2 dx2 dzi dzi dx2 ' 
dZ[=dZ[dzi=dZ[dzL = 6 z S _ 1 (5.74) 
dxi dxi dzi dzi dx\ ' 

Zi = xi+ frx2, i = l,2. 
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Eq. (5.72) can be then rewritten as 

ax = -R 

a2 = H 

{L5Z6-1 /̂ v + L Z /iw >, 

{ L < $ Z * _ 1 V 

Mi o 

0 [12 

+ L Z < 5 " 1 w } 

Mi _o 
0 7J2 

(5.75) 

For programming purposes, the equations (5.75) can be modified by means of the shape function 
A introduced in (5.43b). Decomposing the complex function Z * 5 - 1 in the same way as in (5.44) 
leads to 

zs-i = rs-iz
s-1(0) = / - 1 d i a g 

Z < 5 - 1 = r < 5 - 1 Z < 5 - 1 ( ^ ) = r ' 5 - 1 d i a g 

Let us introduce the following functions: 

rSi-l 

RS-l e i ( 5 - l ) * i ^ jfS-l ei(<5-l)<P 

R5-l e - i ( 5 - i ) * 1 ^ _ R | - i e - i ( f f - l ) * 2 

(5.76) 

A^ 2 (e) = L5iZai-1(6)^i + L5iZUl (0)7*Wi, i = 1,2,3, (5.77a) 

\i:Xl(9) = L5iZ5i-1(9)vi + L5iZ'Ji \9)wh i = 1,2,3, (5.77b) 

where the subscripts j S l and j X 2 denote differentiation with respect to the Cartesian coordinates 

xi, x2, i.e. 
(5.78) 

Considering both singularity exponents Si, the equations (5.75) can be expressed by employing 
(5.77a) and (5.77b) as 

Hir^-lXhX2{9) - H2r6*-l\2jX2(9) $2-1 : 

Hir
s'-lXljXl(9) + H2r°*-l\2jXl(9). s2-i • (5.79) 

E x a m p l e 5: Displacement a n d stress reconstruct ion i n the v i c i n i t y of the transver­
sally isotropic b i - m a t e r i a l notch t i p The input parameters, boundary conditions and ex­
ternal loading remain identical as in the previous examples the including materials defined in 
Tab. 5.1. Fig. 5.14 illustrates the dominance of the stronger stress singularity 1 — Si, contribu­
tions of H2 to the stress amplitude is not very significant. It is obvious from Fig. 5.5 that Si 
has always stronger singularity, but the difference fades away with closing the notch angle to its 
limit state, i.e. OJI —>• 180°. 

The stresses and displacements in Fig. 5.14 were evaluated along the circular path enclos­
ing the notch tip on the radius r = 0.001 mm, which shows a very good correspondence between 
the analytical and F E M solution. The superscripts Hi, i = 1,2 of plotted quantities listed in 
the legend indicate particular asymptotic terms in Eqs. (5.45) and (5.79). The stresses and 
displacements depicted on the radius r = 2 mm farer from the tip (see Fig. 5.15) illustrate that 
the analytical solutions differ from F E M more significantly. The most noticeable mismatch can 
be observed by a n , where the difference is higher for radii far from the tip. This phenomenon 
is causes by the effect of T-stress [122]. 

The same study was performed for an interface crack from the previous examples. Fig. 5.16 
and 5.17 illustrate the displacement and stress distribution on the circular paths r = 0.001mm 
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and r = 2 mm. Here, the singularity rate is equal for both stress term orders Si. However, 
one can see that the shape functions for a complex Si are complex-valued (see 5.8). Then, also 
the components of displacements Hir5i,qi{9) or stress function vectors HirSiXi(6), i = 1,2 are 
complex. In Fig. C.3 we can see that their imaginary parts have the same magnitude but 
an opposite sign and the total displacements or stress functions will be real. In the graphs in 
Fig 5.16 and 5.17 and in all following graphs the imaginary parts of the individual singularity 
exponents Si are omitted and only real part is depicted. 

The GSIFs of above studied bi-material combinations are stated in Tab.5.5. The real sin­
gularity exponent S implies that the corresponding GSIF is real-valued. For complex conjugate 
singularity exponents Si we get two distinct complex-valued GSIFs. In contrast to that, studies 
investigating interface cracks by the Hilbert problem [44, 57, 108] provide two complex conjugate 
stress intensity factors, but this difference is based on the formulation of the eigenvalue problem. 

The L E S formalism presented within the dissertation is able to cover arbitrary fibre orien­
tations in the x\X2 plane. In the most research studies, fibres either parallel or perpendicular 
to the global Cartesian coordinate system were considered, i.e. the principal material direction 
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L coincides with either x\ or X2 axis. The stresses and displacements for the interface crack 
from the previous case, but with fibres of the material 1 rotated about a\ = 50° , are stated 
in Appendix C . 3 in Fig. C . 4 . A study of the singularity exponent on the fibre orientation was 
reported in [115]. 
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Fig. 5.16: The displacement and stress components on the circular path r = 0.001mm of an interface 
crack u>i = 180°, UJI = —180°. Materials are defined in Tab. 5.1, singularity exponents are 
S1 = 0.5 + 0.02474i, 52 = 0.5 - 0.02474i. 

5.1.8 P r o b l e m r e d e f i n i t i o n for m o d e l l i n g a n i s o t r o p i c / t r a n s v e r s a l l y i s o t r o p i c 
b i - m a t e r i a l n o t c h 

The L E S formalism is primarily derived for anisotropic materials. If the the Young's and shear 
moduli, Poisson's ratios are equal in the longitudinal and transversal direction, respectively, the 
stiffness matrix attains the form of the isotropic material. Nevertheless, using of the relations 
defined in (4.60b) causes that the matrices A and L are degenerate or non-semisimple and can­
not be no longer inverted. There are double material eigenvalue = i. Let us consider a 
bi-material notch composed of one isotropic and one transversally isotropic material. To de­
scribe the elastic field of the isotropic material, the Muskhelishvili complex potential method 
[42] was implemented in the framework of previously described L E S formalism. Though authors 
in [57, 60, 110, 123, 124] dealt with bi-material orthotropic/isotropic notches, nobody published 
detailed results for notches with complex values of 5. 

Let us distinguish the parameters describing the isotropic material with asterisk. The com-
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Fig. 5.17: The displacement and stress components on the circular path r = 2 mm of an interface crack 
OJI = 180°, W 2 = —180°. Materials are defined in Tab. 5.1, singularity exponents are Si = 
0.5 + 0.02474i, 52 = 0.5 - 0.02474i. 

plex potentials f*(z) are assumed as [125] 

f*(z) = f(z) + (z-z)Q df(*) 
dz ' 

(5.80) 

where 

Q 
0 0 

1 0 

The components of complex potentials are sought in the form of 

The Muskhelishvili complex potentials (p(z), ip(z) are assumed in the same form as in (5.8), i.e. 

ip{z) = A i , i/t(z) = z5v2, (5.82) 
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Wl [°] 
Si 
82 

Hi [MPa •mm1-'5 1] 
H2 [MPa •mm1-'5 2] 

90 0.5672 
0.9456 

186.8 
131.9 

125 0.5186 
0.7647 

529.8 
-45.72 

170 0.5187+ 0.01890i 
0.5187 - 0.01890z 

-33.89 - 692.5i 
-30.63 + 625.8i 

180 0.5 + 0.02474i 
0.5 - 0.02474? 

-26.91 - 542.H 
-23.04 + 464.1i 

Tab. 5.5: GSIFs for four transversally orthotropic bi-material notches defined by coi and 102 = —180° and 
material characteristics in 5.1. 

where the complex variable z now becomes 

z = r (cos 9 + i sin 9) . (5.83) 

Note that if the eigenvalues [lip = i of the degenerate material are substituted into the sim­
plified notation (5.13), the same relation as (5.81) are obtained. However, this representation 
provides only one linearly independent complex potential. The second potential is created by 
differentiation of the first one, because a function and its derivatives are linearly independent. 
The displacements and stress functions are expressed as 

u*(z) = A * Z * < 5 v + A 5 Z 5 * w , (5.84a) 

T*(z) = L * Z * 5 v + L * Z * V , 

with matrices A * and L * defined as follows: 

A * 1 
AGi 

Kl —I 
K 1 

, L * 1 1 —1 
1 1 

(5.84b) 

(5.85) 

K = 3 — 4u for plane strain and K = (3 — + v) for plane stress, where v is the Poisson's 
ratio of the isotropic material, and G is the shear modulus defined by 

G 
E 

2(1 -v) 

Applying (5.80), the function (5.13) attains the form 

z5 0 
[(z - z) Sz6'1 zs 

The complex conjugation of (5.87) leads to: 

(5.86) 

(5.87) 

r$ e 

2irsS e-^5-1^ sin 9 rs e (5.8 

In the following paragraphs, the eigenvalue problem for an isotropic/transversally isotropic 
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bi-material notch is modified. When the relations for displacements and stress functions are 
known for both material states, the eigenvalue problem can be redefined in terms of the equations 
(5.84) and (5.7). Let us consider the bi-material notch geometry in Fig. 5.2, where the material 
1 is isotropic, characterized by the material parameters E and \i. Let us redefine the matrices 
(5.85) , (5.84) and (5.87) for the region I as: 

A ! = A * , L ! = L * 

u 1 = u * , T 1 = T* (5.89) 

Z IS rj*8 rylS ry^S 
L — ZJ1 , ZiQ — ZiQ , 

while the corresponding relations for region II remain unchanged. The eigenvalue problem is 
introduced by substituting these relations into the boundary conditions (5.17) and (5.18). The 
system of eight homogeneous algebraic equations has the same form as (5.19). Note that the 
identity (5.20) is valid also for the isotropic material, i.e. 

r*S (5.90) 

Then, the eigenvalue problem can be modified and reduced by (5.21)-(5.36). A l l other procedures 
remain identical, with complex potentials and material matrices corresponding to the considered 
region, i.e. the normalization (5.41a) or (5.41b), shape functions (5.43) and the ^-integral (5.47)-
(5.69). The finite element model has the same properties and geometry, except for the material 
1, for which isotropic properties are considered. 

The relations for the asymptotic stress extraction (5.79) have to be also modified. The 
stresses have the following form: 

er* 1 =Hir 
.Si-i XhX2(9)+H2r .02-1-

K2,x2 

_*2 
(0), 

where the derivatives of the shape functions are given by 

X*x(9) = B*5iZ*5i-\9)vi + B*5iTSi-\9)wh i 1,2, 

(5.91) 

(5.92a) 

XlXi(9) = L*5iZ*Si-\9)vi + L'fcZ™* x ( 0 ) W i ) i = 1,2, *Si-l 

where 

and 

B * 

z*s-i = r<5-iz*<5-i(0) = r5'1 

3 - 1 
i —i 

Z ~ _ i = r d - 1 Z ' ° " ± ( 0 ) = r5-1 

Subscripts S 1 and j X 2 denote differentiation with respect to xi, x2. 

Se^-W 0 
•2iS(S-l)e^s-^6sm9 Öe^-V9 

Se-^-W 0 
2t<y(<y - l)e- i (*- 2 )°si i ie öe-^5-1^0 

(5.92b) 

(5.93) 

(5.94) 
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Fig. 5.18: (a) Dependence of the singularity exponents <5, on the notch angle coi, material 1 is defined by 
E = 200 MPa, v = 0.3, material 2 is stated in Tab. 5.1, (b) the oscillatory index e dependence 
on the Young's modulus E of the material 1 and four cases of material 2. 

E x a m p l e 6: S ingular i ty exponents and displacement and stress reconstruct ion i n the 
v i c i n i t y of the isotropic/transversal ly isotropic b i - m a t e r i a l notch t i p For the sake of 
brevity, we do not repeat all studies of the previous notch material configuration and we focus on 
the most interest ones, in which the different behaviour of the actual notch material configuration 
is expected. Let us consider a bi-material notch, where the material 1 is isotropic with following 
material properties: E = 200 M P a , u = 0.3. The material 2 is transversally isotropic with 
material properties stated in Tab. 5.1. Firstly, a study of the singularity exponent 5 dependence 
on the notch angle uii is performed, while ui2 = —180° remains fixed. The result is illustrated 
in Fig. 5.18(a). It can be seen that the graph is similar to Fig. 5.5 for transversally isotropic 
bi-material notch. 

A subsequent study was realized in order to investigate a variation of the oscillatory indices. 
Fig. 5.18(b) shows the dependency of the oscillatory indices on the Young's modulus E of 
the material 1 for four cases of longitudinal moduli EL of the material 2. We see that the 
oscillatory indices are always symmetric with respect to zero, because the eigenvalues 5 are 
complex conjugate. Then, the zero value of the oscillatory indices, contrary to its non-zero 
value implicitly assumed in the literature, is expected for the particular values of E. The zero 
values of Si are successively for E = 50.73 GPa, E = 69.51 GPa, E = 90.71 GPa, E = 107.5 GPa. 
A correlation of these moduli with another material parameters is not obvious. 

The effect of the fibre orientation a2 on the oscillatory indices for three Young's moduli of 
the material 1 is illustrated in Fig. 5.19. The oscillatory indices for an isotropic/transversally 
isotropic bi-material notch do not depend on the fibre orientation of the material 2. 

The integration radius of the ^-integral procedure is chosen in accordance with the previous 
bi-material notch configurations. Let us consider a bi-material notch defined by OJ\ = 170°, ui2 = 
— 180°. The material parameters of the material 1 are E = 200 M P a and v = 0.3 and properties 
of the material 2 are adopted from Tab. 5.1, but with fibre orientation a,2 = 50°. The F E M 
model is loaded according to Fig. 5.11 with <72Ppl = 100 M P a . Two complex conjugate singularity 
exponents 51:2 = 0.5092±0.0354i are obtained. The GSIFs are Hx = 532.1+228.8i M P a - m m 1 - ' 5 1 

and H2 = 424.9—182.7i M P a - m m 1 - ^ . The stresses and displacements on the radii r = 0.001 mm 
and r = 2 mm are shown in Fig. 5.20 and Fig. 5.21, respectively. A very good correspondence 
between the analytical and F E M solution is observed. 
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Fig. 5.19: Dependence study of the oscillatory index e on the fibre orientation a2 of the material 2 and 
four cases of material 1. 
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Fig. 5.20: The displacement and stress components on the circular path r = 0.001mm of an 
isotropic/transversally isotropic bi-material notch uj\ = 170°, UJ2 = —180°. Material 1 is 
isotropic (E = 200MPa and v = 0.3), material 2 is defined in Tab. 5.1 with fibre orientation 
a2 = 50°, singularity exponents are <5i = 0.5092 + 0.03536i, 52 = 0.5092 - 0.03536i. 
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. 5.21: The displacement and stress components on the circular path r = 2 mm of an 
isotropic/transversally isotropic bi-material notch u>i = 170°, UJ2 = —180°. Material 1 is 
isotropic (E = 200MPa and v = 0.3), material 2 is defined in Tab. 5.1 with fibre orientation 
a2 = 50°, singularity exponents are Si = 0.5092 + 0.03536i, S2 = 0.5092 - 0.03536i. 



5.2 STRESS SINGULARITY OF A PIEZOELECTRIC BI -MATERIAL N O T C H A N D INTERFACE C R A C K 

5.2 Stress singularity of a piezoelectric bi-material notch and in­
terface crack 

The analogy between theories describing pure anisotropic elasticity and piezoelectric electro­
mechanical behaviour was outlined in section 4.2.7. Wi th respect to the material symmetry, 
monoclinic materials with the symmetry axis parallel to £ 3 = 0 have to be considered. This 
is the most general configuration when the expanded L E S formalism can be employed. Then, 
stress and displacement relations in the £ 3 direction are functions of the x\ and x2 coordinates 
only. The in-plane and anti-plane fields are decoupled, which enables the problem simplification. 
Under the assumption of external loads parallel to the plane defined by £ 3 = 0, we can focus 
only on the in-plane field. Note that the anti-plane stresses or strains are not zero, but their 
effects are induced by in-plane loads. More detailed studies of anti-plane fields were reported in 
[53, 126, 127, 128, 129, 130, 131]. 

The present research of singular stress concentrators in the piezoelectric materials as well as 
in the anisotropic ones is mostly limited to the cases when the principal material directions are 
in coincidence with the global Cartesian axes. This brings about simplifications of the governing 
equations in the same manner as for pure anisotropic elastic bodies described by the equations 
(5.38)-(5.40). Additionally, there has also been a gap in linking between bi-material piezoelec­
tric notches and interface cracks, which are investigated dominantly as the Hilbert problem (see 
[25, 26, 96, 98, 132]). 

5.2.1 F o r m u l a t i o n o f t h e f u n d a m e n t a l e q u a t i o n s d e s c r i b i n g stress s i n g u l a r i t y 
of a p i e z o e l e c t r i c b i - m a t e r i a l n o t c h 

In the following paragraphs the expanded L E S formalism for piezoelectric media introduced in 
section 4.2.8 is investigated. The in-plane complex representation of displacements and stresses 
for a piezoelectric bi-material wedge with the generally complex singularity exponents Si has the 
same form as (5.1), i.e. 

u(z) = AZsv + A z f w , (5.95a) 

T(z) = LZ<V + L Z w, (5.95b) 

where 

u(z) = < 
Ul 
u2 T(z) (5.96a) 

a u (112 au - M i -1*2 -M4& f \ 
Vl 

Wl 
A = a-21 a-22 (124 , L = 1 1 , v = < V2 w = < tt>2 

a 4 i 0-A2 au - 6 - 1 W3^ 

Elements of the matrices A and L are introduced in (4.132b) and (4.127). To avoid a confusion, 
we kept the index 3 for the anti-plane parameters (consistent with pure anisotropic elasticity). 
But this was not applied to the eigenvectors, their indices do not have a directional corre­
spondence. The singularity exponents Si and their corresponding eigenvectors are determined 
through the satisfaction of the boundary conditions at the tip of the bi-material notch. 
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5.2.2 T r a n s v e r s a l l y i s o t r o p i c m a t e r i a l s 

A poled piezoelectric ceramic has different material characteristics in the direction of poling 
than in the plane perpendicular to poling, in which the material behaviour is isotropic. Similarly 
to pure anisotropic elasticity, the matrices A , L are non-degenerate if the poling direction is 
perpendicular with the X 3 axis. In the case of semi-degenerate or degenerate materials, i.e. 
when the poling direction coincide with X3 axis, the general solution (5.95) requires a special 
treatment, see [17, p. 385]. 

Poled piezoelectric ceramics have transversally isotropic properties in the sense of both 
elastic and electric characteristics. We focus only on these technical types of non-degenerate 
ferroelectric materials with hexagonal crystals. The typical representatives are lead zirconate 
titanate, such as PZT-4, P Z T - 5 H , PZT-6B, PZT-7, P Z T - 7 A , barium titanate B a T i 0 3 , or zinc 
oxide ZnO. These functional ceramics possess very good actuating strain (maximal to 0.2%), 
high stiffness and a fast response. 

The complex function Z*5 has the form 

diag zl) z2 z3 (5.97) 

where 

Xl + faX2, 1,2,3. (5.98) 

The material eigenvalues are evaluated from (4.123) reduced to the in-plane problem. Three 
material eigenvalues fi2, are obtained for each material. The complex function Z*5 can be 
also expressed in the polar coordinates in order easily specify the boundary conditions. Using 
(5.10), (5.12), (5.14) and (5.15), in which the indices are extended to i = 1,2,3, we can write 

diag rsR{ eiS^, rsRs
2 e i < 5* 2 , rsRs

3 eiS^ (5.99) 

and for the complex conjugate function 

diag r°iqe" ,r°R2, e" (5.100) 

5.2.3 F o r m u l a t i o n o f t h e e i g e n v a l u e p r o b l e m 

With the previous assumptions, the eigenvalue problem presented in section 5.1.3 can be ex­
panded to the piezoelectric materials. The boundary conditions (5.17) express that the notch 
faces are traction free and electrically insulated (impermeable, i.e. charge-free and the normal 
component of electric displacement D vanishes). The boundary conditions (5.17) imply that 
normal electrical displacement is zero on the notch faces, i.e. Dl

n = D1^ = 0. This electric 
boundary condition is still debated, but it requires much simpler mathematical treatment and 
the zero surface charge condition is not violated, if one material has significantly higher permit­
tivity than the second one, e.g. a piezoelectric ceramic in a contact with air [70]. The conditions 
(5.18) assure stress and electric displacement continuity in the direction normal to the interface, 
and displacement and electric potential continuity. The eigenvalue problem (5.19) has the same 
structure and the identical algebraic modifications (5.20)-(5.35) expanded to the dimensions of 
the piezoelectric problem can be employed. Here, the matrix 0 is 3 x 3 on the left-hand side, 
12 x 1 on the right-hand side and I is a 3 x 3 identity matrix. The unknown exponents Si can 
be determined from the nonlinear characteristic equation (5.36). Within the dissertation, values 
bounded only on the interval 0 < ft {8} < 1 are considered. 

3 T h e eigenvalue /M wi l l be solution of the anti-plane characteristic equation h(ß) = 0. 
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X-2 

Fig. 5.22: Geometry of a bi-material notch characterized by two regions I and II. The notch faces are 
defined by angles u>\ and u>2- The bi-material interface is always considered at 9 = 0. The 
angles a\ and ct2 denote poling directions of the materials I and II, respectively. 

The auxiliary solutions needed for the determination of GSIFs by using the ^-integral is 
constructed in the same manner as for the pure anisotropic elasticity, i.e. considering S = — S as 
the exponent of the auxiliary solution. The eigenvectors v 1 are evaluated by reinserting of the 
exponents Si into (5.33) by employing (5.34). The remaining eigenvectors v 1 1 , w 1 and w 1 1 can 
be determined from (5.31), (5.35a) and (5.35b). 

E x a m p l e 7: M a t e r i a l eigenvalues of a piezoelectr ic mater ia l Let us consider a piezo­
electric material with poling direction parallel with the xiX2-plane. The poling direction is 
characterizes by the angle aj (see Fig. 5.22). Note that poling has a directional character, 
which corresponds to the polarization. It means, contrary to the fibre orientation of pure 
anisotropic elastic materials, that the poling direction rotated about for example 90° and —90° 
does not give the identical material behaviour. The stiffness and permittivity matrices SD and 
f3a, respectively, have the same structure for both poling orientations, but the only difference 
is in the structure of the piezoelectric matrix g, of which elements have opposite signs for the 
above mentioned poling configurations. We will apply the formalism on common transver-
sally isotropic piezoelectric materials, whose elastic, piezoelectric and electric characteristics are 
stated in Tab. 5.6. In many studies, the material properties are defined for poling in X3-axis. 
To keep the formalism consistent with the L E S for pure anisotropic elasticity, the poling direc­
tion is considered parallel with xi-axis. The elastic, piezoelectric constants and permittivities 
can be reordered by the following procedure: Cf{xi = C^X3, Cf2

X1 = C^X3, C2S
,X1 = Cf2

X3, 
/~iE,x\ _ ^E,x3 f,E,x\ _ ^E,x3 xi _ x3 xi _ x3 x\ _ x3 s,x1 _ s,x3 s,x1 _ s,x3  

u22 — W l 'Ly44 — u44 ) e l l — e33' e12 — e13' e26 — e15' w l l — w33 ' w22 — w l l ' 
where the superscripts , X l or , X 3 stand for poling in the x\- or X3-axis, respectively. 

Since the in-plane problem only is considered, the material eigenvalues are evaluated from 
the second bracket in Eq. (4.123): 

h(fi)P2(fi)-m2
3(fi) = 0, (5.101) 

where h(fJ,), p2(p), fn^{p) are defined in (4.120b). The using of the same numerical procedure 
as in the case of pure anisotropic elasticity is conditioned by the formulation of the equation 
(5.101) in the form of a polynomial, i.e 

ao + CLI/J, + a2\j? + a3/x3 + C J 4 / / 4 + as//5 + (IQ/J6 = 0, (5.102a) 
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material constants PZT-4 PZT-5H PZT-6B PZT-7A BaTiC-3 
r<E 

o 1 2 

C E 
L/23 
°22 
r<E 

x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 

11.3 
7.43 
7.78 
13.9 
2.56 

11.7 
5.30 
5.50 
12.6 
3.53 

16.3 
6.00 
6.00 
16.8 
2.71 

13.1 
7.42 
7.62 
14.8 
2.54 

14.6 
6.60 
6.60 
15.0 
4.40 

en 
ei2 
e26 

[Cm-2] 
[Cm-2] 
[Cm-2] 

13.8 
-6.98 
13.4 

23.3 
-6.50 
17.0 

7.10 
-0.90 
4.60 

9.50 
-2.10 
9.70 

17.5 
-4.35 
11.4 

w i i 
W 22 

x l O - 9 [C(Vm)-1] 
x l O - 9 [C(Vm)-1] 

5.47 
6.00 

13.0 
15.1 

3.40 
3.60 

7.35 
8.11 

11.2 
9.87 

Tab. 5.6: Material properties of some transversally isotropic piezoelectric ceramics poled in xi-direction 
[23, 24, 25]. 

poling direction fii (12 M3 
a = 0° -0.2183-1 - 0.86483« 0.8396« 0.2183 4 - 0.86483« 
a = 50° 0.0944 4 • 1.3004« 0.1266 + 0.7898« 0.1757-f 1.0154« 
a = 90° -0.2744 -+• 1.0871« 1.1910« 0.2744 -j- 1.0871« 
a = 180° -0.2183-1 - 0.86483« 0.8396« 0.2183 4 - 0.86483« 

Tab. 5.7: Material eigenvalues for certain poling directions a of PZT-4. 

where 

„ _ qlDolo ffl 
a 0 — —>->22 P22 ~ y22; 

ai = 2 + §gfi» + g'22(g'12 + g'26)) , 

a2 = -{2S>° + - AS'Vfa - - 2g'22(g'21 + g[6) - (g[2 + g>26)2, 

a 3 = 2 + {2S'° + S'i)fc2 + + g'ng'22 + (g'12 + g'26)(g'21 + g'ie)) , (5.102b) 

a 4 = - ( 2 5 i f + S'i)^ - AS'Vfa - S[DJ'{2 - 2g'n(g'12 + g>26) - (g'21 + g'16)2, 

a 5 = 2 (p'Dfc + §'°0'° + g'n(g'21 + g'ie)) , 

a 6 — —&n Pii - gn-

Then, the numerical procedure polynomial .polyroots from numpy library can be employed. In 
the case of an in-plane piezoelectric problem, three pairs of complex conjugate material eigen­
values are obtained. They are reordered according to (4.121). 

In many studies, the poling direction is considered parallel with either x\- or X2-axis. Then, 
the material eigenvalues have the form /ii 3 = =pa + hi, fi2 = ci. When an arbitrary fibre orien­
tation is considered, the real and imaginary parts of \i\ and //3 are distinct. This is illustrated 
in Tab. 5.7 for PZT-4. The values for poling direction a = 90° agree with those in [52]. Note 
that for the cases a = 0° and a = 180° we get equal material eigenvalues, but as was mentioned 
in the previous paragraph, the material behaviour is different due to the opposite signs in the 
piezoelectric matrix g'. 
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Fig. 5.23: The H S V phase portrait of the characteristic function f(S) = det[K(I—Y*) - 1 ] defined in (5.36) 
and the contour plot for f(S) = 0 for a PZT-5H/BaTi03 bi-material notch with geometry 
OJI = 120°, W 2 = —180°. The intersections of the curves of different colour give the searched 
roots. 

E x a m p l e 8: S ingular i ty exponents and eigenvectors of a piezoelectr ic b i -mater ia l 
notch The exponents Si can be also real or complex, but there are certain dissimilarities in 
comparison to pure anisotropic elasticity. In the root-finding procedure f indroot , the Muller's 
method was chosen instead of the default secant method, which provided incorrect roots for 
some notch and material configurations or converged very slowly. The tolerance error remained 
1 x 10" 1 5 . 

Let us consider PZT-5H/BaTi03 bi-material combination (the order will always be material 
1/material 2) and a bi-material notch described by u\ = 120° and ui2 = —180°. In all following 
examples, the poling direction is parallel with X2-axis (ai = a2 = 90°) if it is not specified 
otherwise. The phase portrait of the transcendental function (5.36) is depicted in Fig. 5.23. We 
have obtained three real roots 6\ = 0.5226, S2 = 0.5770 and 83 = 0.7462 of the characteristic 
function (5.36) on the interval 0 < $l{5} < 1. In the case of an interface crack {u\ = 180°), 
there are two complex conjugate roots 5\ = 0.5 + 0.01293Í, 52 = 0.5 — 0.01293Í and the third 
root is real, S3 = 0.5, see Fig. 5.24. The real parts of the exponents are equal to 0.5. The 
imaginary part of the complex conjugate roots Si 2 is the oscillatory index. The characteristic 
function (5.36) has two poles in the points S = 0 and S = 1 in the case of the notch as well as 
the interface crack. 

Different results are obtained when we consider an interface crack between P Z T - 5 H and 
PZT-4 materials. Note that the crack faces are considered to be impermeable, i.e. free of 
electric charge. One can see in Fig. 5.25 that there are three real roots Si = 0.4558, S2 = 
0.5 and S3 = 0.5442 contrary to complex ones in the previous material combination. Why is 
the oscillatory index missing? Actually, it is not missing. The answer will be more clear by 
comparing the results with Ou and Wu [25], who investigated the interface crack in terms of 
the Hilbert problem, e.g. [44]. They found out that there are two types of singularities in the 
case of an interface crack between two piezoelectric materials - the oscillatory singularity when 
exponents have the oscillatory index e or non-oscillatory singularity with the parameter in. In 
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&(<5) &(<5) 

Fig. 5.24: The H S V phase portrait of the characteristic function f(S) = det[K(I — Y * ) _ 1 ] defined in 
(5.36) and the contour plot for f(S) = 0 for a PZT-5H/BaTi03 interface crack with geometry 
OJI = 180°, W 2 = —180°. The intersections of the curves of different colour give the searched 
roots. 

the first case, the eigenvalues have the form 

5lj2 = 0.5±ie, (5.103) 

while in the latter case 
<$i,3 = 0.5 ±i{in) = 0.5 T K , (5.104) 

which are real numbers. The bi-materials with an interface crack are then divided into two 
classes: e-class and K-class. Contrary to the Hilbert problem formulation used in [25], the 
employed procedure for solution of the eigenvalue problem (5.22) and (5.21) does not provide 
for K-class bi-materials the parameter in and the value 0.5 separately, but they are merged in 
the resulting roots S of the characteristic function (5.36). When taking a look at the exponents 
for the PZT-5H/PZT-4 bi-material more closely, it can be seen that 5\ and S3 are symmetric 
with respect to the 52 = 0.5. Then the parameter K can be extracted by subtracting the value 
0.5 from Si or S3, respectively. The obtained results of 61 and 62 for e-class or Si and 83 for 
/•c-class bi-materials compared with the values reported in the literature are summarized in Tab. 
5.8 and Tab. 5.9. The remaining exponents are always S3 = 0.5 or S2 = 0.5, respectively. Tab. 
5.9 gives the parameter K extracted from the obtained exponent using Eq. (5.104). One can see 
that the all received values of 6\ and 82 or S3 coincide with the values reported in [25, 133]. 

A study of the dependence of the exponents Si on the notch angle oj\ shows us more about 
the differences between particular bi-material classes. Let the angle 012 = —180° be fixed and 
the angle oj\ changes on the interval 0 < oj\ < 180°. The dependence of the exponents Si on 
the angle u\ for PZT-5H/F3aTi03 bi-material is shown in Fig. 5.26(a). Similar behaviour can 
be obtained for all e-class bi-materials. The eigenvalues 5\ and 52 are real-valued almost in the 
whole interval 0 < oj\ < 180° except for the values oj\ > 168°, where they become complex 
conjugate. Note that the imaginary part of S2 is not plotted because it has the same values 
as but with an opposite sign. The third exponent S3 corresponds to the non-singular 
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Fig. 5.25: The H S V phase portrait of the characteristic function f(S) = det[K(I — Y * ) _ 1 ] defined in 
(5.36) and the contour plot for f(S) = 0 for a PZT-5H/PZT-4 interface crack with geometry 
OJI = 180°, W 2 = —180°. The intersections of the curves of different colour give the searched 
roots. 

bi-materials Si S2 
oscillatory index 

£ 
comparison with 
Ou and Wu [25] 

P Z T - 5 H / B a T i 0 3 0.5- H0.01293i 0.5 - 0.01293i 0.01293 0.0130 
PZT-5H/PZT-6B 0.5- H0.02189i 0.5 - 0.02189i 0.02189 0.0219 

PZT-5H/PZT-7A+ 0.5- f- 0.00697i 0.5 - 0.00697? 0.00697 0.0069 
P Z T - 6 B / P Z T - 7 A 0.5- f- 0.00547i 0.5 - 0.00547i 0.00547 0.0055 

t <$i,2 = 0.5 ± 0.00697i computed by Hwu and Kuo [21] by using the expanded Stroh formalism 

Tab. 5.8: Oscillatory indices of e-class bi-materials and their comparison with results in [25]. 

character of the stress and electric displacement field at the notch tip because 0 3 > 1 up to 
oj\ = 78° and it is always real. The real parts of complex conjugate eigenvalues 5\ and S2 as 
well as the third exponent S3 converge to the value 0.5 for uii —>• 180°. It has to be pointed out 
that 63 is not equal to the real parts of neither 5\ nor S2 for very closed notch configurations. 
The dependency for other material combination, PZT-7A/F3aTi03, is stated in Appendix D in 
Fig. D . l . It is obvious that the oscillatory index e emerges in considerably smaller region of the 
angle oj\ than in the previous case. 

The same study was carried out for PZT-5H/PZT4 bi-material, one of representatives of the 
re-class bi-materials. One can see in Fig. 5.26(b) the different dependency of the exponents Si on 
the OJ\ in contrast to the previous study. The third eigenvalue 83 provides the stress and electric 
displacement field at the notch tip, which is singular when S3 < 1 for uj\ > 75°. Moreover, it is 
real-valued in the whole interval 0 < oj\ < 180°. The exponents Si and S2 are complex conjugate 
for 139° < UJI < 166°. For the interface crack as the limit case of the notch, the exponent S2 

converges to 0.5, while the exponents Si and S3 become symmetric with respect to the exponent 
52. The same bi-material was investigated by Hirai et al. [23]. Unfortunately their results do 
not agree with our ones. 
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bi-materials Si 3̂ non-oscillatory comparison with 
index n Ou and Wu [25] 

P Z T - 4 / B a T i 0 3 0.44914 0.55086 0.05086 0.0508 
PZT-4/PZT-5H 0.45585 0.54415 0.04415 0.0442 
PZT-4/PZT-6B 0.48316 0.51684 0.01684 0.0168 
PZT-4/PZT-7A 0.47525 0.52475 0.02475 0.0247 

P Z T - 6 B / B a T i 0 3 0.49039 0.50961 0.00961 0.0095 
P Z T - 7 A / B a T i 0 3 0.47936 0.52064 0.02064 0.0206 

Tab. 5.9: Non-oscillatory indices of K-class bi-materials and their comparison with [25]. 

0 2 0 40 
0.00 

100 120 140 160 180 
"1 [°] 

(a) P Z T - 5 H / B a T i 0 3 

"1 [°] 

(b) PZT-5H/PZT-4 

Fig. 5.26: The exponent f5, dependence on the notch geometry uj\. Poling directions are a\ = 90°, 
a2 = 90°. 

Comparing the graphs in Fig. 5.26(a) one can conclude that the bi-material classification 
introduced by Ou and Wu [25] for interface cracks cannot be applied to bi-material notches with 
a geometry characterized by an arbitrary angle u\. Depending on the angle u\ both bi-materials 
PZT-5H/BaTi03 and PZT-5H/PZT-4 exhibit both the e-class type and /-c-class type behaviour. 
In the case of PZT-5H/PZT-4 bi-material there exists even a value range of 139 < UJ\ < 166° 
where simultaneously e and K differ from zero. 

Ou and Wu bi-material classification also fails for interface cracks if one of the poling angles 
OL\ and/or a2 differs from 90° as can be seen from the dependency of the exponents Si on the 
poling angle OL\ while the angle a2 = 90° remains fixed. The PZT-5H/BaTi03 bi-material 
combination in Fig. 5.27(a) leads to two complex conjugate exponents S\ and S2 in a small 
interval 70° < OL\ < 90° while their real parts are equal to 0.5. The third exponent is constant 
S3 = 0.5. The exponents Si and S3 become abruptly real-valued and symmetric with respect to 
52 for the remaining values of a\. Observe that with increasing miss-orientation of the poling 
orientations the exponent 5\ starts to decrease and reaches a lowest value for anti-parallel poling 
orientation, i.e. for a\ = —90°. It is worth of noting that the stress and electric displacement 
field at the tip of the interface crack exhibits then a strong singularity, i.e. S\ < 0.5. 

The PZT-5H/PZT-4 bi-material notch has the real exponents Si in the agreement with Ou 
and Wu bi-material classification. In this case, the maximum of the singularity exponent S\ is 
again reached for parallel poling orientation and the minimum for anti-parallel poling orientation. 
The same parallelism effect of poling directions of the both materials in the cracked bi-material 
is shown in Figs. D.2(a) and D.2(b), but for the case of a\ = a2 = 0. The result that the 
always parallel poling directions maximize the singularity exponent of the stress and electric 
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Fig. 5.27: The dependence of the interface crack exponents <5, on the poling direction a\. The poling 
direction 012 = 90°. 

Fig. 5.28: The dependence of the interface crack exponents <5, on the poling direction a\. The poling 
direction 012 = a\. 

displacement field independently on the orientation of the poling directions with respect to the 
crack plane, is illustrated in Fig. 5.28. 

The similar study was performed for non-symmetric bi-material notches. Two characteristic 
notch configurations have been investigated to get an idea about the exponents Si behaviour. 
Consider the PZT-5H/BaTi03 bi-material notch defined by u\ = 120° and 012 = 180°. It is 
shown in Fig. 5.26(a) that there are three real exponents Si. Fig. 5.29(a) shows that variation 
of the poling direction a\ does not affect the exponents Si, which remain real-valued. In contrast 
to that result, the PZT-5H/BaTi03 bi-material notch has two complex conjugate exponents Si, 
82 and the real one £ 3 for 80° < ai < 130°. Three real exponents Si occur for the remaining 
values 0 < a i < 80° and 130° < ai < 180°. Similar behaviour can be seen in Chen [86] for 
a right angle wedge in PZT-5H/PZT-4 bi-material. Thus, it can be concluded that the e and 
K classification of a bi-material is applicable only for an interface crack with poling directions 
di = 0L2 = 90°. It follows from the above investigation that a bi-material notch problem solved 
by (5.22) and (5.21) can have either three real exponents Si or two complex conjugates exponents 
Si, S2 with an oscillatory index e and one real exponent £ 3 . Closing a notch by OJI —>• 180°, two 
unique exponent developments - type A (Fig. 5.26(a)) or type B (Fig. 5.26(b)) are observed for 
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S{<52} 

45 90 135 180 

(a) PZT-5H/BaTi0 3 , wi = 120° (b) PZT-5H/PZT-4, an = 155° 

Fig. 5.29: Dependence study of the singularity exponents 5 on the poling direction a± for two geometries 
of a bi-material notch. Poling direction ct2 = 90°. 

the poling directions a\ = a2 = 90°. Their limit configuration, an interface crack for uj\ = 180°, 
has either three real exponents (two Si and S3 symmetric with respect to third one 62 = 0.5) 
or two complex conjugate exponents Si, 82 with real parts 0.5 and one real exponent 83 = 0.5. 
However, by changing the poling direction a\, bi-materials can switch from one to another set of 
exponents Si. Furthermore, the interface crack is the only one concentrator where the symmetry 
of two exponents, e.g. 81 and S3, with respect to the third one 82 occurs. That is the reason why 
the classification introduced in Ou and Wu [25] cannot be used in the present study for general 
singular stress concentrators. 

As a piezoelectric bi-material notch has two characteristic sets of exponents, eigenvectors 
have also two typical forms. A disproportion of elastic, piezoelectric and permittivity constants 
causes that the matrices appearing in the constitutive laws are ill-conditioned and hence the 
procedure scipy.linalg.eig gives erroneous results. For this reason, it is suitable to use an 
alternative method of the evaluation of the eigenvectors \\, v p , w\, wp and their auxiliary 
complements v\, v]1, w\, w p . By substituting Si into (5.28) (or (5.33) if Si is complex) we get 

K * ( ^ ) v * = 0, (5.105a) 

where 

K * = K ( l - Y i ) - 1 , v* = 23? { L V } = 0, 

Eq. (5.105a) can be expressed in the matrix form as 

or v * = 2 L i v i . (5.105b) 

- " l l -"•12 -"-13 'vf 
0 TSi* 

-"•21 
TSi* 
-"22 -"23 < v\* 0> 

A 3 1 TSi* 
-"-32 

A 3 3 _ 0 
(5.106) 

Because of the singularity of the matrix K*(<5j), one vector component is chosen, i.e. v-f 
eliminate one row of K*(5j). The system (5.106) is then reordered as follows: 

1, to 

- " l l -"-12 

-"21 -"22 

-K\*3  

-KU 
(5.107) 
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1.01825 + 2.47345« 
-0.19379-0.01713« 

-1.43309e-10 + (6.58147e-10)« 

1.23043 + 1.74304« 
-0.76890 + 0.11476« 

-3.18326e-10 + (4.16499e-10)« 

1.01825 - 2.47345« 
-0.19379 + 0.01713« 

•1.43309e-10 - (6.58147e-10)« 

1.23043- 1.74304« 
-0.76890-0.11476« 

-3.18326e-10- (4.16499e-10)« 

-0.20437+ 1.71736« 
0.09387 + 0.04536« 

-3.58696e-10 + (3.89404e-10)« _ 

0.09557+ 1.91080« 
-0.07205 - 0.02546« 

-4.09823e-10 + (3.45040e-10)« 

-0.20437- 1.71736« 
0.09387 - 0.04536« 

•3.58696e-10 - (3.89404e-10)« 

0.09557- 1.91080« 
-0.07205 + 0.02546« 

-4.09823e-10- (3.45040e-10)« 

-0.29351 + 0.63030« 
-0.06068- 0.13216« 

-8.14879e-10 - (1.34862e-10)« _ 

-1.31872 + 0.87143« 
-0.20858 - 0.66727« 

-5.08349e-10 - (2.90745e-10)« 

-0.29351 - 0.63030« 
-0.06068 + 0.13216« 

-8.14879e-10 + (1.34862e-10)« 

-1.31872-0.87143« 
-0.20858 + 0.66727« 

-5.08349e-10+ (2.90745e-10)« 

Tab. 5.10: Eigenvectors corresponding to exponents <5i = 0.5154, 
PZT-5H/PZT-4 piezoelectric bi-material notch for ui\ -
a2 = 90°. 

S2 = 0.5642 and <53 = 0.7299 of a 
= 120°, w 2 = -180°, a i = 90° and 

The remaining vector components can be now solved as an ordinary system of two linear equa­
tions. In connection with the L E S formalism we can define 

(5.108) 

The eigenvectors L can be firstly normalized by using (5.41a) or (5.41b) and subsequently 
evaluated by applying (5.30) or (5.34), (5.31) and (5.35). It has to be pointed out that the 
expressions (5.30) and (5.34) are not distinguished in the numerical algorithm. 

Eigenvectors for the PZT-5H/PZT-4 bi-material notch defined by UJX = 120°, LO2 = -180° 
and poled in x2-&xis are stated in Tab. 5.10, while for an interface crack of PZT-5H/BaTi03 
bi-material poled in X2-axis are in Tab. 5.11. It can be seen that the eigenvector structure is 
same as by pure anisotropic elasticity, i.e. the eigenvectors v and w are complex conjugate for 
a real singular exponent 8 and generally not complex conjugate for a complex-valued 8. 

5.2.4 E x p a n d e d s h a p e f u n c t i o n s 

Displacements and stress functions were redefined in terms of shape functions in section 5.1.4. 
Same treatment can be done for piezoelectric materials just by extending the addend with the 
third term, i.e. 

u(r,6) = Hir51^) + H2rS2rj2(9) + Hsr53rj3(6), (5.109a) 

T(r,6>) = Hir
Sl Ai(0) + H2rS2\2(9) + H3rS3X3(9), (5.109b) 
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0.33567 + 0.21016? 

0.06121 
-1.03589e-10 + (0.4401 le-10)z _ 

0.32512 + 0.10606? 

0.02515 
-0.55929e-10 + (0.16120e-10)z 

0.39072 - 3.42865z 
-0.10605 

-2.62627e-10 - (9.44911e-10)z 

0.35495 - 3.08419z 
0.02265 

-0.78607e-10- (5.22511e-10)z 

0.42379 + 3.71880z 
-0.11503 

-2.84852e-10 + (10.2488e-10)z _ 

0.38498 + 3.34518z 
0.02457 

-0.85260e-10 + (5.66729e-10)z 

0.36407 - 0.22794z 
0.06639 

•1.12356e-10 - (0.47735e-10)z 

0.35263- 0.11504z 
0.02727 

-0.60662e-10- (0.17484e-10)z 

0.24554 + 2.72943z 
0.50892 

-1.90684e-10 + (7.55132e-10)z 

0.41885 +2.16557z 
0.16229 

-0.84048e-10 + (3.65881e-10)z 

0.24554 - 2.72943z 
0.50892 

-1.90684e-10 - (7.55132e-10)z 

0.41885- 2.16558z 
0.16229 

-0.84048e-10- (3.65881e-10)z 

Tab. 5.11: Eigenvectors corresponding to exponents 5i = 0.54 
of a PZT-5H/BaTi03 piezoelectric interface crack 
a2 = 90°. 

0.01293z, S2 = 0.5 +0.01293z and <53 = 0.5 
for an = 180°, W 2 = -180°, ax = 90° and 

where Tjj and Aj are defined in (5.43). The matrices A , L and eigenvectors v\, v* 1 , w\, w]1 are 
expressed in Eq. (5.96b). Components of the shape functions are 

rim 
m 

4) 
}, \(0) 

A! 
1,2,3. (5.110) 

The complex potentials are simply expanded as 

rsZs(9) = rd diag R\ e1™1, Rd
2 e l 0 W 2 , R°3 el 

rsZS(6) = r d d i a g R\ e +i; D - i , R s
2 e ~ i S ^ 2 Rle~i5^3 

(5.111) 

where Ri and are given by(5.14) and (5.15). 

E x a m p l e 9: Shape functions of a piezoelectr ic b i -mater ia l notch The shape functions 
of a PZT-5H/PZT-4 bi-material notch with face angles uii = 120°, ui2 = —180° and an interface 
crack for PZT-5H/BaTi03 bi-material are shown in Fig. 5.30 and Fig. 5.31. The structure of 
the functions is identical with the shape functions of pure anisotropic elasticity, i.e. when the 
eigenvalue is complex, so is the shape function. The third components of rj and A were depicted 
in a separate graph due to its scale and units. It is worth noticing that r?i and 772 correspond to 
the displacements u , while 773 is related to the electric potential (p. The shape functions Ai and 
A2 are related to the stress function T , A3 describes the electric displacement D. 





Fig. 5.31: Components of the shape function vectors (a) rj1, rj2, ry 3 and (b) A i , A 2 , A3 for an interface 
crack of PZT-5H/BaTi0 3 bi-material. 
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5.2.5 D e t e r m i n a t i o n o f t h e g e n e r a l i z e d stress i n t e n s i t y fac tors 

This paragraph directly follows section 5.1.5, which introduced the ^-integral applied to pure 
anisotropic bi-material notches. The definitions (5.47)-(5.60) assume traction free notch faces. 
Considering of piezoelectric material implies that the notch faces are also electrically imperme­
able, i.e. Dn = 0 along the notch faces, as follows from the boundary conditions (5.17). It makes 
sense from the physical point of view. When the face is not mechanically loaded, it means that 
it is in a contact with air, which has permittivity very close to vacuum and the circuit is open. 
This is the most common case that can be investigated in engineering applications. If the notch 
faces will be in a contact with a body of higher permittivity, the boundary conditions (5.17) will 
be different and the whole formalism including the ^-integral (5.58) has to be modified. Within 
the following section, traction free and electrically open (impermeable) notch faces are assumed. 

The relations for the auxiliary solutions (5.48) and corresponding auxiliary shape functions 
(5.49) were expanded according to the dimensions of the piezoelectric problem, i.e. i = 1,2,3. 
The eigenvectors v, w are computed by using the same algorithm described in Example 8 just by 
substituting Si = —Si. The development of the auxiliary solutions corresponding to the regular 
solutions depicted in Fig. 5.30 and 5.31 is shown in Appendix D . l (Fig. D.3 and D.4). 

Substituting (5.109b) into (5.50) we get the traction vector 

t(r,0) = Hir*1-1*!^) + H2rs*-l\2(9) + Hzr*3'1 X3(0) (5.112) 

where ()' denotes differentiation with respect to 9 and A'(0) is defined in (5.52). The auxiliary 
solutions corresponding to Eq. (5.112) are expressed in (5.55) and (5.56). The first derivative 
of the complex potentials Zs(9) and Z (9) can be written as: 

(Z*(0)) ' = diag [5R*-1 e^5-1^1 [- sin(0) + m cos(0)] , 

8Rs
2~l e*^" 1 )* 3 [- sin(0) + u2 cos(0)] , 

SRt1 e*^" 1 )* 3 [- sin(0) + us cos(0)]l (5.113) 

and 

(ŽV))' diag ÓRf-1 e " ^ - 1 ) * 1 [- sin(0) + ft cos(0)], 

ÓR^1 e " ^ - 1 ) * 2 [- sin(0) + ft, cos(0)] 

5RI'1 e-^5-1^3 [- sin(0) + ft cos(0)]l . (5.114) 

The substitution of these regular and auxiliary solutions for the piezoelectric problem into (5.60) 
maintains all the orthogonality and path-independence properties of the ^-integral and does not 
modify the relations (5.61)-(5.63). 

The second integral (5.64) is constructed in the same manner as for pure anisotropic bi-
materials, i.e. by using the auxiliary displacements and tractions as the virtual state and the 
F E M solution as the full-field one. The tractions are computed by using the Cauchy's formula 
ti = crijTij expanded to piezoelectric problems, i.e. 

l F E M F E M cr n , 

where < j F E M is the expanded two-dimensional stress-electric displacement tensor 

F E M 

^FEM ^FEM' 
°11 ° 1 2 ^FEM ^FEM 
°21 °22 

iFEM £)FEM 

(5.115) 

(5.116) 
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and n has the same form as in (5.66). The displacement vector is expanded with the elec­
tric potential <fi as the third con 
* (u F E M , r - S i f i i (6 J ) has the form 
trie potential <f> as the third component, i.e. U

F E M = [tt F E M,tt F E M,(?!> F E M]"'\ The integral 

* (uFEM,r-5%(0)) = * ( # i r c S i ( 0 ) + H2rs
c>rj2(9) + H ^ M ^ M 

= ( r < 5 l r ? 1 ( 0 ) , r - ' 5 ^ i ( 0 ) ) + H2* {r^rj2(9),r-s%(9) 

+ H3y(rs*rl3(9),r-S*r,i(9)), i = 1,2,3. (5.117) 

Applying the orthogonality (5.62), three separate relations are obtained: 

* ( u F E M , r - H i ( 0 ) ) = (rSi(O),rcSlm(0)) , 

* ( u F E M , r - & f ) 2 ( 0 ) ) = tf2* ( r f 2 r ? 2 ( 0 ) , r - < 5 2 i ) 2 ( 0 ) ) , (5-118) 

* ( u F E M , r - 5 3 r ) 3 ( 0 ) ) = tf3* (r5
c^3(9),r-^f,3(9)) , 

from which three generalized stress intensity factors for a piezoelectric problem can be expressed: 

* ( u F E M , r c ~ H i ( 0 ) ) 

* ( r f 1 r ? 1 ( 0 ) , r c - < 5 l i ) 1 ( 0 ) 

^ f u F E M , r - < 5 2 i ) 2 ( 0 ) N 

H2 = _ A ~ - T - ' , (5.119) 
* ( rc 2 r? 2 (0 ) , r C - < 5 2 %(0) 

* ( u F E M , r - 5 3 r ) 3 ( 0 ) 

5.2.6 F i n i t e e l e m e n t m o d e l o f a p i e z o e l e c t r i c b i - m a t e r i a l n o t c h 

The finite element model for a piezoelectric bi-material notch was based on the model for the 
anisotropic bi-material notch described in section 5.1.6. The notch geometry, mesh structure and 
topology remain unchanged (see Fig. 5.11). The difference resides in the element type. A N S Y S 
has PLANE223 at coupled field analyses' disposal. Plane piezoelectric problems are treated by 
using 8-node quadratic element PLANE223. By setting KEY0PT,e_type, 1,1001 an electrostatic-
structural coupled field analysis with piezoelectric effect is enabled. We have to pay heed to 
some issues. 

At first, there are only two plane deformation states to be set - plane strain and plane 
stress. Plane strain is derived from the first equation of (4.89), while plane stress from the 
fourth equation of (4.89), which is practically an inverse of the first one. Then, the first option 
corresponds to the state 1 (generalized plane strain and short circuit: £ 3 = 0 and E3 = 0) , while 
the latter one is the state 4 (generalized plane stress and open circuit: 0 3 = 0 and D3 = 0) , see 
4.2.7. The electro-mechanical parameters were compared with a F E M model created in FEniCS 
Project 4, but the comparison is not quoted here. Within the following text, plane strain and 
short circuit is considered for the F E M model. 

Material properties are inputted to the A N S Y S in the form of e-type matrices - the stiffness 

https:111enicsproject.org/ 
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mechanical quantity unit electrical quantity unit 

force F N charge Q C 
stress a P a = ^ electric displacement D _c_ 

m2 displacement u 111 voltage <t> V 
strain e 1 = S 

m 
electric intensity E V 

m 
elastic constants C P a = ^ dielectric permittivity e C F N 

Vm ~ m ~ V 2 

Tab. 5.12: The electromechanical analogy. 

matrix C E , piezoelectric matrix e and dielectric constants represented by the relative anisotropic 
permittivity at constant strain. The relative permittivity is obtained by 

<4 = — , M = 1,2,3 (5.120) 

where UJQ = 8.854 x 1 0 _ 1 2 F m _ 1 is the vacuum permittivity. It si convenient to set the material 
data in the form corresponding to the poling in xi-axis. A different poling direction is realized 
by rotating element coordinate systems by angles a\ and a2. 

Boundary conditions are represented by prescribed stresses,displacements, electric displace­
ments and electric potentials. To understand the connection between mechanical and electric 
fields, it is suitable to introduce the electromechanical analogy of the physical quantities. Ne­
glecting the piezoelectric contributions in the first set of (4.86), we see that the elastic and 
electric constitutive equations have the same form, i.e. 

<7ij = CfjklEkU 

Dj = u%Ek-

The elastic constants C^kl and dielectric permittivities Ujk characterise the mechanical and elec­
trical properties of the material, respectively. Another analogous quantities and their units are 
summarized in Tab. 5.12. The boundary conditions prescribed along the boundaries of the F E 
model are illustrated in Fig. 5.32. Zero displacements and zero electric potential are prescribed 
on the lower side of the model. The displacement at the right lateral node is fixed in the x\ 
direction in order to avoid a rigid body motion. The upper side is loaded with the applied stress 

.̂appi _ i Q k p a a n c j e i e c t r j c displacement Z?2 P P L = 0.01 C m - 2 . The displacements on the upper 
side were coupled in the x2 direction in order to minimize the non-uniform loading. Wi th respect 
to the electromechanical analogy, the electric potentials were also coupled. The coordinate sys­
tems of the deformed F E M solution and the analytical solution are not coincident, both notch 
tip displacements and electric potentials have to be subtracted from all body displacements and 
potentials, respectively. It has to be reminded that notch faces have to remain mechanically and 
electrically unloaded (zero tractions and electric displacements). 

The Python function scipy.interpolate.griddata is used for reconstruction of both me­
chanical and electrical fields. The procedures scint. splrep and scint. splev are employed for 
data interpolation on the circular path enclosing the notch tip. From the programming point of 
view, all numerical procedures for the pure anisotropic bi-material notch were simply expanded. 

(5.121) 
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u2 = 0 <f> = 0 

Fig. 5.32: Finite element mesh of a piezoelectric bi-material notch with mechanical and electrical bound­
ary conditions. 

E x a m p l e 10: S t u d y of the \I/-integral path- independence for a piezoelectric b i -
m a t e r i a l notch Algorithms controlling the mesh structure are the same as for the anisotropic 
bi-material notch. The only parameter that controls the mesh size of the model is A c , which 
sets the number of elements on the perimeter R\ and R2, related to the arc of 90° (see Fig. 
5.11). The other line division parameters are functions of this parameter and notch dimensions. 
This algorithm ensures that the mesh is well-structured. A n advantage of such structure is 
obvious form mesh density studies in Fig. 5.33. The governing parameters were the generalized 
stress intensity factors Hi, H2, H3. It is obvious that changes of the stress intensity factor 
are small in comparison to their magnitudes. The relative error was between 0.2% and 0.4%. 
Although these errors are negligible, every small error negatively affects the solution of the me­
chanical and electrical quantities due to the ill-conditioned matrices of the LES-formalism. The 
mesh has to be fine also due to the linear interpolation of the circular contour, on which the 
electro-mechanical parameters are depicted. Then, the mesh size A c = 60 will be considered 
in the following studies. Integration was performed by the Romberg's integration method 
by employing Python's function sc ipy . in tegra te . romberg . The computation was realized in 
the same manner as in Example 4, i.e. all integrals were evaluated for each material sepa­
rately. Forty radii between 0.0005 mm and 4 mm were investigated for two representative cases: 
a PZT-5H/PZT-4 bi-material notch with the face angles uii = 120°, C02 = —180°, which has real 
singularity exponents and an interface crack for PZT-5H/BaTi03 with two complex conjugate 
singularity exponents and one real. The results in Fig. 5.34 show that all ^-integrals are path 
independent on the integration path. Note that the complex intensity factors were decomposed 
to real and imaginary parts. 

It has to be pointed out that the default settings of the integration algorithm in Python are 
inappropriate to get the results in Fig. 5.34. The third components of the eigenvectors v and 
w from (5.34) are much smaller in comparison to the remaining ones (see Tab. 5.10 and 5.11). 
That brings about problems with the relative tolerance in the Romberg's integration procedure, 
which default value is 1.48 x 1 0 - 8 . It is higher than the order of the ^-integral appearing in the 
denominator of (5.69), i.e. in the ^-integral involving the auxiliary and regular solutions (5.43)i, 
(5.49) and (5.52). It was found out that the relative error has to be set to 1.48 x 10~ 2 5 to get 
sufficiently precise results for all bi-material configurations. Hereinafter, the value r c = 2 mm is 
chosen as the radius of the integration path of the ^-integrals in (5.69). 
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(b) PZT­5H/BaTi0 3 , wi = 180° 

Fig. 5.33: Study of the minimal mesh density of (a) a piezoelectric bi­material notch given by coi = 120° 
and ui2 = —180° and (b) a piezoelectric interface crack. The material is defined in Tab. 5.6. The 
singularity exponents are (a) 5i = 0.5154, S2 = 0.5642, <53 = 0.7299 and (b) 5i = 0.54­0.01293«, 
52 = 0.5 ­ 0.01293«, <53 = 0.5. 

5.2.7 E l e c t r o ­ e l a s t i c fields o f a p i e z o e l e c t r i c b i ­ m a t e r i a l n o t c h 

The displacements, stresses, electric displacements and electric potentials are expressed by the 
Williams' asymptotic expansions (5.109a) and (5.109b), where the analytical forms of the angular 
functions (5.43a) and (5.43b) are known. The stresses in the coordinate system arbitrary rotated 
with respect to £ 3 axis are defined as 

&ss — S X n̂ 

Osn — n T n — S T s 

ann = n T T s , (5.122) 
J m 
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(b) PZT-5H/BaTi0 3 , toi = 180° 
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Fig. 5.34: Test of path-independence of the GSIFs on the integration contour radius enclosing (a) the 
piezoelectric bi-material notch characterized by u\ = 120°, W 2 = —180°, 8\ = 0.5154, 82 = 
0.5642, <53 = 0.7299 and (b) the piezoelectric interface crack with <$i = 0.5 + 0.01293*, S2 = 
0.5 -0.01293*, <53 = 0.5. 

where the normals n, s and i3 are defined in [17] 

cos# 
sin 9 

0 
n 

— sin v 
cos 9 

0 

> . (5.123) 

By setting 9 = 0 in (5.122), stresses in the Cartesian coordinate system given by axes x\, x2 are 
obtained. Substituting (5.95) into (5.122) we get 

er1 = -H < L v + L - — w 
dx2 dx2 

2 „ / T d Z 5
 TdZS \ a2 = H { L-—v + L - — w } . 

axi axi 

(5.124) 
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where the matrices A , L and the eigenvectors v, w are defined in (5.96b). The extended vectors 
er1, a2 have the form 

(5.125) 
f \ 

0 2 1 

' cr12 > , a2 = < C 2 2 > 

D2 

Considering (5.74) for i = 1,2,3, Eq. (5.124) can be rewritten as 

er1 = -H \L5Z5~ V V + L Z 5 _ 1 / I w } , 

a2 = H { L f J Z ^ v + L Z * _ 1 w } , 

Ml 0 o" Mi 0 o" 
0 f'2 0 0 0 
0 0 M3_ 0 0 Th. 

(5.126) 

Generalizing the functions (5.76) to 

i - l 7 M ^ = r M d i a . 

L(0) = r 5 - 1 d i a ; 

, 5 - 1 

=5-1 

r ^Z" ^ - 1 e »(«- l ) * i ; # 5 - 1 e i ( 5 - l ) * 2 ; # 5 - 1 e i ( 5 - l ) * ;  

RS-1 e - j ( 5 - l ) * 1 ^ ^ 5 - 1 e - j ( 5 - l ) * 2 ^ ^ 5 - 1 e - i ( 5 - l ) * 3 

(5.127) 

and employing (5.77a) and (5.77b), the expressions for generalized stresses are obtained, i.e 

a2 = ^ i / 1 - 1 A i , a : i ( e ) + H2r5*-1\2:X1(9) + H^^X^e). 
(5.128) 

Subscripts > X I and j X 2 denote differentiation with respect to the Cartesian coordinates xi, x2 

introduced in (5.78). 

E x a m p l e 11: Displacement , stress, electric displacement and potent ia l reconstruc­
t i o n i n the v i c i n i t y of the piezoelectric b i -mater ia l notch t i p We focus on the two above 
investigated bi-material configuration, i.e. PZT-5H/PZT-4 and PZT-5H/BaTi03 . In following 
studies, the poling directions a\ = 90°, a2 = 90° are considered, if it is not specified otherwise. 
The asymptotic stresses, electric displacements, displacements and electric potentials calculated 
along the circular path with radius r = 0.001 mm encircling the notch tip in the bi-material P Z T -
5H/PZT-4 together with results obtained by F E M are shown in Fig. 5.35. The superscripts Hi, 
i = 1,2,3 of plotted quantities listed in the legend indicate particular asymptotic terms in Eqs. 
(5.109a) and (5.128). The plots show a very good agreement of the asymptotic solution with the 
complete F E M solution obtained using a very fine mesh, which also demonstrates the accuracy 
of GSIFs calculations. Results of the same calculations, but performed along the circular path 
with radius r = 2 mm are shown in Fig. 5.36. We can see that the correspondence is still very 
good, more significant changes occur in the electric displacements. 

The same study was carried out for an interface crack for PZT-5H/BaTi03 bi-material. 
Figs. 5.37 and 5.38 show the electro-elastic parameters on circular paths around the notch tip. 
The contribution of the components corresponding to the complex conjugate exponents 5i and 
52 to the total mechanical stresses and displacements as well as the electric displacements and 
potential are equivalent. The correspondence between the asymptotic and F E M solution is very 
good for both radii r = 0.001 mm and r = 2 mm, respectively. 

According to our best knowledge, only poling directions coinciding with one of the Cartesian 
coordinate axis, mostly x2 or £ 3 , have been considered in currently published studies. Such 
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5.35: The displacements, stress components, electric displacement components and electric potential 
of a PZT-5H/PZT-4 bi-material notch on the circular path r = 0.001mm, wi = 120°, L02 = 
-180°, the singularity exponents are 5i = 0.5154, 52 = 0.5642, <53 = 0.7299. 
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Fig. 5.36: The displacements, stress components, electric displacement components and electric potential 
of a PZT-5H/PZT-4 bi-material notch on the circular path r = 2 mm, u± = 120°, w 2 = -180°, 
the singularity exponents are <5i = 0.5154, 62 = 0.5642, £ 3 = 0.7299. 
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an orientation is related to the manufacturing technology, operational purpose and relations 
for material eigenvalues. But there are some situations that can cause an abrupt change of 
poling direction. When a body is subjected to a high compressive load in the direction of 
the spontaneous polarization or to the high tensile load perpendicular to the direction of the 
spontaneous polarization, the electric domain can be switch by 90°. The polarization can be also 
switched by application of an electric field with a different direction, which can force the crystal 
to transform to one of the another five possible configurations. The expanded L E S formalism 
can provide a solution with the arbitrary poling direction in the plane x\x2- The graphs in Figs. 
D.5 and D.6 show the stresses, displacements, as well as electric displacements and electric 
potential for a PZT-5H/PZT-4 bi-material notch defined by angles oj\ = 155°, UJ2 = —180°, 
where the poling of the P Z T - 5 H is a\ = 40°. One can observe an excellent agreement between 
the full-field F E M solution and the asymptotic solution in Eqs. (5.45) and (5.128) calculated 
along the circular paths with radii r = 0.001 mm and 2 mm, respectively. 

The asymptotic and finite element solutions along the bi-material interface are shown in Fig. 
5.39. A very good agreement of both solutions for stresses can be observed up to the distance 
of 10 mm from the crack tip, while the dominance region of the first singular term for electric 
displacement is smaller. 

The GSIFs for some notch configurations for above stated material combinations are stated 
in Tab. 5.13 and 5.14. If the exponent 5i is real-valued, so is the corresponding GSIF. Two 
distinct complex GSIFs are obtained for complex conjugate exponents r5j. The third exponent 
is always real, just as its stress intensity factor. 

Si Hi [MPa-mm 1 " 5 1 ] 
Wl [°] H2 [MPa 'mm 1 ^ 2 ] 

s3 H3 [MPa • mm 1-' 5 3] 

0.5407 41.09 
90 0.6232 -34.42 

0.8898 3.456 

0.5154 93.93 
120 0.5642 -97.95 

0.7299 15.10 

0.5062 + 0.01161« -114.4+107.2« 
150 0.5062-0.01161« -113.0-105.8« 

0.6210 -40.47 

0.4764 -146.4 
170 0.4969 -112.1 

0.5674 -55.83 

0.4559 -108.5 
180 0.5 -62.15 

0.5441 -65.85 

Tab. 5.13: Generalized stress intensity factors for a PZT-5H/PZT-4 piezoelectric bi-material notches 
defined by w\ and ui2 = —180°. 

The application of the fracture mechanics concept requires the knowledge of the conventional 
stress intensity factors Kj, KJJ, Kjy. The proper definition for stress intensity factors for the 
piezoelectric bi-material notches is the unified definition proposed by Hwu and Ikeda [22]. Stress 
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Fig. 5.37: The displacements, stress components, electric displacement components and electric potential 
of a PZT-5H/BaTi03 interface crack on the circular path r = 0.001mm, ui\ = 180°, UJ2 = 
-180°, the singularity exponents are <5i = 0.5 + 0.01293«, S2 = 0.5 - 0.01293«, <53 = 0.5. 
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5.38: The displacements, stress components, electric displacement components and electric potential 
of a PZT-5H/BaTi03 interface crack on the circular path r = 2mm, ui\ = 180°, W 2 = —180°, 
the singularity exponents are Si = 0.5 + 0.01293i, 82 = 0.5 — 0.01293i, S3 = 0.5. 
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icr 3 icr 2 icr 1 io° 101 

r [mm] 

Fig. 5.39: Stress and electric displacement distribution along the bi-material interface for a P Z T -
5H/BaTi03 interface crack. 

Si Hi [MPa • mm 1 -* 1 ] 
Wl [°] H2 [MPa •mm1-'5 2] 

s3 H3 [MPa • mm1-"5 3] 

0.5582 1.430 
90 0.6256 -3.775 

0.9212 -0.2342 

0.5226 3.287 
120 0.5770 -6.313 

0.7462 -1.738 

0.5079 1.608 
150 0.5359« -14.74 

0.6036 -9.917 

0.5099 4- 0.004000« -53.19 - 107.4« 
170 0.5099 - 0.004000« -52.24 4- 105.5« 

0.5244 -100.4 

0.5 4-0.01293« 53.82 - 3.876« 
180 0.5 - 0.01293« 48.71 4- 3.574« 

0.5 -74.38 

Tab. 5.14: Generalized stress intensity factors for a PZT-5H/BaTi03 piezoelectric bi-material notches 
defined by w\ and co2 = —180°. 

intensity factors of the in-plane problem are given as 

Ki lim V^r^^AUr/iy^A-1 I a22 

on 

D2 

1,2,3, (5.129) 

where 
A = A(0 = 0) = [Ai(0 = O),A 2(0 = O),A 3(0 = 0)]. (5.130) 

The brackets () stand for the 3x3 diagonal matrix, Sc is the most critical singularity exponent 
and £ is the length parameter which may be chosen arbitrarily. Substituting (5.128) into (5.130), 
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interface 

Fig. 5.40: Geometry of a bi-material notch characterized by two regions I and II. The notch faces are 
defined by angles LO\ and 0J2, where the face corresponding to the latter angle is mechanically 
clamped and electrically closed. The material interface is always considered at 9 = 0. The 
angles a\ and a 2 denote poling direction of the materials I and II, respectively. 

the relation between stress intensity factors K and GSIFs H is obtained: 

Ki 2TrA((Vl{5c} + iei)/t£i) { Ik >, t = l,2,3. (5.131) 

Using the relation (5.131), the near tip solution (5.45) can be rewritten in terms of Ku, Ki, Kjy 
as 

1 f K u 

u(r,9) = ^rdi^E(9){(R{5c} + iei)-1(r/£)i£i)A-1 < 2TT 
KI (5.132a) 

where 

T(r,9) = -^r^{5c}A(9)((^{5c} + iei)-1(r/£)i£i)A-1 < 
V 2vr 

B(9) = [Vl(9),rl2(9),rl3(9)}. 

Ki 
K w 

(5.132b) 

(5.133) 

5.2.8 P r o b l e m r e d e f i n i t i o n for m o d e l l i n g a p i e z o e l e c t r i c b i - m a t e r i a l n o t c h w i t h 
a c l a m p e d n o t c h face 

The presented eigenvalue problem was derived under the assumption of traction free and elec­
trically open notch faces, see boundary conditions (5.17). Within the following paragraph, a 
modified algorithm for modelling a piezoelectric bi-material notch with one clamped face is pro­
posed. Another cases of boundary conditions can be modelled analogically, but they are not 
presented here due to their similar form. Some studies, in which a single or permeable interface 
crack was considered, were reported in [100, 130, 134, 135]. 

Let us consider a piezoelectric bi-material notch with a geometry and boundary conditions 
depicted in Fig. 5.40. The notch face corresponding to the notch angle C02 is clamped. The 
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boundary conditions (5.17) have the form 

T V ) = 0, 

u n ( u ; 2 ) = 0. 
(5.134) 

From the structure of the generalized displacement vector (5.96a) can be seen that the second 
face is mechanically clamped and electrically closed. Another combinations of the boundary 
conditions of the notch face, such as clamped and electrically open, cannot be covered by the 
above presented eigenvalue problem (5.19). The asymptotic solution of that kind of problems 
was reported for example in [85, 128, 136, 137]. Substituting (5.95) into (5.134) and interface 
continuity conditions (5.18) we obtain a system of twelve algebraic equation for the exponent S, 
written in the matrix form as 

LlZ\s(Ll) 
0 0 

A ^ L 1 ) " 1 A%S(L 

L ^ L 1 ) 

L Z 0 ( L l 

0 
A N Z 2

M ( L N 

- A N Z ™ ( L 

- l 

- L N Z ™ ( L N ) - l 

0 
A Z 2 ( L ) 

- Ä N Z ™ ( L H ) 

- L H Z ™ ( L N ) 

' L V ' 
-1 L V 

-
1 < 

L n v n ' 
r 1 1 i i L w 

V J 

>=0, (5.135) 

where 0 denotes a 3 x 3 zero matrix on the left-hand side and a 12 x 1 zero vector on the 
right-hand side of the equation (5.135). The subscript denotes the index of the angle uii and 
the superscript stands for association with the material region. Wi th (5.20), the system can be 
rewritten as 

(5.136) 

x i x i 0 0 
0 0 B ? B ? 

B * _ B Q B ? 
I i I I 

' L V ' 
L V 

< 

L n v n ' 
r 1 1 II L w 

V J 

where the matrix elements introduced in (5.21) are redefined as 

X i = LlZ\s ( L 1 ) - 1 , X i = VZ\" (wi) (I/) 
I=I<5 (5.137a) 

B AuZl
2
ls (u2)(L -11=11(5 

A Z 2 ( W 2 ) ( L (5.137b) 

This system can be reduced to the algebraic system of two equations given by (5.23) and (5.24), 
where 

- I \ - l Y I v l l _ r n n W r » I I Y\ = ( X l ^ X i , Y% = ( B - ) - B - (5.138) 

Then, the procedure represented in Eqs. (5.25)-(5.35) for the piezoelectric problem and reduc­
tion of the algebraic system introduced in Appendix B can be used. The unknown exponents Si 
are determined from the nonlinear characteristic equation (5.36). The auxiliary solutions, eigen­
vector evaluation, expanded shape functions, ^-integral and electro-elastic field reconstruction 
are computed by using the procedures introduced in sections 5.2.3-5.2.7. Note that the contour 
£ 2 in (5.57) (see Fig. 5.9) is also zero due to the zero displacements and electric potential. The 
F E M model is constrained according to the boundary conditions (5.134), i.e. displacements and 
electric potential are set to zero along the second notch face. The applied stress and electric 
displacement is identical to the previous piezoelectric bi-material problem. Settings for all nu­
merical procedures remain the same as in the previous examples. For the sake of brevity, the 
^-integral path independence and the mesh density studies are not performed. 
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»(5) 5R(<5) 

Fig. 5.41: The HSV phase portrait of the characteristic function f(S) = det[K(I—Y*) - 1] defined in (5.36) 
and the contour plot for f(S) = 0 for a PZT-5H/BaTi03 bi-material notch with geometry 
u>i = 120°, W 2 = —180°. The latter notch face is mechanically clamped and electrically closed. 
The intersections of the curves of different colour give the searched roots. 

E x a m p l e 12: S ingular i ty exponents a n d electro-elastic f ield reconstruct ion of a 
piezoelectric b i - m a t e r i a l notch w i t h a c l a m p e d face Consider a PZT-5H/BaTi03 bi-
material notch with the local geometry and free/clamped boundary conditions of the notch faces 
illustrated in Fig. 5.40. The notch geometry is defined by the angles OJ\ = 150 and 0J2 = —180. 
The poling direction is parallel with X 2 - a x i s , i.e. a\ = 0,2 = 90°. The phase portrait of the 
transcendental function (5.36) is depicted in Fig. 5.41. It can be observed that on the inter­
val 0 < 5ft{o} < 1 there are two real and two pairs of complex conjugate roots: 61 = 0.2187, 
82,3 = 0.2961 ± 0.05114», 6 4 , 5 = 0.7883 ± 0.04532i, 56 = 0.9079. The character of the singularity 
exponents is considerably different in comparison to singularity exponents of the notch with 
traction-free faces. A dependence study of the exponents Si on the notch angle OJ\ sheds some 
light on this problem. Fig. 5.42(a) shows the singularity exponents Si for a PZT-5H/BaTi03 
bi-material combination. In the case of an interface crack, there are six rots of the characteristic 
function (5.36): two real Si, SQ and two complex conjugate pairs # 2 , 3 , £ 4 , 5 . When taking a look 
at the exponents more closely, it can be seen that Si, S2, S3 and 5±, 85, SQ are symmetric with 
respect to 0.5. Note that the imaginary parts of the complex roots £ 2 , 3 and £ 4 , 5 have the same 
magnitude. However, in contrast to the free/free piezoelectric bi-material notch, the value 0.5 
is not the root of the eigenvalue problem (5.136) (see Fig. 5.26). The exponent Si remain real 
and 0 2 , 3 are complex for all notch angles OJI. A l l six exponents are singular up to OJI = 130°. 

The same study was carried out for a PZT-5H/PZT-4 bi-material (see Fig. 5.42(a)). The 
roots in the case of the interface crack have the same structure, i.e. Si, S2, S3 and 5±, 85, SQ 
are symmetric with respect to 0.5 and the imaginary parts of the complex roots 82,3 and 84^ 
have the same magnitude. The exponent 81 remain real for all notch angles uii, while 82,3 turns 
real-valued for 38° < OJI < 145° and OJI < 15°. A l l six exponents are singular up to OJI = 130°. 
The abrupt changes in the development of the SQ (angles OJI = 100° and ui = 45°) indicate that 
the sixth root become complex conjugate with the next non-singular term between these angles. 
The main conclusion is that the character of the roots Si as a function of the notch geometry 
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Fig. 5.42: The exponent (5, dependence on the notch geometry to\ for free/clamped piezoelectric bi-
material notch. Poling directions are a\ = 90°, a2 = 90°. 

is more complicated than for free/free bi-material notches. The H S V phase plot represents a 
convenient tool to visualize the roots for subsequent setting the initial guess for the root finding 
algorithm. 
As there are more singularity exponents than in the case of a free/free piezoelectric bi-material 
notch, procedures for eigenvector extraction, shape function determination and GSIF calculation 
can be just expanded for the higher number of the exponents. The generalized displacements 
(5.109a) and the generalized stresses (5.128) attain then the form 

6 

u(r,e) = J2HirSir,i(0) (5-139) 
i=l 

and 

6 

, l = 1 (5-140) 

i=l 

The asymptotic stresses, electric displacements, displacements and electric potentials calculated 
along the circular path with radius r = 2 mm encircling the notch tip in the bi-material P Z T -
5H/BaTi03 together with results obtained by F E M are shown in Fig. 5.43. The superscripts 
Hi, i = 1,2,.. . ,6 of plotted quantities listed in the legend indicate particular asymptotic terms 
in Eqs. (5.139) and (5.140). The plots show a very good agreement of the asymptotic solution 
with the complete F E M solution obtained using a very fine mesh. 
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. 5.43: The displacements, stress components, electric displacement components and electric potential 
of a free/clamped PZT-5H/BaTi03 bi-material notch on the circular path r = 2 mm, LOI = 
150°, w 2 = -180°, the singularity exponents are <$i = 0.2187, <52,3 = 0.2961 ± 0.05114Í, 
5 4 l 5 = 0.7883 ± 0.04532Í, <56 = 0.9079. 
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5.2.9 P r o b l e m r e d e f i n i t i o n for m o d e l l i n g a n o n - p i e z o e l e c t r i c / p i e z o e l e c t r i c b i -
m a t e r i a l n o t c h 

Previous bi-material configurations described bi-material notches composed of two ferroelectric 
piezoelectric materials, a specific configuration used for example in piezoelectric actuators. In 
constructions which employ piezoelectric elements, piezoelectric materials are coupled to elec­
trodes, which conduct the electric charge, or to insulators, e.g. an underlay or insulating pads 
between piezoelectric and electrodes, or simply to the body of a construction. Solving problems 
of bi-materials consisting of combinations of piezoelectric and non-piezoelectric solids requires 
specific changes in the standard formalism used in the previous examples. 

The first step in the modification of the expanded L E S formalism for piezoelectric materials 
to pure elastic non-piezoelectric materials is to set the piezoelectric constants to zero, i.e. = 0 
for any i,j,k. The elastic and electric fields are then decoupled and both direct and converse 
piezoelectric effects vanish. The latter phenomenon is sometimes confused with electrostriction, 
which is a property of all materials [65, 138], since atoms, molecules, ions or polarizable domains 
can be distorted under an application of electric excitation. Let us consider solid dielectrics 
only. If a crystal does not become charged under any uniform mechanical load, i.e. it is non-
piezoelectric, the applied voltage will nevertheless induce a mechanical strain. Furthermore, 
the strain remains unchanged when the electrical field is reversed [68]. Such behaviour has a 
quadratic character and the strain tensor is expressed as 

£ij = QijkiDkDi, (5.141) 

where Qijki are the electrostrictive coefficients [139]. However, for materials with piezoelectric 
properties, the electrostriction is superposed with the converse piezoelectric effect (compare with 
Eq. ( 4 . 8 6 ) 4 ) , which has a linear behaviour, i.e. 

£ij = OkijDk + QijkiDkDi- (5.142) 

During a pure electrical loading, strains corresponding to the stress components that induce 
electric charge have linear behaviour, whereas the other ones behave quadratic. Under standard 
operating conditions ( .E a p p l = 0.1-5 M V m - 1 ) , the quadratic component is sufficiently small when 
a material is piezoelectric [140]. But for non-piezoelectric dielectrics, the linear component 
is zero and the electrostrictive strains are quadratic and not negligible. Since the nonlinear 
electrostriction (see Eq. (5.141)) is not included in the constitutive laws ( 4 . 8 6 ) 4 , the effect is 
not covered in the redefined problem for insulators and conductors as well. 

The second step is to modify the problem according to the case of an insulator or conductor. 
Both cases are different from the physical point of view. In the framework of the Lekhnitskii 
and Stroh formalism, Hwu and Kuo [21] proposed a method which fulfil the condition of the 
interface impermeability by reducing the permittivity to a sufficiently small value when modelling 
an insulator or increasing to a very large value when considering a conductor. Its purpose was 
to be in agreement with authors in [85, 137, 141], who modelled the insulator/piezoelectric 
bi-material by prescribing Z)™ s u l a t o r (0) = 0 along the interface, and conductor/piezoelectric bi-
material by prescribing 0 c o n d u c t o r ( o ) = 0 along the interface (the interface was defined coincident 
with xi-axis, as in Fig. 5.22). 

However, the condition for an insulator/piezoelectric interface is not physically exact. The 
assumption of zero electric displacement expresses an impermeable interface condition, i.e. the 
surfaces are free of charge. This effect is not violated, if one material has significantly higher 
permittivity than the second one, e.g. a piezoelectric ceramic in a contact with air [70], which is 
actually prescribed on the notch face. But this cannot be applicable to an insulator/piezoelectric 
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interface, because relative permittivity of insulators attains a wide range on values. Then, an 
insulator/piezoelectric bi-material notch can be modelled in the same way as a piezoelectric 
bi-material, but by prescribing zero piezoelectric constants and given permittivity, if they are 
known. Other notch face boundary conditions and their effects were reported in [142]. 

Electric intensity E inside a homogeneous conductor is zero. Thus, the electric potential <fi 
is constant. A n uncharged conductor in electrostatics can be regarded as a body with infinite 
permittivity ui [138]. Since the electric displacement D does not rely on the permittivity and it 
is finite in the entire body, it follows for the electric intensity that E —>• 0 for ui —> oo, which 
is in accordance with properties of a conductor. Thus, the method of Hwu and Kuo in [21] for 
modelling the conductor/piezoelectric interface by setting a very large permittivity is in agree­
ment with Landau and Lifshitz [138]. However, when zero electric intensity E is considered, it 
follows from Eq. (4.81)2 that (ft = const inside the conductor and on its surface, but Hwu and 
Kuo in [21] implicitly assumed 0 = 0. The resulting constant value of the asymptotic solution 
represented by the expanded L E S formalism along the interface between the piezoelectric mate­
rial and conductor is contingent upon the permittivity magnitude and boundary conditions of 
the F E M solution. 

The above mentioned modifications of the piezoelectric bi-material problem is valid for 
a bi-material, where the non-piezoelectric material shows transversally orthotropic properties, 
i.e. the material matrices (5.96b) are not degenerate. However, most insulators and especially 
conductors have isotropic properties. By substituting the material parameters into the in-plane 
characteristic equation (5.101), triple complex conjugate roots /ii,2,3 = i are obtained. The 
formalism has to be then modified according to the redefinition introduced in section 5.1.8 by 
employing the Muskhelishvili complex potentials. 

Due to the assumption of zero piezoelectric coefficients g ' (see Eq. (4.107a)4), the structural 
and electrical constitutive equations are decoupled, as can be seen from (4.132b) and (4.136). 
Thus, the modification of the formalism discussed in the previous sections unifies the relations 
for pure isotropic elasticity introduced in section 5.1.8 with equations describing the electrostatic 
filed. The complex potentials of an isotropic media (marked with a star) have the same form as 
(5.80), i.e. 

df(z) 
P (z ) = f(z) + ( z - z ) Q -

dz 
(5.143) 

where 

Q 

The complex potentials f(z) are defined as 

f (z) = 
<p(z) 

z = r (cos 9 + i sin 9) (5.144) 

in which the first two complex functions are the Muskhelishvili complex potentials defined in 
(5.82) and q(z) is 

= zsv3. (5.145) 

The displacements and stress functions (5.7) have the form 

u*(z) = A * Z * < 5 v + A * Z * " w , (5.146a) 

T*(z) L * Z * * v + L" (5.146b) 
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where the matrices A * and L * are expressed by 

IGi 
IGi 

0 

K'l 4 p ' 

IGi 
0 

0 
0 

Ö44 

i —i 0 " 
1 1 0 

z 0 0 - 1 
(5.147) 

with 044 is defined in (4.132b) and n = 3 — 4u for plane strain and n = (3 — v)/(I + v) for plane 
stress. Since the available material data of insulators or conductors are provided in the same 
form as the piezoelectric ones, it follows for the isotropic parameters that 

° 1 2 
2(C E I r<E\ 

12 "I" L y 4 4 / 

G riE 
u 4 4 -

(5.148) 

The complex functions Z**5 are 

zs 0 o" 0 0 
z*5 = (z - z) Szs~l zs 0 = 0 

0 0 zs 0 0 rse 
(5.149) 

Note that the upper left 2x2 matrix is the same as in (5.87) for pure isotropic elasticity, while 
the third diagonal element describes the electric field. The simplified notation (5.13) can be 
implemented for the diagonal elements, because it follows for functions (5.14) and (5.15) that 
R2 = 1 and ̂  = 9 when /ii,2,3 = i- Complex conjugation of the function (5.149) leads to 

r<5 e-i$6 
2ir55e-i<-5-1^sm( 

0 
r<5 e 

0 
0 

<5 -r e 
(5.150) 

The eigenvalue problem for a bi-material notch composed of a piezoelectric material and a 
conductor or insulator is redefined in terms of the equations (5.7) and (5.146). A bi-material 
notch with the geometry in Fig. 5.2 is considered, where material 1 is the non-piezoelectric one 
defined by elastic constants Cfj and permittivities cofj. Let us define the following identities: 

A 1 

u 1 

If- 1 ! 

(5.151) 
r*5 
J0 ! 

while the corresponding relations for the region II remain unchanged. The eigenvalue problem 
is introduced by the boundary conditions (5.17) and (5.18). The system of eight homogeneous 
algebraic equations has the form (5.19). The identity of (5.20) is valid also for the isotropic 
material, i.e. 

T±5 I. . 0 =x , - , . (5.152) 

The eigenvalue problem modifications (5.21)-(5.36) can be then employed. A l l the other proce­
dures remain identical, i.e. normalization (5.41a) or (5.41b), shape function introduction (5.43) 
and the ^-integral (5.117)—(5.119) (the relations (5.47)-(5.69) expanded for the piezoelectric 
problem). The finite element model has the same properties and geometry, except for the ma­
terial model of the material 1. 

Definitions for the asymptotic stresses and electric displacements of the isotropic non-
piezoelectric material have the form 

a ' =Hir^-l\lX2{9) + H2r5*-l\lX2{9) + H^Xt^e) 

a*2 =Hir^-l\lXl{9) + H2rs*-l\lXl{9) + H ^ X l ^ ) 
(5.153) 
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material constants epoxy polymer A 1 2 0 3 SiC 
r<E 
nE o 1 2 

CE °23 CE 
°22 f~iE 
°44 

x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 

0.80 
0.44 
0.44 
0.80 
0.18 

0.386 
0.257 
0.257 
0.386 
0.0645 

47.0804 
14.4626 
14.4626 
47.0804 
16.3089 

49.9391 
11.9433 
11.9433 
49.9391 
18.9979 

en 
ei2 

e26 

[Cm-2] 
[Cm-2] 
[Cm-2] 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

w 2 2 

x l O " 1 0 [C(Vm)-1] 
x l O " 1 0 [C(Vm)-1] 

0.372 
0.372 

0.797 
0.797 

0.885 
0.885 

0.885 
0.885 

Tab. 5.15: Material properties of typical insulators [99]. 

where the derivatives of the shape functions are given by 

K,X2 (0) = B * f c Z * * + B*5iZ*Si 1(9)wi, i = 1,2,3, (5.154a) 

+ L*5iTSi-\9)wi, i = 1,2,3, (5.154b) 

where 

and 

B* 
3 - 1 0 
i -i 0 
0 0 2i 

T*S—1 S— lry*S— 1 r°-lZ*°-l(9) = r ' 5-1 

kS-l S-l7r*S-l. 

(5.155) 

5ei(t-W 0 0 

•2iS(S - l)e^5-^dsm9 de^5-^9 0 

0 0 Se^5-1^6 

$e-i(8-i)e o o 

2t<y(<y - l )e- i (*- 2 )°s i i ie tfe-^-1)" 0 

0 0 Se-^-V6 

_rd-'Z™-\9) = rs-1 

Subscripts j S l and ) X 2 denote differentiation with respect to x\, x2 introduced in (5.78). 

(5.156) 

E x a m p l e 13: S ingular i ty exponents a n d electro-elastic f ield reconstruct ion of a non-
piezoelectric/piezoelectric b i -mater ia l notch Within the following studies, settings of all 
numerical procedures remain unchanged. For the sake of brevity, the ^-integral path indepen­
dence and mesh density studies are not performed. A bi-material notch with the local geometry 
illustrated in Fig. 5.22 is considered. The material 1 is non-piezoelectric and material 2 has 
piezoelectric properties stated in Tab. 5.6. 

Firstly, an insulator/piezoelectric bi-material notch is studied. Material parameters of four 
typical insulators are listed in Tab. 5.15. Dielectric constants of A I 2 O 3 and SiC were not 
known, therefore they were set ten times higher than the vacuum permittivity. Consider two 
bi-material combinations - epoxy/PZT-4 and A I 2 O 3 / P Z T - 4 . The first case is characterized by 
smaller elastic properties than the piezoelectric part, while the insulator in the latter case has 
higher elastic properties. Let the angle UJ2 = —180° be fixed. The dependence of the exponents 
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Fig. 5.44: The exponent <5, dependence on the notch angle u!± of the insulator/piezoelectric bi-material 
notch. The poling direction of the material 2 is a 2 = 90°. 

5i on the notch angle u\ for the bi-material combinations are shown in Figs. 5.44(a) and 5.44(b). 
The graphs have the typical character of the type A piezoelectric bi-materials described in Fig. 
5.26(a), nevertheless there are some dissimilarities. Firstly, the roots 5\ and 82 for epoxy/PZT-4 
bi-material approach the limit value 1.0 asymptotically, just as 83 —>• 2.0. But, in the case of the 
AI2O3/PZT-4 bi-material, only 62 shows approximative behaviour. The close proximity to the 
pole in the 1.0 brings about numerical troubles in the root finding algorithm f indroot, which 
has to be set properly. Additionally, in the latter bi-material combination there is a region 
between 60° and 70°, where roots S2 and 83 are complex conjugate. Finally, the regions where 
81 and 82 are complex conjugate, are wider and the imaginary parts of the roots do not reach 
their maximal value for C02 = —180°, as was typical for pure piezoelectric bi-materials. 

Following the results in Ou and Wu [25] for a piezoelectric bi-material (Tabs. 5.8 and 
5.9), Ou and Chen [99] investigated an insulator/piezoelectric interface crack in terms of the 
Hilbert problem. Since the studied non-piezoelectric materials had isotropic properties, they 
avoided the degenerate matrices by considering the isotropic material as a transversally isotropic 
piezoelectric material by assuming very small piezoelectric coefficients e n , ei2 and e26- They 
found out that, similarly to the pure piezoelectric problem, the bi-material combinations can 
show either e- or /{-class singularity. However, all investigated material combinations possessed 
only e-type singularity, see Eq. 5.103. Tab. 5.16 summarizes the singular exponents 8i obtained 
by the presented redefined eigenvalue problem for non-piezoelectric/piezoelectric interface crack 
of and their comparison with results reported by Ou and Chen [99]. The remaining exponent 
was always 83 = 0.5. One can see that both approaches provide coincident eigenvalues. The 
introduction of a small perturbation in piezoelectric coefficients to avoid degeneracy was also 
reported in [20]. 

Let us consider a conductor/piezoelectric bi-material notch. Material properties of four 
typical conductors are summarized in Tab. 5.17. The dielectric constants are functions of 
the parameter p, which will be later determined according to the assumption of the infinite 
permittivity. The structure of the expanded L E S formalism provides an elegant way to fulfil the 
infinite permittivity requirement. The only component in the material matrices A * and L * (see 
(5.147)) which depends on the dielectric coefficients, is the third diagonal element 0 4 4 . For the 
isotropic conductor properties, 0 4 4 is reduced to (see (4.132b)) 

a 4 4 = #>2/M4. (5.157) 

Since the non-permittivity /322 is the inverse of UJ\2^ it implies that 0 4 4 —>• 0 for UJ\2 ~^ 00• 
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bi-materials 81 £2 oscillatory index e comparison with 
Ou and Chen [99] 

epoxy/PZT-4t 0.5-r- 0.06260« 0.5 - 0.06260« 0.06260 0.0626 
epoxy/BaTi03 0.5-r- 0.06501« 0.5 - 0.06501« 0.06501 0.0650 

polymer/PZT-5H 0.5-r- 0.05021« 0.5 - 0.05021« 0.05021 0.0502 
AI2O3/PZT -4 0.5-r- 0.08639« 0.5 - 0.08639« 0.08639 0.0864 

AI2O3/PZT-6B 0.5-r- 0.04978« 0.5 - 0.04978« 0.04978 0.0498 
SiC/PZT-7A 0.5-r- 0.05652«' 0.5 - 0.05652«' 0.05652 0.0565 

t <5i,2 = 0.5 ± 0.06258« computed by Hwu and Kuo [21] by using the expanded Stroh formalism 

Tab. 5.16: Oscillatory indices of insulator/piezoelectric interface cracks and their comparison with results 
in [99]. 

material constants copper silver lead aluminium 
r<E 
CE 
o 1 2 

CE °23 CE °22 CE 
o 4 4 

x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 
x l O 1 0 [Pa] 

22.2852 
13.0882 
13.0882 
22.2852 
4.5985 

14.0399 
8.6051 
8.6051 
14.0399 
2.7174 

4.2992 
3.2433 
3.2433 
4.2992 
0.5280 

9.19 
4.53 
4.53 
9.19 
2.33 

en 
ei2 
e26 

[Cm-2] 
[Cm-2] 
[Cm-2] 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

w22 
x l O - 1 2 [C(Vm)-1] 
x l O - 1 2 [C(Vm)-1] 

8.854p 
8.854p 

8.854p 
8.854p 

8.854p 
8.854p 

8.854p 
8.854p 

Tab. 5.17: Material properties of typical conductors [26]. 

The expanded L E S formalism for modelling a conductor can be thereafter modified implicitly 
by setting 0 4 4 = 0. The knowledge of the dielectric constants is then not required. However, 
this cannot be applied to the finite element computations, because some commercial programs 
require the input in the form of permittivities o r W 2 2 - F ° r that purpose, a convergence study 
of the exponents 5i on the multiplication parameter p was carried out. The results for three 
representative bi-materials are illustrated in Fig. 5.45. It can be seen that by increasing the 
parameter p, and so the permittivity of the material, the singularity exponents 5i or oscillatory 
and non-oscillatory indices e and K converge to their limit values 5f°, e°° or K°° determined by 
setting 0 4 4 = 0, which represents the infinite permittivity. On the secondary axis the absolute 
error is shown. For the subsequent comparative studies, p = 10 8 was chosen. The absolute error 
of the singularity exponents does not then exceed 2 x 1 0 - 6 . 

A dependence of the exponents 5i on the notch angle OJ\ , while 012 = —180° is fixed, are shown 
in Figs. 5.46(a) and 5.46(b). The first graph has the character similar to the type B piezoelectric 
bi-material, which was typical for the most material combinations except for lead/PZT-6B bi-
material combination, which shows the type A behaviour. Decreasing u\ causes that r5i, 62 
and ^ 3 approaches 0.5, 1.0 and 1.5, respectively. Contrary to the previous examples, in the 
case of the lead/PZT-6B bi-material notch, the complex conjugate exponents are 62 and 63 for 
175° < wi < 180°, see Fig. 5.46(b). 

Similarly to the study of the insulator/piezoelectric interface cracks in [99], Ou and Chen 
[26] investigated a conductor/piezoelectric interface crack in the terms of the Hilbert problem. 
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Fig. 5.45: Convergence study of the singularity exponents f5, on the multiplicative parameter p introduced 
in Tab.5.17. (a) aluminium/PZT-4 bi-material notch, wi = 120°, w 2 = - 1 8 0 ° , (b) interface 
cracks of copper/BaTi03 and lead/PZT-6H bi-materials. 

Fig. 5.46: The exponent f5, dependence on the notch angle u!± of the conductor/piezoelectric bi-material 
notch. Poling direction of the material 2 is a2 = 90°. 

They avoided degenerate matrices due to the isotropic properties of the conductor by employing 
the same procedure, i.e. prescribing very small piezoelectric coefficients en , ei2 and e2Q. Tab. 
5.18 summarizes singular exponents Si obtained by the redefined eigenvalue problem for the non-
piezoelectric/piezoelectric interface crack. One can see that only lead/PZT-6B interface crack 
possess the e-type singularity, all other bi-materials show /-c-class singular exponents, which are 
evaluated Eq. (5.104). The resulting values and exponents reported in Ou and Chen [26] show 
a very good agreement. 

The effects of the poling direction a2 for an epoxy/PZT-4 and aluminium/PZT-4 interface 
crack are shown in Fig. 5.47. When considering a piezoelectric material coupled with an insulator 
or a conductor possessing isotropic material properties, the order of singularity does not depend 
on the fibre orientation of the material 2, which was also observed by pure isotropic/transversally 
isotropic material in Fig. 5.19. Let us consider an epoxy/PZT-4 interface crack with poling di­
rection a2 = 90° of the material 2. The boundary conditions illustrated in Fig. 5.32 remain 
identical, i.e. the upper side is loaded with applied stress a"2PPL = lOkPa and electric displace-
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bi-materials Si ^3 non-oscillatory comparison with 
index n Ou and Chen [26] 

copper/PZT-4 0.39017 0.60983 0.10983 0.1098 
silver/BaTiO-3 0.45764 0.542336 0.04236 0.0424 
lead/PZT-5H 0.47193 0.52807 0.02807 0.0281 

aluminium/P ZT-4 0.41274 0.58726 0.08726 0.0873 
copper/PZT-7A 0.43450 0.56550 0.06550 0.0655 

s2 S3 oscillatory index e 

lead/PZT-6B 0.5 4-0.01105« 0.5-0.01105« 0.01105 0.0110 

Tab. 5.18: Non-oscillatory and oscillatory indices of conductor/piezoelectric interface cracks and their 
comparison with results in [26]. 
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Fig. 5.47: The dependence of the interface crack exponents Si on the poling direction a2. 

merit = 0.01 C m - 2 . The asymptotic stresses, electric displacements, displacements and 
electric potentials calculated along the circular path with radius r = 0.001 mm encircling the 
notch tip together with results obtained by F E M are shown in Fig. 5.48. The superscripts Hi, 
i = 1,2,3 of plotted quantities listed in the legend indicate particular asymptotic terms in Eqs. 
(5.109a) and (5.153). The plots show a very good agreement of the asymptotic solution with 
the full-field F E M solution. The results computed along the circular path with radius r = 2 mm 
are shown in Fig. 5.49. We can see that the correspondence is still very good. It can be also 
observed that the electric potential in the insulator is higher than in the piezoelectric part. 

The stresses, electric displacements, displacements and electric potentials along the contours 
with radii r = 0.001 mm and r = 2 mm encircling the interface crack tip of the aluminium/PZT-4 
bi-material notch are shown in Fig. 5.50 and 5.51, respectively. One can observe that the electric 
potential in the conductor is constant and very close to zero. The correspondence between the 
asymptotic and the F E M solution is very good for both radii. 
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Fig. 5.48: The displacements, stress components, electric displacement components and electric potential 
of an epoxy/PZT-4 bi-material notch on the circular path r = 0.001mm, ui\ = 140°, UJ2 = 
-180°, the singularity exponents are Si = 0.5557, 52 = 0.6422, <53 = 0.7624. 
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Fig. 5.49: The displacements, stress components, electric displacement components and electric potential 
of an epoxy/PZT-4 bi-material notch on the circular path r = 2mm, ui\ = 140°, u>2 = —180°, 
the singularity exponents are Si = 0.5557, 82 = 0.6422, 8s = 0.7624. 
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Fig. 5.50: The displacements, stress components, electric displacement components and electric potential 
of an aluminium/PZT-4 interface crack on the circular path r = 0.001mm, coi = 180°, UJ2 = 
— 180°, the singularity exponents are 6\ = 0.4127, 62 = 0.5, S3 = 0.5873. 
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5.51: The displacements, stress components, electric displacement components and electric potential 
of an aluminium/PZT-4 interface crack on the circular path r = 2 mm, ui\ = 180°, W 2 = —180°, 
the singularity exponents are S± = 0.4127, 82 = 0.5, S3 = 0.5873. 
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6 Conclusion 
The determination of the singular stress behaviour is one of the necessary steps for life evaluation 
of constructions containing compound materials. The expansion of the Lekhnitskii-Eshelby-
Stroh formalism to piezoelectric materials firstly requires a deep investigation of pure anisotropic 
bi-material notches. The effect of the material and geometry and primarily the properties of 
the numerical procedures have to be studied. Many similarities between singular parameters of 
pure anisotropic and piezoelectric bi-material notches have been observed. However, mainly the 
numerical algorithms for finding roots of the characteristic and subsequent eigenvector extraction 
had to be enhanced. It was proved that the default settings of the advanced numerical procedures 
in numpy and s c i p y are inappropriate and have to be modified. 

Firstly, a character of the singularity exponents as a function of the notch face angle u\ 
and fibre orientation a\ was determined. Considering an in-plane problem and pure anisotropic 
material, there are two singularity exponents, which are both either real or complex-valued. 
The case of an interface crack is characterised by the oscillatory index. A H S V method was 
developed in order to easily identify roots of the eigenvalue problem. Then, an initial guess for 
the root finding algorithm can be estimated more precisely. 

To achieve the most precise solution, the data extracted from the finite element analysis 
with a very fine mesh were interpolated, so that the adaptive Romberg's integration method can 
be implemented. After that, the path independence of the ^-integral was proved. A precision 
of all computed parameters was illustrated on the good coincidence of the asymptotic and F E M 
solutions on two representative circular paths enclosing the notch tip. The modification of the 
LES formalism in terms of the Muskhelishvili complex potentials enables a modelling of isotropic 
materials. 

In the second step, the expanded Lekhnitskii-Eshelby-Stroh formalism for piezoelectric ma­
terials was applied to bi-material notches and interface crack problems. Although these two 
kinds of the stress concentrators are usually studied separately, especially in the case of the 
piezoelectric materials, the presented results showed that the used form of the expanded L E S 
formalism and the eigenvalue problem captures acceptably both particular problems of the frac­
ture mechanics. It was shown that the eigenvalue problem can be simply expanded, but the 
attention has to be paid to the eigenvector extraction due to the ill-conditioned matrices in the 
piezoelectric constitutive laws. The singularities of very closed bi-material notches, characterised 
by the complex valued exponents, were part of the discussion. Also arbitrary poling orientation 
of the piezoelectric materials in the x\x2 plane was included into the considerations. 

The generalization of the so-called e and K classification of the piezoelectric bi-materials was 
suggested. It was ascertained that the exponents of the singularity of the stresses, mechanical and 
electric displacements and electric potential are independent of the parallel poling orientation of 
the bi-material. Although in the case of the interface crack, the used eigenvalue procedure is not 
able to distinguish between the real and complex exponent form as does the Hilbert problem 
formulation presented in Ou and Wu [25]. It was shown that both methods give equivalent 
results. After that, the ^-integral path-independence was proved. Nevertheless, precision of the 
^-integral evaluation method has to be significantly increased. The high accuracy of the GSIFs 
calculations was demonstrated by comparing the asymptotic solution with the full-field F E M 
solution obtained using a very fine mesh. 

A n insulator/piezoelectric and conductor/piezoelectric bi-material notches were modelled by 
implementing the Muskhelishvili complex potentials similarly to the pure anisotropic bi-material 
notches. As the piezoelectric coefficients were omitted, the elastic and electric fields are decou­
pled and the linear electrostriction is not considered. The effect of the quadratic electrostriction, 
which could be manifested under electrical loading, is not included in the constitutive law. It was 
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shown that the singularity exponents for the interface cracks agree with the e and K classification 
reported in Ou and Chen [99] and Ou and Chen [26]. 

The effect of the boundary conditions of a piezoelectric bi-material notch was also stud­
ied. It was observed that when one face was clamped, the characteristic equation has six roots. 
The relations for electro-elastic fields description were extended for all singular terms. A fu­
ture research will focus on proposal of fracture criteria based on extending the Finite Fracture 
Mechanics concept [121] to piezoelectric bi-material notches. 
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Nomenclature 

r<E 

Di 
r-jappl 

i 
Ei 

Hi 

K 

Sij, Sij 
oD 

aij 
oD 

a,b 

&ij) dij, hij, c/ij 

e°. 
"i j 
f(z) 

n 

r,0 

rc 

T 
i - F E M 

A , L , B 

u 
U F E M 

;1,1 

Z 

n 

Elastic stiffness, reduced elastic stiffness 

Elastic stiffness at constant electric field 

Reduced elastic stiffness at constant electric field for generalized plane strain 
and short circuit 

Electric displacement 

Applied electric displacement 

Electric intensity 

Generalized stress intensity factors 

Transformation matrix 6x6 describing in-plane rotation 

Stress intensity factors 

Elastic compliance, reduced elastic compliance 

Elastic compliance at constant electric displacement 

Reduced elastic compliance at constant electric displacement for generalized 
plane strain and short circuit 

Stress functions 

Complex potentials 

F E M model dimensions 

Piezoelectric coefficients 

Reduced piezoelectric coefficients 

Complex function vector 

Reduced piezoelectric coefficients 

Imaginary unit 

Length parameter 

Normal vector 

Electric charge 

Polar coordinates 

Radius of the integration contour 

Tractions 

Vector of tractions computed by F E M 

Material matrices 

Displacements 

Vector of displacements computed by F E M 

Eigenvectors 

Cartesian coordinates 

Complex variable 

Transformation matrix 3x3 describing in-plane rotation 
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strain and short circuit 

Singularity exponent 
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Shape function vector for displacements 
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Material eigenvalues 

Poisson's ratio 

Poisson's ratio in the principal material directions L,T,T' 
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Stress tensor 

Applied stress 

Finite element method 

Generalized stress intensity factor 

Generalized stress singular concentrator 

Lekhnitskii-Eshelby-Stroh formalism 

Strain energy density factor 
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A H S V algorithm for visualizing a complex function 
One of the crucial tasks in problems of bi-material notches is finding of the roots Si of the 
transcendental function (5.36). When the roots are real numbers, a root finding algorithm can 
be constructed easily, e.g. by using the Newton's method [114]. But there are special cases, 
such as orthotropic interface cracks [110] or isotropic interface corners studied in [143], which 
have complex-valued roots. In such cases, it is suitable to depict the transcendental function in 
order to quantify the roots visually. Additionally, the initial guess for the Python global search 
algorithm f indroot can be set more precisely. 

The problem of depicting a complex function lies in its definition. Several methods were 
introduced in [144, 145, 146, 147] and their subsequent research work, such as analytic landscape 
depicting. 

The complex function is described by its modulus \f(z)\ and argument arg/(z) (in the lit­
erature also known as a phase). The modulus \f(z) \ and the argument aigf(z) can be described 
by one-colour surface and certain colour space, respectively. The way, how both descriptions can 
be displayed in one 2D graph, explains the following appendix via the so-called H S V algorithm. 

A . l Domain colouring 

For purposes of the present study, the H S V method for depicting a complex function was de­
veloped [148], which is based on recomputing a complex number to hue (H), saturation (S) and 
value (V). A complex function f(z) : C —> C lives in four real dimensions, which brings about 
difficulties in depicting such a structure, because a human imagination is used to perceive only 
in a 3D space. 

It is suitable to express a complex number z in the eulerian form, i.e. 

z = x\ + 1X2 = \z\ elip, (A. l ) 

where xi, X2 are Cartesian coordinates, \z\ is called the module and <p the phase. They can be 
encoded to a H S V colour space. 

A H S V colour model is a cylindrical-coordinate representation of a standard R G B colour 
model. In the literature, there are many relations how to recalculate a module and a phase to 
hue, saturation and value, such as [149, 150] by using logarithmic or goniometric functions. 

A complex number in the eulerian form A . l is recalculated to hue H, saturation S and value 
V by the following prescription: 

H = + 1] m o d i , (A.2a) 
\2n 

S = const (A.2b) 

V = l (A.2c) 
l + \z\ v ' 

Then, hue represents a colour and value a brightness (opacity of the black colour). Saturation 
defines a colour intensity with respect to an individual character of the studied function. It holds 
for hue and value that H £ (0,27r) and V £ (0,1). The function A.2c represents a morphism (or a 
mapping function) that transforms the absolute value of z to the interval (0,1). Its development 
is depicted in Fig. A.2. Data for the phase plot are obtained by transforming the H S V colour 
model to the R G B colour model by using the Python library hsv_to_rgb. 
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5 = 1 

Fig. A . l : Cut-away 3D model of the HSV colour space. On the right there is a circumferential cut by 
5 = 1 and below the unit circle. 

A.2 Phase portrait 

Many common functions can be depicted by using the above described procedure. However, 
fracture mechanics of singular stress concentrators, especially piezoelectric bi-material notches, 
deals with numbers of various orders, which brings about difficulties with the value V. For 
example, the elements of the compliance matrix (see Eq. (4.107a)) are in the order of 1 0 " 1 1 M P a . 
In the denominator of A.2c, there is a summation of 1 and a lower order number \z\, which causes 
problem for the floating point arithmetic. Substitution of sufficiently small \z\ into (A.2c) leads 
to 1. The contribution of the small number is lost and value V equals to 0. The phase plot is 
then destroyed by black colour (V ~ 0, as can be seen in Fig. A.3). 

For root identification purposes, we can forget about the modulus completely and depict 
only the phase encoded to the hue. The lost information still makes possible to identify root of 
the investigated functions. Let us illustrate it on an example adopted from [148]. The phase 
portrait of a complex function 

/ w = sTTTi <A-3> 

is depicted in Fig. A.4. Hue remains defined by (A.2a), saturation and value were set to S = 1 
and V = 1. 

A . 3 Zero and pole identification 
Three exceptional points where all colours come together are highlighted in Fig. A.4. These 
points are characterised as zeros, f(z) = 0, and poles, f(z) = oo. Zeros and poles can be 
distinguished by ordering of colours in their neighbourhood. If we travel on a circle in the 
vicinity of the point in the clockwise direction, then a zero has the same orientation (same 
colour ordering) as on the unit circle (see Fig. A . l ) , a pole has a reversed orientation. The 
order of a zero or a pole can be determined as a number of isochromatic rays of one arbitrarily 
chosen colour, which goes to that point. Then, the phase ip rotates with n-times at the point z 
if the function f{z) has a power n as follows from the eulerian form ( A . l ) . Wi th this knowledge 
we can then say that the points 1 and 2 are poles of order one and the point 3 is a zero also of 
order one [148]. 
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kl kl 

Fig. A.2: Mapping function A.2c in the range \z\ € (0,103) (left) and zoomed in for \z\ € (0,5) (right). 

Fig. A.3: Phase plot of the determinant (5.22) by using the mapping function A.2c. The reduction (B.6) 
causes destruction of the whole domain by black colour. 
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B Reduction of the linear equation system 
The system (5.22) can be reduced to a system of two equations by using the following algebraic 
operations. If the first row of (5.22) is multiplied by inverse of X * from the left, we get 

( X i ) - 1 X j l i V + L V = Y J L V + L V = 0. (B.la) 

A n analogous equation can be obtained from the second row of (5.22): 

(x2) 1 X ^ L V 1 + L V = Y ° L ¥ + L V 1 = o. (B.lb) 

The combination of the relations (B.la) and (B.lb) leads to the relations between eigenvectors 
v and w, which 

L V = - Y j L V , (B.2a) 

r 1 1 i i 
L w 

• Y ° L ¥ . (B.2b) 

By substituting (B.2) to the third row of (5.22), one gets: 

B 1 L V + B S Y i L V - B n L n v n - B J Y J ^ V 1 

»11 i n n v l A T H „ I I Bl + Bl
0Y\) L V - (B^ + BQ Y 2 J I / V 1 = 0. (B.3) 

From the fourth row of (5.22) we get: 

L V + L V - L V - L V 
= L V - Y j L V - L n v n + Y ^ V 1 = 

= ( i - Y\) L V - ( i - Y!, 1) L V = 0, (B.4) 

from which we express the following relation: 

L n v n = ( i - Y n ) _ 1 ( i - Y\) L V . (B.5) 

Substituting (B.5) into (B.3), the resulting reduced system of two equations is obtained: 

Bl + Bl
0Y\ - ( B ? + B f Y ? ) (I - Y ? ) ^ (I - Y i ; ~ L V = 0. (B.6) 
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C Additional results for a transversally isotropic bi-
material notch 

C . l Auxi l iary shape functions 
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Fig. C.2: Components of the auxiliary shape function vectors (a) f)1, f)2 and (b) A i , A2 for an interface 
crack to\ = 180°, L02 = —180° (materials are defined in Tab. 5.1). 
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C.2 Displacement and stress development with imaginary parts 
depicted 
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Fig. C.3: Real and imaginary parts of displacement and stress components evaluated on the circular path 
with radius r = 1 mm enclosing the interface crack tip. 
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C.3 Displacement and stress development with non-coincident 
fibre orientation 

9 [rad] 6 [rad] 9 [rad] 

Fig. C.4: The displacement and stress components on the circular path r = 0.001mm of an interface 
crack ui\ = 180°, W 2 = —180° and material 1 fibre orientation a\ = 50°. Materials are defined 
in Tab. 5.1, singularity exponents are <$i = 0.5092 + 0.02512i, 52 = 0.5092 - 0.02512i. 
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D Additional results for a piezoelectric bi-material 
notch 
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Fig. D . l : The exponent 8i dependence on the PZT-7A/BaTi03 bi-material notch geometry w i . Poling 
directions are ct\ = 90°, a2 = 90°. 
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Fig. D.2: The dependence of the interface crack exponents 8i on the poling direction a\. The poling 
direction a2 = 0°. 
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D . l Auxi l iary shape functions 

Fig. D.3: Components of the auxiliary shape function vectors (a) f ) 2 , 1)3 and (b) A i , A2, A3 for a 
PZT-5H/PZT-4 bi-material notch defined by u± = 120°. 
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Fig. D.4: Components of the auxiliary shape function vectors (a) fj1, r)2> Vz a n ( i (b) A i , A 2 , A3 for an 
interface crack of PZT-5H/BaTi03 bi-material. 
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D.2 Mechanical and electrical fields of a bi-material with nonco-
incident poling orientation 
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Fig. D.5: The displacements, stress components, electric displacement components and electric potential 
of a PZT-5H/PZT-4 bi-material notch on the circular path r = 0.001mm, ui\ = 155°, UJ2 = 
— 180°. Poling directions are a\ = 40° and a2 = 90°, the singularity exponents are 8\ = 0.4647, 
52 = 0.5271, <53 = 0.6174. 
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Fig. D.6: The displacements, stress components, electric displacement components and electric potential 
of a PZT-5H/PZT-4 bi-material notch on the circular path r = 2 mm, wi = 155°, w 2 = -180°. 
Poling directions are a\ = 40° and a 2 = 90°, the singularity exponents are 8\ = 0.4647, 
52 = 0.5271, <53 = 0.6174. 
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E Attached scripts 
The attached C D contains scripts for evaluating the fracture-mechanical parameters for determi­
nation of the stress intensity in the vicinity of an anisotropic and piezoelectric bi-material notch. 
The first group are the A P D L macros executable by A N S Y S software (within the dissertation 
A N S Y S vl8.1 was used). Input data are the material parameters, notch geometry and the line 
division parameter A c . The output files contain nodal data of electro-elastic fields. Below, the 
macros for evaluation of the displacement, electric potential, stress and electric displacement 
finite element fields are listed. 

Notch. M. _v3. .mac Anisotropic bi-material notch with the free-free notch faces. 
Notch. .AI. _v3. .mac Isotropic/anisotropic bi-material notch with the free-free notch faces. 
Notch. M. _v3. .CF.mac Anisotropic bi-material notch with the free-clamped notch faces. 
Notch. .PP. _v3. .mac Piezoelectric bi-material notch with the free-free notch faces. 
Notch. .PI. _v3. .mac Isotropic/piezoelectric bi-material notch with the free-free notch faces 
Notch. .PP. _v3. .CF.mac Piezoelectric bi-material notch with the free-clamped notch faces. 
sqmesh.mac Macro controlling the mesh structure. 

The second group is represented by Python scripts (Anaconda Python 2.7) for evaluating 
the electro-elastic fields. The input parameters are the material data including the orientation 
of the principal material directions (or poling), the notch geometry and the initial guess for the 
mpmath.findroot algorithm. The result files from the F E M analysis described above are also 
imported. Below, scripts for evaluation of the singularity exponents, generalized stress inten­
sity factors and displacements, electric potentials, stresses and electric displacements computed 
along the circular paths around the notch tip are listed. 

LES. _AA_ v3. mac 
LES. .AI. v3. mac 
LES. _AA_ v3_ .CF.mac 
LES. .PP. v3. mac 
LES. .PI. v3. mac 
LES. .PA. v3. mac 
LES. .PP. v3_ .CF.mac 
mod HSV v4.mac 

Anisotropic bi-material notch with the free-free notch faces. 
Isotropic/anisotropic bi-material notch with the free-free notch faces. 
Anisotropic bi-material notch with the free-clamped notch faces. 
Piezoelectric bi-material notch with the free-free notch faces. 
Isotropic/piezoelectric bi-material notch with the free-free notch faces. 
Anisotropic/piezoelectric bi-material notch with the free-free notch faces. 
Piezoelectric bi-material notch with the free-clamped notch faces. 
Module for depicting the phase portrait of the characteristic function. 
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