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Abstract
Precise orbital predictions are vital for every-day Low Earth orbit satellites operations
to evade collision. The study aims to analyse historical trajectory data in a form of the
classical orbital elements. By leveraging machine learning, data are aggregated, processed
and finally used for orbit prediction. The best forecast results have been achieved using
Long Short-Term Memory Neural Network.

Abstrakt
Přesné orbitální predikce orbit satelitů na nízé oběžné dráze Země jsou nezbytné pro kaž-
dodení provádění operací, tak aby se předešlo jejich srážkám. Tato práce se zaměřuje
na analýzu histrorických dat trajektorií, tvořených z klacických dráhových elementů. S
využitím strojového učení, data jsou sdružena, zpracována a na závěr užita pro predikci
dráhy orbity. Nejlepších výsledků předpovědí bylo dosaženo s neuronovou sítí s doulodobou
a krátkodobou pamětí (LSTM).
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Rozšířený abstrakt
Práce se zabývá predikcí drah těles na nízké oběžné dráze Země. Cílem práce je sestrojit
nástroj schopný dostatečně přesně předpovědět budoucí trajektorii tělesa. Pohyb tělesa
ovšem není vůbec jednoduché popsat. Existuje mnoho matematických modelů, které jsou
závislé na mnoha parametrech a tvoří soustavu rovnic, která by vystihla všechna specifika
orbity jako jsou například perturbace. Dalším řešením vyjma analytických a numerických
metod je strojové učení. To pracuje pouze s poskytnutými daty. Dle povahy poskytnutých
dat se bude odvíjet kvalita predikce, proto je třeba data nejdříve zpracovat, odstranit
chybné záznamy apod. Práce je rozdělena do sedmi kapitol, kde první poskytne náhled na
problematiku a motivaci k jejímu vypracování. Další 2 kapitoly obsahují teoretickou část
práce, kapitola čtvrtá až šestá se zaměřuje na praktickou část vlastní implementace. V
závěrečné sekci jsou shrnuty výsledky a je zmíněn případný následný vývoj.

Druhá kapitola se zabývá do detailu orbitální mechanikou. Jsou zde vysvětleny základní
pojmy týkající se vlastností elipsy, referenčních systémů, souřadných systémů, či klasických
orbitálních elementů (známé také pod názvem dráhové elementy). Důležitým bodem této
kaitoly je samotné završení, kde je zaveden pojem stavového vektoru.

Následuje kapitola popisující pohyb tělesa na nízké oběžné dráze Země. V úvodu je
představen problém dvou těles osvobozený od vnějších vlivů. Ten dostatečně přesně nastíní,
jak by mohla fungovat dynamika satelitu. Kapitola poté pokračuje představením hlavních
(perturbačních) vlivů ovlivňujících dráhu takového tělesa jako je např. aerodynamický at-
mosferický odpor, vliv slunečního záření či gravitační působení Měsíce a jiných těles.

Další kapitola se zaměří na práci s daty. Konktrétně se jedná o jejich získání, agregaci,
zpracovaní, seřazení a filtraci. S přihlédnutím k množství dat je možné provést selekci dat
a vybrat pouze ty, které budou vhodné pro následné strojové učení. Cílem zde tedy bylo
vyfiltrovat zdroje, které obsahovaly vysoké množství chybných měření, dlouhé prodlevy
mezi jednotlivými pozorováními, byly ovlivněny propulzí raketového motoru apod. Dále je
v práci rozebráno shlukování dat (clustering). Vzhledem k velkému počtu parametrů jsou
zde použity a popsány metody redukce dimenzionality/parametrů.

Kapitola simulace v úvodu popisuje různé způsoby prezentace získaných dat ve formě
2D grafu či 3D simulace. Krátce je zde také zmíněna efektivita jedné z hlavních kompo-
nent, která se počítá např. při převodu souřadnic. Záměrem poslední sekce je prezentace
předpovědi počtu slunečních skvrn na Slunci, která do velké míry koreluje se sluneční ak-
tivitou. K tomu bylo využito několik metod strojového učení jako jsou rozhodovací stromy
(Decision trees) či náhodný les (Random forest).

Předposlední kapitola se věnuje samotnému strojovému učení pro predikci dráhy. Pos-
tupně jsou zde zavedeny pojmy vysvětlující některé důležité charakteristiky zvoleného přís-
tupu. Okrajově je nastíněn Gaussovský proces (Gaussian process), Poté se přistoupí k
implementaci zvolené neuronové sítě s dlouhou a krátkou pamětí (LSTM). Mimo jiné jsou
zde rozebrány různé modely neuronové sítě a jejich kvalita. K závěru kapitoly jsou získané
výsledky prezentovány a zhodnoceny.
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Nomenclature

𝐴 Ascending node. 5, 8

𝐷 Descending node. 5

𝐸 Eccentric anomaly. 9, 10

𝑀 Mean anomaly. 7, 9, 10, 12, 21, 29, 31, 42

𝑃𝑎 Furthest point on the ellipse. 5

𝑃𝑝 Closest point on the ellipse. 5, 9

Ω Right ascension of ascending node RAAN. 7, 8, 29, 31, 42

𝛼 Right ascension. 5, 6

� Vernal/spring/march equinox. 5, 8

𝛿 Declination. 5, 6

𝜈 True anomaly. 7, 9, 10, 12

𝜔 Argument of perigee ARGP. 7, 8, 21, 29, 31, 42

𝑎 Semi-major axis. 5, 7, 9, 34, 42

𝑏 Semi-minor axis. 5

𝑐 Linear eccentricity. 5

𝑒 Eccentricity. 21, 42

𝑖 Inclination. 7, 8, 21, 28, 34, 42

𝑝 Semi-latus rectum. 5, 18
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Chapter 1

Introduction

With the growing number of objects launched onto the Earth’s orbit [8], collision avoidance
and satellite navigation systems have become increasingly more important. Since the incep-
tion of space exploration in 1957, number of resident space objects (RSOs) has gradually
increased. It is estimated that 36 500 space debris objects greater than 10 cm are currently
in the Earth’s orbit, with likelihood for more than 600 break-ups [4]. Thus Space debris
and the potential for collisions with satellites has become a major concern in the field of
space exploration.

As the number of satellites in the orbit grows, the risk of collision also increases. Possible
crashes not only cause loss of crucial equipment and money, but also generate additional
fragments in the course of an impact. Consequentially chained reactions [13] occur creating
more debris with each revolution. These remains, yet very small (less than 1 cm), can
account for irreparable damage or even repeal entire mission.

To reduce such events, high-accuracy orbit prediction model is absolutely essential.
Present methods for orbit prediction are based on dynamic models, founded on physics
and analytical solutions, approximate features like perturbations, RSO shape, mass etc.
subsequently diverging from the correct trajectory. Current methods are capable to obtain
reasonable forecast up to 5 days in the future after which error deviation reaches orders of
kilometers [1], thus making it irrelevant.

There are also several studies with machine learning approach in mind. Such approaches
neglect physical features of the RSOs and focus primarily on large amounts of historical
data. There are studies focusing on two-line elements (TLE) as the input data [16], or
propagation methods such as Support Vector Machines (SVM) [26], Gradient Boosting
(GB) [17], Gaussian Process (GP) [27] and finally Long Short-Term Memory (LSTM) [32],
selected for the prediction in this work.

The thesis will begin by theoretical overview of orbital mechanics, including different
Earth-centered reference systems, the role of orbital elements in obit determination and
prediction. In the next chapter, RSO movement in Low-Earth orbit will be probed more in
detail with focus on forces acting on the body and deviation from its orbit. The importance
of probabilistic and empirical models will be then discussed. Following chapters describe
practical part of the thesis. Successively, reader will be well acquainted with obtained
dataset and its preparation for machine learning. In the last chapters, prediction method
using machine learning and its result will be presented.
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Chapter 2

Orbital mechanics

Centuries ago, humanity struggled to resolve principles of celestial bodies motion. Presently,
we are endowed with laws of force, gravitational attraction, Kepler’s laws, general relativity
and many other principals, by means of we describe processes above, how planets, stars,
moons, satellites etc. revolve. In this section, reference systems used in this work and
fundamentals of Kepler’s and Newton’s laws will be discussed.

2.1 Reference systems

Figure 2.1: The three
Earth rotations.

The Earth’s orbit can not be regarded as a stable system, for couple
of reasons. In short term and smaller scale, there are many factors
influencing RSOs orbit called perturbation (more in section 3.1).
For longer periods, one has to take into account precession, nu-
tation, polar motion and others. For instance precession is the
process of rotation of the Earth’s axis orientation, yet for the time
span of human life quite insignificant, for precise measurements
non-negligible. Main reason is the gravitational pull of the Moon
and the Sun on the Earth’s equatorial mass imbalance. One full cy-
cle takes about 25 772 years, which corresponds to an 8’ arc during
one decade [7]. Other influences are much smaller in magnitude.
To evade this effect, an inertial system must be accordingly locked
in space and time.

2.1.1 BCRS vs GCRS

There are two main approaches regarding coordinate systems.
First one is the Barycentric celestial reference system (BCRS) suit-
able for objects located outside the gravitational vicinity of Earth.
It is used in this work to obtain location from ephemerides of the
Planets to count third-body perturbations. The center is defined
by the barycenter of the entire Solar system. Other being Geocentric celestial reference
system (GCRS) which is preferred for bodies closer to the Earth such as space debris and
satellites. The origin of the coordinate system lies in the center of mass of the Earth.
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Location of the RSO can be described in various ways. For purposes of orbital mechan-
ics, it is suitable to choose ECI (Earth-centered inertial). Such a frame does not accelerate
or rotate in space and stays stable with respect to the stars. The one used primarily
throughout this work is the most profound one – ECI J2000 (J2K) defined by orientation of
the Earth rotation axis and Equatorial plane on January 1, 2000, at 12:00 TT (Terrestrial
Time). Another reference frame referred to as perifocal frame rotates system as if RSO
orbited on the XY plane (from ECI) with periapsis 2.1.2 aligned with X axis.

2.1.2 Equatorial reference frame

This reference frame is suitable for static display of the Earth. All of the Earth’s motions
are evaded, thus making it the best option to display Low-Earth orbit (LEO) trajectories:
X – vernal point, Y – points 90° east on the equatorial plane and Z – north celestial pole

Many notations describing position of the object on the sky (such as ephemerides) use
right ascension 𝛼, declination 𝛿 and others. Below, there is summary of the terms used
during the next chapters:

• Vernal/spring/march equinox � – fictional point in the sky where equatorial plane
and ecliptic (orbital plane of planets) intersect.

• Right ascension 𝛼 – angular distance of the body measured from the �.

• Declination 𝛿 – angular distance of the body measured from the equatorial plane.

• Ascending node 𝐴 – point where body crosses equatorial plane on its way upwards.

• Descending node 𝐷 – opposite to the 𝐴.

Related to the ellipse:
• Periapsis 𝑃𝑝 – closest point on the ellipse of the orbiting body to the central body.

• Apoapsis 𝑃𝑎 – furthest point.

• Semi-major axis 𝑎 – half of the distance between periapsis and apoapsis.

• Semi-minor axis 𝑏 – distance from the center to its closest point on the ellipse.

• Linear eccentricity 𝑐 – distance from the center to any of the two foci.

• Semi-latus rectum 𝑝 – length of the chord through one of the foci, perpendicular to
the major axis [23].

Figure 2.2: Figure depicts ellipse features, if central body was in 𝐹1.
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2.2 Inertial position and velocity

Given a frame of reference (such as ECI), the position of RSO in time 𝑡 is determined by
position vector r ∈ R3 comprised of 𝑥, 𝑦 and 𝑧 coordinates stated as

r(𝑡) = 𝑥(𝑡) X̂+ 𝑦(𝑡) Ŷ + 𝑧(𝑡) Ẑ = 𝑥 X̂+ 𝑦 Ŷ + 𝑧 Ẑ (2.1)

where X̂, Ŷ and Ẑ are the unit vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively [3]. Ve-
locity of a given object is first time derivative of the position vector

v =
𝑑𝑥

𝑑𝑡
X̂+

𝑑𝑦

𝑑𝑡
Ŷ +

𝑑𝑧

𝑑𝑡
Ẑ (2.2)

Acceleration can be stated as second derivative of the position vector r or first derivative
of its velocity v, thus

a = v̇ = r̈ =
𝑑v

𝑑𝑡
=

𝑑2r

𝑑𝑡2
. (2.3)

Another way to represent RSO in space is to use equatorial coordinates. Unlike Carte-
sian coordinates, equatorial components are defined as angles 𝛼 and 𝛿, with distance 𝑟.

Figure 2.3: Left-hand graphic shows RSO position determination using equa-
torial coordinates using right ascension 𝛼, declination 𝛿 and distance from
origin 𝑟. Figure shows position of object 𝑂 in Cartesian coordinates XYZ
with indicated velocity and acceleration vectors v and a, respectively.

It should be noted here that both systems are convertible. It is sometimes more conve-
nient to leverage equatorial rather than Cartesian and vice versa, thus conversion:

𝑥 = 𝑟 cos 𝛿 cos𝛼

𝑦 = 𝑟 cos 𝛿 sin𝛼

𝑧 = 𝑟 sin 𝛿

↔

𝑟 =
√︀
𝑥2 + 𝑦2 + 𝑧2

𝛿 = arctan

(︃√︀
𝑥2 + 𝑦2

𝑧

)︃
𝛼 = arctan

(︁𝑦
𝑥

)︁
6



2.3 Keplerian elements

Johannes Kepler based his work on the study of celestial measurements acquired by Tycho
de Brahe. His approach substituted previous circular orbits based on epicycles with elliptical
trajectories. His work resulted in 3 laws:

1. The orbit of each planet is an ellipse with the Sun at one focus.

2. The heliocentric radius vector of each planet sweeps over equal area in equal time.

3. The square of the orbital period is proportional to the cube of the ellipse’s semi-major
axis.

The first one describes the ellipse – a somewhat oblique circle with a 𝑎 connecting the
most distant and the closest points. Perpendicular to it lies a semi-minor axis. The two
points are called aspis. According to the reference body they can be called differently
such as (perihelion, aphelion). The Second law used for calculation of the position of the
body on its trajectory. Keplerian elements are used to uniquely describe position and orbit
trajectory of the body in space. It is sometimes called (classical) orbital elements and can
be used interchangeably with term Keplerian elements or orbital elements throughout this
work. There are 4 groups with different functionalities.

Figure 2.4: This is a 𝑋𝑌 𝑍𝐸𝐶𝐼 coordinate system with the Earth in the center,
more precisely in the focal point. Points 𝑃,𝐴,𝐷,𝑂 represent preiapsis, as-
cending node, descending node and current position of the RSO respectively.
Other symbols are Keplerian elements 𝜔 argument of periapsis, Ω – right as-
cension of the ascending node, 𝑖 – inclination, 𝑀 – mean anomaly and 𝜈 –
true anomaly. Orange dashed line represents ecliptic plane.
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2.3.1 Size and shape

These elements describe the shape and size of the orbit.

1. Semi-major axis 𝑎 – half of the length of the longest line, which goes through both
foci.

2. Eccentricity 𝑒 – nonnegative number defines rate of obliqueness of the ellipse, zero
means perfect circle, 𝑒 ∈ (0; 1) represent ellipse, 𝑒 = 1 denote parabola and finally
hyperbola is determined by 𝑒 > 1.

2.3.2 Keplerian angles

These define the orientation of the trajectory plane with respect to the �.

3. Argument of periapsis 𝜔 – the angle between the ascending node and the periapsis,
describes rotation of the plane.

4. Inclination 𝑖 – the angle subtending the plane of orbit and reference plane (usually
equator or ecliptic), describing plane tilt.

𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Posigrade . . . 0 < 𝑖 < 90∘

Polar . . . 𝑖 = 90∘

Retrograde . . . 90∘ < 𝑖 < 180∘

5. Right ascension (longitude) of the ascending node Ω – the angle between the vernal
point � and the ascending node 𝐴, depicting horizontal rotation of the plane.

As mentioned above, these parameters symbolize in 3D euclidean space Yaw-roll-yaw
sequence also known as ZXZ Euler rotation [10].

𝑅𝑧(𝜔) = Yaw1(𝜔) =

⎡⎢⎢⎢⎣
cos𝜔 − sin𝜔 0

sin𝜔 cos𝜔 0

0 0 1

⎤⎥⎥⎥⎦ (2.4)

𝑅𝑥(𝑖) = Roll(𝑖) =

⎡⎢⎢⎢⎣
1 0 0

0 cos 𝑖 sin 𝑖

0 − sin 𝑖 cos 𝑖

⎤⎥⎥⎥⎦ (2.5)

𝑅𝑧(Ω) = Yaw2(Ω) =

⎡⎢⎢⎢⎣
cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

⎤⎥⎥⎥⎦ (2.6)

8



Applying gradually 2.4, 2.5 and 2.6 to the initial trajectory plane results in dot product,
consequently forming desired transformation

𝑅(Ω, 𝑖, 𝜔) =

⎛⎜⎜⎜⎝
cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
1 0 0

0 cos 𝑖 sin 𝑖

0 − sin 𝑖 cos 𝑖

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
cos𝜔 −𝑠𝑖𝑛𝜔 0

𝑠𝑖𝑛𝜔 cos𝜔 0

0 0 1

⎞⎟⎟⎟⎠ =

=

⎛⎜⎜⎜⎝
cosΩ cos𝜔 − cos 𝑖 sinΩ sin𝜔 − cosΩ sin𝜔 − cos 𝑖 sinΩ cos𝜔 − sin 𝑖 sinΩ

sinΩ cos𝜔 + cos 𝑖 cosΩ sin𝜔 cos 𝑖 cosΩ cos𝜔 − sinΩ sin𝜔 sin 𝑖 cosΩ

− sin 𝑖 sin𝜔 − sin 𝑖 cos𝜔 cos 𝑖

⎞⎟⎟⎟⎠
(2.7)

which in a sense describes conversion from perifocal reference frame to ECI reference
frame.

Figure 2.5: In the very left picture initial ellipse in perifocal reference frame
P̂Q̂R̂ is depicted. Then gradually 𝑍 𝑋𝑍 → 𝜔 𝑖Ω transformations are applied.
This results in trajectory in ECI reference frame.

2.3.3 Anomalies

In astronomy, anomalies are apparent motions of the planets. They are expressed in as
angles in degrees or radians. There are three types of anomalies, which serve to obtain the
current position of the body on the elliptical path. There is usually given a 𝑀 together
with 𝑎, however, sometimes they can be replaced by true 𝜈 and angular momentum.

6. Mean anomaly 𝑀 – a fraction of an elliptical orbit as if trajectory was not an ellipse
rather a circle with radius of 𝑎 with center in focal point (where the central body is
located). Thanks to its linear increment throughout entire revolution, it suits well to
many computations.

7. True anomaly 𝜈 or 𝜃 – an angle between periapsis 𝑃𝑝 and current position of the body
on the orbit.

8. Eccentric anomaly 𝐸 – more complex compared to the previous anomalies. It is
defined as an angle between periapsis and point, where orbiting body is not located,
but perpendicular to the major axis on the auxiliary circumscribed circle.

9



Figure 2.6: The left picture shows mean anomaly. Eccentric and mean
anomaly are depicted in the right picture. 𝑂 stands for the center of an
auxiliary circle. Points 𝑋1 and 𝑋2 represent the imaginary position on the
auxiliary circle for mean anomaly and eccentric anomaly resectively. Point
𝐶𝑝 marks current position of the RSO in time 𝑡. 𝑃𝑝 is periapsis. Foci points
are 𝐹1 and 𝐹2, whith central body located in the 𝐹1 point.

Unlike 𝑀 , both 𝜈 and 𝐸 are non-linear. Getting eccentric anomaly is very handy
because it is closely related to the 𝑀 by Kepler’s equation 2.8.

𝑀 = 𝐸 − 𝑒 · 𝑠𝑖𝑛(𝐸) → 0 = 𝑀 − 𝐸 + 𝑒 · 𝑠𝑖𝑛(𝐸) (2.8)

Only 𝑀 can be obtained from space-track.org [31]. However, there is no closed-solution
form to obtain 𝐸 given 𝑀 . By rearranging the equation to the form equal to 0, it is possible
(by root finding) to numerically approximate the value of 𝐸. Rewritten form of the Kepler’s
equation can be found in the right-hand side of the equations 2.8.

One of the root finding algorithms is Newton-Raphson method. Its iteration step is
described in equation 2.9. This method only needs initial guess and required precision 𝜖.
Trajectories of the satellites are generally close to circular orbits (meaning 𝑒 is close to zero)
thanks to that, 𝑀 is highly suitable as initial starting point 𝑥0 for the method. Due to the
continuous nature of the function, desired root doesn’t usually conform to 0 and number
of steps or precision must be defined beforehand. Accuracy 10−15 has been chosen for its
best performance-precision ratio (more on this in section 5.1).

𝐸𝑛+1 = 𝐸𝑛 − 𝑓(𝑛)

𝑓 ′(𝑛)
(2.9)

There are couple ways of setting initial guess. Typical value is 𝐸0 = 𝑀 or 𝐸0 = 𝜋 [22].
Faster and more robust possibility suggests [21] where initial estimate

𝐸0 =
𝜋

2
𝑒

(︃
sgn(𝑒)

√︂
1 +

𝑀

𝑒𝑒2
− 1

)︃
where 𝑒 =

𝜋

4𝑒
− 1 (2.10)
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combined with Halley’s equation

𝐸𝑛+1 = 𝐸𝑛 − 𝑓

𝑓 ′
(︁
1− 𝑓 𝑓 ′′

2𝑓 ′2

)︁ = 𝐸𝑛 − 2𝑓𝑓

2𝑓 ′2 − 𝑓 𝑓 ′′ (2.11)

should converge usually the fastest.

Having that done, it is possible to make use of 𝐸 to compute the position of a point
moving in a Keplerian orbit.

𝑓 ≡ 𝐸 − 𝑒 sin𝐸 −𝑀 𝑓 ′ ≡ 1− 𝑒 cos𝐸 𝑓 ′′ ≡ 𝑒 sin𝐸 (2.12)

In many computations (such as anomaly conversions 2.15–2.19), it is convenient to use
trigonometric functions sin and cos instead of deriving the explicit values, for their mutual
conversions can be expressed eg. by infinite series. This comes in handy when converting
from perifocal to ECI frame 2.21–2.22. Such equations and conversions between orbital
elements are listed below:

cos(𝜔 + 𝜈) =
𝑟𝑥
𝑟
cosΩ +

𝑟𝑦
𝑟
sinΩ (2.13)

sin(𝜔 + 𝜈) =
𝑟𝑧

𝑟 sin 𝑖
(2.14)

cos 𝜈 =
cos𝐸 − 𝑒

1− 𝑒 cos𝐸
(2.15)

sin 𝜈 =

√
1− 𝑒2 sin𝐸

1− 𝑒 cos𝐸
(2.16)

cos𝐸 =
cos 𝜈 + 𝑒

1 + 𝑒 cos𝐸
(2.17)

sin𝐸 =

√
1− 𝑒2 sin 𝜈

1 + 𝑒 cos𝐸
(2.18)

𝑟 = 𝑎(1− 𝑒 cos𝐸) (2.19)
𝑝 = 𝑎(1− 𝑒2) (2.20)

r = 𝑟 (cos 𝜈P̂, sin 𝜈Q̂) (2.21)

v =

√︂
𝜇

𝑝
(− sin 𝜈P̂+ 𝑒+ cos 𝜈Q̂) (2.22)

2.3.4 Epoch

Due to the precession and other influences 2.1, there is a need to set a reference time
for coordinates to be aligned properly. Changing the epoch results in conversion of the
coordinates. There are several possible coordinate conversions, however, they won’t be
discussed here for their exceeding lengths.
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2.4 State vector

In previous two sections 2.2, 2.3, different approaches to define any object in space have
been discussed. In order to capture RSO in time and space and simplify notation, state
vector 𝑋𝑟𝑣, ˙𝑋𝑓𝑜𝑟𝑐𝑒 and 𝑋𝐶𝑂𝐸 is introduced. As seen in section 2.3, using position vector r
together with velocity vector v and acceleration vector a, a state vector and a force vector
in Cartesian coordinate system could be defined as

X𝑟𝑣 =
[︁
𝑥 𝑦 𝑧 𝑥̇ 𝑦̇ 𝑧̇

]︁𝑇
(2.23) Ẋ𝑓𝑜𝑟𝑐𝑒 =

[︁
𝑥̇ 𝑦̇ 𝑧̇ 𝑥̈ 𝑦 𝑧

]︁𝑇
(2.24)

It has been proven that Cartesian vectors 2.23 and 2.24 can be leveraged to define set
of classical orbital elements in form of 2.25 or similarly by replacing 𝑀 with 𝜈 in equation
2.26:

X𝑐𝑜𝑒 =
[︁
𝑎 𝑒 𝑖 𝜔 Ω 𝑀

]︁𝑇
(2.25) X𝑐𝑜𝑒 =

[︁
𝑎 𝑒 𝑖 𝜔 Ω 𝜈

]︁𝑇
(2.26)

It is rather useful to be able to express state vector in various forms and convert be-
tween them, since every resource offers different set of orbital elements. Moreover various
prediction methods, for instance analytical based ones use usually 𝑋𝑟𝑣, ˙𝑋𝑓𝑜𝑟𝑐𝑒 state vectors,
while ML 𝑋𝐶𝑂𝐸 .
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Chapter 3

Movement of an object in LEO

A two body problem together with its implications for this work and Earth-like environment
will be explained in this chapter. It began by Newton in 1687 in his work Principia
described his 3 well-known laws of motion. Based on them he established the force of
gravitational attraction between two point masses as follows

𝐹 =
𝐺𝑀1𝑀2

𝑟2
(3.1)

where 𝐺 is the Gravitational constant, 𝑀1 and 𝑀2 are two point masses and 𝑟 is the
distance between them. This relation is of use in two body problem. Common example
being indeed one dominant body — the Earth — and much less massive object — satellite.
Let us impose R1 and R2 positional vectors pointing from the origin of reference system
to the objects 𝑀1 and 𝑀2 respectively. To keep track of position of the 𝑀2 relative to the
𝑀1, vector r = R2 −R1 will be used.

Figure 3.1: Three-component 𝑋𝑌 𝑍 system with center in point 𝑂 comprises
of two bodies 𝑀1 and 𝑀2 with different masses 𝑚1 > 𝑚2. Therefore center
of mass also called barycenter is shifted closer to the 𝑀1.
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Therefore, force of gravitational attraction posed on 𝑀2 by 𝑀1 is

𝐹21 = −𝐺𝑀1𝑀2

𝑟2
· r
𝑟
= −𝐹12 (3.2)

Rewriting the equation 3.2 with acceleration relative to the inertial frame of reference
using Newton’s second law 𝐹 = 𝑚𝑎 gives

𝐹12 = 𝑀1R̈ (3.3)
𝐹21 = −𝑀2R̈ (3.4)

Multiplying both equations 3.3 and 3.4 by 𝑀1 and 𝑀2 respectively and after several
modifications and rearrangements, it eventually results in

r̈ = −𝐺(𝑀1 +𝑀2)

𝑟2
· r
𝑟
= − 𝜇

𝑟3
r (3.5)

which depicts the motion of 𝑀2 relative to 𝑀1. This 3.5 differential equation can be
solved numerically and results in undisturbed/unperturbed acceleration.

There are several takeaways from the two body problem which will be used in this work.
Firstly, total sum of kinetic and potential energy is constant according to the expression
3.6. Secondly, by adding the 3.3 and 3.4 together means that the acceleration of the center
of mass of the system (barycenter) is zero (see 3.7), thus it is convenient to reference to it
as the origin of the coordinate system. Finally, generalization of the system to the Earth-
satellite one yields 𝜇 = 𝐺(𝑀1+𝑀2) ∼= 𝐺𝑀1. Therefore barycenter becomes the geometrical
center of the Earth.

𝜁 =
𝑟̇𝑟̇

2
− 𝜇

𝑟
(3.6)

0 = 𝑀1R̈+𝑀2R̈ (3.7)

3.1 Orbit Perturbations

As mentioned in section 2.3, every object revolving around its central body moves along
elliptic trajectory. Ideally, disregarding all possible outer influences, the object could go
infinitely along the same path. However, there are subtle forces pushing, pulling, decel-
erating, dragging, ... object from its undisturbed ideal path. Depending mainly on orbit
altitude, forces other than central gravitation pull are called perturbations and can be more
or less profound.

There are two types of perturbing forces:

• Non-conservative – kinetic and potential energy is lost or transformed into thermal
energy, radiant energy, ...

– Atmospheric drag.
– Non-spherical Earth shape.
– Solar Radiation Pressure (SRP).
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– Solid Earth tides.
– Ocean tides.
– Albedo.

• Conservative – total kinetic and potential energy remains the same

– Main (central) body gravity force.
– Third body gravitational influence.
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Figure 3.2: Significance of perturbation forces based on the distance form the
RSO and the Earth [40].

In the picture 3.2, four distance domains are displayed, ordered by orbital distance from
the closest to the furthest. Clearly the main influence regarding LEO RSOs is atmospheric
drag, followed by third body perturbations, sun radiation pressure (SRP) and finally tidal
forces. For the reasons explained more into detail below 3.1.2, atmosphere reaches only
few hundreds of kilometers above the ground, thus with rising altitude, drag significance
decreases. Tidal forces also lose its magnitude due to the quadratic orbit radius 𝑟2 from
3.1.

3.1.1 Third-Body Perturbations

These forces are caused by Solar system objects, primarily Earth. Next two most dominant
influencers are the Moon and the Sun. The rest of the planets play insignificant role for the
LEO RSOs, however, higher the altitude, more significant the influence is. It can be seen in
many papers with machine learning approach eg. by Peng and Bai [27], Liu [18] that Solar
system planets are neglected completely and only two main protagonists Moon and Sun
(Luni-Solar) attraction is taken into account. However, in other works [33], based on robust
analytical solutions, planets are usually included into computation. Perturbing third-body
acceleration can be expressed very conveniently in the ECI reference frame as [33]

a3−𝑏𝑜𝑑𝑦 =
∑︁
𝑖

𝜇𝑖

(︂
r𝑖 − r

|r𝑖 − r|3
− r𝑖 − r𝑒

|r𝑖 − r𝑒|3

)︂
(3.8)

=
∑︁
𝑖

𝜇𝑖

(︂
r𝑖 − r

|r𝑖 − r|3
− r𝑖

|r𝑖|3

)︂
(3.9)
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where 𝜇𝑖 is gravitational parameter of the third body, r𝑖, r and r𝑒 are position vectors
of the third-body, the RSO and the Earth. There are two fractions inside bracket in 3.8.
First one could be described as the gravitational acceleration exerted by the third body
on the satellite. Second term means acceleration implied by the same body on the Earth.
Distance r𝑒 is in ECI reference frame null, thus, can be omitted, resulting in 3.9.

Position vectors of the Solar system planets in different reference frames can be obtained
from high precision ephemerides JPL DE430 through skyfield API (more about that in
section 4.1.3).

3.1.2 Atmospheric drag

Atmospheric drag is caused by exchange of a momentum between spacecraft or space debris,
which is in direct contact with surrounding air. Aerodynamical forces can be decomposed
into three parts: lift, side slip and drag, which is the most dominant of the three. For LEO,
atmospheric drag is the most profound perturbing force up to about 2 000 km above the
ground [24], however, quickly dissipates and over 5 000 km its effect is negligible [40]. It
can be expressed via equation

a𝑑𝑟𝑎𝑔 =
𝜌

𝜌0
𝐵*v2 (3.10)

𝐵* is used in Simplified general perturbations model 4 referred to as SGP4 predictor
(more on this topic in subsequent chapter 4.1.1). It is essentially empirical measure of
the satellite’s drag. It is usually derived from couple of measurements and then averaged
to fit more than just atmospheric drag [40]. Its value is ordinarily very close to zero. v
denotes RSO speed relative to the surrounding particles, 𝜌 is air density and 𝜌0 similarly
but measured from perigee. 𝐵* is described via equation

𝐵* =
1

2
· 𝜌 · 𝐶𝐷𝐴

𝑚
(3.11)

where 𝐶𝐷 defines drag coefficient, 𝐴 is frontal area and 𝑚 denotes RSO mass. Regarding
the drag coefficient, the lower the number, less resistance does the surface impose to the
frontal facing air. For satellite, 𝐶𝐷 is relatively high, around 2.2 up to 3.0 [22], however,
for space debris, whose proportions are not always known, shape could be approximated to
sphere, implying the Cannonball model [15]. Cannonball model proposes scenario, where
RSO is spherical body with homogeneous weight distribution, it can be leveraged in cases
when enough data are not provided or known. Drag coefficient for a sphere is lower relative
to the satellite’s one. For perfect sphere 0.47 up to 0.8 for uneven, irregular shapes. Due
to applied approximations, model by itself is not very accurate, thus it is only applicable
for LEO trajectories, higher altitude could produce incorrect results.

Modeling of the atmospheric phenomena, such as density, is very difficult task. It
depends on many factors like the Earth’s pressure, temperature, day-night phase, solar
activity, tides, etc. [40] Therefore, there are no high-precision analytical formulas describing
the Earth’s atmosphere, only empirical or highly-simplified expressions.

There are two types of air density models: static and dynamic. Static can be further
divided into: altitudional – caused by the Earth’s oblateness and longitudinal – accounting

16



for mountain ranges. Another category are dynamic models. These are more complicated
and requires more detailed information to construct. One of them is to determine air density
as exponential method

𝜌 = 𝜌0 𝑒
− 𝑟

𝐻 (3.12)

where 𝜌0 is the atmospheric density at some reference height ℎ from the ground and 𝐻
is the density scale height of the atmosphere [22].

In several models, sun radio activity 𝐹10.7 is included in computation. It is exactly 10.7
cm wavelength radio emission flux (2 800 MHz frequency). It covers several phenomena
such as solar magnetic activity, solar ultraviolet and X-ray emissions, solar irradiance etc.
[9] It serves for atmospheric density modeling, since it directly influences outer Earth’s
ionosphere layer. Due to this parameter, Earth’s atmosphere experiences pressure and
squashes a little. Side effect is increased magnetic phenomena occurring in the atmosphere,
resulting in aurora borealis. There are couple more indicators of solar activity including
𝐾𝑝, sunspots etc, however, they do not play such significant role as 𝐹10.7 (more on that in
section 3.1.4).

In case of RSO predictions, atmospheric state, solar activity forecast are included. The
are couple of complex models such as DTM2000 and NRLMSISE-00. Drag temperature Model
(DTM) is a semi-empirical model describing the temperature, density and composition of
the Earth’s thermosphere [27]. On the other hand, NRLMSISE-00 is an empirical model,
modeling temperatures of the Earth’s atmosphere.

3.1.3 Non-spherical Earth

Keplerian equations assume that the Earth is perfect sphere, however surface as well as
mass and density varies throughout the planet. The shape of the Earth is therefore called
Geoid rather than perfectly round sphere. Oblateness is a measure of difference between
equatorial 𝑅𝑒𝑞 and polar 𝑅𝑝𝑜𝑙 radius. Generally speaking, it is caused mainly by tidal effects
of the orbiting Moon and centrifugal force acting outwards perpendicular to the rotational
axis. Closer to the equator, this process is more substantial, creating bulge with difference
of approximately 21 km [44] between Earth’s polar and equatorial radius. The formula for
the rate of radial irregularity is defined as follows

𝑓 =
𝑅𝑒𝑞 −𝑅𝑝𝑜𝑙

𝑅𝑒𝑞
(3.13)

thus, for perfect sphere 𝑓 is equal to zero.

Consequently, as a result of the above described irregularity, RSO experiences higher
gravitational pull near the equatorial plane. From mathematical perspective, it is conve-
nient to leverage polar or equatorial coordinates since it could easily describe change in
altitude or longitude only by one parameter, while preserving other elements. Perturbation
caused by spherical oblateness could be refactored into 3 components as follows [25]

𝑈(𝛿, 𝛼, 𝑟) =
𝜇

𝑟
+ 𝑈𝑧𝑜𝑛𝑎𝑙(𝑟, 𝛿) + 𝑈𝑠𝑒𝑐𝑡𝑜𝑟𝑖𝑎𝑙(𝑟, 𝛼) + 𝑈𝑡𝑒𝑠𝑠𝑒𝑟𝑎𝑙(𝑟, 𝛿, 𝛼) (3.14)
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where x = [ 𝛿 𝛼 𝑟 ]𝑇 denotes position in equatorial coordinates (see section 2.2). The
most influential from the triplet above is zonal harmonics also known as 𝐽2. It is often used
solely for simplicity since the next other effect is approximately three orders of magnitude
smaller. It is evident from the equation 3.14 that 𝐽2 varies only with distance 𝑟 and
declination 𝛿, thus resulting gravitational potential must have rotational symmetry about
the Earth’s spin axis. Neglecting sectorial and tesseral components, Earth’s gravitational
potential would result in an infinite series

𝑈(𝛿, 𝛼, 𝑟) =
𝜇

𝑟

(︃
1 +

𝑁𝑧∑︁
𝑛=2

𝐽𝑛𝑃𝑛 sin 𝛿

𝑟𝑛+1

)︃
(3.15)

from which 𝑃𝑛 denotes Lagendre polynomials and 𝐽𝑘 contain zonal harmonics and 𝜇
stands for Gravitational constant. The equation 3.15 can be the split into 3 components in
ECI reference frame as 𝐽𝑋 , 𝐽𝑌 and 𝐽𝑍

𝐽𝑋 = −𝑥
𝜇

𝑟3
3

2
𝐽2

(︂
𝑅𝑒𝑞

𝑟

)︂2(︂
5
𝑧2

𝑟2
− 1

)︂
(3.16)

𝐽𝑌 = −𝑦
𝜇

𝑟3
3

2
𝐽2

(︂
𝑅𝑒𝑞

𝑟

)︂2(︂
5
𝑧2

𝑟2
− 1

)︂
(3.17)

𝐽𝑍 = −𝑧
𝜇

𝑟3
3

2
𝐽2

(︂
𝑅𝑒𝑞

𝑟

)︂2(︂
3− 5

𝑧2

𝑟2

)︂
(3.18)

It is possible then from Lagrange’s planetary equations [12], describing the change rates
of orbital elements with the partials of the disturbing forces, to derive 3.20, 3.21, 3.22,
respectfully, nodal regression, apsidal and mean anomaly rotation. Other Keplerian ele-
ments are static. Equations 3.19–3.22 are averaged expressions, therefore, short-periodic
variations happen in all of the six orbital elements. However, average change of parameters
𝑎, 𝑒, 𝑖 are zero, which means, they won’t differ after one full revolution.

𝑎̇𝐽2,𝑎𝑣 = 𝑒̇𝐽2,𝑎𝑣 = 𝑖̇𝐽2,𝑎𝑣 = 0 (3.19)

Ω̇𝐽2,𝑎𝑣 = −3

2
𝑛𝐽2

(︂
𝑅𝑒𝑞

𝑝

)︂2

cos 𝑖 (3.20)

𝜔̇𝐽2,𝑎𝑣 = −3

2
𝑛𝐽2

(︂
𝑅𝑒𝑞

𝑝

)︂2(︂
2− 5

2
sin2 𝑖

)︂
(3.21)

𝑀̇𝐽2,𝑎𝑣 = 𝑛+
3

2
𝑛𝐽2

(︂
𝑅𝑒𝑞

𝑝

)︂2(︂
1− 3

2
sin2 𝑖

)︂ √︀
1− 𝑒2 (3.22)

where 𝑝 is the semi-latus rectum (see 2.2) and 𝑛 is the mean motion defined as

𝑝 = 𝑎(1− 𝑒2)

𝑛 =

√︂
𝜇

𝑎3
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In work by Vallado [40], several gravitational models are presented. The one worth a
mention is DMA. It consists of WGS (primarily WGS-84) and lately improved by EGM
(the most recent EGM-2020) cite2015AGUFM.G34A..03B.

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

𝑓 0.000 0.000 0.00335 0.00648 0.06487 0.09796 0.02293 0.01708

𝐽2 ×10−6 60 4.458 1 082.63 1 960.45 14 736 16 298 33̇43.43 3 411

Table 3.1: Table shows comparison between each planet’s approximate oblate-
ness 𝑓 [44] and second zonal harmonics 𝐽2 [5]. Due to a structure of gaseous
planets, they tend to have higher rate than solid terrestrial planets.

3.1.4 Solar Radiation Pressure (SRP)

Solar radiation pressure refers to the force exerted on an object due to the momentum
transfer of solar wind particles and photons radiating from the Sun. Direction of this force
is, thus, always opposite to the Sun. Part of the radiation also bounces off the Earth’s
surface, referred to as Earth radiation pressure (more on that in following section 3.1.5).
Acceleration implied by SRP can be stated as [15]

a𝑠𝑟𝑝 = 𝜈𝑃
𝐶𝑅𝐴𝑆

𝑚
(𝐴𝑈)2

r− rs
|r− rs|3

(3.23)

where 𝐶𝑅, 𝐴𝑆 ,𝑚 are RSO’s properties: radiation pressure coefficient, surface area ex-
posed to solar radiation and mass. 𝜈 stands for illumination/shadow factor, which is unitless
and lies in range ⟨0, 1⟩, 0 means that it is covered entirely by the Earth’s shadow or 1 other-
wise. Nominal solar radiation pressure at 1AU is defined by 𝑃 . r−rs is opposite positional
vector from RSO to the Sun.

The equation 3.23 describes SRP by the Cannonball model, which assumes that the
RSO is perfect homogeneous sphere (or set of spheres) that is completely opaque, absorbs
all photons and has a constant mass. Such precondition implies the effects of reflection
deffusion are treated as negligible.

Satellite in contrast to space debris has much more incident area, since it has solar
panels which are flat. They usually face the Sun to gain as much power as possible. In case
of a satellite, the coefficient of reflection 𝐶𝑅 is dependent on type of utilized solar panel and
the types of materials used for coverage of the surface of the spacecraft. Since majority of
the surface comprises of solar panels, similarly to atmospheric drag, the area is relatively
wide and account for large amount of drag.

It should be noted that 𝐶𝑅, 𝐴𝑆 and 𝑚 parameters are not always known. Perturbation
characteristics, therefore, can be approximated by sphere (Cannonball model), or entire
SRP effect neglected.

As previously mentioned in section about atmospheric drag perturbation 3.1.2, solar
radio flux 𝐹10.7 is included in many models. However, it can be used not only for that,
it may be employed in many more fields of interest like climate modeling, meteorology,
geophysics, communications, satellite systems and so on [9]. The 𝐹10.7 correlates well with
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the sunspot number as well as a number of UltraViolet (UV) and visible solar irradiance
records [24].

Its main advantage is its robustness and long history since 1950s. It can be also measured
in any weather conditions from the Earth’s surface. This provides valuable data set for
machine learning (ML) which requires long records for training phase.

Figure 3.3: First graph shows heavy (dark) lines as the current 27-day Bartel
rotation, light lines are for the last rotation [35]. 𝐹10.7 “solar flux units”,
(s.f.u.), the F10.7 can vary from below 50 s.f.u., to above 300 s.f.u., over the
course of a solar cycle [24]. In the bottom picture the black curve stands for
the current solar rotation, and the green curve is for the previous rotation
(27 days prior), and the red curve is Kp as predicted by the NOAA Space
Weather Prediction Center [34]. Second picture is due to relevance and space
saving reasons cropped.

SRP force can be also leveraged as propulsion technique, similar to sail boats. Thanks
to the fact that outer space is nearly perfect vacuum, firing solar wind particles can boost
spacecraft significantly barely without any opposite drag. It is apparent from the equation
3.23 that the lighter, spacier and closer to the Sun the RSO is, stronger the effect. SRP is
also more pronounced at higher altitudes as seen in figure 3.2.

3.1.5 Earth Radiation Pressure (ERP) / Albedo

In astronomy, albedo denotes the fraction of the incident sunlight that the surface (or
atmosphere) of the surface of some space object reflects [2]. For instance the Earth or Venus
have much higher albedo than Mars. It is mainly caused by composition of the surface and
atmosphere. In case of Venus, thick barely impenetrable atmosphere is responsible for very
high rate of reflectivity. On the other hand, the Earth’s surface (71 % [42]) is mainly covered
by water [42], whose albedo is low (on average only 0.06). Nonetheless, thanks to presence
of clouds (approximately half of visible surface) in the Earth’s atmosphere, having much
higher albedo relative to Martian-like surface, results in better reflective properties.

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Enceladus Moon

Albedo 0.142 0.689 0.434 0.170 0.538 0.499 0.488 0.442 1.38 0.14

Table 3.2: Geometric albedo values of selected Solar system bodies. Highest
rate has Enceladus [41], the sixth-largest Saturn moon, for its snow-covered
surface. The lowest is the Earth’s Moon with value reaching only 0.14 [19].
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The albedo radiation effects on satellites are caused by reflected or re-emitted sunlight
from the Earth’s or Moon’s surface [11], hence Earth Radiation Pressure (ERP), making
it a by-product of the SRP. Considering this fact, relative positions of the satellite and the
Earth and the Moon are of the utmost importance influencing magnitude of the albedo
perturbation force. Another important factor is inclination 𝑖. According to a recent study
[11], three orbital elements (𝑒, 𝜔 and 𝑀) are influenced. It states that perturbing force
increases with decreasing 𝑖 of the orbital plane. For high locally specular nature of the
water, the force has the most extensive impact on objects orbiting near ecliptic plane.

Every surface has different properties of reflection. Simulation of each would be compu-
tationally unfeasible. Therefore, surface is reduced to only few dominant components and
both the spectral and angular distributions of the reflectances for the individual components
are highly simplified [2].

3.1.6 Tides

The are two typical types of tidal forces: Solid Earth tides and Ocean tides. Solid Earth
tides (as the name suggests) relate to the Earth’s crust and mantle movements, and ocean
tides to the water volume. Similarly to the non-spherical Earth influence, displacements of
a mass cause variations in the Earth’s gravitational potential.

The Solid tides produce vertical and horizontal displacements that can be expressed by
spherical harmonics expansion (𝑚,𝑛), characterised by the Love and Shida numbers ℎ𝑚𝑛,
𝑙𝑚𝑛 [38], thus equation [28]

∆r =
3∑︁

𝑗=2

𝐺𝑀𝑗 𝑅
4
𝑒𝑞

𝐺𝑀𝑒𝑅3
𝑗

{︂
ℎ2 r̂

(︂
3

2
(R̂𝑗 · r̂)2 −

1

2

)︂
+ 3 𝑙2 (R̂𝑗 · r̂)

[︁
R̂𝑗 − (R̂𝑗 · r̂) r̂

]︁}︂
(3.24)

where:

∆r is a site displacement vector in a Cartesian coordinate system
𝐺𝑀𝑒, 𝐺𝑀2, 𝐺𝑀3 are gravitational parameters of the Earth, Moon and Sun, re-
spectively
r̂, 𝑅𝑗 are the unit vector from the geocentre to moon or sun and the magnitude of
that vector
𝑟, 𝑟 are the unit vector from the geocentre to the station and the magnitude of
that vector
ℎ2 is the nominal degree 2 Love number (ℎ2=0.6078)
𝑙2 is the nominal degree 2 Shida number (𝑙2=0.0847)

The effects of the ocean tides are even one order weaker, therefore, usually omitted
entirely from the predictions.
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3.1.7 Other

Apart from gravitational attraction posed by the Solar system planets and the Sun, the
zonal gravitational harmonics and tidal forces, also relatively minor perturbing forces can
be taken into account. However, for computational efficiency, following factors are usually
omitted.

First one to be mentioned is general relativity. As the Earth spins, the mass and angular
momentum cause a curvature in four-dimensional space-time. This results in diverging time
between an observer on the surface of the Earth and RSO revolving around. Therefore,
small calibration in order of 10−9 𝑚/𝑠2 must be added. Such acceleration is the defined
as [28]

a𝑟𝑒𝑙 =
𝐺𝑀𝑒

𝑐2 𝑟3

{︂[︂
(2𝛽 + 2𝛾)

𝐺𝑀𝑒

𝑟
− 𝛾 (ṙ · ṙ)

]︂
r+ (2 + 2𝛾)(r · ṙ) ṙ

}︂
+ (3.25)
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+ (3.26){︂

(1 + 2𝛾)

[︂
Ṙ×
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−𝐺𝑀𝑆 R

𝑐2𝑅3

)︂]︂
× ṙ

}︂
(3.27)

where, 𝑐 is the speed of light, 𝑟, r and ṙ are the geocentric RSO distance from geocentre,
position and velocity vectors, respectively. R, Ṙ are the position and velocity vectors of
the Earth with respect to the Sun. J denotes Earth’s angular momentum per unit mass.
Finally 𝛾, 𝛽 are parameterized post-Newtonian (PPN) parameters.

Equation above can be split into 3 parts. Compared to the main Newtonian acceleration,
the first one, the Schwarzschild terms 3.25 are about 1010 (high orbits) to 109 (low orbits)
times smaller. The effects of Lense-Thirring precession 3.26 and the geodesic (de Sitter)
precession 3.27 are around 1011 to 1012 smaller. The main effect of the Schwarzschild terms
is a secular shift in the argument of perigee while the Lense-Thirring and de Sitter terms
cause a precession of the orbital plane [28].

Probing further into solar wind influences, not only the incident light acts upon RSO as
propelling force, however, also heating occurs on the object’s surface. This process is called
Yarkovsky Thermal Effect and causes a temperature difference across the RSO, which leads
to a force that alters the RSO’s trajectory over time. It is rather insignificant for mas-
sive objects like the Earth, nonetheless, smaller objects such as space debris, picosatellites
etc. could be influenced over time. Despite that, resulting force is several orders of mag-
nitude smaller than other primary perturbations, therefore, Yarkovsky Thermal Effect is
considered rather during Solar system asteriods, comets, ... calculations.

From another point of view, in case of satellites, sometimes occasional thrusts for al-
titude correction happen. In such instances orbital elements are usually dramatically dis-
turbed, thus measured data are compromised and unusable. For this reason human-made
objects with these such signs are in majority of cases precluded.
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3.2 Perturbation forces summary

Assembling previous findings into table containing perturbations and their models leads to
following table

Perturbation Model

N-body JPL DE430

Atmospheric drag NRLMSISE-00, DTM2000

Earth shape WGS84, EGM2020

SRP 𝐹10.7,𝐾𝑝, sunspots

Tides GOT4, RE2014

Albedo CERES

General relativity Post-Newtonian correction

There are four main approaches for orbit propagation: analytical, numerical, hybrid and
emerging NN based. Analytical solutions (aka. General perturbation techniques) are usu-
ally more physically accurate, however they are lacking precision if any approximation, such
as series expansions, is being applied. Numerical (aka. Special perturbation techniques) is
way to deduce future state incrementally, exclusively for a given initial condition, therefore
special. Advantage of the analytical solution is that there is no need to calculate numer-
ically step-by-step, which is computationally time consuming, but produces instant result
given any initial conditions. On the other hand, having small iteration step yields smoother,
thus more precise prediction. All other techniques, not purely analytical or numerical, are
considered as hybrid or semi-analytical [40]. However, in recent years simultaneously with
progress in ML, new methods have been proposed even outperforming current analytical
and numerical methods (more in the chapter 6).

Based on the equation 3.5 for unperturbed motion of the satellite 𝑀2 relative to the
Earth 𝑀1 by including perturbing accelerations 𝑎 would yield

r̈ = − 𝜇

𝑟3
r+ a𝑝 (3.28)

where every perturbation can be expressed as three-component acceleration vector ap
as compound of all perturbations.

a𝑝 = a𝑑𝑟𝑎𝑔 + aℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 + a3−𝐵 + a𝑆𝑅𝑃 + a𝑎𝑙𝑏𝑒𝑑𝑜 + a𝑡𝑖𝑑𝑒𝑠 + a𝑜𝑡ℎ𝑒𝑟

3.3 Trajectory interpolation

Since the orbital elements are measurements at given time (epoch), connecting them to-
gether produces so-called time series for each element. Composed time series is not, how-
ever, evenly spaced. This means that ticks have diverse spans between each other. Although
some RSOs have these gaps small (in order of hours), some may be even months long. Such
inconsistencies are not suitable for ML, since the missing data may influence model and
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incorrectly interpret these gaps. To eliminate this factor, records with overly oversized time
spans are removed from learning dataset.

For many usages, it is handy to have time series with fixed step. Interpolation is one
method to achieve this. Unequally spaced points are foremost fitted with curve that best
describes it and then re-sampled with given time-step. Studied interpolation methods were:

• interp1d – Line interpolation (first order – line).

• QuadraticSpline – Produced unstable results (second order – polynomial).

• BSpline together with splrep – B-spline representation of a curve.

• PchipInterpolator – Piecewise Cubic Hermite Interpolating Polynomial.

• Akima1DInterpolator – Fit piecewise cubic polynomials.

The best results have been achieved using Pchip and Akima interpolators, since they
merge advantages from both linear and spline fitting. Unlike linear interpolation, they
are differentiable on the entire definition domain thus lack unwanted sharp peaks. To the
other extreme, using polynomial fitting may produce Runge’s Phenomenon [6], which is
overshooting if the data is not smooth and large differences on small timesteps are present.
This happens usually in cases when using high order Lagrange polynomials [14]. On the
other hand, Pchip and Akima interpolators have in common that they are based on Cubic
Hermite Spline. Similarly to Lagrange, but one must explicitly specify derivatives at each
measured point, useful in combination with velocity and position vector. Pchip and Akima
interpolators do this automatically, so it is very convenient to use.

Having required theory explained, it is time to shift to the practical part of this thesis,
focused primarily on ML development.
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Chapter 4

Libraries and obtained data

The purpose of this chapter is to provide an overview of the obtained/downloaded data and
astronomical tools. In the first section, leveraged tools will be discussed. The rest of the
chapter will be dedicated to the data analysis and the preprocessing.

4.1 Astronomy

Following three sections are primarily focused on astronomically related topics. The reader
is going to get familiar with the structure of the data and their intricacies,

4.1.1 Space-track.org API

First step of the entire implementation process was to get data from space-track.org which
provides REST (representational state transfer) API (application programming interface).
It is then easy to build custom queries to obtain desired data such as general perturbations,
which is the most recent set of several values for each man-made Earth-orbiting object
(tracked by the 18th Space Defense Squadron) called SGP4 orbital element set [31]. The
most important parameters are previously discussed Keplerian elements, object type, ID
and date of creation. More detailed format description can be seen on space-track.org
website. Following is a snippet from one general perturbations record of the ISS.

"CREATION_DATE": "2022-12-22T18:47:50",
"EPOCH": "2022-12-22T14:15:53.485920",
"NORAD_CAT_ID": "25544",
"MEAN_MOTION": "15.49508690",
"ECCENTRICITY": "0.00055300",
"INCLINATION": "51.6422",
"RA_OF_ASC_NODE": "123.2511",
"ARG_OF_PERICENTER": "175.6943",
"MEAN_ANOMALY": "277.6446",
"BSTAR": "-0.00015123000000",
"SEMIMAJOR_AXIS": "6796.299",
"TLE_LINE0": "0 ISS (ZARYA)",
"TLE_LINE1": "1 25544U 98067A 22356.59436905 -.00008932 00000-0 -15123-3 0 9998",
"TLE_LINE2": "2 25544 51.6422 123.2511 0005530 175.6943 277.6446 15.49508690374406",
...
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4.1.2 Two-line element set (TLE) and SGP

Subset of the General perturbations are also TLE records. It is data format used to store
orbital elements. Its most profound usage is for simplified general perturbation models
(three SGP, SGP4, SGP8 for near-Earth satellites and SDP4, SDP8 for deep-space satel-
lites) that calculate future position and velocity vectors of the Earth-orbiting RSOs. The
most important is SGP4 which is most widely used as a mathematical based predictor
developed by Ken Cranford in 1970.

However, there are few limitations regarding every analytical predictor such as SGP4.
Firstly, TLEs provide only approximated figures, which pose problems for longer computa-
tions where every decimal place give more precision to the computation and influence final
result. This is particularly visible when trying to forecast more than 3 days, after that
TLE precision becomes insufficient. Secondly, SGP/SDP models by their nature provide
simplification of the real world, in other words analytical solutions would be so computa-
tionally demanding thus inapplicable for daily assessments of thousands of RSOs. Also as
previously discussed in section 3.1, there are pseudo-random systems like the Sun, which are
for us analytically insolvable so far, hence only reliable option is to depend on probabilistic
models describing its behaviour.

For comparison objective between developed prediction and official SGP4 predictor,
Python implementation [36] have been used.

4.1.3 Skyfield API

Skyfield is Python library that computes accurate (order of milliarcseconds) positions of
the Solar system bodies as well as of stars and satellites. There are also several helpful
methods such as reference system transformations, Earth-centered or barycentric planetary
distances, ephemerides etc.

4.2 Data analysis

Main focus of this work is to develop orbit predictor which derives its prediction from the
series of state vectors discussed previously in chapter 3.2. First phase was to download
the data. However, space-track.org imposes limitations on the number of requests per
hour, thus maximal frequency is only 300 requests per hour. That means 83 hours for 25
000 files (requests) of pure download time, totaling 69.9 GB of disk memory. Each file
is in JavaScript Object Notation (JSON) format and contains collection of orbit elements
and other data described in the chapter 4.1.1. There are three main categories of RSOs:
Satellites, rocket bodies and space debris. It can be then split further based on its present
state: decayed or still on the orbit.

For the purpose of the machine learning (ML) training, the bigger the dataset, the
better. Otherwise, learned model would likely produce biased, in other words misleading,
results. This rule also applies to file sizes. Longer the orbital elements are measured, the
better it can learn long-term characteristics. In the following graphs 4.1, records according
to their length (measurement count) have been distributed. There are many inconsistencies
in the data, such as duplicate records or coupled epochs. Since the epoch is a benchmark
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which determines time of the measurement, coupled data must be averaged or removed if
high dissimilarity in the couple is encountered. Therefore, the original length may differ
after previously discussed removal.
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Figure 4.1: First graph shows histogram of file sizes fitted with smoother blue
curve. The bottom picture shows log-scale distribution of the file lengths for
better human perception. In the first red column (for its lacking magnitude)
lie unusable data.

First graph reveals that majority of the records are smaller in size. The best data (in
a size sense) could be found in the last three columns adding up to 15 %. Based on the
findings by several studies, there is a considerable difference in the length of the input data.
According to the study [18] at least 3 years of TLE data is required to produce meaningfully
better orbital predictions than SGP4. Another study [17] shows different approach where
only few hundreds state vectors of an RSO were enough to produce reasonable results.
Admittedly, it depends on the method used for prediction. More robust methods utilize
usually more data. On the other hand, dynamic methods support fewer inputs.

In order to get appropriate prediction, several criteria must be met such as afterwards
already discussed duplicates removal the minimal measurements count must be 300, which
roughly translates to several months of observations. Another requirements are low error
rate (referred to as outliers count 4.2.1), minimal time-span of four days between each
measurement, and elimination of self propelled satellites, causing arbitrary deviations within
data.

27



4.2.1 Data filtering

Obtained data from space-track.org, as mentioned before, contain corrupted entries. Good
example of weird-looking data file is depicted in the figure 4.2. It is clear from the picture
that on several spots (eg. 𝑖 curve around March 2011), high peaks emerged. These are
called outliers and can represent incorrect measurements or another kind of errors. Since
this data is obviously wrong, it is advised to remove them, or in case of high frequency
within one file, delete the file entirely.
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Figure 4.2: Graph shows unfiltered orbital elements of the RSO with ID 36474.

Outliers, as the name suggests, are point/measurements which lie outside of presumed
mean curve. There are couple of ways to detect outliers. One of the simplest methods is
to use normal probability distribution (depicted in the figure 4.3). However, there is one
difficulty regarding that... portion of the whole data set must be always excluded. The
amount depends on factor 𝜎, which defines how wide distribution curve is. It is common
practise to use rule of 3 𝜎. That means, that approximately 99.7 % of the data is correct
and the rest is labeled as outliers. Therefore, each time, there will be exactly 0.3 % of the
data labeled as incorrect.

Different way is by using smoothing functions. There are 3 tested: Savitzky-Golay filter
(Savgol), rolling mean and convolution. Each function has its limitation and advantage.
For instance, Savgol function perfectly smooths rough peaks in longer function course. On
the other hand, rolling mean is useful in situations where big differences in values are
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encountered (eg. 𝜔, Ω, 𝑀 , see 4.2). For example, when anomalies change their value
in radians, thus, leap from 360∘ to zero∘ is necessary. In such cases, Savgol is not ideal,
creating too smooth curve, which does not correspond to the actual data. Moreover, due to
its polynomial expansion nature it is not suitable for high frequency periodic signals. On
the other hand, having quite stable function course with occasional peaks, Savgol would
perform very well.

Figure 4.3: Graph shows on 𝑦 axis normal probability probability distribution,
on 𝑥 axis values of measurements.

Convolution behaves in the middle of the two. It can be modified to serve different
purposes. Convolution woks on basis of two sliding one-dimensional arrays/matrices, which
multiply one another and sum up. Thus, one matrix contains input data and one array,
sliding over the first one, is convolution matrix. In this case, for smoothing, matrix would
be
[︁
1/𝑛 . . . 1/𝑛

]︁
where 𝑛 is length of the matrix. This process averages step by step

entire function. However this process is not particularly resistant to far outliers, since it
takes only a mean of all values and sums them up. There could be many modifications
applied to second matrix such as its length (longer the smoother) or indexes (creating eg.
high-pass or low-pass filters). It is characteristic for its “slow” start and end, where not
enough data are provided to fill entire convolution matrix, thus, low and incorrect values
emerge (this phenomenon is visible in the figure 5.5, orange curve).

In order to exclude boundary exceptions such as min max value in linear function,
moving window (also referred to as rolling window) have been used. First step is to create
moving window, which could be comprised of, say 10 % of the entire data length. Then with
defined step, apply outlier detection method and move the window by the given amount.
Long step would be more suitable for faster run, however, to achieve better results, shorter
step is a better option usually.

In this thesis, each method to discover outliers, described above, and moving window
has been combined. Applying all of the methods together reduces error induced solely by
one method and only those measurements, where each method defined the measurement as
outlier, will be removed. The result can be seen in 4.4 or in appendix A where reader can
compare side by side the filtering procedure outcome.
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Figure 4.4: Graph shows unfiltered/original (blue dots) and filtered/updated
(orange dots) orbital elements of object with catalogue ID 28192.

To summarize previously induced findings about data, unapproved files, which did not
met following requirements, must be excluded from training data set:

1. Measurement count after duplicates removal > 300.

2. Duplicate records < 50 %.

3. Outliers count < 5 %.

4. Minimal timedelta between each measurement < 4 days.

5. No propulsion evidence.
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4.2.2 Clustering

Clustering is a method which tries to group records with similar features together. This
comes in handy when training model with distinctive behaviour, finding connections be-
tween data, or simply learning more about dataset.

There are several steps involved (besides clustering process itself) which could be divided
into two halves. The first one is the data preprocessing, then the process of making clusters
follows. The preprocessing stage incorporate data filtering (described in previous section
4.2.1) and features extraction, the data are then organized into dataframe and scaled to
unit variance with mean equal to 0. After that, dimensionality reduction and clustering are
applied. The very last operation of the entire process is to visualize the results.

Since orbital elements are expressed as time series functions, the objective here is to find
features which can describe their course, development, rate of change, etc. while preserving
important information about their nature. These parameters later serve for clustering. By
looking at the plotted orbital elements (4.4), couple of traits stand out. The first obvious
thing is that the value domain of 𝜔, Ω, 𝑀 is in degrees ⟨0, 360). On that account, on
first glance sawtooth wave plots denote that the elements are changing periodically. Other
orbital elements look differently and do not exhibit same recurrent behaviour. On the
other hand, there is usually tendency to raise or fall, hence, simple linear regression and
its slope parameter 𝑎 from 𝑓(𝑥) = 𝑎 𝑥 + 𝑏 is utilized. Rate of change 𝑎 is also used in
case of periodicity, since it doesn’t usually remain constant and shrink or prolong itself.
Next interesting feature is correlation between some elements (usually between couples of
elements 𝑒− 𝑎, 𝑒− 𝑖, 𝑎− 𝑖, Ω− 𝜔, Ω−𝑀, 𝜔 −𝑀). Last two measures define quality of
the data by means of its length and measurement errors (number of outliers).

To conclude previous findings, these features were used for clustering (digit in the
bracket represents its number of occurrences – 23 features in total):

• (6) Standard deviation of each orbital element.

• (3) Rate of change of 𝑒, 𝑎 and 𝑖 elements (using linear fit).

• (6) Mean periods and rate of change of 𝜔, Ω and 𝑀 elements.

• (6) Correlation rates between couples of orbital elements.

• (1) Length of observation (measured in days).

• (1) Number of outliers.

Although visualizing is the last step of the process, one must take into account that the
most common example of clustering is in 2 D Euclidean space, where it is easy and con-
venient to imagine axis, distances, etc. Nonetheless, for more than 2 D (or 2 parameters)
data, it is not possible to plot graph with more than 3 features. Due to the fact that dis-
cussed clustering is based on more than three parameters (23), data must be represented in
a different way. Luckily, there have been developed methods for dimensional reduction such
as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS). Or in case
of supervised learning: Linear Discriminant Analysis (LDA), Neighborhood Components
Analysis (NCA) etc.
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PCA and MDS have been used, since they fall into unsupervised category and dataset
is not labeled yet. Their advantage lies primarily in narrowing number of features used for
clustering. Byproduct of this process is speedup in clustering since incorporated components
are diminished. For instance, PCA performs an orthogonal linear transformation that
transforms the data to a new coordinate system with reduced dimension. Algorithm does
not dump any features entirely, only re-expresses them in its own way. Resulting features
are called principal components and differ in their variance relative to the total variance
of the dataset. On the other hand, MDS works on distance preservation principle. While
scaling the dimension down, distances between points are kept similar (to the best extend
possible) with respect to original high-dimensional space.

Figure 4.5: Examples of MDS process for mapping 3 points gradually from
3D to 2D to 1D space.

Reducing dimensions to a minimum is however not advised because some information
is always lost or altered to meaningless extend. To achieve the best results, both MDS and
PCA have their own measures of stress and explained variance, respectively. MDS’s stress
indicates sum of squared distance of the disparities and the distances for all measured pints.
PCA uses variance of each principal component relative to the total variance referred to as
explained variance ratio. Computing MDS stress and PCA explained variance ratio grad-
ually for 𝑚-th component in 𝑛 dimensions/components yields according to [39] equations

𝑀𝐷𝑆 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖 ̸=𝑗=1

(︁
‖𝑧𝑖 − 𝑧𝑗‖ − ‖𝑥𝑖 − 𝑥𝑗‖

)︁2
(4.1) 𝑃𝐶𝐴 =

𝑛∑︁
𝑖=1

𝑧2𝑖𝑚

𝑝∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑥2𝑖𝑗

(4.2)

where 𝑥 = [𝑥1 , . . . , 𝑥𝑛] are original data and 𝑧 = [𝑧1 , . . . , 𝑧𝑛] are their images.

However, there are no commonly agreed methods to determine right number of dimen-
sions for both methods currently. One of the methods leveraged for PCA is setting threshold
for cumulative variance of all principal components (in this case 80 %), higher the number,
more components are included. For case of MDS, stress is increasing with each dimension
reduction. Therefore, fewer components have high rate of stress and function is inverse,
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relative to PCA. For MDS’s stress threshold 10 % has been chosen as a reasonable compro-
mise between number of dimensions and precision. Both percentages could be increased or
decreased to obtain more accurate results.
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Figure 4.6: Left-hand side graph represents measure for PCA. Orange line
means 80 % cumulative explained variance ratio. Number of principal com-
ponents (black dot) surpassing the line is the sought one. Other figure is for
MDS, depicting stress values. Black dot represents picked number of dimen-
sions.

Clustering is an unsupervised machine learning method and can take at minimum only
one important argument, which is the total number of clusters. Therefore, there are couple
of methods designed to guess the best fitting number of clusters. The most popular one is
Within-Cluster-Sum-of-Squares (WCSS). This way, sum of distances of measurements from
their cluster centroids, is computed. The best fitted model is when the sum is low. The
formula which WCSS relies on is

𝑊𝐶𝑆𝑆 =

𝑁∑︁
𝑖=1

(𝑋𝑖 − 𝑌𝑖)
2 (4.3)

where 𝑋𝑖 and 𝑌𝑖 are distances from 𝑋 and 𝑌 coordinates of the cluster’s centroids,
respectively. It runs clustering and counts WCSS while increasing number of clusters.
The process starts with one cluster, The worst scenario is always one cluster, therefore
highest WCSS value. Higher the number of clusters, smaller the squared distance would
be. However, that does not mean the best result, but rather overfitting. Hence, there could
be applied methods to determine the best number of centroids, such as the Elbow method,
which tries to find the biggest angle between three measurements as seen in the figure below
(4.7). Angles are defined by two lines connecting three neighbouring points. The angle is
then measured from the midpoint. The biggest angle (measured clock/wise) or the smallest
(measured counter/clockwise) determines best number of centroids.
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Figure 4.7: Graph shows on 𝑦 axis WCSS and on 𝑥 axis number of measure-
ments. Black thick dot represents ideal number of centroids.

Finally, there are several options how to visualize the results obtained by clustering.
Thanks to reduction in space dimensionality, there are not 23 axes anymore but based on
the method used, 6 for MDS and 9 for PCA. It is possible to display so-called stripplot
4.8 for each feature. This allows viewer to better fathom the data grouping. Combination
with violinplot in the background indicates data distribution even better. However, it
only depicts one feature at one time. This is lacking bigger picture of the data and final
results. Best way is to summarize all measurements into 2 D plot which is easier to read, yet
it presents only two most dominant components. To get a whole picture, all components
should be displayed, which is still not possible, since humans are constrained with perception
of 3 dimensions. Good example of well clustered data is when clusters and centroids do not
interfere and blend together.
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Figure 4.8: Graph (strippot + violinplot) displays one of the features – cor-
relation between 𝑎 and 𝑖. This is only one of all 23 features.
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Figure 4.9: Figure shows clustering results. Each graph shows different ap-
proach for displaying the results. Upper one was produced using PCA and
the bottom one by MDS. Cluster centroids can be recognized by red squares.
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Chapter 5

Simulation

Simulations are critical tool for visual verification of the outcome of trajectory computa-
tions. In this section, several processes, which require simulation to be applied, will be
probed.

First of all, basic simulation of the elliptic path of the RSO has been developed. The
path conforms to one revolution of an RSO according to one orbital elements measurement.
It offers viewer to judge on first glance, how properties transfer to reality, to which extend
ellipse is oblate, how tilted is the trajectory and so on. It was the very next step when
working on this thesis right after data acquirement from space-track.org.

Whole work is written in Python [29], therefore, one of Python’s libraries – Vispy1 has
been used. It is a very fast library suitable for 2D or 3D briskly running GPU operations
and simulations. Following picture depicts the occasion where the library has been used.

Figure 5.1: Here is the Earth spherical model (excluding Equator oblateness)
with ECI coordinate axis X, Y, Z colored red, green and blue, respectively.
Red ellipses capture 10 unperturbed Keplerian orbits computed from raw
space-track.org data. Transparency indicates evolution in time, where opacity
increases proportionally with time.

1https://vispy.org/
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Secondly, similarly to the previous picture, trajectory is displayed. This time, however,
with comparison between numerically propagated ordinary differential equation solution
using Runge-Kutta (including only three dominant perturbibg actors: atmospheric drag,
SRP and third-body influence).
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Figure 5.2: Both trajectories are computed using Scipy1 ODE solver, odeint.
There is very clear oscillation between perturbed and unperturbed trajecto-
ries. Both orbits are compared to the ideal elliptic keplerian orbit.
1 https://scipy.org/

5.1 Performance

In this section, performance of a few key components is being analysed. These are process
which occur frequently in code and influence general program swiftness. Testing device was
the laptop Lenovo IdeaPad L340-15IRH with 8 cores i5-9300H @ 2.4 Ghz (4.1 GHz boost)
CPU with 8 GB RAM and operating system Fedora Linux 35.

First probed metric is computation of the current position on the ellipse from classical
orbital elements thanks to Kepler equation 2.8. Since the equation has no closed solution,
it must be obtained iteratively using some root-finding algorithm such as Newton-Raphson.
This method iterates until desired precission 𝜖 is exceeded. There had been several 𝜖 tested.

𝜖 10−5 10−10 10−15 10−20 10−25

time 12.8 𝜇 s 28.7 𝜇 s 37.2 𝜇 s 412 𝜇 s 762 𝜇 s

deviation 1.88 𝜇 s 2.76 𝜇 s 3.85 𝜇 s 45.9 𝜇 s 112 𝜇 s

Table 5.1: Table shows 10 test runs for each 𝜖 with 1 000 000 loops using utility
%testit.

As seen from the table 5.1, function with precision 𝜖 = 10−20 is significantly slower than
previous 𝜖 = 10−15 also lower values can lack accuracy while taking similar computational
time. It has been picked 𝜖 = 10−15 for the best time-precision ratio.
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5.2 Sunspots

As mentioned before in section 3.1.4, sunspots are one of measures contributing to the SRP
prediction. Based on their total sum and magnitude, Sun’s activity and influence could be
estimated. Moreover, according to [24], total number of sunspots correlates well with the
amount of radiation emitted from the Sun. Nonetheless, due to the fact that the Sun is
behaving chaotically, hence hardly predictable, SRP is considered as dynamic perturbation.
Therefore, no analytical form to express amount of Sun’s radiation exists, only empirical
models do.

In this section machine learning methods Decision Tree (DT) and Random forest (RF)
are proposed for prediction. They fall into machine learning algorithms category of Decision
Forests (DF) used for supervised classification, regression and ranking. In general data are
comprised of time series sunspot observations. Data that have been used here, have been
gathered since 1818 capturing every-day observations. They are acquired from [37] as
comma separated values (CSV) file type. Example of the data can be seen in the following
snippet 5.2.

Year Month Day Date Fraction Sunspots Std Observations Indicator

0 1818 1 1 1818.001 -1 -1.0 0 1

1 1818 1 2 1818.004 -1 -1.0 0 1

2 1818 1 3 1818.007 -1 -1.0 0 1

... ... ... ... ... ... ... ... ...

74841 2022 11 28 2022.908 52 10.4 27 0

74842 2022 11 29 2022.911 29 5.8 15 0

74843 2022 11 30 2022.914 30 8.1 15 0

Table 5.2: Sunspots with value -1 denote missing observations, hence 0 in
observation column. For space saving reasons, real column names are ab-
breviated Date Fraction, Sunspots, Std are titled respectively Date In
Fraction Of Year, Number of Sunspots, Standard Deviation.

There are numerous ways to determine time series development. One of them is to use
machine learning approach. This is comprised of two main phases. learning and prediction.
Firstly, data are split into two groups. The first one (also the major one, about 70 % of
the whole data amount) is designated for training/learning phase, the rest is then meant
for testing and evaluating the result, to what extend is the model accurate. Higher the
accuracy, the better the outcome is. It is expressed in percentages as fraction of correct
predictions to all predictions. Nonetheless, it should be noted that accuracy very close to
100 % is suspicious and can indicate model overfitting.

Each day sunspots sum together with count of observations are given. However, some-
times there are no observations at all, hence zero in the observation column. Such data are
unfortunately useless for learning phase. From the early decades until the beginning of 20th
century, no more than handful of measurements per day had been conducted, this is rather
small amount to deduce anything from, therefore, this entire stage is pruned. Utilized data
for training phase begin with year 1 900 and end at the end of 20th century. The rest is
dedicated to the evaluation.
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Histogram below proves that significant portion of acquired measurements contain rel-
atively low number of observations. To achieve high-precision training results, first column
observation should be minimized as much as possible.

0 17 35 52 70 88 105 123 140 158 176 193 211 228 246 264 281 299 316 334 352 369 387 404 422 440 457 475 492 510 528
Sunspots

0

2000

4000

6000

8000

10000

12000

14000

16000

Co
un

t

16628

9348

6370 6239

5125 4947
4357

3471 3340
2571 2227

1680 1403 1022 799 591 465 312 250 163 112 68 43 25 19 8 4 5 2 3

Figure 5.3: Histogram depicts observation counts per day. Most important
are missing and low count observations gathered in the first column. Measure-
ments with more than 17 occurrences are depicted in the rest of the graph.
Each column consists of sum of 18 consecutive observation counts.

Until now, observation count has been mentioned several times. It should be, however,
mentioned that it is not included in machine learning process, since it does not correlate
at all to measured sunspots count. The only thing it influences is data reliability, because
more measurements reduce occasional errors.
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Figure 5.4: It is suitable having correlation table before training phase.
Thanks to that, it is possible to detect overly correlated parameters whose
usage can lead to model overfitting. In this picture, all parameters used for
machine learning process are displayed. There are self correlated values on
diagonal, therefore all ones. Every correlation pair is defined by column and
row. Each couple is presented twice with transposed row and column.
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5.2.1 STL

For proper prediction of the time series it is advised to develop seasonal and long/term
trend curve. This procedure in known as Seasonal and Trend decomposition using Loess
hereinafter referred to as STL. Loess stands for a nonlinear relationships estimator. Figure
below serves as comparison between three different curves for seasonal trends. An objective
of it was to find visually best parameters in order to gain the best result.
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Figure 5.5: Comparison between three smoothing functions for seasonal curve.

5.2.2 Methods

Four different methods were leveraged for sunspots prediction. The simplest one is Deci-
sion Tree (DT). It works on basis of boolean (TRUE/FALSE) algebra. Method gradually
develops a tree, whose leaves represent final guess of predicted values. With every itera-
tion, tree structure modifies to improve itself. Step by step, tree nodes importance amplify
or diminish until the learning phase is accomplished. DT method has been chosen for its
relatively simple and doesn’t require too much fine-tuning for reasonable results. In this
case, DT reached accuracy of 40–50 %, which is, however, insufficient.

Next method is RF. It works in principal quite similarly to DT, since it comprises of set of
DTs. Method then evaluates all or selected trees separately. In a sense it can be considered
as upgrade to DT and that’s is why it has been chosen as next approach. For regression
purposes, results from all trees are averaged. This approach attained approximately 72 %
accuracy. Which is significantly more than DT. For this reason RF is then probed deeper
in an effort to obtain the best outcome.

Two remaining procedures are variations of previously discussed RF. First one improves
input dataset by scaling each feature by standard deviation. Nonetheless, since the data are
quite similar and do not have the aspect of diversity the improvements ware not significant,
accounting only for around 1 percent.

The last one performs exhaustive search over specified hyper parameters and tries to find
the best set of them. It is a process where ranges of tuning parameters are provided then
RandomizedSearchCV randomly picks (with specified number of times) from the sets and
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performs K-fold cross-validation. Best parameters are determined after the computation is
done. For even finer tuning, GridSearchCV with narrower ranges obtained from previous
cross-validation is conducted. This time however, GridSearchCV unlike RandomizedSearc
hCV tries every combination from given parameter ranges.

Selected tuning hyper parameters for RF were: max_depth, min_samples_leaf, min_s
amples_split, n_estimators, bootstrap. The best score of 76.293 % was achieved with
set of parameters (5, 2, 100, 1125, True). RandomizedSearchCV applied 50 combinations
running each twice results in total of 100 iterations. GridSearchCV performs 162 runs
(combination of each parameter).
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Figure 5.6: The picture above depicts sunspots (light blue curve), seasonal
trend (dashed orange), prediction by DT (pink), RM (green] and grid search
(red). The bottom picture is zoom in on the last part of the graph with tested
outcome.
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Chapter 6

Machine learning for prediction

This chapter gathers previous discoveries and utilizes them. The first part is all about
selection process and discussing NNs and their intricacies. The chapter will then present
selected machine learning approach, performance, consequences of various models and then
carry on with implementation portion of the work. Implementation has been conducted
using programming language Python, and primarily ML library Keras1 running on top of
the ML platform TensorFlow, and another ML module for machine learning – Sklearn2. As
far as Gaussian processes, libraries GPflow3 and Mogptk4 have been used.

6.1 Choice of the approach

As mentioned already in previous chapters, orbital elements (namely eccentricity 𝑒, semi-
major axis 𝑎, inclination 𝑖, argument of periapsis 𝜔, RAAN Ω and mean anomaly 𝑀) are
time dependent varying 6 features, dependent on one another. For that reason the problem
of OE prediction requires sort of state persistence. Traditional NN are usually based on
single or handful of inputs. In this case hundreds up to several thousands of input values are
feed into the NN. Recurrent Neural Network (RNN) addresses this issue perfectly. It can
handle information and prolong its existence within NN. This system is based on formation
of loops (see figure 6.2) allowing the information to be passed from one step to the next
one. Thanks to this ability, RNN are, thus, very popular in regression and prediction tasks
where historical data play an important role in its subsequent progress.

There have been also several studies conducted based on different approaches such
as Support Vector Machines (SVM) [26], Gradient Boosting (GB)[17], Gaussian Process
(GP) [27], Long Short-Term Memory (LSTM) [32] etc. From which two methods (GP,
LSTM) have been probed here into more detail. Researches in the preceding works focus
primarily on prediction based on force state vector, meaning position and velocity vector.
Therefore classical orbital elements (COE) have been chosen as a set of input parameter
for the forecast. Since the ground truth timeseries of each element is known, the goal
here would be to minimize deviation of the predicted values relative to the ground truth.

1https://keras.io/
2https://scikit-learn.org/stable/
3https://gpflow.github.io/GPflow/2.7.1/index.html
4https://games-uchile.github.io/mogptk/
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Three accuracy measures are used for this purpose: Mean Squared Error (𝑀𝑆𝐸) 6.1, Mean
Absolute Error (𝑀𝐴𝐸) 6.2 and Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) 6.3, defined as
follows

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(︀
y𝑖 − ŷ𝑖

)︀2 (6.1)

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

⃒⃒
y𝑖 − ŷ𝑖

⃒⃒
(6.2)

𝑀𝐴𝑃𝐸 =
100

𝑁

𝑁∑︁
𝑖=1

⃒⃒
y𝑖 − ŷ𝑖

⃒⃒
(6.3)

All of the accuracy measures are based on the historical data and compare ground truth
vector y to forecasted ŷ, 𝑁 denotes the number of predicted timesteps. The resulting values
can be between ⟨0;∞).

Thanks to the NN ability of learning underlying connections between the data [45]. As
mentioned in preceding study [27], motivation in this machine learning does not need to be
purely ML-oriented, it may serve as a complement to an already existing system.

6.1.1 Gaussian processes

Regression based on GP is upon probabilistic Bayesian model. This introduces uncertainty
to the ML which is desired. Hence, GP can be described as normal distribution over
functions, which are defined by mean function and covariance function. The GP’s objective
is to model each orbital element as a mean function of time and extrapolate for given hours
into the future. This also results in confidence region around mean (see the 6.1). Clear
advantage of GP is that it does not require a fixed time step, unlike LSTMs, which do
need additional parameter or layer to fulfill the varying time condition. In the work [27]
conducted by Peng and Bai. The GP has been used to for orbit prediction modification
based on estimation errors.

Figure 6.1: Example of a Gaussian process. Blue line denotes mean function
and gray field represents 1𝜎 confidence range. The graph does not contain
any real values, as it is only an illustrative example.
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6.1.2 Long short-Term Memory

The LSTM is a type of RNN, which performs very well at handling sequential data such as
time series. Its best advantage lies in its capability of remembering previous states, based
on which it decides how to adjust its inner parameters when learning from succeeding states.
For that reason LSTMs are applied in various domains such as speech recognition, language
models, image and video classification.

Figure 6.2: Unfold long short-term memory architecture.

Likewise to convolution or smoothing functions, sliding window is applicable also to
LSTMs. Sliding window can be divided into two main parts containing: past and future
timesteps. The vector (in fact in case of Tensorflow – tensor) of the past 𝑃 measurements
serves as an input into the LSTM model. By contrast, 𝐹 denotes vector of future mea-
surements. 𝐹 vector for single-output contains 6 OE, or arbitrary consecutive sequence of
those for the multi-output LSTM. The process works as follows. Sliding windows begins
first iteration in the time 𝑡, 𝑃 number of preceding are leveraged as an input, future 𝐹 mea-
surements are then compared with the LSTM output, improvements are back-propagated
and sliding window moves one timestep forward. The process then repeats itself until the
end of the entire timeseries.

Figure 6.3: Sliding window illustration. 𝑃 denotes number of the past mea-
surements and 𝐹 future forecasted ones.
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6.2 Neural network implementation

Since the problem of COE time series prediction works with six COE, two possible ways
how to deal with the size of an input vector come out. The first one is concerned with just
a single time series, therefore is referred to as univariate regression. In contrast to that,
multivariate LSTMs work with more than one input feature and the sequence is composed
of vector of values. Dealing with only one input feature, however, encapsulates problem to
only one OE, which is not intended in this case, therefore, multivariate approach must be
chosen. GPs, however, didn’t work out for multivariate use case, therefore the main focus
of rest of the chapter will be dedicated to LSTMs.

Next question relates to the number of trained objects, whether to train only on one
set of OE or multiple. Training on multiple RSOs is possible assuming that the objects are
somehow related to each other, otherwise it would not make sense to train a model on several
RSOs. Due to the fact that each object has a different properties and moves independently
through the space, single model training has been chosen. This raises opportunity to
leverage clustering. Since all RSOs are divided into groups with similar features, the training
can be focused on one specific group of the RSOs. This approach can be performed only
when it is certain that clustering is well performed. This may bring enhancement in specific
types of RSO trajectories, on the contrary may lead to overly narrow conception of the
variety of trajectories.

6.2.1 Preliminaries

Process of preparation of the object before feeding into the NN can be unfold into several
steps:

1. Filtering – outliers and anomalous values removal.

2. Cut off – exclusively for decayed objects, lath portion of the data contains usually
disturbed measurements, hence the learning and subsequent prediction would be in-
correct.

3. Flattening – transformation of the saw-like courses of the last 3 OE (𝜔,Ω and 𝑀) to
continuous curve, big leaps are caused by measuring in degrees (0∘, 360∘), continues
function expands range of values to (−∞,∞), In the postprocessing phase, these
values are then converted back using modulo utility.

4. Interpolation – optional step, used for shorter timeseries, ensures fixed-sized timestep.

5. Scaling – necessary and arguably the most important part of the preprocessing phase,
using raw data leads to biased assumptions about individual OE timeseries, scal-
ing ensures that data lie in certain range, inverse transformation is performed after
completion of the learning and prediction phase.

6.2.2 Model description

The key component of any LSTM and machine learning in general is its model. There are
many models tailored specifically for LSTMs, each model has unique features, advantages
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and drawbacks. As mentioned before, LSTMs dispose of variety of applications, hence,
different models work better and some worse.

There are multiple recurrent layers available in Keras and some of them will be men-
tioned here. The main structure comprises always of one Input layer and one Output layer.
Based on the shape of the “past” part of the sliding window 𝑃 and number of predicted
features, the Input and Output layers, respectively, would have corresponding number of
LSTM units. It should be noted here that increasing the unit count or number of layers
does not necessarily enhance model positively or at all [30].

The simplest model is vanilla LSTM, which comprises of arbitrary stacked LSTM layers
on top of each other. Little extension of the model can be done by using LeakyReLu
(Rectified Linear Unit) is a function used in many types of NN along with 𝑡𝑎𝑛ℎ, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑.
It outputs the input directly if it is positive, otherwise, it will output zero.

This model has been adapted from [32]. It is an extension to the Vanilla LSTM with
added Dropout layer. Its purpose is to prevent overfitting since given percentage of neu-
rons/units will be displaced.

Bidirectional model is variation of Vanilla LSTM with difference that it processed the
input in two directions (forth and back). Because of two ways of processing, bidirectional
model includes two layers to carry out both directions. Outputs from both are afterwards
concatenated and fed to the hidden Dense layer.

Another models are Encoder-decoder [45] or Sequence2sequence [20]. Both models are
utilized primarily for translators and occasions where variable input and output lengths are
encountered.

Lastly mentioned model here will be Convolutional Neural Network Encoder-decoder
model. CNNs are usually used in pattern recognition tasks such as images. Here it tries to
find underlying features of the data [43]. The system may be assembled from 2 CNN and
one flattening layer. The rest is encoder-decoder based model.

Figure 6.4: Here is the structure and the layers of some models visualized
using Keras’ plot model utility. Right model is the only multi-output one.
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6.2.3 Callbacks

There are two types of callbacks applied. Into the first category fall EarlyStopping and T
erminateOnNaN. They are called after each epoch and can terminate fitting of the model if
some requirement is met. EarlyStopping controls development of a training and validation
loss. It prevents overfiting if the model stagnates for longer number of epochs. Terminate
OnNaN stops training if it fails and encounters NaN value.

Second category are loggers. They are supposed to store model after the completion
of the training. CSVLogger captures progress of loss function and ModelCheckpoint stores
fitted model. Both callbacks are called after the last epoch.

6.3 Analysis and testing

The best results have been achieved using multivariate single-output LeakyRelu and Bidi-
rectional models. After several iterations, 128 units for the first layer turned out to perform
quite well.
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Figure 6.5: Successfully trained model on RSO 51236.

On the other hand, “dropout” model adapted from [32] performed worse relative to the
already mentioned ones. Other models sometimes even failed to train the model and got
terminated by callbacks, establishing them as unusable.
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Figure 6.6: Wrong choice of the model lead to unsuccessful prediction on
RSO 51236.

Insufficient model forecast performance with regard to the long timeseries (figure 6.7)
can be caused by the nature of the Long Short-term memory itself, because the long-term
part could loose the sense of the data from the beginning. Prediction is generally not bad
in first OE threesome, yet delayed by a fraction of the period in case of last three OE.
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Figure 6.7: This is an example of long-term failed training. Majority of the
seven-year course is shifted by a fraction of the period both to the past and
future.
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The ultimate goal in training is minimising the “gap” between the training and the
validation loss curves as seen in the graph 6.8.
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Figure 6.8: On the left-hand side, course of training and validation loss of
the LeakyReLu model after each epoch is displayed. There were 100 epoch in
total, but model managed to reach desired fitness and got terminated by the
EarlyStopping callback. On the contrary the right one using CNN Enc-dec
architecture was not suited for the prediction and didn’t accomplish learning
phase and was due to the raised validation loss terminated.

6.3.1 Dead ends

It is clear from the course of OE, that they vary with time. This rate of change can
be described analytically using Variation of parameters developed by Lagrange and later
updated by Gauss [40]. The Lagrange and Gauss planetary equations (LPE and GPE)
are two most recognized methods to describe the change rates of orbital elements with
the partials of the disturbing forces, from which one can derive the dependence on other
elements. The idea was to solve each ODE and its resulting curve use into a covariance
function of a GP. However, that turned out to be wrong assumption. Similarly, since there
are such relationships between some elements, multivariate LSTM was trained only on those
coupled elements. Nonetheless, that lead to overfitting and resulting prediction resembled
univariate timeseries forecast.

Adding solar activity to the existing features proved to be misleading. Due to the Sun’s
stochastic nature, included features behaved more like a noise. Therefore, incorporating
solar flux and sunspots number only decreased model performance.
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Chapter 7

Conclusion

The aim of this thesis was to develop a system capable of future orbit prediction using a
machine learning. Nonetheless, the Earth’s orbit is very complex and puts many obstacles
in the way. Hence, several steps including data preparation and filtering must be undergone.
For even better grasp of the data, clustering was applied which divided objects further into
groups. The goal was accomplished by training a neural network on single object at a time,
and then predicting its future position in the space. In conclusion, proposed Long Short-
Term Memory machine learning approach proved to be suitable choice for classical orbital
elements predictions. Multivariate prediction captured some of the underlying connections
between the elements and managed to model several days into the future satisfactorily.

A further development may be focused on incorporation of the perturbing forces. The
study could lead into advancements in LSTM models with more complex structure and
additional layers.
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Appendix A

Data filtering

The following graphs show side-by-side comparison between unfiltered (up) and filtered
(down) orbital elements.
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Appendix B

Contents of the included storage
media

Only following selected important files and folders are displayed. Capacity of the storage
media is restricted to few GB of available memory. Therefore, only several hundreds of the
RSOs are included.

/
source.......................................................Source codes and

data..................................................Input and output data
prediction..............................Contains saved models and losses
selected .................. Downloaded data obtained from space-track.org

decayed
eccentric
gp_launched_debris

stars.............................Contains coordinates and constellations.
sun...............................................Data related to the Sun

sunspot_data.csv............Original sunspots and observations counts
analyzed_data.csv..........................Detailed info about every file
clustereded_data.csv...................................Clustering input
clustering_result.csv................................Clustering output
merged_results.csv....Final output from the preprocessing and clustering

img...............................................All image output goes here
clustering.py..........................................Clustering ensemble
constatnts.py......................................Program constant values
earth.py............................Creates 3D mesh for the earth simulation
parse_data.py..........................Transformer for any type of raw data
prediction.py.........................Orbital elements predisction using ML
sim.py..................................................3D Vispy simulation
sky.py................................Display ISS on the sky relative to stars
sun_activity.py.....................................Sun activity prediction
trajectory.py.............................................Deals with orbits
visualize.py...............................Coniains all visualizimg methods
download_data_spacetrack...............Shell script for space-track.org data

thesis ................................................ Thesis latex source codes
README.md.......................................................Thesis manual
xjanda28-predicting-leo-trajectories.pdf.......................Thesis text
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