
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY

A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

TESTING THE RESPONSE OF OPERATING SYSTEMS TO
DIFFERENT IPV6 FLOWS
TESTING THE RESPONSE OF OPERATING SYSTEMS TO DIFFERENT IPVB FLOWS

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Michal Ruiner
AUTOR PRÁCE

SUPERVISOR doc. Ing. Jan Jeřábek, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

M a s t e r ' s T h e s i s

Master's study programme Communications and Networking (Double-Degree)

Department of Telecommunications

Student: Be. Michal Ruiner ID: 220825
Year of study: 2 Academic year: 2023/24

TITLE OF THESIS:

Testing the response of operating systems to different IPv6 flows

INSTRUCTION:

Study from the literature the operation of IPv6, ICMPv6 and related protocols. Focus on the major operating

systems and their most common versions and how they work with IPv6 and related protocol traffic. Study also the

issues of testing the operation of these protocols and the possible differences between platforms. Also learn

about existing tools for testing this issue and related vulnerabilities and attacks. As part of the thesis, develop a

comprehensive list of test cases for selected tools and services for selected operating systems. These cases

must then be tested on multiple versions of different operating systems. In the practical part, focus in particular

on describing the testing procedure and the possible impact of any vulnerabilities. The work will also include the

creation of a large-scale test environment in which the testing will be performed. The complete specification must

be consulted and approved in advance by the thesis supervisor. The output of the work will also include

recommendations for modifications to existing tools or the creation of tools that do not yet exist. As part of the

semester project, develop the theoretical part, create a test environment and test the first tool on at least two

major operating systems.

REFERENCE:

[1] Kurose, J . F., Ross, K. W., Computer networking: a top-down approach. 8th global ed. Essex: Pearson, 2022,

852 s. ISBN 978-1-292-15359-9.

[2] JEŘÁBEK, J . Pokročilé komunikační techniky. Skriptum F E K T Vysoké učení technické v Brně, 2023. s. 1-179.

Assignment deadline: 5. 2. 2024 Submission deadline: 21. 5. 2024

Head of thesis: doc. Ing. Jan Jeřábek, Ph.D.

Co-supervisor: Dmitri Moltchanov

The author of this Final Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or property

rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an infringement of

provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on amendments to some other

laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as resulting from provisions of Part 2,

Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

doc. Ing. Jiří Hošek, Ph.D.

Chair of study program board

WARNING:

ABSTRACT
The aim of the thesis is to create an array of virtual machines and research their re
sponse to the IPv6 protocol. Another significant part is to utilize the provided tool for
generating and sniffing IPv6 traffic and verify its correct functionality. For such purpose,
the GNS3 open-source software is selected. A reader is familiarized with the concepts of
virtualization, GNS3 functionality and various methods of software testing together with
the implemented practical models. The IPv6 protocol is introduced in detail as well as
the packet format, address types and several IPv6 protocols useful for the thesis. The
practical part is discussed in the Numerical results chapter. The topology is established
and connectivity verified using IPv4. Configuration of static IPv6 addresses is performed
on the devices as well as configuration of router to distribute particular prefixes. 5 testing
scenarios are proposed that increase the input load to the tool in sense of higher number
of addresses for the 3 different modes - passive, active and aggressive. 3 scripts were
developed. Performance testing script measures utilization of computational resources.
The other 2 scripts perform packet capturing and further analysis to compare the re
sults of proposed scripts with provided tool. The comparison is done utilizing passive
and aggressive modes. Active mode is used to observe the response of various oper
ating systems to different IPv6 flows. Specifically, multiple Windows 10 builds, Linux
distributions, Windows XP , 7, 11, macOS and Android.

KEYWORDS
Virtualization, GNS3, Software testing, IPv6, ICMPv6, Neighbor Discovery, SLAAC,
M L D , mDNS, LLMNR, Operating system, Network discovery, Network scanning, Per
formance evaluation

Typeset by the thesis package, version 4.09; h t tps : / / l a tex . fek t .vu t .cz /

https://latex.fekt.vut.cz/

RUINER, Michal. Testing the response of operating systems to different IPv6 flows.

Master's Thesis. Brno: Brno University of Technology, Faculty of Electrical Engineer

ing and Communication, Department of Telecommunications, 2024. Advised by doc.

Ing. Jan Jeřábek, Ph.D.

Author's Declaration

Author: Be. Michal Ruiner

Author's ID: 220825

Paper type: Master's Thesis

Academic year: 2023/34

Topic: Testing the response of operating systems

to different IPv6 flows

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank the advisors of my thesis, doc. Ing. Jan Jeřábek, Ph.D., Dr. Dmitri

Moltchanov and Prof. Evgeni Kucheryavy for their valuable comments etc.

Contents

1 Introduction 13
1.1 Research questions 14

2 Software and methodology 15
2.1 Virtualization 15

2.1.1 Virtualization implementation 15
2.1.2 Types of virtualization 16

2.2 GNS3 17
2.2.1 Components 18
2.2.2 Real-time analysis 18
2.2.3 Get virtual machine to the topology 18
2.2.4 Remote server solution 19

2.3 Software testing 20
2.3.1 Software Testing Methodologies 21
2.3.2 Models in development 22

3 Internet Protocol version 6 24
3.1 IPv6 packet 25
3.2 IPv4 and IPv6 datagram differences 26
3.3 IPv6 addresses 27

3.3.1 Types of addresses 28
3.3.2 Subtypes of unicast addresses 28
3.3.3 Multicast addresses 30

3.4 Internet Control Message Protocol version 6 31
3.5 Neighbor Discovery for IPv6 32

3.5.1 Neighbor M A C address resolution 32
3.6 Automatic address configuration 34

3.6.1 S L A A C 34
3.6.2 DHCPv6 36

3.7 Multicast Listener Discovery 37
3.7.1 M L D v l 38
3.7.2 MLDv2 39

3.8 IPv6 in operating systems 40
3.8.1 Linux 41
3.8.2 Windows 41
3.8.3 macOS 42

4 Numerical results 43
4.1 ptnetinspector tool 43
4.2 Testing topology 44

4.2.1 Connectivity check 44
4.2.2 IPv4 dynamic configuration 50
4.2.3 IPv6 S L A A C configuration 51

4.3 Scripts 52
4.3.1 Performance testing script 52
4.3.2 Traffic capturing script 54
4.3.3 Verification of results script 55

4.4 Application testing methodology 60
4.4.1 Testing of Passive mode of the ptnetinspector 60
4.4.2 Testing of Active mode of the ptnetinspector 64
4.4.3 Testing of Aggressive mode of the ptnetinspector 72

4.5 ptnetinspector adjustments 80
4.5.1 mDNS payload reading 81
4.5.2 Timestamp addition 83
4.5.3 Google public DNS address 84

4.6 Large-scale testing 85
4.6.1 Passive mode testing inside B U T network 86
4.6.2 Active mode testing of various Windows 10 builds 87
4.6.3 Active mode testing of various operating systems 90
4.6.4 Aggressive mode testing of various operating systems 91

4.6.5 Scanning vulnerability 92

Conclusion 95

Bibliography 98

Symbols and abbreviations 102

List of appendices 105

A Verification of results script code sample 106

B Performance testing script code sample 108

C Traffic capturing script code sample 109

D Content of the electronic attachment 110

List of Figures
2.1 GNS3 environment 17
2.2 Device communication between local and remote server 20
3.1 Basic header structure of IPv6 packet 25
3.2 Basic structure of ICMPv6 message 31
3.3 Basic structure of ICMPv6 Neighbor Solicitation message 32
3.4 Basic structure of ICMPv6 Neighbor Advertisement message 33
3.5 Basic structure of ICMPv6 Router Advertisement message 35
3.6 Basic structure of M L D v l packet 38
3.7 Basic structure of MLDv2 Report packet 39
4.1 Designed topology in GNS3 for the proposed testing scenarios imple

mentation 44
4.2 Designed topology in GNS3 for the operating systems IPv6 response

research 45
4.3 Ping command issued from Kal i machine 49
4.4 Captured packets of Kal i ping in Wireshark 50
4.5 R l D H C P binding 52
4.6 Active mode scenario 5 - performance test script output 53
4.7 Designed performance testing script flowchart 54
4.8 Designed traffic capturing script flowchart 56
4.9 Verification of results script code structure 57
4.10 Designed verification of results script flowchart 59
4.11 Program output of the passive mode scenario 2 - hosts with Link-

Local addresses only 62
4.12 Program output of the passive mode scenario 3 63
4.13 Passive mode scenario 3 - conversation sample in Wireshark 63
4.14 Program output of the passive mode scenario 4 65
4.15 Program output of the passive mode scenario 5 for Ubuntu 66
4.16 Program output of the passive mode scenario 5 for router 66
4.17 Kal i automatically generated IPv6 addresses 67
4.18 Program output of the active mode scenario 1 67
4.19 IPv6 conversations during active scan in the scenario 1 68
4.20 IPv6 conversations during active scan in the scenario 2 68
4.21 Program output of the active mode scenario 3 69
4.22 IPv6 conversations during active scan in the scenario 3 70
4.23 Program output of the active mode scenario 4 71
4.24 IPv6 conversations during the active scan in the scenario 4 72
4.25 Program output of the active mode scenario 5 (Windows 11) 73

4.26 IPv6 conversations during the aggressive scan in the scenario 1 74
4.27 Program output of the aggressive mode scenario 2 74
4.28 IPv6 conversations during the aggressive scan in the scenario 2 75
4.29 Program output of the aggressive mode scenario 3 76
4.30 IPv6 conversations during aggressive scan in the scenario 3 77
4.31 Program output of the aggressive mode scenario 4 79
4.32 IPv6 conversations during the aggressive scan in the scenario 4 80
4.33 Program output of the aggressive mode scenario 5 (clients) 81
4.34 Program output of the aggressive mode scenario 5 (router) 82
4.35 mDNS A P D U not processed in the passive mode by the ptnetinspector 82
4.36 mDNS addresses not processed in the passive mode by the ptnetinspec

tor - Wireshark output 83
4.37 End time of the ptnetinspector process 84
4.38 Start and end time of the ptnetisnpector packet capturing 84
4.39 ptnetinspector Google DNS address assigned to the router 85
4.40 Google address ignored in the verification script 85
4.41 Passive mode testing results with 1 device missed by the ptnetinspector 87
4.42 Start and end timestamps stated by the ptnetinspector 88
4.43 Packets captured by the designed script with omitted source M A C

address by the ptnetinspector 88
4.44 Actual packets captured by the ptnetinspector 88
4.45 L L M N R and mDNS messages generated by Windows 11 during booting 91
4.46 Aggressive mode testing - ignored Google DNS address by the de

signed script 92

List of Tables
4.1 GNS3 V M addresses - testing scenarios implementation 45
4.2 GNS3 V M addresses —various operating systems 46
4.3 GNS3 V M addresses -Windows 10 builds 47
4.4 Performance testing of the active mode - 3 runs measured 72
4.5 Performance testing of the aggressive mode - 3 runs measured 80
4.6 Passive mode testing inside B U T network 86
4.7 Windows 10 Pro versions included in the active mode testing 89
4.9 Various OS versions included in the active mode testing 90
4.11 Aggressive mode testing with virtual machines 92
4.8 Windows 10 various build responses in the active mode 93
4.10 Various OS responses in the active mode 94

Listings
A . l Verification of results Python script code sample 106
B. l Performance testing Bash script code sample 108
C. l Traffic capturing Bash script code sample 109

1 Introduction
On the internet, each device is uniquelly identified with a logical address corre
sponding to the network layer of both ISO/OSI and T C P / I P models. The IPv4
protocol was used for a long time, but with advancements in the technology, the
development led to more and more devices connected to the internet, which made
the IPv4 address space insufficient. Although some mechanisms were introduced to
make the depletion of addresses slower, it was still inevitable and a new protocol
had to be designed as a response. The IPv6 was introduced in 1998. Apart from the
much larger address space (2 1 2 8 against the 2 3 2 of IPv4), the new ways of thinking
have emerged, also influenced by the experience gained over time, which led to the
changes in header fields. Although the original intention was to fully replace IPv4
protocol, it is still used widely today and the complete replacement is not probable
in the near future. There are certain mechanisms how to make these 2 protocols
coexist, however more and more companies providing services move to IPv6 (either
only or next to IPv4), which in turn creates demands on the developers of operating
systems for end hosts to implement the support of IPv6 protocol. The aim of this
thesis is to create the testing array of various operating systems (different versions
and distributions) and research their response to the IPv6. The tool ptnetinspector
is used for this purpose and must be verified.

The second chapter focuses on the software and methodologies used in the the
sis. Virtualization together with GNS3, the software used to create the virtual
machine testing array, are introduced. The components, real-time analysis, adding
virtual machines to the topology and remote server solutions are described. Then
the software testing is discussed. Basic testing types, methods for running tests
and development methodologies and models are covered. The third chapter focuses
on the IPv6 protocol. IPv6, packet structure, various types of addresses and some
of the IPv6 protocols, namely ICMPv6, ND and M L D are described. The chapter
also covers automatic configuration and IPv6 implementation in common operating
systems. The fourth chapter focuses on practical results. Testing topology is intro
duced together with the process of testing connectivity using IPv4 protocol and the
configuration of S L A A C . Then the developed scripts for the ptnetinspector tool are
described. These are Bash script designed for the resource utilization calculations,
Bash script developed to capture the network traffic and the Python script used
to analyse and compare the results with ptnetinspector. 5 scenarios were proposed
to verify the tool running in 3 modes - passive, active and aggressive. Finally,
the scripts are compared under heavy load inside real B U T Wi-F i network (pas
sive mode) and virtual environment (aggressive mode). Active mode was utilized to
research the response of various operating systems to different IPv6 flows.

13

1.1 Research questions

In the thesis, following research questions are solved and the answers to them are
summarized in the Conclusion chapter:

RQ1: Are there any detection errors or other bugs in ptnetinspector tool pro
vided for IPv6 devices discovery? Is there a way to resolve them?

RQ2: What is the performance of ptnetinspector tool under certain scenar
ios?

RQ3: What, if any, are the differences between the selected major operating
systems in terms of specific aspects of IPv6 implementation?

The RQ1 is specifically addressed in the section 4.5, RQ2 in the section 4.3.1
and sections 4.6.2 and 4.6.3 provide answers to the RQ3.

14

2 Software and methodology
In this chapter, the software utilized in the thesis as well as premises and method
ologies are described.

2.1 Virtualization

Virtualization is a process of creating single or multiple virtual instances of com
puters, also called V M (Virtual machine), with operating systems on top of one
physical device. It can be also seen as the emulation of an operating system. This
leads to one extreme benefit, that is cost savings. One powerful physical device
can be purchased and its computational resources - C P U (Central Processing Unit)
cores, R A M (Random Access Memory), storage space either HDD (Hard Disk Drive)
or SSD (Solid State Drive) - can be redistributed across many VMs. Other benefits
might be efficient way of using resources (one physical device could not use all the
possible performance, on the other hand multiple V M s could use up to 100 % of
it) and reduced downtime (in case of OS (Operating System) corruption, other V M
can be run as a copy of the original instance and the end user just shifts its work).
From the point of view of V M , there is no difference between running the actual OS
in a standard manner or inside a virtual environment [1], [2].

2.1.1 Virtualization implementation

To be able to apply virtualization, one needs a hypervisor. Hypervisor is a piece
of software that creates additional layer in the standard layer model (Hardware —>
BIOS —> OS). It takes the responsibility for resource allocation among the V M s and
their correct functioning. Two types of hypervisors exist:

• Type 1 hypervisor - Also called bare-metal, runs directly above a hardware
(Hardware —> BIOS —> Hypervisor —> V M) . In comparison with the Type 2, more
efficient way of virtualization (resource usage) is possible as there is direct ac
cess to the physical resources. To create and manage the VMs, the manage
ment console is needed. It allows an administrator to have control over the
entire environment and also perform the resource over-allocation, which
means that more resources than the actual (physically) available are assigned
under assumption that there won't be a state where the V M s would use all the
resources at the same time. However, in practise only the amount of resources
actually needed by the V M s to ensure correct functioning is assigned by the
hypervisor. A V M can be also easily moved to another physical device, (as
the hardware is abstracted, management console takes care of it). This type is

15

typical in data centers and companies offering cloud services. The examples of
Type 1 hypervisors are VMware ESXi , K V M (Kernel-based Virtual Machine)
and Microsoft Hyper-V [1], [2].

• Type 2 hypervisor - Also called hosted hypervisor, is an application installed
on the hosting OS (Hardware —> BIOS —> Host. OS —> Hypervisor —> V M) . This
type is more common at the end user level, as it is easy to use and often only
several virtual machines are needed for the purpose of testing or security rea
sons. One disadvantage when compared to the Type 1 is that additional
overhead in terms of performance is added as the virtualized system must
access the hardware resources using the host OS as the relay system. The
available hypervisors on the market are VMware Workstation/VMware Work
station Player and Oracle V M VirtualBox [1], [2].

To decide which hypervisor is more appropriate, one needs to take into account
available physical resources and financial budget, the purpose of virtualization, size
of the topology and many other aspects [1], [2], [3].

2.1.2 Types of virtualization

So far, the 2 types of virtualization were discussed, that is server virtualization
(using Type 1 hypervisors) and desktop virtualization (using Type 2 hypervisors),
but there are also other types:

• Storage virtualization - A l l the available storage space across the network
is virtualized and accessed as one single storage unit.

• Application virtualization - Only an application, not the whole OS, is
running in the virtual environment (different approaches exist; can be run
locally or on a remote server).

• Network virtualization - Physical devices (e.g. routers, switches, firewalls)
that may be part of separate networks are bundled into one virtual network
or the other way around. A n example can be configuration of V L A N (Virtual
Local Area Network) or V P N (Virtual Private Network). Security of networks
is improved this way [4].
Additionally, the network components can be abstracted and integrated to the
software running on a hypervisor, creating a central location to access devices
and modify their configuration. This brings ease of administration for the
network engineers.

These are just some of the available virtualization types used. There are many
others used in different branches of IT (Information Technology), among them C P U
and G P U (Graphics Processing Unit) virtualization and Cloud virtualization.

16

2.2 GNS3

GNS3 (Graphical Network Simulator-3) is an open source software, more specifically
emulator, used by the network engineers all around the world to emulate networks,
test the functionality of designed topologies, check the proposed configurations etc.
The GUI (Graphical User Interface) of the software can be seen in the Fig. 2.1.

As comes from its properties, the source code of the software is publicly available
on GitHub, from where it can be downloaded and compiled or there is an option to
download the executable file for installation. A l l the users have the possibility to
propose their own improvements and contribute to the community by editing the
code and implementing their ideas. The emulator means that the hardware can be
virtualized and the real software images run on the devices in a topology.

The development of GNS3 started more than 10 years ago by Jeremy Grossman
to help him with his Cisco exams, therefore mainly Cisco devices were intended to
be in use. Since then, by publicly releasing the project and thanks to the cooper
ation of still growing community, many vendor devices are now supported, includ
ing MikroTik, Juniper, FortiGate and many operating systems including Windows
(XP, 7, 8, 10, but also servers), Linux distributions (e.g. Kali , Ubuntu, CentOS)
and other appliances available from the official marketplace [5].

© FirstProJ€-ct-GNS3
File Edh View Coi

Fig. 2.1: GNS3 environment.

17

Regarding the Cisco IOS images, GNS3 can emulate the hardware, but the soft
ware cannot be provided legally due to the copyright. Here comes one of the most
important advantages of GNS3: it works with real images and therefore provides
real picture of functionality. Compared to the "simple" network simulator, just as
Cisco Packet Tracer, where there is only certain number of commands available and
still only simulated behavior is provided based on the predefined calculations, emu
lator provides all the possibilities provided on the real devices. The other advantage
is that the topology created in GNS3 can be connected to the real network and then
the traffic flows through the virtualized network to the internet and back. One can
also make the real traffic generated on the physical computer to flow through this
network and intentionally affect the delay or throughput.

2.2.1 Components

GNS3 offers 2 main components: application itself and V M . After the installation,
only the local server instance, through which all the appliances just as V P C (Virtual
Personal Computer), switches, routers and other stuff run, is available. But there
are other options like running locally or remotely GNS3 V M . It is recommended
specifically for Windows users to install V M as well, because there are certain ben
efits like possibility to run more devices and have larger topologies. This is not the
case of Linux users. The V M instance must be run through virtualization software
(called hypervisor) such as VMware or VirtualBox. For a certain time, VMware was
preferred because VirtualBox did not support nested virtualization (virtual machine
can run other virtual machine via its own hypervisor), but now, this is no longer
a concern [5].

2.2.2 Real-time analysis

Another great feature of GNS3 is that it allows capturing packets of the network
interfaces by the network analyzers such as Wireshark. This further improves engi
neer's ability to perform troubleshooting. Users can select individual interfaces to
monitor and go through individual messages sent, check the formatting, addresses
and observe if devices of different vendors can communicate with each other. Such
possibility together with enabled logging on the devices makes great way of learning,
understanding and analyzing the network behavior.

2.2.3 Get virtual machine to the topology

There are more ways of importing a V M to the GNS3 environment. One of them
is to visit the GNS3 marketplace, section Appliances, and download a prepared

18

appliance, then get one of the supported image (OS) versions and install it to the
GNS3. Cisco routers can be also imported as Dynamips appliances with particular
image1.

The other option, which is also used for this thesis, is to preinstall a V M in
any hypervisor and import it to the GNS3 project. VMware Workstation Player
was chosen for the reason described earlier. First, virtual machine is created and
resources of the computer are allocated. Then the OS (commonly ISO file) is con
nected via C D / D V D and installed. This way all the V M s were installed, but there
was slight complication that Windows 11 needs T P M (Trusted Platform Module)
module for security-related features, but only encryption of certain parts can be set.

To import V M to the topology, one must choose correct hypervisor (QEMU, Vir-
tualBox, VMware) and add it as a new machine. This way each V M was successfully
added, but there was one exception. Current version of GNS3, 2.2.43, cannot run
Windows 11 with the T P M module set. If one tries it, he will experience timeout.
Simple solution for this is, after the installation in VMware, to remove T P M module
and cancel encryption. Windows 11 will still work and GNS3 will be able to run
it as regular V M . According to the regular updates, GNS3 added support for T P M
module to the Q E M U V M s [6].

After the Windows X P Professional installation, the Intel update (Ethernet Net
work Adapter Driver 18.0) was necessary so that the adapter is available on the
machine. Regarding IPv6, only the basic T C P / I P stack with IPv4 protocol was ac
cessible, therefore to enable IPv6 support, the following command must have been
issued to install the T C P / I P IPv6 stack:

i netsh i n t e r f a c e ipv6 i n s t a l l

For the macOS Monterey, it is necessary to download and install patch tool[7]
that unlocks an option to install various versions of macOS in VMware. According to
the author, the latest version of VMware Workstation Player that the unlocker was
tested on was version 15, but it also works correctly on the version 17.5.0 (version
of VMware used in this diploma thesis).

The Android V M utilized in the diploma thesis is Android x86[8] (an open source
project used to make Android Open Source Project runnable on the x86 platform)
version 9.0.

2.2.4 Remote server solution

GNS3 allows users to add remote server to the project along with local and GNS3
V M servers. This solution is efficient when local machine resources are limited and

l rThis way Cisco router was added to the testing topology in this thesis.

19

there is necessity to have large topology that overreaches its capabilities. In this
thesis, remote server from the B U T network was added to the topology.

To enable communication between machines running on the local server and those
running on the remote server, local server binding must be edited in the settings of
GNS3 (set the particular interface). In case of the added B U T server, the interface
going to the V P N tunnel must be chosen (same network).

The demonstration example is shown in the Fig. 2.2. Kal i Linux, running on
the local server, and Arch Linux, running on the remote server, were added to the
topology and their connectivity (ping using the Link-Local address) was tested as
can bee seen in the figure.

Fig. 2.2: Device communication between local and remote server.

The Kal i machine runs in VMware. Arch Linux is added to the remote server
as Q E M U virtual machine. This V M was taken from the www.osboxes.org page as
a prepared VMware virtual disk file. Other Linux machines can be also found there.
During the attempts to run Windows V M s (created locally in VMware) in the same
way as Arch Linux, it was discovered that mere vmdk file is not sufficient as it is not
recognized as bootable device. The situation did not change even after conversion
to the Q E M U image file format qcow2. Possible solution is to create V M directly in
Q E M U and upload the resulting virtual disk to the remote server.

2.3 Software testing

Software testing is a necessary part in software design. The behavior of a program
must be checked against the expected results. It is not possible to publish the project
right after finishing all the parts, because users might experience faulty behavior.
This would influence their work efficiency and they might choose competitor's prod
uct instead. Program could contain more or less severe bugs, wrong calculations,

20

http://www.osboxes.org

endless looping etc., which might diminish the company's profits. To address this,
initial tests must be performed to ensure correctness, high performance, security
and many other aspects related to the particular software.

There are tens of types of testing, but not all are applicable generally. First of all,
Alpha testing and Beta testing can be distinguished. Alpha testing is the first
phase performed internally by the company. Specialized teams (or hired companies)
can be allocated for such purpose. The goal is to catch potential misbehavior and
report it to the developer teams so that errors can be fixed. But not only the bugs are
searched for, the time aspect is also important. The overall runtime of a program and
the calculation time of specific operations could have severe consequences if they are
excessively long. After passing all the tests and obtaining acceptable results, Beta
testing follows. Product is released to the end users, which in turn report the bugs
or features they are not satisfied with. This approach might be only high-level as the
software can be proprietary and the users would not have access to the source code.
Another case is open-source code, where users can try to fix the bugs themselves or
add features [9].

Tests can be run either manually or be automated. In case of manual testing,
the programmer performs tests by himself without the usage of any automated
tool. This is an effective way to test individual parts, such as functions, on the
go, but it requires understanding the code and enough knowledge how to perform
such tests. For the automated testing, a special tool is used that performs the
tests automatically without much intervention from the programmer side. Sets of
data for testing might be prepared in advance and finally compared to the expected
results. This approach can save human, time and financial resources once the tool
(particular script or sequence of scripts) is prepared. [10], [11].

2.3.1 Software Testing Methodologies

The methodologies for software testing define various approaches to verify the correct
behavior of a program. At the output, it should be determined whether the results
are as expected, no errors are recorded during execution, the program offers high
enough performance and it fulfills requirements of the original assignment.

From the high level point of view, the software testing is divided into 2 categories:
• Functional testing - This category focuses on testing the functionalities,

that were specified in the beginning of the project. This could be the client's
software requirements or developer's intentions. Basically, 4 types of testing
fall into this group:

— Unit testing - Developers create these tests to verify the functionality of
individual blocks the whole project is composed of. Individual functions

21

have their own unit tests which verify correct results.
— Integration testing - After functions successfully pass the unit tests,

they are then integrated together and checked to ensure they work prop
erly, i.e. verifying the interactions between those functions.

— System testing - When all the individual components (or blocks) are
combined to form the final application, they are tested as a whole system
by providing the input and comparing the actual output to the expected
output.

— Acceptance testing - The application as a whole is compared to the ini
tial specifications and checked if all the desired features are implemented.
These tests are typically performed by the intended users [12], [13].

• Non-functional testing - This group of tests checks other than functional
aspects of the software, such as operational, which are the following:

— Performance testing - The behavior of application is evaluated against
varying inputs, such as increasing volumes of input data. Similar to this,
processing time of the software can be measured when exposed to regular
or excessive load.

— Security testing - Vulnerabilities that could be exploited by the ma
licious users are detected and mitigated or better completely removed.
Application must be resistant against the sensitive data breaches and the
unauthorized access. Properties such as a data integrity and confiden
tiality can be achieved by the usage of specific cryptographic algorithms.
Penetration testing (simulation of real-world cyberattack against the ap
plication with the purpose of finding vulnerabilities) falls to this category.

— Usability testing - This kind of testing evaluates the user experience
from using the application. The assessed aspects are, for example, ease
of use or effectiveness (how well the tasks can be accomplished by the
users).

— Compatibility testing - Compatibility is crucial for expanding the user
base. This kind of testing aims to verify the correct functioning of the ap
plication across the devices from multiple vendors and across the different
operating systems [12], [13].

2.3.2 Models in development

There exist several models used for the software development in practise:
• Waterfall model - This model consists of 5 stages which go one after the

other. The succeeding one must wait till the preceding one is completed. The
phases are in the following order: Requirements, Design, Implementation,

22

Verification, Maintenance. During the first phase, detailed plan for testing is
created based on the original requirements and objectives. Next, the testing
tools and various scenarios to check the correct functionality are designed based
on the Requirements phase and then implemented. After that, functionality
of the software as a whole is verified by the customer and then the company
provides support and constantly releases updates for the software. This model
is suitable for small projects where applications are not very complex.

• Iterative model - The development of a project is split into smaller parts,
which are iteratively developed (similar phases to Waterfall model) and tested
before finally merging to the main application. After merging all the individual
blocks, the application is tested as a whole. Results of each cycle are important
for the subsequent cycle as the analysis can provide view on what can be further
improved. This allows for incremental development and flexible design.

• Agile model - Unlike Waterfall model, Agile model is useful for larger projects
with higher level of complexity and can address projects where the require
ments change in time. The software development is divided into iterations and
the final product is built up gradually. Each iteration adds certain improve
ments or features that enhance the overall functionality of the software. Such
features are tested before merging them into the main application. Use case of
such model might be when the project requirements are not known in advance
and customer shapes his idea on the go. In such cases, the application can
work with its core functionality while additional features are implemented and
improved on an ongoing basis.

• Extreme Programming model - This model is very similar to the Agile
model as it adopts the same principles. Developers present simple code, if
it passes the tests and is approved, they proceed to further tasks. Basically,
2 entities work on the same feature where one is doing the programming part
and the other performs checks, testing and comes with new ideas.

• Verification and Validation model - This model basically extends the Wa
terfall model. In the first phase, all the requirements are verified, including the
design patterns. After finishing the planning, the second phase, implementa
tion, begins. Results of the first phase are implemented and finally the third
phase validates the results according to the expected behavior and determined
requirements in the verification phase [14], [15], [16].

23

3 Internet Protocol version 6
IPv6 (Internet Protocol Version 6) is a new protocol defined on the network layer
of the T C P / I P network model. It does not just represent single protocol, but it is
more a set of the completely new defined protocols, which are more or less developed
from their previous IPv4 versions and modified to better reflect demands of today's
networks1. IPv6, as the network layer protocol itself, is defined in the R F C 2460
[17].

The need for introducing a new protocol raised initially from the insufficient
address space of the former protocol. As the IPv4 addresses are 32 bits long, the
IPv4 address 4,2 bilion of addresses), while the IPv6 address range is
2 1 2 8 340 undecillion of addresses). One can easily determine that with growth of
the mobile networks, IoT (Internet of Things) and other technological advancements
that had caused rapid use of addresses, the IPv4 address space is insufficient and it
was already depleted in 2011. There were some attempts to slow down the depletion,
like for example NAT (Network Address Translation), but it was only a matter of
time before this approach was further ineffective.

Even though IPv6 solves the lack of addresses, the significant part of the world is
still functioning on IPv4 and this cannot be omitted. It is not possible (and probably
won't be for several decades) to simply remove IPv4 and therefore mechanisms to
ensure coexistence of these 2 protocols are necessary (as IPv4 and IPv6 are not
compatible).

First effective method to deploy is dual stack, where devices have configured
both IPv4 and IPv6 addresses. This can bring many advantages, among them each
of the protocols runs separately and if there will be time when IPv4 will be fully
replaced, it can be just removed from the configuration. On the contrary, demands
on devices in terms of memory bring disadvantage as everything must be doubled,
including routing tables.

The other way to ensure coexistence is tunneling. This way only one protocol is
configured in the network and the latter is tunneled. For example, if IPv4 protocol
is configured and there are IPv6 packets to be transmitted, new packets with IPv4
header are assembled and the original IPv6 packet becomes its payload. It is possi
ble to set up tunnels automatically or manually, but both methods require certain
knowledge, which can be either time consuming for the administrator or consume
resources of intermediate devices for the tunnel establishment.

Another approach is protocol translation, that works in the similar way to
1Since IPv4 was first defined in 1980, the assumptions for address space and network functioning

were quite different from today's reality. Everything is developing and so the technology must
reflect most current needs.

24

standard NAT. One protocol address (IPv6) is translated to the other one (IPv4) and
the other way around. This enables communication between IPv6-only and IPv4-
only devices. NAT64 is the protocol used for such purpose. It is closely associated
with DNS64, which provides artificially created IPv6 address of the destination
possessing only IPv4 [18].

3.1 IPv6 packet

IPv6 format follows IP standard on the network layer, meaning it consists of a header
and a payload. Header conveys information for the intermediate nodes to decide
about routing, priority operations and other stuff. Useful data are transmitted
inside payload. The structure is displayed in the Fig. 3.1. The header has fixed
length of 40 B.

Version Traffic Class Flow Label Payload Length Next Header Hop Limit Source Address Destination Address Payload

4 b 8 b 20 b 1 6 b 8 b 8 b 128 b 128 b

Fig. 3.1: Basic header structure of IPv6 packet.

The header consists of the following items:

• Version - 4-bit item which specifies version of the IP protocol. Decimal
value 4 {0100b) is set for IPv4 and value 6 (0110b) for IPv6.

• Traffic Class - 8-bit value where the originator specifies class (or priority of
the packets) for the intermediate devices to prioritize some packets over the
others. This way QoS (Quality of Service) can be achieved. First 6 bits are
used for the DSCP (Differentiated Services Code Point) and 2 bits for the
E C N (Explicit Congestion Notification).

• Flow Label - 20-bit value where the originator specifies which packets belong
to the same flow and the same processing is desired. This way packets can be
routed the same way or a special treatment based on the Traffic Class field is
acquired. Value 0 means that a packet does not belong to a specific flow.

• Payload Length - 16-bit value allows to carry payload (data from the upper
layers) of up to 64 kB. In case extension headers are utilized in the packets,
they are part of payload. The length is in bytes.

• Next Header - 8-bit value where the information about the extension header
following IPv6 header is stored. For example, T C P (Transmission Control
Protocol) has decimal value 6 and U D P (User Datagram Protocol) value 17.

25

In case extension headers are used, there can be for example Fragment Header
(value 44), ICMPv6 (value 58) and others.

• Hop Limit - 8-bit value that limits the number of hops (routers along the
path) a packet can travel through. Value gets decremented by 1 with each
passage through a router. If the value reaches 0, the packet is discarded and
the originator is notified with particular ICMP message.

• Source Address - 128-bit address uniquely identifying the originator of
a message.

• Destination Address - 128-bit address uniquely identifying the destination
of a message [17], [18].

In case the extension headers are used, they are placed before the payload part
between the standard IPv6 header and the header of a transport layer protocol.
This is notified with setting a particular value inside the Next Header item. If such
extensions are used, each of them contains the Next Header item as well, which leads
to the fact that the extension headers can be chained. The last one carries value of
a transport protocol. Extension headers are examined only by the destination node.
The only exception is the Hop-by-Hop2 Options header (value 0), which must be
processed by each node the packet travels through. As each extension header has
assigned value, the order of chaining must follow these values from the lowest to the
highest. This ordering is also done in a way that headers that are processed by the
intermediate nodes are put first [17], [18].

3.2 IPv4 and IPv6 datagram differences

One of the main differences is that the IPv6 header has constant size of 40 B and the
rest is contained inside payload. Compared to that, IPv4 has variable length, where
20 B are fixed and additional parameters are optional. The overall size, however,
must be a multiple of 4 B (the maximum is 65 535 B). The source and destination
addresses remain the same, but their size is (as discussed earlier) different. The
version of protocol is also preserved. Some items have the same meaning for protocol,
but different name. A n example of such change is Traffic Class and ToS (Type of
Service) fields. They both serve the same purpose, which is QoS ensuring. The
other equivalents are the Next Header Protocol (Protocol field in IPv4) and the
Hop Limit (TTL field in IPv4). One comparison, not so similar, is the Payload
Length in IPv6 and Total Length in IPv4. As the name suggests, IPv6 transfers
only the information about the payload size as the basic header length is constant,

2The so called "jumbogram" can be created. It is a packet whose payload size is greater than
standard. It can be between 64 kB and 4 GB.

26

while the IPv4 records the whole length of a packet. Another case is for the Next
Header, which can specify additional IPv6 headers as opposed to IPv4, which only
specifies the upper layer protocol. Fragmentation related information are moved
to the extension header in IPv6, therefore the IPv4 fields Identification, Flags and
Fragment Offset are not present in the standard header. Other removed IPv4 fields
are the Header Checksum, Options and Padding. Header Checksum is not really
necessary as there are mechanism both at the upper and lower layers. The Options
field was used for the non-compulsory mechanisms like for example security, route
recording and internet timestamp. As not all the options use the same length,
Padding is necessary to compensate the total packet length to a multiple of 32 bits
[19].

Although IPv6 has an extension header for the fragmentation, it is not really
desired to fragment the packets anymore. Originally, IPv4 allowed packets to be
fragmented along the path (performed by routers) because of possible different M T U
(Maximum Transmission Unit). IPv6 prevents routers from fragmentation, it is
possible only at the source. Larger packets than the path M T U are discarded and
originator is notified with the ICMP message. Sender can also try to determine
optimal M T U along the whole path to the destination by testing the different packet
sizes and storing the ICMP "Packet Too Big" messages inside local cache. This
process is called the IPv6 M T U Path Discovery. The standard packet size is 1500 B
in the Ethernet networks and IPv6 has the minimum packet size of 1280 B [18], [19],
[20].

3.3 IPv6 addresses

As mentioned many times, IPv6 addresses are 128-bit long. It wouldn't be really
efficient to follow the same way as IPv4 addresses are written, that is 4 octets
represented in decimal format and divided by dots. IPv6 addresses are represented
in a hexadecimal format. There are 8 groups of 4 hexadecimal numbers divided by
colon. Network mask for IPv6 follows the prefix notation used in IPv4 (number
after a slash represents continuous range of bits set to value 1). There are certain
rules that allow to abbreviate the notation:

1. The longest continuous sequence of zeros can be shortened with two colons.
This can be used only once in the notation, otherwise ambiguity would arise.

2. Each group of four hexadecimal numbers can be abbreviated by omitting the
leading zeros.

27

3.3.1 Types of addresses

IPv4 has 3 types of addresses:
• Unicast - Communication one-to-one. One originator sends data to one spe

cific destination.
• Multicast - Communication one-to-many. One originator sends data to mul

tiple destinations identified by a specific group address (an example could be
video streaming).

• Broadcast - Communication one-to-all. One originator sends data to all the
stations belonging to the specific address space.

IPv6 defines similar address types. Unicast and multicast preserve the same
functionality as in the case of IPv4. However, broadcast is not defined. For the
purpose of sending data to multiple sources, multicast is used. Apparently, broadcast
would cause extensive packet flooding across the network and would lead to waste
of computational resources. There exist special types of multicast addresses that
represent, for example, all hosts or all routers in the network. They are used in
certain protocols (e.g. Neighbor Discovery protocol). The third type of address
defined in IPv6 is any cast. The communication works on the principle one-to-
closest. Packet is sent to a specific group, however, only the closest (often physically
located as there is the shortest delay) node will receive the packet. This mechanism
can be used when users are accessing C D N (Content Delivery Network). Data
centers are defined with the same IP address, but they are distributed all around
the world. Users are redirected to the closest destination to experience the best
performance. Load balancing and availability (redundancy) are ensured using such
mechanism. Anycast is often closely bound to DNS (Domain Name System) [18],
[21].

3.3.2 Subtypes of unicast addresses

Interface running IPv6 can have assigned, unlike in case of IPv4, more than one
address, which is also necessary for a client to be able to communicate to the internet.
There are following types defined:

• Unspecified Address - This type of address consists of all zeros (0:0:0:0:0:0:0:0
or simply ::) and represents the absence of address. A node has to generate
the address itself or get one assigned.

• Loopback Address - This address [0:0:0:0:0:0:0:1 or ::1) is used for the local
communication inside a node (packets with this either source or destination
address never leave the node).

• Global Unicast Address - Represents a unique address across the whole
internet. The address space currently reserved is 2000::/3 (actually range

28

0x2000 to 0x3fff). It can be seen as an equivalent to the IPv4 public addresses,
therefore it is routable via internet. It is composed of the 3 main parts:

— Global Routing Prefix - This is an equivalent to the IPv4 network
address, 48-bit value assigned by the I A N A (Internet Assigned Numbers
Authority) 3. It is desired to accumulate the close address ranges physi
cally nearby to exploit aggregation and reduce routing table entries.

— Subnet ID - 16-bit value is reserved for the subnetting. Unlike in IPv4,
where subnetting was done in a way that bits were borrowed from the
host part, IPv6 has allocated portion for such purpose. Each organisation
with assigned address space can create its own globally unique subnets.

— Interface ID - 64-bit value to uniquelly represent each device (interface).
It is also possible to borrow bits and create subnets from this range, but
only with local validity.

The address can be configured in 3 ways: manual configuration, automatically
generating interface ID to the obtained network prefix (stateless address auto-
configuration) or getting the address assigned from a DHCPv6 server (stateful
DHCPv6). Most commonly, devices generate their own identifier. This does
not apply only for the global address, but also for others (i.e. Link-Local and
Unique Local). Device can generate the identifier randomly, which is used for
generating temporary and constant addresses. Temporary addresses are usu
ally used for the outgoing connections, constant addresses for the incoming.
Another approach is Modified EUI-64 (Extended Unique Identifier) which is
a standard defined by the IEEE (Institute of Electrical and Electronics Engi
neers) organisation. This method uses certain identifier of an interface, e.g.
M A C (Media Access Control) address in Ethernet network. M A C address is
48 bits in length, therefore 16 additional bits must be added. The constant
value Oxfffe is inserted between the two halves4 of the M A C address and 7th
bit (called also U bit) is inverted. Final value of this bit corresponds to the
global scope if it is set to 1 or the local scope when set to 0 [18], [22], [23],
[24].

• Link-Local Address - These addresses are valid only within a single link
(local scope of subnet). Each device must have one and can use the same
Link-Local address across multiple interfaces. They can be used for a com
munication between devices inside Ethernet network and for the purposes like
Neighbor Discovery or communication with DHCPv6 server to obtain the ad-

3Hierarchically assigned to a RIR (Regional Internet Registry), then a LIR (Local Internet
Registry) and finally to the customer.

4First half (24 bits) represents OUI (Organizational Unique Identifier) which uniquelly identifies
the manufacturer of the NIC (Network Interface Controller) and the latter part is a serial number.

29

dress. Link-Local addresses are always generated by the devices themselves
after activating IPv6 protocol. It has a specific structure: first 10 bits have
constant value 1111111010b, they are followed by 54 zeros and the last 64 bits
represent the interface identifier. The address space reserved is fe80::/10 (ac
tually range 0xfe80 to Oxfebf). Packets with these addresses are never for
warded by the routers.

• Unique Local Address - This is an equivalent of the private IPv4 addresses.
Unique Local addresses are used for the communication only within one net
work or for the communication among multiple networks that are under the
same administration and routing can be secured. These addresses should never
reach internet. The address space reserved is fc00::/7 (actually range OxfcOO
to Oxfdff). The address is composed of constant bit string 1111110b followed
by the L bit, which should be set to 1 to be valid.

• IPv4 Embedded Address - This type of addresses is used to carry an IPv4
address inside an IPv6 address which is one way to make the transition from
IPv4 to IPv6 simpler (or ensure their coexistence). The address is made of
80 bits set to zero, followed by the constant Oxffff and finally padded with
the IPv4 address. A n interesting fact is that first 96 bits are represented
in hexadecimal notation while the last 32 bits (the IPv4 address) in dotted-
decimal notation. IPv4 address does not have to be unique over the internet
[18], [22], [23].

3.3.3 Multicast addresses

Multicast addresses are used, in a similar way to IPv4, to identify a group of devices
(interfaces) that should receive the same content. Real-time services, such as mul
timedia content sharing (e.g. video streaming), are a typical example. The address
space reserved is ff00::/8. The structure is defined as a string of 8 bits set to value 1.
This sequence is followed by 4 bits representing the flags designated as ORPT. The
first flag is always set to 0 and for example the T (transient) flag represents the
well-known addresses assigned by the I A N A , which are permanent (value 0) or tem
porary addresses, dynamically assigned by the application (value 1). The examples
of well-known addresses are ff02::l representing all the devices on a link with IPv6
enabled and ff02::2 representing only the routers on the link with IPv6. Then, 4 bits
expressing the scope come after the flags. There are 16 possible values, some of them
unassigned. Value 0x2 represents a Link-Local scope, 0x5 Site-Local scope and OxE
Global scope. At last, 112 bits define a group identifier. Multicast addresses are
used to identify a destination, not a source [18], [22], [23].

30

3.4 Internet Control Message Protocol version 6

ICMPv6 (Internet Control Message Protocol version 6) is a network protocol serving
for many purposes such as reporting faulty states, testing reachability of hosts and
exchanging service information. ICMPv6 is a basic building stone of IPv6, therefore
every node in such networks must support it. This protocol incorporates much more
features than its equivalent in IPv4. These could be mechanisms such as Neighbor
Discovery, distribution of prefixes for automatic address configuration, reporting to
multicast groups etc. The structure of an ICMPv6 message is shown in the Fig. 3.2.

Type Code Checksum Message Body

8b 8b 16 b

Fig. 3.2: Basic structure of ICMPv6 message.

Following items are present inside ICMPv6 message:

• Type - 8-bit field classifies a message and in turn how the remaining items
(Message Body) is formatted. Based on the value, ICMPv6 messages can
be divided into error messages group (values 0-127) and informational
messages group (values 128-255).

• Code - 8-bit value, which indicates specific message inside the particular
group of messages based on the type field.

• Checksum - 16-bit field to check the correctness of a received message. If
the checksum performed by the receiver does not correspond to this value, the
packet is dropped and the originator is informed with an error message.

• Message Body - The length of this field varies as the content changes ac
cording to the Type and Code fields.

The error messages can be further divided into 4 subgroups. The first group,
Destination Unreachable, is sent by routers that encounter impossibility in deliv
ering packets further to a destination. The reasons might be unknown destination,
firewall rules, corrupted following node (either due to address or port) in the path
etc., each of which has its own code. The second group, Packet Too Big, as the
name suggests, informs the source that a packet cannot be delivered due to its size
exceeding the M T U of a link. As described earlier, IPv6 routers cannot fragment
packets (from other sources) unlike in IPv4. The third group, Time Exceeded,
there are 2 cases which might occur (identified by their own codes). The first one
is when the Hop Limit reaches value 0 and the second one when all the fragments

31

do not arrive in time to the router. The last group, Parameter Problem, desig
nates the problem with processing message at the receiver side. There are 11 codes
defined, for example wrong header field (code 0) or unrecognized Next Header type
(code 1).

The information messages cover standard use case for testing reachability of
nodes. There are 2 types, Echo Request and Echo Reply. Both messages con
tain Identifier, Sequence Number and Data fields inside Message Body to uniquelly
identify which responses belong to particular requests. There are special queries de
fined in the R F C 4620, which allow sender to obtain information about an address
or name of a target node. This resembles DNS functionality, but the intention is
not to replace DNS in global scope, but rather provide an alternative to find such
information in case DNS is not working properly [18], [25], [26].

3.5 Neighbor Discovery for IPv6

ND (Neighbor Discovery) is a protocol defined in the R F C 4861 [27]. It encompasses
many functions in IPv6 networks. One of them is the replacement of A R P (Address
Resolution Protocol) protocol, which is used to discover a M A C address of a de
vice inside IPv4 Ethernet network. The other purposes are discovering neighbors,
routers, updating information (regarding M A C addresses), detection of duplicit ad
dresses and delegating information (using specific type of messages), like prefix and
certain flags, to the nodes for the automatic address configuration [18], [26].

3.5.1 Neighbor MAC address resolution

If a device is connected to the Ethernet network, detects that a destination belongs to
the same network and the M A C address is not known, the Neighbor Solicitation
message is generated. Its structure is shown in the Fig. 3.3.

Type Code Checksum Reserved Target Address Options

8b 8b 16b 32 b 128 b

Fig. 3.3: Basic structure of ICMPv6 Neighbor Solicitation message.

• Type - 8-bit field set to value 135.
• Code - 8-bit field set to value 0.
• Checksum - 16-bit value representing standard ICMPv6 checksum.

32

• Reserved - 32-bit value set to all zeros by the sender. This field is not used
for useful data and therefore is not analyzed by the receiver.

• Target Address - A n IPv6 address of a node whose M A C address is desired.
• Options - A sender has an option to include his own M A C address inside the

Neighbor Solicitation message [28].
The Neighbor Solicitation message is sent to a special multicast address, called

solicited-node multicast address, when searching for a M A C address. There is
constant prefix ff02:: 1 :ff00:0/l04, where the last 24 bits are taken from the target
IPv6 address. When host simply tests the reachability of a target, unicast address of
the target interface is used. The source address is usually an IPv6 address belonging
to a particular interface or can be the unspecified address.

When this message is received by a target, it responds with the Neighbor
Advertisement message. Another use case is when a host wants to inform other
nodes about the changes, for example when a new address is configured on an
interface and the host sends an update about reachability via its M A C address. The
structure is shown in the Fig. 3.4.

Type Code Checksum Flags Reserved Target Address Options

8b 8b 16b 3b 29 b 128 b

Fig. 3.4: Basic structure of ICMPv6 Neighbor Advertisement message.

• Type - 8-bit field set to value 136.
• Code - Same as for Neighbor Solicitation.
• Checksum - Same as for Neighbor Solicitation.
• Flags - There are 3 flags defined to characterize a message:

— R The sending host is router if set to value 1.
— S - Solicited flag indicating that the message is sent as a response to the

Neighbor Solicitation, if set to value 1.
— O Override flag, where sender should update already existing Neighbor

Cache entry and update the link-layer address stored inside cache, if set
to value 1.

• Reserved - Same as for Neighbor Solicitation, but the length is smaller by
flags.

• Target Address - Remains unchanged when answering the Neighbor Solici
tation, sets its own IPv6 address when sending an update.

• Options - M A C address of a sender [28].

33

The destination address is either unicast (IPv6 address of the host who sent the
Neighbor Solicitation) or multicast address ff02::l representing all the nodes on the
link. The source address is the IPv6 address of a particular interface [26], [27].

3.6 Automatic address configuration

There are 2 ways of configuring an IP addresses on the devices. A n administrator
can assign the address statically, which means he selects the address and configures
the device accordingly. However, this approach is not sufficient for large networks,
where hundreds of clients connect every day and their number might exceed the
total amount of available addresses. Currently, static addresses are used for the
router's network interfaces, servers, printers and other devices that do not change
location and are regularly accessed by the users. Regarding clients, more common
way of configuration is dynamic. As users change in time, it is appropriate to
assign an address temporarily and when a client disconnects, its original address
can be used for another. In IPv4 networks, D H C P (Dynamic Host Configuration
Protocol) protocol is used for such purpose. The pool of addresses is defined, clients
get the addresses assigned mostly temporarily and when they leave, the addresses
are returned back to the pool. However, IPv6 comes with more innovative ways of
configuring the dynamic IP addresses [18], [26].

3.6.1 SLAAC

S L A A C (Stateless Address Autoconfiguration) is a mechanism that allows the ad
dress configuration based solely on the communication between a client and a router.
Client either contacts a router with the Router Solicitation message and
sponse, it receives the Router Advertisement message, which includes all the nec
essary parameters (basically flags and prefixes). Another way is that the Router
Advertisement messages are sent regularly to the network by the routers, therefore
there is no necessity to prompt the router [18], [26].

Router Solicitation

The structure of a message is very similar to the Neighbor Solicitation, however there
is no Target Address field and options follow after the reserved part. The Type of
the message is set to the value 133 and it is sent to the multicast address covering
all the routers on a network (ff02::2).

34

Router Advertisement

As mentioned before, Router Advertisement messages are sent to the network auto
matically by the routers (regularly based on the set interval), or as a response to the
Neighbor Solicitation messages. As a response, the message is sent directly to the
node which initiated the whole communication. When sent in a predefined interval,
the destination is multicast address representing all the nodes on the link (ff02::l).
The structure is displayed in the Fig. 3.5.

Type Code Checksum Cur Hop Limit Flags Router Lifetime Reachable Time Retrans Timer Options

8b 8b 16b 8b 8b 16b 32 b 32 b

Fig. 3.5: Basic structure of ICMPv6 Router Advertisement message.

It consists of the following fields:
• Type - 8-bit field set to value 134.
• Code - 8-bit field set to value 0.
• Checksum - 16-bit field used to check if there were no errors during the

transmission.
• Cur Hop Limit - 8-bit field indicating what value should be set in the IPv6

header (Hop Limit field) to limit the number of routers packet can travel
through.

• Flags - 8-bit field consisting of the following flags:
— M The 1-bit M flag stands for Managed address configuration and if

set to 1, a client should contact a DHCPv6 server to obtain an address
and other configuration parameters.

— O The 1-bit O flag stands for Other configuration and if set to 1, a client
should generate an IP address himself and contact a DHCPv6 server to
obtain additional information like the DNS server addresses.

— H The 1-bit H flag stands for Home agent. When set to value 1, router
acts in the role of Mobile IPv6 home agent on the link.

— Prf - The 2-bit field representing the preference of implicit routers.
— P The 1-bit P flag stands for Proxy and if set to 1, router acts as

a proxy in the ND protocol.
— Reserved - 2-bit value set to all zeros (currently unused).

• Router Lifetime - 16-bit value representing the time in seconds, how long
the router will be implicit in the given network.

35

• Reachable Time - 32-bit value representing the time in milliseconds, which
indicates how long the sender can be assumed as reachable after testing the
reachability.

• Retrans Timer - Similarly to the Router Lifetime, 32-bit value in millisec
onds, which represents time between 2 Neighbor Solicitation messages.

• Options - In the Options field, useful information for the configuration are
carried. There can be M A C address, M T U and most importantly, prefixes
representing the network portion of the address to be used. A n option to
distribute addresses of DNS servers was newly added.

When a client receives the Neighbor Advertisement message, it can possess all
the useful information to configure the necessary parameters (it generates its host
identifier to the given prefix), or based on the flags (M, O) contact the DHCPv6
server for the whole configuration or just additional parameters [18], [26].

3.6.2 DHCPv6

As discussed earlier, dynamic configuration is essential in today's networks. It is
both convenient and effective to use D H C P servers for the IP address (and other
necessary parameters) assignment. In IPv4 networks, clients do not have other op
tion (omitting static configuration and special address ranges like APIPA) to receive
an IP address than contacting a D H C P server and leasing one. The communica
tion is viable by unicast (mostly from the server side) or broadcast (mostly from
the client side). Until the lease, they have unspecified address and their unique
identification is based solely on the physical address. In the IPv6 networks, the
situation is quite different. Users have ways to generate their own addresses and
the initial communication is with router from which all the necessary details are ob
tained. Clients can obtain full configuration without being in touch with a DHCPv6
server at all. This depends on the flags in the Router Advertisement message. As
IPv6 does not support broadcast, special multicast addresses are reserved for the
purpose of D H C P communication. These are ff02::l:2 representing all the D H C P
relay agents on the local link and ff05::l:3 representing all the DHCPv6 servers.
Regarding the unique identifier of a client, IPv6 does no rely on M A C addresses,
but uses special identifiers called DUID (DHCP Unique Identifier) instead. These
should be unique across all the clients and servers and should not change in time.
There are more ways of creating these identifiers. This can be left on the manufac
turers, where part of the ID is made of the number representing the manufacturer,
and the latter part consists of the assigned number specific to that device. Another
way is to combine the Link-Local address with the timestamp of its creation and its
consecutive storage. The last method is to use the Link-Local address itself. DUID

36

uniquelly defines client, but various interfaces are distinguished by the IA (Identity
Association). These identifiers are necessary when D H C P configuration should be
obtained for more interfaces on the same client [18], [26].

Stateful configuration

In a similar way to IPv4 networks, clients obtain the whole configuration from
a DHCPv6 server. If the M flag inside Router Advertisement message is set to
binary value 1, the client knows it should approach the DHCPv6 server to receive
all the parameters. There are 4 messages exchanged to fulfill the standard way
of communication5 - SOLICIT, ADVERTISE, REQUEST, REPLY. A client sends the

SOLICIT message containing its DUID and IAs. It uses its Link-Local address as
the source and destination address of the D H C P relay agents (ff02::l:2). When
a server (or more servers) receive the message, they reply with the ADVERTISE,
where the configuration parameters like IP address, prefix etc. are specified. If
more servers are present, the messages may carry also the information about the
server preference. Both source and destination addresses are unicast (Link-Local
in case of the client, but can be also in case of the server). The client receives all
the responses, selects one and answers with the REQUEST message, indicating that
he wishes to use this specific configuration. This is sent again to the D H C P relay
agents multicast address, but specific server is identified by its DUID. If the server
accepts this assignment, it informs the client using the REPLY message. After all
these steps, the client can communicate using the given parameters [26].

Stateless configuration

When the client receives a Router Advertisement message carrying flags M set to 0
and O set to 1, this indicates that the address should be auto-configured using one
of the available mechanisms to generate the host identifier. For other information,
like the DNS server addresses, he should contact appropriate DHCPv6 server. The
communication is similar, except that only 2 messages, REQUEST and REPLY, are
transmitted [26].

3.7 Multicast Listener Discovery

M L D (Multicast Listener Discovery) is the IPv6 protocol used by the clients to
report membership to the specific multicast groups for the routers. In order for
multicast routers to function correctly, they have to know if there are any clients

5This is the same for IPv4 networks, but there are slight changes in names of the messages.

37

listening to the specific multicast traffic so they do not overload the network with
an unnecessary traffic. The equivalent protocol in IPv4 networks is IGMP (Internet
Group Management Protocol). There are 2 versions of M L D protocol, M L D v l and
MLDv2, where M L D v l is considered to be an equivalent to IGMPv2 and MLDv2 is
an equivalent to IGMPv3. Both versions of M L D protocol use 3 types of messages,
Query, Report and Done, but their numbers differ. The Next Header value inside
ICMPv6 header is set to value 58, devices use Link-Local addresses as the source
address and the Hop Limit is set to value 1, so the packets do not travel beyond the
reach of 1 router [26], [28].

3.7.1 MLDvl

M L D v l is more simple protocol in a way that clients only report their membership
in specific groups. There is no way of further specifying options like filtering only
certain sources. When client enters a multicast group, it sends a packet with the
destination address of the group. On the contrary, when a client leaves a group,
it sends a packet with the destination of all routers address (ff02::2). The packet
structure is shown in the Fig. 3.6.

Type Code Checksum Maximum Response Delay Reserved Multicast Address

8b 8b 16b 16 b 16 b

Fig. 3.6: Basic structure of M L D v l packet.

There are following items:
• Type - 8-bit item. As mentioned in the introduction to the M L D protocol,

there are 3 types. The Query message used by the routers has value 130 and
there are 2 different query messages. General Query is used to discover clients
listening to any multicast addresses (sent to multicast address ff02::l) and
Multicast-Address-Specific Query is used to query specific multicast address,
if it has any listeners (sent to multicast address of the group). Then Report
message with value 131 is used by the clients to report membership in the
specific multicast groups. When users leave a group, they send Done message
with value 132.

• Code - 8-bit item set to value 0 by a sender.
• Checksum - Standard 16-bit checksum.
• Maximum Response Delay - 16-bit item set in the Query messages by

routers. This is the time in ms, which represents the maximum delay for

38

the clients to wait before sending the Report messsage as an answer to the
Query. Each client generates random initial value for the timer. If it receives
the Report message for the given multicast group from other client, it stops
counting and does not send its Report. Otherwise, after reaching the Maxi
mum Response Delay, it sends its Report. The timer is set for each individual
multicast address.

• Reserved - 16-bit item set to 0 by a sender.
• Multicast Address - A sender of either of the messages specifies here the

multicast address of interest. The only exception is General Query message
sent by a router, where the value is set to 0 [28].

3.7.2 MLDv2

MLDv2 is more advanced protocol in a way that it enables a client to specify the
sources from which the multicast traffic is desired to be received, or, on the other
hand, the sources that the client does not wish to receive from. The protocol is
also defined in the new R F C (Request for Comments) document 3810 [29], which
updates original M L D in R F C 2710. The filtering can be done in 2 ways. The
INCLUDE filter works in a way that only the addresses mentioned in the record will
be accepted as the source point of communication for the given multicast, others will
be rejected. In the EXCLUDE filter, the multicast communication will be accepted
from all the sources except for the ones specified in the record. These filters are
sent in the Report messages to the ff02::16 address, which represents all the routers
supporting MLDv2. The structure of Report packet is displayed in the Fig. 3.7 [26].

Type Code Checksum Reserved Number of Multicast Address Records Multicast Address Record ... Multicast Address Record

8 b 8 b 16 b 1 6 b 1 6 b 160 b

Record Type Aux Data Len Number of Sources Multicast Address Source addresses Auxiliary Data

8 b 8 b 1 6 b 128 b

Fig. 3.7: Basic structure of MLDv2 Report packet.

There are items items with similar meaning as in M L D v l (yellow boxes) and
items specific for each filter record (blue boxes). Then follow addresses for filtering.
The meaning of each item is described bellow:

39

• Type - 8-bit field set to value 143.
• Code - 8-bit field set to value 0.
• Checksum - Standard 16-bit checksum.
• Reserved - 16-bit field set to value 0.
• Number of Multicast Address Records - 16-bit field representing the

number of Multicast Address Records (represented by blue + green fields)
that are included in the message.

• Record Type - 8-bit field representing the type of a filter. The possible
values are:

- MODE_IS_INCLUDE (1)

- MODE_IS_EXCLUDE (2)

- CHANGE_TO_INCLUDE (3)

- CHANGE_T0 _EXCLUDE (4)

- ALL0W_NEW_S0URCES (5)

- BL0CK_0LD_S0URCES (6)

• Auxiliary Data Length - 8-bit field that contains information about the
number of auxiliary data (32-bit words) added to this Multicast Address
Record.

• Number of Sources - 16-bit field giving information about the number of
source addresses carried in this record.

• Multicast Address - 128-bit field containing the multicast address the record
is concerning.

• Source Addresses - List of source addresses concerned in this record, whose
number corresponds to the Number of Sources field.

• Auxiliary Data - Additional data about the record [29].
There are 2 typical cases of using filters for clients. When a client joins a new

multicast group, he sets the record type to MODE_IS_EXCLUDE without specifying
any source addresses, therefore it will listen to all the sources. When the client is
leaving a group, he sets the record type to CHANGE_TO_INCLUDE without specifying
any source addresses, therefore it will not accept any source. Query messages are
similar to those of M L D v l , but router has options to set specific multicast group
addresses together with the sources the clients are supposed to listen to for specific
query [26].

3.8 IPv6 in operating systems

It was already discussed that IPv4 has insufficient address space according to the
needs of the today's world. As the number of users and devices grows larger and
wireless sensor networks experience great development, there is need to come with

40

new addressing scheme as IPv4 addresses were already depleted in 2011. IPv6 solves
this problem and it is assumed that the address space of approximately 340 undecil-
lion addresses will be large enough, even with regards to the far future.

Large companies (i.e. Google, Meta, Netflix etc.) started offering their services
via IPv6, therefore it was no longer possible for ISP (Internet Service Provider)
companies to disregard this new protocol and they had to adapt their infrastructures
accordingly. Not only the intermediate devices across the internet must support
IPv6, but it is also necessary for the end devices. This responsibility falls on the
companies developing operating systems. Probably the most well known enterprises
are Microsoft (Windows operating system), Apple (macOS operating system) and
various distributions of Linux operating system developed by different organisations
(i.e. Red Hat, Canonical, SUSE or even developers all around the world as vast
range of distributions is open-source) [30].

3.8.1 Linux

Most of the Linux distributions support IPv6 protocol in a default state after the
installation, therefore there is no need to activate it manually. To verify the state,
i f conf i g command can be used. It displays all the available interfaces with their
corresponding addresses. For the standard network interfaces, Link-Local address
could be checked, because this is the only mandatory address an interface should
have. Another way is to check the loopback interface, which should have the address
::1/128 assigned. This way IPv6 protocol support may be verified. In case none
of these is available, it is possible that the Linux kernel does not support IPv6,
even though it is very unlikely today, or it might be necessary to edit the kernel
configuration and finally build and install it with necessary modules. The practi
cal commands to perform static/dynamic configuration of the IPv6 addresses are
demonstrated in the Numerical results chapter [26].

3.8.2 Windows

Microsoft has originally implemented support for IPv6 protocol to Windows X P
(Service Pack 1) and to Windows Server 2003, however, the protocol had to be
manually enabled and configured using certain commands. The later versions of
Windows (for example Windows 7, Vista or Windows Server 2008), or even Win
dows X P with Service Packs higher than 1, had IPv6 with DHCPv6 support en
abled by default. The verification of IPv6 configuration can be done in several
ways. One of them is using GUI. The other way might be using command in C M D
(Command Prompt) i p c o n f i g / a l l to see IPv6 addresses configured on the in
dividual interfaces, or netsh i n t e r f a c e ipv6 show i n t e r f a c e to display all the

41

interfaces supporting IPv6. To display only the IPv6 addresses across all the in
terfaces, netsh i n t e r f a c e ipv6 show addresses command can be utilized. The
practical commands are demonstrated in the Numerical results chapter [26].

3.8.3 macOS

The macOS operating system has IPv6 protocol enabled by default. The configu
ration can be displayed using the i f c o n f i g command or GUI designed in a user
friendly fashion. A l l of the configurations of the IPv6 addresses are very similar
to the Linux distributions configuration, because macOS is a Unix-based operating
system, however macOS is a proprietary software of the Apple company, while Linux
is generally open-source [31], [32].

42

4 Numerical results
The practical part of this thesis is described in the following sections. After creating
the GNS3 topology, connectivity was tested using the IPv4 static addresses, then
the DHCPv4 server and IPv6 was configured on the router, so that the addresses are
automatically distributed / generated by the virtual machines. Developed scripts
for verification of the ptnetinspector tool are described in the Chap. 4.3. In the
upcoming examples, only 4 virtual machines plus router are used for the testing
scenario demonstrations: Kal i , Windows 10, Windows 11 and Ubuntu, see Fig. 4.1.
This is due to clarity and the length of output results. Their addresses are displayed
in the Tab. 4.1. The whole topology is much larger, as can be seen in the Fig. 4.2.
The V M s for testing scenarios are highlighted with colored squares. This topology
is used for the research of operating systems responding to different IPv6 flows and
to compare the developed scripts with ptnetinspector. The addresses for various
operating systems are displayed in the Tab.4.2 and for Windows 10 different builds
in the Tab.4.3.

4.1 ptnetinspector tool

As the basis of this thesis, networking tool called ptnetinspector is used. The ap
plication designed for Kali Linux was developed by another student [33]. It is able
to scan the network by generating IPv6 messages of various protocols, capture the
response and print out all the found devices together with their addresses. Basically
3 modes are possible to run that are also utilized in this thesis:

• Passive mode - No messages are generated in this mode, only the traffic
going to the network interface is sniffed and further analysed. Outgoing traffic
is cut by disabling IPs.

• Active mode - Traffic is generated in this mode and the responses together
with other traffic are stored for the inspection. Queries for the protocols like
M L D , mDNS and L L M N R are sent as well as Router Solicitation messages,
multicast pings, malicious ping (destination type 128) etc.

• Aggressive mode - When running this mode, Kal i proclaims itself as the
router device and distributes Router Advertisement messages with default high
priority. Machines in the topology thus redirect the traffic to this fake router.

The ptnetinspector tool was assessed running 5 proposed testing scenarios in all
3 supported modes. 3 scripts were further developed to verify the tool from the
perspective of resource utilization and correctness of the output results. During
the verification of results step, the scripts undergo large-scale testing across various
operating systems.

43

4.2 Testing topology

The topology created in GNS3 for the testing purposes is shown in the Fig. 4.1. It
consists of 6 devices: Kali Linux (version 2023.3) machine which is used as the source
point of communication chain and three clients in the testing array - Windows 10
(22H2), Windows 11 (22H2) and Ubuntu (version 22.04.03). The intermediate de
vices in the topology are Ethernet switch that connects all the devices on the local
scope and the Cisco router. The last node, Cloud, is used to connect the topology
to the internet.

>B (D j >- • • C B B • o / ft ® Q.®

5 «

WindowslO-1 Windowsl l -1

* Topclcgy Summary
Node

C cud!

- 9ri
Switchl

• Q Ubjiilu-'
Windowsl 0-1
Wincowsll-1

113;.168.138.128:50a;

r i DE5KTOP-3HATTLF CPJ 53.9%. FAM 97.0K
Q GNS3 VM (QNS3VM) CPU 100.0%, RAM 72£f%

Fig. 4.1: Designed topology in GNS3 for the proposed testing scenarios implemen
tation.

4.2.1 Connectivity check

First of all, it is important to check the connectivity whether the devices can com
municate with each other. V M s do not have direct access to the internet and there
is no D H C P server1 to automatically assign addresses, therefore manual way of the
address configuration is to be performed. Even though GUI can be utilized, CLI
(Command Line Interface) way will be demonstrated. The chosen IPv4 address
space is 192.168.0.0/24, i.e. private range from the C class. The default gate
way address 192.168.0.1/24 is chosen, which will be configured (according to the

1The router will be configured later to the role of DHCP server, but this section is used to show
the static configuration via command line.

44

WlndowslO W i n d o w s l l WIndowsXP wlndDi»s7

W i n d o w s m a c h i n e s Switch4 j

Ubuntu ArchLinux macOS Androidx86 openSUSE LinuxMint CentOS

L i n u x / U n i x m a c h i n e s

Win l0_1507 Win l0 _1511 Win l0_1607 Win l0_1709 Win l0_1809 Win l0_1903 Win l0_1909 W i n l 0 _ 2 0 0 4 Win lO_20H2 W i n l O _ 2 1 H l WinlO_21H2 WinlO_22H2

W i n d o w s d i f f e r e n t b u i l d m a c h i n e s

Fig. 4.2: Designed topology in GNS3 for the operating systems IPv6 response re
search.

Table 4.1: GNS3 V M addresses - testing scenarios implementation.

Device M A C L-L G U A

Router caOl.0906.0000 fe80::c801:9ff:fe06:0

2001:f:b:a::l/64
2001:f:b:a::l/64
2001:f:b:b::l/64
2001:f:b:c::l/64
2001:f:b:d::l/64
2001:f:b:e::l/64

Kal i 00:0c:29:b8:a9:4d fe80::20c:29ff:feb8:a94d -
Windows 10 00:0c:29:7b:c6:el fe80::3ea3:c740:13cb:39a3 2001:f:b:b::2/64
Windows 11 00:0c:29:2a:8e:72 fe80::e734:2b41:5223:b9c9 2001:f:b:b::3/64

Ubuntu 00:0c:29:49:04:db fe80::f396:bb03:162c:7a59 2001:f:b:b::4/64

topology image) on the router's interface fO/0 (which stands for FastEthernetO/0).
Public DNS server 8.8.8.8 is selected. Now the configuration of network interfaces
is performed:

• Kali Linux - The selected address is 192.168.0.10/24 and is configured in the
following way (however this way of configuration is only persistent until the
next reboot):

45

Table 4.2: GNS3 V M addresses - various operating systems.

Device M A C L-L G U A
Windows X P 00:0c:29:65:al:79 fe80::20c:29ff:fe65:al79 2001:f:b:b::5/64

Windows 7 00:0c:29:0d:49:53 fe80::fc97:2cll:b25:7el9 2001:f:b:b::6/64
Arch Linux 00:0c:29:8d:e4:6d fe80::3179:3a32:e87c:605c 2001:f:b:b::8/64

macOS 00:0c:29:ba:7f:b2 fe80::1480:8e66:1174:dbd3 2001:f:b:b::7/64
Android 00:0c:29:a8:5e:91 fe80::20c:29ff:fea8:5e91 2001:f:b:b::c/64

openSUSE 00:0c:29:86:f3:b4 fe80::20c:29ff:fe86:f3b4 2001:f:b:b::9/64
Linux Mint 00:0c:29:17:26:fe fe80::20c:29ff:fel7:26fe 2001:f:b:b::a/64

CentOS 00:0c:29:e8:8d:81 fe80::20c:29ff:fee8:8d81 2001:f:b:b::b/64

1 sudo i f c o n f i g ethO 192.168.0.10 netmask 255.255.255.0

2 sudo route add d e f a u l t gw 192.168.0.1

3 sudo sh -c "echo nameserver 8.8.8.8 > / e t c / r e s o l v . c o n f "

. Windows 10&11 - The selected address for Windows 10 is 192.168.0.20/24
and for Windows 11 192.168.0.40/24. As the sequence of commands is the
same but with different addresses, the configuration is shown only for the
Windows 10 client (command line must be run with administrator privileges):

1 netsh i n t e r f a c e ipv4 set address name="EthernetO 2"

- s t a t i c 192.168.0.20 255.255.255.0 192.168.0.1

2 netsh i n t e r f a c e ipv4 set dns name="EthernetO 2" s t a t i c

- 8.8.8.8

• Ubuntu - The selected address is 192.168.0.30/24 and is configured in the
following way:

1 nmcli connection add con-name " i p - s t a t i c " ifname ens33

- type ethernet i p 4 192.168.0.30/24 gw4 192.168.0.1

2 nmcli connection modify " i p - s t a t i c " ipv4.dns "8.8.8.8"

3 nmcli connection modify " i p - s t a t i c " ipv4.method manual

4 nmcli connection modify " i p - s t a t i c " ipv6.method manual

5 nmcli connection up " i p - s t a t i c " ifname ens33

• Router - The default gateway address is 192.168.0.1/24 (interface f0/0). The
router device is configured using the standard configuration method. The
sequence of commands looks as following:

46

Table 4.3: GNS3 V M addresses - Windows 10 builds.

Device M A C L-L G U A
Windows 10

1507
00:0c:29:0d:b2:e0 fe80::593e:cf0f:944a:b3d4 2001:f:b:b::al/64

Windows 10
1511

00:0c:29:4a:84:de fe80::48af:6aa7:e9db:71b9 2001:f:b:b::a2/64

Windows 10
1607

00:0c:29:lc:68:18 fe80::fc9c:7e8b:8b5e:8f8b 2001:f:b:b::a3/64

Windows 10
1709

00:0c:29:98:92:7a fe80::297f:f2a9:19c5:b5d4 2001:f:b:b::a4/64

Windows 10
1809

00:0c:29:ab:0f:fa fe80::c517:46a5:862a:f730 2001:f:b:b::a5/64

Windows 10
1903

00:0c:29:8d:ec:27 fe80::4145:cecl:9644:bl3e 2001:f:b:b::a6/64

Windows 10
1909

00:0c:29:56:c7:99 fe80::2827:affc:cl2b:b8c9 2001:f:b:b::a7/64

Windows 10
2004

00:0c:29:b0:16:cd fe80::89ea:822c:3f2c:a7e 2001:f:b:b::a8/64

Windows 10
20H2

00:0c:29:35:b9:9e fe80::a0f9:8849:799d:b269 2001:f:b:b::a9/64

Windows 10
21H1

00:0c:29:54:9c:36 fe80::ed58:d529:28ba:173b 2001:f:b:b::aa/64

Windows 10
21H2

00:0c:29:18:c7:87 fe80::4563:c33d:559b:7004 2001:f:b:b::ab/64

Windows 10
22H2

00:0c:29:4e:8c:88 fe80::a0e0:c25a:14a4:642e 2001:f:b:b::ac/64

1 R e c o n f i g u r e t e r m i n a l

2 R l (c o n f i g) # i n t e r f a c e fO / 0

s R K c o n f i g - i f) # i p address 192.168.0.1 255.255.255.0

4 R l (c o n f i g - i f) # n o shutdown

5 R K c o n f i g - i f)#exit

The router is also connected to the Cloud node (which in this case runs via
GNS3 V M whose interface is virbrO), therefore the configuration of fl/0 in
terface will be done via DHCP.

47

1 R l (c o n f i g) # i n t e r f a c e f l / 0

2 R l (c o n f i g - i f) # i p address dhcp

3 R l (c o n f i g - i f) # n o shutdown

4 R l (c o n f i g - i f) # e x i t

Until now, the configuration of interfaces was performed, but for the devices
to be able to reach the internet, NAT mechanism must be also configured on
the router. It can be achieved this way:

1 R K c o n f i g) # i n t e r f a c e fO/0

2 R l (c o n f i g - i f) # i p nat i n s i d e

3 R l (c o n f i g - i f) # e x i t

4 R K c o n f i g) # i n t e r f a c e f l / 0

5 R K c o n f i g - i f)#ip nat o u t s i d e

e R K c o n f i g - i f) #exit

/ R K c o n f i g) # a c c e s s - l i s t 100 permit i p 192.168.0.0

- 0.0.0.255 any

s R l (c o n f i g) # i p nat i n s i d e source l i s t 100 i n t e r f a c e f l / 0

^ o v e r l o a d

Finally, the gateway of last resort is configured and the configuration saved
(so it is not lost after the reset).

1 R K c o n f i g) # i p route 0.0.0.0 0.0.0.0 192.168.122.1

2 R l (c o n f i g) # i p domain-lookup

3 R l (c o n f i g) # i p name-server 8.8.8.8

4 R K c o n f ig)#end

5 Rl#copy r u n n i n g - c o n f i g s t a r t u p - c o n f i g

Arch Linux, openSUSE, Linux Mint and CentOS are configured statically by
editing network configuration files inside system specific network directories. Finally
the macOS is configured using the command:

sudo i f c o n f i g enO i n e t 6 2001:f:b:b::7 p r e f i x l e n 64 a l i a s

To verify the reachability, ping tests are issued from the Kal i machine. The
output is displayed in the Fig. 4.3. It can be seen that all the hosts are available on
the network. Capturing was also started on the link connecting Kal i with switch.
The results are displayed in the Fig. 4.4.

Depending on the computational resources of the physical machine (where GNS3
is running), one might notice random packet drop rate during connectivity testing.

48

•
File Actions Edit View Help

kal i@kal i -<

j — (k a l i © k a l i) - [~]
L-$ p i n g 192.168.0.1 -c 4
PING 192.168.0.1 (192.168.0
64 b y t e s f r o m 192.168.0.1:
64 b y t e s f r o m 192.168.0.1:
64 b y t e s f r o m 192.168.0.1:
64 b y t e s f r o m 192.168.0.1:

.1) 5 6 (8 4) b y t e s o f d a t a .
i c m p _ s e q = l t t l = 2 5 5 time=21.3 ms
icmp_seq=2 t t l = 2 5 5 time=10.6 ms
icmp_seq=3 t t l = 2 5 5 time=17.2 ms
icmp_seq=4 t t l = 2 5 5 time=15.2 ms

192.168.0.1 p i n g s t a t i s t i c s
4 p a c k e t s t r a n s m i t t e d , 4 r e c e i v e d , 0% p a c k e t l o s s , t i m e 3006ms
r t t min/avg/max/mdev - 10.615/16.082/21.298/3.845 ms

I— (k a l i © k a l i) - [~]
$ p i n g google.com -c 4

PING google.com (216.58.218.174) 56(84} b y t e s o f d a t a .
64 b y t e s from h e m 0 S s 0 7 - i n - f l 4 . l e l 0 0 . n e t (216.58.210.174): Icmp_seq=l t t l = 1 2 6 time=31.7 ms
64 b y t e s from m a d 0 6 s l 0 - i n - f l 7 4 . l e l 0 0 . n e t (2 1 6 .58.210.174): icmp_seq=2 t t l = 1 2 6 time=23.7 ms
64 b y t e s from h e m 0 8 s 0 7 - i n - f l 4 . l e l 0 0 . n e t (216.58.210.174): icmp_seq=3 t t l = 1 2 6 time=29.1 ms
64 b y t e s from m a d 0 6 s l 0 - i n - f l 4 . l e l 0 0 . n e t (216.58.210.174): icmp_seq=4 t t l = 1 2 6 t i m e = 2 G . l ms

— google.com p i n g s t a t i s t i c s —
4 p a c k e t s t r a n s m i t t e d , 4 r e c e i v e d , <d% p a c k e t l o s s , t i m e 3005ms
r t t min/avg/max/mdev = 23.682/27.635/31.729/3.035 ms

• — (k a l i ® k a l i) - [~]
I—$ p i n g 192.168.0.20 -c 4
PING 192.168.0.20 (192.168.0.20) 56(84} b y t e s o f d a t a .
64 b y t e s f r o m 192.168.0.28: i c m p _ s e q = l t t l - 1 2 8 time=5.37 ms
64 b y t e s f r o m 192.168.0.20: icmp_seq=2 t t l = 1 2 8 time=5.91 ms
64 b y t e s f r o m 192.168.0.20: icmp_seq=3 t t l - 1 2 8 time=6.02 ms
64 b y t e s f r o m 192.168.0.20: icmp_seq=4 t t l = 1 2 8 time=2.83 ms

— 192.168.0.20 p i n g s t a t i s t i c s —
4 p a c k e t s t r a n s m i t t e d , 4 r e c e i v e d , 0% p a c k e t l o s s , t i m e 3004ms
r t t min/avg/max/mdev - 2.832/5.031/6.017/1.293 ms

i — (k a l i ® k a l i) - [~]
L-$ p i n g 192.168.0.30 - C 4
PING 192.168.0.30 (192.168.0.30) 56(84} b y t e s o f d a t a .
64 b y t e s f r o m 192.168.0.30: i c m p _ s e q = l t t l = 6 4 time=3.92 ms
64 b y t e s from 192.168.0.30: icmp_seq=2 t t l = 6 4 time=5.15 ms
64 b y t e s f r o m 192.168.0.30: icmp_seq=3 t t l = 6 4 time=4.00 ms
64 b y t e s from 192.168.0.38: icmp_seq=4 t t l = 6 4 time=4.4B ms

192.168.0.30 p i n g s t a t i s t i c s
4 p a c k e t s t r a n s m i t t e d , 4 r e c e i v e d , 0% p a c k e t l o s s , t i m e 3005ms
r t t min/avg/max/mdev = 3.922/4.366/5.148/0.485 ms

I— (k a l i © k a l i) - [~]
I—$ p i n g 192.168.0.40 -c 4
PING 192.168.0.40 (192.168.0.48) 56(84) b y t e s o f d a t a .
64 b y t e s f r o m 192.168.0.40: i c m p _ s e q = l t t l = 1 2 8 time=30.1 ms
64 b y t e s f r o m 192.168.0.40: icmp_seq=2 t t l - 1 2 8 time=3.45 ms
64 b y t e s f r o m 192.168.0.48: icmp_seq=3 t t l = 1 2 8 time=5.1B ms
64 b y t e s f r o m 192.168.0.40: icmp_seq=4 t t l = 1 2 8 time=5.05 ms

192.168.0.40 p i n g s t a t i s t i c s
4 p a c k e t s t r a n s m i t t e d , 4 r e c e i v e d , <d% p a c k e t l o s s , t i m e 3007ms
r t t min/avg/max/mdev = 3.451/10.935/30.140/11.107 ms

Fig. 4.3: Ping command issued from Kal i machine.

If too much resources are allocated and all the V M s run at the same time, C P U
usage might get up to 100 %, which leads to GNS3 not being able to handle all the
communication. When running several (not all) virtual machines at the same time,
the communication runs uninterrupted.

By default, it is not possible to use ping utility to test connectivity from other
machine to Windows (both 10&11). The Windows machines have by default firewall
rules that block the incoming ICMP traffic, which was not initiated by the Windows
itself. But the traffic is allowed in the opposite direction (from Windows to other
machines). One must simply enable the prepared inbound rules for the incoming

49

http://google.com
http://hem0Ss07-in-fl4.lel00.net
http://mad06sl0-in-fl74.lel00.net
http://hem08s07-in-fl4.lel00.net
http://mad06sl0-in-fl4.lel00.net
http://google.com

3 3.90515G
51.908496
7 5.S96827
9 6.997679
17 15.033072
21 16.091926
25 17.
23 18.
232 295
235 296
23S 297
241 298
iTi 417
375 418
379 419
382 420

117204
118327
120378
118798
791163
792967
793879
795587
b483.'/

3.D2353G

I.1G8.6.1
2.168.G.1
2.168.9.1

5.58.218.174
5.58.210.174
5.58.219.174
5.58.210.174

ICMP 98 E
ICMP 98 E
ICMP 93 Echo (
ICMP 93 Edit
ICMP 98 Ethc
TTW 98 Frhr
ICMP 98 Echc
ICMP 98 Echc
ICMP 98 Echc
ICHP 93 Echo (
ICMP 93 Echc
ICMP 98 Echc
ICMP 93 Ethc
ICMP 93 Echc
ICMP 98 Ethc
ICMP 98 Ethc
1LMP 98 bchc
ICMP 98 Edit
ICMP 98 Echc
ICMP 93 Echo (

1/1924,

id=3xcce9, seci=4,

ttl=255 (request
t^l-255 [request
ttl=255 (request

11=255 (reuuifbl
tt1=126 (request
ttl=126 (request
til=126 (request

1024, ttl-126 (request
t-l=128 (request
ttl=128 (request
L.1=128 (requesl

1024, ttl=128 (request
til=54 (request in
til=54 (request in
t7l-S4 (request in

1024, ttl=64 (request i
til=128 (request i
ttl=128 (request i
t7l=128 (request i

1924, ttl=128 (reuuest

, 24)
n 2H)
i 231)
i 234)
, 237)
.n 249)
372)
375)
378)
i 381)
i 5/4)
, 579)

:s), 98 bytes captured [/84 t

: 192.163.0 "-, Est: 1?2.1£3.S.Iw
t Control Message Protocol

98 9c 29 t>8 39 ca 01 09 06 09 30 33 90 45 93
00 54 f2 43 40 B0 tf 01 88 09 c0 aS 30 01 c0 aS
90 9a 93 99 54 e8 4d K 09 01 e4 df 33 65 90 93
00 03 7c- o5 08 00 00 00 00 00 10 11 12 13 14 15

3043 16 17 IB 19 la lb 1c Id le It 29 21 22 23 24 25
26 27 28 29 2a 2b 2c 2d 2e 2f 39 31 32 33 34 35

3063 3fi 37

Fig. 4.4: Captured packets of Kal i ping in Wireshark.

ICMP traffic designated as ICMPv4-In 2 . The same applies for the IPv6 protocol
(ICMPv6-In).

4.2.2 IPv4 dynamic configuration

First, the IPv4 configuration is performed. D H C P server is configured on the router
and V M s are configured as the D H C P clients to obtain the addresses automatically.
This can be done in the following way:

• Kali Linux - To set Kal i as the D H C P client, the following command can be
executed:

i sudo sh -c "echo '\n# The primary network i n t e r f a c e \ n a u t o

^ ethO\niface ethO i n e t dhcp'

^ >>/etc/network/interfaces"

• Ubuntu - To set Ubuntu as a D H C P client, the profile is created using the
nmcli utility. It can be achieved by the following command sequence:

1 n m c l i connection add con-name "ip-dynamic" ifname ens33

^ type ethernet

2 n m c l i connection modify "ip-dynamic" ipv4.addresses ''

3 n m c l i connection modify "ip-dynamic" ipv4.gateway ''

2Beware of choosing the correct profile: either public, private, or domain.

50

n m c l i connection modify "ip-dynamic" ipv4.dns ' 1

n m c l i connection modify "ip-dynamic" ipv4.dhcp-timeout 15

nmcli connection modify "ip-dynamic" i p v 4 . m a y - f a i l no

nmcli connection modify "ip-dynamic"

^ c o n n e c t i o n . a u t o c o n n e c t - r e t r i e s 3

nmcli connection modify "ip-dynamic" ipv4.method auto

nmcli connection down " i p - s t a t i c " ifname ens33

nmcli connection up "ip-dynamic" ifname ens33

• Windows 10&11 - To set Windows 10 and Windows 11 as the D H C P clients,

the following commands can be executed (command line must be run with

administrator privileges):

1 netsh i n t e r f a c e ipv4 set address name="EthernetO 2" dhcp

2 netsh i n t e r f a c e ipv4 set dns name="EthernetO 2"

^ source=dhcp

• Router - The router must be configured to act as a D H C P server. The device

is configured using the standard configuration method in the following way:

R K c o n f i g) # i p dhcp excluded-address 192.168.0.1

R K c o n f i g) # i p dhcp p o o l LAN_VMs

Rl(dhcp-config)#network 192.168.0.0 255.255.255.0

R l (d h c p - c o n f i g) # d e f a u l t - r o u t e r 192.168.0.1

Rl(dhcp-config)#dns-server 8.8.8.8

Rl(dhcp- c o n f i g) # l e a s e 1

Rl(dhcp-config)#end

Rl#copy r u n n i n g - c o n f i g s t a r t u p - c o n f i g

To check the assigned addresses, the following command can be run:

Rl#show i p dhcp b i n d i n g

The possible output is displayed in the Fig. 4.5.

4.2.3 IPv6 SLAAC configuration

Next, the IPv6 dynamic configuration using S L A A C mechanism is shown. First of

all, router is configured in a way such that it sends R A messages containing prefix

periodically to the hosts, which in turn create their global unicast addresses. No

51

Rl#show ip dhcp binding
Bindings from a l l pools not associated with VRF
IP address Client-ID/ Lease expiration Type

Hardware address/
User name

192.168.0.2 ff29.b8a9.4d00.0100.
012c.cb7b.a200.0c29.
b8a9.4d

Oct 26 2023 08:22 AM Automatic

192.168.0.3 0100.0c29.7bc6.el Oct 26 2023 07:14 AH Automatic
192.168.0.4 0100.0c29.2a8e.72 Oct 26 2023 07:25 AM Automatic
192.168.0.5 0100.0c29.4904.db Oct 26 2023 07:58 AM Automatic
Rl#|

Fig. 4.5: R l D H C P binding.

additional flags will be set, therefore other details (e.g. domain name or DNS server)
will not be obtained3. It can be achieved this way:

R l (c o n f i g) # i p v 6 u n i c a s t - r o u t i n g

R l (c o n f i g) # i n t e r f a c e fastEthernetO/0

R l (c o n f i g - i f) # i p v 6 enable

R K c o n f i g - i f) # i p v 6 address 2001:F:B:A :l/64

R K c o n f i g - i f) # i p v 6 nd p r e f i x 2001:F:B A::/64

R l (c o n f i g - i f) # i p v 6 nd r a i n t e r v a l 10

Rl (c o n f i g - i f) # e n d

Rl#copy r u n n i n g - c o n f i g s t a r t u p - c o n f i g

With current configuration, there is no necessity for additional commands, all
the V M s will automatically generate their global unicast addresses based on the
provided prefix.

4.3 Scripts

In this section, the created scripts for testing purposes are explained. Each script
will be briefly introduced from the code perspective along with its flowchart. The
scripts are available as a part of the Appendix D (or alternatively available on the
public GitHub project).

4.3.1 Performance testing script

The first script is testing performance of the program from the point of view of
the runtime, C P U usage and the R A M usage. The program needs to be run with

3These details would be otherwise received from the DHCPv6 server.

52

http://ff29.b8a9.4d00
http://012c.cb7b.a200.0c29
http://0100.0c29.2a8e.72

2 flags, the -m flag is used for mode selection (p for the passive mode, a for the active
mode and a+ for the aggressive mode) and the -t flag is used for the time value in
seconds that the top utility will be checked for the program performance. The third
(optional) flag, -r, serves for the purpose of setting the number of runs. There are
mechanisms implemented ensuring the program must be run with the correct flags
and correct values. A n example of running the script is shown below, the active
mode, the measuring time 120 seconds and the number of 5 runs is chosen:

sudo . / p t n e t P e r f . s h -m a - t 120 - r 5

The flowchart is displayed in the Fig. 4.7. The script created for the purpose of
measuring resource utilization runs the program three times by default4 and captures
the statistics from the time and top utilities. The time is measured in ms and the
C P U usage shows current usage of 1 C P U core available. After series of tests, it
can be seen that the program briefly utilizes more than 1 core (which makes the
utilization over 100 % during sending all of the messages) and then listens to the
responses, which does not consume much resources. The longer the program runs,
the lower the average value as the peeks are observable only at the beginning. Kal i
has available 2 cores and 4 GB of R A M in the current V M configuration. As the
system has actually 3.89 GB of R A M available, that makes around 100 M B of usage
for program. A n example of output for the proposed scenario 5 in the active mode
is shown in the Fig. 4.6. A n example of code is shown in the Appendix B, the
rest of the code is present in the ptnetPerf.sh file (see Appendix D, or alternatively
available on the public GitHub project).

r — (k a l i ® k a l i } - [~ / D o c u m e n t s / p t n e t i n s p e c t o r

1— $ sudo ./ptnetPerf.sh - r a+ - t 180
Aggressive mode running ...
iniiniNiiiiiiiiiniNiiniuinm
Average runtime: 82.623 s
Average CPU usage: 14.157 %
Average RAM usage: 2.635 %

Fig. 4.6: Active mode scenario 5 - performance test script output.

1Can be changed using the -r flag.

53

Running the program n
times in a specific mode

•

Example of running the script in an
aggressive mode, measuring 120

seconds and choosing 5 runs
(3 by default without -r flag):

sudo ./ptnetPerf.sh -m a+ -t 120 -r 5

Example of running the script in an
aggressive mode, measuring 120

seconds and choosing 5 runs
(3 by default without -r flag):

sudo ./ptnetPerf.sh -m a+ -t 120 -r 5

Saving the results of
each run time command

to a temporary file

Saving the results of
each run top command

to a temporary file

Extract runtime values
from the temporary file
and calculate average

Extract C P U and RAM
usage values from the

temporary file and
calculate average

Print the results

t
Delete temporary files

Fig. 4.7: Designed performance testing script flowchart.

4.3.2 Traffic capturing script

The script made for running the ptnetinspector and capturing the traffic is called
as the subprocess from the Verification of results script (see the 4.3.3 section). It
starts by creating the folder where all the results are then stored. Basic command
to run the ptnetinspector with the selected mode (passive/active/aggressive) and
interface is created. Then additional parameters are added according to the mode.
The tcpdump process that stores its output in the P C A P N G file and standard error
in another file is started in the background. The process ID is stored in a separate
variable. By calling the command for the ptnetinspector, another process is run in the
background and the standard output and standard error are redirected to separate
files. The process ID is again stored. When the ptnetinspector process finishes, the
tcpdump process is killed with sending the SIGINT signal to the process.

54

Artificial delay is added so that the P C A P N G file has time to close correctly5.
The P C A P N G file is then read and all the packets (except the ones with source
M A C address corresponding to the interface where tcpdump was running), M L D ,
mDNS and L L M N R packets are extracted to separate files as well as the standard
error. The script contains several messages that inform a user about the current
stage of the script for the debug purposes. The flowchart of a script is shown in the
Fig. 4.8. A n example of code is shown in the Appendix C, the rest of the code is
present in the captPackets.sh file (see Appendix D, or alternatively available on the
public GitHub project).

4.3.3 Verification of results script

This script is used for analyzing the results of the Traffic capturing script and then
compare its results with the ptnetinspector.

The code is split into multiple parts (see the Fig. 4.9). At the top, it contains so
called Shebang so that the script can be run directly without necessity to specify the
interpreter when running from the console. Current interpreter is Python 3.11.5.

The next section contains classes. For analyzing the files created by the Traf
fic capturing script, OOD (Object-Oriented Design) is used. Each unique device
identified by its M A C address has 2 lists. The ip_addresses list contains all the
captured addresses and those extracted from the payload of mDNS, L L M N R pack
ets etc. The possible_ip_addresses list contains addresses extracted from the M L D
messages. The addresses are either replaced by its full representation (if captured
during the communication) or edited and filled with X symbols so that it matches
the results of ptnetinspector. As all the parameters are private, getters and setters
are created.

Following is the global variables section. Here the variables used across the whole
code are defined. Specifically, these are 2 dictionaries used for storing the results
of ptnetinspector and Traffic capturing script. The key is represented by the M A C
address and value by the Device object described in the classes section. Then there
is a list of addresses containing addresses ignored during the analysis and the list
storing the start time and end time of the ptnetinspector packet capturing6.

The next section is functions. Here all the functions used in the code are defined.
These functions are, for example, extract source IP, remove port number from the
IPv4, extract addresses from the ptnetinspector output etc. One function worth
mentioning is the one that extracts addresses from the L L M N R packets (payload).

5 Otherwise there were cases where reading failed, specifically when running the passive mode
no more than 10 seconds.

6The times are acquired from the temporary file using a function.

55

Create
CapturedPackets

directory

I

Detect mode and
create command

Start the ptnetinspector in the
given mode and save the stdout
to the 'ptnetOut.txt' and stderrto

the 'ptnetinspector_stderr.log' file

Start capturing packets using tcpdump
and store it in the 'capPackets.pcapng' file
and stdout in the 'tcpdump_stdout.log' file

Waitforthe end of ptnetinspector
process and finish capturing with

tcpdump

Extract all the packets from the PCAP,
save it to the 'ALL_Packets.txt' file,
stderrto the 'tcpdump_stderr.log'

Extract MLD packets from the PCAP,
save it to the 'MLD_report_Packets.txt'
file, stderrto the 'tcpdump_stderr.log'

Extract MDNS packets from the
PCAP, save it to the

'MDNS_Packets.txt' file, stderrto the
'tcpdump_stderr.log'

Extract LLMNR packets from the
PCAP, save it to the

'LLMNR_Packets.txt' file, stderrto the
'tcpdump_stderr.log'

Fig. 4.8: Designed traffic capturing script flowchart.

This was not an easy task as the addresses are not stored in the readable format
with repetitive pattern, but individual bytes must be analyzed. The possible cases
are A , A A A A and P T R records. P T R records are skipped in the analysis as their
addresses always appear inside A or A A A A records. The whole byte array must

56

Classes

Device

I
*

Global variables
uniqDevObjCapt
uniqDevObjPtnet

ignorelPs
times

Functions
extractMacO

ext ract Source I P()
ext ract MD N Sadd res ses 0

checkTimeStampO

Input parameters
mode

-duration
- interface

-nodel

Main code
Open files, call particular

functions and process the results

Fig. 4.9: Verification of results script code structure.

be analysed to search for a specific sequence. Then the size of an address and the
address itself follow (see Appendix A for the code illustration).

The next section deals with input parameters. In the beginning, the list of all
the available network interfaces is created. After that, the flags and other input
parameters available from the console are defined. There are compulsory as well as
optional arguments. The mode selection is realised with the positional arguments,
where further arguments are displayed based on the selected mode. In case that
the nodel argument is set, the subprocess running the Bash script is not called and
the analysis is performed using the files from the previous analysis. If the debug
argument is set, reporting notes are displayed throughout the entire script run, so
it is clear which step the script is currently working on. The interface selection is
one of the required steps. If the correct interface is selected, its M A C address is
automatically extracted. Otherwise a user is warned to select the one from the list

57

created at the beginning of this part. The help menu can be displayed using the -h
or —help flags.

Then the main code part is defined. In case that the nodel argument was not
given, the mode is analysed and the command structure is created. After that
the Traffic capturing script is started as subprocess and arguments are relayed to
the Bash script. If the script finished correctly and there was no error during the
ptnetinspector run, all the results are analysed. First, all the packets are analysed to
obtain all the individual devices (based on the M A C address) and their respective
source IP addresses (either IPv4 or IPv6). After that the ptnetinspector captured
results are analysed. Following is the analysis of individual IPv6 protocols, each with
different approach, except that time synchronization is checked for each packet to
avoid distorted results. After all these steps finish, the possible_ip_addresses set is
analysed to either remove already existing addresses or to fill them with ambiguous
symbols X .

Finally, the comparison of the two sets is performed. It is a two-way analysis,
therefore the ptnetinspector results are compared to the Traffic capturing script and
the other way around so that no address is missed. The results are then stored in
the file and displayed in the console.

The flowchart of the script is displayed in the Fig. 4.10. The code is present in
the verify Addresses.py file (see Appendix D, or alternatively available on the public
GitHub project).

58

Start the script with
desired parameters

Example:
sudo .AsrifyAddresses.py-i ethO mode a

Start the script with
desired parameters

Example:
sudo .AsrifyAddresses.py-i ethO mode a

Yes

Preserve the old files and use them
for analysis

Extract and p
ptnetinspector

ocess the old
;apturing times

Delete old 'Ca
foil

DturedPackets'
ler

Check if the ptnetinspectorfile
exists in the current folder

Detect mode and run the bash
script 'captPackets.sh' with giwn

parameters

Check if the b
successfully, if so
times of ptnetins

end the

ash script run
extract capturing
Dector, otherwise
program

Trawrse the 'Al
and obtain unique

with source 1

__Packets.txt' file
MAC addresses

P addresses

Process 'ptnetOut.txt' and obtain
the unique devices with their MAC

and IP addresses

Process 'MLD_report_Packets.txt'
and obtain group addresses

Process 'MDNS_Packets.txt' and
obtain addresses reported in the

payload

Process 'LLMNR_Packets.txt' and
obtain addresses from the bytes

Loop through possible addresses,
and if they are not already present

in the addresses, fill them with
XXXX:X...

Loop through the captured devices
and their respective addresses

and compare it to the
ptnetinspector output

Loop through the ptnetinspector
output and compare it to the
captured devices and their

respective addresses

Store the results in the
'CompareResults.txt' file

Fig. 4.10: Designed verification of results script flowchart.

59

4.4 Application testing methodology

Out of all the possible testing approaches, the performance testing was selected
as the most proper one from the non-functional testing category. The application
ptnetinspector will undergo testing for various scenarios and the performance will be
measured in time. The intended result is to observe the application run time, C P U
and R A M utilization, its response to diverse inputs and effectivity in processing
results.

4.4.1 Testing of Passive mode of the ptnetinspector

In the following points, the testing scenarios are presented. The selected approach
is to test the program's response to the increasing input load, which means higher
number of addresses used in the network by individual hosts. In the first testing
scenario, IPv6 is disabled on the Kali's interface. In the second scenario, passive
mode runs when all the stations (except for the router) are successively powered on.
In the third scenario, router still remains turned off and stations have configured
static global IPv6 addresses. In the fourth scenario, the configuration remains,
the router is powered on and delegates 1 IPv6 prefix. In the fifth scenario, router
delegates 5 prefixes.

It is important to note that all the hosts have not configured any static address
and are trying to reach the D H C P server (IPv4), which is running on the router, or
wait for the delegated IPv6 prefix to perform S L A A C , except for Ubuntu. To reach
this state on Ubuntu as well, the following commands must be applied to ensure
that correct profile is selected:

1 n m c l i connection modify i p - s t a t i c connection.autoconnect no

2 n m c l i connection modify ' P r o f i l e 1' connection.autoconnect no

1. The application will be started after temporarily disabling IPv6 on
the interface.
To disable IPv6 on the ethO interface, it is possible to use the following com
mand. This solution is valid only until the next restart (or until the value is
set back to 0). If the router, which would immediately start sending R A mes
sages and the operating systems would create their own global address from
the distributed prefix, is not started, only the Link-Local address is removed
from the interface.

i sudo s y s c t l -w n e t . i p v 6 . c o n f . e t h O . d i s a b l e _ i p v 6 = l

60

In this case, there is really no need to measure the execution time as one of
the input parameters is the duration for which the tool will be eavesdropping
on packets. As Kal i Linux was the only machine started in the topology, there
was no IPv6 communication captured. Another result discovered is that it
doesn't really influence the program execution to disable IPv6 in advance.

2. The eavesdropping begins when the rest of the machines (one after
another except for the router) are started.
To ensure that the Ubuntu machine has only the Link-Local address, the
following command must be entered:

i n m c l i con modify ip-dynamic ipv6.method l i n k - l o c a l

The duration was set to 5 minutes so there is enough time for all the machines
to boot correctly. The result of testing is displayed in the Fig. 4.11. In this
picture and all the following ones, the hosts are highlighted in the colored
frames. The program sometimes displays additional host with the M A C ad
dress 00:50:56:c0:00:02, which is the VMnet interface over which the physical
machine is connected with Kal i . It also generates addresses from the received
prefixes. The program was able to correctly identify all the machines in the
topology both with their IPv4 and IPv6 addresses. The 2 Windows machines
can be clearly recognized by their IPv4 address 169.254-X.X/16 as this range
is used when the dynamic configuration fails. Ubuntu does not use this range.
Each station starts with the Neighbor Solicitation messages to discover if there
is another station with the same generated Link-Local address in the network
already. After that, the Router Solicitation, M L D reports and the Neighbor
Advertisement messages are sent to the network. But there are also other
protocols, such as DHCP, mDNS, L L M N R , that were captured.
After initial querying, the regular messages of similar kind are sent from all
the machines. These are ICMPv6 messages conveying the Router Solicitation
and M L D Multicast Listener Report structures as well as mDNS and D H C P
protocols.

3. The same testing as in the scenario 2, but now each of the hosts has
static global IPv6 address besides Link-Local address.
In this case, all the Windows and Linux hosts will have configured static IPv6
addresses. The selected prefix is 2001:f:b:b::/64- On the Windows machines,
this can be achieved by using the following command (with adaptation to the
local interface and address):

i netsh i n t e r f a c e ipv6 add address "EthernetO 2"

- 2001:f:b:b::2/64

61

C- (k a l i @ k a l i) - [- / D o c u m e n t s / p t n e t i n s p e c t o r]
* i p a

l : Vo: <.L00PBACK,UP, L0WER_UP? mtu 65536 q d i s c noqueue s t a t e UNKNOWN g r o u p d e f a u l t q l e n 1000
l i n k / l o o p b a c k 00:DO:00:00:DO:00 brd 00:00:00:00:00:00
i n e t 127.0.0.1/8 s c o p e h o s t l o

v a l i d _ l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r
i n e t 6 /128 s c o p e h o s t p r o t o k e r n e l _ l o

v a l i d _ l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r
2: ethO: ^BROADCAST,MULTICAST,UP,LOWERJJPs mtu 15B0 q d i s c f q _ c o d e l s t a t e UP g r o u p d e f a u l t q l e n 1000

l i n k / e t h e r 00:Oc:29:b8:ap:4d b r d f f : f f : f f : f f : f f : f f

I — (k a l i ® k a l i) - [" / D o c u m e n t s / p t n e t i n s p e c t o r]
L-$ sudo p y t h o n 3 ptnetinspector.py - t p - i ethO -d 380
[s u d o] p a s s w o r d f o r k a l i :
[i] I n t e r f a c e : e t h B e x i s t s

D i s a b l i n g j s o n o u t p u t
[i] T emporary f i l e s a r e d e l e t e d a f t e r a l l

P a s s i v e n e t w o r k s c a n on i n t e r f a c e : e t h 0 f o r 300.0 s e c o n d s

Found 4 d e v i c e s
] D e v i c e number l : (H o s t)
MAC 0B:0c:29:2a:8e:72
I P v 4 169.254.99.223
I P v 6 f e 8 0 ::e734:2b41:5223:b9c9

~_i~_ D e v i c e number 2: (H o s t)
MAC 00:0c:29:49:04:db
I P v 6 f e 8 0 : : f 3 9 6 : b b 0 3 : 1 6 2 c : 7 a 5 9
D e v i c e number 3: (H o s t)
MAC 0 0 : 0 c : 2 9 : 7 b : c 6 : e l
I P v 4 169.254.198.169
I P v 6 f e S O 3 e a 3 : c 7 4 0 : l 3 c b : 3 9 a 3
D e v i c e number 4: (H o s t)
MAC 08:50:56:c0:00:02
I P v 4 169.254.52.37
I P v 6 f e 8 0 ::e07:8494:45d9:9d55

[i] P a s s i v e s c a n ended

C i a l i) - ~ ~ / D o c u m e n t s / p t n e t i n s p e c t o r

t

Fig. 4.11: Program output of the passive mode scenario 2 - hosts with Link-Local
addresses only.

On the Ubuntu machine, this can be achieved by modifying the ip-dynamic

profile. Another step must be taken to successfully activate the profile, that is

changing the method of IPv6 to manual. After the router is powered on and

starts distributing prefixes, this method is changed back to auto.

1 n m c l i connection modify "ip-dynamic" ipv6.addresses

- 2001:f:b:b::4/64

2 n m c l i con modify ip-dynamic ipv6.method manual

Windows 10 will be configured with the address 2001:f:b:b::2/64, Windows 11
2001:f:b:b::3/64 and Ubuntu 2001:f:b:b::4/64.
It can be seen in the Fig. 4.12 that the program was able to recognize all the
addresses of the devices. A short portion of packets captured in Wireshark
is displayed in the Fig. 4.13. It can be seen that two IPv6 addresses are
configured, but static global address is used only when announcing reachability

62

via specific M A C address.

C-(kalif§ k a l i) - -/Documents/ptnetinspector]
t i p a

1! 1 « : <LOOPBACK,UP,L0WER_UP> mtu 65536 q d i s c noqueue s t a t e UNKNOWN grou p d e f a u l t q l e n 1000
l i n k / L o o p b a c k 00:00:00:00:00:00 b r d 00:00:00:00:00:00
i n e t 127.0.0.1/8 s c o p e h o s t l o

v a l i d _ l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r
i n e t 6 /128 sco p e h o s t p r o t o k e r n e l _ l o

v a l i d _ l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r
2: ethO: BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 q d i s c f q _ c o d e l s t a t e UP g r o u p d e f a u l t q l e n 1000

l i n k / e t h e r 00:8c:29:b8:a9:4d b r d f f : f f : f f : f f : f f : f f

r — (k a l i ® k a l i) - [~ / D o c u m e n t s / p t n e t i n s p e c t o r]
' — J sudo p y t h o n 3 ptnetinspector.py - t p - i e t h B -d 308
[i] I n t e r f a c e : e t h B e x i s t s

D i s a b l i n g j s o n o u t p u t
[i] T emporary f i l e s a r e d e l e t e d a f t e r a l l
~ i ~ P a s s i v e n e t w o r k s c a n on i n t e r f a c e : e t h 0 f o r 300.0 s e c o n d s

'_ Found 4 d e v i c e s
] D e v i c e number 1: (H o s t)
MAC B0:0c:29:2a:8e:72
I P v 4 169.254.99.223
I P v 6 2 0 0 1 : f : b : b : : 3
I P v 6 f e S 0 : : e 7 3 4 : 2 b 4 l : 5 2 2 3 : b 9 c 9

_ i _ D e v i c e number 2: (H o s t)
MAC BB:0c:29:49:04:db
I P v 6 2 0 0 1 : f : b : b ::4
I P v 6 f e 8 B : : f 3 9 6 : b b B 3 : l 6 2 c : 7 a 5 9

L i J D e v i c e number 3: (H o s t)
MAC 0 B : 0 c : 2 9 : 7 b : c 6 : e l
I P v 4 169.254.198.169
I P v 6 2 B B l : f : b : b : : 2
I P v 6 f e 8 B : : 3 e a 3 : c 7 4 B : 1 3 c b : 3 9 a 3
D e v i c e number 4: (H o s t)
MAC B B:5B:56:C B:00:02
I P v 4 169.254.52.37
I P v 6 fe80::e07:8494:45d9:9d55

[i] P a s s i v e s c a n ended

C k a l i) - -/Documents/ptnetinspector

i

Fig. 4.12: Program output of the passive mode scenario 3.

No. Time Source ;ts: r-Z c -
Protocol Length Info

1 0.000000 f f 0 2 : : l : f f c b : 3 9 a 3 ICMPv6 78 Neighbor S o l i c i t a t i o n f o r fe80::3ea3:c740:13cb:39a3
2 0.003781 f f 0 2 : : l : f f 0 0 : 2 ICMPvß 78 Neighbor- S o l i c i t a t i o n f o r 2081 : f :b:b: :2
3 0.005730 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :2 ICMPvß 62 Router S o l i c i t a t i o n
4 0.006326 fe80 :3ea3 C74-0 13 cb 39a3 f f 0 2 : :16 ICMPv/6 110 M u l t i c a s t L i s t e n e r Report Message v2
5 0.505225 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :16 ICMPv6 110 M u l t i c a s t L i s t e n e r Report Message v2
6 0.995550 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :1 ICMPv6 86 Neighbor Advertisement fe80::3ea3:c740:13cb:39a3 (o v r) i s a t 00:0c:29:7b:c6:el
7 0.998046 2001 f :b:b .2 f f 0 2 : :1 ICMPv6 86 Neighbor Advertisement 2001:f:b:b::2 (o v r) i s a t 00:0c:29:7b:c6 : e l
8 3.995592 fe80 :3ea3 c74e 13 cb 39a3 f f 0 2 : :2 ICMPv6 70 Router S o l i c i t a t i o n from 00:0c:29:7b:c6:el

11 7.98964-9 fe80 :3ea3 c740 13 cb 39a3 t f 0 2 : :2 ICMPv6 70 Router S o l i c i t a t i o n from 00:0c:29:7b:c6:el
14 20.266766 fe80 :3ea3 c740 13cb 39a3 f f 0 2 : :1:2 DHCPv6 157 S o l i c i t XID: 0xd286b9 CID: 000100012cb4bb82000c297bc6el
15 21.781734 fe80 :3ea3 C740 13cb 39a3 f f 0 2 : :1:2 DHCPv6 157 S o l i c i t XID: 0xd286b9 CID: 000100012cb4bb82000c297bc6el
17 23.809352 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :1:2 DHCPv6 157 S o l i c i t XID: 0xd286b9 CID: 000100012cb4bb82000c297bc6el
19 27.908346 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :1:2 DHCPv6 157 S o l i c i t XID: 0xd286b9 CID: 000100012cb4bb82000c297bc6el
20 28.510004 fe80 :3ea3 C74-0 13 cb 39a3 f f 0 2 : :16 ICMPv/6 90 M u l t i c a s t L i s t e n e r Report Message v2
22 28.528237 fe80 :3ea3 C74-0 13 cb 39a3 f f 0 2 : :16 ICMPv/6 90 M u l t i c a s t L i s t e n e r Report Message v2
24 28.872488 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :16 ICMPv6 90 M u l t i c a s t L i s t e n e r Report Message v2
26 28.893826 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :16 ICMPv6 90 M u l t i c a s t L i s t e n e r Report Message v2
29 28.988311 fe80 :3ea3 c740 13 cb 39a3 f f 0 2 : :16 ICMPv6 110 M u l t i c a s t L i s t e n e r Report Message v2

Fig. 4.13: Passive mode scenario 3 - conversation sample in Wireshark.

63

4. Al l the hosts have static global IPv6 addresses and the router dele
gates 1 prefix for SLA A C .
First of all, the address 2001 :f:b:b:: 1/64 is assigned to the router interface
along with 2001:f:b:a::l/64- As all the hosts are configured for dynamic ad
dress configuration (including Kali), each of them will also obtain IPv4 address.
The output is displayed in the Fig. 4.14. The tool was able to capture all of
the available addresses including A P I P A (Automatic Private IP Addressing)
address for Windows 11 before it was able to obtain the dynamic address from
the router. This comes initially from the IGMPv3 membership reports. The
reason behind so many IPv6 addresses belonging to 1 device is that for each
prefix it creates one permanent and one temporary IPv6 address, which makes
4 addresses altogether plus one statically configured. Once the interface is
configured for certain IPv6 address on the router, it automatically starts with
delegation of its prefix, therefore 2 prefixes are sent inside the Router Advertise
ment messages. This also leads to the fact that each machine has 3 addresses
from the same prefix.

5. Al l the hosts have static global IPv6 addresses and the router dele
gates 5 prefixes for SLA A C .
The two prefixes are already delegated from the previous configuration, there
fore it is sufficient to configure the interface for another 3 IPv6 addresses. The
selected ones are 2001:f:b:c::l/64, 2001:f:b:d::l/64 and 2001:f:b:e::l/64.
A l l 4 devices were successfully discovered with their respective addresses that
were used for the communication across network. The output is too long,
therefore only one output (from the Ubuntu device) is shown in the Fig. 4.15.
Another interesting part is displayed in the Fig. 4.16. Only 2 out of 5 global
addresses were captured, but after the packet analysis in Wireshark, only
the 2001:f:b:a::l and 2001:f:b:e::l addresses were used for communication,
specifically for the Neighbor Solicitation messages where the router announced
its link-layer address to the target machines.

The IPv6 protocol was again enabled on the Kal i after the Passive mode tests.
The generated IPv6 addresses are shown in the Fig. 4.17. It can be observed that
unlike in case of the Windows and Ubuntu machines, Kal i creates only one global
address from the given prefix. EUI-64 mechanism instead of random values is used
to generate the identifier in the host portion.

4.4.2 Testing of Active mode of the ptnetinspector

In this section, 5 scenarios will be presented running the program in the active mode.
Unlike in case of passive mode, all the virtual machines can already run, because

64

2: ethO: ^BROADCAST,MULTICAST,UP,LOWER_UPJ mtu 1500 qdisc f q _ c o d e l s t a t e UP group d e f a u l t qlen 1000
l i n k / e t h e r 00:0c:29:b8:a9:4d brd f f : F F : f f : f f : f f : f f
inet /24 brd scope g l o b a l dynamic ethe

v a l i d _ l f t 86179sec p r e f e r r e d _ l f t 86179sec

I — (k a l i ® kali}-["/Documents/ptnetinspector]
1—$ sudo python3 ptnetinspector.py - t p - i eth0 -d 380
[i] I n t e r f a c e : eth0 e x i s t s

D i s a b l i n g json output
[i] Temporary f i l e s are deleted a f t e r a l l

Passive network scan on i n t e r f a c e : eth0 f o r 300.0 seconds

Found 5 devices
[i] Device number l : (Hostí

MAC 00:0c:29:2a:Se:72
IPv4 169.254.99.223
IPv4 192.168.0.4
IPv6 2801:f:b:a:21d0:d656 :c50a :2aS
IPv6 2801:f:b:a:6cc5:7b0d :8c24 1247
IPv6 2001:f:b:b ::3
IPv6 2001:f:b:b:6923:f0d2 :b8a2 18947
IPv6 2001:f:b:b:6cc5:7b0d :8c24 1247
IPv6 fe80 ::e734:2b41:5223 :b9c9

Lij Device number 2: (Host)
MAC 00:0c:29:49:04:db
IPv4 192.168.0.3
IPv6 2001:f:b:a:4bae:9c40 :blf8 :dfba
IPv6 2001:f:b:a:5b68:ae2:e3fc:ee73
IPv6 2001:f:b:b ::4
IPv6 2001:f:b:b:a35b:8067 :9858 :babf
IPv6 2801:f:b:b:f88c:b8cl :2156 :bffb
IPv6 feS0 ::f396:bb03:162c :7a59

[i] Device number 3: (Host)
MAC 00:0c:29:7b:c6:el
IPv4 192.168.0.5
IPv6 2001:f:b:a:14ab:293c :al22 :cc97
IPv6 2001:f:b:a:d200:lel5 :e46f :1B78
IPv6 2001:f:b:b ::2
IPv6 2001:f:b:b:14ab:293c :al22 :cc97
IPv6 2001:f:b:b:700e:e565 :47a9 :2cc6
IPv6 fe80 ::3ea3:c740:13cb :39a3
Device number 4: (Host}
MAC 00:50:56:c0:00:02
IPv4 169.254.52.37
IPv6 2001:f:b:a:98ad:18e:7f41:b414
IPv6 fe80::e07:8494:45d9:9d55
Device number 5: (P r e f e r r e d r o u t e r)
MAC ca:01:09=06:00:00
IPv4 192.168.0.1
IPv6 2 0 0 1:f:b:a ::1
IPv6 2 0 0 1:f:b:b :: 1

IPv6 f e 8 8 c 8 8 l : 9 f f : f e B 6 : 0
Passive scan ended

Fig. 4.14: Program output of the passive mode scenario 4.

Kal i will actively prompt the machines and will listen to the responses. This was not
the case for the passive mode, where after the machines have the addresses already
assigned, there is not much ongoing communication.

In the first scenario, the program is started when no other device is present on the
network (other hosts are turned off). In the second scenario, the devices (except for
router) are powered on, but have only Link-Local addresses. In the third scenario,
the router remains turned off and hosts are additionally configured with static global
addresses. In the fourth scenario, the router is powered on and distributes 1 prefix

65

[i] Device number 2: (Host)
MAC 00 :0c:29:49:04:db
IPv4 192.168.0.3
IPv6 2001:f:b:a:5b68:ae2:e3fc:ee73
IPv6 2001:f:b:a:9a57:939b:2575:8e34
IPv6 2001:f:b:b ::4
IPv6 2001:f:b:b:2240:lb42:140:85fa
IPv6 2001:f:b:b:fSSc:bSc1:2156:bffb
IPv6 2001:f:b:c:15d9:a9ea:be32:5fb5
IPv6 2001:f:b:c:c9S6:7bad:541b:1524
IPv6 2001:f:b:d:2a4a:2920:a7a8:id92
IPv6 2001:f:b:d:7532:1027:f84a:8955
IPv6 2001:f:b:e:S06d:dc6a:9f4a:5923
IPv6 2001:f:b:e:a961:c c b9:2641:b580
IPv6 fe80:: f396:bb03:162c:7a59

Fig. 4.15: Program output of the passive mode scenario 5 for Ubuntu.

[i] Device number 5: (P r e f e r r e d r o u t e r)
MAC ca:0H09:06:00:00
IPv6 2 0 0 1 :f :b:a :: 1
IPv6 2 0 0 1 :f :b:e 1
IPv6 fe80 : : c 8 0 l : 9 f f : f e 0 6 : S

~ i ~ P a s s i v e scan ended

Fig. 4.16: Program output of the passive mode scenario 5 for router.

and in the fifth scenario, the router distributes 5 prefixes.
1. The application will be started when there is no other IPv6 device

on the network.
In this scenario, no device is powered on, or the devices simply do not have the
IPv6 addresses assigned. There is no response to the messages sent by the Kali

66

2: e t h S : -^BROADCAST, M U L T I C A S T , UP, LOWER_UP> mtu 1 5 0 0 s t a t e UP q l e n 1000
i n e t 6 2001:f:b:e:20c:29f f : febs:a9*>d/64 s c o p e g l o b a l d y n a m i c m n g t m p a d d r p r o t o k e r n e l _ r a

v a l i d _ l f t 2 5 9 1 9 9 8 s e c p r e f e r r e d _ l f t 6 0 4 7 9 8 s e c
i n e t 6 2 0 0 1 ; f ; b; d: 2 0 c ; 2 9 f f : f e b S ; a94td/64 s c o p e g l o b a l d y n a m i c m n g t m p a d d r p r o t o k e r n e l _ r a

v a l i d _ l f t 2 5 9 1 9 9 8 s e c p r e f e r r e d _ l f t 6 0 4 7 9 8 s e c
i n e t 6 2 9 0 1 : f : b : c : 2 8 c : 2 9 f f : f e b S : a 9 ^ d / 6 4 s c o p e g l o b a l d y n a m i c m n g t m p a d d r p r o t o k e r n e l _ r a

v a l i d _ l f t 2 5 9 1 9 9 E s e c p r e f e r r e d _ l f t 6 0 ů 7 9 8 s e c
i n e t 6 2 0 0 1 : f : b : b : 2 0 c : 2 9 f f : f e b S : a 9 ^ d / 6 4 s c o p e g l o b a l d y n a m i c m n g t m p a d d r p r o t o k e r n e l _ r a

v a l i d _ l f t 2 5 9 1 9 9 8 s e c p r e f e r r e d _ l f t 6 0 4 7 9 8 s e c
i n e t e 2 0 0 1 : f : b : a : 2 0 c : 2 9 f f : f e b 8 : a 9 4 d / 6 4 s c o p e g l o b a l d y n a m i c m n g t m p a d d r p r o t o k e r n e l _ r a

v a l i d _ l f t 2 5 9 1 9 9 8 s e c p r e f e r r e d _ l f t 6 0 ů 7 9 8 s e c
i n e t 6 f e B O :; 2 0 c i 2 9 f f i f e b 8 : a 9 4 d / 6 i i s c o p e l i n k p r o t o k e r n e l _ l l

v a l i d _ l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r

Fig. 4.17: Kal i automatically generated IPv6 addresses.

Linux and therefore the test does not take too long (see Tab. 4.4). The output
of the program is shown in the Fig. 4.18. As can be seen in the Fig. 4.19, there
was totally 13 packets sent, basically the all-node address (ff02::l), the all
routers address (ff02::2) addresses were used, then the L L M N R (Link-Local
Multicast Name Resolution) (ff02::l:3) and the IPv6 multicast DNS (ff02::fb)
were also captured. As no response came, no device was detected.

r — (k a l i © k a l i) - [~ / D o c u m e n t s / p t n e t i n s p e c t o r]

$ sudo python3 p t n e t i n s p e c t o r , p y - t a - l eth0
~ i ~ Interface: eth0 e x i s t s
[i] Disabling json output
[i] Temporary f i l e s are deleted aft e r a l l

Active 'iet'n'or< scan o"i interface: et~i0
[i] Add record to ipv6table
[i] Active scan in progress. This may take a while. Just wait for r e s u l t s
[i] Remove record from ipv6table

[i/] Found 1 device
[i] Device number l : (Host)

MAC 00:50:56:c0:00:02
IPv6 fe80::e07:8494:45d9:9d55

[i] Active scan ended

C a l i) - [- / D o c u m e n t s / p t n e t i n s p e c t o r '

Í I

Fig. 4.18: Program output of the active mode scenario 1.

2. The application will be started when other devices are on (except
for the router) and have only Link-Local address.
As can be seen in the Tab. 4.4, the results are quite comparable to those
from the scenario 1. Now there are 3 devices, each with just Link-Local ad
dress, therefore there is not much traffic generated. 36 packets were totally

67

Address A Address B Packets Bytes Packets A -» B Bytes A -» B Packets B -»A Bytes B - A

fe80 2 0 c 2 9 f f feb8:a94d fe80 :e07:8494:45d9:9d55 2 172 bajty 2 172 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d ff02 1 7 554 bajty 7 554 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d ff02 1:3 1 152 bajty 1 152 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d ff02 2 2 132 bajty 2 132 bajty 0 0 bajty

fe80 2 0 c 2 9 f f feb8:a94d ff()2 fb 1 152 bajty 1 152 bajty 0 0 bajty

Fig. 4.19: IPv6 conversations during active scan in the scenario 1.

transferred (see Fig. 4.20). There were answers to the M L D queries from all
the hosts, as well as Neighbor Solicitation messages when the Kali introduced
himself using the Neighbor Advertisement message. A l l of the addresses were
correctly captured by the program.

Address A Address B Packets Bytes Packets A -» B Bytes A — B Packets B -»A Bytes B — A

fe80::20c:29ff feb8:a94d fe80 :3ea3:c740:13cb:39a3 6 508 bajty 3 250 bajty 3 258 bajty

fe80::20c:29ff feb8:a94d fe80 :e07:8494:45d9:9d55 2 164 bajty 2 164 bajty 0 0 bajty

fe80::20c:29ff feb8:a94d fe80 :e734:2b41:5223:b9c9 6 508 bajty 3 250 bajty 3 258 bajty

fe80::20c:29ff feb8:a94d ff02 1 7 554 bajty 7 554 bajty 0 0 bajty

fe80::20c:29ff feb8:a94d ff02 1:3 3 456 bajty 3 456 bajty 0 0 bajty

fe80::20c:29ff feb8:a94d ff02::2 2 132 bajty 2 132 bajty 0 0 bajty

fe80::20c:29ff feb8:a94d ff02::fb 3 456 bajty 3 456 bajty 0 0 bajty

fe80::3ea3:c740:13cb:39a3 ff02 16 2 300 bajty 2 300 bajty 0 0 bajty

fe80::3ea3:c740:13cb:39a3 ff02 1:2 2 314 bajty 2 314 bajty 0 0 bajty

fe80::3ea3:c740:13cb:39a3 ff02 1:ffcb:39a3 1 86 bajty 1 86 bajty 0 0 bajty

fe80::e734:2b41:5223:b9c9 ff02 16 1 150 bajty 1 150 bajty 0 0 bajty

fe80::e734:2b41:5223:b9c9 ff02 1:ff23:b9c9 1 86 bajty 1 86 bajty 0 0 bajty

Fig. 4.20: IPv6 conversations during active scan in the scenario 2.

68

3. The application will be started when other devices are on (except
for the router) and have the Link-Local and static addresses.
The output of the program is shown in the Fig. 4.21). It was able to process
all of the addresses mainly based on the M L D report messages. The only
manually configured address fully recognized belongs to the Ubuntu machine,
which sent mDNS query using this address. The conversations are shown in
the Fig. 4.22. 76 packets were totally transferred.

r—(kali© kali)-[~/Documents/ptnetinspector]
$ sudo python3 ptnetinspector.py -t a - l eth0

[i] Interface: ethB e x i s t s
" i " Disabling json output
[i] Temporary f i l e s are deleted afte r a l l

Active 'letwoix scan o"i interface: et~i0
[i] Add record to ipv6table
[i] Active scan in progress. This may take a while. Just wait for r e s u l t s
[i] Remove record from ipv6table

" v " Found 4 devices
[i] Device number l : (Host)

MAC 00:0c:29:2a:8e:72
IPv6 fe80::e734:2b41:5223:b9c9
IPv6 XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XX00:0003 (possible address)

[i] Device number 2: (Host)
MAC 00:0c:29:49:04:db
IPv6 2001:f:b:b::4
IPv6 feBB::f396:bbB3:162c:7a59
Device number 3: (Host)
MAC 00:0c:29:7b:c6:el
IPv6 fe8B::3ea3:c74B:l3cb:39a3
IPv6 XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XX0B:BB02 (possible address)

[i] Device number 4: (Host)
MAC 00:5B:56:CB:BB:B2
IPv6 fe80::e07:8494:45d9:9d55

[i] Active scan ended

Fig. 4.21: Program output of the active mode scenario 3.

4. The application will be started when all the devices are powered on
(containing all the previous addresses) and the router propagates
1 prefix. The output is displayed in the Fig. 4.23. A l l the IPv6 and IPv4
addresses were successfully captured and assigned to the correct devices. The
only devices without IPv4 addresses in the output are the router and the
Ubuntu machine. This is correct as they were neither captured by Wireshark.
The conversations are shown in the Fig. 4.24. Regarding the performance table
results, there were many variations in the execution time of the program. The
times were irregular, mostly around 20 seconds or 1 minute.

69

Address A Address B Packets Bytes Packets A - B Bytes A - B Packets B - A Bytes B - A

2001:f:b:b::4 ff02 fb 4 614bajty 4 614 bajty 0 0 bajty

i ffö2 16 3 350 bajty 3 350 bajty 0 0 bajty

: ff02 1:ffOO:4 1 86 bajty 1 86 bajty 0 0 bajty

: ff 02 :1:ff2c:7a59 1 85 bajty 1 86 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d fe80 ::3ea3:c740:13cb:39a3 2 172 bajty 1 86 bajty 1 86 bajty

fe80 :20c:29ff feb8:a94d fe80 :e07:8494:45d9:9d55 2 164 bajty 2 164 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d fe80 :e734:2b41:5223:b9c9 2 172 bajty 1 86 bajty 1 86 bajty

fe80 :20c:29ff feb8:a94d fe80 :f396:bb03:162c:7a59 8 712 bajty 3 258 bajty 5 454 bajty

fe80 :20c:29ff feb8:a94d ff02 1 7 554 bajty 7 554 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d ff02 1:3 5 760 bajty 5 760 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d ff02 2 2 132 bajty 2 132 bajty 0 0 bajty

fe80 :20c:29ff feb8:a94d ff02 fb 5 760 bajty 5 760 bajty 0 0 bajty

fe80 :3ea3:c740 13cb:39a3 ff02 1:3 1 86 bajty 1 86 bajty 0 0 bajty

fe80 :3ea3:c740 13cb:39a3 ff02 1:ff00:2 4 344 bajty 4 344 bajty 0 0 bajty

fe80 :3ea3:c740 13cb:39a3 ff02 1:ffcb:39a3 4 344 bajty 4 344 bajty 0 0 bajty

fe80 :3ea3:c740 13cb:39a3 ff02 c 1 86 bajty 1 86 bajty 0 0 bajty

fe80 :3ea3:c740 13cb:39a3 ff02 fb 1 86 bajty 1 86 bajty 0 0 bajty

fe80 :e734:2b41 5223:b9c9 ff02 1:3 1 86 bajty 1 86 bajty 0 0 bajty

fe80 :e734:2b41 5223:b9c9 ff02 1:ff00:3 4 344 bajty 4 344 bajty 0 0 bajty

fe80 :e734:2b41 5223:b9c9 ff02 1:ff23:b9c9 4 344 bajty 4 344 bajty 0 0 bajty

fe80 :e734:2b41 5223:b9c9 ff02 c 1 86 bajty 1 86 bajty 0 0 bajty

fe80 :e734:2b41 5223:b9c9 ff02 fb 1 86 bajty 1 86 bajty 0 0 bajty

fe8D :f396:bb03 162c:7a59 ff02 16 4 520 bajty 4 520 bajty 0 0 bajty

fe80 :f396:bb03 162c:7a59 ff02 1:ffOO:4 2 172 bajty 2 172 bajty 0 0 bajty

fe80 :f396:bb03 162c:7a59 ff02 1:ff2c:7a59 2 172 bajty 2 172 bajty 0 0 bajty

fe80 :f396:bb03 162c:7a59 ff02 1:ffb8:a94d 1 86 bajty 1 86 bajty 0 0 bajty

fe80 :f396:bb03 162c:7a59 ff02 2 3 186 bajty 3 186 bajty 0 0 bajty

Fig. 4.22: IPv6 conversations during active scan in the scenario 3.

5. The application will be started when all the devices are powered on
(containing all the previous addresses) and the router propagates 5
prefixes.
The program was able to recognize all of the addresses belonging to the net
work interfaces of other VMs. A n example of output is shown in the Fig. 4.25.
The communication starts with Kal i sending M L D v l and MLDv2 queries and
collecting all the responses, in which V M s report their membership to the mul
ticast groups. Then Kal i sends ping request to the all-nodes address and either
receives the ping response directly (from the Ubuntu machine) or Neighbor So
licitation message and answers with Neighbor Advertisement including its own
M A C address. Router sends Neighbor Solicitation message from all the IPv6
global unicast addresses (5 totally) it has on the interface. Program then sends
sequences of messages according to its settings (malicious ping, ping to the all
routers multicast address, L L M N R and mDNS messages and then sequences
of Neighbor Solicitation/Advertisement and ping messages) and collects ad
dresses from the responses.

The results shown in the table Tab. 4.4 may look strange at first glance, but

70

Found 5 devices
Device number l : (Hos
MAC 00:0c:29:2a:8e:
IPv4 192.168.0.4
IPv6 2001:f:b:a:21d0
IPv6 2BBl:f:b:a:ad75
IPv6 2BBl:f :b:b:: 3
IPv6 feSO ::e734:2b41

t)
72

:d656:c5Qa:2aS
:9d9e:41ba:5299

:5223:b9c9
^^eTTTe^uJ™ibe,^^2^^^o,s,

HAC 00:0c:29:49:04:
IPv6 2001:f:b:a:2133
IPv6 2001:f:b:a:5b68
IPv6 2001:f:b:b ::4
IPv6 feSO ::f396:bb03

_ i . Devic
HAC
IPv4
IPv6
IPv6
IPv6
IPv6

e number 3
00:0c:29
192.168.0
2001:f:b:
2001:f:b:
2001:f:b:
fe80:: 3ea

fHos
7b:c6
.5
a: 3136
a:d200
b :: 2
3:c740

t]
db
:775f:f24=9b7d
:ae2:e3fc:ee73

:162c:7a59
t }
e l

Devic
HAC
IPv6
IPv6
IPv6
IPv6
IPv6
IPv6
IPv6

[i] Devic
HAC
IPv6
IPv6

[i] A c t i v

e num
00:5
2001
feSO
XXXX
XXXX
XXXX
XXXX
XXXX

e num
ca:0
2001
fe8B

e sea

ber 4
0:56
:f :b
:: e07
:XXXX
:XXXX
:XXXX
:XXXX
:XXXX
ber 5
1:09:
:f :b:

c80
n end

: (Hos
cO:00:
a:dd88
:8494:
:XXXX:
:XXXX:
:XXXX:
:XXXX:
:XXXX:
: (H o s
06:00:
a :: 1
i : 9 f f :
ed

e53d:ee4a:c75a
Iel5:e46f:1078

13cb:39a3
t)
02
:d4de:9408:6493
45d9:9d55
XXXX:XXXX:XXXX:XXlc:c4ee (p o s s i b l e address)
XXXX:XXXX:XXXX:XX5c:6bbc { p o s s i b l e address)
XXXX:XXXX:XXXX:XX96:l7d3 (p o s s i b l e address)
XXXX:XXXX:XXXX:XXb9:Ifd9 { p o s s i b l e address)
XXXX:XXXX:XXXX:XXb9:ad8e { p o s s i b l e address)
W
00

feO6:0

Fig. 4.23: Program output of the active mode scenario 4.

they are explained in the section Performance testing script.

71

Address A Address B Packets Bytes P a c k e t s A ^ B Bytes A -> B Packets B - A Bytes B -> A

2001 f b:a:20c:29ff:febS:a94d 2001 :f:b:a:ddSS:d4de:940B:5493 1 78 bajty 1 78 bajty 0 0 bajty
2001 f b:a:20c:29ff:feb8:a94d ff02::1 3 202 bajty 3 202 bajty 0 0 bajty
2001 f b:a:2133:775f:f24:9b7d 2001 rf:b:a:20c:29ff:feb8:a94d 3 298 bajty 3 298 bajty 0 0 bajty
2001 f b:a:3136:e53d:ee4a:c75a ff02::1 :ff06:0 12 1,008 KiB 12 1,008 KiB 0 0 bajty
2001 f b:a::1 2001:f:b:a:20c:29ff:feb8:a94d 3 298 bajty 3 298 bajty 0 0 bajty
2001 f b:a:ad75:9d9e:41 ba:5299 ff02::1 :ff06:0 3 258 bajty 3 258 bajty 0 0 bajty
2001 f b:b::4 ff02::fb 2 342 bajty 2 342 bajty 0 0 bajty
feBO 20c:29ff febB:a94d 2001 :f:b:a:dd8S:d4de:940B:5493 1 86 bajty 1 B6 bajty 0 0 bajty
feBO 20c:29ff febB:a94d fe80::e07:8494:45d9:9d55 2 164 bajty 2 164 bajty 0 0 bajty
feBO 20c:29ff febB:a94d ff02::1 7 554 bajty 7 554 bajty 0 0 bajty
feBO 20c:29ff febB:a94d ff02::1:3 17 1,996 KiB 17 1,996 KiB 0 0 bajty
feBO 20c:29ff febB:a94d ff02::2 2 132 bajty 2 132 bajty 0 0 bajty
feBO 20c:29ff febB:a94d ff02::fb 15 1,752 KiB 15 1,752 KiB 0 0 bajty
feBO 3ea3:c740:13cb:39a3 fe80::20c:29ff:feb8:a94d 8 1,093 KiB 6 955 bajty 2 164 bajty
feBO :3ea3:c740:13cb:39a3 ff02::1:ff00:2 4 344 bajty 4 344 bajty 0 0 bajty
feBO 3ea3:c740:13cb:39a3 ff02::1:ff06:0 3 258 bajty 3 258 bajty 0 0 bajty
feBO :3ea3:c740:13cb:39a3 ff02::1:ff4a:c75a 4 344 bajty 4 344 bajty 0 0 bajty
feBO :3ea3:c740:13cb:39a3 ff02::1:ff6f:107B 4 344 bajty 4 344 bajty 0 0 bajty
feBO :3ea3:c740:13cb:39a3 ff02::1:ffcb:39a3 4 344 bajty 4 344 bajty 0 0 bajty
feBO :3ea3:c740:13cb:39a3 ff02::fb 3 541 bajty 3 541 bajty 0 0 bajty
feBO c801:9ff:fe06:0 fe80::20c:29ff:feb8:a94d 5 446 bajty 4 360 bajty 1 86 bajty
feBO c801:9ff:fe06:0 ff02::1 2 236 bajty 2 236 bajty 0 0 bajty
feBO e734:2b41:5223:b9c9 fe80::20c:29ff:feb8:a94d 8 1,093 KiB 6 955 bajty 2 164 bajty
feBO e734:2b41:5223:b9c9 ff02::1:ffOO:3 4 344 bajty 4 344 bajty 0 0 bajty
feBO e734:2b41:5223:b9c9 ff02::1:ffOa:2a8 4 344 bajty 4 344 bajty 0 0 bajty
feBO e734:2b41:5223:b9c9 ff02::1:ff23:b9c9 4 344 bajty 4 344 bajty 0 0 bajty
feBO e734:2b41:5223:b9c9 ff02::1:ffba:5299 4 344 bajty 4 344 bajty 0 0 bajty
feBO £734:2b41:5223:b9c9 ff02::fb 3 541 bajty 3 541 bajty 0 0 bajty
feBO f396:bb03 162c: 7a 5 9 2001 :f:b:a:20c:29ff:feb8:a94d 2 164 bajty 1 B6 bajty 1 78 bajty
feBO f396:bb03 162c: 7a 5 9 fe80::20c:29ff:feb8:a94d 7 626 bajty 5 462 bajty 2 164 bajty
feBO f396:bb03 162c: 7a 5 9 ff02::16 6 1 020 bajty 6 1 020 bajty 0 0 bajty
feBO f396:bb03 162c: 7a 5 9 ff02::1:ffOO:4 2 172 bajty 2 172 bajty 0 0 bajty
feBO f396:bb03 162c: 7a 5 9 ff02::1:ff24:9b7d 2 172 bajty 2 172 bajty 0 0 bajty
feBO f396:bb03 162c: 7a 5 9 ff02::1:ff2c:7a59 2 172 bajty 2 172 bajty 0 0 bajty
feBO f396:bb03 162c: 7a 5 9 ff02::1:fffc:ee73 2 172 bajty 2 172 bajty 0 0 bajty

Fi er. 4.24: IPv6 conversations durinj ? the active scan in the scenario 4.

Table 4.4: Performance testing of the active mode - 3 runs measured.

Scenario Average runtime
Average C P U

usage
Average R A M

usage
Scenario 1 11.288 s 42.835 % 2.532 %
Scenario 2 12.306 s 44.220 % 2.462 %
Scenario 3 11.177 s 35.677 % 2.737 %
Scenario 4 38.266 s 29.537 % 2.794 %
Scenario 5 35.078 s 27.148 % 2.924 %

4.4.3 Testing of Aggressive mode of the ptnetinspector

In this section, the application will be run in the aggressive mode. Again, as in the
case of active mode, all the clients can be already running and have their addresses

72

[i] D e v i c e number i : (H o s t)
HAC 0 0:0c:29:2a:Se:72
IPv4 192.163.0.4
IPv6 2001:f:b:a:21d0:d656:c50a:2a8
IPv6 2 0 0 1 : f : b : a : 3 0 2 b : 7 5 7 l : 2 e f a : 1 3 6 a
IPv6 2 0 0 1 : f : b : b : : 3
IPv6 2 0 0 1 : f : b : b : 3 0 2 b : 7 5 7 l : 2 e f a : 1 3 6 a
IPv6 2001:f:b:b:6923:f0d2:b8a2:8947
IPv6 2 0 0 1 : f : b : c : 3 0 2 b : 7 5 7 1 : 2 e f a : 1 3 6 a
IPv6 2 0 0 1 : f : b : c : 7 6 c 4 : 5 a f 7 : 9 3 f 0 : e d a b
IPv6 2001:f:b:d:99d:73ee:6536:9433
IPv6 2 0 0 1 : f : b : d : 3 0 2 b : 7 5 7 1 : 2 e f a : 1 3 6 a
IPv6 2 0 0 1 : f : b : e : 3 0 2 b : 7 5 7 1 : 2 e f a : 1 3 6 a
IPv6 2 0 0 1 : f : b : e : 3 d 6 1 : b c 0 S : d f 4 6 : 9 l 4 f
IPv6 feS0:: e 7 3 4 : 2 b 4 l : 5 2 2 3 : b 9 c 9

Fig. 4.25: Program output of the active mode scenario 5 (Windows 11).

assigned (generated). Kal i machine will be acting as a fake router in this mode with
certain prefix. The chosen prefix is 2001:f:b:f::/64-

The scenarios are the same as in the testing of active mode.
1. The application will be started when there is no other IPv6 device

on the network.
There is no other IPv6 device, therefore Kal i captures no response. It starts
with scanning the network in the active mode and sends the same packet se
quence as discussed in the Active mode testing section. After initial scanning,
Kal i takes over the role of a fake router. It starts distributing the Router
Advertisement messages with high priority and the prefix set. Then it sends
Neighbor Advertisement packets, where it proclaims itself as a router by set
ting particular flag. It also configures the Solicited and Override flags to 1.
The M L D v l queries and MLDv2 reports as well as the ICMPv6 echo messages
are transmitted. The conversations are shown in the Fig. 4.26 and the runtime
results in the Tab. 4.5.

2. The application will be started when other devices are on (except
for the router) and have only Link-Local address.
The program starts with the active scan, therefore M L D queries and reports
are exchanged and the 3 machines are encountered with their respective Link-
Local addresses. After number of ICMPv6 (Neighbor Solicitation/Advertise
ment) messages, L L M N R and mDNS messages, Kal i takes the role of a router

73

Address A Address E Packets Bytes Packets A - E Bytes A - B Packets B - A Bytes B - A

feBO :20c:29ff feb8:a94d 2001 :f:b:f:eQ7:8494:45d9:9d55 3 202 bajty 3 202 bajty 0 0 bajty

feBO :20c:29ff feb8:a94d fe80 :20c:29ff:feb8:a94d 2 172 bajty 2 172 bajty 0 0 bajty

feBO :20c:29ff feb8:a94d fe80 :e07:8494:45d9:9d55 11 946 bajty 11 946 bajty 0 0 bajty

feBO :20c:29ff feb8:a94d ff02: 1 26 2,379 KiB 26 2,379 KiB 0 0 bajty

feBO :20c:29ff feb8:a94d ffOZ: 16 5 590 bajty 5 590 bajty 0 0 bajty

feBO :20c:29ff feb8:a94d ffOZ: 1:3 4 608 bajty 4 608 bajty 0 0 bajty

feBO :20c:29ff feb8:a94d ff02: 2 4 264 bajty 4 264 bajty 0 0 bajty

feBO :20c:29ff feb8:a94d ff02: fb 4 608 bajty 4 608 bajty 0 0 bajty

Fig. 4.26: IPv6 conversations during the aggressive scan in the scenario 1.

and announces this in the Neighbor Advertisement message using the corre

sponding flags. It also includes the prefix to the Router Advertisement mes

sages. After series of M L D messages, Windows 10 and Windows 11 machines

announce their IPv6 generated address from the prefix sent using the Neighbor

Advertisement messages for both permanent and temporary addresses. The

Ubuntu addresses are obtained from the mDNS messages. The output of the

program is shown in the Fig. 4.27 and the conversations are shown in the

Fig. 4.28.

•J] Found 4 devices
Device number l : (Host)
MAC 0B:0c:29:2a:8e:72
IPv4 163.254.99.223
IPv6 26B1:f:b:f:523d:a60:7859:766a
IPv6 2001:f:b:f:74ef:bcaf:a80a:bfbe
IPv6 feSfl::e734:2b4l:5223:b9c9

MAC 00:0c:29:49:04:db
IPv6 2001:f:b:f:bea0:e26e:f58c:7035
IPv6 2001:f:b:f:e3e8:b4d2:26b5:634d
IPv6 fe80 ::f396:bb03:162c:7a59

i] Device number 3: (Host)
MAC 00:0c:29:7b:c6:el
IPv4 169.254.198.169
IPv6 2081:f:b:f:b9a:ed2d:fbl9:7d9b
IPv6 2001:f:b:f:a4fe:ffa2:a251:6c02
IPv6 fe80::3ea3:c740:13cb:39a3

T\ Device number 4: (Host)
MAC 00:50:56:c0:00:02
IPv4 169.254.52.37
IPv6 2001:f:b:f:8dl8:776d:29d6:10ea
IPv6 fe80 ::e07:8494:45d9:9d55
IPv6 XXXX=XXXX:XXXX:XXXX:XXXX:XXXX:XX34:71e7 (p o s s i b l e address)

Fig. 4.27: Program output of the aggressive mode scenario 2.

74

Address A Address B Dackets Bytes Total Packets Percent Filtered :ac<et: A - Bytes A -• B Packets E - i A Bytes B -• A

2O01±b:f:523d:a60:7859:766a ff02::1 1 86 bajty 1 100.00% 1 85 bajty 0 0 bajty
2001±b:f:74ef:bcaf:a80a:bfbc ff02::1 1 86 bajty 1 100.00% 1 85 bajty 0 0 bajty
2001±b:f:a4fe:ffa2:a251:6c02 ff02::1 1 86 bajty 1 100.00% 1 85 bajty 0 0 bajty
2001:f:b:f:b9a:ed2d:fbl9:7d9b ffD2::l 1 86 bajty 1 100.00% 1 36 bajty 0 0 bajty
2001:f:b:f:e3e8:b4d2:26b5:634d ff02::fb 19 3,313 KiE 19 100.00% 19 3,813 KiB 0 0 bajty
fe80::20c29ff:feb8:a94d 2001:f:b:f:3ea3:c740:13cb:39a3 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c29ff:feb8:a94d 2001:f:b:f:e07:8494:45d9:9d55 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c29ff:feb8:a94d 2001:f:b:f:e734:2b41:5223:b9c9 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:f:f396:bb03:162c:7a59 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d fe80::20c:29ff:feb8:a94d 6 516bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80;:20c;29ff:feb8:a94d fe80;:3ea3:c740:13cb:39a3 14 1,176 KiB 14 100.00% 11 946 bajty 3 258 bajty
fe80::20c29ff:feb8:a94d fe80::e07:849445d9:9d55 11 938 bajty 11 100.00% 11 938 bajty 0 0 bajty
fe80::20c29ff:feb8:a94d fe80::e734:2b41:5223:b9c9 11 946 bajty 11 100.00% 8 688 bajty 3 253 bajty
fe80::20c:29ff:feb8:a94d fe80::f396:bb03:162c:7a59 13 1,146 KiB 13 100.00% 4 344 bajty 9 830 bajty
fe80::20c:29ff:feb8:a94d ffD2::l 27 2,436 KiE 27 100.00% 27 2,486 KiB 0 bajty
fe80::20c:29ff:feb8:a94d ff02::16 4 520 bajty 4 100.00% 4 520 bajty 0 0 bajty
fe80::20c29ff:feb8:a94d ff02::1:3 24 3.176 KiB 24 100.00% 24 3,176 KiB 0 0 bajty
fe80::20c29ff:feb8:a94d ff02:2 4 264 bajty 4 100.00% 4 25+ bajty 0 0 bajty
fe80::20c29ff:feb8:a94d ff02:rfb 24 3.211 KiB 24 100.00% 24 3,211 KiB 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::16 2 300 bajty 2 100.00% 2 300 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ffD2::l:3 6 534 bajty 6 100.00% 6 534 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::l:ffl9:7d9b 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1:ff51:6c02 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1:ffb8:a94d 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::l:ffcb:39a3 6 516bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ffD2::2 1 86 bajty 1 100.00% 1 36 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ffD2::c 1 86 bajty I 100.00% 1 36 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02:rfb 8 880 bajty 8 100.00% 8 880 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02::16 2 300 bajty 2 100.00% 2 300 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02::1:3 5 448 bajty 5 100.00% 5 448 bajty 0 0 bajty
fe80::e734:2b415223:b9c9 ff02::l:ff0a:bfbc 6 516bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80::e734:2b415223:b9c9 I".-!!;.«,•:) 6 516bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02::l:ff59:766a 6 516 bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02::1:ffb8:a94d 3 258 bajty 3 100.00% 3 258 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02:rfb 7 794 bajty 7 100.00% 7 794 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::16 30 4,277 KiB 30 100.00% 30 4,277 KiB 0 0 bajty
fe80::f396:bbD3:162<::7a59 ff02::l:ff2c:7a59 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80;:f396;bb03;162c:7a59 ff02:;l:ff8c:7035 2 172 bajty 2 100.00% 2 172 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1:ffbS:634d 2 172 bajty 2 100.00% 2 172 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1:ffb8:a94d 1 86 bajty 1 100.00% 1 85 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::2 1 62 bajty 1 100.00% 1 62 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::fb 6 672 bajty 6 100.00% 6 672 bajty 0 0 bajty

Fig. 4.28: IPv6 conversations during the aggressive scan in the scenario 2.

75

3. The application will be started when other devices are on (except
for the router) and have the Link-Local and static global addresses.
After M L D messages during the active scan, the program has information
about the Link-Local addresses and possible (static) addresses. Message se
quence is very similar to the one during the scenario 2. Static IPv6 address
of the Ubuntu machine is discovered in the mDNS messages. In this scenario,
both Windows machines did not use the Neighbor Advertisement messages to
report their static IPv6 addresses. The static IPv6 addresses and the ones
generated from the prefix sent from Kali were all included inside the mDNS
messages, but the program was not able to recognize them. From the point
of view of configuration, the virtual machines set their default gateway to the
address of Kal i only temporarily. After Kal i stops sending the messages, it is
removed. The output of program is shown in the Fig. 4.29 and the conversa
tions are shown in the Fig. 4.30.

[t /] Found 4 devices
' Device number l : (Host)
MAC S0:0c:29:2a:8e:72
IPv4 169.254.99.223
IPv6 2001:f:b:f:523d:a60:7859:766a
IPv6 2001:f:b:f:68ca:231e:fc80:2d65
IPv6 feSQe734:2b41:5223:b9c9
IPv6 XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XX00:fl003 (p o s s i b l e address)

i_Device number 4 : (H o s t)
MAC 00:50:56:cS:00:S2
IPv4 169.254.52.37
IPv6 2001:f:b:f:8dl8:776d:29d6:10ea
IPv6 fe80::e07:8494:45d9:9d55
IPv6 XXXX=XXXX:XXXX:XXXX:XXXX:XXXX:XX34:71e7 (p o s s i b l e address)

Fig. 4.29: Program output of the aggressive mode scenario 3.

76

Address A Address B Packets Bytes Tatal Packets Percent Filtered Packets A -• B Bytes A -• B Packets E -• A Bytes B -• A

2001 :f:b:b::4 ff02 :f:j 22 3.923 KiB 22 100.00% 22 3,923 KiB 0 0 bajty
2001 rf:b:f:523d:a607859766a ff02 :1 1 86 bajty 1 100.00% 1 36 bajty 0 0 bajty
2001 :f:b:f:68ca:231 e:fc80:2d65 ff02 1 1 86 bajty l 100.00% I 86 bajty 0 0 bajty
2001:f:b:f:b9a:ed2d:fbl9:7d9b ff02 :1 1 86 bajty 1 100.00% 1 86 bajty 0 0 bajty
2001:f:b:f:ed84:3ed6:71ae:da7a ff02 1 1 86 bajty l 100.00% I 36 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001 :f b:f:3ea3:c740:13cb:39a3 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f b:f:e07:849445d9:9dS5 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f b:f:e734:2b41:5223:b9c9 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f b:f:f396:bbQ3:162c:7a59 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d fe80::20c:29ff:feb8:a94d 6 516 bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d fe80::3ea3:c740:13cb:39a3 14 1.176 KiB 14 100.00% 11 946 bajty 3 258 bajty
feB0::20c:29ff:feb8:a94d fe80::e07:849445d9:9d55 11 93S bajty 11 100.00% 11 933 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d fe80::e734:2b41:5223:b9c9 12 1,008 KiB 12 100.00% 9 774 bajty 3 258 bajty
fe80::20c:29ff:feb8:a94d fe80::f396:bb03:162c:7a59 14 1,230 KiB 14 100.00% 5 422 bajty 9 838 bajty
fe80::20c:29ff:feb8:a94d ff02::1 27 2,486 KiB 27 100.00% 27 2,486 KiB 0 0 bajty
fe80::20c:29ff:feb8:a94d ff02::16 4 520 bajty 4 100.00% 4 520 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d ff02::1:3 21 2,924 KiB 21 100.00% 21 2,924 KiB 0 0 bajty
fe80::20c:29ff:feb8:a94d ff02::2 4 264 bajty 4 100.00% 4 264 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d ff02:rfb 21 2.941 KiB 21 100.00% 21 2,941 KiB 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::16 2 340 bajty 2 100.00% 2 340 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 2 5 785 bajty 5 100.00% 5 735 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 3 4 362 bajty 4 100.00% 4 362 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 0002 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 ff197d9b 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 ffae:da7a 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 ffb8:a94d 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02::1 ffcb:39a3 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
fe80::3ea3:c740:13cb:39a3 ff02:rfb 6 764 bajty 6 100.00% 6 764 bajty 0 0 bajty
fe80:e734:2b41:5223:b9c9 ff02::16 2 340 bajty 2 100.00% 2 340 bajty 0 0 bajty
fe80:e734:2b41:5223:b9c9 ff02::1 3 5 448 bajty 5 100.00% 5 443 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02::1 «00:3 6 516 bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02::1 ff23:b9c9 6 516 bajty 6 100.00% 6 516 bajty 0 0 bajty
fe80:;e734:2b41;5223;b9c9 ff02::1 ff59:766a 4 344 bajty 4 100,00% 4 344 bajty 0 0 bajty
fe80:e734:2b41:5223:b9c9 ff02::1 ffS0:2d6S 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80:e734:2b41:5223:b9c9 ff02::1 ffb8:a94d 3 258 bajty 3 100.00% 3 253 bajty 0 0 bajty
fe80::e734:2b41:5223:b9c9 ff02:rfb 7 850 bajty 7 100.00% 7 850 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::16 27 4,424 KiB 27 100.00% 27 4,424 KiB 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1 ff004 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1 ff2c:7a59 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1 ff49:bef 2 172 bajty 2 100.00% 2 172 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1 ffb5:634d 2 172 bajty 2 100.00% 2 172 bajty 0 0 bajty
fe80::f396:bb03:162c:7a59 ff02::1 ffb8:a94d 1 86 bajty 1 100.00% 1 86 bajty 0 0 bajty

Fig. 4.30: IPv6 conversations during aggressive scan in the scenario 3.

4. The application will be started when all the devices are powered on
(containing all the previous addresses) and the router propagates 1
prefix.
The conversation starts with M L D (both version 1 and version 2) messages
exchange. Then the Kal i machine has opportunity to gather all the addresses
from the mDNS response messages. The conversations consisting of Neighbor
Solicitation/Advertisement messages are also observable. But until this mo
ment, this is the active mode check, therefore Kal i does not set flags inside the
Neighbor Advertisement messages that would indicate the router. When the
aggressive mode starts, Kal i distributes the Router Advertisement messages
with particular prefix. The router still propagates its Router Advertisement
messages, but with the default preference (medium). Kal i sets the preference
to high, therefore it should be selected as the default router by the clients. Kali
also informs specifically the router using Neighbor Advertisement message that
he is the router as well. Both Windows machines have set both addresses (of

77

the Kal i and the Cisco router) as their default gateway. The Ubuntu stores
only one address for its profile and there can be seen changes over time. The
address gets overwritten as the Advertisement messages come, because Kali
has higher preference. Router sends the Router Advertisement messages every
10 seconds and Kal i sends the last Router Advertisement message with the
lifetime 0, therefore the final address is always the one of the router. After
the end of the script, both Windows machines store only the default gateway
of the router. The generated IPv6 addresses are preserved. The output of the
program is shown in the Fig. 4.31 and the conversation samples are shown in
the Fig. 4.32.

5. The application will be started when all the devices are powered on
(containing all the previous addresses) and the router propagates 5
prefixes.
As in other scenarios, the active mode begins with M L D queries and reports.
The program obtains the basic information about the addresses that the de
vices are listening to (part of multicast group) and are configured with. Then
the ping is issued from the program to the all-node multicast address (ff02::l).
Only the Ubuntu machine answers to this from most of its generated global
addresses (both permanent and temporary). Then the series of transmissions
of Neighbor Solicitation/Advertisement messages to obtain the M A C addresses
of the devices on the same link follows. Both Solicitation and Advertisement
messages are generated for individual global addresses. Then Kal i starts to act
as a fake router. A huge number of L L M N R and mDNS messages is exchanged
between Kal i and other clients, where the clients include their addresses in the
payload of the answer. During the packet analysis, it was observed that Kali
sent the Neighbor Advertisement messages to himself. Kal i also sent messages
to the VMnet interface over which it is connected with the physical (host)
machine. The default gateway setting on the virtual machines works in the
same way is in scenario 4, i.e. Windows clients set 2 default routers (Cisco
and Kali) as long as Kal i sends messages about its router role, then only Cisco
remains. Ubuntu holds only 1 default router in its profile, therefore as long as
Kal i acts as the fake router, its address is used (high priority) and after the
end of the program run is replaced with Cisco. The output of the program
(client addresses) is shown in the Fig. 4.33. The router output is shown in the
Fig. 4.34.

The results of the aggressive mode are shown in the Tab. 4.5. It can be seen
that with higher number of inputs for the program (increasing number of addresses),
the average runtime grows larger. The same can be said about the C P U and R A M
usage. The fact that the average C P U usage in the 5th scenario is similar to the

78

[•J] Found 5 devices
' Device number l : (Host)
MAC 00:0c:29:2a:8e:72
IPv4 192.168.0.3
IPv6 2BBl:f:b:a:21dB:d656:c5Ba:2aB
IPv6 2001:f:b:a:35c0:cd0e:42e3:d909
IPv6 2001:f:b:b:: 3
IPv6 2001:f:b:f:35c0:cd0e:42e3:d909
IPv6 2001:f:b:f:523d:a60:7859:766a
IPv6 feBO::e734:2b41:5223:b9c9

[i] Device number 2: (Host)
MAC 00:0c:29:49=04:db
IPv4 192.168.0.4
IPv6 2001:f:b:a:1176:f4:21bd:678c
IPv6 2001:f:b:a:5b68:ae2:e3fc:ee73
IPv6 2001:f:b:b::4
IPv6 2001:f:b:f:979f:4f04:a5f9:aeae
IPv6 2081:f:b:f:e3e8:b4d2:26b5:634d
IPv6 fe80:: f396:bb03:162c:7a59
Device number 3: (Host)
MAC 00:0c:29:7b:c6:el
IPv4 192.168.0.5
IPv6 2001:f:b:a:a0d8:fe4f:2dl3:l804
IPv6 2001:f:b:a:d2O0:Iel5:e46f:1078
IPv6 2001:f:b:b:: 2
IPv6 2001:f:b:f:b9a:ed2d:fbl9=7d9b
IPv6 2001:f:b:f:a0d8:fe4f:2dl3:1804
IPv6 fe80::3ea3:c740:l3cb:39a3

[i] Device number 4: (Host)
MAC 00:50:56:c0:00:02
IPv4 169.254.52.37
IPv6 2001:f:b:a:150b:9095:b080:74fe
IPv6 fe8B:: e07:8494:45d9:9d55
IPv6 XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XX34:71e7 (p o s s i b l e address)
IPv6 XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXb9:lfd9 (p o s s i b l e address)

[i] Device number 5: (P r e f e r r e d r o u t e r)
MAC ca:01=09:06:00:00
IPv6 2BBl:f :b:a ;: 1
IPv6 fe80 ::c80l:9ff:fe06:0

Fig. 4.31: Program output of the aggressive mode scenario 4.

previous scenarios, even though the runtime is at least two times larger, gives nice
picture about the overall performance (higher load is distributed over larger time
interval).

79

Address A Address B Packets Bytes Total Packets Percent Filtered Packets A - B
Bytes A — B

Packets E -• A Bytes B -• A

2001:f:b:a:1176:f4:21bd:678c 2001:f:b:a:20c:29ff:feb8:a94d 6 596 bajty 6 100.00% 6 596 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:a:150b:9095:b080:74fe 1 78 bajty 1 100.00% 1 78 bajty 0 0 bajty
2O01:f:b:a:20c:29ff:feb8:a94d 2001:f:b:a:3ea3:c740:13cb:39a3 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a;20c:29ff:feb8;a94d 2001:f:b;a:;l 7 730 bajty 7 100.00% 1 86 bajty 6 644 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:a:c801:9ff:fe06:0 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:a:e07:849445d9:9d55 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2O01:f:b:a:20c:29ff:feb8:a94d 2001:f:b:a:e734:2b41:5223:b9c9 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:a:f396:bb03:162c:7a59 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:f:3ea3:c740:13cb:39a3 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:f:c801:9ff:feQ6:0 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2O01:f:b:a:20c:29ff:feb8:a94d 2001:f:b:f:e07:8494:45d9:9d55 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:f:e734:2b41:5223:b9c9 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d 2001:f:b:f:f396:bb03:162c:7a59 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
2001:f:b:a:20c:29ff:feb8:a94d ff02::1 6 404 bajty 6 100.00% 6 404 bajty 0 0 bajty
2DDl:f:b:a::l I - i ! I«M

1 86 bajty
1 100.00% 1 86 bajty 0 0 bajty

2001:f:b:a::1 1 -t.Ki'M:l
1 86 bajty

1 100.00% 1 86 bajty 0 0 bajty
I'I:I: i ff02::fb 18 4065 KiB 18 100.00% 18 4.065 KiB 0 0 bajty

2001:f:b:f:35c0:cd0e42e3:d909 2001:2030:21::3e73:fc52 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
2001:f:b:f:35c0:cd0e42e3:d909 2001:2030:21::3e73:fc8l 8 688 bajty 8 100.00% 8 688 bajty 0 0 bajty
2001:f:b:f:979f4f04:a5f9:aeae 2620:2d4000:l::23 5 470 bajty 5 100.00% 5 470 bajty 0 0 bajty
2001:f:b:f:a0d8:fe4f:2d13:1804 2001:2030:21::3e73:fc52 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
2001:f:b:f:a0d8:fe4f:2d13:1804 2001:2030:21::3e73:fc81 5 430 bajty 5 100.00% 5 430 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:a:150b:9095:bOBO:74fe 1 86 bajty 1 100.00% 1 86 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:a:3ea3:c740:13cb:39a3 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:a::l 4 344 bajty 4 100.00% 4 344 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:a:c801:9ff:fe06:0 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20r::29ff:feb8:a94d 2001:f:b:a:e07:8494:45d9:9d55 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:a:e734:2b41:5223:b9c9 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:a:f396:bb03:162c:7a59 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:f:3ea3:c740:13cb:39a3 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:f:c801:9ff:feO6:O 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:f:e07:8494:45d9:9d55 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80;:20c:29ff:feb8:a94d 2001 :f:b;f;e734;2b41 ;5223;b9c9 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d 2001:f:b:f:f396:bb03:162c:7a59 3 202 bajty 3 100.00% 3 202 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d feS0::20c:29ff:feb8:a94d 11 946 bajty 11 100.00% 11 946 bajty 0 0 bajty
fe80::20c:29ff:feb8:a94d fe8D::e07:8494:45d9:9d55 18 1,504 KiB 18 100.00% 18 1,504 KiB 0 bajty
fe80::20c:29ff:feb8:a94d ff02::l 27 2486 KiB 27 100.00% 27 2.4S6 KiB 0 bajty
fe80::20c:29ff:feb8:a94d ff02::16 4 520 bajty 4 100.00% 4 520 bajty 0 bajty
fe80::20c:29ff:feb8:a94d ff02::1:3 83 9 543 KiB 83 100.00% 83 9,543 KiB 0 bajty
fe80::20c:29ff:feb8:a94d ff02::2 4 264 bajty 4 100.00% 4 264 bajty | 0 0 bajty
fe80::20c:29ff:feb8:a94d ff02::fb 71 8,043 KiB 71 100.00% 71 8,043 KiB 0 bajty
fe80::3ea3:c740:13cb:39a3 feS0::20c:29ff:feb8:a94d 42 6,357 KiB 42 100.00% 28 5,197 KiB 14 1.160 <'3

Fig. 4.32: IPv6 conversations during the aggressive scan in the scenario 4.

Table 4.5: Performance testing of the aggressive mode - 3 runs measured.

Scenario Average runtime
Average C P U

usage
Average R A M

usage
Scenario 1 31.750 s 17.804 % 2.341 %
Scenario 2 32.802 s 14.301 % 2.465 %
Scenario 3 32.967 s 16.532 % 2.478 %
Scenario 4 62.822 s 15.272 % 2.622 %
Scenario 5 135.658 s 16.763 % 2.789 %

4.5 ptnetinspector adjustments

In this section, discovered shortcomings and proposed changes for the ptnetinspector
tool are discussed.

80

]Device number l: (H o s t)
MAC 00:0c:29:2a:8e:72
IPv4 192.168.0.4
IPv6 2001:f:b:a:2ld0:d656:c50a:2a8
IPv6 2001:f:b:a:2d61:fd7:2af0:744f
IPv6 2001:f:b:b3
IPv6 2001:f:b:b:2d61:fd7:2af0:744f
IPv6 2001:f:b:b:6923:f0d2:b8a2:8947
IPv6 2001:f:b:c:2d61:fd7:2af0:744f
IPv6 2001:f:b:c:76c4:5af7:93f&:edab
IPv6 2001:f:b:d:99d:73ee:6586:9433
IPv6 2001:f:b:d:2d61:fd7:2af0:744f
IPv6 2001:f:b:e:2d61:fd7:2af0:744f
IPv6 2001:f:b:e:3d61:bcB8:df46:914f
IPv6 2001:f:b:f:523d:a60:7859:766a
IPv6 2001:f:b:f:a4c4:21a6:87ef:36a
IPv6 feS0:: e734:2b41:5223:b9c9

Device number 3: (Host)
MAC 00:0c: 21: 7t :c6: Bl
IPv4 192. 168.0.3
IPv6 2001 :f :b: a: d200 : lel5 :e46f :1078
IPv6 2001 :f :b: a: d979 :4317 :8fl9 : 173f
IPv6 2001 :f :b: b : 2
IPv6 2001 :f :b: b: 700e :e565 :47a9 :2cc6
IPv6 2001 :f :b: b: d979 :4317 :8fl9 :173f
IPv6 2001 :f :b: c: 28ed : ad9a :593b :d729
IPv6 2001 :f :b: c: d979 :4317 :8fl9 :i73f
IPv6 2001 :f :b: d: a0c6 :7ca7 :e983 : c9e9
IPv6 2001 :f :b: d: d979 :4317 :8fl9 :l73f
IPv6 2001 :f :b: e: c8c: Seal: ff aa: 573d
IPv6 2001 :f :b: e: d979 :4317 :8fl9 : 173f
IPv6 2001 :f :b: f: b9a: ?d2d: fb!9 = 7d9b
IPv6 2001 :f :b: f: d979 :4317 :8fl9 :l73f
IPv6 feS0 :: 3ea3: C740 :l3cb :39a3

Fig. 4.33: Program output of the aggressive mode scenario 5 (clients).

4.5.1 mDNS payload reading

After constructing the verifyAddresses script, it was found that the ptnetinspector
does not analyze payload of the mDNS messages, where information about the
addresses of device are carried. This fault was registered only in the passive mode.
Active and aggressive modes were running correctly. After reporting the problem,
it was fixed with version 17 of the ptnetinspector.

81

[i] Device number 5: (P r e f e r r e d r o u t e r)
MAC ca:Ol:09:O6:OO:O0
IPv6 2 0 O l : f : b : a 1
IPv6 20Q1:f:b:b::1
IPv6 2001:f:b:c::1
IPv6 2001:f:b:d ::1
IPv6 2 0 0 1 : f : b : e 1
IPv6 fe80 c 8 0 l : 9 f f : f e 0 6 : 0

Fig. 4.34: Program output of the aggressive mode scenario 5 (router).

The result of omitting the addresses is displayed in the Fig. 4.35. The synchro
nization of the two scripts was not established perfectly at this moment (described
in the Timestamp addition section), which is the reason why so many nodes and
addresses were not found by the ptnetinspector. Nevertheless, the mDNS addresses
were still supposed to be processed as they appeared during the passive mode lis
tening of the ptnetinspector. The Wireshark screenshot is shown in the Fig. 4.36 to
display where the addresses appeared. It can be clearly seen that both addresses are
placed inside the mDNS payload of the response message. The third address was
captured by the ptnetinspector in a form of the source address in other packets.

D e v i c e : f 8 : f f : c 2 : 3 d : c 2 : e f
I P a d d r e s s e s : {'188*64,133.143"}
D e v i c e : f a : e b : I a : f 5 : b 2 : e 7
I P a d d r e s s e s : {'188.64.134.89" , 'fe88 ::143b:260d:29de:e4c' }
D e v i c e : fe:be:0d:b9:2a:69
IP a d d r e s s e s : {'188.64.134.149 1, 1 f e 8 8 : : l c ! 2 : a c 8 b : 4 8 e l : 4 1 1 3 ' }
D e v i c e : f e : f 0 : 6 5 : f 5 : d 0 : d d
I P a d d r e s s e s : {'188*64*131*212'}

f e : f 9 : 0 3 : c 3 : 7 a : 1 0 was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
The a d d r e s s 2001:67c:1220:98al:f124:24da:4d01:1914 was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e 8 c : b 8 : 7 e : f f : b 8 : 7 4 node.
The a d d r e s s 2001:67c:1220:98al:e34c:cd82:57d:78fb was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e 8 c : b 8 : 7 e : f f : b 3 : 7 4 node.
38:fc:98:63:8a:b7 was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
0 2 :d8:ef:95:57:6f was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
ba:f5:12:1c:53:a6 was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
14:85:7f:14:e2:5e was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
The a d d r e s s f e 8 0 ::698:7cdl:f289:78ae was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e f8:5e:a0:55:c3:91 node,
ac:d5:64:48:29:d9 was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
e0:aa:96:7f:69:6c was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
The a d d r e s s 100.64.135.52 was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e e8:84:a5:6c:3d:97 node.
The a d d r e s s f e 8 0 ::1017:8c43:f480:d831 was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e 4c:Id:96:39:de:83 node.
60:f6:77:96:c7:47 was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
The a d d r e s s f e 8 0 ::639e:13eb:2227:27a4 was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e 3c:55:76:e9:01:2f node,
f 4 : c 8 : 8 a : 7 6 : 9 9 : f e was not c a p t u r e d by t h e p t N e t l n s p e c t o r .
The a d d r e s s 100.64.129.138 was not c a p t u r e d by t h e p t N e t l n s p e c t o r f o r t h e de:9d:7f:89:81:7c node.

Fig. 4.35: mDNS A P D U (Application Protocol Data Unit) not processed in the
passive mode by the ptnetinspector.

82

MDNS
MDNS
MDNS
MDNS
MDNS
MDNS
MDNS
MDNS
MDNS
MDNS
MDNS
MDNS

111 Standard query response OxOQOO A IBB.64.129.234
179 Standard query response OxOQOO AAAA 2001:67c:1220:98a:

97 Standard query OxOOOO A DQCK-SE6126,local, "QM" quest:
97 Standard query QxOQOQ A D0CK-SE6126. l o c a l , "QM" quest:

111 Standard query response QxOSOS A ISO .64 .129.234
111 Standard query response QxOQOQ A 100.64 .129 .234

97 Standard query OxOOOO A D0CK-SE6126
97 Standard query OxOOOO A D0CK-SE6126
97 Standard query QxOQOQ A D0CK-SE6126
97 Standard query QxOQOQ A D0CK-SE6126
97 Standard query 0x0000 A D0CK-SE6126
97 Standard query QxOQQQ A DQCK-SE6126

:e34c:cd82:57d:78fb AAAA 2001:57c:1220:Seal:f124:24^

i 33 00 00 00 fb Be bB [7e f f b8 74 86 dd 60 i
•;• 20 oo 7c 22 ei fe ee oo oo oo oo oo oo co i
; 42 GO 02 2c OS f f G2 00 00 00 00 00 OS 00 i
:• 00 00 00 00 fo 24 eS 14 eS 00 7c f8 95 00 c

) 98 a l e3 4c Cd 82 B5 7d 78 fb CB Be 00 1c (
L 00 00 00 3c 00 10 20 01 06 7c 12 20 98 a l t
I 24 da 4d 01 19 14 CO Oc 00 2c 00 02 00 00 t

. LAPTOP-A48CIB6H.local: type /

. LAPTOP-A48CIB6H.local: type /

. LAPTOP-A48CIB6H.local: type /
[Un so l i c i t ed : True]

I8al:e34c:cd82:57d:7f
I8al:fl24:24da:4d01:l
.: b2:ldb9

Fig. 4.36: mDNS addresses not processed in the passive mode by the ptnetinspector
- Wireshark output.

4.5.2 Timestamp addition

The one proposed change to the ptnetinspector is addition of the timestamps where
the packet analysis started and finished so that the results of analysis are as accurate
as possible. Originally, the time was obtained as the finish time of the ptnetinspec
tor process, but it was not well synchronized. As individual modes perform analysis
after capturing, there is certain timeout and the whole script finishes not strictly
after the capturing is finished. This led to many non-analysed packets by the pt
netinspector and wrong results. After discussion with the supervisor, timestamps
were implemented to the code of ptnetinspector and reported to the temporary file.
This enabled the Verification of results script to compare each packet if it is within
the range of analysed packets by the ptnetinspector and thus obtain correct results.

Originally captured end edited process end time is shown in the Fig. 4.37. As the
process end time has precision to nanoseconds and captured packets have timestamps
with precision to microseconds, function was written in the Python code (in the
Verification of results script) to round the end time to microseconds.

The new version is displayed in the Fig. 4.38. It is the temporary file of the
ptnetinspector that contains start time and end time of capturing (passive mode
run for 5 seconds in the figure). Both time values are analysed inside the Verifica
tion of results script and the timestamp of every single packet is compared against
these 2 values. If the packet timestamp is lower than the start time or higher than
the end time, the packet is not analysed at all. This way the very accurate time
synchronization is achieved.

83

The term "very accurate" is used intentionally as the synchronization is still not
perfect. It was discovered that the timestamps are not accurate, specifically the end
time stated by the ptnetinspector does not correspond to the timestamp of the last
packet analysed. There is a difference in tens of milliseconds, which may lead (and
also led - see the section Passive mode testing inside B U T network) to the mismatch
in captured traffic and several packets can be omitted in the ptnetinspector analysis,
but these packets appear in the Verification of results script analysis. In conclusion,
the Verification of results script reports addresses (either M A C or IP) not discovered
by the ptnetinspector.

1 3 5 : 1 5 : 5 7 . 1 0 3 7 8 1 8 3 0

2

Fig. 4.37: End time of the ptnetinspector process.

1 [t ime

2 2024-04-24 05:46:29.461835
3 2024-04-24 05:46:34.506253

Fig. 4.38: Start and end time of the ptnetisnpector packet capturing.

4.5.3 Google public DNS address

When running aggressive mode where ptnetinspector proclaims the source machine
(Kali) as a router, it was discovered that when Kali Linux sends a DNS query to
the router which in turn responds with an answer, the source IP can be the public
address of the Google DNS server (8.8.8.8). The ptnetinspector processes this result
in a way that the address belongs to the router and assigns it to the particular M A C
address (see the Fig. 4.39). The Verification of results script intentionally ignores
this address, as can be seen in the Fig. 4.40.

This is a more general problem than just one related to Google DNS. Currently,
ptnetinspector will proclaim every IP address coming from the internet as router's

84

[i] Device number 3: (P r e f e r r e d router)
MAC ca:0i:06:01 :00 :00
IPv6 2BBl:f:b:a : : 1
IPv6 2001:f:b:b : : 1
IPv6 2001:f:b:c : : 1
IPv6 20Ol:f:b:d : : 1
IPv6 2001:f:b:e : : 1
IPv4 8.8.8.8
IPv6 fe80 ::c80l: 6 f f :fe0l:8

[i] Removing r u l e s i n c o n f i g u r a t i o n a f t e r scanning
[i] Manual IP c o n f i g u r a t i o n i s not restored i f being set
[i] Aggressive scan ended

Fig. 4.39: ptnetinspector Google DNS address assigned to the router.

JJJJfJflJJJJI.i i Tiff JJJJJJ OUTPUT OF PTNET
• e v i t e : 00:0t:2 9:0d:b2:e0
IP a d d r e s s e s : {'2091:f:b:b : : a l " , ' 2BB1:f:b:d:593e:cfBf:944a:b3d4', "2001:f:b:c:593e:cfBf:944a:b3d4', '169.254.179.212', "fe8B
5 9 3 e : t f S f : 9 4 4 a : b 3 d 4 " , '2001:f:b:e:593e:cfBf:944a:b3d4', '2031:f:b:a:e415:48c8:f55f:8d36', '2001:f:b:b:593e:cfBf:944a:b3d4', "20
B l : f : b : b : e 4 1 5 : 4 8 c 8 : f 5 5 f : 8 d 3 6 " , '2BB1:f:b:a:593e:cfBf:944a:b3d4"}
• e v i t e : 00:50:56:c0:00:02
IP a d d r e s s e s : {'fe8B : : 8 7 e e : f 1 : 2 d c B : 5 f f , '192.168.191.1"}
• e v i t e : ca:81:96:91:86:88
IP a d d r e s s e s : {"8.8.8.8", "fe8B : : c 8 B l : 6 f f : f e B l : B ' , "2BB1:f:b:e ::1', '2BB1:f:b:b ::1', '2831:f:b:d ::1", '2BB1:f:b:a ::1", " 2 B B l : f :
b:c :: 1"}

Number of d e v i c e s c a p t u r e d by the v e r i f y A d d r e s s e s s c r i p t : 3
Number of d e v i c e s c a p t u r e d by the v e r i f y A d d r e s s e s s c r i p t : 18

Number of d e v i c e s c a p t u r e d by the v e r i f y A d d r e s s e s s c r i p t : 3
Number of d e v i c e s c a p t u r e d by the v e r i f y A d d r e s s e s s c r i p t : 19

Every d e v i c e and a d d r e s s c a p t u r e d was a l s o found i n the p t n e t o u t p u t .

The a d d r e s s 8.8.8.8 was not found i n the c a p t u r e d r e s u l t s f o r the ca:81:86:Bl:88:88 node.
Some a d d r e s s e s were not found or the s e t i s empty.

Fig. 4.40: Google address ignored in the verification script.

address. The suggestion for the future updates is to limit the reported results only
to the local address range to avoid misleading information about addresses under
which the router device is reachable.

4.6 Large-scale testing

In this section, large-scale testing is performed using the Verification of results script.
Different approach is chosen for individual modes of the ptnetinspector. The passive
mode does not probe the network for responses, it just idly listens to the incoming
traffic, therefore such testing can be performed in the real B U T network. On the
contrary, active and aggressive modes must be run in the environment of virtual
machines. Testing these modes in the real network would lead into an excessive

85

number of packets generated and the security policies set by the local administrators
might be violated. The source machine could be then added to the blacklist. A l l
the following testings are performed after implementation of some of the proposed
changes, specifically addition of timestamps and reading mDNS A P D U in the passive
mode.

4.6.1 Passive mode testing inside BUT network

As already described, the passive mode is tested inside the real B U T W i - F i net
work (Wi-Fi eduroam). Dozens of devices and addresses communicate within this
network, therefore it is a great environment to test both scripts under heavy load.
The Verification of results script is executed with the following command, where
the duration of listening is set to 30 seconds:

i sudo ./verifyAddresses.py - i ethO mode p -d 30

The command was executed 10 times during the noon. The runs were initiated
with several seconds break. The results are displayed in the Tab. 4.6. The column
values contain 2 numbers separated by the slash symbol. As shown in the column
names, the (v/p) notation represents the result of the Verification of results script
(v) and the result of ptnetinspector (p).

Table 4.6: Passive mode testing inside B U T network.

Test
number

M A C s
found (v/p)

M A C s
missed
(v/p)

IPs found

(v/p)

IPs missed

(v/p)

Test 1 113/113 0/0 247/247 0/0
Test 2 104/104 0/0 225/225 0/0
Test 3 120/120 0/0 253/253 0/0
Test 4 101/101 0/0 225/225 0/0
Test 5 103/102 0/1 212/211 0/1
Test 6 110/110 0/0 240/240 0/0
Test 7 115/115 0/0 230/230 0/0
Test 8 112/112 0/0 230/230 0/0
Test 9 100/100 0/0 199/199 0/0

Test 10 100/100 0/0 189/189 0/0

From the table Tab. 4.6, it can be clearly seen that the success rate is nearly
100 %. In the test number 5, there is a case where one device (MAC address) was

86

not detected together with its IP address by the ptnetinspector. The results after
comparison are displayed in the Fig. 4.41. It can be seen that the device M A C
address is 52:34:7(1:20:96:98. After further analysis, the ptnetinspector states that
the end time of the capturing is 06:18:29.820998 (see the Fig. 4.42), and the first
occurrence of the packet with such M A C address is at 06:18:29.789800 (according
to the Traffic capturing script, see the Fig. 4.43). The packet should therefore be
processed by the ptnetinspector. But after opening the temporary file of captured
incoming packets by the ptnetinspector, it can be seen in the Fig. 4.44 that not
only the M A C address is not present in the file, but also the timestamp of the last
captured packet is 06:18:29.789799, therefore there is a 31.199 milliseconds gap. This
led into more packets captured and processed by the Verification of results script
and inconsistent results. The files are included in the Appendix D, specifically
DeviceNotCaptured folder (or alternatively available on the public GitHub project).
The output with the provided files can be verified in the console after running the
Verification of results script with the -nodel flag.

F1 kali@kali: ^ / D o c u m e n t s/pt net i n spec t o r _ b e t a

File Actions Edit View Help
D e v i c e : f 8 : 8 9 : d 2 : b l : 5 5 : 0 5
IP a d d r e s s e s : {'100.64.129.38', ' f e 8 0 : : e 6 1 7 : c d l Z : 9 b 9 b : 6 c 5 6 ' }
D e v i c e : f 8 : f f : c 2 : 3 d : c 2 : e f
IP a d d r e s s e s : { ' f e 8 0 : : l e b a : c a 3 e : d 5 9 0 : 1 0 c a ' , '100.64-133*143'}
D e v i c e : f a : 6 2 : 2 c : a 2 : 1 5 : 6 e
IP a d d r e s s e s : { ' f e 8 8 : : 1 0 8 1 : c c a f : 4 2 1 f : e 9 1 c ' , "100.64.135.220'}
D e v i c e : f c : d 9 : 0 8 : 4 d : f 8 : 9 8
IP a d d r e s s e s : { ' f e 8 0 ::d2aa:e8f8:5e3f:7dQ4', "100.64.134.94", '2001:67c:1220:9Sal:60f:2309:a74:45b7', '2001:67c:1220:98a1
: 5 f 9 : 7 f 3 7 : 6 8 2 d : 4 8 c 2 " }

Number o f d e v i c e s c a p t u r e d by t h e v e r i f y A d d r e s s e s s c r i p t : 103
Number o f A d d r e s s e s c a p t u r e d by t h e v e r i f y A d d r e s s e s s c r i p t : 212

Number o f d e v i c e s c a p t u r e d by t h e p t n e t i n s p e c t o r : 102
Number o f A d d r e s s e s c a p t u r e d by t h e p t n e t i n s p e c t o r : 211

52:34:7d:20:96:98 was not c a p t u r e d by t h e p t M e t l n s p e c t o r .
Some a d d r e s s e s were not found o r t h e s e t i s empty.

Every d e v i c e and a d d r e s s from t h e p t n e t o u t p u t was a l s o f o u n d i n t h e c a p t u r e d r e s u l t s .

fli)-[~/Documents/ptnetinspector beta]

Fig. 4.41: Passive mode testing results with 1 device missed by the ptnetinspector.

4.6.2 Active mode testing of various Windows 10 builds

For the purpose of active and aggressive mode testing, an array of Windows 10 Pro
distributions was created. There are 12 versions, different build each. Their list is
displayed in the Tab. 4.7. The purpose of this testing is to examine and observe

87

1 time
2 2624-04-26 66:17:59.768243
3 2624-64-26 66:18:29.626998

Fig. 4.42: Start and end timestamps stated by the ptnetinspector.

I — (k a l i © kali)-[~/[>ocuments/ptnetinspector_beta \
L-t c a t CapturedPackets/ALL_Packets.txt I g r e p "52:3d:7d:28:96:98 >"
06:18:29.739800 01:00:5e:00:00:fb, e t h e r t y p e I P v 4 (0 x 0 8 0 0) , l e n g t h 124: 100.64.131.176.5353 ? 224.0.0
.251.5353: 0 [3 q] PTR (QU)? _ c o m p a n i o n - l i n k . _ t c p . l o c a l . PTR (QU)? _ r d l i n k . _ t c p . l o c a l . PTR (QU)? _ s l e e p - p r o x y . _udp. l o c a l .
(8 2)
06:18:30.884022 01:00:5e:00:00:fb, e t h e r t y p e I P v 4 (0 * 0 8 0 0) , l e n g t h 124: 100.64.131.176.5353 a 224.0.O
.251.5353: O [3 q] PTR (QH)? . c o m p a n i o n - l i n k . _ t c p . l o c a l . PTR (QM)? _ r d l i n k . _ t c p . l o c a l . PTR (QM)? _ s l e e p - p r o x y . _ u d p . l o c a l .
(8 2)
06:18:30.804893 33:33:00:00:00:fb, e t h e r t y p e I P v 6 (a*86dd), l e n g t h 144: f e80 :: 4eb: 18b2: 7cB7: f f 8 f . 5353
s f f 0 2 : : f b . 5 3 5 3 : 0 [3 q] PTR (QH)? _ c o m p a n i o n - l i n k . _ t c p . l o c a l . PTR (QH)? _ r d l i n k . _ t c p . l o c a l . PTR (QH)? _ s l e e p - p r o x y . _ u d p .

l o c a l . (8 2)
06:18:32.135578 33:33:00:00:00:16, e t h e r t y p e I P v 6 (0 * 8 6 d d) , l e n g t h 90: f e 8 0 : : 4 e b : 1 8 b 2 : 7 c 0 7 : f f 8 f ? f f O
2 " 1 6 : HBH ICMP6, m u l t i c a s t l i s t e n e r r e p o r t v2, 1 group r e c o r d (s) , l e n g t h 28

C-(kali© kali)-~~/D<ocuinents/ptnetinspector beta '
$ I

Fig. 4.43: Packets captured by the designed script with omitted source M A C address
by the ptnetinspector.

2045 .024-04-26 06:18:29.576645,fc:d9:08:4d:f8:98,"Ether / I P / UDP / DNS Qry b ' A n d r o i d - 3 8 . l o c a l . ' " "
2146 2824-04-26 06:18:29.576646,fc:d9:08:4d:fB:98,"Ether / IPv6 / UDP / DNS Qry b ' A n d r o i d - 3 8 . l o c a l . "
2B&7 2024-04-26 06:18:29.678184,68:54:5a:8e:44:eb,"Ether / I P / UDP / DNS q r y b ' j n i c r o s o f t j n c c . _ t c p . l o c a l . 1 '" "
2B48 2024-04-26 06:18:29.781017,dc:68:Bc:3f:d<i:98,Ether / IPv6 / ICHPv6ND_RA / ICHPv6ND0ptSrcLLAddr / ICHPv6ND0ptHTU /

ICHPv6ND0ptRDNSS / ICHPv6ND0ptDNSSL / ICHPV6 Neighbor Discovery Option - Prefix Information 20Ol:67c:122O:9Bal::/64 On-link
1 Autonomous Address Router Address 0

2B49 2024-04-26 06:18:29.789799,fc:d9:08:<id:f8:98,"Ether / I P / UDP / DNS Qry b ' A n d r o i d - 3 8 . l o c a l . ' ' "
2050

kaLitjpkali: - / D o c u m e n t 5/ptnetin5peclor_beta

File Actions Edit View Help
I — (k a l i ® kali)-[~/I>ocuments/ptnetinspector_beta"
L $ cat src/tmp/time_incoming.csv I grep "52:34:7d:20:96:98"

C-(kali® kali)-[~/Documents/ptnetinspector beta"

Fig. 4.44: Actual packets captured by the ptnetinspector.

reactions of one of the most widely used operating systems among the end users to
the IPv6 messages of various protocols. Network discovery feature is enabled on all
the versions. The testing methodology involves running the machines four times in
total. The scripts are executed three times consecutively, followed by the fourth run
after restarting the machine.

The testing is performed in a way that only the Kali (source point of the scripts),

88

Table 4.7: Windows 10 Pro versions included in the active mode testing.

Codename Version Build
Threshold 1507 10240

Threshold 2 1511 10586
Redstone 1607 14393

Redstone 3 1709 16299
Redstone 5 1809 17763

19H1 1903 18362
19H2 1909 18363
20H1 2004 19041
20H2 20H2 19042
21H1 21H1 19043
21H2 21H2 19044
22H2 22H2 19045

router and the particular Windows 10 build are active in the topology to make the
further analysis of the responses easier. A static global unicast address is assigned
to each build from the 2001:f:b:b::/64 range, where the last byte consists of aX and
X represents the order of the build (10240 is the first build, therefore the address is
2001:f:b:b::al). The results can be seen in the Tab. 4.8.

As can be seen from the results, responses to some protocols are always the same
(like positive responses to M L D v l and L L M N R , not responding to the multicast
ping, malicious ping and unknown ICMPv6 message of type 254) and some vary
with different versions. It can be seen that the first 3 builds (versions 1507, 1511,
1607) send responses to the ICMPv6 queries in the default firewall state (private
network profile). After exploring the firewall rules, the response rule is not active,
but the builds still respond to all the set addresses. By default, ping was issued
to the statically set G U A and L - L addresses. A l l later versions correctly follow the
firewall rules and do not respond to the queries at all if it is not specifically set.
Regarding the mDNS protocol, the first 4 versions tested do not send responses to
the queries, even though the firewall rules exist for the mDNS and they are active
in the default state. The responses are sent from the version 1809. Regarding
the MLDv2 protocol, it was discovered that for all the tested versions, Windows
responds with MLDv2 report messages to the M L D queries only during the first
run of the scripts. If the scripts are run shortly after that, Windows responds only
with the M L D v l report messages. Apart from that, NS and N A conversations work
without limitations, all of the Windows versions always react to the NS messages

89

and generate them themselves.
When running ptnetinspector repeatedly in a short time, it was also discovered

that it irregularly sends / does not send the mDNS and L L M N R queries. In cases
where queries are not sent, the number of output addresses detected is significantly
lower (usually IPv4 address, Link-Local address, source addresses used for the com
munication and possible addresses derived from the M L D payload).

4.6.3 Active mode testing of various operating systems

In this section, testing of various operating systems (middle section machines in the
Fig. 4.2) is performed. The operating systems used for the testing are displayed in
the Tab. 4.9 together with their versions. The results of testing are displayed in the
Tab. 4.10. Testing methodology is the same as in the case of Windows array testing.

Table 4.9: Various OS versions included in the active mode testing.

OS name Version
Windows X P Build 2600 (SP3)
Windows 7 Build 7601 (SP1)

Windows 11 Build 22621.1702 (22H2)
Ubuntu 22.04.3 LTS

Arch Linux 2024.03.01
mac OS Monterey 12.0.1
Android Android-x86 9.0

Linux Mint 21.3 Virginia
openSUSE Leap 15.0

CentOS Stream release 9

It can be seen that Windows X P does not respond with MLDv2 report messages.
Windows 7 follows the behavior (regarding MLD) of Windows 10 distributions.
Neither of the 2 Windows versions responds to standard ICMPv6 queries in the
firewall default state as well as to the L L M N R and mDNS queries. In case of
Windows 11, when compared to other Windows distributions, it did not respond to
L L M N R and mDNS queries originating from the Kali Linux. But regarding mDNS,
it was captured that the responses without queries were sent during initial boot up
after restart (see the Fig. 4.45). Similar behavior applies for the Ubuntu, Linux
Mint, openSUSE and CentOS machines. They also send mDNS reports during
initial boot up, but do not react to neither L L M N R nor mDNS queries sent from
Kal i . Android, Linux Mint and openSUSE send MLDv2 report messages during

90

the first run of scripts, but they respond only with M L D v l reports after repetitive
runs. Ubuntu, Arch Linux and CentOS always respond with MLDv2, no matter
the run of scripts. A l l the Linux machines as well as macOS and Android respond
with M L D v l reports, send response to multicast ping and default ICMPv6 ping
(directed to a specific address of the device - static G U A and L-L tested) and
NS / N A messages. The unusual behavior was detected with the CentOS machine.
From the tested Linux machines, CentOS was the only one who did not respond
to ICMPv6 multicast messages with the set unknown type (254). A l l of the Linux
machines together with macOS and Android responded to malicious multicast pings,
Android responded also to the unicast ICMPv6 unknown message.

.116 39.
L117 39.
L139 41
L140 41
L141 41
L142 41
L143 41
L144 41
L151 41
.152 41
.153 41
L154 41

I. 518860

5 1 9 5 8 2

5 2 0 4 9 4

2 8 3 4 7 4

2 8 3 4 9 2

2 8 3 5 3 8

2 8 3 5 5 6

2 8 3 5 9 8

2 8 3 6 1 5

J 6 4 1 9 1

364777

3 5 4 9 2 2

3 5 5 8 5 4

3 5 5 9 1 9

3 5 5 9 3 5

fe80::e734:2b41:
fe80::e734:2b41:
fe80::e734:2b41:
192.158.0.5
192.158.0.5
fe80::e734:2b41:
fe80::e734:2b41:
fe80::e734:2b41:
192.158.0.5
192.168.0.5
192.168.0.5

5223 b9c9
5223 b9c9
5223 b9c9

b9c9
b9c9
b9c9

fe80::e734
reE0;;e734
feB0::e734
192.158.0.:

5223 b9<_9
5223 b9c9
5223 b9c9

ff02::
ff02::
ff02::
224.0.
224.0.
ff 0 2 :
ff 0 2 :
ff 0 2 :

ff 0 2 ;
ľľ02 ;
ff 0 2 ;

MDNS
MDIJS
LLHNR
MDIJS
MDIJS
MDIJS
MDIJS
LLHNR
LLHNR
MDIJS
MDIJS
MDIJS
MDIJS
LLI-1IJR
LLMNR

101 Standard
431 Standard
95 Standard
81 Standard

427 Standard
101 Standard
447 Standard
95 Standard
75 Standard
81 Standard

427 Standard
101 SLaridard
447 S

query

miery l
I query i

"3M" question
i:21d0:d656:c50a:2a8 AAAA

"3M" question
i:21d0:d65S:c50a:2a8 AAAA

2G01:f:b:t

2G01:f:b:t

0X00e0 AMY DESKTOP-10E23T8.local,
response 0x0000 AAAA 2001:f:b:s
0xec3e ANY DESKTOP-10E23T8
0X00e0 ANY DESKTOP-10E23T8.local,
response 0x0000 AAAA 2001:f:b:E
0X00e0 ANY DESKTOP-10E23T8.local,
response 0x0000 AAAA 2001:f:b:s
0x25dl ANY DESKTOP-10E23T8
0x25dl ANY DESKTOP-10E23T8
0X0000 ANY DESKIOP-10E23lii.local,
response 0x0000 AAAA 2eei:f:b:£
0xS0e0 ANY DESKTOP-1CJE23T8.local, "OM" quesLiuri

.e 0x0000 AAAA 2001:f;b:a:21d0:d656:c50a:2a8 AAAA 2e01:f:b:b
ANY DESKTOP-10E23TS
ANY DESKTOP 10E23T8

Fig. 4.45: L L M N R and mDNS messages generated by Windows 11 during booting.

4.6.4 Aggressive mode testing of various operating systems

For the purpose of aggressive mode testing, multiple instances of Windows 10 operat
ing systems and Linux machines are run. Specifically, the machines are Windows 11,
Windows 10 22H2, Windows 10 1809, Ubuntu, Arch Linux and CentOS. Similar ap
proach is taken as in the case of passive mode testing, i.e. number of captured
devices and addresses. Aggressive mode is run using the following command:

i sudo ./verifyAddresses.py - i ethO mode a+ -da+ 30

Testing methodology is similar to the passive testing, 10 tests are performed
consecutively. The results are shown in the Tab. 4.11. The success rate of testing is
nearly 100 %. Even though the outputs of tests 3 and 5 tell that one IP address was
missed by the verifyAddresses script, it is the public DNS address of Google that is
intentionally ignored (as discussed in the section 4.5.3). Such on output of Test 5
is shown in the Fig. 4.46. The files are included in the Appendix D, specifically
GooglelP folder (or alternatively available on the public GitHub project). The same
address problem applies for the Test 3.

91

Number of d e v i c e s c a p t u r e d by the v e r i f y A d d r e s s e s s c r i p t : S
Number of Addresses c a p t u r e d by the v e r i f y A d d r e s s e s s c r i p t : 67

Number of d e v i c e s c a p t u r e d by the p t n e t i n s p e c t o r : 8
Number of Addresses c a p t u r e d by the p t n e t i n s p e c t o r : 68

Every d e v i c e and address c a p t u r e d was a l s o found i n the p t n e t output.

The address 8.8.8.8 was not found i n the captu r e d r e s u l t s f o r the ca:01:06:01:00:00 node.
Some addresses were not found or the s e t i s empty.

Fig. 4.46: Aggressive mode testing - ignored Google DNS address by the designed
script.

Table 4.11: Aggressive mode testing with virtual machines.

Test
number

M A C s
found (v/p)

M A C s
missed
(v/p)

IPs found

(v/p)

IPs missed

(v/p)

Test 1 8/8 0/0 64/64 0/0
Test 2 8/8 0/0 64/64 0/0
Test 3 8/8 0/0 62/63 1/0
Test 4 8/8 0/0 63/63 0/0
Test 5 8/8 0/0 67/68 1/0
Test 6 8/8 0/0 62/62 0/0
Test 7 8/8 0/0 61/61 0/0
Test 8 8/8 0/0 66/66 0/0
Test 9 8/8 0/0 63/63 0/0

Test 10 8/8 0/0 62/62 0/0

4.6.5 Scanning vulnerability

From the point of view of scanning the devices, Windows machines have quite repet
itive behavior. Simply by observing the reactions of systems to the IPv6 flows, Win
dows 10 can be characterized by their response to the L L M N R , and later versions
to the mDNS protocols. Linux machines, on the other hand, respond to unknown
ICMPv6 messages except for the CentOS. A l l the Linux machines together with
macOS and Android respond to malicious ping and regular multicast ping.

92

Table 4.8: Windows 10 various build responses - active mode (default firewall rules).

Windows
10 version

M L D v 2 a M L D v l
Multicast

ping

Unknown
ICMPv6

(254)

Malicious
ping

Default
ICMPv6

(ping)
L L M N R mDNS NS

1507 / / X / / / X /

1511 / / X / / / X /

1607 / / X / / / X /

1709 / / X / X / X /

1809 / / X / X / / /

1903 / / X / X / / /

1909 / / X / X / / /

2004 / / X / X / / /

20H2 / / X / X / / /

21H1 / / X / X / / /

21H2 / / X / X / / /

22H2 / / X / X X / / /

"The stations send MLDv2 response only during the first run of scripts, then respond only with M L D v l . This is the reason why the check mark, together
with the cross, is written down.

Table 4.10: Various OS responses - active mode (default firewall rules).

OS M L D v 2 a M L D v l
Multicast

ping

Unknown
ICMPv6

(254)

Malicious
ping

Default
ICMPv6

(ping)
L L M N R mDNS 6 NS

Windows X P X / /

Windows 7 / / X / /

Windows 11 / / X / /

macOS X / / / / / /

Ubuntu / / / / / / /

Arch Linux / / / / / / /

Android / / X / / / / / / /

Linux Mint / / X / / / / / / / X /

openSUSE / / X / / / / / / / X /

CentOS / / / / / /

"The same scenario as in case of various Windows 10 builds.
6Some devices do not send response to the queries sent from the ptnetinspector, but during the booting process, it can be seen that devices send their

reports on their own. Therefore, both the check mark and cross symbols are written again.

Conclusion
The master's thesis aim was to study the theoretical IPv6 concepts, establish testing
environment for the proposed scenarios, develop scripts for the ptnetinspector tool
verification and discover differences between various operating systems regarding
their IPv6 implementation.

For the testing environment, the GNS3 emulator was chosen. The instances of
devices primarily run on the local server and are interconnected by the switches
and a Cisco router. Kal i runs the ptnetinspector program which intercepts or even
generates the traffic according to one of its 3 modes (passive, active, aggressive).
Each of the modes was tested against 5 proposed scenarios. The scenarios were
designed in a way that resource utilization for the tool execution was measured with
increasing load, i.e. higher number of addresses each device possesses. The Bash
script was developed for the automated measuring. The results for the active and
aggressive modes are shown in the Tab. 4.4 and Tab. 4.5 respectively.

Another Bash script was developed for the traffic capturing together with Python
script which compares own detected devices and their respective addresses with the
results of ptnetinspector. Certain shortcomings (as described in the chapter 4.5)
were discovered, i.e. ptnetinspector did not analyze payload of the mDNS packets
during passive mode scanning and reports public addresses as belonging to the router
device (based on the M A C address). Additionally, implementation of timestamps
was proposed to better synchronize the traffic capturing of all scripts.

After successfully implementing the Python verification script, it was used to ob
serve the responses of various operating systems to different IPv6 flows. A l l 3 modes
were tested from different perspectives. As can be seen in the Tab. 4.6 (passive test
ing) and Tab. 4.11 (aggressive testing), the results of both scripts corresponded
nearly 100%, but the synchronization of ptnetinspector is still not perfect and it
still does not deal with public addresses. Various Windows 10 builds (Tab. 4.8) and
other operating systems (mainly Linux - Tab. 4.10) were tested in active mode. Re
sponses of Windows 10 are pretty similar across successive builds, they respond to
M L D v l , MLDv2, L L M N R and NS messages. The mDNS reporting starts from the
version 1809. First 3 versions respond to ICMPv6 query messages by default. None
of the Linux distributions responds to L L M N R queries or reacts to mDNS queries
sent by the ptnetinspector, but mDNS protocol is implemented and reports sent
during booting can be captured for macOS, Linux Mint, openSUSE and CentOS.
Android always responds to mDNS queries. The only Linux machine not responding
to the ICMPv6 query type 254 is CentOS. Android, macOS and Linux distributions
respond to the malicious and multicast ping, which differs them from Windows.

The developed scripts are attached in the ZIP archive (see Appendix D).

95

RQ1: Are there any detection errors or other bugs in ptnetinspector tool pro
vided for IPv6 devices discovery? Is there a way to resolve them?
In the section 4.5.1, the problem of ptnetinspector tool not reading
the mDNS messages during passive mode scanning, respectively their
payload containing device addresses, was described. After reporting
the problem to the author of the application, it was fixed. Another
problem that arose during the verification process was synchronization
between the proposed script and ptnetinspector. Originally the times-
tamp of the ptnetinspector process finish time was captured, but it
was not accurate. After reporting this to the author, timestamps were
implemented to the code, but as already explained in the section 4.5.2,
the synchronization is still not perfect as the reported end timestamp
does not correspond to the processed packets (slight delay in order
of tens of milliseconds). The last error found was ptnetinspector re
porting public addresses as belonging to the local router device. This
was shown in the section 4.5.3, where the public Google DNS address
was printed under the router's addresses. Therefore, all discovered
errors are already fixed or could be fixed quite easily. During large-
scale testing of ptnetinspector tool, no other errors or design flaws were
observed.

RQ2: What is the performance of ptnetinspector tool under certain scenar
ios?
As can be seen in the Tab. 4.4 for active scanning, with the increas
ing load of input data (higher number of addresses per device), the
average runtime grows larger. The change is most apparent from Sce
nario 4, where router starts distributing prefixes. Under small load,
the ptnetinspector runs around 11 seconds, but with a high number of
addresses, it can take over half a minute. C P U usage did not exceed 50
% of 1 core. It can be clearly seen that higher input load leads to more
R A M usage. In case of no IPv6 device in the topology, R A M usage was
approximately 98 M B . For the 5 distributed prefixes by the router sce
nario, it was approximately 114 M B . During the aggressive scanning
(Tab. 4.5), similar results with increasing demands on the computa
tional resources can be observed. For the no IPv6 device scenario, the
average runtime is 31.75 seconds, while for the most demanding sce
nario the average runtime is 135.658 seconds. The average C P U usage
is quite low (around 16 %), but as discussed in the section 4.3.1, the
load is spread across larger time interval, where there are short peaks
in high C P U utilization, but then there are long periods of inactivity

96

(the tool just passively listens to the traffic). In terms of R A M usage,
the results are quite comparable with active mode, the lowest value
is approximately 91 M B and the highest approximately 108 M B . But
the results are again influenced by long inactivity periods. The results
also depend an the addresses the devices report or use for the commu
nication. Therefore, the ptnetinspector could be run easily, there are
no significant constraints in terms of computational or other resources.
The duration of test is dependent on the particular conditions with
expected dependency.

RQ3: What, if any, are the differences between the selected major operating
systems in terms of specific aspects of IPv6 implementation?
From the tested Windows 10 V M array (Tab. 4.8), it can be observed
that various builds have quite repetitive behavior. A l l the tested builds
respond to M L D v l and L L M N R . MLDv2 reports are sent only during
the first run of scripts. On the contrary, they do not respond to the
multicast ping, unknown ICMPv6 message (type 254) and malicious
ping (unknown option 128). First 3 tested versions (1507, 1511 and
1607) respond to ICMPv6 queries in a default firewall state (private
profile) with disabled rules for the response and mDNS reports are sent
from the version 1809. Windows 11 follows similar behavior but does
not send L L M N R responses. In the Tab. 4.10, where among 3 other
Windows version the various Linux distributions, macOS and Android
device were tested, quite different results can be observed. None of
the machines responds to L L M N R . A l l the Linux distributions with
macOS and Android respond to multicast ping, malicious ping and
ICMPv6 query messages. CentOS is the only Linux distribution that
does not respond to the ICMPv6 message of type 254. Ubuntu, Arch
Linux and CentOS send together with M L D v l also MLDv2 reports,
no matter the script run. macOS neither sends MLDv2 nor mDNS
responses. Out of the tested VMs, Android is the only device that
answers mDNS queries. Ubuntu, Linux Mint, openSUSE and CentOS
support mDNS protocol, but do not respond to the ptnetinspector
queries. Therefore, it was confirmed there are several differences in
IPv6 default behavior between selected major operating systems. Of
course, these differences could be studied in more details and other
aspects, such as different firewall profiles or antivirus softwares could
be taken into account in possible follow-up works.

As obvious from the above text, all three research questions were resolved suc
cessfully.

97

Bibliography
[1] I B M . What is visualization? Online. IBM. 2019. Available at:

https://www.ibm.com/topics/virtualization. [cit. 2023-10-07].

[2] KOMOSNÝ, Dan. Sítové operační systémy. Skriptum F E K T Vysoké učení tech
nické v Brně, 2022 [cit. 2023-10-07]. s. 1-129.

[3] SIMIC, Sofija. What is a Hypervisor? Types of Hypervisors 1 & 2. Online.
PhoenixNAP. 2022. Available at:
h t t p s : //phoenixnap. com/kb/what-is-hypervisor-type - 1 - 2 . [cit. 2023-10-
07].

[4] V M W A R E . What is network visualization? Online. 2023. Available at:
https://www.vmware.com/topics/glossary/content/
n e t w o r k - v i r t u a l i z a t i o n . h t m l . [cit. 2023-10-07].

[5] GNS3 C O M M U N I T Y . Getting Started with GNS3. Online. GNS3. 2020. Avail
able at:
https://docs.gns3.com/docs/. [cit. 2023-09-24].

[6] G R O S S M A N N , Jeremy. GNS3 2.2.36 Released!. Online. GNS3. 2023. Avail
able at:
h t t p s : //gns3. com/community/blog/gns3 -2-2-36-released. [cit. 2024-01-
07].

[7] Paolo (paolo-projects). Unlocker 3.0.5. Online. GitHub. 2023. Available at:
h t t p s : // g i t h u b . com/paolo-proj e c t s / u n l o c k e r / r e l e a s e s . [cit. 2024-03-
19].

[8] H U A N G , Chih-Wei and others. Android-x86. Online. Android-x86. 2022. Avail
able at:
https://www.android-x86.org/. [cit. 2024-03-19].

[9] S H A R M A , Sonal. Alpha Testing vs Beta Testing: Everything you need to know.
Online. Testsigma. 2023. Available at:
h t t p s : //t e s t s i g m a . com/blog/alpha-test-vs-beta-test/. [cit. 2023-11-
04].

[10] H A M I L T O N , Thomas. Manual Testing Tutorial: What is, Types, Concepts.
Online. Guru99. 2023. Available at:
https://www.guru99.com/manual-testing.html. [cit. 2023-11-04].

98

https://www.ibm.com/topics/virtualization
https://www.vmware.com/topics/glossary/content/
https://docs.gns3.com/docs/
https://www.android-x86.org/
https://www.guru99.com/manual-testing.html

[11] H A M I L T O N , Thomas. What is Automation Testing? Test Tutorial. Online.
Guru99. 2023. Available at:
h t t p s : //www.guru99. com/automat i o n - t e s t i n g , html. [cit. 2023-11-04].

[12] Inflectra. Functional vs. Non-Functional Testing Methodologies. Online. Inflec-
tra. 2023. Available at:
https://www.inflectra.com/Ideas/Topic/Functional-vs-Non-Functional-Testing.

aspx. [cit. 2023-11-04].

[13] SmartBear Software. Software Testing Methodologies. Online. SmartBear
Software. 2023. Available at:
https://smartbear.com/learn/automated-testing/

software-testing-methodologies/, [cit. 2023-11-04].

[14] C H A T T E R J E E , Shormistha. What is Test Methodology? (With 7 Methodolo
gies). Online. BrowserStack. 2022. Available at:
https://www.browserstack.com/guide/software-testing-methodologies.

[cit. 2023-11-04].

[15] Inflectra. Software Testing Methodologies - Learn the Methods & Tools. Online.
Inflectra. 2023. Available at:
https://www.inflectra.com/Ideas/Topic/Testing-Methodologies.aspx.

[cit. 2023-11-04].

[16] H A M I L T O N , Thomas. Software Testing Methodologies: QA Models. Online.
Guru99. 2023. Available at:
h t t p s : //www.guru99. com/testing-methodology .html. [cit. 2023-11-04].

[17] D E E R I N G , S. and HINDEN, R. Internet Protocol, Version 6 (IPv6) Specifica
tion. Online. R F C 2460. 10.17487/RFC2460, 1998. Available at:
https://doi.org /10.17487/RFC2460. [cit. 2023-10-08].

[18] JEŘÁBEK, J. Pokročilé komunikační techniky. Skriptum F E K T Vysoké učení
technické v Brně, 2023. s. 1-180. [cit. 2023-10-08].

[19] Network Academy. IPv4 v s IPv6 - Understanding the differences. Online. Net
work Academy. 2023. Available at:
h t t p s : //www.networkacademy. i o / c c n a / i p v 6 / i p v 4 - v s - i p v 6 . [cit. 2023-10-

28].

99

http://www.guru99
https://www.inflectra.com/Ideas/Topic/Functional-vs-Non-Functional-Testing
https://smartbear.com/learn/automated-testing/
https://www.browserstack.com/guide/software-testing-methodologies
https://www.inflectra.com/Ideas/Topic/Testing-Methodologies.aspx
http://www.guru99
https://doi.org/10.17487/RFC2460
http://www.networkacademy

[20] Cisco. IPv6 MTU Path Discovery. Online. Cisco. 2023. Available at:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6_basic/
conf iguration/xe-3s/ip6b-xe-3s-book/ip6-mtu-path-disc .pdf. [cit.
2023-10-28].

[21] Imperva. Anycast. Online. Imperva. 2023. Available at:
h t t p s ://www. imperva. com/learn/perf ormance/anycast/. [cit. 2023-10-29].

[22] HINDEN, R. and D E E R I N G , S. IP Version 6 Addressing Architecture. Online.
R F C 4291. 10.17487/RFC4291, 2006. Available at:
https://doi.org /10.17487/RFC4291. [cit. 2023-10-29].

[23] Cisco Press. IPv6 Address Representation and Address Types. Online. Cisco
Press. 2017. Available at:
https://www.ciscopress.com/articles/article.asp?p=2803866&seqNum=
4. [cit. 2023-10-29].

[24] K H A N N A , Sunil. Understanding IPv6 EUI-64 Bit Address. Online. Cisco
Community. 2012. Available at:
https://community.cisco.com/t5/networking-knowledge-base/
understanding-ipv6-eui-64-bit-address/ta-p/3116953. [cit. 2023-10-07].

[25] CONTA, A. ; D E E R I N G , S. and G U P T A , M . Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. Online. R F C
4443. 10.17487/RFC4443, 2006. Available at:
https://doi.org /10.17487/RFC4443. [cit. 2023-10-12].

[26] S A T R A P A , Pavel. IPv6: internetový protokol verze 6. 4. aktualizované a
rozšířené vydání. CZ.NIC. Praha: CZ.NIC, 2019. ISBN 978-80-88168-46-1.

[27] N A R T E N , T.; N O R D M A R K , E.; SIMPSON, W. and S O L I M A N , H. Neighbor
Discovery for IP version 6 (IPv6). Online. R F C 4861. 10.17487/RFC4861, 2007.
Available at:
https://doi.org /10.17487/RFC4861. [cit. 2023-11-15].

[28] D E E R I N G , S.; F E N N E R , W. and H A B E R M A N , B. Multicast listener Dis
covery (MID) for IPv6. Online. R F C 2710. DOI 10.17487/RFC2710, 1999.
Available at:
https://doi.org /10.17487/RFC2710. [cit. 2023-12-02].

[29] VIDA, R. and COSTA, L. Multicast listener Discovery Version 2 (MLDv2) for
IPv6. Online. R F C 3810. DOI 10.17487/RFC3810, 2004. Available at:
https://doi.org /10.17487/RFC3810. [cit. 2023-12-02].

100

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6_basic/
https://doi.org/10.17487/RFC4291
https://www.ciscopress.com/articles/article.asp?p=2803866&seqNum=
https://community.cisco.com/t5/networking-knowledge-base/
https://doi.org/10.17487/RFC4443
https://doi.org/10.17487/RFC4861
https://doi.org/10.17487/RFC2710
https://doi.org/10.17487/RFC3810

[30] A N T H O N Y , Sebastian. Who actually develops Linux?
surprise you. Online. ExtremeTech.

https://www.extremetech.com/computing/

The answer
Available at:

might

175919-who-actually-develops-linux-the-answer-might-surprise-you.

[cit. 2024-01-08].

[31] P A L L A S , Volker D. IPv6 on Mac OS / The Definitive Guide. Online. P A L L A S
DIGITAL. 2023. Available at:
https://pall.as/ipv6-on-mac/ . [cit. 2023-12-06].

[32] A P O O R V A . MacOS vs Linux: Key Differences that You Should Know. Online.
Scaler Topics. 2023. Available at:
https://www.scaler.com/topics/linux-vs-mac/. [cit. 2023-12-06].

[33] P H A N , Viet Anh. Generování IPv6 a ICMPv6 paketů a jejich vliv na fungování
zařízení v síti. Online. Master's thesis. Brno: Brno University of Technology.
2023. Available at:
h t t p s : / / t h e s e s . c z / i d / 2 4 8 p v f / . [cit. 2023-12-06].

101

https://www.extremetech.com/computing/
https://pall.as/ipv6-on-mac/
https://www.scaler.com/topics/linux-vs-mac/
https://theses.cz/id/248pvf/

Symbols and abbreviations
V M Virtual machine

C P U Central Processing Unit

R A M Random Access Memory

H D D Hard Disk Drive

SSD Solid State Drive

OS Operating System

K V M Kernel-based Virtual Machine

V L A N Virtual Local Area Network

V P N Virtual Private Network

IT Information Technology

G P U Graphics Processing Unit

GNS3 Graphical Network Simulator-3

GUI Graphical User Interface

V P C Virtual Personal Computer

T P M Trusted Platform Module

IPv6 Internet Protocol Version 6

IoT Internet of Things

N A T Network Address Translation

QoS Quality of Service

D S C P Differentiated Services Code Point

E C N Explicit Congestion Notification

T C P Transmission Control Protocol

U D P User Datagram Protocol

ToS Type of Service

102

M T U Maximum Transmission Unit

C D N Content Delivery Network

DNS Domain Name System

I A N A Internet Assigned Numbers Authority

RIR Regional Internet Registry

LIR Local Internet Registry

EUI-64 Extended Unique Identifier

I E E E Institute of Electrical and Electronics Engineers

M A C Media Access Control

OUI Organizational Unique Identifier

NIC Network Interface Controller

ICMPv6 Internet Control Message Protocol version 6

N D Neighbor Discovery

A R P Address Resolution Protocol

D H C P Dynamic Host Configuration Protocol

S L A A C Stateless Address Autoconfiguration

DUID D H C P Unique Identifier

IA Identity Association

M L D Multicast Listener Discovery

I G M P Internet Group Management Protocol

R F C Request for Comments

ISP Internet Service Provider

C M D Command Prompt

CLI Command Line Interface

APIPA Automatic Private IP Addressing

103

L L M N R Link-Local Multicast Name Resolution

OOD Object-Oriented Design

A P D U Application Protocol Data Unit

104

List of appendices

A Verification of results script code sample 106

B Performance testing script code sample 108

C Traffic capturing script code sample 109

D Content of the electronic attachment 110

105

A Verification of results script code sample
This Appendix contains part of the source code of the script designed for the purpose

of extracting addresses and comparing results. The code bellow lists the function

extracting addresses from the payload of L L M N R packets.

Listing A . l : Verification of results Python script code sample.

Function to extract address es from the LLMNR packets (

payload)

d e f e x t r a c t L L M N R a d d r e s s e s (n o d e A r r) :

g l o b a l u n i q D e v O b j C a p t

macAddr = e x t r a c t M a c (n o d e A r r [0])

l i n e W i t h B y t e s = r 1 ~ (\ s *) O x [0 - 9 a - z] { 4 } 1

b y t e s P a t t e r n = r 1 (? : [0 - 9 a - f] { 4 } I [0 - 9 a - f] { 2 }) (? = \ s) 1

e x t r a c t e d B y t e s = []

f o r l i n e i n n o d e A r r :

i f r e . m a t c h (l i n e W i t h B y t e s , l i n e) :

l i n e B y t e s = r e . f i n d a l l (b y t e s P a t t e r n , l i n e)

f o r i i n r a n g e (l e n (l i n e B y t e s)) :

e x t r a c t e d B y t e s . a p p e n d (l i n e B y t e s [i])

f o r i d , b y t e i n e n u m e r a t e (e x t r a c t e d B y t e s) :

t r y :

PTR record

i f (b y t e == 1 000c 1) :

i f ((e x t r a c t e d B y t e s [i d + 1] == '0001') and (

e x t r a c t e d B y t e s [i d + 2] == '0000') and (

e x t r a c t e d B y t e s [i d + 3] == ' 0 0 1 e ')) :

c o n t i n u e

A (IPv4) record

e l i f (b y t e == 1 0001 1) :

i f ((e x t r a c t e d B y t e s [i d + 1] == '0001') and (

e x t r a c t e d B y t e s [i d + 2] == '0000') and (

e x t r a c t e d B y t e s [i d + 3] == ' 0 0 1 e ')) :

i p v 4 a d d r L e n = i n t (i n t (e x t r a c t e d B y t e s [i d + 4] , 16)

/2)

i p v 4 a d d r = s t r ()

106

for i in r a n g e (i p v 4 a d d r L e n) :

t e m p 2 B y t e s = e x t r a c t e d B y t e s [i d + 5 + i]

b y t e A r r = [i n t (t e m p 2 B y t e s [j : j + 2] , 1 6) for j in

range (0 , l e n (t e m p 2 B y t e s) , 2)]

for num in b y t e A r r :

i p v 4 a d d r += s t r(num) + '. 1

i p v 4 a d d r = i p v 4 a d d r [:-1]

i f (f i n d D e v i c e B y M A C (m a c A d d r)) :

u n i q D e v O b j C a p t . g e t (m a c A d d r) . s e t _ i p _ a d d r e s s e s (

i p v 4 a d d r)

AAAA (IPv6) record

e l i f (b y t e == 1 001c 1) :

i f ((e x t r a c t e d B y t e s [i d + 1] == '0001') and (

e x t r a c t e d B y t e s [i d + 2] == '0000') and (

e x t r a c t e d B y t e s [i d + 3] == ' O O l e ')) :

i p v 6 a d d r L e n = i n t (i n t (e x t r a c t e d B y t e s [i d + 4] , 16)

/2)

i p v 6 a d d r = s t r ()

for i in r a n g e (i p v 6 a d d r L e n) :

i p v 6 a d d r += e x t r a c t e d B y t e s [id+5 + i] . l s t r i p (" 0 "

) + ' : '

i p v 6 a d d r = r e . s u b (' : { 2 , } ' , i p v 6 a d d r)

i p v 6 a d d r = i p v 6 a d d r [:-1]

i f (f i n d D e v i c e B y M A C (m a c A d d r)) :

u n i q D e v O b j C a p t . g e t (m a c A d d r) . s e t _ i p _ a d d r e s s e s (

i p v 6 a d d r)

except I n d e x E r r o r :

continue

107

B Performance testing script code sample
Here is an example of the source code of the Bash script created for the purpose of

performance testing. Function to calculate average run time is presented.

Listing B . l : Performance testing Bash script code sample.

1 ############# AVERAGE RUN TIME

2 r e a l T i m e = f a l s e

3 r u n T i m e A r r a y = ()

4 r e g e x = 1 [0 - 9] +\ . [0 - 9] + 1

5 f o r l i n e i n $ (c a t p t n e t t i m e . t x t)

6 do

7 i f [" S r e a l T i m e " = t r u e] ;

8 t h e n

9 r u n t i m e _ s e c = $ (e c h o " $ l i n e " 1 g r e p -oE " $ r e g e x ")

10 r u n t i m e _ m i n = $ (e c h o " $ l i n e " | g r e p -oE 1 ~ [0 - 9] + 1)

11 i f [-n " $ r u n t i m e _ m i n "] ; t h e n

12 r u n t i m e _ s e c = $ (e c h o " $ r u n t i m e _ s e c " + " $ ((r u n t i m e _ m i n

* 6 0)) " 1 be)

13 f i

14 a r r a y + = ($ r u n t i m e _ s e c)

15 r e a l T i m e = f a l s e

16 f i

17 i f [[$ l i n e =~ ~ [r e a l]]] ;

18 t h e n

19 r e a l T i m e = t r u e

20 f i

21 done

22

23 sumRT=0

21

25 f o r elm i n " $ { a r r a y [(§]}" ; do

26 sumRT=$(echo " $ s u m R T u + u $ e l m " I be)

27 done

28

29 a v e r a g e R T = $ (e c h o " s c a l e = 3 ; u $ s u m R T u / u $ { # a r r a y [0] } " I be)

108

C Traffic capturing script code sample
In this part, an example of the source code of the Bash script that captures network

traffic is presented. The code bellow demonstrates extraction of the packets to

separate files.

Listing C . l : Traffic capturing Bash script code sample.

Read all the packets (not src MAC addr 00:0c:29: b8:a9

:Jf.d) to the text file

tcpdump - r . / C a p t u r e d P a c k e t s / c a p P a c k e t s . p c a p n g n o t e t h e r

s r c $3 -e -n > . / C a p t u r e d P a c k e t s / A L L _ P a c k e t s . t x t 2> ./

C a p t u r e d P a c k e t s / t c p d u m p _ s t d e r r . l o g

echo -e " \ n R e a d i n g u M L D u p a c k e t s . . . "

Read all the MLD report packets

tcpdump - r . / C a p t u r e d P a c k e t s / c a p P a c k e t s . p c a p n g n o t e t h e r

s r c $3 and i p 6 and n o t icmp6 and n o t udp p o r t 5353 and

no t udp p o r t 5355 -e -v -n > . / C a p t u r e d P a c k e t s /

M L D _ r e p o r t _ P a c k e t s . t x t 2>> . / C a p t u r e d P a c k e t s /

t c p d u m p _ s t d e r r . l o g

echo -e " \ n R e a d i n g u M D N S u p a c k e t s . . . "

Read all the MDNS packets

tcpdump - r . / C a p t u r e d P a c k e t s / c a p P a c k e t s . p c a p n g n o t e t h e r

s r c $3 and udp p o r t 5353 -e -v -n > . / C a p t u r e d P a c k e t s /

M D N S _ P a c k e t s . t x t 2>> . / C a p t u r e d P a c k e t s / t c p d u m p _ s t d e r r .

l o g

e cho -e " \ n R e a d i n g u L L M N R u p a c k e t s . . . "

Read all the LLMNR packets

tcpdump - r . / C a p t u r e d P a c k e t s / c a p P a c k e t s . p c a p n g n o t e t h e r

s r c $3 and udp p o r t 5355 -e -sO - v v v -X -n > ./

C a p t u r e d P a c k e t s / L L M N R _ P a c k e t s . t x t 2>> ./

C a p t u r e d P a c k e t s / t c p d u m p _ s t d e r r . l o g

109

D Content of the electronic attachment
A l l the scripts are submitted in the ZIP archive Ruiner_attachment.zip. Its structure
can be seen bellow.

CapturedPackets

ALL_Packet s.txt

capPackets.pcapng

CompareResuits.txt

LLMNR_Packets.txt

MDNS_Packets.txt

MLD_report _Packet s.txt

ptrietirispector_stderr. log

ptnetOut.txt

tcpdump_stderr.log

1 tcpdump_stdout.log

1 tmp

start_end_mode.csv

1 time_iricomirig. csv

GooglelP Public Google DNS IP proclaimed as router's IP
CapturedPackets

ALL_Packet s.txt

capPackets.pcapng

CompareResuits.txt

LLMNR_Packets.txt

MDNS_Packets.txt

MLD_report _Packet s.txt

ptnetinspector_stderr.log

ptnetOut.txt

tcpdump_stderr.log

1 tcpdump_stdout.log

1 tmp

start_end_mode.csv

J time_incoming.csv

verif yAddresses. py Verification of results script
ptnetPerf. sh Performance testing script
captPackets. sh Traffic capturing script

/
DeviceNotCaptured

root of the attached archive
Wrong time synchronization by ptnetinspector

110

