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Abstract 
Precise orbi ta l predictions are v i t a l for every-day L o w E a r t h orbit satellites operations 
to evade collision. The study aims to analyse historical trajectory data i n a form of the 
classical orbi ta l elements. B y leveraging machine learning, data are aggregated, processed 
and finally used for orbit prediction. The best forecast results have been achieved using 
Long Short-Term Memory Neura l Network. 

Abstrakt 
P ř e s n é o rb i t á ln í predikce orbit s a t e l i t ů na nízé oběžné d r á z e Země jsou n e z b y t n é pro kaž-
d o d e n í p rováděn í operac í , tak aby se předeš lo jejich s r á ž k á m . Tato p r á c e se zaměřu je 
na a n a l ý z u h i s t ro r ických dat t r a jek to r i í , t vo řených z klacických d r á h o v ý c h e l emen tů . S 
v y u ž i t í m s t ro jového učení , data jsou sd ružena , z p r a c o v á n a a na závěr u ž i t a pro predikci 
d r á h y orbity. Nej lepších výs ledků p ř e d p o v ě d í bylo dosaženo s neuronovou sí t í s doulodobou 
a k r á t k o d o b o u p a m ě t í ( L S T M ) . 
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Rozšířený abstrakt 
P r á c e se zabývá predikc í drah těles na nízké oběžné d r á z e Země . Cí lem p r á c e je sestrojit 
ná s t ro j s chopný d o s t a t e č n ě p ře sně p ř e d p o v ě d ě t b u d o u c í trajektori i tě lesa . Pohyb tě lesa 
ovšem nen í v ů b e c j e d n o d u c h é popsat. Existuje mnoho m a t e m a t i c k ý c h m o d e l ů , k t e r é jsou 
závislé na mnoha parametrech a tvoř í soustavu rovnic, k t e r á by vys t ih la v šechna specifika 
orbity jako jsou n a p ř í k l a d perturbace. Da l š ím ře šen ím vyjma ana ly t i ckých a numer i ckých 
metod je s t ro jové učení . To pracuje pouze s p o s k y t n u t ý m i daty. Dle povahy p o s k y t n u t ý c h 
dat se bude odví je t kval i ta predikce, proto je t ř e b a data nejdř íve zpracovat, odstranit 
chybné z á z n a m y apod. P r á c e je rozdě lena do sedmi kapi tol , kde p r v n í poskytne n á h l e d na 
problematiku a motivaci k j e j ímu vypracován í . Dalš í 2 kapi toly obsahuj í teoretickou čás t 
p ráce , kapi tola č t v r t á až šes t á se zaměřu je na prakt ickou čás t v l a s tn í implementace. V 
závěrečné sekci jsou shrnuty výs ledky a je z m í n ě n p ř í p a d n ý nás l edný vývo j . 

D r u h á kapi tola se zabývá do detailu o rb i t á ln í mechanikou. Jsou zde vysvě t leny zák l adn í 
pojmy týkaj íc í se v l a s tnos t í elipsy, referenčních sys t émů , s o u ř a d n ý c h s y s t é m ů , či k las ických 
o rb i t á ln ích e l e m e n t ů ( z n á m é t a k é pod n á z v e m d r á h o v é elementy). D ů l e ž i t ý m bodem t é t o 
kai toly je s a m o t n é završení , kde je zaveden pojem s tavového vektoru. 

Nás leduje kapi tola popisuj íc í pohyb tě lesa na nízké oběžné d r á z e Země . V ú v o d u je 
p ř e d s t a v e n p r o b l é m dvou těles osvobozený od vnějších vl ivů. Ten d o s t a t e č n ě p ře sně nas t ín í , 
jak by mohla fungovat dynamika satelitu. K a p i t o l a p o t é pok raču j e p ř e d s t a v e n í m h lavn ích 
( p e r t u r b a č n í c h ) v l ivů ovlivňujících d r á h u t akového tě lesa jako je n a p ř . a e r o d y n a m i c k ý at­
mosferický odpor, v l iv s lunečn ího zá řen í či g r av i t ačn í p ů s o b e n í Měsíce a j iných tě les . 

Dalš í kapi tola se z a m ě ř í na p rác i s daty. K o n k t r é t n ě se j e d n á o jejich z ískání , agregaci, 
zpracovaní , se řazení a fi l traci. S p ř i h l é d n u t í m k m n o ž s t v í dat je m o ž n é provés t selekci dat 
a vybrat pouze ty, k t e r é budou v h o d n é pro nás l edné s t ro jové učení . C í lem zde tedy bylo 
vyfiltrovat zdroje, k t e r é obsahovaly vysoké m n o ž s t v í chybných měřen í , d louhé prodlevy 
mezi j e d n o t l i v ý m i pozorován ími , byly ovl ivněny p ropu lz í r ake tového motoru apod. Dá le je 
v p rác i r o z e b r á n o sh lukování dat (clustering). Vzhledem k ve lkému p o č t u p a r a m e t r ů jsou 
zde p o u ž i t y a p o p s á n y metody redukce d i m e n z i o n a l i t y / p a r a m e t r ů . 

K a p i t o l a simulace v ú v o d u popisuje r ů z n é z p ů s o b y prezentace z í skaných dat ve formě 
2D grafu či 3D simulace. K r á t c e je zde t a k é z m í n ě n a efektivita j e d n é z h lavn ích kompo­
nent, k t e r á se p o č í t á n a p ř . př i p ř e v o d u s o u ř a d n i c . Z á m ě r e m pos ledn í sekce je prezentace 
p ředpověd i p o č t u s lunečních skvrn na Slunci , k t e r á do velké m í r y koreluje se s luneční ak­
t iv i tou . K tomu bylo využ i t o několik metod s t ro jového učen í jako jsou rozhodovac í stromy 
(Decision trees) či n á h o d n ý les (Random forest). 

P ř e d p o s l e d n í kapi tola se věnuje s a m o t n é m u s t ro jovému učen í pro predikci d ráhy . Pos­
t u p n ě jsou zde zavedeny pojmy vysvět luj íc í n ě k t e r é dů lež i t é charakterist iky zvoleného př ís­
tupu. Okra jově je n a s t í n ě n G a u s s o v s k ý proces (Gaussian process), P o t é se p ř i s t o u p í k 
implementaci zvolené neu ronové s í tě s dlouhou a k r á t k o u p a m ě t í ( L S T M ) . M i m o j iné jsou 
zde r o z e b r á n y r ů z n é modely neu ronové s í tě a jejich kval i ta . K závěru kapi toly jsou z ískané 
výs ledky p rezen továny a zhodnoceny. 
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Nomenclature 

A Ascending node. 5, 8 

D Descending node. 5 

E Eccentric anomaly. 9, 10 

M Mean anomaly. 7, 9, 10, 12, 21, 29, 31, 42 

PA Furthest point on the ellipse. 5 

PP Closest point on the ellipse. 5, 9 

n Right ascension of ascending node R A A N . 7, 8, 29, 31, 42 

a Right ascension. 5, 6 

T Verna l / sp r ing /march equinox. 5, 8 

5 Decl inat ion. 5, 6 

v True anomaly. 7, 9, 10, 12 

u Argument of perigee A R G P . 7, 8, 21, 29, 31, 42 

a Semi-major axis. 5, 7, 9, 34, 42 

b Semi-minor axis. 5 

c Linear eccentricity. 5 

e Eccentrici ty. 21, 42 

i Incl inat ion. 7, 8, 21, 28, 34, 42 

p Semi-latus rectum. 5, 18 
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Chapter 1 

Introduction 

W i t h the growing number of objects launched onto the Ear th ' s orbit [8], collision avoidance 
and satellite navigation systems have become increasingly more important . Since the incep­
t ion of space exploration in 1957, number of resident space objects (RSOs) has gradually 
increased. It is estimated that 36 500 space debris objects greater than 10 c m are currently 
in the Ear th ' s orbit , w i th l ikel ihood for more than 600 break-ups [4]. Thus Space debris 
and the potential for collisions w i t h satellites has become a major concern in the field of 
space exploration. 

A s the number of satellites in the orbit grows, the risk of collision also increases. Possible 
crashes not only cause loss of crucial equipment and money, but also generate addi t ional 
fragments in the course of an impact . Consequentially chained reactions [13] occur creating 
more debris w i th each revolution. These remains, yet very smal l (less than 1 cm), can 
account for irreparable damage or even repeal entire mission. 

To reduce such events, high-accuracy orbit predict ion model is absolutely essential. 
Present methods for orbit predict ion are based on dynamic models, founded on physics 
and analyt ical solutions, approximate features like perturbations, R S O shape, mass etc. 
subsequently diverging from the correct trajectory. Current methods are capable to obtain 
reasonable forecast up to 5 days i n the future after which error deviation reaches orders of 
kilometers [1], thus making it irrelevant. 

There are also several studies w i t h machine learning approach i n mind . Such approaches 
neglect physical features of the R S O s and focus pr imar i ly on large amounts of historical 
data. There are studies focusing on two-line elements ( T L E ) as the input data [16], or 
propagation methods such as Support Vector Machines ( S V M ) [26], Gradient Boost ing 
( G B ) [17], Gaussian Process ( G P ) [27] and finally L o n g Short-Term Memory ( L S T M ) [32], 
selected for the prediction in this work. 

The thesis w i l l begin by theoretical overview of orbi ta l mechanics, including different 
Earth-centered reference systems, the role of orbi ta l elements in obit determination and 
prediction. In the next chapter, R S O movement in L o w - E a r t h orbit w i l l be probed more in 
detail w i th focus on forces acting on the body and deviat ion from its orbit . The importance 
of probabil ist ic and empir ical models w i l l be then discussed. Fol lowing chapters describe 
practical part of the thesis. Successively, reader w i l l be well acquainted w i t h obtained 
dataset and its preparation for machine learning. In the last chapters, predict ion method 
using machine learning and its result w i l l be presented. 

3 



Chapter 2 

Orbital mechanics 

Centuries ago, humanity struggled to resolve principles of celestial bodies motion. Presently, 
we are endowed wi th laws of force, gravitat ional at traction, Kepler ' s laws, general relat ivi ty 
and many other principals, by means of we describe processes above, how planets, stars, 
moons, satellites etc. revolve. In this section, reference systems used i n this work and 
fundamentals of Kepler ' s and Newton's laws w i l l be discussed. 

2.1 Reference systems 

The Ear th ' s orbit can not be regarded as a stable system, for couple 
of reasons. In short term and smaller scale, there are many factors 
influencing R S O s orbit called perturbation (more in section 3.1). 
For longer periods, one has to take into account precession, nu­
tat ion, polar mot ion and others. For instance precession is the 
process of rotat ion of the Ear th ' s axis orientation, yet for the time 
span of human life quite insignificant, for precise measurements 
non-negligible. M a i n reason is the gravitat ional pu l l of the M o o n 
and the Sun on the Ear th ' s equatorial mass imbalance. One full cy­
cle takes about 25 772 years, which corresponds to an 8' arc during 
one decade [7]. Other influences are much smaller i n magnitude. 
To evade this effect, an inert ial system must be accordingly locked 
in space and time. 

2.1.1 B C R S vs G C R S 

There are two main approaches regarding coordinate systems. 
Fi rs t one is the Barycentr ic celestial reference system ( B C R S ) suit­
able for objects located outside the gravitat ional v ic in i ty of E a r t h . 
It is used i n this work to obtain locat ion from ephemerides of the 
Planets to count th i rd-body perturbations. The center is defined 
by the barycenter of the entire Solar system. Other being Geocentric celestial reference 
system ( G C R S ) which is preferred for bodies closer to the E a r t h such as space debris and 
satellites. The origin of the coordinate system lies i n the center of mass of the Ea r th . 

Figure 2.1: The three 
E a r t h rotations. 
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Locat ion of the R S O can be described i n various ways. For purposes of orbi ta l mechan­
ics, it is suitable to choose E C I (Earth-centered inert ial) . Such a frame does not accelerate 
or rotate i n space and stays stable w i th respect to the stars. The one used pr imar i ly 
throughout this work is the most profound one - E C I J2000 ( J2K) defined by orientation of 
the E a r t h rotat ion axis and Equator ia l plane on January 1, 2000, at 12:00 T T (Terrestrial 
T ime) . Another reference frame referred to as perifocal frame rotates system as i f R S O 
orbited on the X Y plane (from E C I ) w i t h periapsis 2.1.2 aligned wi th X axis. 

2.1.2 E q u a t o r i a l reference frame 

This reference frame is suitable for static display of the E a r t h . A l l of the Ear th ' s motions 
are evaded, thus making it the best option to display L o w - E a r t h orbit ( L E O ) trajectories: 
X - vernal point, Y - points 90° east on the equatorial plane and Z - north celestial pole 

M a n y notations describing posit ion of the object on the sky (such as ephemerides) use 
right ascension a, declination 5 and others. Below, there is summary of the terms used 
during the next chapters: 

• Verna l / sp r ing /march equinox T - fictional point i n the sky where equatorial plane 
and ecliptic (orbital plane of planets) intersect. 

• Right ascension a - angular distance of the body measured from the T . 

• Decl inat ion 5 - angular distance of the body measured from the equatorial plane. 

• Ascending node A - point where body crosses equatorial plane on its way upwards. 

• Descending node D - opposite to the A . 

Related to the ellipse: 

• Periapsis PP - closest point on the ellipse of the orbi t ing body to the central body. 

• Apoapsis PA - furthest point. 

• Semi-major axis a - half of the distance between periapsis and apoapsis. 

• Semi-minor axis b - distance from the center to its closest point on the ellipse. 

• Linear eccentricity c - distance from the center to any of the two foci. 

• Semi-latus rectum p - length of the chord through one of the foci, perpendicular to 
the major axis [23]. 

Pa 

b 

V 

a 

>v a >^ >v a >^ 

\ I 2 c h i 

Figure 2.2: Figure depicts ellipse features, if central body was in F\. 
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2.2 Inertial position and velocity 

Given a frame of reference (such as E C I ) , the posit ion of R S O i n t ime t is determined by 
posit ion vector r £ l 3 comprised of x,y and z coordinates stated as 

r(i) = x(t)X + y(t)Y + z{t)Z = xX + yY + zZ (2.1) 

where X , Y and Z are the unit vectors (1, 0, 0), (0,1, 0), (0, 0,1), respectively [3]. Ve­
locity of a given object is first t ime derivative of the posit ion vector 

dx ~ dy ~ dz ~ 
— X + - p Y + — Z 
at dt dt 

(2.2) 

Acceleration can be stated as second derivative of the posit ion vector r or first derivative 
of its velocity v, thus 

dv d2r 

~ďt=ďt2' 
(2.3) 

Another way to represent R S O i n space is to use equatorial coordinates. Unl ike Carte­
sian coordinates, equatorial components are defined as angles a and 5, w i th distance r . 

orbit 

ecliptic 
O 

/x 

X 

Figure 2.3: Left-hand graphic shows R S O posit ion determination using equa­
tor ia l coordinates using right ascension a, declination 5 and distance from 
origin r . Figure shows posit ion of object O in Cartesian coordinates X Y Z 
wi th indicated velocity and acceleration vectors v and a, respectively. 

It should be noted here that both systems are convertible. It is sometimes more conve­
nient to leverage equatorial rather than Cartesian and vice versa, thus conversion: 

x = r cos 5 cos a 

y = r cos 5 sin a 

z = r sin 5 

r = \/ x2 + y2 + z2 

5 = arctan 

a = arctan 

\Jx2 + y2 

z 

T 

x 

G 



2.3 Keplerian elements 

Johannes Kepler based his work on the study of celestial measurements acquired by Tycho 
de Brahe. His approach substituted previous circular orbits based on epicycles w i th el l ipt ical 
trajectories. His work resulted i n 3 laws: 

1. The orbit of each planet is an ellipse w i th the Sun at one focus. 

2. The heliocentric radius vector of each planet sweeps over equal area i n equal time. 

3. The square of the orbi ta l period is proport ional to the cube of the ellipse's semi-major 
axis. 

The first one describes the ellipse - a somewhat oblique circle w i th a a connecting the 
most distant and the closest points. Perpendicular to it lies a semi-minor axis. The two 
points are called aspis. Accord ing to the reference body they can be called differently 
such as (perihelion, aphelion). The Second law used for calculat ion of the posit ion of the 
body on its trajectory. Kepler ian elements are used to uniquely describe posit ion and orbit 
trajectory of the body i n space. It is sometimes called (classical) orbi ta l elements and can 
be used interchangeably wi th term Kepler ian elements or orbi ta l elements throughout this 
work. There are 4 groups wi th different functionalities. 

Figure 2.4: This is a XYZECI coordinate system wi th the E a r t h i n the center, 
more precisely i n the focal point. Points P,A,D,0 represent preiapsis, as­
cending node, descending node and current posit ion of the R S O respectively. 
Other symbols are Keple r ian elements UJ argument of periapsis, f2 - right as­
cension of the ascending node, i - incl inat ion, M - mean anomaly and v -

true anomaly. Orange dashed line represents ecliptic plane. 

7, 

equatorial plane 

orbit 

X 

vernal point 
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2.3.1 Size a n d shape 

These elements describe the shape and size of the orbit . 

1. Semi-major axis a - half of the length of the longest line, which goes through both 
foci. 

2. Eccentr ic i ty e - nonnegative number defines rate of obliqueness of the ellipse, zero 
means perfect circle, e G (0; 1) represent ellipse, e = 1 denote parabola and finally 
hyperbola is determined by e > 1. 

2.3.2 K e p l e r i a n angles 

These define the orientation of the trajectory plane wi th respect to the T . 

3. Argument of periapsis UJ - the angle between the ascending node and the periapsis, 
describes rotat ion of the plane. 

4. Incl inat ion i - the angle subtending the plane of orbit and reference plane (usually 
equator or ecliptic), describing plane t i l t . 

Posigrade . . . 0 < i < 90° 

/ = < Polar . . . i = 90° 

Retrograde . . . 90° < i < 180° 

5. Right ascension (longitude) of the ascending node CI - the angle between the vernal 
point T and the ascending node A , depicting horizontal rotat ion of the plane. 

A s mentioned above, these parameters symbolize in 3D euclidean space Yaw-rol l-yaw 
sequence also known as Z X Z Euler rotat ion [10]. 

RZ{UJ) = Yawi(cj) 

Rx(i) = Ro l l ( i ) 

Rz(n) = Yaw 2 ( f t ) 

cos u — sin UJ 0 

sin u cos UJ 0 

0 0 1 

1 0 0 

0 cos i sin i 

0 — sin i cos i 

cos £1 — sin £1 0 

sin £1 cos £1 0 

0 0 1 

(2.4) 

(2.5) 

(2.6) 
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A p p l y i n g gradually 2.4, 2.5 and 2.6 to the in i t i a l trajectory plane results i n dot product, 
consequently forming desired transformation 

R(fl, i, OJ) 

cos f2 — sin f2 0 

sin f2 cos f2 0 

0 0 1 

(l 0 0 \ 

0 cos i sin i 

sin i cos i 

cosw —sinu 0 

sinu; cos OJ 0 

V 0 0 i y 

/ cos f2 cos a; — cos i sin f2 sin OJ — cos 0 sin OJ — cos i sin f2 cos a; — sin i sin 

sin f2 cos OJ + cos i cos sin a; cos i cos cos a; — sin £1 sin a; sin i cos Q 

— sin i sin a; — sin i cos a; cos i 

(2.7) 

which i n a sense describes conversion from perifocal reference frame to E C I reference 
frame. 

Figure 2.5: In the very left picture in i t i a l ellipse i n perifocal reference frame 
P Q R is depicted. Then gradually ZXZ —> OJ i Q transformations are applied. 
This results i n trajectory i n E C I reference frame. 

2.3.3 A n o m a l i e s 

In astronomy, anomalies are apparent motions of the planets. They are expressed in as 
angles i n degrees or radians. There are three types of anomalies, which serve to obtain the 
current posit ion of the body on the el l ipt ical path. There is usually given a M together 
wi th a, however, sometimes they can be replaced by true v and angular momentum. 

6. Mean anomaly M - a fraction of an el l ipt ical orbit as i f trajectory was not an ellipse 
rather a circle w i th radius of a w i th center in focal point (where the central body is 
located). Thanks to its linear increment throughout entire revolution, it suits well to 
many computations. 

7. True anomaly v or 9 - an angle between periapsis Pp and current posit ion of the body 
on the orbit. 

8. Eccentric anomaly E - more complex compared to the previous anomalies. It is 
defined as an angle between periapsis and point, where orbi t ing body is not located, 
but perpendicular to the major axis on the auxi l iary circumscribed circle. 
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Figure 2.6: The left picture shows mean anomaly. Eccentric and mean 
anomaly are depicted i n the right picture. O stands for the center of an 
auxi l iary circle. Points X\ and X2 represent the imaginary posit ion on the 
auxi l iary circle for mean anomaly and eccentric anomaly resectively. Point 
Cp marks current posit ion of the R S O i n t ime t. Pp is periapsis. Foc i points 
are F\ and F2, wh i th central body located i n the F\ point. 

Unl ike M, bo th v and E are non-linear. Ge t t ing eccentric anomaly is very handy 
because it is closely related to the M by Kepler ' s equation 2.8. 

M = E-e-sin(E) -> 0 = M - E + e • sin(E) (2.8) 

Only M can be obtained from space-track.org [31]. However, there is no closed-solution 
form to obtain E given M. B y rearranging the equation to the form equal to 0, it is possible 
(by root finding) to numerically approximate the value of E. Rewri t ten form of the Kepler ' s 
equation can be found i n the right-hand side of the equations 2.8. 

One of the root finding algorithms is Newton-Raphson method. Its i terat ion step is 
described i n equation 2.9. Th is method only needs in i t i a l guess and required precision e. 
Trajectories of the satellites are generally close to circular orbits (meaning e is close to zero) 
thanks to that, M is highly suitable as in i t i a l starting point xo for the method. Due to the 
continuous nature of the function, desired root doesn't usually conform to 0 and number 
of steps or precision must be defined beforehand. Accuracy 1 0 - 1 5 has been chosen for its 
best performance-precision ratio (more on this i n section 5.1). 

E N + 1 = E N - jjj-l- (2.9) 

There are couple ways of setting in i t i a l guess. T y p i c a l value is EQ = M 01 EQ = ir [22]. 
Faster and more robust possibil i ty suggests [21] where in i t i a l estimate 

7T / M \ 7T 
E0 = - el sgn(e) W1 + — ^ - 1 I where e = — - 1 (2.10) 
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combined wi th Halley 's equation 

/ 2ff 
E n + 1 = E n ~ f , ( i _ Ul) = E n ~ 2f*-ff» ( 2 - 1 1 } 

should converge usually the fastest. 

Having that done, it is possible to make use of E to compute the posit ion of a point 
moving i n a Keple r ian orbit. 

f = E-esmE-M f' = l-ecosE f" = esmE (2.12) 

In many computations (such as anomaly conversions 2.15-2.19), it is convenient to use 
trigonometric functions sin and cos instead of deriving the explicit values, for their mutual 
conversions can be expressed eg. by infinite series. Th is comes in handy when converting 
from perifocal to E C I frame 2.21-2.22. Such equations and conversions between orbi ta l 
elements are listed below: 

cos(u> + v) = — cos f2 H — - sin f2 

sin(a; + v) 

COS V 

sin v 

cos E 

sin E 

r 
rz 

r s i n i 

cos E — e 

1 — e cos E 

\ / l — e 2 sin E 

1 — e cos E 

cos v + e 

1 + e cos E 

v T e 2 sin v 

1 + e cos E 

r = a ( l — e cos E) 

p = a ( l — e 2 ) 

r = r (cos uP, sin i /Q) 

— (— s i n i / P + e + cos i /Q) 
p 

2.3.4 E p o c h 

Due to the precession and other influences 2.1, there is a need to set a reference time 
for coordinates to be aligned properly. Changing the epoch results in conversion of the 
coordinates. There are several possible coordinate conversions, however, they won't be 
discussed here for their exceeding lengths. 
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2.4 State vector 

In previous two sections 2.2, 2.3, different approaches to define any object i n space have 
been discussed. In order to capture R S O i n time and space and simplify notation, state 
vector Xrv, Xforce and XCOE is introduced. A s seen in section 2.3, using posit ion vector r 
together w i th velocity vector v and acceleration vector a, a state vector and a force vector 
in Cartesian coordinate system could be defined as 

X. 7- x y z x y (2.23) X force x y z x y (2.24) 

It has been proven that Cartesian vectors 2.23 and 2.24 can be leveraged to define set 
of classical orbi ta l elements i n form of 2.25 or s imilar ly by replacing M w i th u i n equation 
2.26: 

to n m (2.25) (2.26) 

It is rather useful to be able to express state vector in various forms and convert be­
tween them, since every resource offers different set of orbi ta l elements. Moreover various 
prediction methods, for instance analyt ical based ones use usually Xrv, Xforce state vectors, 
while M L XCOE-
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Chapter 3 

Movement of an object in L E O 

A two body problem together w i th its implications for this work and Ear th- l ike environment 
w i l l be explained in this chapter. It began by Newton i n 1687 i n his work P r i n c i p i a 
described his 3 well-known laws of motion. Based on them he established the force of 
gravitat ional at tract ion between two point masses as follows 

F = ^ P (3.1) 

where G is the Grav i ta t iona l constant, M\ and M 2 are two point masses and r is the 
distance between them. This relation is of use i n two body problem. C o m m o n example 
being indeed one dominant body — the E a r t h — and much less massive object — satellite. 
Let us impose R i and R2 posi t ional vectors point ing from the or igin of reference system 
to the objects M\ and M 2 respectively. To keep track of posit ion of the M 2 relative to the 
M i , vector r = R2 — R i w i l l be used. 

Z 

Figure 3.1: Three-component XYZ system wi th center i n point O comprises 
of two bodies M\ and M 2 w i th different masses m\ > mi- Therefore center 
of mass also called barycenter is shifted closer to the M\. 
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Therefore, force of gravitat ional at t ract ion posed on M 2 by M\ is 

GM1M2 r , . 
F21 = • - = ~F12 (3.2) 

Rewr i t ing the equation 3.2 w i t h acceleration relative to the inert ial frame of reference 
using Newton's second law F = ma gives 

F12 = M i R (3.3) 

F2i = - M 2 R (3.4) 

M u l t i p l y i n g both equations 3.3 and 3.4 by M i and M 2 respectively and after several 
modifications and rearrangements, it eventually results i n 

f = _ 0 ( M , + M 2 ) 

which depicts the mot ion of M 2 relative to M\. Th is 3.5 differential equation can be 
solved numerically and results i n undis turbed/unperturbed acceleration. 

There are several takeaways from the two body problem which w i l l be used in this work. 
Firs t ly , to ta l sum of kinetic and potential energy is constant according to the expression 
3.6. Secondly, by adding the 3.3 and 3.4 together means that the acceleration of the center 
of mass of the system (barycenter) is zero (see 3.7), thus it is convenient to reference to it 
as the origin of the coordinate system. Fina l ly , generalization of the system to the Ea r th -
satellite one yields \x = G{M\ + M2) = GM\. Therefore barycenter becomes the geometrical 
center of the E a r t h . 

(3.6) 

0 = M i R + M 2 R (3.7) 

3.1 Orbit Perturbations 

A s mentioned i n section 2.3, every object revolving around its central body moves along 
ell iptic trajectory. Ideally, disregarding a l l possible outer influences, the object could go 
infinitely along the same path. However, there are subtle forces pushing, pul l ing, decel­
erating, dragging, ... object from its undisturbed ideal path. Depending mainly on orbit 
altitude, forces other than central gravitat ion pu l l are called perturbations and can be more 
or less profound. 

There are two types of perturbing forces: 

• Non-conservative - kinetic and potential energy is lost or transformed into thermal 
energy, radiant energy, ... 

— Atmospheric drag. 

— Non-spherical E a r t h shape. 

— Solar Rad ia t ion Pressure ( S R P ) . 
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— Solid E a r t h tides. 

— Ocean tides. 

— Albedo . 

• Conservative - total kinetic and potential energy remains the same 

— M a i n (central) body gravity force. 

— T h i r d body gravitat ional influence. 

LEO LEO-MEO MEO 
types of orbits 

Figure 3.2: Significance of perturbation forces based on the distance form the 
R S O and the E a r t h [40]. 

In the picture 3.2, four distance domains are displayed, ordered by orbi ta l distance from 
the closest to the furthest. Clear ly the main influence regarding L E O R S O s is atmospheric 
drag, followed by th i rd body perturbations, sun radiat ion pressure ( S R P ) and finally t ida l 
forces. For the reasons explained more into detai l below 3.1.2, atmosphere reaches only 
few hundreds of kilometers above the ground, thus wi th rising alti tude, drag significance 
decreases. T i d a l forces also lose its magnitude due to the quadratic orbit radius r 2 from 
3.1. 

3.1.1 T h i r d - B o d y P e r t u r b a t i o n s 

These forces are caused by Solar system objects, p r imar i ly E a r t h . Next two most dominant 
influencers are the M o o n and the Sun. The rest of the planets play insignificant role for the 
L E O R S O s , however, higher the alti tude, more significant the influence is. It can be seen in 
many papers w i th machine learning approach eg. by Peng and B a i [27], L i u [18] that Solar 
system planets are neglected completely and only two main protagonists M o o n and Sun 
(Luni-Solar) at t ract ion is taken into account. However, in other works [33], based on robust 
analyt ical solutions, planets are usually included into computat ion. Per turb ing third-body 
acceleration can be expressed very conveniently i n the E C I reference frame as [33] 

*3-body = z Z ^ ( I ~ .13 " C_ ']3 ) (3-8) 

E » ( l ^ s " ^ 3 ) (3-9) 
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where fii is gravitat ional parameter of the th i rd body, r j ,r and r e are posit ion vectors 
of the third-body, the R S O and the E a r t h . There are two fractions inside bracket i n 3.8. 
Firs t one could be described as the gravitat ional acceleration exerted by the t h i rd body 
on the satellite. Second term means acceleration impl ied by the same body on the E a r t h . 
Distance r e is i n E C I reference frame nul l , thus, can be omitted, resulting in 3.9. 

Posi t ion vectors of the Solar system planets i n different reference frames can be obtained 
from high precision ephemerides J P L D E 4 3 0 through skyfield A P I (more about that in 
section 4.1.3). 

3.1.2 A t m o s p h e r i c d r a g 

Atmospheric drag is caused by exchange of a momentum between spacecraft or space debris, 
which is i n direct contact w i t h surrounding air. Aerodynamica l forces can be decomposed 
into three parts: lift, side slip and drag, which is the most dominant of the three. For L E O , 
atmospheric drag is the most profound perturbing force up to about 2 000 k m above the 
ground [24], however, quickly dissipates and over 5 000 k m its effect is negligible [40]. It 
can be expressed v i a equation 

*drag = ~ B*V2 (3.10) 
P0 

B* is used in Simplified general perturbations model 4 referred to as S G P 4 predictor 
(more on this topic i n subsequent chapter 4.1.1). It is essentially empir ical measure of 
the satellite's drag. It is usually derived from couple of measurements and then averaged 
to fit more than just atmospheric drag [40]. Its value is ordinar i ly very close to zero, v 
denotes R S O speed relative to the surrounding particles, p is air density and po s imilar ly 
but measured from perigee. B* is described v i a equation 

B* = \ . p . ^ (3.11) 
2 m 

where Co defines drag coefficient, A is frontal area and m denotes R S O mass. Regarding 
the drag coefficient, the lower the number, less resistance does the surface impose to the 
frontal facing air. For satellite, Co is relatively high, around 2.2 up to 3.0 [22], however, 
for space debris, whose proportions are not always known, shape could be approximated to 
sphere, imply ing the Cannonbal l model [15]. Cannonbal l model proposes scenario, where 
R S O is spherical body wi th homogeneous weight dis tr ibut ion, it can be leveraged i n cases 
when enough data are not provided or known. Drag coefficient for a sphere is lower relative 
to the satellite's one. For perfect sphere 0.47 up to 0.8 for uneven, irregular shapes. Due 
to applied approximations, model by itself is not very accurate, thus it is only applicable 
for L E O trajectories, higher alti tude could produce incorrect results. 

Mode l ing of the atmospheric phenomena, such as density, is very difficult task. It 
depends on many factors like the Ear th ' s pressure, temperature, day-night phase, solar 
activity, tides, etc. [40] Therefore, there are no high-precision analyt ical formulas describing 
the Ear th ' s atmosphere, only empir ical or highly-simplified expressions. 

There are two types of air density models: static and dynamic. Static can be further 
divided into: a l t i tudional - caused by the Ear th ' s oblateness and longi tudinal - accounting 

16 



for mountain ranges. Another category are dynamic models. These are more complicated 
and requires more detailed information to construct. One of them is to determine air density 
as exponential method 

where po is the atmospheric density at some reference height h from the ground and H 
is the density scale height of the atmosphere [22]. 

In several models, sun radio act ivi ty F10.7 is included i n computat ion. It is exactly 10.7 
cm wavelength radio emission flux (2 800 M H z frequency). It covers several phenomena 
such as solar magnetic activity, solar ultraviolet and X - r a y emissions, solar irradiance etc. 
[9] It serves for atmospheric density modeling, since it directly influences outer Ear th ' s 
ionosphere layer. Due to this parameter, Ear th ' s atmosphere experiences pressure and 
squashes a l i t t le . Side effect is increased magnetic phenomena occurring i n the atmosphere, 
resulting i n aurora borealis. There are couple more indicators of solar act ivi ty including 
Kp, sunspots etc, however, they do not play such significant role as F10.7 (more on that in 
section 3.1.4). 

In case of R S O predictions, atmospheric state, solar act ivi ty forecast are included. The 
are couple of complex models such as DTM2000 and NRLMSISE-00. D rag temperature M o d e l 
( D T M ) is a semi-empirical model describing the temperature, density and composit ion of 
the Ear th ' s thermosphere [27]. O n the other hand, NRLMSISE-00 is an empir ical model, 
modeling temperatures of the Ear th ' s atmosphere. 

3.1.3 N o n - s p h e r i c a l E a r t h 

Kepler ian equations assume that the E a r t h is perfect sphere, however surface as well as 
mass and density varies throughout the planet. The shape of the E a r t h is therefore called 
Geoid rather than perfectly round sphere. Oblateness is a measure of difference between 
equatorial Req and polar Rpoi radius. General ly speaking, it is caused mainly by t i da l effects 
of the orbi t ing M o o n and centrifugal force acting outwards perpendicular to the rotat ional 
axis. Closer to the equator, this process is more substantial, creating bulge wi th difference 
of approximately 21 k m [44] between Ear th ' s polar and equatorial radius. The formula for 
the rate of radial irregularity is defined as follows 

thus, for perfect sphere / is equal to zero. 

Consequently, as a result of the above described irregularity, R S O experiences higher 
gravitat ional pu l l near the equatorial plane. F r o m mathematical perspective, it is conve­
nient to leverage polar or equatorial coordinates since it could easily describe change in 
alti tude or longitude only by one parameter, while preserving other elements. Per turbat ion 
caused by spherical oblateness could be refactored into 3 components as follows [25] 

p = po e H (3.12) 

(3.13) 

U(5, a, r) + Uzmai(r, 5) + Usectoriai(r, a) + Utesserai(r, 5, a) (3.14) 
r 
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where x = [5 a r]T denotes posit ion in equatorial coordinates (see section 2.2). The 
most influential from the triplet above is zonal harmonics also known as J2- It is often used 
solely for s implic i ty since the next other effect is approximately three orders of magnitude 
smaller. It is evident from the equation 3.14 that J2 varies only w i t h distance r and 
declination 5, thus resulting gravitat ional potential must have rotat ional symmetry about 
the Ear th ' s spin axis. Neglecting sectorial and tesseral components, Ear th ' s gravitat ional 
potential would result i n an infinite series 

W a , r ) - e ( 1 + i ; * ^ ) ( 3 , 5 ) 
\ n=2 / 

from which Pn denotes Lagendre polynomials and «/& contain zonal harmonics and \i 
stands for Grav i ta t iona l constant. The equation 3.15 can be the split into 3 components in 
E C I reference frame as Jx, Jy and Jz 

j - = - x ^ \ j ^ ) \ 4 ~ i ) ( 3 - i 6 ) 

^ - ^ H ^ H 5 ^ - 1 ) (3-ir)  

j*=-vH^)2(3_55) (3-is) 

It is possible then from Lagrange's planetary equations [12], describing the change rates 
of orbi ta l elements w i th the partials of the disturbing forces, to derive 3.20, 3.21, 3.22, 
respectfully, nodal regression, apsidal and mean anomaly rotat ion. Other Keple r ian ele­
ments are static. Equations 3.19-3.22 are averaged expressions, therefore, short-periodic 
variations happen in a l l of the six orbi ta l elements. However, average change of parameters 
a, e, i are zero, which means, they won't differ after one full revolution. 

0,J2,av — Sj2:av — ij2,av — 0 (3.19) 

3 T (Re 
Qj2,av = - | n J 2 [~^~) cosi

 (3.20) 

Coj2,av = -\nJ2[?^j ( ^ 2 - ^ s i n 2 ^ (3.21) 

Mj2,av = n+\nJ2(^j ^ l - ^ s i n 2 ; ) (3.22) 

where p is the semi-latus rectum (see 2.2) and n is the mean motion defined as 

p = a ( l — e 2 ) 

7»" 
n — w .j 

•jO 
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In work by Val lado [40], several gravitat ional models are presented. The one wor th a 
mention is D M A . It consists of W G S (primari ly W G S - 8 4 ) and lately improved by E G M 
(the most recent E G M - 2 0 2 0 ) c i t e 2 0 1 5 A G U F M . G 3 4 A . . 0 3 B . 

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune 

/ 0.000 0.000 0.00335 0.00648 0.06487 0.09796 0.02293 0.01708 

J2 X l O - 6 60 4.458 1 082.63 1960.45 14 736 16 298 3343.43 3411 

Table 3.1: Table shows comparison between each planet's approximate oblate-
ness / [44] and second zonal harmonics J2 [5]. Due to a structure of gaseous 
planets, they tend to have higher rate than solid terrestrial planets. 

3.1.4 Solar R a d i a t i o n Pres sure ( S R P ) 

Solar radiat ion pressure refers to the force exerted on an object due to the momentum 
transfer of solar wind particles and photons radiat ing from the Sun. Direc t ion of this force 
is, thus, always opposite to the Sun. Par t of the radiat ion also bounces off the Ear th ' s 
surface, referred to as E a r t h radiat ion pressure (more on that i n following section 3.1.5). 
Accelerat ion impl ied by S R P can be stated as [15] 

a s r p = uP ^ {AUf (3.23) 
m |r — r s | J 

where CR,AS,ITI are R S O ' s properties: radiat ion pressure coefficient, surface 
posed to solar radiat ion and mass, v stands for i l luminat ion/shadow factor, which is unitless 
and lies in range (0,1), 0 means that it is covered entirely by the Ear th ' s shadow or 1 other­
wise. N o m i n a l solar radiat ion pressure at 1 A U is defined by P . r — r s is opposite posit ional 
vector from R S O to the Sun. 

The equation 3.23 describes S R P by the Cannonbal l model, which assumes that the 
R S O is perfect homogeneous sphere (or set of spheres) that is completely opaque, absorbs 
al l photons and has a constant mass. Such precondition implies the effects of reflection 
deffusion are treated as negligible. 

Satellite in contrast to space debris has much more incident area, since it has solar 
panels which are flat. They usually face the Sun to gain as much power as possible. In case 
of a satellite, the coefficient of reflection CR is dependent on type of ut i l ized solar panel and 
the types of materials used for coverage of the surface of the spacecraft. Since majority of 
the surface comprises of solar panels, s imilar ly to atmospheric drag, the area is relatively 
wide and account for large amount of drag. 

It should be noted that CR, AS and m parameters are not always known. Per turbat ion 
characteristics, therefore, can be approximated by sphere (Cannonbal l model), or entire 
S R P effect neglected. 

A s previously mentioned in section about atmospheric drag perturbat ion 3.1.2, solar 
radio flux F10.7 is included i n many models. However, it can be used not only for that, 
it may be employed i n many more fields of interest like climate modeling, meteorology, 
geophysics, communications, satellite systems and so on [9]. The -F10.7 correlates well w i th 
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the sunspot number as well as a number of U l t r a Viole t ( U V ) and visible solar irradiance 
records [24]. 

Its main advantage is its robustness and long history since 1950s. It can be also measured 
i n any weather conditions from the Ear th ' s surface. T h i s provides valuable data set for 
machine learning ( M L ) which requires long records for t ra ining phase. 

[2023. NuitliWcM RĽS 
Real-Time Geomagnetic Activity Index Estimates 

Green : Last rotation Black : Current rotation Red : SWPC forecast 

-|J b_ n_Fh n_ jM ílí 
[Kp data provided by GFZ Potsdaml 

l7Mar23 ISMai'23 l9Mar23 2(lMar23 2IMar23 22Mar23 23Mar23 24Mar23 

Figure 3.3: F i rs t graph shows heavy (dark) lines as the current 27-day Bar te l 
rotation, light lines are for the last rotat ion [35]. -F10.7 "solar flux units", 
(s.f.u.), the F10.7 can vary from below 50 s.f.u., to above 300 s.f.u., over the 
course of a solar cycle [24]. In the bo t tom picture the black curve stands for 
the current solar rotation, and the green curve is for the previous rotat ion 
(27 days prior) , and the red curve is K p as predicted by the N O A A Space 
Weather Predic t ion Center [34]. Second picture is due to relevance and space 
saving reasons cropped. 

S R P force can be also leveraged as propulsion technique, similar to sail boats. Thanks 
to the fact that outer space is nearly perfect vacuum, firing solar w ind particles can boost 
spacecraft significantly barely without any opposite drag. It is apparent from the equation 
3.23 that the lighter, spacier and closer to the Sun the R S O is, stronger the effect. S R P is 
also more pronounced at higher altitudes as seen in figure 3.2. 

3.1.5 E a r t h R a d i a t i o n Pres sure ( E R P ) / A l b e d o 

In astronomy, albedo denotes the fraction of the incident sunlight that the surface (or 
atmosphere) of the surface of some space object reflects [2]. For instance the E a r t h or Venus 
have much higher albedo than Mars . It is mainly caused by composit ion of the surface and 
atmosphere. In case of Venus, thick barely impenetrable atmosphere is responsible for very 
high rate of reflectivity. O n the other hand, the Ear th ' s surface (71 % [42]) is mainly covered 
by water [42], whose albedo is low (on average only 0.06). Nonetheless, thanks to presence 
of clouds (approximately half of visible surface) i n the Ear th ' s atmosphere, having much 
higher albedo relative to Mar t ian- l ike surface, results i n better reflective properties. 

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Enceladus Moon 

Albedo 0.142 0.689 0.434 0.170 0.538 0.499 0.488 0.442 1.38 0.14 

Table 3.2: Geometric albedo values of selected Solar system bodies. Highest 
rate has Enceladus [41], the sixth-largest Saturn moon, for its snow-covered 
surface. The lowest is the Ear th ' s M o o n wi th value reaching only 0.14 [19]. 
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The albedo radiat ion effects on satellites are caused by reflected or re-emitted sunlight 
from the Ear th ' s or Moon ' s surface [11], hence E a r t h Rad ia t ion Pressure ( E R P ) , making 
it a by-product of the S R P . Considering this fact, relative positions of the satellite and the 
E a r t h and the M o o n are of the utmost importance influencing magnitude of the albedo 
perturbation force. Another important factor is incl inat ion i. Accord ing to a recent study 
[11], three orbi ta l elements (e, UJ and M) are influenced. It states that perturbing force 
increases w i t h decreasing i of the orbi ta l plane. For high locally specular nature of the 
water, the force has the most extensive impact on objects orbi t ing near ecliptic plane. 

Every surface has different properties of reflection. Simulat ion of each would be compu­
tat ional ly unfeasible. Therefore, surface is reduced to only few dominant components and 
both the spectral and angular distributions of the reflectances for the ind iv idua l components 
are highly simplified [2]. 

3.1.6 T i d e s 

The are two typica l types of t ida l forces: Sol id E a r t h tides and Ocean tides. Sol id E a r t h 
tides (as the name suggests) relate to the Ear th ' s crust and mantle movements, and ocean 
tides to the water volume. S imi lar ly to the non-spherical E a r t h influence, displacements of 
a mass cause variations in the Ear th ' s gravitat ional potential . 

The Sol id tides produce vert ical and horizontal displacements that can be expressed by 
spherical harmonics expansion (m ,n ) , characterised by the Love and Shida numbers hmn, 

Imn [38], thus equation [28] 

Ar=E-aitiS? r 2 ? (fa'?)2" 2)+ 3 / 2 { A j " ? ) lAj" {Aj'f)*\) (3-24) 

where: 

A r is a site displacement vector in a Cartesian coordinate system 
GMe,GM2,GM^ are gravitat ional parameters of the Ea r th , M o o n and Sun, re­
spectively 
f, Rj are the unit vector from the geocentre to moon or sun and the magnitude of 
that vector 
f, r are the unit vector from the geocentre to the station and the magnitude of 
that vector 
h,2 is the nominal degree 2 Love number (/i2=0.6078) 
I2 is the nominal degree 2 Shida number (£2=0.0847) 

The effects of the ocean tides are even one order weaker, therefore, usually omit ted 
entirely from the predictions. 
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3.1.7 O t h e r 

Apar t from gravitat ional at t ract ion posed by the Solar system planets and the Sun, the 
zonal gravitat ional harmonics and t ida l forces, also relatively minor perturbing forces can 
be taken into account. However, for computat ional efficiency, following factors are usually 
omitted. 

Fi rs t one to be mentioned is general relativity. A s the E a r t h spins, the mass and angular 
momentum cause a curvature i n four-dimensional space-time. This results in diverging time 
between an observer on the surface of the E a r t h and R S O revolving around. Therefore, 
small cal ibrat ion in order of 1 0 - 9 m/s2 must be added. Such acceleration is the defined 
as [28] 

areZ 
G Me 

(1+7) 

(2/3 + 2 7 ) 

G Me 

G MP 7 (i- • r) r + ( 2 + 2 7 ) ( r - r ) r ^ + 

(1 + 2 7 ) 

r 

R x 

3 
-^(r x r)(r • J) + (r x J) + 

GMS R 
c2R? x r 

(3.25) 

(3.26) 

(3.27) 

where, c is the speed of light, r , r and r are the geocentric R S O distance from geocentre, 
posit ion and velocity vectors, respectively. R , R are the posit ion and velocity vectors of 
the E a r t h wi th respect to the Sun. J denotes Ear th ' s angular momentum per unit mass. 
F i n a l l y 7, /3 are parameterized post-Newtonian ( P P N ) parameters. 

Equat ion above can be split into 3 parts. Compared to the main Newtonian acceleration, 
the first one, the Schwarzschild terms 3.25 are about 1 0 1 0 (high orbits) to 10 9 (low orbits) 
times smaller. The effects of Lense-Thir r ing precession 3.26 and the geodesic (de Sitter) 
precession 3.27 are around 1 0 1 1 to 1 0 1 2 smaller. The ma in effect of the Schwarzschild terms 
is a secular shift in the argument of perigee while the Lense-Thir r ing and de Sitter terms 
cause a precession of the orbi ta l plane [28]. 

Prob ing further into solar w ind influences, not only the incident light acts upon R S O as 
propell ing force, however, also heating occurs on the object's surface. This process is called 
Yarkovsky Thermal Effect and causes a temperature difference across the R S O , which leads 
to a force that alters the R S O ' s trajectory over t ime. It is rather insignificant for mas­
sive objects like the Ea r th , nonetheless, smaller objects such as space debris, picosatellites 
etc. could be influenced over t ime. Despite that, resulting force is several orders of mag­
nitude smaller than other pr imary perturbations, therefore, Yarkovsky Thermal Effect is 
considered rather during Solar system asteriods, comets, ... calculations. 

F rom another point of view, i n case of satellites, sometimes occasional thrusts for al­
t i tude correction happen. In such instances orbi ta l elements are usually dramatical ly dis­
turbed, thus measured data are compromised and unusable. For this reason human-made 
objects w i th these such signs are i n majority of cases precluded. 
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3.2 Perturbation forces summary 

Assembling previous findings into table containing perturbations and their models leads to 
following table 

Perturbation Model 

N-body J P L DE430 

Atmospheric drag NRLMSISE-00, DTM2000 

Earth shape WGS84, EGM2020 

SRP -̂ 10.7! sunspots 
Tides GOT4, RE2014 

Albedo CERES 

General relativity Post-Newtonian correction 

There are four main approaches for orbit propagation: analyt ical , numerical, hybr id and 
emerging N N based. A n a l y t i c a l solutions (aka. General perturbation techniques) are usu­
ally more physically accurate, however they are lacking precision i f any approximation, such 
as series expansions, is being applied. Numer ica l (aka. Special perturbation techniques) is 
way to deduce future state incrementally, exclusively for a given in i t i a l condit ion, therefore 
special. Advantage of the analyt ical solution is that there is no need to calculate numer­
ically step-by-step, which is computat ional ly t ime consuming, but produces instant result 
given any in i t i a l conditions. O n the other hand, having smal l i teration step yields smoother, 
thus more precise prediction. A l l other techniques, not purely analyt ical or numerical , are 
considered as hybr id or semi-analytical [40]. However, in recent years simultaneously wi th 
progress i n M L , new methods have been proposed even outperforming current analyt ical 
and numerical methods (more i n the chapter 6). 

Based on the equation 3.5 for unperturbed mot ion of the satellite M 2 relative to the 
E a r t h M\ by including perturbing accelerations a would yield 

ř = - ^ r + a P ( 3 - 2 8 ) 

where every perturbation can be expressed as three-component acceleration vector a p 

as compound of a l l perturbations. 

a p = adrag > ^-harmonic 
+ a 3 _ B + &SRP + ^•albedo > &tides t Mother 

3.3 Trajectory interpolation 

Since the orbi ta l elements are measurements at given t ime (epoch), connecting them to­
gether produces so-called t ime series for each element. Composed time series is not, how­
ever, evenly spaced. This means that ticks have diverse spans between each other. A l though 
some R S O s have these gaps smal l (in order of hours), some may be even months long. Such 
inconsistencies are not suitable for M L , since the missing data may influence model and 
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incorrectly interpret these gaps. To eliminate this factor, records wi th overly oversized time 
spans are removed from learning dataset. 

For many usages, it is handy to have t ime series w i th fixed step. Interpolation is one 
method to achieve this. Unequal ly spaced points are foremost fitted wi th curve that best 
describes it and then re-sampled wi th given time-step. Studied interpolation methods were: 

• interpld - L ine interpolation (first order - line). 

• QuadraticSpline - Produced unstable results (second order - polynomial) . 

• BSpline together w i th splrep - B-spline representation of a curve. 

• Pchiplnterpolator - Piecewise Cub ic Hermite Interpolating Polynomia l . 

• AkimalDInterpolator - F i t piecewise cubic polynomials. 

The best results have been achieved using Pch ip and A k i m a interpolators, since they 
merge advantages from bo th linear and spline fi t t ing. Unl ike linear interpolation, they 
are differentiable on the entire definition domain thus lack unwanted sharp peaks. To the 
other extreme, using polynomia l fit t ing may produce Runge's Phenomenon [6], which is 
overshooting i f the data is not smooth and large differences on smal l timesteps are present. 
Th is happens usually i n cases when using high order Lagrange polynomials [14]. O n the 
other hand, Pch ip and A k i m a interpolators have i n common that they are based on Cub ic 
Hermite Spline. S imi lar ly to Lagrange, but one must expl ic i t ly specify derivatives at each 
measured point, useful i n combination wi th velocity and posit ion vector. Pch ip and A k i m a 
interpolators do this automatically, so it is very convenient to use. 

Having required theory explained, it is t ime to shift to the pract ical part of this thesis, 
focused pr imar i ly on M L development. 
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Chapter 4 

Libraries and obtained data 

The purpose of this chapter is to provide an overview of the obtained/downloaded data and 
astronomical tools. In the first section, leveraged tools w i l l be discussed. The rest of the 
chapter w i l l be dedicated to the data analysis and the preprocessing. 

4.1 Astronomy 

Following three sections are pr imar i ly focused on astronomically related topics. The reader 
is going to get familiar w i th the structure of the data and their intricacies, 

4.1.1 Space - t rack .org A P I 

Firs t step of the entire implementat ion process was to get data from space-track.org which 
provides R E S T (representational state transfer) A P I (application programming interface). 
It is then easy to bu i ld custom queries to obtain desired data such as general perturbations, 
which is the most recent set of several values for each man-made Ear th-orbi t ing object 
(tracked by the 18th Space Defense Squadron) called S G P 4 orbi ta l element set [31]. The 
most important parameters are previously discussed Keple r ian elements, object type, I D 
and date of creation. More detailed format description can be seen on space-track.org 
website. Fol lowing is a snippet from one general perturbations record of the ISS. 

"CREATION_DATE": "2022-12-22T18:47:50", 
"EPOCH": "2022-12-22T14:15:53.485920", 
"NORAD_CAT_ID": "25544", 
"MEAN_MOTION": "15.49508690", 
"ECCENTRICITY": "0.00055300", 
"INCLINATION": "51.6422", 
"RA_0F_ASC_N0DE": "123.2511", 
"ARG_OF_PERICENTER": "175.6943", 
"MEAN_ANOMALY": "277.6446", 
"BSTAR": "-0.00015123000000", 
"SEMIMAJ0R_AXIS": "6796.299", 
"TLE_LINE0": "0 ISS (ZARYA)", 
"TLE_LINE1": "1 25544U 98067A 22356.59436905 -.00008932 00000-0 -15123-3 0 9998", 
"TLE_LINE2": "2 25544 51.6422 123.2511 0005530 175.6943 277.6446 15.49508690374406", 
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4.1.2 Two- l ine e lement set ( T L E ) a n d S G P 

Subset of the General perturbations are also T L E records. It is data format used to store 
orbi ta l elements. Its most profound usage is for simplified general perturbation models 
(three S G P , S G P 4 , S G P 8 for near-Earth satellites and S D P 4 , S D P 8 for deep-space satel­
lites) that calculate future posi t ion and velocity vectors of the Ear th-orbi t ing R S O s . The 
most important is S G P 4 which is most widely used as a mathematical based predictor 
developed by K e n Cranford i n 1970. 

However, there are few l imitat ions regarding every analyt ical predictor such as S G P 4 . 
Firs t ly , T L E s provide only approximated figures, which pose problems for longer computa­
tions where every decimal place give more precision to the computat ion and influence final 
result. This is par t icular ly visible when t ry ing to forecast more than 3 days, after that 
T L E precision becomes insufficient. Secondly, S G P / S D P models by their nature provide 
simplification of the real world, i n other words analyt ical solutions would be so computa­
t ional ly demanding thus inapplicable for dai ly assessments of thousands of R S O s . Also as 
previously discussed in section 3.1, there are pseudo-random systems like the Sun, which are 
for us analyt ical ly insolvable so far, hence only reliable option is to depend on probabilist ic 
models describing its behaviour. 

For comparison objective between developed prediction and official S G P 4 predictor, 
P y t h o n implementat ion [36] have been used. 

4.1.3 Skyf ie ld A P I 

Skyfield is P y t h o n l ibrary that computes accurate (order of milliarcseconds) positions of 
the Solar system bodies as well as of stars and satellites. There are also several helpful 
methods such as reference system transformations, Earth-centered or barycentric planetary 
distances, ephemerides etc. 

4.2 Data analysis 

M a i n focus of this work is to develop orbit predictor which derives its prediction from the 
series of state vectors discussed previously i n chapter 3.2. F i rs t phase was to download 
the data. However, space-track.org imposes l imitat ions on the number of requests per 
hour, thus max ima l frequency is only 300 requests per hour. Tha t means 83 hours for 25 
000 files (requests) of pure download time, total ing 69.9 G B of disk memory. Each file 
is i n JavaScript Object Nota t ion ( J S O N ) format and contains collection of orbit elements 
and other data described i n the chapter 4.1.1. There are three main categories of R S O s : 
Satellites, rocket bodies and space debris. It can be then split further based on its present 
state: decayed or s t i l l on the orbit. 

For the purpose of the machine learning ( M L ) training, the bigger the dataset, the 
better. Otherwise, learned model would l ikely produce biased, i n other words misleading, 
results. This rule also applies to file sizes. Longer the orbi ta l elements are measured, the 
better it can learn long-term characteristics. In the following graphs 4.1, records according 
to their length (measurement count) have been distr ibuted. There are many inconsistencies 
in the data, such as duplicate records or coupled epochs. Since the epoch is a benchmark 
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which determines t ime of the measurement, coupled data must be averaged or removed i f 
high dissimilari ty i n the couple is encountered. Therefore, the original length may differ 
after previously discussed removal. 

Data histogram by records count 

1041 - 4 % 827 - 3 % 528 ~2% 607 - 2 % 5 0 1 - 2 % 

10016 12519 
Length 

Figure 4.1: F i rs t graph shows histogram of file sizes fitted wi th smoother blue 
curve. The bot tom picture shows log-scale dis t r ibut ion of the file lengths for 
better human perception. In the first red column (for its lacking magnitude) 
lie unusable data. 

Fi rs t graph reveals that majority of the records are smaller i n size. The best data (in 
a size sense) could be found i n the last three columns adding up to 15%. Based on the 
findings by several studies, there is a considerable difference i n the length of the input data. 
Accord ing to the study [18] at least 3 years of T L E data is required to produce meaningfully 
better orbi ta l predictions than S G P 4 . Another study [17] shows different approach where 
only few hundreds state vectors of an R S O were enough to produce reasonable results. 
Admit tedly , it depends on the method used for prediction. More robust methods util ize 
usually more data. O n the other hand, dynamic methods support fewer inputs. 

In order to get appropriate prediction, several cri teria must be met such as afterwards 
already discussed duplicates removal the min ima l measurements count must be 300, which 
roughly translates to several months of observations. Another requirements are low error 
rate (referred to as outliers count 4.2.1), m in ima l time-span of four days between each 
measurement, and el iminat ion of self propelled satellites, causing arbi trary deviations wi th in 
data. 
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4.2.1 D a t a filtering 

Obtained data from space-track.org, as mentioned before, contain corrupted entries. G o o d 
example of weird-looking data file is depicted i n the figure 4.2. It is clear from the picture 
that on several spots (eg. i curve around M a r c h 2011), high peaks emerged. These are 
called outliers and can represent incorrect measurements or another k ind of errors. Since 
this data is obviously wrong, it is advised to remove them, or i n case of high frequency 
wi th in one file, delete the file entirely. 

Outliers, as the name suggests, are point/measurements which lie outside of presumed 
mean curve. There are couple of ways to detect outliers. One of the simplest methods is 
to use normal probabil i ty dis t r ibut ion (depicted i n the figure 4.3). However, there is one 
difficulty regarding that... por t ion of the whole data set must be always excluded. The 
amount depends on factor a, which defines how wide dis t r ibut ion curve is. It is common 
practise to use rule of 3 a. Tha t means, that approximately 99.7% of the data is correct 
and the rest is labeled as outliers. Therefore, each time, there w i l l be exactly 0.3% of the 
data labeled as incorrect. 

Different way is by using smoothing functions. There are 3 tested: Savi tzky-Golay filter 
(Savgol), rol l ing mean and convolution. Each function has its l imi ta t ion and advantage. 
For instance, Savgol function perfectly smooths rough peaks i n longer function course. O n 
the other hand, rol l ing mean is useful i n situations where big differences i n values are 
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encountered (eg. u, £1, M, see 4.2). For example, when anomalies change their value 
i n radians, thus, leap from 360° to zero 0 is necessary. In such cases, Savgol is not ideal, 
creating too smooth curve, which does not correspond to the actual data. Moreover, due to 
its po lynomia l expansion nature it is not suitable for high frequency periodic signals. O n 
the other hand, having quite stable function course w i t h occasional peaks, Savgol would 
perform very well. 

- 68.27% 

95.45% 

99.73% 

Figure 4.3: G r a p h shows on y axis normal probabi l i ty probabil i ty dis tr ibut ion, 
on x axis values of measurements. 

Convolut ion behaves i n the middle of the two. It can be modified to serve different 
purposes. Convolut ion woks on basis of two sl iding one-dimensional arrays/matrices, which 
mul t ip ly one another and sum up. Thus, one matr ix contains input data and one array, 
sliding over the first one, is convolution matr ix . In this case, for smoothing, matr ix would 

be 1/n . . . 1/n where n is length of the matr ix . This process averages step by step 
entire function. However this process is not par t icular ly resistant to far outliers, since it 
takes only a mean of a l l values and sums them up. There could be many modifications 
applied to second mat r ix such as its length (longer the smoother) or indexes (creating eg. 
high-pass or low-pass filters). It is characteristic for its "slow" start and end, where not 
enough data are provided to fi l l entire convolution matr ix , thus, low and incorrect values 
emerge (this phenomenon is visible i n the figure 5.5, orange curve). 

In order to exclude boundary exceptions such as m i n max value i n linear function, 
moving window (also referred to as rol l ing window) have been used. F i rs t step is to create 
moving window, which could be comprised of, say 10 % of the entire data length. Then wi th 
defined step, apply outlier detection method and move the window by the given amount. 
Long step would be more suitable for faster run, however, to achieve better results, shorter 
step is a better option usually. 

In this thesis, each method to discover outliers, described above, and moving window 
has been combined. A p p l y i n g a l l of the methods together reduces error induced solely by 
one method and only those measurements, where each method defined the measurement as 
outlier, w i l l be removed. The result can be seen i n 4.4 or in appendix A where reader can 
compare side by side the filtering procedure outcome. 
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Figure 4.4: G r a p h shows unfi l tered/original (blue dots) and fi l tered/updated 
(orange dots) orbi ta l elements of object w i t h catalogue ID 28192. 

To summarize previously induced findings about data, unapproved files, which d id not 
met following requirements, must be excluded from tra ining data set: 

1. Measurement count after duplicates removal > 300. 

2. Dupl icate records < 50%. 

3. Outliers count < 5%. 

4. M i n i m a l t imedelta between each measurement < 4 days. 

5. N o propulsion evidence. 
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4.2.2 C l u s t e r i n g 

Cluster ing is a method which tries to group records wi th s imilar features together. This 
comes in handy when t ra ining model w i th distinctive behaviour, finding connections be­
tween data, or s imply learning more about dataset. 

There are several steps involved (besides clustering process itself) which could be divided 
into two halves. The first one is the data preprocessing, then the process of making clusters 
follows. The preprocessing stage incorporate data filtering (described i n previous section 
4.2.1) and features extraction, the data are then organized into dataframe and scaled to 
unit variance wi th mean equal to 0. After that, dimensionality reduction and clustering are 
applied. The very last operation of the entire process is to visualize the results. 

Since orbi ta l elements are expressed as t ime series functions, the objective here is to find 
features which can describe their course, development, rate of change, etc. while preserving 
important information about their nature. These parameters later serve for clustering. B y 
looking at the plotted orbi ta l elements (4.4), couple of traits stand out. The first obvious 
th ing is that the value domain of OJ, Q, M is i n degrees (0, 360). O n that account, on 
first glance sawtooth wave plots denote that the elements are changing periodically. Other 
orbi ta l elements look differently and do not exhibit same recurrent behaviour. O n the 
other hand, there is usually tendency to raise or fall , hence, simple linear regression and 
its slope parameter a from f(x) = ax + b is ut i l ized. Rate of change a is also used in 
case of periodicity, since it doesn't usually remain constant and shrink or prolong itself. 
Next interesting feature is correlation between some elements (usually between couples of 
elements e — a, e — i, a — i, Q — OJ, Q — M, OJ — M). Last two measures define quali ty of 
the data by means of its length and measurement errors (number of outliers). 

To conclude previous findings, these features were used for clustering (digit in the 
bracket represents its number of occurrences - 23 features i n total): 

• (6) Standard deviat ion of each orbi ta l element. 

• (3) Rate of change of e, a and i elements (using linear fit). 

• (6) Mean periods and rate of change of OJ, f2 and M elements. 

• (6) Correlat ion rates between couples of orbi ta l elements. 

• (1) Length of observation (measured in days). 

• (1) Number of outliers. 

A l though visualizing is the last step of the process, one must take into account that the 
most common example of clustering is i n 2 D Eucl idean space, where it is easy and con­
venient to imagine axis, distances, etc. Nonetheless, for more than 2 D (or 2 parameters) 
data, it is not possible to plot graph wi th more than 3 features. Due to the fact that dis­
cussed clustering is based on more than three parameters (23), data must be represented in 
a different way. Lucki ly , there have been developed methods for dimensional reduction such 
as P r inc ipa l Component Analys is ( P C A ) and Mul t id imens iona l Scaling ( M D S ) . O r in case 
of supervised learning: Linear Discr iminant Analys is ( L D A ) , Neighborhood Components 
Analysis ( N C A ) etc. 
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P C A and M D S have been used, since they fall into unsupervised category and dataset 
is not labeled yet. The i r advantage lies pr imar i ly in narrowing number of features used for 
clustering. Byproduc t of this process is speedup in clustering since incorporated components 
are diminished. For instance, P C A performs an orthogonal linear transformation that 
transforms the data to a new coordinate system w i t h reduced dimension. A l g o r i t h m does 
not dump any features entirely, only re-expresses them i n its own way. Resul t ing features 
are called pr inc ipal components and differ i n their variance relative to the to ta l variance 
of the dataset. O n the other hand, M D S works on distance preservation principle. Whi l e 
scaling the dimension down, distances between points are kept similar (to the best extend 
possible) w i th respect to original high-dimensional space. 

a) 3 D b) 2D c) I D 

X 

Figure 4.5: Examples of M D S process for mapping 3 points gradually from 
3D to 2D to I D space. 

Reducing dimensions to a m i n i m u m is however not advised because some information 
is always lost or altered to meaningless extend. To achieve the best results, bo th M D S and 
P C A have their own measures of stress and explained variance, respectively. M D S ' s stress 
indicates sum of squared distance of the disparities and the distances for a l l measured pints. 
P C A uses variance of each pr inc ipal component relative to the total variance referred to as 
explained variance ratio. Comput ing M D S stress and P C A explained variance ratio grad­
ually for m- th component i n n dimensions/components yields according to [39] equations 

MDS E (4.1) PCA i=l 
p n 

EE 
j=l i=l 

(4.2) 

a; 7 

where x = \x\ , ... , xn] are original data and z = [z\ , ... , zn] are their images. 

However, there are no commonly agreed methods to determine right number of dimen­
sions for both methods currently. One of the methods leveraged for P C A is setting threshold 
for cumulative variance of a l l pr inc ipal components (in this case 80%), higher the number, 
more components are included. For case of M D S , stress is increasing wi th each dimension 
reduction. Therefore, fewer components have high rate of stress and function is inverse, 
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relative to P C A . For M D S ' s stress threshold 10% has been chosen as a reasonable compro­
mise between number of dimensions and precision. B o t h percentages could be increased or 
decreased to obtain more accurate results. 

PCA - Cumulative variance plot MPS - Stress plot 

Principal components Number of components 

Figure 4.6: Left-hand side graph represents measure for P C A . Orange line 
means 8 0 % cumulative explained variance ratio. Number of pr inc ipal com­
ponents (black dot) surpassing the line is the sought one. Other figure is for 
M D S , depicting stress values. Black dot represents picked number of dimen­
sions. 

Cluster ing is an unsupervised machine learning method and can take at m i n i m u m only 
one important argument, which is the to ta l number of clusters. Therefore, there are couple 
of methods designed to guess the best fit t ing number of clusters. The most popular one is 
Within-Cluster-Sum-of-Squares ( W C S S ) . Th is way, sum of distances of measurements from 
their cluster centroids, is computed. The best fitted model is when the sum is low. The 
formula which W C S S relies on is 

N 

WCSS = J2(xi - Yif (4-3) 
i=l 

where X{ and Y{ are distances from X and Y coordinates of the cluster's centroids, 
respectively. It runs clustering and counts W C S S while increasing number of clusters. 
The process starts w i th one cluster, The worst scenario is always one cluster, therefore 
highest W C S S value. Higher the number of clusters, smaller the squared distance would 
be. However, that does not mean the best result, but rather overfitting. Hence, there could 
be applied methods to determine the best number of centroids, such as the E l b o w method, 
which tries to find the biggest angle between three measurements as seen in the figure below 
(4.7). Angles are defined by two lines connecting three neighbouring points. The angle is 
then measured from the midpoint . The biggest angle (measured clock/wise) or the smallest 
(measured counter/clockwise) determines best number of centroids. 
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Elbow method 

4 6 8 10 12 14 16 18 20 
Clusters 

Figure 4.7: G r a p h shows on y axis W C S S and on x axis number of measure­
ments. Black thick dot represents ideal number of centroids. 

Final ly , there are several options how to visualize the results obtained by clustering. 
Thanks to reduction i n space dimensionality, there are not 23 axes anymore but based on 
the method used, 6 for M D S and 9 for P C A . It is possible to display so-called stripplot 
4.8 for each feature. Th is allows viewer to better fathom the data grouping. Combina t ion 
wi th viol inplot i n the background indicates data dis t r ibut ion even better. However, it 
only depicts one feature at one t ime. This is lacking bigger picture of the data and final 
results. Best way is to summarize a l l measurements into 2 D plot which is easier to read, yet 
it presents only two most dominant components. To get a whole picture, a l l components 
should be displayed, which is s t i l l not possible, since humans are constrained w i t h perception 
of 3 dimensions. G o o d example of well clustered data is when clusters and centroids do not 
interfere and blend together. 

Feature - a-i 

V 

T 
6 

Cluster 

Figure 4.8: G r a p h (strippot + violinplot) displays one of the features - cor­
relation between a and i. This is only one of a l l 23 features. 

34 



Clustering 
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Figure 4.9: Figure shows clustering results. E a c h graph shows different ap­
proach for displaying the results. Upper one was produced using P C A and 
the bo t tom one by M D S . Cluster centroids can be recognized by red squares. 
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Chapter 5 

Simulation 

Simulations are cr i t ical tool for v isual verification of the outcome of trajectory computa­
tions. In this section, several processes, which require s imulat ion to be applied, w i l l be 
probed. 

Fi rs t of a l l , basic simulation of the el l ipt ic path of the R S O has been developed. The 
path conforms to one revolution of an R S O according to one orbi ta l elements measurement. 
It offers viewer to judge on first glance, how properties transfer to reality, to which extend 
ellipse is oblate, how t i l ted is the trajectory and so on. It was the very next step when 
working on this thesis right after data acquirement from space-track.org. 

Whole work is wri t ten i n P y t h o n [29], therefore, one of Python ' s libraries - V i s p y 1 has 
been used. It is a very fast l ibrary suitable for 2D or 3D briskly running G P U operations 
and simulations. Fol lowing picture depicts the occasion where the l ibrary has been used. 

Figure 5.1: Here is the E a r t h spherical model (excluding Equator oblateness) 
w i th E C I coordinate axis X , Y , Z colored red, green and blue, respectively. 
Red ellipses capture 10 unperturbed Keple r ian orbits computed from raw 
space-track.org data. Transparency indicates evolution in t ime, where opacity 
increases proport ional ly wi th time. 

xhttps: //vispy.org/ 
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Secondly, s imilar ly to the previous picture, trajectory is displayed. This time, however, 
w i th comparison between numerically propagated ordinary differential equation solution 
using Runge -Ku t t a ( including only three dominant perturbibg actors: atmospheric drag, 
S R P and th i rd-body influence). 

Figure 5.2: B o t h trajectories are computed using Sc ipy 1 O D E solver, odeint. 
There is very clear oscillation between perturbed and unperturbed trajecto­
ries. B o t h orbits are compared to the ideal el l ipt ic keplerian orbit. 
1 https://scipy.org/ 

5.1 Performance 

In this section, performance of a few key components is being analysed. These are process 
which occur frequently i n code and influence general program swiftness. Testing device was 
the laptop Lenovo IdeaPad L340-15IRH wi th 8 cores i5-9300H @ 2.4 G h z (4.1 G H z boost) 
C P U wi th 8 G B R A M and operating system Fedora L i n u x 35. 

Fi rs t probed metric is computat ion of the current posit ion on the ellipse from classical 
orbi ta l elements thanks to Keple r equation 2.8. Since the equation has no closed solution, 
it must be obtained iteratively using some root-finding algori thm such as Newton-Raphson. 
This method iterates un t i l desired precission e is exceeded. There had been several e tested. 

e 1CT 5 1 0 - i o i c r 1 5 i c r 2 0 1 0-25 

t ime 12.8 /j s 28.7 n s 37.2 n s 412 n s 762 n s 

deviation 1.88 /j s 2.76 n s 3.85 /j s 45.9 n s 112 n s 

Table 5.1: Table shows 10 test runs for each e w i th 1 000 000 loops using u t i l i ty 
°/0testit. 

A s seen from the table 5.1, function wi th precision e = 10 is significantly slower than 
previous e = 1 0 - 1 5 also lower values can lack accuracy while taking similar computat ional 
t ime. It has been picked e = 1 0 - 1 5 for the best time-precision ratio. 
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5.2 Sunspots 

A s mentioned before i n section 3.1.4, sunspots are one of measures contr ibut ing to the S R P 
prediction. Based on their to ta l sum and magnitude, Sun's act ivi ty and influence could be 
estimated. Moreover, according to [24], to ta l number of sunspots correlates well w i t h the 
amount of radiat ion emitted from the Sun. Nonetheless, due to the fact that the Sun is 
behaving chaotically, hence hardly predictable, S R P is considered as dynamic perturbation. 
Therefore, no analyt ical form to express amount of Sun's radiat ion exists, only empirical 
models do. 

In this section machine learning methods Decision Tree ( D T ) and R a n d o m forest ( R F ) 
are proposed for prediction. They fall into machine learning algorithms category of Decision 
Forests ( D F ) used for supervised classification, regression and ranking. In general data are 
comprised of t ime series sunspot observations. D a t a that have been used here, have been 
gathered since 1818 capturing every-day observations. They are acquired from [37] as 
comma separated values ( C S V ) file type. Example of the data can be seen i n the following 
snippet 5.2. 

Year Month Day Date Fraction Sunspots Std Observations Indicator 

0 1818 1 1 1818.001 -1 -1.0 0 1 

1 1818 1 2 1818.004 -1 -1.0 0 1 

2 1818 1 3 1818.007 -1 -1.0 0 1 

74841 2022 11 28 2022.908 52 10.4 27 0 

74842 2022 11 29 2022.911 29 5.8 15 0 

74843 2022 11 30 2022.914 30 8.1 15 0 

Table 5.2: Sunspots w i th value -1 denote missing observations, hence 0 i n 
observation column. For space saving reasons, real column names are ab­
breviated Date Fraction, Sunspots, Std are t i t led respectively Date In 
Fraction Of Year, Number of Sunspots, Standard Deviation. 

There are numerous ways to determine t ime series development. One of them is to use 
machine learning approach. This is comprised of two ma in phases, learning and prediction. 
Firs t ly , data are split into two groups. The first one (also the major one, about 70 % of 
the whole data amount) is designated for t ra ining/ learning phase, the rest is then meant 
for testing and evaluating the result, to what extend is the model accurate. Higher the 
accuracy, the better the outcome is. It is expressed i n percentages as fraction of correct 
predictions to a l l predictions. Nonetheless, it should be noted that accuracy very close to 
100 % is suspicious and can indicate model overfitting. 

Each day sunspots sum together w i th count of observations are given. However, some­
times there are no observations at a l l , hence zero i n the observation column. Such data are 
unfortunately useless for learning phase. F r o m the early decades unt i l the beginning of 20th 
century, no more than handful of measurements per day had been conducted, this is rather 
small amount to deduce anything from, therefore, this entire stage is pruned. Ut i l i zed data 
for t ra ining phase begin wi th year 1 900 and end at the end of 20th century. The rest is 
dedicated to the evaluation. 
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Histogram below proves that significant por t ion of acquired measurements contain rel­
atively low number of observations. To achieve high-precision t ra ining results, first column 
observation should be min imized as much as possible. 

17 35 52 

Figure 5.3: His togram depicts observation counts per day. Most important 
are missing and low count observations gathered i n the first column. Measure­
ments w i th more than 17 occurrences are depicted in the rest of the graph. 
Each column consists of sum of 18 consecutive observation counts. 

U n t i l now, observation count has been mentioned several times. It should be, however, 
mentioned that it is not included i n machine learning process, since it does not correlate 
at a l l to measured sunspots count. The only th ing it influences is data reliability, because 
more measurements reduce occasional errors. 

Figure 5.4: It is suitable having correlation table before t ra ining phase. 
Thanks to that, it is possible to detect overly correlated parameters whose 
usage can lead to model overfitting. In this picture, a l l parameters used for 
machine learning process are displayed. There are self correlated values on 
diagonal, therefore a l l ones. Every correlation pair is defined by column and 
row. Each couple is presented twice w i t h transposed row and column. 
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5.2.1 S T L 

For proper predict ion of the time series it is advised to develop seasonal and long/ te rm 
trend curve. This procedure in known as Seasonal and Trend decomposition using Loess 
hereinafter referred to as S T L . Loess stands for a nonlinear relationships estimator. Figure 
below serves as comparison between three different curves for seasonal trends. A n objective 
of it was to find visual ly best parameters i n order to gain the best result. 

1990 1995 2000 2005 2010 2015 2020 
Date In Fraction Of Year 

Figure 5.5: Compar ison between three smoothing functions for seasonal curve. 

5.2.2 M e t h o d s 

Four different methods were leveraged for sunspots prediction. The simplest one is Deci­
sion Tree ( D T ) . It works on basis of boolean ( T R U E / F A L S E ) algebra. M e t h o d gradually 
develops a tree, whose leaves represent final guess of predicted values. W i t h every itera­
t ion, tree structure modifies to improve itself. Step by step, tree nodes importance amplify 
or d iminish unt i l the learning phase is accomplished. D T method has been chosen for its 
relatively simple and doesn't require too much fine-tuning for reasonable results. In this 
case, D T reached accuracy of 40-50 %, which is, however, insufficient. 

Next method is R F . It works in pr inc ipal quite s imilar ly to D T , since it comprises of set of 
D T s . M e t h o d then evaluates a l l or selected trees separately. In a sense it can be considered 
as upgrade to D T and that 's is why it has been chosen as next approach. For regression 
purposes, results from a l l trees are averaged. This approach attained approximately 72 % 
accuracy. W h i c h is significantly more than D T . For this reason R F is then probed deeper 
in an effort to obtain the best outcome. 

Two remaining procedures are variations of previously discussed R F . F i rs t one improves 
input dataset by scaling each feature by standard deviation. Nonetheless, since the data are 
quite similar and do not have the aspect of diversity the improvements ware not significant, 
accounting only for around 1 percent. 

The last one performs exhaustive search over specified hyper parameters and tries to find 
the best set of them. It is a process where ranges of tuning parameters are provided then 
RandomizedSearchCV randomly picks (with specified number of times) from the sets and 
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performs K - f o l d cross-validation. Best parameters are determined after the computat ion is 
done. For even finer tuning, GridSearchCV w i th narrower ranges obtained from previous 
cross-validation is conducted. This t ime however, GridSearchCV unlike RandomizedSearc 
hCV tries every combination from given parameter ranges. 

Selected tuning hyper parameters for R F were: max_depth, min_samples_leaf, min_s 
amples_split, n_estimators, bootstrap. The best score of 76.293% was achieved wi th 
set of parameters (5, 2, 100, 1125, True). RandomizedSearchCV applied 50 combinations 
running each twice results i n to ta l of 100 iterations. GridSearchCV performs 162 runs 
(combination of each parameter). 

1840 I860 1880 1900 1920 1940 1960 1980 2000 2020 

1999-12 2000-01 2000-02 2000-03 2000-04 2000-05 2000-06 2000-07 2000-08 2000-09 2000-10 

Figure 5.6: The picture above depicts sunspots (light blue curve), seasonal 
trend (dashed orange), predict ion by D T (pink), R M (green] and grid search 
(red). The bot tom picture is zoom in on the last part of the graph wi th tested 
outcome. 
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Chapter 6 

Machine learning for prediction 

This chapter gathers previous discoveries and utilizes them. The first part is a l l about 
selection process and discussing N N s and their intricacies. The chapter w i l l then present 
selected machine learning approach, performance, consequences of various models and then 
carry on wi th implementat ion por t ion of the work. Implementation has been conducted 
using programming language Py thon , and pr imar i ly M L l ibrary K e r a s 1 running on top of 
the M L platform TensorFlow, and another M L module for machine learning - Sk lea rn 2 . A s 
far as Gaussian processes, libraries G P f l o w 3 and Mogptk ' 1 have been used. 

6.1 Choice of the approach 

A s mentioned already i n previous chapters, orbi ta l elements (namely eccentricity e, semi-
major axis o, incl inat ion i, argument of periapsis u, R A A N f2 and mean anomaly M ) are 
t ime dependent varying 6 features, dependent on one another. For that reason the problem 
of O E prediction requires sort of state persistence. Tradi t ional N N are usually based on 
single or handful of inputs. In this case hundreds up to several thousands of input values are 
feed into the N N . Recurrent Neura l Network ( R N N ) addresses this issue perfectly. It can 
handle information and prolong its existence wi th in N N . This system is based on formation 
of loops (see figure 6.2) al lowing the information to be passed from one step to the next 
one. Thanks to this ability, R N N are, thus, very popular i n regression and prediction tasks 
where historical data play an important role in its subsequent progress. 

There have been also several studies conducted based on different approaches such 
as Support Vector Machines ( S V M ) [26], Gradient Boost ing (GB)[17], Gaussian Process 
( G P ) [27], L o n g Short-Term Memory ( L S T M ) [32] etc. F r o m which two methods ( G P , 
L S T M ) have been probed here into more detail . Researches in the preceding works focus 
pr imar i ly on prediction based on force state vector, meaning posit ion and velocity vector. 
Therefore classical orbi ta l elements ( C O E ) have been chosen as a set of input parameter 
for the forecast. Since the ground t ru th timeseries of each element is known, the goal 
here would be to minimize deviat ion of the predicted values relative to the ground t ruth . 

xhttps: //keras. io/ 
2https: //s cikit-learn.org/st able/ 
3https://gpf low.github.io/GPf low/2.7.1/index.html 
4https: //games-uchile.github.io/mogptk/ 
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Three accuracy measures are used for this purpose: M e a n Squared E r r o r {MSE) 6.1, Mean 
Absolute E r r o r {MAE) 6.2 and Mean Absolute Percentage Er ro r {MAPE) 6.3, defined as 
follows 

1 N 
MSE 

N 
(6.1) 

i=l 

M A E = ÄF E I* (6.2) 
i=l 

N 
- y* (6.3) 

i=l 

A l l of the accuracy measures are based on the historical data and compare ground t ru th 
vector y to forecasted y, N denotes the number of predicted timesteps. The resulting values 
can be between (0; oo). 

Thanks to the N N abi l i ty of learning underlying connections between the data [45]. A s 
mentioned i n preceding study [27], motivat ion in this machine learning does not need to be 
purely ML-or ien ted , it may serve as a complement to an already existing system. 

6.1.1 G a u s s i a n processes 

Regression based on G P is upon probabil ist ic Bayesian model . Th is introduces uncertainty 
to the M L which is desired. Hence, G P can be described as normal dis t r ibut ion over 
functions, which are defined by mean function and covariance function. The G P ' s objective 
is to model each orbi ta l element as a mean function of t ime and extrapolate for given hours 
into the future. Th is also results in confidence region around mean (see the 6.1). Clear 
advantage of G P is that it does not require a fixed t ime step, unlike L S T M s , which do 
need addi t ional parameter or layer to fulfill the varying t ime condit ion. In the work [27] 
conducted by Peng and B a i . The G P has been used to for orbit prediction modification 
based on estimation errors. 

values 

time 

Figure 6.1: Example of a Gaussian process. Blue line denotes mean function 
and gray field represents la confidence range. The graph does not contain 
any real values, as it is only an i l lustrative example. 
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6.1.2 L o n g s h o r t - T e r m M e m o r y 

The L S T M is a type of R N N , which performs very well at handling sequential data such as 
t ime series. Its best advantage lies in its capabil i ty of remembering previous states, based 
on which it decides how to adjust its inner parameters when learning from succeeding states. 
For that reason L S T M s are applied i n various domains such as speech recognition, language 
models, image and video classification. 

ht 

u 
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Figure 6.2: Unfold long short-term memory architecture. 

Likewise to convolution or smoothing functions, s l iding window is applicable also to 
L S T M s . Sl id ing window can be divided into two ma in parts containing: past and future 
timesteps. The vector (in fact i n case of Tensorflow - tensor) of the past P measurements 
serves as an input into the L S T M model . B y contrast, F denotes vector of future mea­
surements. F vector for single-output contains 6 O E , or arbi trary consecutive sequence of 
those for the mult i-output L S T M . The process works as follows. Sl iding windows begins 
first i teration in the t ime t, P number of preceding are leveraged as an input, future F mea­
surements are then compared w i t h the L S T M output, improvements are back-propagated 
and sl iding window moves one timestep forward. The process then repeats itself un t i l the 
end of the entire timeseries. 

values 

one step size 

t-P t t + F time 

Figure 6.3: Sl id ing window i l lustrat ion. P denotes number of the past mea­
surements and F future forecasted ones. 
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6.2 Neural network implementation 

Since the problem of C O E time series prediction works wi th six C O E , two possible ways 
how to deal w i th the size of an input vector come out. The first one is concerned wi th just 
a single t ime series, therefore is referred to as univariate regression. In contrast to that, 
multivariate L S T M s work wi th more than one input feature and the sequence is composed 
of vector of values. Deal ing wi th only one input feature, however, encapsulates problem to 
only one O E , which is not intended in this case, therefore, multivariate approach must be 
chosen. G P s , however, didn ' t work out for multivariate use case, therefore the main focus 
of rest of the chapter w i l l be dedicated to L S T M s . 

Next question relates to the number of trained objects, whether to t ra in only on one 
set of O E or mult iple. Tra in ing on mult iple R S O s is possible assuming that the objects are 
somehow related to each other, otherwise it would not make sense to t ra in a model on several 
R S O s . Due to the fact that each object has a different properties and moves independently 
through the space, single model t ra ining has been chosen. This raises opportuni ty to 
leverage clustering. Since a l l R S O s are divided into groups wi th similar features, the t ra ining 
can be focused on one specific group of the R S O s . This approach can be performed only 
when it is certain that clustering is well performed. This may br ing enhancement i n specific 
types of R S O trajectories, on the contrary may lead to overly narrow conception of the 
variety of trajectories. 

6.2.1 P r e l i m i n a r i e s 

Process of preparation of the object before feeding into the N N can be unfold into several 
steps: 

1. F i l t e r ing - outliers and anomalous values removal. 

2. C u t off - exclusively for decayed objects, la th por t ion of the data contains usually 
disturbed measurements, hence the learning and subsequent prediction would be in ­
correct. 

3. F la t tening - transformation of the saw-like courses of the last 3 O E (OJ, Q and M) to 
continuous curve, big leaps are caused by measuring i n degrees (0°, 360°) , continues 
function expands range of values to (—00,00), In the postprocessing phase, these 
values are then converted back using modulo util i ty. 

4. Interpolation - opt ional step, used for shorter timeseries, ensures fixed-sized timestep. 

5. Scaling - necessary and arguably the most important part of the preprocessing phase, 
using raw data leads to biased assumptions about ind iv idua l O E timeseries, scal­
ing ensures that data lie i n certain range, inverse transformation is performed after 
completion of the learning and predict ion phase. 

6.2.2 M o d e l descr ip t ion 

The key component of any L S T M and machine learning i n general is its model . There are 
many models tailored specifically for L S T M s , each model has unique features, advantages 
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and drawbacks. A s mentioned before, L S T M s dispose of variety of applications, hence, 
different models work better and some worse. 

There are mult iple recurrent layers available i n Keras and some of them w i l l be men­
tioned here. The main structure comprises always of one Input layer and one Output layer. 
Based on the shape of the "past" part of the sl iding window P and number of predicted 
features, the Input and Output layers, respectively, would have corresponding number of 
L S T M units. It should be noted here that increasing the unit count or number of layers 
does not necessarily enhance model posit ively or at a l l [30]. 

The simplest model is vanil la L S T M , which comprises of arbi t rary stacked L S T M layers 
on top of each other. L i t t l e extension of the model can be done by using L e a k y R e L u 
(Rectified Linear Uni t ) is a function used in many types of N N along wi th tanh, sigmoid. 
It outputs the input directly i f it is positive, otherwise, it w i l l output zero. 

This model has been adapted from [32]. It is an extension to the Van i l l a L S T M wi th 
added Dropout layer. Its purpose is to prevent overfitting since given percentage of neu­
rons/units w i l l be displaced. 

Bidi rec t ional model is variat ion of Van i l l a L S T M wi th difference that it processed the 
input i n two directions (forth and back). Because of two ways of processing, bidirectional 
model includes two layers to carry out both directions. Outputs from both are afterwards 
concatenated and fed to the hidden Dense layer. 

Another models are Encoder-decoder [45] or Sequence2sequence [20]. B o t h models are 
ut i l ized pr imar i ly for translators and occasions where variable input and output lengths are 
encountered. 

Las t ly mentioned model here w i l l be Convolut ional Neura l Network Encoder-decoder 
model. C N N s are usually used i n pattern recognition tasks such as images. Here it tries to 
find underlying features of the data [43]. The system may be assembled from 2 C N N and 
one flattening layer. The rest is encoder-decoder based model. 

ld_input input: [(None, 48, 6)1 
InputLayer output: [(None, 48, 6)1 

convld | input: | (None, 48, 6) 
ConvlD output: (None, 39, 128) 

lstm input input: [(Nor e, 43, B)] 

Input Layer output: [(Non e, 48, 6)] 

1 
LSTM output: (None, 128) 

leaky_re_lu input: (None, 128) 

LeakyReLU output: (None, 128) 

1 
dropout input: (None, 128) 

Dropout output: (None, 128) 

dense input: (None, 128) 

Dense output: (None, 1) 

bidirectional input input: [(None. 48. 6)] 

InputLayer output: [(None, 48, 6)] 

bidirectional! k tm^ input: (None, 48, 6) 

Bidirectional(LSTM) output: (None, 256) 

dense input: (None, 255) 

Donee output: (None, 64) 

1 
dense 1 input: (None, 64) 

Dense output: (None, 1) 

lstm input input: [(None, 48, 6)] 

Input Layer output: [(None, 48, b)J 

lstm input: (None, 48, 6) 

I .SIM output: (None, 48, 128) 

dropout input: (None, 48, 128) 

Dropout output: (None, 48, 128) 

lstm_l input: (None, 48, 128) 

L S T M output: (None, 64) 

diupout_l input: (None, G4) 

Dropout output: {Nona, 64) 

dense input: (None, 64 j 

Dense output: (None, 1) 

ConvlD output: (None, 20, 128} 
Id 1 input: (Nono, 39, 128 

max pujlingld input: (None, 20, 126 
MaxPoolinglD output: (None, 10, 128) 

flatten input: (None, 10, 128) 
Flatten output: [Nono, 1280) 

RepeatVector output: (Ni 
input: (None, 1260i 

lstm input: (None, 12, 1280] 
LSTM output: (None, 12, 200) 

timc_distribu7cd(dcn3c) input: (Nono, 12. 200 
ľimc>Dií;:.ril)i.iL!:dOeiii;o) •:>'.; L.pii I.: (Nono, 12. 1001 

ti disLi-ibulnd 1(CICÍII;:O ň I input: | (None, V2 
i'iitiuDia:,! M.uU-di )on;;o) output: (None, 12, 6) 

Figure 6.4: Here is the structure and the layers of some models visualized 
using Keras ' plot model uti l i ty. Right model is the only mult i-output one. 
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6.2.3 C a l l b a c k s 

There are two types of callbacks applied. Into the first category fall EarlyStopping and T 
erminateOnNaN. They are called after each epoch and can terminate fitt ing of the model i f 
some requirement is met. EarlyStopping controls development of a t ra ining and validat ion 
loss. It prevents overfiting i f the model stagnates for longer number of epochs. Terminate 
OnNaN stops t ra ining if it fails and encounters N a N value. 

Second category are loggers. T h e y are supposed to store model after the completion 
of the t raining. CSVLogger captures progress of loss function and ModelCheckpoint stores 
fitted model . B o t h callbacks are called after the last epoch. 

6.3 Analysis and testing 

The best results have been achieved using multivariate single-output L e a k y R e l u and B i d i ­
rectional models. After several iterations, 128 units for the first layer turned out to perform 
quite well. 

ECCENTRICrfY SEMIMAJOR.AXIS 

INCLINATION RA_OF_ASC_NODE 
82.582 

ARG_OF_PERICENTER M E A N A N O M A L Y 

Figure 6.5: Successfully trained model on R S O 51236. 

O n the other hand, "dropout" model adapted from [32] performed worse relative to the 
already mentioned ones. Other models sometimes even failed to t ra in the model and got 
terminated by callbacks, establishing them as unusable. 
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Figure 6.6: Wrong choice of the model lead to unsuccessful prediction on 
R S O 51236. 

Insufficient model forecast performance wi th regard to the long timeseries (figure 6.7) 
can be caused by the nature of the L o n g Short-term memory itself, because the long-term 
part could loose the sense of the data from the beginning. Predic t ion is generally not bad 
in first O E threesome, yet delayed by a fraction of the period in case of last three O E . 

MEAN ANOMALY 

Figure 6.7: Th is is an example of long-term failed t raining. Major i ty of the 
seven-year course is shifted by a fraction of the period both to the past and 
future. 
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The ult imate goal i n t ra ining is minimis ing the "gap" between the t ra ining and the 
validat ion loss curves as seen in the graph 6.8. 

Training loss history Training loss history 

2.5 

i 2'° 
1.5 

1.0 

0.5 

0.0 

Training loss 
Validation loss 

Figure 6.8: O n the left-hand side, course of t ra ining and validat ion loss of 
the L e a k y R e L u model after each epoch is displayed. There were 100 epoch i n 
total , but model managed to reach desired fitness and got terminated by the 
Ear lyStopping callback. O n the contrary the right one using C N N Enc-dec 
architecture was not suited for the predict ion and didn ' t accomplish learning 
phase and was due to the raised validat ion loss terminated. 

6.3.1 D e a d ends 

It is clear from the course of O E , that they vary wi th t ime. This rate of change can 
be described analyt ical ly using Var ia t ion of parameters developed by Lagrange and later 
updated by Gauss [40]. The Lagrange and Gauss planetary equations ( L P E and G P E ) 
are two most recognized methods to describe the change rates of orbi ta l elements w i th 
the partials of the dis turbing forces, from which one can derive the dependence on other 
elements. The idea was to solve each O D E and its resulting curve use into a covariance 
function of a G P . However, that turned out to be wrong assumption. Similar ly, since there 
are such relationships between some elements, multivariate L S T M was trained only on those 
coupled elements. Nonetheless, that lead to overfitting and resulting prediction resembled 
univariate timeseries forecast. 

A d d i n g solar act ivi ty to the existing features proved to be misleading. Due to the Sun's 
stochastic nature, included features behaved more like a noise. Therefore, incorporating 
solar flux and sunspots number only decreased model performance. 
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Chapter 7 

Conclusion 

The a i m of this thesis was to develop a system capable of future orbit prediction using a 
machine learning. Nonetheless, the Ear th ' s orbit is very complex and puts many obstacles 
in the way. Hence, several steps including data preparation and filtering must be undergone. 
For even better grasp of the data, clustering was applied which divided objects further into 
groups. The goal was accomplished by t ra ining a neural network on single object at a t ime, 
and then predict ing its future posit ion i n the space. In conclusion, proposed L o n g Short-
Term Memory machine learning approach proved to be suitable choice for classical orbi ta l 
elements predictions. Mul t ivar ia te prediction captured some of the underlying connections 
between the elements and managed to model several days into the future satisfactorily. 

A further development may be focused on incorporat ion of the perturbing forces. The 
study could lead into advancements in L S T M models w i th more complex structure and 
addi t ional layers. 
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Appendix A 

Data filtering 

The following graphs show side-by-side comparison between unfiltered (up) and filtered 
(down) orbi ta l elements. 
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Appendix B 

Contents of the included storage 
media 

Only following selected important files and folders are displayed. Capaci ty of the storage 
media is restricted to few G B of available memory. Therefore, only several hundreds of the 
R S O s are included. 

/ 
_ source Source codes and 

data Input and output data 
.prediction Contains saved models and losses 
selected Downloaded data obtained from space-track.org 

decayed 
eccentric 
gp_launched_debris 

. stars Contains coordinates and constellations. 
sun D a t a related to the Sun 
L sunspot_data.csv Or ig ina l sunspots and observations counts 
analyzed_data.csv Detai led info about every file 
. clustereded_data. csv Cluster ing input 
clustering_result. csv Cluster ing output 
merged_results. csv . . . . F i n a l output from the preprocessing and clustering 

img A l l image output goes here 
clustering.py Cluster ing ensemble 
constatnts .py P rogram constant values 
earth.py Creates 3D mesh for the earth simulation 
parse_data.py Transformer for any type of raw data 
prediction.py O rb i t a l elements predisction using M L 
sim. py 3D V i s p y simulation 
sky.py Display ISS on the sky relative to stars 
sun_activity.py Sun act ivi ty prediction 
trajectory .py Deals w i th orbits 
visualize.py Coniains a l l v isual iz img methods 
download_data_spacetrack Shell script for space-track.org data 

thesis Thesis latex source codes 
_ README. md Thesis manual 

xjanda28-predicting-leo-trajectories.pdf Thesis text 
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