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ABSTRACT
This thesis deals with permanent magnet synchronous machines. Special attention is
paid to machines with an outer rotor. The first part describes the losses occurring in the
machine, their distribution, and subsequent analysis. Then the heat transfer mechanisms
are described, with a description of their application in the field of electrical machines.
Among other things, this work focuses on methods suitable for the optimization of heat
network parameters. These methods are further applied to the optimization mentioned
above of these parameters. The results of calculations obtained using the previously
mentioned optimization methods are evaluated and compared with measured data in the
last chapter. These results are compared in terms of approximation to the measured
data, computational time, and computational effort.

KEYWORDS
Cooling methods, losses analysis, methods of optimization, optimization of parameters
,outer rotor machines, thermal model, thermal network

ABSTRAKT
Tato práce se zabývá synchronními stroji s permanentními magnety. Zvláštní pozornost je
věnována strojům s vnějším rotorem. V první části jsou popsány ztráty vznikající ve stroji,
jejich rozdělení a následná analýza. Dále jsou zde popsány mechanismy přenosu tepla, s
popisem jejich využití v oblasti elektrických strojů. Mimo jiné je tato práce zaměřena i na
metody vhodné pro optimalizaci parametrů tepelné sítě. Tyto metody jsou dále použity
pro již zmíněnou optimalizaci těchto parametrů. V poslední kapitole jsou zhodnoceny
výsledky výpočtů získaných s využitím dříve uvedených optimalizačních metod a jejich
porovnání s naměřenými daty. Tyto výsledky jsou zde porovnány z hlediska přiblížení se
naměřeným datům, výpočetního času a výpočetní náročnosti.

KLÍČOVÁ SLOVA
Způsoby chlazení, analýza ztrát, optimalizační metody, optimalizace parametrů, stroj s
vnějším rotorem, teplný model, tepelná síť



ROZŠÍŘENÝ ABSTRAKT

Tato diplomová práce se zabývá tepelným modelem synchronního stroje s perma-
nentními magnety a vnějším rotorem. Pro správné sestavení tepelného modelu je
nutná analýza ztrát stroje. Tyto ztráty generují teplo v oblastech jejich vzniku.
Vzniklé teplo je nutné odvádět mimo stroj a to buď do jeho okolí nebo do ostatních
částí soustavy, ve které je tento stroj používán. Sestavený tepelný model zohledňuje
oblasti, ve kterých dochází ke generování těchto ztrát tak, aby odpovídal vlastnos-
tem analyzovaného stroje.

První kapitola se zabývá rozdělením synchronních strojů do jednotlivých skupin
podle konstrukce. Hlavními skupinami synchronních strojů jsou cizebuzené syn-
chronní stroje, reluktanční synchronní stroje a synchronní stroje s permanentními
magnety. Dále je zde popsán obecný princip funkce synchronních strojů včetně ek-
vivlantního obvodu a fázorového diagramu.

V druhé kapitole jsou popsány již zmíněné ztráty elektrického synchronního
stroje. Jejich rozdělení principy vzniku jednotlivých typů ztrát a způsob jejich
výpočtu. Jelikož je dále v této práci analyzován stroj s nominálními otáčkami
7500 min−1 jsou v této kapitole uvedeny i mechanické ztráty, včetně způsobu je-
jich výpočtu.

Třetí kapitola se dotýká tématu přenosu tepla. Jsou zde popsány jednotlivé
mechanismy jeho přenosu včetně způsobu chlazení elektrických strojů. V rámci
popisu chlazení jsou popsány způsoby, kterými je možné modelovat tepelný odpor
konvekcí a vzávislosti na otáčkách rotoru. Tento způsob je zde uveden, jelikož
analýza tohoto typu přenosu tepla je velmi komplexní. Zároveň se jedná o nezaned-
batelný způsob, jakým dochází v točivých strojích k přenosu tepla. Jednotlivé typy
závislostí jsou zde graficky zobrazeny v závislosti na otáčkách.

Následující kapitola popisuje metody, které jsou použity pro optimalizaci parametrů
tepelného modelu analyzovaného stroje. Tyto metody umožňují optimalizovat model
stroje tak, aby co nejvíce odpovídal realitě. Díky optimalizovanému modelu stroje
je možné matematicky ověřit případné změny provedené v jeho návrhu a to bez
nutnosti výroby velkého množství laboratorních vzorků.

V páté kapitole je popsán analyzovaný stroj. Jeho jmenovité parametry, oblast
ve které je tento stroj provozován a teploty naměřené při definovaném duty-cyclu.
Dále je zde uvedena tepelná síť tohoto stroje.

Šestá kapitola popisuje praktické použití optimalizačních metod a graficky zná-
zorňuje jejich výsledky v porovnání s měřenými teplotami. V neposlední řadě také
uvádí vstupní data použité v jednotlivých metodách. Dále jsou zde uvedeny matem-
atické filtry použité pro úpravu vstupních dat.

Poslední kapitola se zabývá porovnáním vypočtených dat s naměřenými.
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Introduction
Synchronous machines (SMs) are universal machines to alternating-current (AC).
Moreover, the role of synchronous machines is increasing in the industry nowadays.
It is because it is used for motor drive applications and thanks to the development
of power electronics.

Synchronous motor drives are also used in systems requiring high power, such as
ventilator systems, large pumping stations, or big ship propulsion systems. Salient-
pole or non-salient pole machines for these applications are usually used. Non-salient
pole machines are used for high-speed applications like pumps, and salient pole ma-
chines are used for low-speed applications like the pressers. Another reason for their
frequent use is the continuous capability to compensate for the reactive power.

Currently, synchronous reluctance machines are more used thank capability to
replace induction machines or drives with synchronous machines and inverters in
commercial applications. These machines connect the capability of induction ma-
chines starting without an inverter and synchronous machine torque-speed charac-
teristic and efficiency into one compact synchronous reluctance machine.

Permanent magnet synchronous machine with outer rotor is suitable for fan
applications in the low-cost segment. Because the low prize its using is very eco-
nomical. Nevertheless, these machines must be designed to maximal using utility.
That means over-dimensioned machines are not economic, but under-dimensioned
machines have a very short lifetime. So the right dimensioning is very crucial.

A properly designed thermal network is a very powerful tool for machine de-
signing. For the right dimensioning, it is crucial to estimate temperatures in the
machine. It is possible to estimate the temperatures by using the LPTM (lumped
parameters thermal network). One of the LPTN optimizing ways is the so-called
genetic algorithm. This algorithm is described and used in this thesis.

Even the suitable dimensioned machine, in some cases, needs thermal control-
ling. One of the temperature monitoring ways is thermal sensors using. This way
is especially in the low-cost sector disadvantageous. It is because evaluating the
sensors and, in some cases, adapting the machine for the sensors is needed. So it
is useful to use the real-time modeling of the machine’s temperatures. This way of
temperature control is cheaper and does not need any thermal sensors and adapting
of the machine for these sensors.

The real-time modeling needs only inputs and DSP (digital signal processor)
for temperature computing. The DSP uses only mathematics for temperature esti-
mation. There are, of course, several ways of the mathematical estimation of the
temperatures used by the DPS. One of these ways is to optimized LPTN, and the
other is, for example, a decision tree. The named methods are used in this thesis.
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1 Synchronous machine
This chapter describes the principle, construction, and division of the synchronous
machine family. This thesis is focused mainly on a permanent magnet synchronous
machine with an outer rotor. It is because the goal of this thesis is analyzing of this
type of machine.

The family of the synchronous machines is shown in the picture 1.1. There are
three main categories of synchronous machines in this picture. These categories are
based on the ratio of quadrature axis (q-axis) and direct axis (d-axis) inductances. [1]

Fig. 1.1: Categorization of synchronous machine types

According to [1] the categorization of the two-axis electric machine is commonly
used. It is because describing the machine’s behavior to the two magnetic orienta-
tions is often very convenient. Usually, in the synchronous machine is a magnetic
reluctance minor in the d-axis. That means the main part of flux is concentrated
in this axis. On the other hand, on the q-axis synchronous machines have much
more considerable magnetic reluctance than on the d-axis, so the magnetic flux is
very low. Magnetic reluctance in the d-axis and q-axis might be same in some cases.
Visualization of these axes can be seen in the figure 1.2, where parts a) and b) are
examples of permanent magnet synchronous machines with saliency.

Reluctances in the q-axis and the d-axis are almost same in non-salient syn-
chronous machines. That means there is no difference in the influence of the quadra-
ture and direct magnetic flux, and therefore it does not matter the actual position of
the stator and rotor. [2] Example of the machine types with an inner rotor is shown
in part c) and with the outer rotor in the part d) of the figure 1.2

15



Fig. 1.2: Examples of permanent magnet synchronous machines rotors

1.1 Construction of synchronous machine
Synchronous machines consist of two main parts. These parts are the stator and
rotor. The stator is a static part of the machine and consists of a frame, iron core,
and winding. [3]

The iron core consists of two parts which are called yoke and teeth. This iron
core is almost always divided into the stator plates. Dividing one massive part
of the material into the many little sheets decreases eddy current losses. [1] The
construction of stators is principally same in all types of synchronous machines.
Only in the case of outer rotor synchronous machines is the stator located in the
rotor and consists of the iron core and winding. A mounting flange replaces the
frame. [4] These types of stators are shown in the picture 1.3

16



Fig. 1.3: Types of synchronous machine rotors

1.1.1 Permanent magnet synchronous machine with inner rotor

The rotor construction is based on the type of synchronous machine. In separately
excited synchronous machines, the wounded laminated rotors are used. Examples
of these rotor types are shown in the figure 1.4. In synchronous reluctance ma-
chines, the same laminated rotors are used in the field of separately exciting syn-
chronous machines. Nevertheless, these rotors are unwounded, and some rotor teeth
are removed. These unwounded rotors are shown in the figure 1.4. In rotors of
synchronous reluctance machines might also be used permanent magnets. These
magnets are usually placed in the grooves. The construction of this type of rotor is
shown in the figure 1.4. [7]

Fig. 1.4: Examples of separately excited and reluctance synchronous machines rotors

17



1.1.2 Permanent magnet synchronous machine with outer rotor

In this thesis, the primary attention is paid to permanent magnet synchronous ma-
chines with an outer rotor. An example of this type of rotor is shown in the figure 1.2
d). In the figure 1.5 the cross-section of the permanent magnet synchronous ma-
chine with the outer rotor is shown. This picture shows how the main parts of this
machine are situated. Rotors used for this machine are not laminated but made
from one material piece and look like a bell around the stator. This phenomenon is
typical for all outer rotor machines.

The main benefits of outer rotor machines are high torque density, high output
power, high efficiency, better rotor cooling, and an extensive speed range. On the
other hand, the disadvantages are the large outer diameters of the machine, the ec-
centric load of used bearings, and worse stator cooling. These properties predispose
this type of machine for use as wind generators, machine tools, fans, wheel drives,
and so on. [5], [6]

Fig. 1.5: Cross section of PMSM with outer rotor

1.2 Principle of synchronous machine function
The unique properties of all types of synchronous machines in steady-state are that
the rotor’s rotating speed and the spinning magnetic field produced by stator wind-
ing are the same. This phenomenon is called synchronous speed, which is why this
group of machines is called synchronous machines. Synchronous machines can work
in both generators and also motor mode.

18



1.2.1 Equivalent circuit of PMSM

Equivalent circuit of permanent magnet synchronous machines helps us understand
its behaviour. Equivalent circuit shown in figure 1.6 is based on the equations for
voltage in q-axis and d-axis. These equations are in the rotor reference frame in the
following familiar form for the stator. [1] Voltage in the d-axis is defines

𝑢d = 𝑅s𝑖d + d𝜓d

d𝑡 − 𝜔r𝜓q (1.1)

where 𝑅s is stator resistance, 𝑖d is current in the d-axis, 𝜓d is flux linkage in the
d-axis, 𝑡 is time, 𝜔r is angular velocity of rotor and 𝜓q is flux linkage in the q-axis.
The voltage in q-axis is defined by equation

𝑢q = 𝑅s𝑖q + d𝜓q

d𝑡 + 𝜔r𝜓d, (1.2)

where 𝑖q is current in the q-axis.

Fig. 1.6: Equivalent circuit of permanent magnet synchronous machine

Equivalent circuit of the both axis shows stator resistance 𝑅s and stator leak-
age inductance 𝐿s𝜎. In the d-axis is shown magnetizing inductance 𝐿md, damper
resistance 𝑅D and damper leakage inductance 𝐿D𝜎. The permanent magnet is rep-
resented by a current source 𝑖PM. The equivalent circuit in the q-axis shows magne-
tizing inductance 𝐿mq, damper resistance 𝑅Q and damper leakage inductance 𝐿Q𝜎.

If the damping winding is included then according to [7]

0 = 𝑅Q𝑖Q + d𝜓Q

d𝑡 , (1.3)
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where 𝜓Q is the damper winding flux linkage in the q-axis.

𝜓Q = 𝐿mq𝑖q + 𝐿Q𝑖Q, (1.4)

where 𝐿Q is total damper inductance in the q-axis and is defined as

𝐿Q = 𝐿mq + 𝐿Q𝜎. (1.5)

In the d-axis are damper winding equations

0 = 𝑅D𝑖D + 𝑑𝜓D

𝑑𝑡
(1.6)

where 𝜓D is damper winding flux linkage that can be calculated as

𝜓D = 𝐿md𝑖d + 𝐿D𝑖D + 𝜓PM, (1.7)

where 𝜓PM is permanent magnet flux linkage and 𝐿D is the total damper inductance
in the d-axis and may be calculated as

𝐿D = 𝐿md + 𝐿D𝜎. (1.8)

The virtual current produced by a permanent magnet is

𝑖PM = 𝜓PM

𝐿md
. (1.9)

The virtual current is not constant because magnetizing inductance 𝐿md depends
on the saturation. Stator flux linkage in the q-axis is

𝜓q = 𝐿q𝑖q + 𝐿mq𝑖Q (1.10)

The stator flux linkage in the d-axis is

𝜓d = 𝐿d𝑖d + 𝐿md𝑖D + 𝜓PM (1.11)

The product of stator flux linkage in the q-axis and d-axis is the total stator flux
linkage

𝜓S =
√︁
𝜓2

d + 𝜓2
q (1.12)

The power factor of a permanent magnet synchronous machine can be written as

cos𝜙 = 𝑢d𝑖d + 𝑢q𝑖q
𝑢s𝑖s

(1.13)

20



1.2.2 Phasor diagram of PMSM

The phasor diagram of non-salient permanent magnet synchronous machine is same
for outer rotor and also for inner rotor machine and is shown in the figure 1.7.
This diagram shows example of one phase of machine and it is constructed in pu.
Parameters of the machine are: 𝜔s = 1 pu, 𝑢s = 1 pu, 𝑖s = 1 pu, 𝜓s = 1 pu,
𝑖d = 0.24 pu in the negative direction, that means, the machine is operating in light
field weakening. The inductances are 𝐿q = 𝐿d = 0.5 pu, resistance is neglected and
rotor position angle is 𝜃r = 40∘ measured from the x-axis to d-axis, in which 𝜓PM is
located. The stator reference frame is xy and the rotor reference frame is dq.

Fig. 1.7: Phase diagram of permanent magnet synchronous machine

In this diagram, the 𝛿s is the load angle, the 𝜙 is the angle between current and
voltage and is used to power factor calculation cos𝜙, and the 𝛾 is the current angle
measured between d-axis and stator space vector.

The 𝛾 angle is beneficial for deriving the machine's torque. This angle can be
calculated as

𝛾 = 90∘ + 𝛿s − 𝜙. (1.14)

The equation of 𝛿s is

𝛿s = arccos
(︃
𝜓s cos 𝛿s

𝜓s

)︃
=, (1.15)

where 𝜓s cos 𝛿s is equal to 𝜓d and for its calculation can be used to phasor diagram
in the figure 1.7. From this diagram it can be seen, that the equation for 𝜓d is

𝜓d = 𝜓s cos 𝛿s =
√︁
𝜓2

s − (𝐿q𝑖q)2, (1.16)
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where
𝑖q =

√︁
𝑖2s − 𝑖2d. (1.17)

From the diagram, the 𝜙 is
𝜙 = 𝛼− 𝛽, (1.18)

where
𝛼 = arccos 𝑖d

𝑖s
. (1.19)

The 𝛽 is also from diagram
𝛽 = 90∘ − 𝛿s. (1.20)

1.2.3 Torque of PMSM

Synchronous machines generate high torque, that can be according to [7] derived
from

𝑇e = 𝑃

𝜔s
, (1.21)

where 𝑃 is the power of the machine and can be calculated as

𝑃 = 𝑢s𝑖s cos𝜙. (1.22)

The angle 𝜙 is equal to ((𝜋
2 + 𝛿s) − 𝛾). Therefore

𝑃 = 𝑢s𝑖s cos
(︂(︂

𝜋

2 + 𝛿s

)︂
− 𝛾

)︂
. (1.23)

Then the next equation can be derived by the goniometric formula sin(𝑥) = cos
(︁
𝑥− 𝜋

2

)︁
𝑃 = 𝑢s𝑖s cos

(︂(︂
𝜋

2 + 𝛿s

)︂
− 𝛾

)︂
= 𝑢s𝑖s sin (𝛾 − 𝛿s). (1.24)

After using sin(𝑥−𝑦) = sin(𝑥) cos(𝑦)−cos(𝑥) sin(𝑦) the equation can also be written
as

𝑃 = 𝑢s𝑖s sin (𝛾 − 𝛿s) = 𝑢s𝑖s(sin 𝛾 cos 𝛿s − cos 𝛾 sin 𝛿s). (1.25)

Figure 1.7 reveals that
𝑖d = 𝑖s cos 𝛾, (1.26)

𝑖q = 𝑖s sin 𝛾, (1.27)

𝑢d = −𝑢s sin 𝛿s = −𝜔s𝐿q𝑖q, (1.28)

𝑢q = −𝑢s cos 𝛿s = 𝜔s(𝜓PM + 𝐿d𝑖d). (1.29)

By using equations 1.26- 1.29 the pu power factor can be expressed as

𝑃 = 𝜔s

[︂
𝜓PM𝑖s sin 𝛾 − 𝑖2s sin 2𝛾

(︂
𝐿q − 𝐿d

2

)︂]︂
. (1.30)

The final torque formula is

𝑇e = 𝑃

𝜔s
= 𝜓PM𝑖s sin 𝛾 − 𝑖2s sin 2𝛾

(︂
𝐿q − 𝐿d

2

)︂
. (1.31)
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2 Losses in permanent magnet synchronous
machine

This chapter is focused on all types of losses generated in permanent magnet syn-
chronous machines. The two most important types of the losses are iron and copper
losses. The copper losses become dominant when the machine is loaded; usually,
on the other hand, the magnetic losses are dominant when the machine is in the
no-load condition. The mechanical losses are normally a minor part of total losses.
Only in the case of the high-speed machines are dominant. [9]

If the PWM is used to supply the permanent magnet synchronous machine, then
according to [9] the PWM losses can not be neglected. These losses might represent
almost one-third of total stator no-load magnetic losses.

Separation, accurate evaluation, and region of the loss excitation are essential
parts of the thermal analysis. It is because all losses generate heat in the parts of
the machine where they are generated. The individual types of machine losses are
shown in the figure 2.1.

Fig. 2.1: Machine loss dividing

Total losses generated in machines can be defined as a summary of partial losses.
That means total losses might be calculated as

Δ𝑃tot = Δ𝑃Cu + Δ𝑃mag + Δ𝑃rot + Δ𝑃mech, (2.1)

where Δ𝑃Cu are stator copper losses, Δ𝑃mag are stator magnetic losses, Δ𝑃rot are
rotor losses and Δ𝑃mech are mechanical losses.
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2.1 Stator copper losses
Stator copper losses are losses generated in the stator winding. The winding is an
significant source of loss in the electrical machine. In the [8] are presented that
copper losses in the three-phase machine can be calculated as

Δ𝑃Cu = 3𝑅ph𝐼
2
ph, (2.2)

where 𝑅ph is the DC resistance of each phase and 𝐼ph is the phase current. The
accuracy calculation of this loss type looks very simple at first sight, but it is not.
It is because the DC resistance 𝑅ph is temperature-dependent, which means with
increasing temperature, this resistance increases too. Changing this resistance is
according to [8] defined by

𝑅ph,n = 𝑅ph,0 (1 + 𝛼CuΔ𝑇 ) , (2.3)

where 𝑅ph,n is the new phase resistance, 𝑅ph,0 is the phase resistance at the reference
temperature (usually it is 20 ∘C), 𝛼Cu is the temperature coefficient of resistance (≈
0.0042 K−1) and Δ𝑇 is (𝑇ph,n − 𝑇ph,0).

This temperature dependence of resistance proves how much the thermal and
electromagnetic analyses depend on each other and how necessary the use of cooling
is in the machines. However, this is not the only factor affecting the machine’s
copper losses. In the [9] have been described two more effects that influence losses
in the stator winding. These two effects are the skin effect and proximity effect. The
skin effect arises due to eddy currents generated in the center of the conductor. The
proximity effect is a similar phenomenon but created by the current flow in other
conductors in the same slot.

Both proximity effect and skin effect influence the distribution of the current
densities in the conductors of winding. That means both effects can change the
AC resistance of the wires and the corresponding losses in high-frequency electrical
machines. These effects might be reduced by dividing conductors into electrically
isolated parallel smaller ones.

2.2 Stator magnetic losses
In this section, the separation of magnetic losses into different losses types is de-
scribed. These types are hysteresis, eddy current, and excess losses. The separation
of iron losses into these types simplifies this complex physical phenomenon. Total
stator magnetic losses are the result of a summary of these separated parts.

Δ𝑃mag = Δ𝑃hys + Δ𝑃eddy + Δ𝑃ex, (2.4)
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where Δ𝑃hys are hysteresis losses, Δ𝑃eddy are eddy current losses and Δ𝑃ex are excess
losses.

2.2.1 Hysteresis losses

According to [9] the hysteresis losses in homogenous material with purely sinusoidal
excitation can be calculated as

Δ𝑃hys = 𝑘h𝑓𝐵
𝛼
m, (2.5)

where 𝑘h is experimental coefficient, 𝑓 is frequency, 𝐵m is amplitude of the flux
density and 𝛼 is experimental coefficient.

A combination of used experimental coefficients in (2.5) makes the accuracy of
calculation worse in the whole range of flux densities. More accurate results are the
reason why [10] apply different coefficients for each range.

2.2.2 Eddy current losses in a laminated material

Several methods might analyze eddy current losses in laminated material. These
methods are analytical or based on FE (Finite element method), and the losses
might be calculated directly or in the post-processing. In this thesis, some of these
methods are described.

The analytical method calculation is according [11]

Δ𝑃eddy = 𝑘e𝑓
2𝐵2

m, (2.6)

where 𝑘e is eddy current coefficient. The 𝑘e is according to [11] defined as

𝑘e = 𝜋2𝑑2𝑉

6𝜌 , (2.7)

where 𝜌 is the resistivity of the material and 𝑑 is thickness of lamination.
One of the 2D-FE methods is an estimation of eddy current losses in the time

domain which is usually used in the post-processing stage. Evaluation of eddy
current losses by this method is based on the equation

Δ𝑃eddy = 1
𝑇

𝑑2

12𝜌

∫︁ 𝑇

0

⃒⃒⃒⃒
⃒d𝐵d𝑡

⃒⃒⃒⃒
⃒
2

𝑑𝑡, (2.8)

where 𝑇 is period, and 𝐵 is flux density. This equation does not consider the
orthogonal components of flux density, but the final flux density vector consists of
two orthogonal components that can be defined as

�⃗� = 𝐵xx⃗ +𝐵yy⃗, (2.9)
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where 𝐵x is x-axis flux density component, x⃗ is unit vector, 𝐵y is y-axis flux density
component and y⃗ is unit vector. After time derivation amplification of the absolute
value of equation 2.9 can be written as⃒⃒⃒

�̇�
⃒⃒⃒2

=
⃒⃒⃒
�̇�x

2 + �̇�y
2 ⃒⃒⃒
. (2.10)

This equation proves that total eddy current losses are equal to the sum of eddy
current losses due to their orthogonal components.

It is described in [12] that finite element software gives the flux density data
within the Cartesian plane. The components of the flux density can be calculated
as ⎛⎝ 𝐵r

𝐵𝜃

⎞⎠ =
⎛⎝ cos (𝜃) sin (𝜃)

− sin (𝜃) cos (𝜃)

⎞⎠⎛⎝ 𝐵x

𝐵y

⎞⎠ , (2.11)

where 𝐵r is radial component of flux density, 𝐵𝜃 is peripheral component of flux
density 𝜃 is angel between the 𝐵r vector and positive x-axis in the xy plane. Total
eddy current losses in the iron volume, in the discrete-time domain and taking into
account components of the flux density are according to [13], [10] defined as

Δ𝑃eddy,tot = 𝑘ed
𝑑2

12𝜌

∫︁
Fe

1
𝑁p

𝑁p∑︁
k=2

⎧⎨⎩
(︃
𝐵𝑘+1

r −𝐵𝑘
r

Δ𝑡

)︃2

+
(︃
𝐵𝑘+1

𝜃 −𝐵𝑘
𝜃

Δ𝑡

)︃2
⎫⎬⎭ d𝑣, (2.12)

where 𝑘ed is eddy current loss coefficients, the 𝑁p is the number of time steps per
period.

2.2.3 Excess losses

Excess losses represent the non-uniform distribution of magnetization across the
lamination. The ratio of non-uniform distribution depends on the presence, orien-
tation, and size of the magnetic domains. Every domain does not have the same
orientation, which makes the concentration of eddy currents higher. The larger size
of the magnetic domains also negatively influences the excess losses. [14], [9]

The excess losses are according to [9] defined as

Δ𝑃ex = 𝑘ex(𝑓𝐵m) 3
2 , (2.13)

where 𝑘ex is the coefficient determined by curve fitting for the used material.

2.3 Rotor losses
In permanent magnet synchronous machines, the rotor losses are produced by slot
harmonics, time harmonics, and space harmonics. The rotor losses reduce the effi-
ciency of the machine and increase its temperature. The too high temperature of
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the rotor might bring demagnetization of permanent magnets used in this machine
type.

If the permanent magnet synchronous machine is well designed, the rotor losses
are, according to [7] insignificant and do not affect the efficiency. That means the
rotor losses might be neglected in this type of machines.

2.4 Mechanical losses
Mechanical losses in permanent magnet synchronous machines consist of bearing
friction losses and gas friction losses. These two parts of mechanical losses are
described below.

2.4.1 Bearing losses

Bearing losses might be calculated by tools provided by the manufacturer or by
applying empirical formulas. According to [15] the formula usable for mechanical
losses is

𝑃b = 0.5𝐶fb𝐹𝑑b𝜔, (2.14)

where 𝐶fb is the contact coefficient of friction, 𝐹 is the equivalent dynamic bearing
load, 𝑑b is bearing bore diameter and 𝜔 is the angular frequency of the shaft. The
𝐹 can be calculated from the radial and axial components of the bearing load.

Another way of calculating bearing mechanical losses is according [16]

𝑃b = 0.06𝑘fb𝑚r
𝑛

60 , (2.15)

where 𝑘fb is equal to 1÷3 𝑚2/𝑠2 and its value depends on the bearing specifications,
𝑚r is the mass of the rotor and 𝑛 is the speed of rotor.

2.4.2 Gas frictional losses

The product of rotor movement and gas flow in the machine is the gas friction losses.
In the figure 2.2 are shown, all free types of flow. These types are according to [17]:

• Tangential flow generates by rotation of the rotor
• Axial flow generates the flow of cooling gas through the air gap
• Taylor vortices, due to centrifugal forces
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Fig. 2.2: Flow origins

Moreover, the fluid flow in the machine might be divided into laminar and turbulent.
This division is based on the ratio of inertia and viscous forces.

The power losses due to gas friction in the air gap of the rotating rotor, which
is modeled as a rotating cylinder, can be according [7] expressed as

Δ𝑃𝜌,1 = 1
16𝑘ro𝐶f,1𝜋𝜌𝜔

3𝐷4
s,in𝐿, (2.16)

where 𝑘ro is roughness coefficient of material (for smooth material is equal to 1), 𝐶f,1

is the friction coefficient, 𝜌 is the density of the coolant, 𝐷s,in is the outer diameter
of air gap, and 𝐿 is the rotor length.

The turbulence indicator in the air gap is the Couette Reynolds number. This
number is according to [17]

𝑅𝑒𝛿 = 𝜌𝜔𝐷s,in𝛿

2𝜇 , (2.17)

where 𝛿 is the air gap thickness and 𝜇 is the dynamic viscosity of the coolant.
The friction coefficient is the function of Couette Reynolds number and according

to [7] is expressed as

𝐶f,1 = ( 𝛿
𝑟 )0,3

Re0,6
𝛿

pro Re𝛿 < 64,

𝐶f,1 = 5( 𝛿
𝑟 )0,3

Re𝛿
pro 64 < Re𝛿 < 500,

𝐶f,1 = 0,515( 𝛿
𝑟 )0,3

Re𝛿
0,5 pro 500 < Re𝛿 < 104,

𝐶f,1 = 0,0325( 𝛿
𝑟 )0,3

Re𝛿
0,2 pro Re𝛿 > 104.

(2.18)

The power losses generated by rotor end rings can be according to [17] expressed as

Δ𝑃𝜌,2 = 1
64𝐶f,2𝜋𝜌𝜔

3(𝐷5
s,in −𝐷5

r ), (2.19)
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where 𝐶f,2 is the friction coefficient and 𝐷r is the rotor diameter.
In the case of the end rings region, the Couette Reynold number can, according

to [17] be calculated as

Rer =
𝜌𝜔𝐷2

s,in

4𝜇 . (2.20)

The friction coefficient is according to [17] is defined as

𝐶f,2 = 3,87
Rer0,5 for Rer < 3 · 105,

𝐶f,2 = 0,146
Rer0,2 for Rer > 3 · 105.

(2.21)
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3 Heat transfer
Thermal analysis is a crucial part of electrical machine design. Three mechanisms of
heat transfer (convection, conduction, and radiation) are described in this section.
These methods describe thermal transfer from warmer regions to the cooler regions
of the machine.

3.1 Conduction
In solid materials, conduction is the major mechanism of heat transfer, this mech-
anism is also in the fluid materials, but the quantity of transferred heat is minor.
That means that the conductive heat transfer is insignificant in the fluid materials
and can be neglected.

Thanks to the high thermal conductivity of metal materials extensively used in
electrical rotating machines, the mechanism of conduction is very extended. The
quantity of transferred heat depends on the geometry and properties of the material.
The transferred heat can be according to [18] expressed as

𝑄cond = 𝜆𝑆
𝑇1 − 𝑇2

𝑑
, (3.1)

where 𝜆 is thermal conductivity, 𝑇1 is the temperature on the one side of a solid,
and 𝑇1 is the temperature on the second side of the solid and 𝑑 is thickness of the
solid. The difference in temperatures can be written as

Δ𝑇 = 𝑇1 − 𝑇2. (3.2)

Heat flux through the simple plane wall, which is shown in the figure 3.1 is according
to [19], [20]

𝑞 = 𝑄𝑆, (3.3)

where the 𝑞 is heat flux which is defined as

𝑞 = 𝜆Δ𝑇
𝑑

. (3.4)

The thermal resistance of a single plane wall can be expressed as

𝑅𝑇 = Δ𝑇
𝑄
. (3.5)
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Fig. 3.1: Heat transfer through the plane wall

The situation of heat transfer through the cylindrical wall in the radial direction
is shown in the figure 3.2. Heat flow through the simple cylinder in the radial
direction is in the [21] defined as

𝑄 = 2𝜋𝐿Δ𝑇
1
𝜆

ln 𝑟2
𝑟1

, (3.6)

where 𝐿 is the length of a cylinder, 𝑟1 is the inner radius of the cylinder, and 𝑟2 is
the outer radius of the cylinder. The thermal resistance of the cylinder in the radial
direction can be calculated as

𝑅cond,cyl =
ln
(︁

𝑟2
𝑟1

)︁
2𝜋𝜆𝐿 . (3.7)

The thermal resistance of a solid bar in the radial direction is defined as

𝑅cond,bar = 1
8𝜋𝜆𝐿. (3.8)

Fig. 3.2: Heat transfer in the cylinder and cylindrical bar
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3.2 Convection
Convection is the main mechanism of heat transfer in fluid materials. This mech-
anism helps transfer heat from solid bodies into the ambient fluid. The primary
condition of effective cooling by the fluid is the movement of that fluid. If the fluid
is static, there is only conduction heat transfer in it. However, fluids do not have
good conduction. [18]

According to [18] there are two types of heat transfer by convection in the fluids.
These types are natural convection and forced convection, and they are described
in this section. Heat flow of convection heat transfer is according to [18] defined by
the formula

𝑄conv = ℎ𝑆Δ𝑇, (3.9)

where ℎ is the heat transfer coefficient. This coefficient can be according to [22]
defined as

ℎ = Nu𝜆

𝐿c
, (3.10)

where 𝐿c is the characteristic length and Nu is the Nusselt number.
The Nusselt number tells how much better is heat transfer of moving fluid than

heat transfer of static fluid. That means a higher value of this number describes the
higher heat transfer efficiency. If the Nusselt number is equals to 1 only conduction
heat transfer takes place. That means the fluid is still.

The convection thermal resistance is according to [20] defined as

𝑅conv = 1
ℎ𝑆

. (3.11)

3.2.1 Natural convection

This type of convection is characterized by spontaneous generation of it. This spon-
taneous flow is a consequence of temperature differences through single parts of the
fluid [19]. In electrical machines, natural convection takes place only in very few
cases. Usually, it is considered only during the cooling of the machine’s frame into
the ambient fluid.

Visualization of the natural convection is shown in the figure 3.3. The principle
of natural convection is that cold air flows downwards. There the warm solid heating
up this cold fluid. This fluid cools down the solid and heats itself. Then the warmed
fluid rises. If this solid is placed in some closed container, the vortex is generated
there. [18]
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Fig. 3.3: Natural convection

3.2.2 Forced convection

External forces generate forced convection. Its advantage is the much better cooling
efficiency. This type of convection is usually used in electrical rotating machines. [18].
In electrical machines, it is always used in the inner parts of machines.

The example of generation of the forced flow is shown in the figure 3.4. The fan
blows the cold fluid towards the hot solid. This hot solid is cooled into the fluid and
heats it. The warmer fluid continues in the same direction as the cooled fluid before
heating. This type of convection is more efficient than natural convection.

Fig. 3.4: Forced convection

3.3 Radiation
The radiation transfer of heat is based on electromagnetic radiation. Solids around
temperatures about 500-560 ∘C generate radiation in the infrared part of the electro-
magnetic spectrum, and solids with higher temperatures generate radiation in the
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visibility part of the spectrum. Every solid with a higher temperature than absolute
zero generates the radiation. [19], [21]

Because the radiation heat transfer is based on electromagnetic radiation, it does
not need any medium. That means every solid can emit and absorb heat through
radiation. An overall radiation flow of solid is according to [19] defined as

𝜑 = 𝜑r + 𝜑tr + 𝜑a, (3.12)

where 𝜑r is the reflected part of flux, 𝜑tr is the transmitted part of flux and 𝜑a is
the absorbed part of flux. It is essential to know the quantity of the radiation in
electrical machines so the heat flow can be according [18] derivated as

𝑄rad = 𝜀𝜎𝑆𝑇 4, (3.13)

where 𝜀 ∈ < 0; 1 > is the emissivity of the solid surface, 𝜎 = 5.67·10−8W·m−2·K−4 is
Stefan-Boltzmann constant and 𝑇 is the thermodynamic temperature of the surface.
In the case where one solid is completely enclosed in the other solid the heat flux is
defined as

𝑄rad = 𝜀𝜎𝑆
(︁
𝑇 4

1 − 𝑇 4
2

)︁
, (3.14)

where 𝑇1 is the thermodynamic temperature of the inner solid and 𝑇2 is the ther-
modynamic temperature of the outer solid. [21]

3.4 Machine cooling
According to [28] the heat generated in the electrical machine must be transferred
from it to the air, water, or the earth. This heat transfer can be done in several
ways.

One of the ways capable of using to cool machines is the direct cooling. This
system can be made by circulating the coolant medium over the hot surface. This
medium transmits the thermal energy from the surface into the ambient. In elec-
trical rotating machines, the direct cooling system in the air is the most commonly
used. [28]

Another way of cooling is using an indirect system of cooling. This system uses
two circuits of cooling. The first circuit uses fluid types as air, oil, or water to remove
heat from the heated surface to the outside, where the second circuit is situated.
The second circuit uses water or air, which removes the heat from the first circuit
and transmits it into the ambient. [28]

The permanent magnet synchronous machines with an outer rotor usually use
the same system as machines with inner rotor machines, which is a direct system
of cooling based on the air. The air is commonly used because of its high mobility,
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which is very useful in rotating machines. The rotor is directly cooled into the ambi-
ent. The cooling effect of machines with outer rotor increase thanks to the large air
gap between the bell and mounting flange. The heat from stator is removed through
several paths. One of these paths is through the bearing, shaft, and mounting flange
into the ambient. The second path is from the stator to the air gap between the
mounting flange and stator packet. And another path is from the stator through
the inner air, permanent magnet, rotor bell into the ambient. [28], [23] The thermal
resistance of the second path is defined by equation (3.18). The described paths of
heat removing from stator are shown in the picture 5.3. These ways are between
node 𝑇s and 𝑇amb.

The thermal analysis in electrical rotating machines might be performed in sev-
eral ways. One of these ways is the method of thermal network. The principle of
this method is dividing the machine into basic thermal elements that represent a
combination of heat transfer mechanisms which are described in section 3. [25]

The computing time of the thermal network method is much less than that of
the finite element method. This short computing time makes it suitable for real-
time modeling of machine temperatures. Moreover, reducing the complexity of the
thermal model into several necessary nodes has a positive influence on computing
time and complexity. [26] On the other hand, reducing network nodes brings greater
demands on engineering knowledge.

Many nodes and thermal resistances are defined in the field of the unreduced
thermal network. However, these resistances are more simple and have been defined
early as the equations (3.5),(3.7),(3.8),(3.11).

Nevertheless, reducing the number of thermal network nodes brings more com-
plex formulas for thermal resistances, but less resistance calculation is needed. An
example of several resistances replaced by one is equation

𝑅cond = 1
2𝜋𝜆𝐿s𝑝ir

ln
(︃
𝑑2

𝑑1

)︃
, (3.15)

where 𝐿s is stator length and 𝑝ir is the ratio between stator teeth iron volume and
the total volume of stator iron. This equation is defined by [4] and combines the
resistances of teeth and stator yoke into one. Nevertheless, reducing the number of
thermal network nodes brings more complex formulas for thermal resistances, but
less partial calculations of them are needed.

3.5 Modelling of speed-dependent resistances
A very complex part of the analysis is analyzing the thermal resistance of the cooling
path from the winding system and stator lamination through the air gap between
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the rotor bell and the mounting flange into the ambient air. This thermal resistance
can according to [23] decrease based on the machine speed. The decreasing might
be approximating either linear 3.16 or quadratic 3.18.

If the linear decreasing of the speed dependency thermal resistance is considered,
the thermal resistance is defined as

𝑅lin,𝑖(𝑛) = 𝑅𝑖,0

(︃
1 − |𝑛|

𝑛max
(1 − 𝑘𝑖,𝑠)

)︃
+ Δ𝑅𝑖,0𝛿(𝑛), (3.16)

where 𝑛 is the speed of rotor bell, 𝑅𝑖,0 = 𝑅𝑖(0) is the additional thermal resistance
at zero speed, 𝑛max is the maximum speed of the rotor bell, 𝑘i,s is the parameter to
be optimized and its value is equal to 0 ÷ 1. The 𝛿(𝑛) is the delta distribution Δ𝑅𝑖,0

is value of thermal resistance by which 𝑅𝑖,0 is increased at zero speed of machine.
The delta distribution is according to [24] defined as

𝛿(𝑛) =

⎧⎪⎨⎪⎩1, if n = 0
0, if n ̸= 0

. (3.17)

The quadratic waveform of the thermal resistance dependent on the equation

𝑅quad,𝑖(𝑛) = 𝑅𝑖,0

⎛⎝𝑘𝑖,𝑠 +
(︃

|𝑛|
𝑛max

− 1
)︃2

(1 − 𝑘𝑖,𝑠)
⎞⎠+ Δ𝑅𝑖,0𝛿(𝑛). (3.18)

Both, linear and quadratic waveforms are observed in the part a) in the figure 3.5.
The part b) observed the detail of red waveform showed in the same picture.
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Fig. 3.5: Linear and quadratic conduction heat resistances
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From the picture, it can be seen that the parameter 𝑘i,s affects the rate of change
of the thermal resistance waveform. A lower parameter value increases the rate of
change, and a higher value decreases the rate of change.

Another way of speed-dependent thermal resistance analysis is through the (3.11)
where the heat transfer coefficient calculation is considered directly. There are sev-
eral ways how to model speed dependence of heat transfer coefficient. One of these
ways is according to [27] defined as a

ℎ = 𝑐1 (1 + 𝑐2𝜈
𝑐3) , (3.19)

where 𝑐1, 𝑐2 and 𝑐3 are coefficients that are described in the [27]and 𝜈 is inner air
speed. In the field of electrical machines are rotates per minute usually considered
so the 𝜈 can be calculated as

𝜈 = 2𝜋𝑛
60 𝑟, (3.20)

𝑟 is the inner radius of rotor. This formula defines the speed of the rotor, but in the
context of simplification, is the speed of inner air considered the same.

Influence of individual coefficients to resulting waveform is shown in the pic-
ture 3.6. This graph shows that 𝑐1 sets the initial value of the heat transfer coeffi-
cient waveform. The 𝑐2 defines the steepness of the waveform, and the 𝑐3 defines if
the heat transfer coefficient function is convex, linear, or concave.
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Fig. 3.6: Heat transfer coefficient different 𝑐1, 𝑐2 and 𝑐2

3.5.1 Heat transfer coefficient derivation

This chapter describe another ways of heat transfer coefficient approximation. These
approximations are based on the resistances (3.16) and (3.18).
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First, the derivation of heat transfer coefficient approximation based on the (3.16)
is described. This heat transfer coefficient is called linear in this thesis because it
is based on linear dependency of convection thermal resistance. So the derivation is
based on the substitution of the 𝑅lin,𝑖(𝑛) by the 1

ℎ𝑙𝑆
and the result of this substitution

is
1
ℎl𝑆

= 𝑅𝑖,0

(︃
1 − |𝑛|

𝑛max
(1 − 𝑘𝑖,𝑠)

)︃
. (3.21)

Then the formula can be modified as

ℎl = 1
𝑆𝑅𝑖,0

(︁
1 |𝑛|

𝑛max
(1 − 𝑘𝑖,𝑠

)︁ , (3.22)

where 𝑆𝑅𝑖,0 can be substituted by 1
ℎ0

. The final result of the linear speed-dependency
for the ℎl is

ℎl = ℎ0
𝑛max

𝑛max − 𝑛(1 − 𝑘𝑖,𝑠)
. (3.23)

where ℎ0 is initial value of heat transfer coefficient. Moreover it is necessary to
consider static heat transfer coefficient. This coefficient derivation is based on the
considering zero speed of machine in the (3.16).

ℎstat = (ℎ0·ℎ𝛿)
(ℎ0 + ℎ𝛿)

𝛿(𝑛), (3.24)

where ℎ𝛿 is value of heat transfer coefficient if the rotor does not move. After
combining equation (3.22) with equation (3.24) the final formula defines linear ap-
proximation of heat transfer coefficient

ℎlin = ℎ0
𝑛max

𝑛max − |𝑛|(1 − 𝑘𝑖,𝑠)
+ (ℎ0·ℎ𝛿)

(ℎ0 + ℎ𝛿)
𝛿(𝑛). (3.25)

Second, the derivation of the heat transfer coefficient based on the equation (3.18) is
described lower. This heat transfer coefficient is based on the quadratic dependency
of convection thermal resistance, so it is called the quadratic heat transfer coefficient
in this thesis. There the 𝑅quad,𝑖(𝑛) is again substituted by the 1

ℎq𝑆
. Thanks to the

substitution the following equation is defined as

1
ℎq𝑆

= 1
𝑆𝑅𝑖,0

(︁
𝑘𝑖,𝑠 + |𝑛|

𝑛max
− 1

)︁2
(1 − 𝑘𝑖,𝑠)

. (3.26)

This equation is combined with eqiatuon (3.24) and the final formula of quadratic
heat transfer coefficient approximation is defined as

ℎqaud = ℎ0(︁
𝑛max +

(︁
|𝑛|

𝑛max

)︁
− 1

)︁2
(1 − 𝑘𝑖,𝑠)

+ (ℎ0·ℎ𝛿)
(ℎ0 + ℎ𝛿)

𝛿(𝑛). (3.27)
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Both, linear and quadratic approximation of ℎ are shown in the picture (3.7) a).
This picture shows that the lower value of the parameter 𝑘𝑖,𝑠 increases rate of the
value of the heat transfer coefficient change in this case. There is also shown that
the lower value of the 𝑘𝑖,𝑠 decrease the rate of heat transfer coefficient change and
also makes deviation from the linear and quadratic waveform of it.

The detail of the red waveform is observed in the part b) of the same picture.
There are shown waveforms for the 𝑘𝑖,𝑠 = 0.9 in this part. It shown if the 𝑘𝑖,𝑠 < 0.9
the approximation of the heat transfer coefficient based on the equation (3.16) looks
like it increase exponential. In the case of heat transfer coefficient approximation
based on the equation (3.18) the waveform also does not look like a quadratic curve.
This parameter causes these deviations in the waveforms.
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Fig. 3.7: Linear and quadratic heat transfer coefficients approximation

In the picture 3.8 the thermal resistances are calculated through the formula (3.11).
In the part a) of this picture the ℎ with different coefficients and constant 𝑆 is con-
sidered. These parameters are used in the formula (3.19). On the other hand in the
part b) same formula but with constant coefficients and different 𝑆 is used. The
coefficients considered in this case are 𝑐1 = 5, 𝑐2 = 5·10−2 and 𝑐3 = 0.8.
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Fig. 3.8: Thermal resistances different 𝑐1, 𝑐2, 𝑐3 and 𝑆

In the picture 3.9 the waveform of heat transfer coefficient based on the linear
and quadratic heat transfer coefficients are shown.

In the part a) of the picture 3.9 the considered values of the used variables are
shown in the table 3.1. In the part b) of the same picture the detail of the red
waveform from the case a) is shown.
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Fig. 3.9: Linear and quadratic thermal resistances
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Tab. 3.1: Table of variables used in equations (3.25) and (3.27)

Parameter Value Unity
Initial heat transfer coefficient - ℎ0 5

[W/m2K]
Static heat transfer coefficient - ℎ𝛿 20
Parameter to be optimized - 𝑘𝑖,𝑠 0.9 [-]
Heat transfer surface 1 - 𝑆1 1

[cm2]Heat transfer surface 2 - 𝑆2 5
Heat transfer surface 3 - 𝑆3 9
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4 Optimizing methods
Nowadays, there is continuing demand for automation and mechanization in indus-
try. That means more electrical machines are needed. More electrical machines
need much electric power, so higher demand is placed on these machines’ efficiency,
price, and control. The result of these requirements is the need to better estimate
temperatures and optimize single machines for individual applications. [29],[30]

There are described several ways of optimizing the parameters of the thermal
network and estimating the machine temperatures in this chapter. The resulting
temperatures calculated based on the optimized values are compared with mea-
sured temperatures in the chapter 7.1. It is possible to compare which optimizing
method is better for optimizing the thermal network parameters thanks to the mea-
sured data. The better means which method is, for example, more accurate, need
lower computing time and lower computing power.

4.1 Genetic algorithm
The genetic algorithm is a method for solving both constrained and unconstrained
problems, and it is part of the group named evolutionary algorithms. This method
is based on the ideas of natural selection and genetics, which is the process that
drives biological evolution. The genetic algorithm is used to compute the high-
quality and optimal solutions. [31], [32] The disadvantage of this method is the high
computing time and the need for high computing power. The LPTN used for the
genetic algorithm is shown in the picture 5.3.

The algorithm simulates the natural selection process, so the individuals from
the direct generation are chosen to be parents at each step. These parents are used
to produce the children for the next generation. These children represent points
in the search area. Children with the better search parameters become the new
parents, and the algorithm repeats. [31], [32]

There are three rules of the new population created by this method. [32] These
rules are described lower in this section.

4.1.1 Selection rules

There are selected random parents to contribute to the selection of the next gen-
eration. The selection of the parents can depend on the individual score. [32] The
schematic of the selection principle is shown in the picture 4.1. This picture is
inspired by [32] and [31].
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Fig. 4.1: Selection rules

4.1.2 Crossover rules

These rules create a new generation by randomly combining two parents. After the
combination, a completely new individual is created. [32] There is observed the block
diagram of the crossover rules in the picture 4.2. This picture is inspired by [32]
and [31].

Fig. 4.2: Crossover rules

4.1.3 Mutation rules

The mutation creates the new child by applying the random changes to parent's
genes [32]. The principle of mutation is shown in the picture 4.3. This picture is
inspired by [32] and [31].

Fig. 4.3: Mutation rules

The block scheme of the genetic algorithm inspired by [32] is shown in the pic-
ture 4.4.
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Fig. 4.4: Block scheme of generic algorithm

4.2 Decision tree
The decision tree is a supervised learning method. This method is one of the most
effective methods for data mining and is used for classification and regression. The
decision tree’s goal is to create a model that predicts the results by learning simple
decision rules. These decision rules are learned from the data features. [35]

The features can be created either from the measured data or from the data
calculated by the LPTN. It is possible to use the decision tree for the fast pretending
of machine behavior. Based on this fast pretending it is possible to find trends of
the machine optimizing.

This method is easy to use, free of ambiguity, and does not need much computing
power and time. The decision tree is very useful for quick identification of the result
based on the input data and requires just a little data preparation, unlike the other
methods. The decision tree is also very good in solving problems that are similar to
the models used for learning. [35]

On the other hand, too complex trees might be created that do not generalize
the data well. This phenomenon is called overfitting, and it is necessary to avoid it.
It can be done in several ways, like setting the minimum number of samples required
at a leaf node or setting the maximum depth of the tree. [35]

The decision trees are according to [36] common usage for:
• Variable selection
• Assessing the relative importance of variables
• Handling of missing values
• Prediction
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• Data manipulation
The example of the created decision tree is shown as a block diagram in the pic-
ture 4.5. This diagram shows the single binary target variable 𝑌 and two continuous
variables 𝑋1 and 𝑋2. Every combination of input and variables return defined out-
put 𝑅.

Fig. 4.5: Block diagram of decision tree

The decision trees are composed of the nodes and branches, as it is observed in
the picture 4.5.

4.2.1 Nodes

There are three types of nodes in the decision tree construction. The first type of
node represents a choice that divides all records into two or more mutually exclusive
subsets. This node is called the decision node or also root node.

The second node type is called an internal node or a chance node. This node
represents one of the possible choices available at the point in the tree structure.
The top of the node is connected to the parent node and the bottom of it is con-
nected to its child or leaf nodes.

The third type represents the final result of the decision tree or event combina-
tion. These nodes are called either leaf nodes or end nodes.

4.2.2 Branches

The decision tree structure is formed by using a hierarchy of branches. The branches
represent random results or occurrences resulting from root or internal nodes. The
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paths between the root node through internal nodes to a leaf node represent a
decision rule. These paths can also be represented as the "if" rule.

For building the decision tree three most important steps are necessary.

4.2.3 Splitting

Splitting is applied to parent nodes. These nodes are divided into purer child nodes.
The splitting rule is used until only homogeneous nodes are reached. Both discrete
input and continuous input variables can be used in the splitting of nodes. [36]

4.2.4 Stopping

The stopping criteria are for the decision tree necessary. It is because these criteria
keep the tree from being too complex. If the decision tree becomes too complex, it
loses its ability to predict future cases accurately. That means the tree would have
really poor generalization. [36], [37]

4.2.5 Pruning

Because the stopping rules do not have to work very well in some situations, pruning
is alternative to stopping the decision tree. This alternative of decision tree creation
builds the large tree first, and then this tree is optimized to the optimal size by
removing nodes that provide less additional information. [36]
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5 Analysed machine
The nominal values of the analysed machine are shown in the table 5.1. The
datasheed of the machine is shown in appendix A

Motor under test Unit
Rated DC bus voltage 24 [V]
Rated DC bus current 5.1 [A]
Number of phases 3 [-]
Number of pole pairs 2 [-]
Phase connection Δ [-]
Rated speed 7100 [rpm]
Rated torque 150 [mNm]
Resistance at 20∘C 0.427 [Ω]

Tab. 5.1: Table of machine nominal values

There is shown the area where the temperatures of the machine are measured in
the picture 5.1. The machine is monitoring in this area. This area is called SOAR
(Safety operating area). The right upper corner of this area is the nominal machine
point. With the increasing machine load moment, the stator current increases. So
the linear decrease of the upper line is due to voltage drop. The stator resistance
defines the gradient of this line.

Fig. 5.1: Testing area

The vertical dashed line defines a lower speed limit measurable by hall sensors.
The minimal torque is defines by the horizontal dashed line due to the losses of all
component systems like air friction, bearing friction, etc.

There were two methods used for the temperatures measuring. First, the thermal
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sensors were used for the measurement, that is, the direct measurement method.
There are used seven sensors in the machine. These were placed at the surfaces of
single-phase coils (𝑇uv, 𝑇vw and 𝑇wu), at the top of one pole of stator yoke (𝑇air),
on the outer static ring of the inner bearing (𝑇bi), on the outer ring of the outer
bearing(𝑇bo) and on the mounting flange of machine (𝑇f).

Second, the thermal camera have been used. Using the thermal camera is an
indirect method of thermal measurement. It is necessary to use the indirect thermal
measurement method if the measured part is moving. A typical example of this
part is the rotor. There is used the thermal camera measures the temperature on
its outer side (𝑇r).

There are shown the measured temperatures in the part a) of the picture 5.2.
In the part b) of this picture, the measured duty cycle is shown. This duty cycle is
defined to cover the operating conditions that the machine can reach.
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Fig. 5.2: Measured temperatures and duty cycle

The main goal of the thesis is to optimize convection thermal resistances. That
means the values of the conduction resistances were also taken from the [23] and are
shown in the table 5.2.

48



Tab. 5.2: Table of started conductivity resistances

Conductive
resistance at 20∘C

Value Unit

𝑅sf,0 7.503

[KW−1]
𝑅sair,0 2.409
𝑅cus,0 2.750
𝑅sbi,0 3.462
𝑅bio,0 1.558

5.1 Thermal network
There is shown the thermal network used for the temperature calculating in the
picture 5.3. This LPTN is taken from the [23]. There are optimized parameter of
this thermal network in this thesis.

Fig. 5.3: Thermal network
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6 Thermal analysis
This chapter is focused on the application of the described optimizing methods.
First the genetic algorithm is applied on the thermal network and then the decision
tree is used.

6.1 Application of the genetic algorithm
There are the results of the heat transfer coefficient calculated in nodes of the thermal
network where the convective heat transfer is considered in the table 6.1. These
results are calculated through the genetic optimization based on the formulas (3.16)
and (3.18).

Tab. 6.1: Table of optimized linear and quadratic heat transfer coefficients

Node Parameter Linear value Quadratic value Unit

𝑇f

ℎ0,f 14.056 13.336 [Wm−2K−1]
ℎ𝛿,f 8.143 5.847

[-]
𝑘f,𝑠 0.547 0.628

𝑇r

ℎ0,r 18.000 18.000 [Wm−2K−1]
ℎ𝛿,r 4.965 5.524

[-]
𝑘r,𝑠 0.127 0.379

𝑇s

ℎ0,s 8.000 8.000 [Wm−2K−1]
ℎ𝛿,s 8.042 5.341

[-]
𝑘s,𝑠 0.484 0.724

𝑇cua

ℎ0,cua 9.018 7.002 [Wm−2K−1]
ℎ𝛿,cua 5.112 5.055

[-]
𝑘cua,𝑠 0.101 0.207

𝑇air

ℎ0,air 3.945 3.889 [Wm−2K−1]
ℎ𝛿,air 7.199 5.276

[-]
𝑘air,𝑠 0.515 0.642

There are shown measured and calculated temperatures for the linear heat trans-
fer coefficient approximation in the part a) of the figure 6.1. This figure observes
how different the measured and calculated temperatures are. The calculated tem-
peratures have almost the identical waveforms as the measured temperatures. The
designed thermal model is very similar to the real measured machine.

In the part b) of the same picture, the absolute difference between the calculated
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and measured temperatures is shown. The value of a total residuum for all data
is equal to 1.037∘C. The residuum defines according to [33] the deviation of the
measured and calculated values, so-called the mean squared error. The residuum
can be according to [34] calculated as

𝜀 = 1
𝑛

𝑛∑︁
𝑖=1

(︁
𝑇 − 𝑇m

)︁2
, (6.1)

where the 𝑛 is a number of measured points, the 𝑇 is the calculated temperature,
and the 𝑇m is the measured temperature.
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Fig. 6.1: Graphs based on linear heat transfer coeff. calculated by the GA

If the optimization of the quadratic heat transfer coefficient approximation is
considered, the final temperature waveforms are shown in the part a) of the pic-
ture 6.2. The absolute differences between measured and calculated temperatures
are shown in part b) of the same picture. The value of the total residuum is equal
to 0.957∘C.

Optimizing both the linear and quadratic heat transfer approximation gives us
accurate results. The optimization of the linear approximation takes 47.86 hours,
and the quadratic approximation takes 49.46 hours with the same set of initial pop-
ulation (200) and maximal numbers of the iterations (2000).
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Fig. 6.2: Graphs based on quadratic heat transfer coeff. calculated by the GA

The results of genetic optimization calculated using the formula (3.19) are shown
in the table 6.2. These results are calculated in the same nodes as in table 6.1.

Tab. 6.2: Table of optimized heat transfer coefficients calculated by the (3.19)

Node Parameter Value Unit

𝑇f

𝑐1,f 15.000 [Wm−2K−1]
𝑐2,f 0.022

[-]
𝑐3,f 0.702

𝑇r

𝑐1,r 12.583 [Wm−2K−1]
𝑐2,r 0.050

[-]
𝑐3,r 0.736

𝑇s

𝑐1,s 7.183 [Wm−2K−1]
𝑐2,s 0.020

[-]
𝑐3,s 0.700

𝑇cua

𝑐1,cua 4.622 [Wm−2K−1]
𝑐2,cua 0.153

[-]
𝑐3,cua 0.775

𝑇air

𝑐1,air 22.000 [Wm−2K−1]
𝑐2,air 0.646

[-]
𝑐3,air 0.987

52



40

60

80

T 
[

C
]

a)
measured Tr
measured Tair

measured TCu
measured Tbi

measured Tbo
measured Tf

modelled Tr
modelled Tair

modelled TCu
modelled Tbi

modelled Tbo
modelled Tf

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
time [h]

5

0

5

10

 [
C

]

b)

T , r
T , air

T , Cu
T , bi

T , bo
T , f

Fig. 6.3: Graphs calculated by genetic algorithm approximation using (3.19)

There are observed the waveforms of the calculated and measured temperatures
in the part a) of the picture 6.3. The absolute differences between the calculated
and measured temperatures are shown in part b) of the same picture.

The total calculated residuum of the temperatures is equal to 2.592∘C. The total
computation time was 46.28 hours, with the initial population equal to 200 and a
maximal number of the iterations equal to 2000. The results calculated by all three
approximations of conduction heat transfer are discussed more precisely in the 7.1.

53



6.2 Application of decision tree
The features are created from input data used for decision tree training. There are
several ways the features can be created in this method, but the best way is to use the
data that makes the physical sense in the field of the electrical machines. [38], [39]
The physical parameters used for the feature creating are shown in the table 6.3

Tab. 6.3: Table of features used for the decision tree creating

Feautre Used data
𝑓1 𝑛

𝑓2 𝑛2

𝑓3 𝑛3

𝑓4 𝐼

𝑓5 𝐼2

𝑓6 𝐼𝑛

These features have been chosen because of the connection with the losses gen-
erated in the machine and the machine’s cooling effects.

The speed of machine 𝑛 influences bearing losses and capability of rotor cooling,
and the current 𝐼ph is related to the stator current losses. Moreover, these values are
easy to measure, which predisposes them for the real-time estimation of the machine
temperatures without the need for high calculating power.

6.2.1 Data preparing

In the case of measured data using it is convenient to use some filter for the features
created. These filters are used to protect the decision tree before the poor learning
due to interferences. In this thesis, two types of filters have been chosen:

• Moving average - MA
• Exponential moving average - EMA.

The moving average is, according to [40] the most common filter that can be used
in DSP. It is because the moving average is easy to understand and use. This type
of filter is good for reducing interferences of measured data. The formula for the
moving average calculation is according to [40] defined as

𝑥n = 𝑦n + 𝑦n+1 + 𝑦n+2 + . . .+ 𝑦n+w

𝑤
, (6.2)

where the 𝑥n is the averaged value of nth sample, the 𝑦n is the raw value of nth data
sample, and 𝑤 is the number of values used to average so-called the window.
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It is better to move the window into the past for the practical use of this data
filtering method and use in DSP. That means the moving average works with the
earlier measured data. This approach is used because the sensors measure the zeros
when the machine is switched off. This shows the equation (6.3).

𝑥n = 𝑦n-w + 𝑦n-w+1 + 𝑦n-w+2 + . . .+ 𝑦n

𝑤
. (6.3)

The way how the moving average described by (6.3) works is shown in the picture 6.4.
This method is suitable for the practical use as it is described upper.
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Fig. 6.4: Example of moving average filter using

Little troubles come when it is used for learning the decision tree. Multiple cycles
connected in sequence bring biased values and might negatively influence learning.
So there is a modification of the moving average calculation for the learning. That
modification does not consider zeros in the first steps of the window, but the same
value as the first value of the waveform is. Then the moving average looks like 6.5.
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Fig. 6.5: Example of moving average filter using

The Exponential moving average is the averaging that gives more significance to
points in the near past and less significant to points in the more distant past. The
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difference between the exponential moving average and the moving average is the
movign average gives the same weight for all considered points. [41], [42] According
to [43] the exponential moving average can be calculated as

𝑥n = 𝑦n𝛼(1 − 𝛼)𝑥n-1, (6.4)

where the 𝛼 = 1
𝑤

and the 𝑥n−1 is previous calculated value.
Data filtered by the exponential moving average are shown in the picture 6.6.
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Fig. 6.6: Example of exponential moving average filter using

First, the raw data for the features creating have been used. The picture 6.7
shows measured temperatures and temperatures predicted at the same point of the
duty cycle by the decision tree. These graphs show how the decision tree is good
in its predictions. If all points are placed on the blue diagonal line, the decision is
very accurate. This picture shows that the learned decision tree has poor accuracy
in the prediction.
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Fig. 6.7: Quality of the decision tree learning for raw data

In the light of the preceding information, not-good results of the temperature
waveforms are observed. The results of it are shown in the figure 6.8. The tem-
perature waveforms are observed in the part a) of this picture. The part b) of this
picture shows the differences between measured and predicted temperatures, what
is the absolute difference of the calculation.
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The values of the mean absolute errors of features used for the decision tree
learning that is created by raw data in single nodes are shown in the table 7.2

In the picture 6.9 the results of the decision tree where is the moving average
used for the creation features are observed. The prediction points are fit in the
diagonal line better than in the case where the raw data are used. That means the
decision tree learning is much better, and its predictions are more accurate in this
case.
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Fig. 6.9: Quality of the decision tree learning for MA filter

Thanks the better learning, the better results of temperature waveform predic-
tions are expected. As it is shown in the part a) of the picture 6.10 the results from
the decision tree are better. In the same picture, the part b) shown the absolute
errors of temperatures. The values of the mean absolute difference when the moving
average filter is used for the feature creation are in the table 7.2.
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Fig. 6.10: Graphs calculated by decision tree using MA filtered data

The results of decision tree learning observed in the picture 6.11 show how good
the tree is. This decision tree used the features created by the exponential moving
average . The prediction points are placed in the diagonal line much better than in
both upper cases. That means a very accurate result of the temperature prediction
can be expected.
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Fig. 6.11: Quality of the decision tree learning for EMA filter

59



There are shown the predicted and measured temperatures in the part a) of the
picture 6.12. At first glance, it is evident that these predicted temperatures are
very similar to the measured. The part b) of this picture observes the values of
the absolute difference. The maximal absolute error is moving around 5∘C, and the
values of the mean absolute errors in single nodes are in the table 7.2. Both, the part
a) and part b) confirms the assumptions based on the picture 6.11 and described
upper.
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Fig. 6.12: Graphs calculated by decision tree using EMA filter

The results mined by all three iterations of the decision tree are discussed more
precisely in the chapter 7.1.
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7 Comparison of calculated results and mea-
sured data

This chapter is focused on the comparing measured data with the results mined
from the calculations. Moreover, the usability for real-time calculation in terms of
the computing time, necessary computing power, and accuracy is discussed in this
chapter.

7.1 Data evaluation
The data calculated by the genetic algorithm are summarized in the table 7.1. This
table shows the computation time and the accuracy of the calculated data. These
parameters are crucial to evaluating the methods.

Tab. 7.1: Table of mean squared errors in single nodes

Node error Linear Quadratic According to (3.19) Unit
𝜀Cu 1.201 0.955 0.863

C∘

𝜀r 0.931 0.870 1.038
𝜀air 1.077 0.973 4.653
𝜀f 0.931 0.870 1.503
𝜀bi 1.021 0.948 1.503
𝜀bo 0.936 0.869 1.110
computing time 47.86 49.46 46.29 h

The table 7.1 shows that the approximation by (3.19) needs the lowest computing
time, but computing accuracy is the worst. On the other hand, the best computing
accuracy is reached by the quadratic approximation of conduction heat transfer.
However, this approximation needs the highest computation time to calculate these
results. In light of these parameters, the best way for the LPTN optimization is to
use the linear approximation of conduction heat transfer. It is thanks the excellent
accuracy of the calculations combined with the relatively short computing time.

If the error of calculations is lower than 5∘C, it is considered a reasonable ac-
curacy. An error lower than 2.5∘C is a good accuracy, and the error around 1∘C is
the perfect accuracy of the calculations. These boundaries of accuracy are based on
the accuracy classes of thermal used sensors. Thermal sensors with higher accuracy
classes are more expensive, so the balance between cost and accuracy class is neces-
sary to find.
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So it is necessary to say that all three ways of conducting heat transfer approxi-
mation give very good results in terms of the computing time and also calculating
accuracy. That means the way of approximation depends on the requirements for
the temperature estimation accuracy of the specific machine application. If either
the perfect LPTN or the cheaper calculation of it is needed.

There are the mean absolute error results mined by the decision tree in the ta-
ble 7.2. The errors are calculated for the same nodes as the temperatures in the
case of the genetic algorithm.

The table 7.2 shows that the worst accuracy of the calculated temperatures was
reached when the raw data were given for the decision tree learning. As discussed,
it is because the raw measured data are rippled, which might negatively influence
the ability of the tree to learn. Better accuracy of the calculation is reached if the
moving average filter for the creating features is used. It is because the data used
for the learning are smoothed, and the learned decision tree can better predict the
temperatures. This table also shows that the best predictions are reached if the
exponential moving average is used for the feature creation. First of all, it is be-
cause the data are smoothed, but it is also because the exponential moving average
is better to fit the reality. The better reality fit of this averaging consists in the
different weights of the data.

Tab. 7.2: Table of mean squared errors in single nodes

Node error No filter MA EMA Unit
𝜀Cu 11.255 0.586 0.020

C∘

𝜀r 3.087 0.102 0.007
𝜀air 4.793 0.171 0.042
𝜀f 5.946 0.501 0.002
𝜀bi 3.101 0.656 0.008
𝜀bo 2.853 0.376 0.0004

The computation time for all ways of learning is in the order of minutes. How-
ever, the main disadvantage of the decision trees over the genetic algorithms is the
inability of data extrapolating. So the decision trees are much faster than the ge-
netic algorithms. For this reasons, the trees are perfect for predictions of very similar
situations to which have been learned.

So the decision tree can predict very accurate temperatures but needs many data
to learn.Thanks the low computing power requirements, the realization of the real-
time calculation is much easier.

On the other hand, the genetic algorithm needs more computing time and com-
puting power. However, the LPTN optimized by the genetic algorithm has a really
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good ability to precisely predict the temperatures of the machine even if an unknown
state occurs. So the main power of the LPTN optimized by the genetic algorithm is
precisely calculations of temperatures for almost any possible state of the machine.
Final LPTN optimized for a given machine does not need much computing time and
power, but the decision trees still need less. So the realization of real-time temper-
ature computing is more complex.

The main advantage of real-time temperature calculation is the absence of ther-
mal sensors placed in machines. This advantage is practical, particularly in the
low-cost machine segment. It is because thermal sensors with high tolerance class
cost about 10 e and for measurement of this machine temperatures are seven sen-
sors needed. The tolerances of this tolerance class are around ±0.35% at 100∘C,
depending on the maker of the sensor. Sensors with a low tolerance class cost about
1-2 e. The tolerance of it at 100∘C is about ±1.6% again depending on the maker
of the sensor. Moreover, there is necessary to modify the machine for the sensors
placing and an evaluation of electronics is needed.

The real-time modeling needs only input data, particularly the machine's input
current and speed. The input current is usually known, especially if the frequency
converter for controlling is used. The speed of the machine is also measured or cal-
culated as output because of system requirements. Then the DPS to calculate the
actual temperature of the machine is needed.
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Conclusion
At first, thesis deals with the classification of synchronous machines of design was
described. In this part of the thesis, the overwie of inner rotor machines and outer
rotor machines is made. Moreover, in chapter 1.2 is explained principle of the syn-
chronous machine function.

Then the analysis of losses generated in permanent magnet synchronous ma-
chines and dividing of these losses are explained. The right analysing of the losses is
a very important part of thermal dimensioning. Also, the losses generated by fluid
flowing over the moving rotor and its calculation are described in this thesis.

In the middle of the thesis the mechanisms of heat transfer were explained. The
heat transfer considers only three defined mechanisms which are conduction, con-
vection, and radiation. The cooling of the machines is due to these mechanisms
only. There were also described principles of direct and indirect machines cooling
systems. In the same chapter were also described ways of convection heat trans-
fer and convection thermal resistances approximations. These approximations were
used in the LPTN. This LPTN was also used for the temperature estimation.

Moreover, there were described and used methods for the thermal network pa-
rameters optimizing. The parameters of LPTN were optimized by the genetic algo-
rithm to better approximation of the real machine. Another described method of
temperature estimation is the decision tree. This method was evaluated as method
with the lower computing time and lower necessary computing power so it is suitable
for the real-time machine temperature estimation.

There was shown the measured duty cycle with the measured temperatures in
the picture 5.2 at the end of the thesis. There were also tables 7.1 and 7.2 with the
summarizing of the mean squared errors. Then the evaluation in terms of computing
time and computing power of those methods were done.

Temperatures calculated by both methods were graphically plotted. These plot-
tings of temperatures estimated by the genetic algorithm were shown in the pic-
tures 6.1,6.2 and 6.3. The temperatures estimated by the decision tree were plotted
in the pictures 6.8,6.10 and 6.12. In those picture were also plotted the absolute
error between the measured and calculated temperatures.

64



Bibliography
[1] PYRHÖNEN, Juha, Valeria HRABOVCOVÁ a Scott SEMKEN. Electrical ma-

chine drives control: an introduction. Chichester, West Sussex, United King-
dom: John Wiley & Sons, [2016]. ISBN 9781119260455.

[2] SEN, P. C. Principles of electric machines and power electronics. Third edition.
Hoboken: John Wiley and Sons, [2014]. ISBN 978-1-118-07887-7.

[3] LEVKIN, Dmitry. Permanent magnet synchronous motor. Engineering-
solutions [online]. 2021 [cit. 2022-01-05]. Available from: https://en.
engineering-solutions.ru/motorcontrol/pmsm/

[4] D. Wöckinger et al., "Measurement-Based Optimization of Thermal Networks
for Temperature Monitoring of Outer Rotor PM Machines," 2020 IEEE En-
ergy Conversion Congress and Exposition (ECCE), 2020, pp. 4261-4268, doi:
10.1109/ECCE44975.2020.9236388.

[5] Taha, Harwan & Alnaab, Ismaeil. (2019). Designs of PMSMs with Inner and
Outer Rotors for Electric Bicycle Applications. Kurdistan Journal of Applied
Research. 4. 20-25. 10.24017/science.2019.1.4.

[6] D. Yu, X. Huang, J. Ma and Y. Fang, "A comparative study on two outer
rotor PMSMs for in-wheel direct drive under short-circuit faults," 2017 20th
International Conference on Electrical Machines and Systems (ICEMS), 2017,
pp. 1-5, doi: 10.1109/ICEMS.2017.8055919.

[7] PYRHÖNEN, Juha, Tapani JOKINEN a Valéria HRABOVCOVÁ. Design
of Rotating Electrical Machines. 2nd Edition. New Delhi, India: Library of
Congress Cataloging-in-Publication Data, 2013. ISBN ISBN: 978-1-118-58157-
5.

[8] BLAHOVEC, Antonín. Základy elektrotechniky v příkladech a úlohách. Praha:
Státní nakladatelství technické literatury, 1989. ISBN 80-03-00108-0.

[9] TAGHIZADEH KAKHKI, Mehdi. Modeling of losses in a permanent magnet
machine fed by a PWM supply [online]. Québec, Canada, 2016 [cit. 2022-01-
05]. Avaliable from: https://corpus.ulaval.ca/jspui/bitstream/20.500.
11794/27358/1/33161.pdf. Doctoral Thesis. UNIVERSITÉ LAVAL.

[10] H. Domeki et al., "Investigation of benchmark model for estimating iron loss
in rotating machine," in IEEE Transactions on Magnetics, vol. 40, no. 2, pp.
794-797, March 2004, doi: 10.1109/TMAG.2004.825442

65

https://en.engineering-solutions.ru/motorcontrol/pmsm/
https://en.engineering-solutions.ru/motorcontrol/pmsm/
https://corpus.ulaval.ca/jspui/bitstream/20.500.11794/27358/1/33161.pdf
https://corpus.ulaval.ca/jspui/bitstream/20.500.11794/27358/1/33161.pdf


[11] Eddy Current Loss Formula. Electrical Volt [online]. 2021 [cit. 2022-
01-05]. Avaliable from: https://www.electricalvolt.com/2019/08/
eddy-current-loss-formula/

[12] P. A. Hargreaves, B. C. Mecrow and R. Hall, "Calculation of iron loss in
electrical generators using finite element analysis," 2011 IEEE International
Electric Machines & Drives Conference (IEMDC), 2011, pp. 1368-1373, doi:
10.1109/IEMDC.2011.5994805.

[13] K. Yamazaki, "Efficiency analysis of induction motors for ammonia com-
pressors considering stray load losses caused by stator and rotor slot rip-
ple," Conference Record of the 2001 IEEE Industry Applications Conference.
36th IAS Annual Meeting (Cat. No.01CH37248), 2001, pp. 762-769 vol.2, doi:
10.1109/IAS.2001.955531.

[14] W. Guan et al., "Numerical Modeling of Excess Loss in SiFe Sheet Considering
Pinning Effect," in IEEE Transactions on Applied Superconductivity, vol. 26,
no. 7, pp. 1-4, Oct. 2016, Art no. 0608804, doi: 10.1109/TASC.2016.2597167.

[15] SKF [online]. 2015 [cit. 2022-01-05]. Avaliable from: https://www.skf.com/
group/support/splash

[16] Gieras, Jacek & Wang, Rong-Jie & Kamper, Maarten. (2008). Axial Flux Per-
manent Magnet Brushless Machines. 10.1007/978-1-4020-8227-6.

[17] SAARI, Juha. Thermal analysis of high-speed induction machines [online].
Acta Polytechnica Scandinavice, 1998 [cit. 2022-01-05]. Avaliable from: http:
//urn.fi/urn:nbn:fi:tkk-001237. Dizertační práce. Helsinki University of
technology, Laboratory of Electromechanies.

[18] CENGEL, Yunus A. a Afshin J. GHAJAR. HEAT AND MASS TRANSFER:
FUNDAMENTALS APPLICATIONS. 5th edition. New York: McGraw-Hill
Education, 2015. ISBN 978-0-07-339818-1.

[19] LÁZNIČKOVÁ, Ilona. Technická mechanika: Mechanika poddajných těles.
Fakulta elektrotechniky a komunitkačních technologií: VUT v Brně, 2014.

[20] TOMAN, Marek. VÁZANÉ MODELOVÁNÍ ASYNCHRONNÍHO MOTORU
METODOU FYZIKÁLNÍHO MODELOVÁNÍ. Antonínská 548/1, 601 90 Brno,
2015. Diplomová práce. Vysoké učení technické v Brně, Fakulta elektrotechniky
a informačních technologií. Vedoucí práce Doc. Ing. RADEK VLACH, Ph.D.

66

https://www.electricalvolt.com/2019/08/eddy-current-loss-formula/
https://www.electricalvolt.com/2019/08/eddy-current-loss-formula/
https://www.skf.com/group/support/splash
https://www.skf.com/group/support/splash
http://urn.fi/urn:nbn:fi:tkk-001237
http://urn.fi/urn:nbn:fi:tkk-001237


[21] Conduction Heat Transfer. Engineering Library [online]. U.S. Depart-
ment of Energy: U.S. Department of Energy, 1992, 2021 [cit. 2021-
04-18]. Avaliable from: https://engineeringlibrary.org/reference/
conduction-heat-transfer-doe-handbook

[22] SCHAUER, Pavel. Aplykovaná fyzika [online]. Antonínská 548/1, 2014 [cit.
2019-10-31]. Avaliable from: http://lences.cz/domains/lences.cz/skola/
subory/Skripta/BB02-Aplikovana%20fyzika/BB02-Aplikovana_fyzika_
(A,K)--M04-Prenos_tepla.pdf.Skripta.VUTvBrně.

[23] D. Wöckinger et al., "Approaches for Improving Lumped Parameter Ther-
mal Networks for Outer Rotor SPM Machines," 2021 IEEE Energy Con-
version Congress and Exposition (ECCE), 2021, pp. 3821-3828, doi:
10.1109/ECCE47101.2021.9594930.

[24] Dirac delta function. In: Wikipedia: the free encyclopedia [online]. San
Francisco (CA): Wikimedia Foundation, 2001- [cit. 2022-05-17]. Dostupné z:
https://en.wikipedia.org/wiki/Dirac_delta_function

[25] R. Ibtiouen, S. Mezani, O. Touhami, N. Nouali and M. Benhaddadi, "Ap-
plication of lumped parameters and finite element methods to the thermal
modeling of an induction motor," IEMDC 2001. IEEE International Electric
Machines and Drives Conference (Cat. No.01EX485), 2001, pp. 505-507, doi:
10.1109/IEMDC.2001.939354.

[26] B. Assaad, K. El kadri Benkara, G. Friedrich, S. Vivier and A. Michon, "Re-
ducing the complexity of thermal models for electric machines via sensitivity
analyses," 2017 IEEE Energy Conversion Congress and Exposition (ECCE),
2017, pp. 4658-4665, doi: 10.1109/ECCE.2017.8096795.

[27] BOGLIETTI, Aldo a Andrea CAVAGNINO. Analysis of the Endwinding Cool-
ing Effects in TEFC Induction Motors. IEEE Transactions on Industry Ap-
plications [online]. 2007, 43(5), 1214-1222 [cit. 2022-05-02]. ISSN 0093-9994.
Available from: doi:10.1109/TIA.2007.904399

[28] G. E. Luke, "The Cooling of Electric Machines," in Transactions of the American
Institute of Electrical Engineers, vol. XLII, pp. 636-652, January-December
1923, doi: 10.1109/T-AIEE.1923.5060903.

[29] B. Fahimi et al., "Guest Editorial Optimal Design of Electric Machines," in
IEEE Transactions on Energy Conversion, vol. 30, no. 3, pp. 1143-1143, Sept.
2015, doi: 10.1109/TEC.2015.2458232.

67

https://engineeringlibrary.org/reference/conduction-heat-transfer-doe-handbook
https://engineeringlibrary.org/reference/conduction-heat-transfer-doe-handbook
http://lences.cz/domains/lences.cz/skola/subory/Skripta/BB02-Aplikovana%20fyzika/BB02-Aplikovana_fyzika_(A,K)--M04-Prenos_tepla.pdf. Skripta. VUT v Brn�.
http://lences.cz/domains/lences.cz/skola/subory/Skripta/BB02-Aplikovana%20fyzika/BB02-Aplikovana_fyzika_(A,K)--M04-Prenos_tepla.pdf. Skripta. VUT v Brn�.
http://lences.cz/domains/lences.cz/skola/subory/Skripta/BB02-Aplikovana%20fyzika/BB02-Aplikovana_fyzika_(A,K)--M04-Prenos_tepla.pdf. Skripta. VUT v Brn�.


[30] G. Bramerdorfer, J. A. Tapia, J. J. Pyrhönen and A. Cavagnino, "Modern Elec-
trical Machine Design Optimization: Techniques, Trends, and Best Practices,"
in IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7672-7684,
Oct. 2018, doi: 10.1109/TIE.2018.2801805.

[31] Genetic Algorithms. GeeksforGeeks [online]. Noida, 22.2.2022 [cit. 2022-03-26].
Available from: https://www.geeksforgeeks.org/genetic-algorithms/

[32] MathWorks [online]. The MathWorks, 1994 [cit. 2022-03-26]. Available from:
https://www.mathworks.com/?s_tid=gn_logo

[33] Statistics how to.com [online]. 2022 [cit. 2022-05-08]. Available from: https:
//www.statisticshowto.com/

[34] Machine learning: an introduction to mean squared error and re-
gression lines. FreeCodeCamp.org [online]. USA, 2018 [cit. 2022-
05-11]. Available from: https://www.freecodecamp.org/news/
machine-learning-mean-squared-error-regression-line-c7dde9a26b93/

[35] Decision Trees. Scikit-learn: Machine Learning in Python [online]. 2007 [cit.
2022-05-02]. Available from: https://scikit-learn.org/stable/modules/
tree.html

[36] SONG, Yan-yan a Ying LU. Decision tree methods: applications for classifica-
tion and prediction. National libraty of medicine [online]. 2015, 24.4.2015, 130—
135 [cit. 2022-05-02]. Available from: doi:10.11919/j.issn.1002-0829.215044

[37] Decision trees in more detail. Clustering and Classification methods for Biol-
ogists [online]. Menchester Metropolitan University: Menchester Metropolitan
University [cit. 2022-05-02]. Available from: http://www.alanfielding.co.
uk/multivar/crt/dt_example_04.htm

[38] Towards Data Science [online]. Towards Data Science, 2018 [cit.
2022-05-02]. Available from: https://towardsdatascience.com/
decision-tree-in-machine-learning-e380942a4c96

[39] TAHIR, Nooritawati Md, Aini HUSSAIN, Salina Abdul SAMAD, Khairul An-
uar ISHAK a Rosmawati Abdul HALIM. Feature Selection for Classification Us-
ing Decision Tree. 2006 4th Student Conference on Research and Development
[online]. IEEE, 2006, 2006, 99-102 [cit. 2022-05-02]. ISBN 978-1-4244-0526-8.
Available from: doi:10.1109/SCORED.2006.4339317

68

https://www.geeksforgeeks.org/genetic-algorithms/
https://www.mathworks.com/?s_tid=gn_logo
https://www.statisticshowto.com/
https://www.statisticshowto.com/
https://www.freecodecamp.org/news/machine-learning-mean-squared-error-regression-line-c7dde9a26b93/
https://www.freecodecamp.org/news/machine-learning-mean-squared-error-regression-line-c7dde9a26b93/
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
http://www.alanfielding.co.uk/multivar/crt/dt_example_04.htm
http://www.alanfielding.co.uk/multivar/crt/dt_example_04.htm
https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96
https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96


[40] SMITH, Steven W. Moving Average Filters. Digital Signal Processing [online].
Elsevier, 2003, 2003, 277-284 [cit. 2022-04-27]. ISBN 9780750674447. Available
from: doi:10.1016/B978-0-7506-7444-7/50052-2

[41] Understanding Moving Averages. CME Group [online]. 2022 [cit. 2022-
04-27]. Available from: https://www.cmegroup.com/education/courses/
technical-analysis/understanding-moving-averages.html

[42] What is a Moving Average?. CFI Education Inc. [online]. 2015 [cit. 2022-04-
27]. Available from: https://corporatefinanceinstitute.com/resources/
knowledge/other/moving-average/

[43] BURGSTAHLER, Lars a Martin NEUBAUER. New Modifications of
the Exponential Moving Average Algorithm for Bandwidth Estima-
tion [online]. Institute of Communication Networks and Computer
Engineering: University of Stuttgart [cit. 2022-04-27]. Available from:
http://content.ikr.uni-stuttgart.de/Content/Publications/Archive/
Bu_ITCSS15-49_34635.pdf

69

https://www.cmegroup.com/education/courses/technical-analysis/understanding-moving-averages.html
https://www.cmegroup.com/education/courses/technical-analysis/understanding-moving-averages.html
https://corporatefinanceinstitute.com/resources/knowledge/other/moving-average/
https://corporatefinanceinstitute.com/resources/knowledge/other/moving-average/
http://content.ikr.uni-stuttgart.de/Content/Publications/Archive/Bu_ITCSS15-49_34635.pdf
http://content.ikr.uni-stuttgart.de/Content/Publications/Archive/Bu_ITCSS15-49_34635.pdf


Symbols and abbreviations
𝐵 Flux density

𝐵m Flux density amplitude

𝐵r Radial component of flux density

𝐵x Flux density in the x-axis

𝐵y Flux density in the y-axis

𝐵𝜃 Peripheral component of flux density

𝑐1 Calculation coefficient

𝐿s Calculation coefficient

𝐿s Calculation coefficient

𝐶f,1 Friction coefficient

𝐶f,2 Friction coefficient

𝐶fb Friction contact coefficient

𝑑 Thickness of lamination

𝑑 Thickness of the solid

𝑑b Bearing bore diameter

𝐷r Rotor diameter

𝐷s,in Air gap outer diameter

𝑓 Frequency

𝐸𝑀𝐴 Exponential moving average

𝐹 Equivalent dynamic bearing load

𝐹𝐸 Finite element method

ℎ0 Initial value of heat transfer coefficient

ℎ Heat transfer coefficient

ℎl Heat transfer coefficient
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ℎlin Linear approximation of heat transfer coefficient

ℎq Heat transfer coefficient

ℎquad Linear approximation of heat transfer coefficient

ℎstat Static heat transfer coefficient

ℎ𝛿 Static heat transfer coefficient

𝑖d Current in the d-axis

𝐼ph Phase current

𝑖PM Current source

𝑅Q Damper resistance

𝑖s Stator current

𝑘e Eddy current coefficient

𝑘ed Eddy current loss coefficient

𝑘ex Coefficient determined by curve fitting of the material

𝑘fb Coefficient depend on the bearing specification

𝑘h Experimental coefficient

𝑘is Optimization coefficient

𝑘ro Roughness coefficient of material

𝐿 Cylinder length

𝐿 Rotor length

𝐿c Characteristic length

𝐿D Total damper inductance in the d-axis

𝐿D𝜎 Damper linkage resistance

𝐿𝑃𝑇𝑁 Lumped parameter thermal network

𝐿s𝜎 Stator leakage inductance

𝐿md Magnetizing inductance
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𝐿mq Magnetizing inductance

𝐿Q Total damper inductance in the q-axis

𝐿Q𝜎 Damper leakage inductance

𝐿s Stator length

𝑀𝐴 Moving average

𝑚r Rotor mass

𝑁p Number of steps per period

𝑁𝑢 Nusselt number

𝑛max Maximal speed of machines

𝑛 Rotor speed

𝑃 Power of machine

𝑃b Bearing mechanical losses

𝑝ir Ratio between stator teeth iron volume and the total volume of
stator iron

𝑄cond Transferred heat by conduction

𝑄conv Convection heat transfer

𝑄rad Radiation heat flow

𝑞 Heat flux

𝑅cond Conduction resistance

𝑅cond,cyl Solid cylinder thermal resistance in radial direction

𝑅cond,bar Cylinder thermal resistance in radial direction

𝑅conv Convection thermal resistance

𝑅D Damper resistance

𝑅𝑒𝛿 Reynolds number

𝑅lin,i(𝑛) Linear approximation of speed-dependency thermal resistance
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𝑅ph,0 Phase resistance at 20∘C

𝑅ph DC resistance

𝑅quad,i(𝑛) Quadratic approximation of speed-dependency thermal
resistance

𝑅s Stator resistance

𝑅T Thermal resistance

𝑅i,0 Thermal resistance at zero speed

𝑟1 Cylinder inner radius

𝑟2 Cylinder outer diameter

𝑟 Inner radius of rotor

𝑆 Area

𝑆 Heat transfer surface

𝑇1 Thermodynamic temperature of inner solid

𝑇2 Thermodynamic temperature of outer solid

𝑇 Period, thermodynamic temperature

𝑇air Temperature sensor of inner air

𝑇e Generated torque of machine

𝑇f Temperature sensor of flange

𝑇bi Temperature sensor of inner bearing

𝑇bo Temperature sensor of outer bearing

𝑇R Temperature of rotor measured by thermal camera

𝑇ph,0 Winding temperature at 20∘C

𝑇ph,n New winding temperature

𝑇uv Temperature sensor of uv phase

𝑇vw Temperature sensor of vw phase
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𝑇wu Temperature sensor of wu phase

𝑇 Calculated temperature

𝑇m Measured temperature

𝑡 Time

𝑢d Voltage in the d-axis

𝑞q Voltage in the q-axis

𝑢s Stator voltage

𝑤 Window width

�⃗� Unit vector

𝑥n Averaged temperature

�⃗� Unit vector

𝑦n Raw value of learning data

𝛼Cu Temperature coefficient of resistance

𝛼 Experimental coefficient

Δ𝑃Cu Stator copper losses

Δ𝑃eddy Eddy current losses

Δ𝑃ex Excess losses

Δ𝑃hys Hysteresis losses

Δ𝑃mag Stator magnetic losses

Δ𝑃mech Mechanical losses

Δ𝑃rot Rotor losses

Δ𝑃tot Total losses

Δ𝑃𝜌,2 Rotor end ring power losses

Δ𝑅i,0 Values resistance by which is resistance at zero speed increased

Δ𝑇 Temperature difference
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𝛿s Load angle

𝛿 Air gap thickness

𝛿(𝑛) Delta distribution

𝜖 Emissivity

𝜖 Value of the residuum

𝜃 angle between 𝐵r and x-axis

𝜆 Thermal conductivity

𝜇 Dynamic viscosity of the coolant

𝜈 Speed of inner air

𝜌 Material resistivity

𝜌 Density of the coolant

𝜎 Stefan-Boltzmann constant

𝜙 Angle between current and voltage

𝜑 Overall radiation flow

𝜑a Absorbed part of flux

𝜑r Reflected part of flux

𝜑tr transmitted part of flux

𝜓D Damper winding flux linkage D-axis

𝜓D Damper winding flux linkage

𝜓d Flux linkage in the d-axis

𝜓PM Permanent magnet flux linkage

𝜓q Flux linkage in the q-axis

𝜓Q Dumper winding flux in the q-axis

𝜓S Total stator flux linkage

𝜔 angular frequency of the shaft
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𝜔r Angular velocity of rotor

cos𝜙 Power factor of machine
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