
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

PROCESSING OF THE BLOCKCHAIN EMPLOYING
IPFS
VYUŽITÍ IPFS PRO ZPRACOVÁNÍ BLOCKCHAINU

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MATÚŠ MÚČKA
AUTOR PRÁCE

SUPERVISOR Ing. VLADIMÍR VESELÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2019/2020

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
22862

Student: Múčka Matúš, Be.
Programme: Information Technology Field of study: Information Systems
Title: Processing of the Blockchain Employing IPFS
Category: Networking
Assignment:

1. Learn about cryptocurrencies and other blockchain technologies (namely, Ethereum, Bitcoin,
DigiByte, Decred, Monero).

2. Study the Interplanetary File System, the principles of network communication, distribution
and content addressing.

3. Design a prototype of the IPFS connector for generic blockchain access in compliance with
the supervisor's recommendations.

4. Implement a prototype that delivers demanded functionality on a particular blockchain of
considerable size. Write the API for integration with other applications.

5. Perform validation testing and measure prototype performance characteristics. Discuss
possible extensions.

Recommended literature:
• Narayanan, A., Bonneau, J . , Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press.
• Bitpay, Guides - Bitcore, [online] https://bitcore.io/guides, [2018-10-19].

Requirements for the semestral defence:
• Tasks 1, 2 and 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Veselý Vladimír, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: October 22, 2019

Master's Thesis Specification/22862/2019/xmucka03 Page 1/1

https://bitcore.io/guides
https://www.fit.vut.cz/study/theses/

Abstract
This work aims to design a platform for processing blockchain data of selected cryptocurren-
cies for further exploring using IPFS. In this thesis, we created a proprietary decentralized
and distributed database system that supports advanced queries. The solution provides a
well-arranged graphical user interface for data visualization as well as A P I , which makes it
easy to connect to other applications. The benefit of this work is a new view of blockchain
processing which opens up new possibilities in its exploring.

Abstrakt
Cieľom tejto práce je navrhnúť platformu na spracovanie a preskúmavanie blockchainu vy
braných kryptomien pri použití IPFS. Na riešenie tohoto problému bolo potrobné navrhnúť
vlastný decentralizovaný a distribuovaný databázový systém, ktorý podporuje pokročilé
dotazy. Vytvorené riešenie poskytuje prehľadné grafické užívateľské rozhranie, ktoré slúži
na vizualizáciu dát a taktiež A P I , vďaka ktorému sa dá systém jednoducho napojiť na iné
aplikácie. Prínosom tejto práce je nový pohľad na zpracovávanie blockchainu čo otvára nové
možnosti v jeho prehľadávaní.

Keywords
IPFS, decentralization, blockchain, cryptocurrency

Kľúčové slová
IPFS, decentralizácia, blockchain, cryptocurrency

Reference
MÚČKA, Matúš. Processing of the Blockchain Employing IPFS. Brno, 2020. Master's
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Vladimír Veselý, Ph.D.

Rozšírený abstrakt
Kryptomeny sa stali v uplynulých rokoch veľmi populárnymi. Medzi dôvody ich popu
larity patrí anonymita, prístupnosť, rýchlosť prenosu a možnosť obísť existujúce finančné
inštitúcie.

Kryptomeny sú postavené na technológii nazývanej blockchain, ktorá bola predstavená
svetu v roku 2008 a vytvorená osobou alebo skupinou ľudí pod pseudonymom Satoshi
Nakamoto. Blockchain funguje ako verejná účtovná kniha pre kryptomeny. Sú v ňom za
znamenané všetky transackie, ktoré v danej mene prebehli. Prechádzaním blockchainu je
možné skúmať jednotliné transakcie, vypočítať aký má adresa zostatok, kedy je adresa na
jviac aktívna a tým získať dôležité metadata, ktoré neskôr môžu poslúžiť napríklad k odhale
niu totožnosti vlastníka adresy, alebo jeho zaradenie do určitej kategórie.

Pre uľahčenie prechádzania blockchainu vznikli blockchain prieskumníky. Tie poskytujú
pre užívateľa grafické užívateľské rozhranie alebo A P I , ktoré uľahčuje užívateľom preskúma-
vanie blockchainu. Nevýhodou klasických blockchain prehliadačov je, že používajú NoSql
databázové systémy, v ktorých nie je možné vykonávať nad dátami zložité dotazy.

Výsledkom tejto diplomovej práce je blockchain prieskumník postavený na decentral
izovanom súborovom systém IPFS, ktorý súboru adresuje na základe ich obsahu. Jeho
výhody spočívajú v tom, že obsah databázy, v ktorej je uložený blockchain, je decentrali
zovaný a zároveň náš vlastný databázový systém podporuje pokročilé databázové dotazy.
Celý systém sa skladá z niekoľkých častí.

Hlavná časť je modul Explorer-core, v ktorom sme implementovali decentralizovaný a
distribuovaný databázový systém. Databáza používa pre indexovanie dát nad vlastnosťami
objektov štruktúru B-stromu, ktorá je optimalizovaná na uloženie do IPFS. Explorer-core
taktiež poskytuje bohatý dotazovací jazyk na vytváranie databázových dotazov. Databá
zový dotaz môže pozostávať z viacerých podmienok, medzi ktorými sú logické spojky kon-
junkcia a disjunkcia. Databázový systém si následne zvolí ktoré indexy na spracovanie
dotazu použije. Databázový dotaz taktiež môže obsahovať informácie koľko výsledkov
preskočiť (offset) a koľko vrátiť (limit). Vďaka voľbe programovacieho prostredia (Type
script), Explorer-core funguje vo webovom prehliadači a tiež ako natívna aplikácia interpre
tovaná pomocou Node.js. V závislosti v akom prostredí je Explorer-core spustený, komu
nikuje s ostatnými prvkami systému prostredníctvom T C P socketov, technológie WebSocket
alebo WebRTC.

Ďalšia časť systému je terminálová aplikácia Feeder, ktorá je zodpovedná za synchronizá
ciu dát z blockchainu do IPFS. Môže byť pripojená k viacerým zdrojom dát z blockchainu
ako napríklad Blockbook, InsightAPI alebo priamo k blockchainovému uzlu. Feeder dáta
spracuje a uloží do nášho databázového systému. Dáta su potom dostupné iným systé
movým aplikáciám ako sú ExplorerAPI a ExplorerGUI.

ExplorerAPI je aplikácia ktorá poskytuje jednoduché aplikačné rozhranie na získavanie
dát pomocou protokolu H T T P . Aplikácia ExplorerAPI môže byť použitá na integráciu
s inými aplikáciami, alebo na tvorbu grafických užívateľských rozhraní pre staršie zariade
nia, na ktorých nie je možné rozbehnúť IPFS uzol. ExplorerAPI poskytuje tri adresy, na
ktorých je možné získať dáta (pre blok, transackiu a adresu). Obsah žiadostí odoslaných
na ExplorerAPI je inšpirovaný dotazovacím jazykom GraphQL.

Prezentačná vrstva s grafickým užívateľským rozhraním sa nazýva ExplorerGUI a je
implementovaná ako jednostránková aplikácia (vďaka tomu sa pri každom načítaní stránky
neresetuje pripojenie do IPFS siete). ExplorerGUI tvorí niekoľko separátnych obrazoviek
(domovská obrazovka s prehľadom pripojených kryptomien, list blokov, detail bloku,
transakcia, adresa) a poskytuje moderné a prehľadné grafické rozhranie pre používateľa.

Každá významná komponenta systému bola otestovaná pomocou unit testov. Výkon
nosť systému bola porovnaná s inými databázovými systémami ako je M y S Q L a Post-
greSQL. Náš databázový systém sa s pribúdajúcim počtom používateľov zrýchľoval, pretože
sa obsah databázy lepšie distribuoval, zatiaľ čo rýchlosť klasických databázových systémov
sa narastajúcim počtom klientov spomaľovala, pretože server bol preťažený. P r i určitom
počte užívateľov dokázal náš decentralizovaný databázový systém spracovať viac dotazov
za sekundu ako klasické databázové systémy.

Výsledná platforma dokáže spracovať blockchian kryptomien a poskytuje decentral
izované a distribuované riešenie na jeho preskúma vanie. Oproti klasickým blockchain
prieskumníkom má naša platforma len minimálne náklady na prevádzku a tiež je schopná
zotaviť sa po výpadku časti siete.

P r o c e s s i n g o f t h e B l o c k c h a i n E m p l o y i n g I P F S

Declaration
I declare that this master's thesis was prepared as an original author's work under the super
vision of Mr . Ing. Vladimír Veselý, P h D . A l l the relevant information sources, which were
used during the preparation of this thesis, are cited and included in the list of references.

Matúš Múčka
June 3, 2020

Acknowledgements
Rád by som poďakoval mojej priateľke za podporu pri písaní tejto práce a za rady spojené
typografiou. Ďalej chcem poďakovať môjmu otcovi za odbornú diskusiu pri orientácii sa
v databázových systémov. Môjmu bratovi ďakujem za vzájomnú podporu a motiváciu
počas štúdia. Tiež ďakujem vedúcemu tejto práce za príležitosti, ktoré sa mi počas štúdia
naskytli. V neposlednej rade by som chcel poďakovať celej svojej rodine a priateľom za
podporu počas celého štúdia.

Teraz nasleduje recept na výborné pálivé veganské kari. Najpr je potrebné zaobstarať
si červenú kari pastu. Zvyčajne býva dostať v obchodoch s orientálnym sortimentom.
Na rozohriatej pancivci s olejom opražíme kari pastu spolu s tofu nakrájaným na kocky.
Po chvíle smaženia zmes zalejeme mliekom z dužiny kokosu. Ďalej pridáme rôzne druhy
zeleniny, ktoré doma máme (brokolica, karfiol, bambusové výhonky, mrkva a pod.). Varíme
kým zelenina nezmäkne. Podávame s ryžou.

Contents

1 Introduction 3

2 Cryptocurrencies 4
2.1 Bitcoin 5
2.2 DigiByte 5
2.3 Ethereum 6
2.4 Decred 6
2.5 Monero 6
2.6 Analysis of Current Blockchain Explorers 7

2.6.1 Blockbook 7

3 IPFS 8
3.1 IPFS Stack 8
3.2 Libp2p 9
3.3 I P L D 9
3.4 IPFS 9

3.4.1 IPFS Core APIs 10
3.5 IPNS 11
3.6 Filecoin 12
3.7 Existing Blockchain Explorers in IPFS 12

4 Design 13
4.1 Database System 13

4.1.1 OrbitDB 13
4.1.2 Textile 13
4.1.3 Database System Design 14

4.2 Platform Components 18
4.2.1 Database Design 18
4.2.2 Feeder 19
4.2.3 Explorer 20

5 Implementation 23
5.1 Explorer-core Implementation 23

5.1.1 IPFS Connector 24
5.1.2 Indexes 24
5.1.3 Query System 25
5.1.4 Database 27

5.2 Feeder 30

1

5.2.1 ExplorerGUI 31
5.2.2 ExplorerAPI 33

6 Testing and Benchmarking 35
6.1 Testing 35

6.1.1 Unit Testing 35
6.2 Benchmarking 35

6.3 Comparing with Blockchain Explorers 39

7 Conclusion 41

Bibliography 42

A Contents of the included storage media 44

2

Chapter 1

Introduction

H T T P is "good enough" for the most use cases of distributing files over the network.
However, when we want to stream lots of data to multiple connected clients at once, we
start to hit its limits. When two clients are requesting the same data, there is no mechanism
in H T T P that would allow sending the data only once. Sending duplicate data has become
a problem in large companies because of bandwidth capacity. Blizzard 1 started to distribute
video game content via a distributed solution because it was cheaper for the company and
faster for players [13]. Linux's distributions use Bit Torrent to transmit disk images".

The Bitcoin blockchain has now (i.e., May 2020) 242 gigabytes3. When blockchain is
processed (i.e., all its data are parsed), the size can grow twice as much. If there are multiple
blockchains, then data can have few terabytes. When we are sharing blockchains data from
the server for several clients, there is a big chance that multiple clients want the same data.
They may be working on the same case and investigating the same wallets. So in standard
solution with relational database and some H T T P server, the server has to search in all
data (that can have a size of few terabytes) and transmits selected data to the client for
every request. This problem happens even if a different client asks for the same data after a
few moments/minutes. The behaviour mentioned above dramatically limits the scalability
of the server.

Services that are using H T T P , often have client-server architecture, so there is also a
problem with a single point of failure. If the server for some reason stops working, the client
can not receive data. In a distributed file system such as IPFS, there is no such problem
as a single point of failure because all data are duplicated on multiple clients.

This master thesis is divided into eight chapters. Chapter 2 describes the differences
between cryptocurrencies used in this project. Chapter 3 describes IPFS and all its layers.
The design of the platform created in this thesis is in Chapter 4. The implementation of all
applications that are provided with this project is in chapter 5. Finally, the summarization
of results achieved in this work is in chapter 7.

1 Computer games company - https://www.blizzard.com/
2Image of Debian downloadable by BitTorrent https://www.debian.org/CD/torrent-cd/
3 A current size of bitcoin blockchain can be seen at https://www.statista.com/statistics/647523/

worldwide-bitcoin-blockchain-size/

3

https://www.blizzard.com/
https://www.debian.org/CD/torrent-cd/
https://www.statista.com/statistics/647523/

Chapter 2

Cryptocurrencies

There were hundreds of failed attempts of creating cryptographic payment systems before
cryptocurrencies like Bitcoin and Ethereum came into existence. Some of these systems are
listed in Figure 2.1. A l l of them were created before Bitcoin. Despite that, only a few of
them survived to these days. Some of these attempts were only academic proposals while
others were deployed and tested systems. One of the survival is PayPal. It is only because
it quickly gave up its original idea of hand-held devices for cryptographic payments. [26]

So there is a question, what makes cryptocurrencies successful nowadays? It may be
easy to use principle and no need for external hardware. Another critical component of
cryptocurrencies discussed in this work is blockchain. Generally, it is a ledger in which
all transactions are securely stored. The idea behind blockchains is pretty old, and it was
initially used for timestamping digital documents. [11]

ACC CyberCents K P M P T P Pro ton

Agora CyberCo in I M B - M P Net900 Redi -Charge

AIMP CyberGo ld InterCo n NetBi l l S/PAV
Al lopass Dig iGold Ipin Ne tCard 5andia Lab E-Cash

b-money Dig ta =i k Rc ad jav ien NetCash Secure Cour ie r

BankNet e-Cömm Karma NetCheque S e m o p o

Bitbit E-Gold Lot teryTickets NetFare SET

Bitgold Ecash Lucre No3 rd SET2GO

Bitpass eCharge M a g i c M o n e y One Click Charge SubScr ip

C-SET eCoin M a n d a t e P a y M e Trivnet

CAFE Edd M i c r o M i n t PayMet TUB

CheckFree e V e n d M i c r o m o n e y PayPal Twit pay

Cl ickandBuy First V i r tua l M i l l iCent PaySafeCard Ve i F c i e

Cl ickShare FSTC Electronic Check M in i -Pay PayTrust V isaCash

C o m m e r c e N e t Ge ldkar te Min i t i x P a y W o r d Wa l l i e

CommercePOINT Globe Left M o b i eMc i r ey Pepperco in Way2Pay

C o m m e r c e S T A G E Hashcash M o j o PhoneTicks W o r l d P a y

i:y::;a '1 HINDE Mo l l i e Playspan X-Pay

CyberCash • Bill M o n d e x Pol l ing

Figure 2.1: Electronic payment systems before cryptocurrencies [20]

4

2.1 B i t c o i n

Bitcoin is probably the most famous cryptocurrency. It started as a digital currency trans
action protocol but founded a new concept of blockchain [4]. On 3 r d January 2009, Satoshi
Nakamoto (an alias for a person or group persons authored the bitcoin white paper) mined
the genesis block of bitcoin (block with height 0). Satoshi got the reward of 50 bitcoins
(half a million US dollars in the time of writing). This text was embedded in the genesis1

block (see Figure 2.2): The Times 03/'Jan/2009 Chancellor on brink of second bailout for
banks [6]. Bitcoin has a limited supply of coins to approximately 21 million. New coins are
emitted only when a new block is created [19].

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 1 0 0 0 0 0 00 00 0 0 0 0 00 00 00 00 0 0 00 00 0 0 0 0 00

0 0 0 0 0 0 2 0 0 0 0 0 00 00 3 B A 3 E D F D 7 A 7 B 1 2 B 2 7 A C 7 2 C 3 E ; £ i y z { . 2 z C , >

0 0 0 0 0 0 3 0 67 7 6 8 F 6 1 7 F C 8 I B C 3 88 8 A 5 1 32 3 A 9 F B 8 A A g v . a . E . A ~ S Q 2 : Y , a

0 0 0 0 0 0 4 0 4 B I E 5 E 4 A 2 9 A B 5 F 4 9 F F F F 0 0 I D I D A C 2 B 7 C K . A J) « I y y . . .-,+ 1
0 0 0 0 0 0 5 0 0 1 0 1 00 00 0 0 0 1 00 00 00 00 0 0 00 00 0 0 0 0 00

0 0 0 0 0 0 6 0 0 0 0 0 00 00 0 0 0 0 00 0 0 00 0 0 0 0 00 00 0 0 0 0 00

0 0 0 0 0 0 7 0 0 0 0 0 00 00 0 0 0 0 F F F F F F F F 4 D 04 F F F F 0 0 I D y y y y M . y y . .

0 0 0 0 0 0 8 0 0 1 04 4 5 54 68 6 5 2 0 54 69 6D 6 5 7 3 2 0 3 0 3 3 2 F . . E T h e T i m e s 0 3 /

0 0 0 0 0 0 9 0 4 A 6 1 6 E 2 F 3 2 3 0 3 0 3 9 2 0 4 3 68 6 1 6 E 6 3 6 5 6 C J a n / 2 0 0 9 C h a n c e l

0 0 0 0 0 0 A 0 6 C 6 F 72 2 0 6 F 6 E 2 0 62 72 69 6 E 6 B 2 0 6 F 6 6 2 0 l o r o n b r i n k o f

0 0 0 0 0 0 B 0 7 3 6 5 6 3 6 F 6 E 64 2 0 62 6 1 69 6 C 6 F 7 5 7 4 2 0 6 6 s e c o n d b a i l o u t f

ooooooco 6 F 7 2 2 0 62 6 1 6 E 6 B 7 3 F F F F F F F F 0 1 0 0 F 2 0 5 o r b a n k s y y y y . . 6 .

0 0 0 0 0 0 D 0 2 A 0 1 00 00 0 0 4 3 4 1 04 67 8 A F D B 0 F E 5 5 4 8 2 7 * C A . g S y ° b U H '

0 0 0 0 0 0 E 0 1 9 67 F l A 6 7 1 3 0 B 7 1 0 5 C D6 A 8 2 8 E 0 3 9 0 9 A 6 . g n | q O • . \ 0 " (a9 . |

0 0 0 0 0 0 F 0 7 9 62 E 0 E A I F 6 1 D E B 6 4 9 F 6 B C 3 F 4 C E F 3 8 C4 y b a e . a I > 1 [I 6 4 ? L i 8 A

0 0 0 0 0 1 0 0 F 3 5 5 04 E 5 I E C I 12 D E 5 C 38 4 D F 7 B A 0 B 8D 57 o U . a . A . I > \ 8 M ^ ° . . W

0 0 0 0 0 1 1 0 8 A 4 C 7 0 2 B 6 B F l I D 5 F A C 00 0 0 00 00 SLp+kn.

Figure 2.2: Genesis bitcoin block

First documents purchase happened in 22 n d May 2010, when Laszlo Hanyecz bought
two pizzas for 10,000 bitcoins ($41 then, now about $80,000 000)2. This transaction hash is
al075db55d416d3cal99f55b6084e2115b9345el6c5cf302fc80e9d5fbf5d48d and is stored
in bitcoin blockchain forever3.

2.2 D i g i B y t e

DigiByte was developed and released in 2013. It is based on Bitcoin with some adjustment
in the code to improving functionality. In late 2017 there was 200,000 pending transaction
in Bitcoin. Miners preferred transaction with a higher fee, so to confirm a transaction, user
needed to pay $50. DigiByte solved this problem by adding a new block every 15 seconds
(new block in Bitcoin is mined every 10 minutes). Average transaction occupies 570 bytes

x

https: //en.bitcoin.it/wiki/Genesis_block
2

https: //bitcointalk.org/index.php?topic=137.0
3 A c t u a l photos of $80,000,000 pizza are on http://heliacal.net/-solar/bitcoin/pizza/

5

http://coin.it/wiki/Genesis_block
http://heliacal.net/-solar/bitcoin/pizza/

of data. One block can contain approximately 3,500 transactions given the 2 M B limit.
This restriction means that in DigiByte, 230 transactions can be confirmed in one second
compared to Bitcoin 4-7 transaction per second. DigiByte also has 1,000:1 DigiByte to
Bitcoin ratio, so for every Bitcoin, there is 1,000 DigiByte. [5]

2.3 E t h e r e u m

Ethereum, rather than a cryptocurrency, is a blockchain application platform with Turing-
complete programming language. While both the Bitcoin and Ethereum networks are
powered by the principle of distributed ledgers and cryptography, the two differ technically
in many ways. For example, transactions on the Ethereum network may contain executable
code, while data affixed to Bitcoin network transactions are generally only for keeping notes.
Other differences include block time (an ether transaction is confirmed in seconds compared
to minutes for bitcoin) and the algorithms that they run on (Ethereum uses ethash while
Bitcoin uses SHA-256). [27, 2]

2.4 Decred

Decred is cryptocurrency build from Bitcoin. The main difference from Bitcoin is the
rewarding system from mining. In Bitcoin, the miner gets full reward for a mined block.
Sometimes, the Bitcoin blockchain splits when two or more miners found a block at nearly
the same time. The fork is resolved when the subsequent block(s) are added, and one of the
chains becomes longer than the alternative(s). In Decred the chance of blockchain forks is
minimized by hybrid proof of work and proof of state system. Each time a block is created
(by a miner), it is not automatically part of the blockchain. Block needs to be approved
by ticket holders. Then miner receives a block reward (newly created D C R) . If the block
is rejected by ticket holders, the miner does not receive a reward. Tickets holders for a
new block are chosen randomly. The ticket validates the previous block. A block needs at
least three of the five votes chosen to approve it for it to be validated. This hybrid system
has many implications, including making a 51% power attack very difficult and making a
minority fork very difficult as well. [12]

2.5 M o n e r o

Three years after Bitcoin, in 2012, the competing Bytecoin cryptocurrency entered the
market. The problem with this cryptocurrency, however, was that 80% of all coins were
mined in advance by its authors. The chances of mining were, therefore, not balanced.
This injustice led to the decision that this cryptocurrency would start again. New cryp
tocurrency starts on 18 A p r i l 2014 and was called BitMonero, a composite of the word
coin in Esperanto (Monero) and Bitcoin according to Bitcoin. However, after five days,
the community decided to use only Monero for short. Monero's significant advantage is the
dynamic size of the mined blocks. Bitcoin has one block size limited to 1 M B , while Monero
adapts the block size to the network load. If the number of transactions increases, so does
the block size to accommodate all transactions. Thus, unlike Bitcoin, the more transactions
users make, the lower the transaction fee. Monero's main benefit is its full anonymity and
interchangeability thanks to CryptoNote protocol [25]. Monero hides recipient and sender
addresses. [21]

G

2.6 A n a l y s i s of C u r r e n t B l o c k c h a i n Explorers

A Blockchain Explorer is a web application that allows us to explore the whole blockchain.
Their primary function is to allow everyone with an Internet connection to track in real
time all the transactions or interactions made by each cryptocurrencies holders, regardless
of his or her level of knowledge and expertise. [16, 7]

2.6.1 Blockbook

As a representative of traditional explorers, we chose Blockbook. Blockbook 1 is a blockchain
indexer for Trezor Wallet' , developed by SatoshiLabs 6. It currently supports more than 30
coins (and the community implemented some others). For data storage, Blockbook is using
RocksDB' developed by Facebook, which is a NoSQL database that stores only key-value
pairs. Blockbook is providing fast A P I for accessing blocks, addresses and transactions.
Main limitations of Blockbook are:

• Not distributed (client-server architecture) - problem with scaling for more users.

• Not an SQL database - it does not have a relational data model, it does not
support SQL queries, and it has no support for indexes.

• Single-Process - only a single process (possibly multi-threaded) can access a par
ticular database at a time.

4

https: //github.com/trezor/blockbook
5

https: //wallet.trezor.io/
6

https: //satoshilabs.com/
7

https: //github.com/f acebook/rocksdb/wiki

7

Chapter 3

I P F S

IPFS stands for Interplanetary File System and is a peer-to-peer distributed file system
designed to make the Web faster, safer, and more open. In contrast with a standard file
system, objects in IPFS are content-addressed by the cryptographic hash of their contents.
In the case of the standard Web, when the user wants some file, he needs to know on
which server is a file located and the full path to the file (see Figure 3.1). The principle
of the IPFS is that a user needs only to know the hash of the requested file. He does
not care about the location of the file (see Figure 3.2). Let us take an M I T licence text,
and add it to IPFS. If somebody tries to add this licence as a file to IPFS, it will return
QmWpvK4bYR7k9blfeM48fskt2XsZfMaPfNnFxdbhJHw7QJ every time. That is from now on
the content address of that file. Later, when a user tries to get this file by its hash, he can
get it from a random person that added it into IPFS in the past.

IPFS can easily represent a file system consisting of files and directories. A small file
(less than 256 kB) is represented by an IPFS object with data being the file contents (plus a
small header and footer). Note that the file name is not part of the IPFS object, so two files
with different names and the same content will have the same IPFS object representation
and hence the same hash. A large file (more than 256 kB) is represented by a list of links
to file chunks that are less than 256 kB, and only minimal information specifying that this
object represents a large file. Currently, there are no known size limitations uploaded file or
directory. There are already some big datasets hosted on IPFS such as Geocities archive2

(704 TB) or Project Apollo Archives 3 (61 GB) .

3.1 I P F S Stack

We can split IPFS into layers (see Figure 3.3). Libp2p is at the bottom, which is a peer-
to-peer networking module, that handles peer and content discovery, transport, security,
identity, peer routing, and messaging. IPLD is the data model of the content-addressable
web. It is providing linking between objects and multihash computing. On the top is IPFS,
which allows publishing and share files (or any data). [1]

x

https: //ipf s.io/
2

https://ipf s.io/ipf s/QmVCjhoEFC9vwvaa8bKyJgwAByP4MXSogcyDGoz4Lkc3ox
3

https://ipf s.io/ipf s/QmSnuWmxptJZdLJpKRarxBMS2Ju2oANVrgbr2xWbie9b2D
4

https://libp2p.io/

8

https://ipf
https://ipf
https://libp2p.io/

I know that github.com

Figure 3.1: Classic web addressing

3.2 L i b p 2 p

Libp2p is a modular system of protocols, specifications and libraries that enable the de
velopment of peer-to-peer network applications. It provides N A T Traversal, Peer Discov
ery, Routing, Stream Multiplexing, Protocol Multiplexing, Encryption, Authentication and
more. It grew out of IPFS to solve networking problems in peer-to-peer networks, but now
it does not require or depend on IPFS. Today many projects use libp2p as their network
transporting layer, which is responsible for the actual transmission and receipt of data from
one peer to another. For both content discovery and peer routing, libp2p uses Kademlia-
based distributed hash table. Wi th Kademlia, libp2p iteratively routes requests closer to
the desired peer or content using Kademlia routing algorithm [18]. In the future, Kadem
lia might be changed easily to some other solution that implements a simple interface for
publishing and requesting data and finding a peer. [8]

3.3 I P L D

I P L D is providing linking and addressing objects with CID (Content ID). CID is hash-based
self-describing content identifier (usually encoded to base58;) format) which includes codec
and multihash. Multihash is then further composed of hash type and hash value. Let us
look closer on the M I T licence file, that we add to IPFS at the beginning of this chapter
(see Figure 3). Its CID is QmWpvK4bYR7k9blfeM48fskt2XsZfMaPfNnFxdbhJHw7QJ. It can
be converted to human-readable format as can be seen in Figure 3.1, thanks to multicodec
table . We can see that this CID is encoded in base58 format and the file was stored using
protobuf codec (this information is necessary to decode file correctly).

3.4 I P F S

IPFS is the top layer from the IPFS stack. It is used for pinning objects and files, naming
system and keys management. File or object is automatically pinned when a user adds
it (but other IPFS commands do not include automatic pinning). Pinning a CID tells an

5

https: //en. wikipedia.org/wiki/Base58
6

https: //github.com/multif ormats/multicodec/blob/master/table.csv
7

https: //en.wikipedia.org/wiki/Protocol_Buffers

9

http://github.com
http://wikipedia.org/wiki/Base58
http://wikipedia.org/wiki/Protocol_Buffers

Figure 3.2: Content-based addressing

Property Value
Multibase base58btc
Version cidvO
Multicodec dag-pb

Multihash
Hash Type sha2-256

Multihash Hash Length 256 Multihash
Hash 7elb666c0327...3dc3022f

Table 3.1: Example of a human-readable version of CID

IPFS server that the data is essential and must not be thrown away. When a garbage
collector is triggered on a node, any pinned content is automatically exempt from deletion.
Non-pinned data may be deleted. The Interplanetary Name System (IPNS) is a system for
creating and updating mutable links to IPFS content. Since objects in IPFS are content
addressed, an object address changes every time an object's content changes. A name in
IPNS is the hash of a public key. It is associated with a record containing information
about the hash it links to that is signed by the corresponding private key.

3.4.1 I P F S Core A P I s

IPFS provides several APIs that are working on different abstraction levels. The regular
top-level A P I is Files A P I 8 . The Files A P I enables users to use the File System abstraction
of IPFS. It has add, cat, get and Is methods for manipulating with regular files and
directories. For our platform are low-level APIs such as DAG9 and PUBSUB10 more interesting.
P U B S U B A P I is used to broadcast messages between peers, and it consists of these methods:

8

https: //github.com/ipf s/interface-js-ipfs-core/blob/master/SPEC/FILES.md
9

https: //github.com/ ipf s/interf ace-js-ipf s-cor e/blob/master/SPEC/DAG.md
10

https://github.com/ipf s/interf ace-js-ipf s-core/blob/master/SPEC/PUBSUB.md

10

https://github.com/ipf

IPFS stack

IPLD

^ ^ ^ ^ ^ ^

Applications Using the Data

Defining the Data
naming

merkledag

Exchange

Routing

Network

Moving the Data

Figure 3.3: IPFS stack

• subscribe - listen to specific topic. A topic name and handler function are provided
as a parameter:

• unsucribe - stop listening on a topic that is provided as parameter:

• publish - publish a message to topic. A l l peers that are subscribed to the topic
receive the message:

• Is - returns the list of subscriptions the peer is subscribed to:

• peers - returns the peers that are subscribed to a topic. A topic name is a parameter
of this function.

The D A G (stands for Direct Acyclic Graph 1 1) A P I provides these methods for manipulation
objects in IPFS:

• put - stores object in IPFS. Return IPFS hash of a stored object:

• get - retrieves an object by its hash from IPFS:

• tree - Enumerate all the entries in a graph.

3.5 I P N S

Naming inside IPFS is governed by I P N S 1 2 , the Inter-Planetary Naming System. IPNS
takes ideas from S F S 1 3 to enable the creation of cryptographically signed mutable pointers,
which can be used to the creation of name records inside the network. A name in IPNS is
the hash of a public key. It is associated with a record containing information about the
hash it links to that is signed by the corresponding private key.

x

https: //en. wikipedia.org/wiki/Directed_acyclic_graph
2

https: //docs.ipf s.io/guides/concepts/ipns/
3

https: //en. wikipedia.org/wiki/Self-cert i f y ing_File_Syst em

11

http://wikipedia.org/wiki/Directed_acyclic_graph
http://wikipedia.org/wiki/Self

3.6 F i l e c o i n

Another impressive part of the IPFS ecosystem is Filecoin. It is a decentralized storage net
work that turns cloud storage into an algorithmic market. The market runs on a blockchain
with a native protocol token (also called "Filecoin"), which miners earn by providing stor
age to clients. Conversely, clients spend Filecoin hiring miners to store or distribute data.
As with Bitcoin, Filecoin miners compete to mine blocks with sizable rewards, but Filecoin
mining power is proportional to active storage, which directly provides a useful service to
clients (unlike Bitcoin mining, whose usefulness is limited to maintaining blockchain con
sensus). This principle creates a powerful incentive for miners to amass as much storage
as they can, and rent it out to clients. The protocol weaves these amassed resources into a
self-healing storage network that anybody in the world can rely on. The network achieves
robustness by replicating and dispersing content, while automatically detecting and repair
ing replica failures. Clients can select replication parameters to protect against different
threat models. The protocol's cloud storage network also provides security, as the content is
encrypted end-to-end at the client, while storage providers do not have access to decryption
keys. Filecoin works as an incentive layer on top of IPFS. [14]

3.7 E x i s t i n g B l o c k c h a i n Explorers i n I P F S

There are already stored a few blockchains of cryptocurrencies in IPFS. For browsing them,
we can use dedicated applications 1 1 1 5 or I P L D explorer 1 6. Blockchains in IPFS are stored
in raw binary format, so custom I P L D codec has to be created for every type of object.
Therefore, there needs to be ten different codecs in case of Ethereum (for blocks, trans
actions, state tries, accounts, contracts etc.). Using custom codecs for cryptocurrencies
allows explorers to request blocks and transactions by its hash very fast, but there are also
limitations (mainly with filtering or requesting data by different property as a hash).

• Existing I P L D codecs for cryptocurrencies are very limited. Currently, for only a
few of cryptocurrencies are codecs available in I P L D (namely Leofcoin, Ethereum,
Bitcoin, Zcash, Steller, Decred and Dash) 1 ' .

• Addresses are not stored in IPFS, because they are not part of a blockchain. This
means the explorer needs to go through the entire blockchain for computing address
balance or to find address transactions.

• No additional information (for example transaction value in US dollars) can be stored
with objects because it would change content, thus, the hash of the object.

• There is no sorting or filtering. Explorer can only show the object (block or transac
tion) by its hash.

https: //github.com/arcalinea/IPFS-Zcash-Explorer

'https: //github.com/whyrusleeping/zcash-explorer

'https://explore, ipld. io/#/explore/z43AaGEvwdfzj rCZ3Sq7DKxdDHrwoaPQDtqF4j fdkNEVTiqGVFW

https: //github. com/mult i f ormats/multi codec/blob/master/table, csv

12

https://explore

Chapter 4

Design

This chapter describes the proposed design of the whole platform for storing and exploring
blockchains in IPFS that is to be created as a result of this thesis. A l l parts of the platform
are described in this chapter.

4.1 Database System

We need a database in our platform to store and index data. Database system needs to be
decentralized and distributed. There are several databases build on top of IPFS already
implemented.

The two most known are OrbitDB and Textile. However, neither of these solutions
fits our use case to store a large amount of data distributed on several nodes and performs
queries that can be resolved by downloading only necessary parts of the database. Therefore,
we need to create a new database system based on IFPS that would be decentralized and
distributed.

4.1.1 O r b i t D B

O r b i t D B 1 [17] is a serverless, distributed, peer-to-peer database build on top of IPFS,
developed by H A J A networks2. OrbitDB is a decent solution for small user's databases.
However, it is still in the alpha stage of development, and it is not well optimized for
storing hundreds of gigabytes of data. The biggest problem is that OrbitDB performs all
queries locally. To perform a query that selects transactions that are more valuable than
1BTC, OrbitDB needs to load the whole database locally and then perform a cycle on all
transactions to select only those transactions that meet the criteria. So every client ends
up with a full copy of the database. This limitation is not usable for our case when we have
a database that has hundreds of gigabytes of data.

4.1.2 Textile

Textile 8 is a set of open-source tools that provide a distributed peer-to-peer database,
remote storage, user management, and more, over the IPFS network. Textile already
created applications for storing photos, notes or anything else (Anytype). Textile provides

x

https: //orbitdb.org/
2

https: //haja.io
3

https: //textile.io/

13

a high abstraction on top of the IPFS and provides simple A P I to store and index files
securely. Textile provides an open source service called cafes, which are nodes that offer
offline inboxing and backup. Data are duplicated on several Cafe peers. When a client is
performing some query, it contacts one of the Cafe peers to resolve the query for the client.
[22]

4.1.3 Database System Design

After some research, we concluded that currently for storing and indexing data in IPFS
without large hard disk memory consumption, there is no solution. We created our own
indexing system that currently supports three types of indexes. A database system that fits
our needs is distributed and decentralized. That brings us lots of synchronization problems
to solve. This database system consists of tables that contain records. For faster searching,
tables have indexes. Relations between tables are represented via foreign keys. Also, this
database system supports fluent query language, used for performing complex queries.

Record

Every record in our database system is stored in an append-only log that contains the whole
history of the record. Every update of a record adds a new entry to its log which points to
the previous entry.

In centralized systems such as git , conflicts are detected on write (for example, when
two git users push changes to the server at the same time, one of them gets an error and
needs to pull repository) [3]. This approach is impossible in a decentralized system. When
we update some record in our database, we can not know if somebody updates it before
us (and we do not receive changes yet). For this reason, we need to solve conflicts while
reading. Record with conflict has more than one head in a record log, and users need to
solve them in application logic. Look at the example in Figure 4.1. There is a record that
is updated by every country in the World when they have new statistics about a pandemic.
If two countries updates data at the same time (their updates are pointing to the same
previous version of the entry), they create conflict. Luckily, this specific conflict is easy to
solve. We just need to look at the previous entry and compute increment for both countries,
then update the record with final increment.

Indexes

A n index is a B-tree structure optimized for IPFS (with no cycled references and node size
less than 256 kB). Each table has at least one primary index. We use the primary index to
reference record in foreign keys. A primary key is automatically created when a user does
not specify it and has a type of GUID. Value of the primary key for an entity can not be
changed, because we would need to scan all tables where the entity is referenced and change
the referenced value to a new one. Also, when we execute a query without any condition
or sorting, we use a primary key to obtain records. Every index has several components:

• Comparator - is a function that has two parameters (two B-tree keys) and outputs
a number as a result. A n index is using a comparator to correctly traverse B-tree
while searching records and inserting records to the right place.

4

https: //git-scm.com/

14

Time 4
Cases: 1 810 230
Deaths: 110 626

Recovered: 410 424

Application defined conflict
solver adds new version of
record.

We got conflict beacuse at one
time, there are two versions of
record

Time 3
Cases: 1 801 654
Deaths: 110 543

Recovered: 410 188

USA and Spain
updated stats at
the same time

Cases: 1 800 123
Deaths: 109 743

Recovered: 409 854

Time 2

Time 1

Cases: 1 791 547
Deaths: 109 660

Recovered: 409 618

Cases: 1 790 564
Deaths: 109 654

Recovered: 409 540

Slovakia updated
stats

Pandemia statistics
record created

Figure 4.1: Record conflict

• Key-getter - is a function that returns a comparable object from the record (a
comparable object is an object that can be compared using index Comparator). Every
index has Key-getter that is using to obtain keys for objects stored in B-tree.

Table

A table contains indexes and table name. Also, it implements operations that modify its
data:

• Insert - creates a new record in a table. Insert operation has these steps:

1. Creates record log with a new entry and store it in IPFS.

2. Gets record key (via Key-getter) and inserts it to all table indexes with IPFS
hash as value.

• Update - saves a new version of record. It consists of:

1. Add new entry to the record log. Save the record log to the IPFS.

2. Get new record key (via Key-getter) and update all table indexes with new IPFS
hash as value.

• Delete - removes a record from a table.

1. Get old record key and remove it from all table indexes.

2. Add empty entry to the record log. Save the record log to the IPFS.

15

Foreign Keys

We use foreign keys to represent relationships between tables. A foreign key is simply a
table name and a value of a primary key of a referenced record.

Transactions

When we commit a transaction, it is inserted to the transactions queue. If there are more
transactions in the queue, a database performs it one by one. We can not execute more
transactions in one moment, because it could cause data inconsistency. There are five types
of transactions:

• read - transaction for reading data from table. It is not logged in a database log
(other peers don't have to know what we are reading from database).

• sync - when some peer publishes a new version of the database, all other peers have
to migrate to it. This transaction has the biggest priority, and therefore it is inserted
at the beginning of the transactions queue. After the migration is done, transactions
queue can continue working usually.

• insert, update, delete - these types of transactions are written to database logs,
because they are modifying the database.

Sy nchronizat ion

Every time a transaction queue is empty (all pending transactions has been applied), a
new version of a database is broadcasted to all connected users via IPFS P U B S U B A P I
(see 3.4.1). When we receive information about the new database version, we load its root.
Database versions create an append-only log called database log so each database version
has information from which version it was created. Database log is an immutable, operation-
based conflict-free replicated data structure (C R D T) for storing database versions. Every
version in the log is saved in IPFS, and each points to a hash of the previous version forming
a graph.

If more than one peer publishes a new version of the database that has been created
from the same database version, other peers need to decide which version they would
accept. Opposite to records conflicts, we need to solve database versions conflict fast and
automatically. There are multiple ways to solve them. For example:

• The biggest hash wins - if there is more than one database version at the same
(discrete) time, the one with the biggest IPFS hash wins. This strategy is present in
Figure 4.2.

• The longest connecting time wins - a peer that is connected to the database for
the longest time wins.

Lots of more strategies can be implemented, but they need to be deterministic and as fair as
possible. If we have access to geolocation, we can implement a strategy based on a distance
to the North Pole (the closest node to the North Pole wins). [15]

https: //en. wikipedia.org/wiki/Conflict-free_replicated_data_type

16

http://wikipedia.org/wiki/Conflict-free_replicated_data_type

Time 5

Time 4

Time 3

Time 2

Time 1

Nodel finally
finds out that at
the time 3 there
was transaction
with bigger
hash. It
synchronises its
DB and then
applies invalid
transactions
again.

Update Teacher

bbd7a 4

Both nodes are now
synchronized. Node2
performs another
transaction normally.

Update Student
Create Subject Create Subject

^_
Update Student
Create Subject ~ * — ^ — Create Subject

^_
cd735... |b9ac0...

Create Teacher Update Student

e9977..

Node2 removes
record from table
Subject.

Nodel inserts
into the table
Student.

bdd5a.

Nodel still does not
know about e9977
version of database
so it publishes new
version based on
bdd5a.

Both nodes add
transactions and
publish new
version of DB.
Node2 wins this
time, because its
transaction has
bigger hash.

Nodel

03c7..

0
N

°
d e 2

Figure 4.2: Synchronization of a database. Note that in Time 4, nodel adds two transac
tions in one D B version.

Queries

A database system provides query language for performing selects. A query consists of:

• conditions - query may contain multiple conditions. There are logical operators
(and/conjunction, or/disjunction) between conditions. When it is possible (i.e., an
index is available on condition property), we use indexes for evaluating conditions. If
there are more than one conditions, we use an intersection between AND conditions
and union between OR conditions. These types of conditions are supported:

— equal - record property equals to specified value:

— greater than - record property is greater than specified value:

— less than - record property is less than specified value:

— between - record property is greater than specified minimal value, and less than
specified maximal value.

• niters - filters are similar to conditions, but they can be more complicated. They
are functions that are being applied to query results. If any filter return false for
the query result, the result is ignored. A query can contain several filters.

• offset - offset is saying how many query results should be ignored from the beginning.

• evaluator - we use evaluator for accessing results of the query:

— all - returns array of all results of the query:

17

— first - returns only first result:
— take - returns N number of results where N is an argument:

— paginate - returns page of results. It accepts two arguments: perPage specifies
the number of results in one page, page is number of requested page:

— iterate - returns iterator that can be used in cycles such as for or while.

4.2 P l a t f o r m Components

The platform consists of one or more Feeders and Explorers. Feeders are connected to data
sources and provide synchronization with cryptocurrency blockchains. Explorer can request
data from the platform network and display them to a user (see Figure 4.3).

ETH Feeder

Figure 4.3: Platform architecture

4.2.1 Database Design

Both Explorer and Feeder use the same database schema. The database schema is designed
in the way to optimize typical queries. It consists of five tables:

• Block - table for storing blockchain blocks. It has a primary key on unique block
hash, and indexes on height and time. Wi th these indexes, we can perform queries
like search block by its hash or height very efficiently. Also filtering or ordering blocks
by time has good performance.

• Transaction - a table that contains blockchain transactions has a primary key on
transaction hash and foreign key, that references block in which is transaction con
firmed, on blockHash column. Indexes for efficient filtering are on blockHeight and
blockTime columns.

18

Block Transaction

PK hash: strinq PK hash: strinq

previousBlockHash: string FK blockHash: string
nextBlockHash: string IDX blockHeight: string

IDX height: number IDX blockTime: number
size: number size: number

IDX time: Date value: number
merkleRoot: string valueln: number
nonce: string fees: number
difficulty: string

Vin

PK id: Guid

FK transactionld: string
FK address: string

isAddress: boolean
value: number
coinbase: string

Vout

PK id: Guid

FK transactionld: string
FK address: string

isAddress: boolean
value: number
spent: boolean
spentTxId: string

Address

PK hash: strinq

balance: number
totalReceived: nur
totalSent: number

Figure 4.4: Entity-relationships diagram

• V i n - every transaction can have multiple inputs. These inputs are stored in V i n
table. V i n has not got any unique property, so a custom GUID needs to be created as
a primary key. It has two foreign keys to reference transaction and address. Foreign
key address can be null, because the input can be mined block reward.

• Vout - transactions can have multiple outputs. Every output has a foreign key to
transaction and address. If the output is already spent, it has a link to the transaction
where this output is used as an input.

• Address - Address contains multiple columns. As the primary key, it uses the
address hash. Address also contains its balance, totalReceived and totalSent.
These values are updated every time new input or output is added to the transaction.

4.2.2 Feeder

A Feeder is a service that stores data in IPFS and indexes them in our database system.
Once all blocks are indexed, Feeder waits for new blocks and is periodically publishing most
up to date database version. This way, new clients synchronize database more quickly.
For optimization purposes, Feeder is performing transactions in bulks. This optimalisation
means that Feeder is not publishing a new version of the database every time it parsed block
or transaction, but rather after it parsed transactions bulk which can consist of hundreds
of transactions.

A Feeder can use different sources for obtaining blockchains data. It can be connected
directly to the blockchain as a full node or to some other source providing blockchain data
as Blockbook' or Insight8.

6

https: //en.wikipedia.org/wiki/Universally_unique_identifier
7

https: //github.com/trezor/blockbook
8

https://insight.is

19

http://wikipedia.org/wiki/Universally_unique_identifier
https://insight.is

4.2.3 Explorer

Explorer can perform basic queries like a search for block by its height or hash and search
address and transaction by hash. Nevertheless, Explorer can also make more complex
queries (for example, get the first 20 transaction where the sum of inputs is more than
some value, or get transactions between some time interval). Explorer is an application
that can be used in two environments. In browser with graphical user interface, or in
node.js9 as an A P I .

ExplorerGUI

ExplorerGUI is browser version of Explorer. It is implemented as an S P A 1 0 to prevent
restarting connection with IPFS after each time a user visits a different page. It has
separated views for block, transaction and address details. Also paginating, filtering and
sorting objects by all its properties that have index is supported. Every user of ExplorerGUI
keeps part of the database that he uses in his local storage. This principle helps balance
Feeders load and helps to distribute data for other users. Authentication to the ExplorerGUI
is not necessary, because users can not modify data from there. They can only explore
multiple blockchain data. A l l views have the same top toolbar, to allow user performs
quick searches. User can see enabled cryptocurrencies at the home screen (see Figure 4.5a).
When a user selects cryptocurrency that he wants to explore, he will be redirected to the
Blocks view where he can see and filter all parsed blocks from a selected cryptocurrency
(see Figure 4.5b). User can select block by clicking on them. This action redirects a user
to Block detail view where he can see all blocks transactions (see Figure 4.6a). User can
also navigate to the next/previous block from this view. A user gets to the Address view
every time he clicks on transaction input or output address. In this view, a user can see the
current balance of the address and transactions which this address is part of (see Figure
4.6b). Thanks to the record log, a user can also see the history of the address.

Explorer A P I

ExplorerAPI is a server-side application that provides a simple H T T P A P I for obtaining
data. Although our platform is decentralized and therefore does not need servers, Explor
erAPI can be used with older devices on which it is not possible to run an IPFS node,
or when integrating with other applications. Through RestApi, we could not use the full
potential of our database system, so we get inspired by G r a p h Q L 1 1 during the design.
ExplorerAPI provides endpoints for these database tables:

• /: currency/block - endpoint for obtaining blocks. Each endpoint hash currency
path parameter that can be currency unit (for example btc) or currency name (for
example bitcoin).

• /: currency/transaction - endpoint for retrieving transactions.

• /: currency/address - endpoint for obtaining data from address.

Every endpoint can be accessed with GET or POST H T T P method. A request contains a
query object that consists of conditions, filters, skip and resolver (see Figure 4.7a). This

9

https: //nodej s.org/
1 0

https: //en. wikipedia.org/wiki/Single-page_appli cat ion
n

https: //graphql.org/

20

http://wikipedia.org/wiki/Single-page_appli

• Home

^ ^ [__ https://explorer

ooo

Explorer

©
Bitcoin

Search p

©
Ethereum

©
Decred

J Q Blocks ooo
https://explorer/btc/block/

Explorer Search P

Block #42 ©
Mined on: 14.5.2010

©
Transactions confirmed: 145
Size: 1500 bytes

Block #43 ©
Mined on: 14.5.2010

©
Transactions confirmed: 145
Size: 1500 bytes

Block #44
Mined on: 14.5.2010 ©

(a) Home view (b) Blocks list view

Figure 4.5: ExplorerGUI mockups

query object is translated to our Query system and executed. Query results in JSON for
mat are returned (example result is on Figure 4.7b). If a request is sent by GET method,
a query object is stringified and urlencoded 1 2 J SON in query parameters (for example
/block?query=

0

/„3D
0

/„7Bconditions. . . °/
0
7D). If POST method is used, query object is in re

quest body (like on Figure 4.7a). With this design we can use multiple conditions and filter
in query.

https: //en.wikipedia.org/wiki/Percent-encoding

21

https://explorer
https://explorer/btc/block/
http://wikipedia.org/wiki/Per

B lock Detai l ooo
^ ^ (* • h t tps: / /exp lorer /b tc /b lock/42

Explorer S e a r c h P
(Previos block) (Next block)

Block #42 © Mined on: 14.5.2010 ©
Transactions confirmed: 145
Size: 1500 bytes

Block transactions:

Value 100 Btc
Inputs Outputs

50BTC 1Q9obAQ8HGGm

50BTC 1Q9obAQ8HGGrn

1Q9obAQ8HGGrn 50BTC

1Q9obAQ8HGGrn 50BTC

O O O A d d r e s s Detai l

4 0 Q h t tps : / /exp lorer /b tc /address /d f

Explorer S e a r c h

Address #1 Q9obAQ8HGGrn
Transactions: 5
Balance: 0,35 BTC

Address transactions:

(a) Block detail view (b) Address view

Figure 4.6: ExplorerGUI mockups

P

Value 100 Btc
Inputs Outputs

50BTC 1Q9obAQ8HGGm

50BTC 1Q9obAQ8HGGrn

1Q9obAQ8HGGrn 50BTC

1Q9obAQ8HGGrn 50BTC

"query": {

"conditions": [

{

"type": "and",

"comparator": "between",

"property": "height",

"values": [11990, 12000]

]
 :

' f i l t e r s " : [

"(b) => b.height '/„ 2"

]
 :

"resolver": {

"type": " a l l "

(a) Request that returns blocks with an odd height
that is between 11,990 and 12,000.

{

"hash": "000000001e564..

"height": 11991,

"hash": "00000000b3637..

"height": 11993,

"hash": "000000007b4da..

"height": 11995,

"hash": "00000000e4361..

"height": 11997,

"hash": "00000000e9935..

"height": 11999,

(b) Response

Figure 4.7: Explorer A P I example

22

https://explorer/btc/block/42
https://explorer/btc/address/df

Chapter 5

Implementation

This chapter describes the implementation details of the platform and shows the internal
architecture. A l l platform components are implemented in Typescript that is later compiled
to JavaScript. This choice of language enables code sharing between individual components
and allow us to support multiple platforms (desktop via Node.js, and browser). A l l platform
components are dependent on Explorer-core module where is the whole database system
implemented (see Figure 5.1).

ExplorerAPI
Z D
Controllers

1
HTTP server

Explore rGUI

1 1
Views Components

1 1
Router Assets

1 1
Store Plugins

Explorer-core

Indexes IPFSconnector

1
QueryPlanner DAL

DatabaseLog Models

<-•

Feeder

PernamentStorage

Connectors

Figure 5.1: Platform architecture

5.1 Explorer -core Implementat ion

Explorer-core is the most complex module of a whole platform with more than 5,000 lines of
code. The database subsystem is a main part of the Explorer-core module. The Explorer-
core consists of a Query system, indexes and an abstract database layer. Explorer-core is
only out of platform components that communicates with IPFS via js-ipfs 1 implementation.

x

https: //github.com/ ipfs/js-ipfs

23

5.1.1 I P F S Connector

IPFS connector is a singleton class that provides a connection to IPFS. It has a method
getlnstanceAsync which will return promise that resolves into IPFS node instance. This
instance is stored in a private static class variable. Next call of function getlnstanceAsync
returns that static class variable. Also, swarm key is present in IPFS connector. This key is
used to make private IPFS network with only Explorers and Feeders. Other peers (without
swarm key) can not connect to our network. IPFS connector contains settings for node.js
and browser IPFS peer. Browser peers use WebRTC and WebSockets for transport. Node.js
peers use T C P and WebSockets. That means that Feeders (a node.js application) can
communicate with each other with T C P . Explorer communicates with other explorers with
WebSockets or WebRTC. Explorer uses WebSockets when communicating with Feeders.

5.1.2 Indexes

For indexing purposes, there is currently implemented only B-tree, but different structures
such as tries 2 can be employed easily. They only need to implement index interface (function
such as insert, delete, update, find). We can create indexes on database entities with
decorators3, which are part of ECMAScr ipt 6 standard. Every database entity has to
have PrimaryKey decorator on property that is used as a primary index. Index has three
parameters:

• comparator - is a function that accepts two arguments and returns number that is
less than zero if the first argument is greater than a second, zero if arguments are
the same, more than zero if a second argument is greater than first. If a user has not
set any custom comparator default one ((a, b) => a < b ? -1 : +(a > b)) is
used. This default comparator works on atomic keys such as string or numbers.

• keyGetter - is another function that accepts a whole entity as arguments and returns
key, that is used in an index. A default key getter is function that returns value
of index property (for example default key getter for property height is (e) =>

e ["height"]).

• branching - the branching factor is the number of children at each node (the outde-
gree). Default branching factor is 16.

The B-tree structure (see Figure 5.2) is optimized for IPFS. Unlike PostgreSQL B-tree'1,
leaf nodes have not got left and right sibling references due to cyclic reference that is not
possible in IPFS, because links are changing CID of an object [23]. We can demonstrate
this in the following example:

• If we store object A with a link to the object B, CID of A will change.

• Then if we add backlink from B to A, CID of B will be changed and so A is now linked
to an old version of B.

• If we update link of object A to point on the new version of object B, CID of object A
will change and therefore object B is now pointing to the old version of object A.

2

https: //en. wikipedia.org/wiki/Trie
3

https: //www.typescriptlang.org/docs/handbook/decorators.html
4

https: //github.com/postgres/postgres/tree/master/src/backend/access/nbtree

24

http://wikipedia.org/wiki/Trie
http://www.typescriptlang.org/docs/handbook/decorators.html

From this example, it appears that there is no way of making cyclic references in IPFS.
Without siblings's references, we do not have to store data only in leaves, but we can store
data in nodes itself. This approach leads to better performance when executing queries.
Statistically less nodes need to be updated in case of insert queries. Also in search queries,
there is a chance that we would find a key in some non-leaf node; therefore, we would need
fewer node visits.

A l l search queries (equal, less, greater, between) has two steps:

• Find subtree - First, we need to find minimal subtree that contains all results. We
start in a root node of the B-tree. Then, we use an index comparator function to
determine if we can visit some child node and still have all the result in it. If not,
then we have found a minimal subtree for the query.

• Traverse - To get results of the query, we can traverse minimal subtree in two
directions. In-order for greater than and between. For less than reversed in-
order. Wi th equal, it does not matter.

*

6 12 18 25

6 12

26 27 28 29 31 32 33 34

i i i i

31 32 33 34

r
36 37 38 39

>

81 87 93 100

62 68 75 81 87 93 100
1 1

41 42 43 44

36 37 38 39 41 42 43 44 26 27 28 29

Figure 5.2: B-tree indexing first 100 blocks by their height

5.1.3 Query System

Our database offers a complex Query system. A query can consist of multiple conditions,
and the Query Planner is responsible for resolving them. It decides which indexes are used
for query and choose a strategy. If there is no condition, a primary key is used for query
execution. In the case of a single condition, Query Planner checks if there is an index on
the condition's property. If yes, then this index is used to perform the query. Else condition
is transformed to filter, and a primary key is used to obtain results which are then filtered.
For multiple conditions connected with logical operators AND or OR, Query Planner creates
OR-hashset and AND-hashset. AND-hashset is initialized with the results of a condition
which has the smallest number of results and uses AND operator. Then we check for each
result hash for all other AND conditions if AND-hashset contains it. If no, a hash is deleted
from AND-hashset. This creates intersection between all AND conditions. The OR-hashset

25

is created empty. Then, we add a hash of every result of all OR conditions to it. This
creates union between OR conditions. At the end, we perform union between AND-hashset
and OR-hashset. This creates final hashset which is used later to obtain actual data with
resolvers such as a l l , f i r s t , paginate etc. If one of the AND conditions has great selectivity
(it has less than a hundred results), Query Planner can decide to don't use other indexes,
but transform condition to filter and cycle over the results. Example query returning blocks
between 38 and 42 is shown in Figure 5.3. A peer needs to download only data that are
highlighted in green. After downloading them, they are stored on a peer's filesystem and
are offered to other peers.

> <

6 12 18 25

6 12 1E

• •• 26 27 28 29

25 50 75 100

50 75

30 35 40 45

30 35 40 ^

31 32 33 34

> r
56 62 68 75 81 87 93 100
V V v V t t t t

62 68 75 81 87 93 100
1 •

36 37 38 39 41 42 43 44

1 1 >' V I I 1 1 I

26 27 28 29 31 32 33 34 36 37 38 39 41 42 43 44

Figure 5.3: Data access for performing query that returns blocks that have a height between
38 and 42.

We can make queries with every database table model (such as model on Figure 5.5).
Whole Query system is displayed in the state diagram on the Figure 5.4. The Query system
consists of these functions:

• where (propertyName) - create a condition on the property. There can be multiple
conditions in one query. A condition hash needs to be followed by one of the functions:

— gt (value) - property is greater or equal than value. The Query Planner
finds in an index first object that has property (set by propertyName in where
function) equal or greater than value, and traverse index to the right (to bigger
objects):

— It (value) - property is less or equal than value. Similar as in the gt function,
the QueryPlanner finds the closest object that has property equal or less than
value. Then, the query traverses index to the smaller objects with smaller index
value (to the left):

— between (min, max) - property is greater or equal than min and less or equal
than max:

— equal (value) - returns all objects that keyGetter function returns same key
as value:

• skip (of f setValue) - query will skip off set Value number of results:

26

• limit (limitValue) - set maximum number of results. After query has limit Value

count of matched objects it will stop browsing the index:

• all() - return all objects that matched query:

• f i r s t () - return the first object that matched a query:
• and(childQuery) - logical and between two queries. Parent query resolves

childQuery (call all() function) and add its results to AND-hashset:

• and (property) - Thanks to available generic programming 5 in Typescript, and can
be also called with string argument. This register another query condition:

• or (childQuery) - logical or between two queries; childQuery wil l be resolved when
parent query needs it, and its results stored in OR-hashset of parent query:

• or (property) - similar as and function, or can be also called with string parameter.
This register another condition to query:

• iterate () - returns iterator that can be used in for (result of query) cycle.

saveO, update(), deleteO, filterO

W h e r e (" p r 0 p e r t y , y e o n d i t i o n Start]

or(property), and(property)

greatherThan(value), lessThan(value),
equal(value), between(min, max) filter(function),

->(Condition End) or(childQuery),
and(childQuery)

all(), firstO, skip(number), take(number),
paginate(page, perPage), iterateO

Resolved
alio, firstO, skip(number), take(number),

paginate(page, perPage), iterateO

Figure 5.4: State diagram of the Query system

5.1.4 Database

The most important part of the Explorer-core module is the database subsystem which
connects the Query Planner with indexes. When we make a query, it is precessed by
database, and data are obtained with the help of the indexes.

Tables

A database contains tables that consist of indexes. A table has an interface that provides
operations to modify table data:

• create - creates history log for entity with first entity version. Then adds it to every
table index:

• update - adds new version of the entity to its history log. Then update every index
of the table:

• delete - removes entity from every table index. From now, an entity can not be
found in this table.

5

https: //en.wikipedia.org/wiki/Generic_programming

27

http://wikipedia.org/wiki/Generic_programming

There is no select operation because a table itself does not perform queries for obtaining
data (table has not got necessary logic for choosing optimal index for query). Selects are
performed by Query Planner after analysing all query conditions.

Example of the class User is in Figure 5.5. It has two indexes. One primary on prop
erty name and one normal index on property age. The second index has also specified
comparator that is a bit faster than default one but works only on numbers, and keyGetter
that returns a year when a user has born.

class User extends Queriable<User> {

OPrimaryKey0

name: string;

@Index(

(a, b) => a - b,

u~=> new DateO .getFullYearO - u.age,

)
age: number;

}

Figure 5.5: Example of database table abstraction

Transactions

A database can execute only a single transaction at the time to prevent data inconsistency.
For that reason, we implemented a transaction queue where transactions are stored before
executing in the order in which they came. Executing more transactions in a row is signifi
cantly more effective than executing them one by one. If a transactions queue has only one
transaction, it waits 50 ms for more transactions to come. Transactions in our platform
are represented by classes Transaction and TransactionsBulk. Both classes implements
ITrasnaction interface with run function. Transactions bulk are treated the same way
as a single transaction thanks to Composite pattern 6 (see Figure 5.6). After executing,
each transaction is appended to the database log. After we execute all transactions in
transactions queue (transaction queue is empty), we publish a new database version to all
connected peers.

Sy nchronizat ion

There are two types of transactions: 1) those that changes the database state (create,

update, delete); and 2) those that do not (select). Every transaction that changes the
database state needs to be synchronized with other peers. We created database log for
that. It is an append-only log with a discrete-time. Every entry of a database log has these
properties:

• hash - an IPFS hash of this entry:

• payload - payload is object that contains all entry data. Usually, there is a transac
tion (if there are more transactions published in this entry, there is transactions bulk)
and an IPFS hash of the database:

6

https: //en. wikipedia.org/wiki/Composite_pattern

28

http://wikipedia.org/wiki/Composite_pattern

interface ITransaction{

runO ;

}

public class Transaction implements ITransaction {

operation: DbOperation;

data: any;

run() {

}
}

public class TransactionsBulk implements ITransaction {

public transactions: ITransaction[] ;

public runO {

for (const transaction of this.transactions)

await transaction.run(database);

}
}

Figure 5.6: Transactions use composite pattern. Body of function run of the Transaction
class is omitted due to complexity.

• parent - an IPFS hash to previous entry. We can re-create a whole database log
from a head entry be accessing parent property until it is null:

• clock - A Lamport clock ' with entry create time.

There can be only one valid database transaction at every point in time. There are several
strategies to choose which transaction is globally accepted and which transactions need to
rollbacks (described in design 4.1.3). Merging database logs is a common operation in our
database system. Every time a peer publishes new database version, other peers need to
merge this version with theirs.

Example of merging database logs can be seen in Figure 5.7. In this example there are
two peers (Node A and Node B). First three database version (Al, Bl, A2) follows each other
and there is no problem with them. But versions A3 and B2 are published in the same time.
Node A and B do not know about this issue yet, so they both publish another version (A4
and B3) on top of their head. After nodes get notified about each other versions, their logs
are merged by database log class function merge which accepts another log as a parameter
(see Figure 5.8).

At first, we create a new instance of TransactionsBulk where we store transactions
that we may need to rollback. Then we check if both logs heads are published at the
same time. If one head clock time is greater than another head clock time, we need to
get previous database log entry from this log with the same time as another log head to
be able to compare these versions. Luckily, both logs head from our example (A4, B3) are
published at the same time. We can get a previous entry from accessing parent property of
database log entry. Finally, after we got both logs heads from the same time, we can start
traversing them and comparing their parents. If logs have the same parent (in our example
it is version A2), we found a database version where the fork began. Now, peers need to
decide which version of the database to accept. The simplest method is to compare hashes

7

https: //en. wikipedia.org/wiki/Lamport_timestamps

29

http://wikipedia.org/wiki/Lamport_timestamps

of database log entries. In our example A3 entry has bigger hash than B2. This means that
Node B needs to rollback transactions published in versions B2 and B3 and apply them after
A4. After the merge, database log has a single head again and all published transactions
have been applied.

B2.B3

Node A Node B

Figure 5.7: Database synchronization

5.2 Feeder

A Feeder is a simple command-line application written in Typescript. Feeder high-level
operation is described in Algorithm 1. It strongly depends on the Explorer-core module.
Currently, we support only Blockbook connector as a source of blockchain's data. However,
Feeder can be simply expanded to support more data source such as InsightAPI or direct
connection to a blockchain as a full node. Each Feeder has configuration file (usually
called .env) with Feeder's settings. Main Feeder settings are URL of the source for the
blockchain's data and DB_NAME which is a name of the database where Feeder inserts new
blocks. A Feeder can be connected to only one blockchain. We can create multiple Feeders
for single blockchain, but we need to provide some deterministic algorithm, that ensures
that each block is parsed by only one Feeder. This can be done by providing Feederld and

30

public async merge(log) {

let thisHead = this.head;

let otherHead = log.head;

const rollbackOperations = new TransactionsBulkO ;

while (thisHead.clock.time != otherHead.clock.time) {

i f (thisHead.clock.time > otherHead.clock.time) {

i f (thisHead. identity. isMeO)

rollbackOperations.push(thisHead.transaction);

thisHead = await this.get(thisHead.parent);

} else {

otherHead = await log.get(otherHead.parent);

}
}
while (thisHead.payload.parent != otherHead.parent) {

i f (thisHead. identity. isMeO)

rollbackOperations.push(thisHead.payload.transaction);

otherHead = await log.get(otherHead.parent);

thisHead = await this.get(thisHead.parent);

}
i f (otherHead.compare(thisHead.hash)) {

await this.migrate(log, rollbackOperations);

}
}

Figure 5.8: Simplified code for merging database logs

FeedersCount in . env config file. If those values are provided, Feeder parses only blocks
that have height modulo FeedersCount equals to Feederld.

Algorithm 1: Simplified Feeder algorithm
load configuration:
while there is new block do

fetch block:
for transaction in block do

save transaction:
end
save block:

end

5.2.1 E x p l o r e r G U I

ExplorerGUI is a single page application with a simple user interface implemented with
Vue.js 8 that runs in a browser. We use Vuetify 9 as a user interface library and browser
implementation of IndexedDB 1 0 as a storage for IPFS. Communication with other peers
is provided though W e b R T C 1 1 and WebSockets because a web page in a browser can not
open T C P socket. Every opened ExplorerGUI browser tab is the same IPFS node instance.
Opening a new tab in incognito mode or different browser spawns new IPFS node.

8

https: //vue js.org/
9

https: //vuetif yj s.com/
10

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
n

https: //webrtc.org/

31

http://js.org/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

Cl

© Bitcoin
-TNHFCTINr m ODNNFHT

©
©

Bitcoin

Ether Etheruem

©
©

DigiByte

©
DigiByte De

©
© Decred

IPFS blockchain explorer

PREVIOUS BLOCK

Block #13095

0 Bitcoin

HEXT BLOCK

©
Minští on Su-day, May 3rd 20CÜ
Size216byles

Transactions:

Connected to IPFS!
ID: QmR8Wi8EhUFVS2XtZgFY81 GHr6fk8LVHWjak3MCFVC2F4i
Agent version: js-ipfs/0.40.0
Peers:

• /dns4/sfo-
3.boo1slrapJibp2pjo/tcp/443/wss/ipfs/QmSoLPppuBtQSGwKDZT2M73ULpjvfd3aZ6ha4oFGL1KrGM

• /dns4/sgp-
1.boo1slrapJibp2pjo/tcp/443/wss/ipfs/QmSoL^afTMBsPKadTEgaXctDQVcqN88CNLHXMkTNwMKPni

Value 50 Btc

miim»ClC3»AFlA01tl ©
Mined on Sunday, May 3rd 2009
Block #13095

Inputs Outputs
No address 0 Btc 1 DAXe3GDniCYtvv3E... 50 Btc

(a) Home view

IPFS blockchain explorer

(b) Block detail view

tCurrency

IPFS blockchain explorer OQ Q Bitcoin
|- column —

Where height X - i s lessthan Infinity EXECUTE

Address
1DAXe3GDnjCYtyv3ExfsCza8HNFumer5UB
transactions:

greater than

Value 50 Btc
Mined on Sunday, May 3rd 2009
Bock #13095

©

Inputs Outputs
No address 0 Btc 1DAXe3GDniCY1vv3E... 50 Btc

Block #13719
Mined on Friday, May 3th 2009 between
Size215byles

SEE DETAIL

Block #13718
Mined on Friday, May 8th 2009
Size216 bytes

trf.rs actions

©

©

(c) Address view (d) Blocks view

Figure 5.9: ExplorerGUI views

After page with ExplorerGUI is loaded, it tries to connect to all supported blockchains.
The home screen contains all enabled cryptocurrencies with their statuses (see Figure 5.9a).
Blocks list view (Figure 5.9d) is displayed when a user selects specific cryptocurrency. A user
can filter blocks by all blocks indexes in this view. A default filter gets all blocks with height
less than infinity. This query sorts blocks from the newest (highest) to the oldest (see Figure
5.9d). When a user clicks on the Execute button, ExplorerGUI starts loading blocks that
match the selected query by the asynchronous algorithm shown in Figure 5.10. First, we use
iterate function (implemented in Explorer-core module) to obtain iterator over subtree of
all results. This function is asynchronous, so it does not block the main JavaScript thread
while it is searching the whole index and looking for the subtree. Then we create an array
of promises 1 2 in which the individual blocks that are displayed on the page are loaded. In
for cycle, we push asynchronous tasks to the array. A task contains single parameter that
is pagePosition. This parameter is the order of the block that tasks loads. Every task
for each block then runs in parallel. First, task calls the next function on subtree iterator.

12

https://developer. mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

32

https://developer
http://mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

This function returns the next block in the subtree. The next function can return left or
right sibling of the current block. It depends on the condition. A subtree is traversed to
the left if greaterThan or between condition is used and to the right if there is lessThan
condition. The next function returns a pair of blockPromise which is a task that loads
blockchain block from IPFS and done that is boolean, which signals if there are any more
results in the subtree. Finally, task waits until blocks are loaded, and then assigns block in
the right index of the blocks array. Thanks to this optimized asynchronous algorithm, all
blocks displayed on the page are loaded in parallel.

const subtree = await query.iterate()

const tasks = [] ;

for (let i = 0; i < pageSize; i++) {

tasks.push(

(async pagePosition => {

const { blockPromise, done } = await subtree.iterator.next();

i f (done)

return;

blocks [page - 1 * pageSize + pagePosition] = await blockPromise;

})(i) ,

);
}
await Promise.all(tasks);

Figure 5.10: Loading blocks from database

When a user clicks on a block from the Block view, he is redirected to the Block detail
view (see Figure 5.9b). A l l transactions that are confirmed in this block are listed here.
Transactions have inputs and output that are usually cryptocurrency address (input can
also be a coin base). Every address in a transaction in link to the Address View (see Figure
5.9c). The Address view contains all transactions that address is part of as input or output.

The last view that we implemented in ExplorerGUI is Playground (see Figure 5.11). In
this view, the user can write a query to the web editor and execute it. Syntax highlighting
in editor is done by P r i s m 1 3 . Result of a user query is returned in JSON format bellow
query.

5.2.2 Explorer A P I

Explorer A P I is a server-side application that provides simple H T T P A P I . After Explor
er A P I starts, it connects to the all enabled cryptocurrency databases (specified in .env
file). Then it registers all three controllers (for blocks, transactions and addresses) and starts
H T T P server on port described in . env file or 5000 if there is no specific port in the envi
ronment file. ExplorerAPI has only three endpoints (block, address and transaction).

A l l these endpoints accepts query parameter (in case of GET method) or body parameter
(POST method) in which query is described (see Figure 4.7a). This parameter can consist of
array of conditions and filters, skip property and resolver. The parameter is translated to
the Query system and result is return in JSON format (see Figure 4.7b). ExplorerAPI can
accept multiple connections at once, because each request is processed in separated promise
(task).

'https: //prismj s.com/

33

o

IPFS blockchain explorer as
• Currency

Q B i tco i r X

Conditions: Resolvers: Other:

• greaterThan • all • save

t lessThan • first t skip

• equal • take • filter

• between • paginate • or

• iterate • and

Write query

return new t h i s Block
.where("height")
.between(11999, 12686
. f i l t e r (b => b.height % 2)
.skip(2)
,take(3)
map b => b hash

E X E C U T E

"a0B8Ba087b4daf0e6238594dae3552e5eb5a212bc8c41931e9ea22ffbbdei393",
"e066ee08e4361771e6cca41f3c5f2cb2bee7690cb984d6ad45S1618a6736728e",
••66Be0aeee993ESeeeieeef39 38aa83ae2ace7b6eS86d394S3a4546Sdb5 209e6S"

Figure 5.11: Playground view

34

Chapter 6

Testing and Benchmarking

In this chapter, we describe how our platform is verified and validated. Then, we measured
the performance of the database system with different count of clients, and we compared
results with other database systems.

6.1 Test ing

Testing is an essential part of the development of any project. As part of this master thesis,
we performed unit testing to ensure that every platform module works correctly.

6.1.1 Unit Testing

We tested all critical parts of the Explorer-core module through unit tests. We use jest.js1

framework for writing tests. We test every operation on B-Tree index (add, remove, find,
update), an append-only log that is used for database log and record log (add, merge,
difference). Test for B-Tree insert operation can be seen in Figure 6.1. Tests for every
application we have developed in this thesis can be run by command npm run test. Tests
was automatically performed after each commit to the versioning system, thanks to con
tinuous integration (CI) provided by G i t H u b 2 . A l l applications are dockerized (can be run
via Docker'^), therefore making CI pipeline was easy.

6.2 B e n c h m a r k i n g

To test the performance of our platform, we have focused on the speed of transaction
processing in the database system. We compared our database system to other widely used
solutions - M y S Q L and PostgreSQL.

M y S Q L

M y S Q L is leading open-source multi-platform relational database system. Originally,
MySql was created by the Swedish company M y S Q L A B , now owned by Oracle Corpo
ration. It can provide stable and robust database solution for application. Due to its easy

x

https: //jest j s.io/
2

https: //help.github. com/en/act ions/building- and-t est ing-code-with-continuous-

int egrat i on/about-cont inuous-integrat i on
3

https: //www.docker.com/

35

http://www.docker.com/

describe("Btree", () =>

{

itC'insert values to btree", async () =>

{

const t = new BTreeO ;

for (let i = 0; i < 100; i++)

{
await t.add(i, { name: "test object", value: i });

}

for (let i = 0; i < 100; i++)

{

expect(await t.find(i)).toStrictEqual({ name: "test object", value: i }) ;

}
expect(await t.find(101)).toBe(null);

});
});

Figure 6.1: Unit test for B-Tree insert operation.

deployment, performance and especially due to the fact that it is a freely distributable
software, it has a high share in currently used databases. [24, 10]

PostgreSQL

PostgreSQL is object-relational widly used open-source database system. It is available
for Linux, FreeBSD, OpenBSD, and Windows. PostgreSQL was formed in 1977. Project
started in university of California and later on was developed commercially. To this date
PostgreSQL has active development wordwide community. Main advantage of PostgreSQL
is aprouch of object-relational model. This allows developers to store. It is designed to
handle a range of workloads, from single machines to data warehouses or Web services with
many concurrent users. [9]

Environment

We compare M y S Q L and PostgresSQL with our peer-to-peer database system. These
database systems run virtualized in Docker containers on hardware with 4 cores proces
sor Intel Pentium G4560 3.50GHz and 16 G B of R A M . We start clients that connect to
these database systems and performs queries on different hardware. Then we measure
average queries per seconds that clients execute. Clients are written in JavaScript with
official node.js connectors for M y S Q L 4 and PostgreSQL 5 and are connected in the L A N
with database systems over 1Gb Ethernet. Database structure that is used in benchmarks
can be seen in Figure 6.2. Table authors contains 10,000 records and table posts contains
50,000 records (each author has 5 posts). Test query for each database system can be seen
in Figure 6.3.

4

https: //www.npmj s.com/package/mysql
5

https: //www.npmj s.com/package/postgres

36

http://www.npmj
http://www.npmj

C R E A T E T A B L E ' a u t h o r s ' (
' i d ' i n t (l l) P R I M A R Y K E Y ,
' f i r s t n a m e ' v a r c h a r (5 0) ,
' l a s t n a m e ' v a r c h a r (5 0) ,
' e m a i l ' v a r c h a r (l O O) ,
' b i r t h d a t e ' d a t e ,
' a d d e d ' t i m e s t a m p ,
P R I M A R Y K E Y (' i d ') ,
U N I Q U E K E Y ' e m a i l ' (' e m a i l '

);
C R E A T E T A B L E ' p o s t s ' (

i d ' i n t (l l) P R I M A R Y K E Y ,
' a u t h o r i d ' i n t (l l) ,
' t i t l e ' v a r c h a r (2 5 5) ,
' d e s c r i p t i o n ' v a r c h a r (5 0 0) ,
' c o n t e n t ' t e x t ,
' d a t e ' d a t e ,
P R I M A R Y K E Y (i d)

);

C R E A T E T A B L E a u t h o r s
i d s e r i a l P R I M A R Y K l
f i r s t n a m e v a r c h a r (5 0) .
l a s t n a m e v a r c h a r (5 0) ,
e m a i l v a r c h a r (l O O) ,
b i r t h d a t e d a t e ,
a d d e d t i m e s t a m p

);
C R E A T E T A B L E p o s t s (

i d s e r i a l P R I M A R Y K l
a u t h o r i d i n t ege r ,
t i t l e v a r c h a r (2 5 5) ,
d e s c r i p t i o n v a r c h a r (5 0 0
c o n t e n t t e x t ,
d a t e d a t e

);

(b) PostgreSQL

c l a s s A u t h o r {
@ P r i m a r y K e y () i d : n u m b e r ;
f i r s t n a m e : s t r i n g ;
l a s t n a m e : s t r i n g ;
e m a i l : s t r i n g ;
@ I n d e x () b i r t h d a t e : D a t e ;
a d d e d : D a t e :

}

c l a s s P o s t {
@ P r i m a r y K e y () i d : n u m b e r ;
a u t h o r i d : n u m b e r ;
t i t l e : s t r i n g ;
d e s c r i p t i o n : s t r i n g ;
c o n t e n t : s t r i n g ;
d a t e : D a t e :

}

(c) Our database system

(a) MySQL

Figure 6.2: Database structures for benchmarking

S E L E C T * F R O M a u t h o r s
J O I N p o s t s O N
p o s t s . a u t h o r i d — a u t h o r s . i d
W H E R E a u t h o r s . i d =

(S E L E C T
F L O O R (R A N D f) * 1 0 0 0 1 + 1)) ;

(a) MySQL

S E L E C T * F R O M a u t h o r s
J O I N p o s t s O N
p o s t s , a u t h o r i d — a u t h o r s , i d
W H E R E a u t h o r s . i d =

(S E L E C T
floor(random() * 1 0 0 0 1 -

(b) PostgreSQL

Figure 6.3: Test query

n e w A u t h o r Q
. w h e r e (" i d ")
. e q u a l (

M a t h . n o o r (
M a t h . r a n d o m () * 1 0 0 0 1) + 1)

. f i r s t () ;

(c) Our database system

Single Connected Client

With a single connected client, PostgreSQL can make more than 250 queries per second and
M y S Q L 70 queries per second. Our database system is far behind with up to 20 queries
per second (see Figure 6.4a). We can see that our database system builds cache, and
performance increases by time. Wi th only a single connected client, there is no advantage
of a peer-to-peer network. C P U usage with a single connected client is for M y S Q L and
PostgreSQL same - about 20% (see Figure 6.4b). For our database system, it is only 3%
due to lots of input-output operations.

20 Connected Clients

With 20 connected clients, PostgreSQL performance dropped to 50 queries per seconds and
M y S Q L to 10 queries per seconds. At the end of benchmarking, our database system is
more powerful than PostgreSQL and M y S Q L , because data gets distributed to clients (see
6.5a). Our database system also requires less processor time thanks to peer-to-peer network.
Data are not obtained only from the server (as opposed to M y S Q L and PostgreSQL) but
also from other clients. Thanks to this, our platform only using less than 20% C P U power
(see Figure 6.5b).

80 Connected Clients

With 80 connected clients, our database system outperforms M y S Q L and PostgreSQL after
few seconds. Every client of our database system performs 100 queries per second. Post
greSQL client performs only 10 queries per second and M y S Q L only 2 queries per second

37

P e r f o r m a n c e C P U usage

300

. 250
SZ

1 2 0 0

S.150

oj
•i= 100

u
O 50

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time

—MySQL —PostgreSQL —Our database system

(a) Performance

100

80

? 60
I
! 40
I

20

0

—MySQL —PostgreSQL —Our database system

(b) C P U usage with

Figure 6.4: Single connected client benchmark plots

P e r f o r m a n c e C P U usage

—MySQL —PostgreSQL —Our database system

(a) Performance

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Time

—MySQL —PostgreSQL —Our database system

(b) C P U usage with

Figure 6.5: 20 connected clients benchmark plots

(see 6.6a). C P U usage is in our database system also very low. In the beginning, when
content is not distributed on the clients, the central node uses 60% of C P U , but it decreases
over time (see 6.6b).

150 Connected Clients

We need to change the default PostgreSQL setting for maximum connections to connects
more than 100 clients to the PostgreSQL. Our platform can handle 150 clients very well
(opposite to M y S Q L and PostgreSQL). Each client connected to our database system can
make up to 150 queries per second, and it increases by the time (see 6.7a). For the first
seconds, C P U usage on the central node is high (near 100%), but it decreases over time
(see 6.7b).

Benchmark Conclusion

We can see that with more than 20 connected clients, our database system became more
effective than traditional ones. Thanks to IPFS and its peer-to-peer network, a content of
the database is distributed on the clients. This reduces the load on the central node.

38

P e r f o r m a n c e C P U usage

—MySQL —PostgreSQL —Our database system

(a) Performance

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Time

—MySQL —PostgreSQL —Our database system

(b) C P U usage with

Figure 6.6: 80 connected clients benchmark plots

P e r f o r m a n c e C P U usage

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Time

—MySQL —PostgreSQL —Our database system

(a) Performance

—MySQL —PostgreSQL —Our database system

(b) C P U usage with

Figure 6.7: 150 connected clients benchmark plots

6.3 C o m p a r i n g w i t h B l o c k c h a i n Explorers

Our blockchain exploration platform is unique and differs from traditional blockchain ex
plorers in many ways. See the table 6.1 to compare traditional blockchain explorers with
ours.

39

Our platform Traditional blockchain
explorer (Blockbook,
Insight)

Database system Proprietary Typically NoSQL database
Views for blocks,
transactions and
addresses

Yes Yes

Complex queries
support

Yes No

Filtering Yes No, but filtering can be
made by cycling over re
sults

Sorting Yes No
Blockchain syn
chronization

Typically slower but it
depends on how many
Feeders are working on
blockchain

Faster

Get block/trans
action/address by
hash

Slower Faster, but may slow
down if multiple nodes
are connected

When more user is
connected

Works faster Works slower

Multiple coins
support

Yes Yes

Table 6.1: Comparing our platform with typical blockchain explorers

40

Chapter 7

Conclusion

The goal of this thesis was to create a platform that uses IPFS to explore blockchain. To
achieve this, we needed to create our own decentralized and distributed database system
that supports advanced queries and indexes on top of the IPFS. Our database system
has optimized synchronization. As was described in Chapter 6.2, it is faster with every
next connected peer. Explorer-core module in which database is implemented, works in a
browser environment and desktop (via node.js) thanks to language choice (Typescript). We
created several applications using this decentralized database. Namely Feeder that connects
to the blockchain data source and stores it to IPFS. Secondly, ExplorerGUI is used as a
presentation layer for users. Lastly, Explorer A P I provides a simple interface for integrating
with other applications.

The research section of this project focuses mainly on the IPFS principles (content-
based addressing, object linking, and others). Selected cryptocurrencies for exploring are
also briefly discussed. Considerable effort was devoted to designing the whole platform and
creating a functional prototype.

Although the task of this work was to create a simple blockchain explorer, this project
aroused great interest in the IPFS community, because our database system allows de
velopers to create decentralized serverless applications with a relatively efficient database
solution. Thanks to this work, it is possible to host entire information systems in IPFS.
There are many benefits to using our database system for developers. The main advantages
include the cost of hosting, as in our solution with a higher number of users, the load on
the central peer decreases, as well as the availability of data even in the event of a failure of
part of the peers. Our Query system is well adapted to today O R M frameworks and uses
fluent query language and supports multiple conditions in a single query.

The result of this thesis is a distributed platform, that can parse blockchain data from
a data source and then allows user to explore them. Compared to traditional blockchain
explorer, our platform has minimal operation cost, and it can recover from a partial network
failure.

In the future, it is possible to improve Query system by supporting more operators
(like, groupBy). Other data connectors as Blockbook can be added to the Feeder (for
example direct connection to the blockchain via full node). Other index structures can be
implemented for better performance in some queries (for example trie 1 for prefix search).

1 ht tps : / /en . wikipedia.org/wiki/Trie

41

https://en
http://wikipedia.org/wiki/Trie

Bibliography

[1] B E N E T , J . IPFS - Content Addressed, Versioned, P2P File System. CoRR. 2014,
abs/1407.3561. Available at: http://arxiv.org/abs/1407.3561.

[2] B U T E R I N , V . et al. A next-generation smart contract and decentralized application
platform. White paper. 2014, vol. 3, no. 37.

[3] C H A C O N , S. and S T R A U B , B . Pro git. Apress, 2014. ISBN 1484200772.

[4] C H O W D H U R Y , N . Inside blockchain, bitcoin, and cryptocurrencies. Boca Raton: C R C
Press, 2020. ISBN 978-1-138-61815-2.

[5] D A S C A N O , M . Digibyte: An Easy Guide to Learning the Essentials, lstth ed. North
Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2018. ISBN
1725629178.

[6] D A V I S , J . The Crypto-Currency. October 2011. [Online; Accessed 10.5.2020]. Available
at: https : //www.newyorker.com/magazine/2011/10/ 10/the-crypto-currency.

[7] D H I L L O N , V . , M E T C A L F , D. and H O O P E R , M . Blockchain Enabled Applications:
Understand the Blockchain Ecosystem and How to Make it Work for You. Springer,
2017.

[8] D I A S , D . and B E N E T , J . Distributed Web Applications with IPFS, Tutorial. In:
B O Z Z O N , A . , C U D R E M A R O U X , P. and P A U T A S S O , C , ed. Web Engineering. Cham:
Springer International Publishing, 2016, p. 616-619. ISBN 978-3-319-38791-8.

[9] D R A K E , J . D . and W O R S L E Y , J . C. Practical PostgreSQL. „ O'Reilly Media, Inc.",
2002. ISBN 1565928466.

[10] DuBoiS , P. and F O R E W O R D B Y W I D E N I U S , M . MySQL. New riders publishing,
1999. ISBN 9780321833877.

[11] H A B E R , S. and S T O R N E T T A , W . S. H O W to time-stamp a digital document. In:
Springer. Conference on the Theory and Application of Cryptography. 1990,
p. 437-455.

[12] J E P S O N , C. DTB001: Decred Technical Brief. Available at h ps://coss.
io/documents/white-papers/decred. pdf Additional information available at h
ps://www. decred. org. 2015.

[13] K A L L E , K . Big data in video games. Lappeenranta, FI, 2017. Bachalar Thesis.
Lappeenranta University of Technology, School of Business and Management,
Computer Science. Available at: http://lutpub.lut.fi/handle/10024/147666.

42

http://arxiv.org/abs/1407.3561
http://www.newyorker.com/magazine/2011/10/
http://lutpub.lut.fi/handle/10024/147666

[14] L A B S , P. Filecoin - A Decentralized Storage Network. 2017. [Online; Accessed
7.5.2020]. Available at: h t t p s : / / f i l ecoin.io/f ilecoin.pdf.

[15] L A M P O R T , L . Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM. 1978, vol. 21, no. 7, p. 558-565. Available at:
https://doi.org/10.1145/359545.359563.

[16] L A U R E N C E , T. Blockchain for dummies. John Wiley & Sons, 2019. ISBN 1119555019.

[17] M A R K R O B E R T H E N D E R S O N , S. P. The OrbitDB Field Manual. 2019. [Online;
Accessed 13.5.2020]. Available at: https://github.com/orbitdb/field-manual.

[18] M A Y M O U N K O V , P. and M A Z I E R E S , D . Kademlia: A peer-to-peer information system
based on the xor metric. In: Springer. International Workshop on Peer-to-Peer
Systems. 2002, p. 53-65.

[19] N A K A M O T O , S. A peer-to-peer electronic cash system. Bitcoin. 2008. [Online;
Accessed 21.4.2020]. Available at: https://nakamotoinstitute.org/bitcoin/.

[20] N A R A Y A N A N , A . , B O N N E A U , J. , F E L T E N , E. , M I L L E R , A . and G O L D F E D E R , S.
Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton
University Press, 2016. ISBN 9780691171692.

[21] N O E T H E R , S. Ring Signature Confidential Transactions for Monero. IACR
Cryptology ePrint Archive. 2015, vol. 2015, p. 1098.

[22] P I C K , S. and H A G O P I A N . A protocol and event-sourced database for decentralized
user-siloed data. 2019. Available at:
https://blog.textile.io/introducing-textiles-threads-protocol/.

[23] S T O N E B R A K E R , M . and R O W E , L . A . The design of P O S T G R E S . ACM Sigmod
Record. A C M New York, N Y , USA. 1986, vol. 15, no. 2, p. 340-355.

[24] S U E H R I N G , S. MySQL Bible. Wiley Publishing, Inc., 2002. ISBN 0764549324.

[25] V A N S A B E R H A G E N , N . CryptoNote v 2.0. 2013. [Online; Accessed 20.5.2020]. Available
at: https : //static.coinpaprika.com/storage/cdn/whitepapers/1611.pdf.

[26] W A Y N E R , P. Digital Cash (2nd Ed.): Commerce on the Net. USA: Academic Press
Professional, Inc., 1997. ISBN 0127887725.

[27] W O O D , G . et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper. 2014, vol. 151, no. 2014, p. 1-32.

43

https://fil
https://doi.org/10.1145/359545.359563
https://github.com/orbitdb/field-manual
https://nakamotoinstitute.org/bitcoin/
https://blog.textile.io/introducing-textiles-threads-protocol/
http://coinpaprika.com/

Appendix A

Contents of the included storage
media

The enclosed C D contains the following files:

• latex/ - source files of this thesis

• code/ - source code of all created applications

— explorerCore/ - source code of the main module

— explorerGUI/ - source code of GUI application

— explorer A P I / - source code of A P I application

— feeder/ - source code of Feeder application

— benchmark/ - source code of performed benchmarks

• thesis.pdf - P D F of this thesis

A l l source files are available under GitHub organization IPFSexplorer (https

github.com/IPFSexplorer)

44

http://github.com/IPFSexplorer

