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Abstract

Image segmentation plays an important role in medical image analysis. Many segmenta-

tion algorithms exist. Most of them produce data which are more or less not suitable for

further surface extraction and anatomical modeling of human tissues. In this thesis, a novel

segmentation technique based on the 3D Delaunay triangulation is proposed. A modified

variational tetrahedral meshing approach is used to adapt a tetrahedral mesh to the under-

lying CT volumetric data, so that image edges are well approximated in the mesh. In order

to classify tetrahedra into regions/tissues whose characteristics are similar, three different

clustering schemes are presented. Finally, several methods for improving quality of the

mesh and its adaptation to the image structure are also discussed.

Keywords

Medical imaging, computed tomography, volumetric data, image segmentation, surface re-

construction, surgery planning, custom-made implant, Delaunay triangulation, variational

tetrahedral meshing, sliver elimination, feature extraction, clustering.

Bibliographic citation
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Chapter 1

Introduction

Medical imaging devices like the Computed Tomography (CT) and the Magnetic Reso-

nance (MRI) can be used to inspect patient body from the inside. These imaging devices

produce image data detailing human anatomy within a scanned patient body part. The

medical data obtained as planar image slices are mainly used for diagnostic purposes.

The most frequent way of medical diagnostics is investigation of such slices as

grayscale images. However, the CT/MRI data make possible to explore other ways of

medical diagnostics and treatment. Modern image data visualization and 3D modeling

techniques can be used for design of custom-made implants, surgery planning, training,

and navigation of surgeons.

Substantial step of many image understanding methods is the segmentation that sep-

arates objects (i.e. tissues) in the image. The segmentation plays an important role and

provides crucial information for subsequent tasks such as tissue recognition, 3D modeling

and visualization.

A novel vector segmentation algorithm based on the 3D Delaunay triangulation is pro-

posed in this thesis. Tetrahedral mesh is used to divide a three-dimensional image data into

several non-overlapping regions whose characteristics are similar. Methods for isotropic

mesh construction and its adaptation to the underlying image structure are presented, so

that the final mesh contains larger tetrahedra inside image regions while the size decreases

close to the region boundaries.

Applying the vector segmentation a classified mesh whose tetrahedra are grouped into

individual regions is obtained. Such mesh contains all information necessary to reconstruct

geometry of any region (∼ human tissue). The polygonal surface model can be easily

derived.
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4 Chapter 1. Introduction

This thesis is organized as follows. First, a review of recent trends in medical treat-

ment in conjunction with formulation of thesis objectives is given in Chap. 2. Then an

introduction to medical image processing is given in Chap. 3, and prerequisites related to

the Delaunay triangulation and meshing are summarized in Chap. 4. Further, a survey of

existing segmentation techniques relevant to the thesis is given in Chap. 5. The proposed

Delaunay-based vector segmentation is described in Chap. 6 including the discussion of

some implementation details and specific optimization techniques. Finally, experimental

results are shown in Chap. 7 followed by discussion and conclusions.



Chapter 2

Motivation

Modern computer graphics and techniques like the volume rendering were introduced to

surgeons trying to develop novel methods of the medical treatment. Nowadays, recent

research in this area is aimed at:

• direct 3D visualization of medical images (volume rendering) [12, 50],

• 3D anatomical modeling [59],

• surgery planning and training – so called virtual surgery [24, 27],

• computer aided surgery [11, 68],

• and implants design (Fig. 2.3).

Transparent visualization of the segmented CT/MRI data is significant to acquire accu-

rate medical diagnosis. The term volume rendering [12, 50] is used to describe techniques

which allow direct visualization of three-dimensional data.

Benefit of viewing the data as a three-dimensional rather than as individual planes is

obvious. The segmented tissues can be observed from any view point, thus the patient

anatomy can be investigated much precisely and more easily.

2.1 Anatomical Models

The medical image data can be used to create three-dimensional surface models of human

anatomy. After a segmentation of discrete volumetric data, e.g. acquired by CT/MRI

imaging, 3D surface models such as those in Fig. 2.2 can be derived.

5



6 Chapter 2. Motivation

(a) (b) (c)

Figure 2.1: Three alternative volume rendering methods: (a) Maxima Intensity Projec-

tion (MIP) displays structures of maximal importance; (b) value integration results in

X-ray like images; (c) non-photorealistic rendering enhancing contours. Published by

Hauser et al. [50].

The advantage of a surface representation of human anatomy is that it gives a three-

dimensional view from any angle, this is an improvement over the traditional investigation

of two-dimensional grayscale images. Surface models can be extracted from segmented

data using a number of algorithms, for example the Marching Cubes [59]. A detailed study

of the most important surface reconstruction algorithms is given in Sec. 5.2.

(a) (b)

Figure 2.2: Surface model of a human skull (a) and custom made implant (b) for plastic

surgery. Realized in cooperation with Faculty Hospital in Olomouc.

Many medical image segmentation algorithms can be found in the literature. This
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thesis does not try to summarize them all. Only those techniques, related to the topic of

the thesis, are discussed in Chap. 5.

Figure 2.3: Custom-made implant realized by P. Krsek in cooperation with Czech company

Beznoska a.s., the producer of orthopedic implants and instruments.

Research at the Faculty of Information Technology in Brno is aimed at 3D surface

modeling of tissue geometry for implants design, surgery planning and simulation (see

Fig. 2.3). In conjunction with St. Anne’s University Hospital in Brno and Faculty Hos-

pital Brno, clinical applications in aesthetic surgery, orthopaedics and dental surgery are

investigated [60, 111].
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Figure 2.4: 3D geometric modeling of human tissues.
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2.2 Medical Image Segmentation

The main goal of the segmentation process is to divide an image into parts that correspond

to tissues of particular types. In other words, it is the process of labeling each pixel in

a medical image to indicate the tissue type or anatomical structure. The segmentation is

one of the most important steps in the analysis of the medical image data. The precise

segmentation is crucial for 3D modeling of tissues and anatomical structures. Hence, it

helps in diagnosis, surgery planning, surgery simulation, etc.

(a) (b)

Figure 2.5: The segmented CT slice (b) and the original image (a).

In terms of the medical imaging, input to the segmentation process is a series of image

slices, the result of a single CT or MRI scan. More information about medical image

segmentation and its formal definition can be found in Chap. 3.4.

2.2.1 Difficulties of the Segmentation

There are many aspects that make general segmentation a difficult task. The first aspect

is the imaging process itself. The chosen imaging method provides relevant information

about the tissue of interest, but this does not mean that individual tissues will be separable.

Strong edges may not be present around the borders. Such tissue is more detectable by the

human eye than by even sophisticated computer algorithm.

The second aspect is the complexity and variability of the human anatomy. Due to

the nature of the segmentation problem, most of the algorithms are specific to a particular
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Figure 2.6: Artifacts caused by metallic objects present in the CT image data.

problem. Certain knowledge must be built into the algorithm. Therefore, such method is

not suitable for other problems.

Moreover, the CT image data are sometimes damaged by artifacts when metallic ob-

jects are present in the patient body (Fig. 2.6).

Another important feature of the segmentation is automation. Performing automated

segmentation still remains one of the most difficult problems. Although many researchers

have shown success with automation in some cases, there is no generic algorithm which

can perform automatic segmentation on any given data set.

2.3 Thesis Objectives

This thesis aims at the anatomical modeling of human tissues and techniques of medical

image segmentation suitable for this kind of modeling. A 3D model of desired tissue is

made on the basis of the segmented data. Most often, the segmentation step is done semi-

automatically. Results of the segmentation are manually verified and corrected which may

be very time consuming.

An inconvenience can be found in the assumption that a surgeon or assistant is skilled

in the segmentation and its verification. In addition, it is necessary to do a lot of additional

work different from traditional medical treatment. Even thought the surgeons understand

all the advantages that these techniques may bring into the medicine, only few of them are
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willing to do such work. Therefore, it is very hard to establish these techniques in clinical

practice.

Department of Computer Graphics and Multimedia at FIT BUT, namely P. Kršek and

M. Španěl, cooperates on the research of the anatomical modeling in clinical applica-

tions [60, 111] for many years trying to establishing them in practice. It was important

to keep in mind that the field of clinical applications is very wide in our case while objec-

tives of this thesis were formulated:

Accurate surface approximation. In case of anatomical modeling, an error between re-

constructed surfaces of human tissues and a ”ground truth” must be minimal to

guarantee correctness of a planned surgery. Therefore, more attention is given to

surface reconstruction methods that work directly with volumetric data without any

post-processing steps which may increase the surface error.

General algorithm. Because of the wide field of clinical applications, knowledge-based

methods of tissue modeling which uses atlas of human anatomy are not suitable. Be-

sides, in case of traumatic injury, most of the knowledge-based methods fail because

such events are not present in training data. Unfortunately, traumatic injuries are

typical incidents when the anatomical modeling helps in surgery planning. The goal

is to propose a general algorithm, in a certain manner, that is not aimed at concrete

treatment, tissue type, or situation.

Real data. Difficulty of the segmentation is the analysis of real CT/MRI data. It is im-

portant to deal with noise in the imaging process as well as inhomogeneity of the

tissues. Some pre-processing algorithms (noise removal, MR inhomogeneity cor-

rection, etc.) as well as robust segmentation algorithms must be suggested.

High-quality surface meshes. Most frequently, anatomical models are used for surgery

planning and custom-made implants design. However, mesh structure suitable for

numerical simulations is necessary for some tasks. Hence, high-quality meshes

should be produced by the modeling being able to describe interior structure of tis-

sues as well.

High degree of automation. The goal is to develop segmentation algorithm which will

work mostly automatically. Minimal manual corrections of the segmentation are

required. Because manual corrections are always needed, it must be easy to modify

the final segmentation.



Chapter 3

Background: Medical Image Processing

An increasing number of different diagnostic imaging techniques have been introduced in

clinical applications in the last few years. Nowadays, medical images are obtained from

different acquisition devices including Computed Tomography (CT), Magnetic Resonance

Imaging (MRI), Ultrasound, etc. Each of them carries both the structural and the functional

information on human tissues. A short overview of medical imaging and medical image

processing techniques related to the topic of the thesis is given in this chapter.

3.1 Computed Tomography

Computed tomography [51,83] is a modern extension of the traditional X-ray examination.

The X-ray beam scans a slice of the anatomy from multiple angles. Each slice pixel is then

calculated combining the measurements from the multiple angles. The CT produces data

in a planar 2D form as a series of slices through the examined part of the patient body.

The CT intensity is relative to that of water which is zero. In the same manner, the

different tissues have a different predefined intensity values. This feature makes possible

to use some low-level automated segmentation. The CT is very sensitive to differences in

density and produces good anatomical images of organs and soft tissues [72].

3.2 Magnetic Resonance

The magnetic resonance [82,83] represents information of a chemical nature. The different

intensities in the image reflect mainly the density of hydrogen atoms. The method has its

11



12 Chapter 3. Background: Medical Image Processing

(a) (b)

Figure 3.1: Sample CT (a) and MRI (b) slice through the human head. Notice that there

are black areas in place of the bones in the MRI slice. The bones don’t disturb the MR

signal.

theoretical base in advanced nuclear physics. The main advantage of the MR imaging

is that image intensity varies for different soft tissues. In addition, bones do not disturb

the MR signal (see Fig. 3.1). Therefore, it is used to examine soft tissues and to find

pathological changes like tumours.

3.3 CT/MRI Data Preprocessing

In medical imaging, different tissues can appear very similar, making it difficult to inter-

pret the image. The visual examination of medical images is essential in the diagnosis. In

order to visualize relevant anatomy, the image can be adjusted through a process known as

windowing [119]. In fact, the windowing is a simple linear intensity scaling that increases

contrast between tissues of interest. Intensity scaling allows one to focus on specific inten-

sity bands in the image (see Fig. 3.2) by stretching the band of interest into the dynamic

range of a display.

3.3.1 Enhancing Contrast

Furthermore, to obtain images with a greater detail of relevant anatomy, a contrast medium

which highlights certain tissues is typically injected into a patient body [15]. However, for
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Figure 3.2: Adjusting density window of the CT image using linear intensity scaling.

many applications, there is no known contrast medium capable of differentiating between

the relevant tissue types. For these reasons, it is helpful to enhance contrast by more

computationally intensive image processing techniques.

A comprehensive survey of contrast enhancing methods applied in the medical imaging

can be found in [4]. Here, a brief overview of selected methods is given with a reference

to literature. Some techniques, the power-law technique, the anisotropic filtering and the

bilateral filter, are described in more detail as they are further utilized in the thesis.

3.3.2 Enhancement in Spatial Domain

Most of the contrast enhancement techniques [4, 46] can be classified into two groups.

Enhancement in spatial domain manipulates image pixels directly, while frequency domain

approaches modify the Fourier transform of an image. Many spatial domain methods have

been applied in the past:

• gray level transformations – linear, logarithmic, power-law and piecewise-linear

transformation functions,

• histogram equalization and matching,

• linear and non-linear spatial smoothing filters – mean and median filtering,

• sharpening smoothing filters – unsharp masking, etc.
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Power-law transformations [46] are useful for general-purpose contrast manipulation.

The power-law transformation, also called gamma correction, is defined by the formula:

s = crγ (3.1)

where c and γ are positive constants. When γ is less than 1, The transformation maps a

narrow range of dark values into a wider range, and it does the opposite for the higher

values. The inverse effect, compression of gray levels, is obtained when γ is greater than

1.

(a) (b)

Figure 3.3: Result of the power-law contrast enhancement.

Histogram equalization is widely utilized for global image enhancement [16]. The

image contrast is adjusted by mapping obtained from the integral of the image histogram.

The histogram equalization assigns approximately equal number of pixels to each user-

specified gray-scale levels ∼ uniform distribution. Although this method is very simple, it

does not take into account local details. In addition, global histogram equalization has the

undesired effect of overemphasizing noise.

In diagnostic medical images, local details may be more important than global contrast.

Therefore, a number of local adaptive histogram equalization and local adaptive contrast

enhancement methods [16, 53, 88] have been proposed in the past. These algorithms map

the gray values of pixels using the relationships obtained from the local histograms.
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(a) (b)

Figure 3.4: Result of the contrast enhancement based on the histogram equalization method

proposed in [16] (a) original image (b) equalized image.

3.3.3 Frequency Domain and Multi-scale Techniques

Filtering can be also done in the frequency domain [39, 39, 118]. Low frequencies in the

Fourier transform give the gray-level appearance of a smooth image. High frequencies

show detail, such as edges and noise. A filter that reduces high frequencies while passing

low frequencies is called a low-pass filter and provides noise suppression or image smooth-

ing. A filter with the opposite characteristics is called a high-pass filter. The commonly

used Butterworth high-pass and low-pass filters are presented in [4] as a good contrast

enhancing filters.

Multi-scale methods can decompose an image into components, which can be used to

improve contrast in the image. The Laplacian Pyramid [39] and the Fast Wavelet Trans-

form (FWT) [4, 58] are both typical multi-scale methods. In general, enhancement by

means of the Laplacian Pyramid was applied to X-ray images [101]. Wavelet-based meth-

ods were mainly used in the context of mammography [66]. Besides, there are also some

applications to the CT/MRI images.

Performance comparison of both methods can be found in [30], where Dippel et al.

stated that enhancement based on the FWT suffers from one serious drawback, the intro-

duction of visible artifacts when large structures are enhanced strongly. The Laplacian

Pyramid allows a smooth enhancement of large structures, such that visible artifacts can

be avoided.
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(a) (b) (c)

Figure 3.5: Multi-scale contrast enhancement of X-ray images: the original image (a);

skull processed with Laplacian pyramid (b); and skull processed with wavelet pyramid

(c) [30].

3.3.4 Anisotropic Filtering

Anisotropic filtering [92] performs piecewise smoothing of the original image. Its strength

lies in the fact that it deals with local image structures which can be preserved and their

positions will not be affected. The filtering process can be formulated as a diffusion. The

filtering is suppressed at boundaries by locally adaptive diffusion strength. The diffusion

process of anisotropic filtering can be expressed by the equation:

∂

∂t
I(x̄, t) = div(c(x̄, t)×▽I(x̄, t)) (3.2)

The function I(x̄, t) is the image intensity. The diffusion strength is controlled by c(x̄, t),

where x̄ represents the spatial coordinates, and t is the iteration step. The diffusion function

I(x̄, t) depends on the magnitude of the image intensity gradient and mainly diffuses within

homogenous regions and does not affect edges and boundaries. The diffusion function 3.3

has been used frequently.

c(x̄, t) = exp

(

−
( |∇I(x̄, t)|√

2κ

)2
)

(3.3)

The parameter κ is chosen according to the noise level and the edge strength. The rela-

tionship between the parameter κ and the gradient ∇I can be explained by the flux function
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φ = c×∇I. For example, maximum flux is generated when the gradient equals to κ. Below

κ, the flux reduces to zero, because only minimal flux takes place in homogeneous regions.

Above κ, the flux again decreases to zero, stopping diffusion at locations of high gradients.

A proper choice of the diffusion parameter not only preserves, but also enhances edges.

(a) (b)

Figure 3.6: Nonlinear anisotropic filtering of MRI data: the original image (a); and result

of the filtering (b) [43].

The filtering of discrete signals requires a reformulation of the method. To filter dis-

crete 1D signal, it can be shown [92] that

I(t +△t) ≈ I(t)+△t × ∂

∂
I (3.4)

= I(t)+△t × (φright −φle f t) (3.5)

where φright and φle f t are the flow contributions estimated by the flux function.

Local gradient estimates are calculated as differences between neighboring image pix-

els instead of differentiation. Stability of the iterated processing can be obtained by choos-

ing a proper integration constant δt = 1/5(1/7) while using 4-connected (8-connected)

neighborhood structure.

Since an image usually consist of several objects with different contrasts, it is important

to be adaptive to different areas with different gradients. The general idea is to apply

adaptive filtering. The diffusion process depends critically on the value of κ. Therefore,

the gradient in different areas of the image can be calculated and κ is chosen less than the

edge gradient and larger than the average value of noise.
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Figure 3.7: Illustration of the important property of the anisotropic filtering – iterative edge

sharpening and noise suppression. Reprinted from [43].

Gerig et al. [43] presented an extension of the anisotropic filtering to 3D and multichan-

nel data. Results of their MRI brain images filtering illustrate efficient noise reduction in

homogeneous image regions, while object contours and boundaries are not only preserved,

but even improved (Fig. 3.6).

3.3.5 Bilateral Filtering

A very popular image filtering technique is a bilateral filter. Similarly to the anisotropic

filter, also the bilateral filter is able to remove noise while preserving important features

like edges in the image.

A simple approach to the image smoothing is averaging of nearby pixels to compute

an estimate of the original pixel value. The Gaussian low-pass filter performs an averaging

using a set of weights defined over a normal distribution such that points nearby the sample

point have greater weights and more distant points have the smaller weights. This type of

filtering is independent of the underlying image structure, thus blurring of edges can be

seen as a side effect of the filtering [7].

The idea of bilateral filtering, defined by Tomasi [104], is to smooth images while

preserving edges by means of nonlinear combination of nearby pixel values. In order to

achieve this, the influence of pixels is weighted by two different Gaussian functions g and

c – one in the image space (the geometric closeness) and second in the signal space (the
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photometric similarity). The idea of weighting in the signal space assumes there will be

a large difference in the signal close to sharp edges, so the difference between the sample

point and nearby pixels can be used to evaluate influence of each pixel within a local

neighbourhood. The following equation is the discrete formulation of bilateral filtering:

I(x̄) =
1

k(x̄) ∑
r̄∈R

I(r̄)g(||r̄− x̄||)c(|I(r̄)− I(x̄)|) (3.6)

where k(x̄) is a normalization factor – the sum of all weights given by the g and c functions,

and R is a local neighbourhood of the sample pixel x̄.

The set of contributions from c varies within the image, as they depend on the actual

set of differences observed across the neighbourhood. Therefore, in many papers [87,123],

distant optimization and approximation techniques have been presented to provide not only

effective, but also fast filtering method.

(a) (b)

Figure 3.8: These images show results of the 3D bilateral filtering. Notice the bilateral

filter performs smoothing while preserving important image features [7].

The bilateral filtering approach combining spatial and signal weights has shown to

be robust and flexible to a variety of applications. For an example, a mesh smoothing

algorithm based on bilateral filtering has been presented by Jones et al. [55]. Finally, an
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extension of the original formulation of bilateral filtering for use on 3D volumetric data

has been proposed by Bethel et al. [7].

3.4 Image Segmentation

The image segmentation can be formally defined [97] as the process of partitioning a digital

image into multiple segments. The goal of segmentation is to simplify and/or change the

representation of an image into something that is more meaningful and easier to analyze.

The image segmentation is typically used to locate objects and boundaries in images. More

precisely, image segmentation is the process of assigning a label to every pixel in an image

such that pixels with the same label share certain visual characteristics.

(a) (b) (c)

Figure 3.9: Result of a simple histogram thresholding. The segmented image (b) contains

three different labels: hard tissues (i.e. bones), soft tissues and the bright background.

In medical image processing, the main goal of the segmentation is to divide an image

into parts that correspond to tissues of particular types. In other words, label of each

pixel in a medical image indicates the tissue type or anatomical structure. In terms of the

CT/MRI medical imaging, input to the segmentation process is a series of grayscale slices,

the result of a single CT or MRI scan.

The segmentation is one of the most important steps in the analysis of the medical

image data. The precise segmentation is crucial for 3D modeling of tissues and anatomical

structures. Hence, it helps in diagnosis, surgery planning, surgery simulation, etc.
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3.5 Segmentation as Clustering

One natural view of the segmentation [39] is that we are attempting to determine which

components of a data set naturally belong together. This problem is known as clustering.

There is a wide literature [4, 39, 46] discussing the clustering for image segmentation.

In this thesis, three different clustering techniques will be proposed to partially solve

the segmentation problem. First two techniques (the Fuzzy C-means (FCM) [95] algorithm

and clustering based on the Gaussian Mixture Model (GMM) [81]) are built upon the

idea of grouping. Data items that ”make sense” are collected together according to some

model. The third graph-based algorithm [8] is a partitioning technique. A large data set is

decomposed into pieces that are ”good” according to our model [39].

The new graph segmentation technique presented by Boykov et al. [8] belongs to the

group of algorithms building search trees for detecting augmenting paths in the graph. The

drawback of their approach is that the augmenting paths found are not necessarily shortest

augmenting path. The algorithm iteratively repeats the following three stages:

• growth stage – search trees grow until they touch giving a shortest path,

• augmentation stage – the found path is augmented, search trees are broken into

forests,

• adoption stage – trees are restored.

In most examples, their min-cut/max-flow algorithm proceeds faster than any other

method, including the push-relabel [45] and Dinic’s algorithm [29] which are known to

outperform other min-cut/max-flow techniques.

Detail analysis of different clustering techniques is not the primary aim of the thesis.

Please, follow given references to the literature for more details.

3.6 Difficulties of Medical Image Segmentation

Due to the nature of the segmentation problem, there is a lot of aspects that make the

segmentation a difficult task [83, 121]:

• the imaging process itself,

• variability of the human anatomy,
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• imaging a moving patient,

• artifacts appear in the data,

• automation.

3.6.1 Imaging Process

The first aspect is the imaging process itself. The imaging modality, for example MRI,

CT, or ultrasound, is chosen so that its interactions with the tissues of interest will provide

relevant information about the tissue in the resulting output image. But this does not mean

that the anatomical feature will be separable from its background. Strong edges may not

be present around borders of tissues. Due to noise in the imaging process as well as to

inhomogeneity of the tissue, such region is more detectable by the human eye than by even

sophisticated computer algorithms. Simple techniques, such as thresholding and pixel-

based clustering, are not usually sufficient when applied to medical data.

3.6.2 Human Anatomy

The second fundamental aspect that makes segmentation difficult is the complexity and

variability of the anatomy that is being analyzed. This makes general segmentation a

difficult problem.

Figure 3.10: Illustration of variability of the human anatomy. Due to a serious damage of

the hip joint, the precise segmentation is very difficult, even thought a certain knowledge

of the ”common” anatomy is built into the segmentation process.
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3.6.3 Artifacts

The CT scanners usually require the patient to remain extremely still for several minutes.

This is often difficult, and in the case of involuntary movement (Fig. 3.11), such as the

heart beating or breathing, becomes impossible.

The conventional algorithms used in CT sometimes produce artifacts (i.e. the impres-

sion of features which are not actually there). This is particularly true when metallic objects

are present in the patient’s body.

(a) (b)

Figure 3.11: Image artifacts caused by breathing (a) and metallic objects (b).

3.6.4 Automation

An important desired feature of the segmentation is automation. Performing automated

segmentation still remains one of the most difficult problems in the world of segmenta-

tion. Although researchers have shown success with automation in some cases, there is no

generic algorithm which can perform automatic segmentation on any given data set.
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Chapter 4

Background: Delaunay Triangulation and

Meshing

A mesh generation aims at tessellation of a bounded 3D domain Ω with tetrahedra [42].

Algorithms for 3D mesh generation have been intensively studied over the last years. Ba-

sically, three main families of algorithms have been described in the literature:

• Octree methods [126, 127],

• Advancing front methods [54, 122],

• Delaunay-based methods [1, 14, 25, 61, 70].

The octree technique recursively subdivides the cube containing the geometric model

until the desired resolution is reached. Advancing front method (Fig. 4.1) starts from a

boundary and moves a front, adding new vertices, from the boundary towards empty space

within the domain. Several heuristics are used to ensure that the generated tetrahedra have

desired shape and size. Global optimization steps can also be performed to improve the

mesh quality. A good survey of these methods can be found in [14, 86].

This chapter briefly summarizes basic principles and difficulties of a Delaunay triangu-

lation which is one of the most popular triangulation and meshing method. The Delaunay

triangulation and its construction methods are introduced, while those methods later used

in the thesis are described in more detail. The following definitions are based on [42].

25
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(a) (b)

Figure 4.1: Advancing front method starts meshing from the boundary [59].

4.1 Delaunay Triangulation

Every triangle (tetrahedron in 3D space) of the Delaunay triangulation (DT for short) sat-

isfies the Delaunay criterion shown in Fig. 4.3. This criterion, referred to as the empty

sphere criterion, means that every circumcircle (circumsphere in 3D) associated with the

mesh element e does not contain any vertices, except those of the element e. This criterion

is a characterization of the Delaunay triangulation and it leads to several other characteris-

tics.

Figure 4.2: Two-dimensional Delaunay triangulation.

The DT maximizes the minimum angle, and minimizes the maximum smallest en-

closing circle for each triangle. Therefore, the Delaunay triangulation of a set of points

generates regularly shaped triangles and is preferred over alternative triangulations.
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(a) (b)

Figure 4.3: Delaunay criterion: satisfied empty sphere criterion (a); and violated criterion

(b). Reprinted from [59].

Delaunay triangulations are also very attractive from a robustness point of view due to

simplicity of the Delaunay criterion. In addition, various local transformations can be used

to improve quality of the triangulation.

Figure 4.4: Figure shows the relationship between the Voronoi diagram [42] (dashed) and

the Delaunay triangulation (solid).

The Delaunay triangulation can be constructed by using several methods. Most com-

mon is the Incremental Method which will be described first [42].

4.1.1 Incremental Construction Method

Be T i the Delaunay triangulation of the first i points, we consider the (i+ 1)th point of

this set, denoted as P. The purpose of incremental method is to obtain T i+1 the Delaunay
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triangulation including P as a vertex. The location of P, with respect to T i, falls in two

categories:

• P is enclosed in T i (i.e. P lies inside the convex hull/envelope of all vertices in T i),

• or P is outside of T i.

In the first case (Fig. 4.5a) the set of elements in T i whose circumcircle (circumsphere)

contains P – the cavity of P – is removed from T i, and the set of elements formed by

joining P with external edges of the cavity is added to T i.

(a)

S
i

V

(b)

S
i

V

Figure 4.5: Incremental construction of the DT. Inserting point P (P ∈ T i on the left side

and P outside of T i on the right) [59].

In the second case, cavity is the same set enriched by the set of elements formed by

joining P with the edges in T i visible from P. Several proofs of the incremental method

can be given. Detailed study can be found in [42].

4.2 Constrained Delaunay Triangulation

Given a set of constraints specified as a set of edges, or a set of edges and faces in 3D, Con-

strained Delaunay triangulation (CDT) is a triangulation where those constraints remain

as entities of the resulting mesh [42].

The CDT leads to the problem of recovering the edge/face constraints from the initially

constructed triangulation, or simply, the problem of edge/face recovery. Such problem has
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been successfully solved in two-dimensional spaces, while it is still under active investiga-

tion in the 3D space.

There are two classes of methods depending on how the constraints must be satisfied.

The first kind performs local modifications to enforce the given constraints, while the other

kind tends to modify the constraints and creates an admissible set of constraints. A con-

straint partitioning method is a simple representative of the second class.

4.2.1 Constraint Partitioning Method

Some edges in constraints are not edges of the given triangulation. The key idea is to re-

triangulate every triangle intersected by a constrained edge while ensuring that the created

sub-edges are in the resulting triangulation. Each missing constrained edge is processed as

follows

• Find intersection points of triangles and the constrained edge AB. Let P1,P2, . . . ,Pn

be these points.

• Introduce the edges AP1,P1P2, . . . ,PnB in the triangulation.

• Re-mesh the triangles while maintaining this list of edges.

Each missing edge, with endpoints A and B, can be then retrieved in the triangulation

as the edges AP1,P1P2, . . . ,PnB. In practice, a unique operator is required that re-meshes a

given triangle with two sub-triangles having a specified point lying on one of its edges as

vertex.

Advantage of the constraint partitioning method is that it can be easily extended to 3D.

On the other side, it may be difficult to guarantee that the mesh remains Delaunay and no

poorly shaped tetrahedra appear in the mesh.

4.3 Mesh Quality

An ideal tetrahedron, having the best quality, is equilateral. There are many measures of the

quality regarding the ideal shape. The most general one is ratio of the longest tetrahedron
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(a) (b)

Figure 4.6: Partition of constrained edges not present in the mesh [59].

edge and the radius of its inscribed sphere [59]. The normalized form 4.1 is preferred in

practice.

Q(t) =

√
3

6

lmax(t)

rins(t)
≥ 1 (4.1)

In the equation, lmax is the length of the longest edge and rins is the radius of the inscribed

circle. The ideal triangle has the normalized quality equal to 1. Any other triangle has the

value greater.

(a) (b) (c)

Figure 4.7: Examples of inappropriately shaped tetrahedra – the spear (a); the cap (b); and

the sliver ∼ almost flat tetrahedron (c).

The radius ratio [105], defined as the ratio of the radius of the inscribed sphere to the

radius of the circumsphere, is another popular measure of tetrahedron quality. It is desired
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to ensure that radius ratio of all tetrahedra are bounded from below by a constant.

A widely used criterion for the mesh quality is the minimum dihedral angle. This

measure is more intuitive and geometrically meaningful than the edge-radius ratio or any

other quality measure based on a ratio. Some valuable conclusions on different quality

measures can also be found in [98].

4.3.1 Delaunay Refinement

Many Delaunay refinement methods [18, 19, 99] exist that improve tetrahedra locally by

inserting new nodes to maintain the Delaunay criterion. However, most Delaunay refine-

ment algorithms fail at removing all poorly shaped tetrahedra. A special class of almost

flat tetrahedra, so called slivers, may remain in the triangulation. In the sliver, the minimal

dihedral angle can be very close to zero (see Fig. 4.7). The presence of slivers in the mesh

may cause troubles for many numerical methods and further processing.

Different approaches of removing slivers from a 3D Delaunay mesh were studied.

Cheng et al. [17] provide a sliver exudation technique based on a weighted Delaunay trian-

gulation is applied to a triangulation obtained by Delaunay refinement. The main strategy

of the algorithm consists of assigning a weight to each vertex so that the weighted Delau-

nay triangulation is free of any slivers after connectivity updates, without any changes over

the vertex locations.

The main disadvantage of the sliver exudation is that the process often ends with slivers

near the boundary [105]. This is mainly due to the fact that sliver exudation is not allowed

to modify the topology of the boundary of the mesh. Hence, weight assignments close to

the boundary are constrained and do not remove the slivers.

4.3.2 Sliver Perturbation

Li et al. [70] proposed a sliver removal algorithm based on explicit random perturbation of

vertices incident to slivers in an almost good mesh. The idea is based on the fact that for

any triangle qrs, the region of locations of the vertex p such that the tetrahedron pqrs is a

sliver, is very small. Moving the point p out of this region ensures that the tetrahedron is

not a sliver anymore, or has disappeared once the Delaunay connectivity is updated. This

is achieved by moving the point p to a new location inside a small ball centered at p, whose

radius is proportional to the distance from p to its nearest neighbor. Li et al. show that for
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certain values of the involved parameters, there always exist some points in this ball which

are outside all regions that form slivers with nearby triangles.

Tournois et al. [105] presented a more efficient algorithm for sliver elimination and

improving the dihedral angles of a 3D Delaunay triangulation. The algorithm inspired

by Li’s random perturbation works in a more deterministic way by choosing a favored

perturbation direction for each vertex incident to one or more slivers.

Figure 4.8: Delaunay meshes after the sliver perturbation algorithm proposed by

Tournois et al. [105].

The key idea consists of performing a gradient ascent over the sliver circumsphere

radius as well as a gradient descent over the sliver volume. However, in the cases where

all vertices of a sliver are on the domain boundary, the perturbation can fail in removing a

sliver as the boundary vertices are too constrained.

4.4 Isotropic Meshing

Most applications have specific requirements on the size and shape of elements in the

mesh. Aim of the isotropic meshing is to locate vertices so that the resulting mesh consists

of almost regular tetrahedra (∼ all faces are equilateral triangles). In addition, the element

size is close to a predefined size constraint.
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One of the existing methods to create the points in accordance with the size specifica-

tions contained, creation of points along the edges [42], will be discussed here.

(a) (b)

Figure 4.9: Triangular mesh constructed by the plain incremental method (a) and result of

the isotropic meshing (b).

According to [42], control space H(Ω) (so called sizing field) is a function hP defined

at any point P(x,y,z) of space. This function specifies the size of the elements in the mesh.

The control space can be computed from the data, manually defined, or estimated with

respect to the current mesh structure in an iterative process.

Let AB be an edge having endpoints A and B. Length of the edge in the control space

metric can be calculated as follows:

lH(AB) = ‖AB‖
1

h(A) +
1

h(B)

2
, (4.2)

where ‖AB‖ is the real distance between A and B. The size h(P) is the desired length of all

the edges originating from the point P defined by the control space.

An alternative definition 4.3 of the edge length exists. This modified definition has

a positive influence on resulting meshes and provides better control of the control space

gradation.

lH(AB) = ‖AB‖ hA−hB

hAhBln(
hA
hB

)
, (hA > hB) (4.3)
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The key idea of the algorithm is to create new points along existing edges in the trian-

gulation and obtain nearly equilateral tetrahedra having edges of unit length in the control

space (= length h in the real space).

(a)

(b)

Figure 4.10: The original triangular mesh (a) and the mesh after edge splitting and subse-

quent optimization of poorly shaped triangles by adding points into the center of triangle’s

circumcircle (b).

Construction of the points along the edge AB. Let T be a threshold value < 1, for

instance 0.1. If lH(AB) < T , the edge is not divided, otherwise a new point in the middle

of the edge AB is introduced. Both obtained sub-edges are recursively tested and divided

if necessary. Once we have a sequence of points Q0 . . .Qn such that

lH(Qi,Qi+1)< T (4.4)

where Q0 = A and Qn = B, the final set of points dividing the edge AB can be found.
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Introducing a new point to the mesh. The smallest index i satisfying criterion 4.5 is

found and the point Qi is introduced to the mesh as new vertex. Iterating this process and

comparing the sum to the increasing values 2,3, . . . results in construction of several new

points along the edge.

i

∑
j=0

lH(Q j,Q j+1)> 1 (4.5)

Applied to every edge in the current mesh, a large set of points is obtained. This set

must be filtered to discard all points too close to any other before adding points to the

mesh.

4.5 Variational Meshing

Many approaches based on energy minimization [1, 25, 32, 61] have been proposed as

a powerful tool in meshing. In this thesis, a vector segmentation technique, built upon

a Variational Tetrahedral Meshing (shortly VTM) approach [1], is presented. A simple

minimization procedure alternates two steps:

• global 3D Delaunay triangulation optimizing connectivity,

• local vertex relocation,

to consistently and efficiently minimize a global energy (4.6) over the domain. It results in

a robust meshing technique that generates high quality meshes in terms of radius ratios, as

well as angles.

EM =
1

4
∑

i

X2
i |Ωi|−

∫
M

X2dx (4.6)

In this energy equation, |Ωi| is the volume of the 1-ring neighborhood of vertex Xi, and the

last term is constant for a given fixed mesh M.

As shown in [1], a derivation of the quadratic energy in Xi leads to a simple formula

X∗
i representing optimal position of the interior vertex Xi in its 1-ring. In geometric terms,

the formula can be expressed as:

X∗
i =

1

|Ωi| ∑
Tj∈Ωi

|Tj|c j. (4.7)
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Figure 4.11: Variational Tetrahedral Meshing: Given the boundary of a domain, Al-

liez et al. compute the local feature size of this boundary as well as an interior sizing

field (left), before constructing a mesh with a prescribed number of vertices and a smooth

gradation conforming to the sizing field (right). The resulting tetrahedra are all well-shaped

(i.e. nearly regular). The figure and the description were adopted from [1].

where c j is the circumcenter of tetrahedra Tj. In other words, a vertex is moved at the

barycenter of its neighboring circumshells.

4.5.1 Extension to Isotropic Meshes

The previous expressions apply to uniform meshing. To extend the equation to allow

isotropic meshing, the sizing field H is introduced into the equation (4.7). A mass density

in space can be defined and used in computation of the optimal vertex position. This

density should agree with the sizing field. Alliez et al. [1] use a one-point approximation

of the sizing field in a tetrahedron and defines the mass density as being 1/h3 since the

local volume of a tetrahedra should be roughly the cube of the ideal edge size. Thus, the

optimality condition is modified as follows:

X∗
i =

1

∑Tk∈Ωi

|Tk|
h3(Gk)

∑
Tj∈Ωi

|Tj|
h3(G j)

c j. (4.8)
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where Gk is the centroid of tetrahedron Tk. Finally, the variational tetrahedral meshing can

be summarized by the iterative algorithm:

1. Generate initial vertices Xi.

2. Repeat the following alternating steps until convergence:

• Construct Delaunay triangulation M.

• Move vertices Xi to their optimal positions X∗
i .

4.5.2 Sizing Field

Alliez et al. presented a default sizing field robust for a large spectrum of mesh types.

Definition of the sizing field is built on the notion of local feature size that corresponds to

the combination of domain boundary curvature and thickness as well.

The local feature size l f s(P) at a point P of domain boundary is defined as the distance

d(P,Sk(Ω)) to a medial axis Sk(Ω). The medial axis, or skeleton of the domain, is the locus

of all centers of maximal balls inscribed in the boundary. Given the local feature size on

the boundary, we need a controllable way to extrapolate this function to the interior. The

function

hP = min
S∈δΩ

[Kd(S,P)+ l f s(S)] (4.9)

satisfies this criterion. The parameter K controls gradation of the resulting field, K = 0

being the uniform case.
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Chapter 5

State of the Art in Anatomical Modeling

This thesis deals with the problem of 3D geometric modeling of human tissues. The most

important phases of this complex task are medical image segmentation and subsequent

surface reconstruction.

5.1 Medical Image Segmentation

In relation to the geometric modeling of human tissues, all medical image segmentation

algorithms can be classified into two groups:

• techniques based on raster segmentation – a pixel value in the segmented image

denotes label of an image region, or particular tissue type;

• and vector-based segmentation – region boundaries, and perhaps the internal struc-

ture, are represented as a set of vector graphic primitives (i.e. lines, curves, polygons,

etc.) directly.

It is necessary to note that such classification is not very common, however, it makes a

good sense in reference to the geometric modeling.

In this chapter, both categories are discussed in reference to the subsequent surface

reconstruction. A short survey of vector-based segmentation techniques is given too. The

presented methods form the basis of the most of the segmentation techniques nowadays.
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5.1.1 Raster-based Image Segmentation

A lot of 2D/3D segmentation algorithms can be found in the literature (Fuzzy C-means

clustering [91, 94], Hidden Markov Fields [74], Watershed transform [47, 48], neural net-

works [73], etc.).

Figure 5.1: Scheme of the traditional way of the 3D anatomical modeling based on raster

image segmentation.

Raster-based methods produce data which are not suitable for the geometric modeling

(see Fig. 5.1) – each pixel value denotes label of an image region. Most often, an algo-

rithm such as Marching Cubes [71] is applied to reconstruct surfaces from the raster data.

Further, decimation and smoothing of the model are required and may not be elementary

(Sec. 5.2). Applied smoothing and decimation methods may not shrink significant edges

and corners and they must preserve volume of the original model.

5.1.2 Vector-based Image Segmentation

Vector-based segmentation techniques try to overcome previously described raster methods

in efficiency and surface reconstruction simplicity. The most widely used vector segmen-
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tation methods are based on deformable models [120, 124].

5.1.3 Deformable Contour Models

The deformable models, sometimes called Active Contour Models [76], are curves, sur-

faces, or solids defined within an image or volume domain, and they deform under the

influence of external and internal forces derived from image characteristics. The internal

forces regulate the ability of the contour to stretch at a specific point while preserving some

degree of geometric smoothness. The external forces attract the contour to specific image

features.

This type of active contour models is called parametric models – Snakes [28, 124].

There is also a second type of active contours – the geometric models [31,69], best known

is the Level–Set method.

Figure 5.2: Segmentation of a cross sectional image of a human vertebra with a topologi-

cally adaptable snake. The snake begins as a single closed curve and becomes three closed

curves. Images were published by McInerney and Terzopoulos in [76].

The deformable models are robust against noise and boundary gaps. These models are

also capable of adjusting themselves to significant variability of human anatomy. Main

disadvantage is that they require manual initialization and interaction during the segmen-

tation. In more automatic methods, the initial model must usually be placed close to the

region boundaries to guarantee good performance.

Extension of the deformable models to 3D space is not a trivial task. Numerous re-

searchers have explored application of deformable surface models to volumetric medical

images [10, 22, 65, 78]. A deformable surface model capable of segmenting complex in-

ternal organs such as the cortex of the brain has been proposed [75, 77]. The model is

represented as a closed triangulated surface. This representation is more efficient, much

less sensitive to initialization and spurious image features.
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Figure 5.3: Artificial boundary surfaces extracted at different levels of volume image pyra-

mid and brain cortical surfaces extracted from MR volume image pyramid [90].

5.1.4 Level-Sets

The level-set segmentation [31, 69] solves the energy based active contours minimization

problem by the computation of minimal distance curves. In this approach, a curve is

embedded as a zero level set of a higher dimensional surface, Fig. 5.4. The entire surface

is evolved to minimize a metric defined by the curvature and image gradient.

Leventon et al. presented a level-set method that incorporates prior information about

the intensity and curvature profile of the structure from a training set of images and bound-

aries [69]. The intensity distribution as a function of signed distance from the object bound-

ary is modeled. A curvature profile acts as a boundary regularization term specific to the

shape being extracted.

In general, level-set methods are used for highly convex shapes. These approaches

achieve shape recognition requiring a little knowledge about the surface. In addition, ini-

tialization must be done close to the desired boundary, and it often requires user interaction

for initial starting.
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Figure 5.4: Level-sets of an embedding function u for a closed two-dimensional curve C.

The curve is the zero level set of the higher dimensional surface u. The entire surface is

evolved to minimize a metric defined by the curvature and image gradient [69].

Figure 5.5: Initial, middle, and final steps in the 2D femur segmentation. The cyan curve

in the last frame is manually segmented ground truth. Reprinted from [69].

5.1.5 Active Appearance Models

In recent years, the Active Appearance Models (AAMs) [23,102] have achieved much suc-

cess in medical applications. This knowledge-based method uses a prior model of what is

expected in the image. It typically attempts to find the best match of the model to a new im-

age. A statistical approach based on the Principal Component Analysis (PCA) [35] is used

to build the model analyzing the appearance of a set of training samples, while the model

parameters can be adjusted to fit unseen images and hence perform image registration.

The main drawback of AAMs, much like any knowledge-based method, is the anatom-

ical variability. Accurate segmentation of complex structures is very difficult. Hence, these

approaches are best suited for segmenting structures which are, in some way, stable over

the population of study. Objects such as blood vessels are not suitable. Due to the design

of the AAMs, occlusions may cause the model fitting to fail. Finally, AAMs are dependent

on a good, mostly manual, initialization.
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Figure 5.6: AAM of the metacarpals. From the left to right: independent analysis of

each model point, texture variance and AAM optimized to fit the test image. Reprinted

from [102].

5.1.6 3D AAM

Mitchell et al. [79] presented an extension of AAMs to 3D space for three-dimensional

segmentation of cardiac MR and ultrasound images. In that paper, solution for several

problems of the extension of AAMs to 3D space is given – point correspondence in 3D,

model alignment, and 3D image warping.

(a) (b)

Figure 5.7: Three-dimensional AAM matching process. The initial position of the model

(a); and the final match (b). Adopted from [79].
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5.2 Surface Reconstruction

Many surface reconstruction algorithms able to create polygonal model of a desired region

exist. All methods necessarily need to know which voxels form the region. Such definition

of regions (i.e. separation of meaningful parts of an image) is the principal aim of the

image segmentation.

5.2.1 Isosurfaces

For extracting boundary surfaces of three-dimensional regions directly from the given dis-

crete volume data, the iso-surface algorithms [113] can be used. Isosurfaces are defined

by connecting voxels with intensities equal to a given isovalue (intensity) in a 3D volume.

Having the volume data, the isosurfaces may be extracted using an algorithm similar to the

Marching Cubes [71].

Figure 5.8: Isosurfaces extracted for three different isovalues [113].

5.2.2 Marching Cubes

Marching Cubes [71] (MC) algorithm creates a polygonal representation of predefined

surfaces from a discrete volumetric data. It uses a divide–and–conquer approach to locate
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the surface in a logical cube created from eight adjacent voxels. The algorithm determines

how the surface intersects this cube, then moves (or marchs) to the next cube.

(a) (b) (c)

Figure 5.9: Final polygonal surface after the Marching Cubes (a); and the same model

after smoothing and decimation (b,c) [59].

Unfortunately, a significant noise in the data causes that artifacts appear in the result.

To deal with this problem a three-dimensional smoothing filter must be applied to the

original data, or certain surface-smoothing algorithms were introduced.

The MC can not detect sharp features of the extracted isosurface [126]. The enhanced

distance field representation and the extended MC algorithm [56] were introduced to ex-

tract feature sensitive isosurfaces from the volume data. The grid snapping method [80]

reduces the number of elements in an approximated isocontour and also improves the as-

pect ratio of the elements.

5.2.3 Surface Smoothing

Different algorithms address the surface smoothing problem with varying success and there

is no general algorithm, which works reliably in all cases [117].

One of the basic approaches to smoothing is the improved laplacian operator [114]

which works by averaging position of the vertex with its neighbourhood. The main dis-

advantages of the original laplacian operator [41], shrinking of the volume, is reduced by

moving the smoothed vertices back a bit. Another improvements were presented [103]

which operate in alternating inward and outward diffusion of vertices in order to maintain

the shape of the mesh.
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The bilateral mesh denoising approach [38,67] has been quite successful in smoothing.

It is essentially a bilateral filter applied on a mesh topology and works by filtering vertex

positions in directions of their normals. By tuning parameters of the filter, the bilateral

denoising is able to preserve sharp edges and corners in the mesh.

5.3 Unstructured Meshing

The three main families of algorithms for unstructured 3D mesh generation have been

already described in Chap. 4:

• octree methods [126, 127],

• advancing front methods [54, 122],

• and Delunay-based methods [1, 14, 25, 61, 70].

Here, the recent work on surface approximation and optimal Delaunay triangulations is

discussed in reference to medical applications and surface modeling.

Figure 5.10: Direct surface extraction from volumetric data. Zhang et al. [127].

Zhang et al. [126] presented an algorithm to extract adaptive and quality 3D meshes di-

rectly from volumetric imaging data. In order to extract tetrahedral (or hexahedral) meshes,

their approach combines bilateral and anisotropic diffusion filtering of the original data,

with contour spectrum, iso-surface and interval volume selection. A top-down octree sub-

division coupled with the dual contouring method is used to rapidly extract adaptive 3D
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finite element meshes from volumetric imaging data (see Fig. 5.10). The main contribu-

tions of their approach is extension of the dual contouring method to crack-free interval

volume tetrahedral/hexahedral meshing with feature sensitive adaptation [125].

Figure 5.11: A tetrahedron mesh produced by isosurface stuffing. At the lower right is a

histogram of tetrahedron dihedral angles. The extreme dihedral angles are 15.2 and 158.2.

Labelle et al. [64].

In 2007, the isosurface stuffing algorithm [64] was presented that fills an iso-surface

with a uniformly sized tetrahedral mesh whose dihedral angles are bounded. The algorithm

is fast, numerically robust, and easy to implement because, like the Marching Cubes, it

generates tetrahedra from a small set of pre-computed stencils. A variant of the algorithm

creates a mesh with internal grading: on the boundary, where high resolution is generally

desired, the elements are fine and uniformly sized, and in the interior they may be coarser

and vary in size. However, the algorithm does not permit grading of both surface and

interior tetrahedra and has a strong bound on the dihedral angles.

Variational approaches relying on energy minimization have been presented as a power-

ful and robust tool in meshing. These methods basically define energies that they minimize

through vertex displacements and/or connectivity changes in the current mesh.

Du and Wang [32] propose to generate meshes that are dual to optimal Voronoi di-

agrams. The centroidal Voronoi tessellation [34] based Delaunay triangulation provides

an optimal distribution of generating points with respect to a given density function and

generates a high-quality mesh. By establishing an appropriate relationship between the



5.3. Unstructured Meshing 49

Figure 5.12: Results obtained by the approach of Dardenne et al. from artificial discrete

data – rasterized input surface models. Histograms show the distributions of tetrahedron

quality in each mesh [25].

density function and the specified sizing field and applying the Lloyds iteration, the con-

strained mesh is obtained as a natural global optimization of the initial mesh. Simple local

operations such as edges–faces flipping are also used to further improve the mesh.

Following Du and Wang, another tetrahedral mesh generation algorithm based on cen-

troidal Voronoi tesselation, which takes volumetric segmented data as an input, has been

presented [25]. The algorithm performs clustering of the original voxels. A vertex replaces

each cluster and the set of created vertices is triangulated in order to obtain a tetrahedral

mesh, taking into account both the accuracy of the representation and the elements quality.

The medial axis of the original shape is used to generate a vertex density function in

order to mesh more densely certain complex regions of the domain. The resulting meshes

exhibit good element’s quality with respect to minimal dihedral angle.

Alliez et al. [1] presented a new variational tetrahedral meshing technique that use a

simple quadratic energy and allow for global changes in mesh connectivity during energy

minimization.

This meshing algorithm allows to create graded meshes, and defines a sizing field pre-

scribing the desired tetrahedra sizes within the domain. A fast marching construction of

the sizing field is proposed based on the notion of local feature size which corresponds to

the combination of surface curvature and domain thickness. The sizing field estimation
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Figure 5.13: Results by Alliez et al. [1] meshing the interior of the Stanford bunny. The

cutaway views show the well shaped elements inside the domain.

starts from discrete skeleton (or medial axis) of the domain.

This technique produces nicely shaped tetrahedra throughout the domain, however,

slivers (i.e. degenerate elements) could appear near the domain boundary, as the boundary

vertices are unaffected by the 3D optimization [105].
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Delaunay-based Vector Segmentation

Numerous researchers use triangulations and meshes as a spatial support in their scientific

computations (e.g. solid and fluid mechanics). In the field of biomechanical simulation,

reliable applications in dental surgery, for example the interaction of the human mandible

with dental implants [36], can be found.

Figure 6.1: Results of the proposed vector segmentation method: surface extracted directly

from the tetrahedral mesh (a); histogram of minimal dihedral angles on the surface (b); cut

through the tetrahedral mesh (c).

In this thesis, a novel vector segmentation technique based on the 3D Delaunay Tri-

angulation is proposed. Tetrahedral mesh is used to partition volumetric image data into

regions whose characteristics, such as intensity and texture, are similar. Process of the

51
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mesh construction respects significant image edges. Therefore, surfaces of image regions

are well approximated by the tessellation grid of the mesh and can be easily derived.

6.1 Delaunay Triangulation for Image Segmentation

A particular problem of the segmentation is image partitioning into a set of non-

overlapping regions r1, . . . ,rn so that the variation of some property (such as mean pixel

value, variance, etc.) within each region rk is either constant, or follows a simple model.

It has been shown [26, 44, 96] that Delaunay triangulation can be used to effectively

partition an image and simultaneously, the tessellation grid of the Delaunay triangulation

can be adapted to the structure of the image by combining region and edge information

(see Fig. 6.2).

Figure 6.2: Tessellation grid of the 2D Delaunay triangulation adapted to the underlying

image structure [115].

Constructing the DT, the image is divided into a number of non-overlapping vector

primitives t1, t2, . . . , tn – triangles in 2D space and tetrahedra in 3D. These primitives are

not segments of the image by itself, but they belong to image regions rk. Each region rk is

composed of a number of such elements.

This relationship can be expressed by a region membership function. Hard assign-

ment means that this function assigns exactly one region to each tetrahedron. In practice,
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membership function of the form

m(ti,rk) = p(rk|ti) (6.1)

making a soft assignment of tetrahedra overcomes the hard one and leads to better results.

The soft membership function is usually a likelihood function p(rk|ti) assigning each tetra-

hedron into every image region with some certainty. The value is higher as the similarity

of the tetrahedron and the region increases.
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Figure 6.3: Basic scheme of the Delaunay-based vector segmentation.

6.2 Delaunay-based Vector Segmentation

Based on the introduced principles, the adaptive Delaunay-based vector segmentation is

proposed as follows:

1. Data preprocessing – Noise reduction by means of the 3D anisotropic (or bilateral)

filtering (Sec. 3.3.4).
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2. 3D edge and corner detection – Candidate vertices lying on region boundaries,

meaningful edges and corners are located.

3. Initial Delaunay triangulation – Tetrahedral mesh is constructed from the prese-

lected set of candidate vertices.

4. Iterative adaptation – The triangulation is adapted to the underlying image struc-

ture by means of isotropic edge splitting (introduces new vertices to the mesh),

and variational meshing (optimizes vertex positions so that quality of tetrahedra in-

creases).

5. Mesh segmentation – Final classification of tetrahedra into image regions according

to results of some data clustering method.

The idea of the vector segmentation is also illustrated in Fig. 6.3, while details of all

individual phases of the segmentation are discussed in next sections.

6.3 Data Preprocessing

An important part of the vector segmentation is adaptation of the tetrahedral mesh to an

image structure which is derived from the found image edges. The adaptation process is

strongly affected by quality of the edge detection. Therefore, it is highly recommended to

filter the input data in order to deal with noise in the data.
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� �
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Figure 6.4: Anisotropic filter – neighboring nodes used to calculate the flow φ between

voxels.

Anisotropic (or bilateral) filtering (Sec. 3.3.4) performs piecewise smoothing of the

image, and its strength lies in the fact that object contours and boundaries are not only

preserved, but even improved.
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In the preprocessing step of the vector segmentation, a 3D anisotropic filtering is ap-

plied to the volumetric data. Gerig et al. [43] described such extension of the anisotropic

filter into 3D space. The 1D discrete formulation (Eq. 3.4) of the filter can be easily refor-

mulated as:

I(t +△t) = I(t)+△t × (φt −φd +φl −φr +φ f −φb) (6.2)

The 3D discrete formulation results in simple, local operations over the image. In the

first step, the flow φ is calculated between neighboring nodes (Fig. 6.4). In the second step,

the node intensities are updated by the local sum of the flow contributions. The flow may

be also calculated between diagonally neighboring voxels, resulting in better smoothing

results. In that case, the integration constant △t must be adjusted.

(a) (b)

(c) (d)

Figure 6.5: Result of the 3D anisotropic filtering of CT data: original slices (a); result for

the value of κ = 100 (b); κ = 200 (c); and κ = 400 (c).
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6.4 3D Edge and Corner Detection

The triangulation starts from a set of candidate vertices distributed over the entire image.

These candidates can be found by various, more or less sophisticated, image edge detection

algorithms [5, 13, 49, 89, 93, 100] extended to 3D space.

Figure 6.6: Sampled initial set of vertices found by the edge and corner detection.

Because of the complex nature of medical image data (Sec. 3.6), detection of meaning-

ful edges that form boundary of desired tissues may be very problematic. Character and

strength of edges differ between tissues. Moreover, extremely thin and weak edges may

be present in the image data. Such edges must be also detected to approximate surface of

tissues properly. In practice, this leads to highly sensitive setting of the edge detector that,

unfortunately, results in many false detections of ”noisy”, less meaningful edges. In this

thesis, a simple tissue-selective edge detection approach is proposed to partially reduce this

undesired effect.

6.4.1 Tissue-Selective Edge Detection

The tissue-selective edge detection means that the edge detection is divided into separate

steps (or parallel stages) per concrete tissue type. Before the detection starts, the image data

are pre-processed using the power-law contrast enhancement technique (see Sec. 3.3.2)

to increase contrast of the desired tissue against all others. Then edges of the highlighted

tissue are detected. In the end, all found edges from all different tissues are merged together

into a single image (see Fig. 6.7).
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Figure 6.7: Scheme of the tissue-selective edge detection.

In our experiments, the well known Canny edge detector has been used in each step.

Basic principle of the Canny detector remains unchanged in 3D space. The original im-

age is filtered by the 3D Gaussian convolution filter. Afterwards, 3D Sobel operators are

applied to estimate image derivatives in x, y and z directions (Fig. 6.8).

��������

��������

��������

��������

��������

��������

��������

��������

��������

�
�
�� �

� ����������

��������

��������

�������

�������

�������

�������

�������

�������

�
�
�� �

�

Figure 6.8: Convolution kernels of the 3D Sobel operator in x and z axis.

Finally, edges are detected and refined by the help of image post-processing techniques

like the non-maxima suppression and the hysteresis [13].

6.4.2 3D SUSAN Corner Detector

In order to respect significant features in the volumetric data during the meshing, we have

modified the Susan corner detector [100] extending its functionality into 3D space. The

Susan (Smallest Univalue Segment Assimilating Nucleus) detector was originally devel-

oped to locate feature points in 2D images.



58 Chapter 6. Delaunay-based Vector Segmentation

(a) (b) (c)

Figure 6.9: Positive effect of the tissue-selective edge detection: the original image (a);

edges found by a single step detection (b); result of the tissue-selective edge detection (c).

Analogous to Smith and Brady, the modified 3D SUSAN places a spherical mask R

over the voxel to be tested (the nucleus). The voxel in this mask is represented by v ∈ R.

The nucleus is at v0. Every voxel is compared to the nucleus using the distance function:

cv = exp(−
(

I(v)− I(v0)

w

)6

), (6.3)

where w is the brightness difference threshold. This function has the appearance of a

smoothed rectangular function. The w parameter does affect the number of corners re-

ported because it determines the allowed variation in brightness within the mask.

Response of the SUSAN detector [100] is defined as

SUSAN(R) =

{

T −n(R) i f n(R)< T

0 otherwise,
(6.4)

where T ∈< 0,1 > is geometric threshold, and n(R) is area of the SUSAN given by:

n(R) =
1

N
∑

vi∈R

cvi
. (6.5)

In Eq. 6.5, N is the number of voxels within a spherical mask R used as a normalization

factor. If cv is the rectangular function, then the previously defined area represents the

number of voxels in the mask having brightness similar to the nucleus. This portion of the

mask is called the USAN [100].

For successful corner detection, two further steps must be done. In a first step, the

centroid of the USAN is found. A proper corner will have the centroid far from the nucleus.
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(a) (b)

(c) (d)

Figure 6.10: Results of the 3D SUSAN detector – corner points found in CT data.

The second step insists that all points on the line from the nucleus through the centroid out

to the edge of the mask are in the USAN.

6.5 Initial Delaunay Triangulation

To construct the image partition, the edge points are sampled and together with all corner

points ordered by their significance. While the initial DT is being constructed by the

common Incremental Method (Sec.4.1.1), vertices located on strong edges are taken first

(see Fig. 6.11).

6.6 Iterative Adaptation

Fundamental phase of the proposed segmentation method is adaptation of the tessellation

mesh to cover the underlying image structure representing the anatomy of human tissues.
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Figure 6.11: Incremental construction of the Delauny triangulation (the 2D case). The

number of vertices increases from left to right.

The following four main steps are repeated until the triangulation satisfies some conver-

gence criterion (or just several times):

1. Isotropic edge splitting - creation of points along existing edges introduces new

points to the mesh,

2. Variational meshing - optimization of the tessellation grid by means of vertex mov-

ing,

3. Boundary refinement - creation of new vertices along image edges to guarantee

that all edges are well approximated by the tessellation grid.

During the iterative adaptation, only new vertices are gradually introduced to the mesh.

The idea is to grow the mesh (in the sense of number of vertices) until a predefined limit

is reached. An advantage of such progressive concept is that computational expensive

operations like vertex removal and local re-meshing of the cavity are not necessary.

Before a new vertex is inserted to the mesh, several constraints are checked – min-

imal length of edges that will arise (Lmin), minimal dihedral angle inside newly created

tetrahedra (αmin), etc. In practice, these constraints guarantee that chosen parameters like

minimal edge length will be satisfied in the final mesh. Moreover, it prevents corruption of

the mesh and failures caused by a limited precision of math operations.
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Figure 6.12: The initial Delaunay triangulation (a) and the final mesh after the iterative

adaptation (b). Parameters of the sizing field were chosen to be K = 0.8 and Tavg = 70mm.

6.6.1 Isotropic Edge Splitting

In this phase, the isotropic meshing algorithm creating new points along existing edges

and another well known technique of tetrahedral mesh optimization, splitting of maxi-

mal/longest edge [42], are combined together.

Instead of maximal edges, those edges crossing significant image edges are divided.

A new vertex is inserted to the mesh at the point of intersection of both edges. This ap-

proach is partially similar to the constrained Delaunay triangulation. Unlike the previously

described constraint partitioning method, the set of constraints is implicitly defined by all

detected image edges in this case. The whole isotropic edge splitting process can be briefly

formulated as follows:

1. Prepare the control space H.

2. Sequentially process every edge AB in the current triangulation T i:

• Find all intersection points Pi of the edge and image edges.

• Introduce the sub-edges AP1,P1P2, . . . ,PnB in the triangulation.

• Divide all sub-edges in the sense of isotropic meshing algorithm (Sec. 4.4).

3. Filter the set of newly created points to discard vertices too close to any other point

respecting the control space metric.

4. Insert points to the mesh T i → T i+1.
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(a)

(b)

Figure 6.13: The effect of the isotropic edge splitting: cut through the initial tetrahedral

mesh before the splitting (a) the same mesh after one iteration of the edge splitting algo-

rithm (b).

5. Continue from the step 2 until convergence.

To prevent degradation and over-partitioning of the mesh, the angle between the tetra-

hedron et edge and the image edge ei is computed. The splitting operation is performed

only if the angle is greater than a given threshold T ∈ (0,1):

ni = (dx,dy,dz) (6.6)

|et .ni|
||et ||.||ni||

> T (6.7)

Edges that are almost parallel with an image edge remain unchanged. Normal ni of the

image edge (i.e. derivatives dx, dy, dz) can be found applying various local differential

operators, e.g. the mentioned 3D Sobel operators.
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Figure 6.14: New vertices introduced by the edge splitting. Green crossings denote newly

created vertices, while red ones represent vertices rejected due to the angle between image

edge normal and the examined edge – both edges are almost parallel.

The splitting phase is similar to the one described in Sec. 4.4. The only difference is

in the definition of the sizing field, so called control space. The control space prescribes

length of edges in the mesh. In our case, the control space enforces creation of larger

tetrahedra inside image regions and smaller ones along region boundaries (image edges).

Apparently, definition of the sizing field strongly affects quality of the final mesh.

In this sense, the control space H(Ω) can be defined in the same way as the sizing field

given by Eq. 4.9. This definition is robust and produces high quality meshes.

6.6.2 Preparing Control Space

Instead of the conventional domain boundary, we define the control space to respect found

image edges. Thus, we generate the control space differently:

1. Estimate distance transform from all detected image edges first.

2. Find local maxima of the distance transform in order to identify medial axis.

3. Evaluate local feature size l f s(P) on image edges using inverse distance transform

propagating value from the medial axis.

4. Generate control space distributing l f s(P) from edges using the formula (4.9).

This sizing field is relative. It describes the inhomogeneity of the required edge length.

The real edge length is proportional to this relative value, and depending on the prescribed
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Figure 6.15: Pseudo-colored slices through the three-dimensional control space prescrib-

ing size of tetrahedra inside the mesh. Dark values stand for small tetrahedra close to

image edges.

number of vertices. Such relative sizing is satisfactory for variational meshing, but it must

be normalized for the isotropic edge splitting algorithm we use for introducing new vertices

into the mesh. The normalization is simply given by:

h′P = hP

Tavg

1
N ∑v∈Ω hv

, (6.8)

where Tavg is the desired average tetrahedron edge size. If the point P lies exactly on an

image edge, the control space value may be very small. Therefore, the minimal edge length

Lmin must be also specified in practice.

6.6.3 Variational Meshing

The variational meshing phase, alternating connectivity and geometry optimization, is an

important part of the algorithm. The mesh energy is minimized by moving each interior

vertex to its optimal position within its 1-ring neighborhood (Fig. 6.21). Further, the energy

is minimized by computing the 3D Delaunay triangulation of these new sites optimizing

the connectivity of vertices.

All boundary vertices are treated differently. In order to identify the current boundary

vertices, each voxel Vi lying on an image edge is examined. Its nearest vertex S j in the

mesh is located, and the distance d(Vi,S j) as well as the coordinates of Vi (multiplied by
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the distance d) are accumulated at that vertex. To deal with corner points, the distance d is

weighted according to the point type. Corner points have the weight significantly greater

than edge points, thus the closest vertex is attracted directly in place of the image corner.

(a) (b)

(c) (d)

Figure 6.16: Variational tetrahedral meshing (VTM) – influence of the number of iterations

on the mesh quality: the initial mesh (a); the same mesh after 3 iterations of the VTM

algorithm (b); the mesh after 10 iterations (c); and 50 iterations (d).

Afterwards, vertices with a non-zero distance sum are those boundary vertices we are

looking for. Focused on the boundary vertices that require a specific treatment, these ver-

tices are moved to the average value they each have accumulated during the pass over

all edge voxels. Such kind of iterative optimization is called Lloyd’s algorithm [33], also

known as Voronoi iteration or relaxation.

6.6.4 Boundary Refinement

The boundary refinement increases quality of the mesh in the sense of image edges ap-

proximation. Similarly to other Delaunay refinement methods, new vertices are added to

the mesh to guarantee this criterion.
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(a) (b)

Figure 6.17: Illustration of the boundary refinement algorithm in two-dimensional space.

Vertex Si with an accumulated value (∼ distance from its closest edge point Vx,y,z) that is

not itself located on an image edge exists in the mesh. Hence, a new vertex is added to the

mesh in place of the point V .

In the first step, an algorithm similar to the identification of boundary vertices during

the variational meshing is applied to locate proper places for new vertices:

1. Prepare an array of accumulators containing coordinates and distance of the edge

point closest to each vertex. Initialize the distance to some large value dmax.

2. For each voxel Vi lying on an image edge:

(a) Locate its nearest vertex S j.

(b) Compare the distance d(Vi,S j) with the value currently stored in the corre-

sponding accumulator.

(c) If the distance is smaller, exchange the values in the accumulator.

In the second step, all accumulators that contain a distance lower than dmax are investi-

gated. If there is a vertex with an accumulated value that is not itself located on an image

edge, a new vertex is added to the mesh in place of the closest image edge point – the

coordinates in the accumulator.

6.6.5 Dealing with Slivers

The variational meshing technique produces well shaped tetrahedra through the domain.

Unfortunately, slivers could appear near the domain boundary, as the boundary vertices are

guided by Lloyd relaxation, thus unaffected by the 3D optimization (Fig. 6.18).
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Figure 6.18: Slivers that occur in the final mesh close to domain boundaries.

Two powerful techniques [70,105] capable of eliminating almost all slivers in the mesh

were briefly described in Sec. 4.3.2. Both algorithms are based on explicit random pertur-

bation of vertices incident to slivers. The region of locations of a vertex p such that the

tetrahedron incident to p is a sliver, is very small. Moving the point out of this region

ensures that the sliver disappears once the Delaunay connectivity is updated.

Figure 6.19: Tetrahedra refinement inserting a new vertex in the center of the circumsphere.

Towards creation of a sliver-free mesh, after each iteration of the adaptation scheme,

the mesh is repeatedly tested for slivers, and new vertices lying in the center of sliver

circumspheres are inserted to the mesh with a small random perturbation. If such addition

does not eliminate the sliver, or generates new one, the vertex position is perturbed again.

Such vertex perturbation continues until an optimal position is found, thus the sliver is

successfully removed.
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6.7 Mesh Segmentation

Within the mesh segmentation phase, all tetrahedra are classified into individual image

regions which hopefully correspond to tissues of particular type.

Every tetrahedron ti of the mesh is characterized by its feature vector. Individual fea-

tures detail image structure of the tetrahedron, and perhaps its close neighborhood. Feature

vectors may be grouped by the help of any conventional unsupervised clustering technique

that classifies feature vectors into a certain number of classes.

Figure 6.20: Result of the tetrahedral mesh segmentation phase – orthogonal cuts through

the classified mesh.

6.7.1 Clustering Techniques

Three different algorithms are proposed for the unsupervised clustering of feature vectors

(Sec. 3.5) into image regions:

• Fuzzy C-means (shortly FCM) algorithm [95],

• Gaussian Mixture Model optimized by the popular Expectation-Maximization (EM-

GMM) algorithm [81].

• Min-Cut/Max-Flow graph-based algorithm [8].
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First two techniques do not take into account any spatial/global information about the

tetrahedra, since the classification is performed within local vicinity of processed tetrahe-

dron.

Improvements can be made by incorporating global principles. Viewing the mesh as

undirected graph, with edges weighted according to the similarity of feature vectors, would

allow one to use graph algorithms (graph cuts, path-based clustering, etc.) for the segmen-

tation. In this sense, the Min-Cut/Max-Flow [8] algorithm is used to cut a graph whose

edges are evaluated according to a similarity of two adjacent tetrahedra.

m(P,Q) =
N

∑
i=1

|pi −qi| (6.9)

s(P,Q) =
∑ pi.qi

√

∑ p2
i .∑q2

i

(6.10)

The similarity of two adjacent tetrahedra (i.e. two feature vectors P and Q) can be

defined as a distance function in the feature space. Most common choice is the Manhat-

tan (Eq. 6.9) or the Cosine (Eq. 6.10) distance function. An alternative is the use of simple

criterions described in Sec. 6.7.4.

6.7.2 Feature Extraction

In fact, the first two components of a tetrahedron’s feature vector are mean pixel value

µ(ti) and intensity variance σ(ti) of voxels inside the tetrahedron. Others may cover image

texture/shape properties:

• features derived from gray level co-occurrence matrices [62, 106],

• local moments of the image function [107],

• histogram of Local Binary Patterns (LBP) [37, 84, 85],

• wavelet features [2, 3, 109], etc.

and spatial configuration of adjacent tetrahedra.
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LBP Texture Features. Local binary patterns [84] were presented by T. Ojala as a robust

feature extraction technique capable to differentiate textures in an image. In the last few

years, LBP have received a lot of attention from many researchers. The LBP feature was

succesfully applied to a wide range of different applications from texture analysis to face

detection and recognition. See [85], for more details on LBP features, and their principles.

An advantage of the LBP feature is its simplicity. Extraction of LBP features is very

fast for 2D images, so the LBP may also be a good choice in case of volumetric data. A

novel method for the fast computation of fully rotation invariant local binary patterns on

3D volume data has been presented by Fehr et al. [37].

In this work, a simple extension of the LBP framework is used in all experiments with

texture-based classification of tetrahedral meshes. Three individual rotation invariant, uni-

form LBP ”image” features [85] are extracted in each possible direction (i.e. XY, XZ and

YZ planes). The final feature vector contains three concatenated normalized histograms of

these LBP features extracted from within the tetrahedron.

Any texture feature extraction is problematic if a tetrahedron is relatively small, just

a few voxels are available. In that case, the texture analysis fails. Simple grouping of

adjacent tetrahedra into larger units may reduce this problem. Another solution may be to

reject classification of small tetrahedra, and use only relevant portion of the data. These

non-classified tetrahedra, that appear mostly near to region boundary, will be assigned to

particular regions in a next merging phase.

6.7.3 Agglomerative Merging

Topology of the tetrahedral mesh is suitable for image segmentation techniques such as

region growing and merging. Instead of pixels and the traditional 4– and 8– pixel connect-

edness, tetrahedra adjacency is incorporated.

In the vector segmentation scheme, the agglomerative region merging [63] is used to

assign non-classified, small tetrahedra into already known segments.

The agglomerative merging starts with a partition of the volumetric data into N regions

(each region consists of one or more tetrahedra), and sequentially reduces the number of

regions by merging the best pair of regions among all possible pairs in terms of a given

criterion. This merging process is repeated until the required number of segments is ob-

tained.
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Figure 6.21: Figure illustrates tetrahedra adjacency (a); vertex 1–ring neighborhood (b);

and tetrahedron 1–ring neighborhood.

Since only adjacent pairs of regions can be candidates for merging, the similarities

can be represented as a region adjacency graph (RAG) in which nodes and edges denote

regions and pairs of adjacent regions. To update the graph efficiently after merging a pair

of regions, the graph is represented as a sparse matrix. In order to speedup the search for

a pair of similar regions, an index of a matrix row containing the maximal similarity is

stored and updated after the merging of two regions is performed.

Figure 6.22: Result of the proposed agglomerative merging. The merging was applied

as the post-processing step after the mesh segmentation via more sophisticated statistical

clustering.

The general procedure of agglomerative merging can be summarized as follows:
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1. Construct a graph which represents adjacency of regions and calculate similarity of

all possible (i.e. adjacent) pairs of regions.

2. Search for the best pair of regions to merge.

3. Merge the pair of regions, recompute features related with the regions and update

the graph structure.

4. Repeat the merging until no more regions can be merged, or the final number of

regions was reached.

In practice, performance of this algorithm can be improved by a simple weighting of

the similarity of two adjacent regions according to the number of voxels in both regions:

C(ri,r j) =
Ni +N j

NiN j
S(ri,r j). (6.11)

If the final number of regions is unknown, the stopping criterion for the merging should

be a ratio between similarities Ct−1(ri,r j) and Ct(ri,r j) of last two merged pairs of re-

gions. To prevent early termination of the algorithm, approximately first 10% of all possi-

ble merges are made without any checking of this termination criterion.

6.7.4 Similarity Measures

Let ti and t j be two feature vectors extracted for a group of adjacent tetrahedra, or a single

tetrahedron. Similarity measure is a function whose value is greater as the difference

between two feature vectors increases. Basic similarity measures are the mean intensity

value and statistical test of the similarity based on voxel value variance:

Sµ(r j,ri) = exp(− 1

2ρ2
|µri

−µr j
|2), (6.12)

Sσ(r j,ri) =
σ(ri)σ(r j)

σ2(ri, j)
, (6.13)

where the parameter ρ affects sensitivity of the measure and σ(ri) is the variance of inten-

sity in the region ri and σ(ri, j) is the variance of intensity in a joint region ri ∪ r j. Both µ

and σ are components of the feature vector.
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These basic similarity measures can be evaluated for very small tetrahedra (∼ couple

of voxels), therefore they serve as a merging criterion during the agglomerative merging

when too small non-classified tetrahedra along boundaries are assigned into neighboring

segments.

6.7.5 Noise Reduction

Due to noisy input data and classification errors, some isolated tetrahedra, classified to a

region different from its neighbors, may appear in the segmented mesh. This kind of mis-

classification can be reduced using a simple filtering scheme similar to the median filter-

ing [39] known from image processing. The noise reduction phase processes sequentially

each tetrahedron t j in the mesh in the following way:

1. Identify region of the tetrahedron t j as well as all regions of tetrahedra adjacent to

any edge of t j (i.e. the 1–ring neighborhood).

2. Estimate histogram of occurrences of particular regions weighted by volume of tetra-

hedra.

3. If there is a significant maxima in the histogram different from the original region,

re-classify the current tetrahedron t j.

Repeating the filtering until no change may lead to large changes in the classification.

So, the maximal number of iterations is limited. In practice, two or three iterations are

enough.

6.7.6 Tissue Classification

Result of the segmentation phase is the classified mesh, all tetrahedra are classified into one

of the regions. However, a relationship between theses regions and human tissues is un-

known. A unique tissue name or label should be assigned to every region in order to create

a 3D model of the tissue. This can be accomplished manually, according to a density-tissue

relationship, or by using an anatomical atlas. This step of the mesh segmentation is not

addressed in the thesis, the manual selection of region(s) of interest is performed.
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(a) (b)

(c) (d)

Figure 6.23: Surfaces extracted from a segmented mesh: an original surface without any

filtering (a); the same surface after filtering of isolated small parts (b); artifacts that some-

times appear close to sharp edges (c); and the surface after a fine smoothing that removes

only the artifacts, but preserves all other features (e.g. one iteration of the tuned Taubin’s

smoothing algorithm [103]).

6.7.7 Surface Extraction

Once the mesh is properly segmented, surface of any region Rk can be easily extracted. All

tetrahedra through the mesh are traversed looking for boundary faces that forms surface

of the desired region. Boundary faces can be intuitively identified as faces between two

different regions:

1. Clear the output set of faces Sk – closed surface of the region Rk.

2. Sequentially process every tetrahedron ti in the classified mesh:
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• If the tetrahedron ti is classified into the region Rk

Rk = argRi
maxm(ti,Ri)

– Retrieve all tetrahedra t j adjacent to ti.

– If t j is classified into a region different from Rk, then add face fi j incident

to both tetrahedra to Sk.

3. Save the extracted surface Sk.

The extracted surface is closed and its mosaic conforms to the chosen parameters of

the meshing – minimal required edge length Lmin, coefficient K that controls gradation of

the mesh, and the desired average tetrahedron size Tavg.

After the extraction, small isolated parts of the surface may be filtered to obtain a single

closed surface if required. Moreover, to avoid artifacts that rarely appear on the surface,

the final surface can be filtered for sharp spikes (Fig. 6.23).
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Chapter 7

Experimental Results

In this chapter, results of the introduced vector segmentation method are discussed, com-

pared to a traditional surface reconstruction technique based on the Marching Cubes

method. The vector segmentation was mainly designed for segmentation of volumetric

medical images towards anatomical modeling of fundamental tissues (i.e. soft and bone

tissue) and their surfaces. In order to evaluate precision, advantages and disadvantages of

this method, number of experiments on real medical CT data, as well as on artificial vol-

umetric data, were carried out. However, due to the complexity and variability of medical

images, the testing was divided into several separate tasks:

Surface accuracy. Evaluation of an accuracy of surfaces extracted from meshes, and com-

parison with the traditional Marching Cubes method followed by smoothing and

decimation.

Mesh quality. Evaluation of produced tetrahedral meshes with respect to the quality of

tetrahedra, distribution of dihedral angles through the mesh, the number of slivers,

etc.

Mesh segmentation. Comparison of different unsupervised clustering techniques applied

to meshes to classify tetrahedra into segments. Manually annotated medical CT data

are used as a ground truth.

77
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7.1 Surface Accuracy

In case of the anatomical modeling, an error between reconstructed surfaces of human tis-

sues and a ”ground truth” must be minimal to guarantee correctness of a planned surgery,

or accuracy of a custom-made implant.

Figure 7.1: Error between two meshes seen as a distance between closest points sampled

on the surface [20].

The following evaluation of the surface accuracy compares surfaces produced by the

vector segmentation algorithm against ones made by the traditional Marching Cubes (MC)

method followed by mesh smoothing and mesh decimation steps (for more details see

Sec. 5.2.2). Since the smoothing is crucial for overall precision of the surface, two standard

approaches were tested:

• Taubin’s smoothing algorithm [103] that maintains the volume of the mesh,

• HC algorithm [114] that preserves sharp edges and corners in the mesh.

The MC algorithm produces very large meshes. Hence, after the smoothing, the

Quadric Edge Collapse decimation algorithm, a variant of the well known edge collapse

algorithm based on quadric error metric proposed by Michael Garland and Paul Heck-

bert [41], was used to reduce size of the mesh – the number of triangles. This re-meshing

technique, as well as both the utilized smoothing methods, are implemented in the Mesh-

Lab [21] tool which is de facto standard in the area of meshing.

7.1.1 Artificial Data

Artificial volumetric data of basic solids such as rectangular solid, cylinder, cone, semi-

sphere, pyramid and the Stanford bunny (Fig. 7.2) were generated for the testing. An idea
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of this measurement is to rasterize a solid into 3D raster, reconstruct surfaces from obtained

volumetric data, and evaluate error between the reconstruction and the original surface of

the solid.

Model bunny cone sphere cuboid toroid cylinder

Num. of faces 69664 64 960 12 1024 182

Bbox diagonal [mm] 206 154 196 183 164 182

Table 7.1: Solids used for surface accuracy testing.

All solids (Tab. 7.1) were fitted into a volume having size 256x256x256 voxels. The

real voxel size was chosen to be 0.5mm in all directions.

7.1.2 Surface Approximation Error

An error between reconstructed surface and the original model is estimated using the

Metro [20] tool. The Metro allows one to compare the difference between a pair of surfaces

(e.g. a triangulated mesh and its simplified representation) by adopting a surface sampling

approach and point-to-surface distance computation.

The approximation error between two meshes is defined as the distance between cor-

responding sections of the meshes (Fig. 7.1). Given a point p and a surface S, the distance

e(p,S) is defined as:

e(p,S) = min
v∈S

d(p,v), (7.1)

where d(p,v) is the Euclidean distance between two points p and v.

RMS =

√

x2
1 + x2

2 + ...+ x2
n

N
(7.2)

In the following testing, the mean distance, maximum distance and quadratic mean

(i.e. root mean square – RMS) error between the two meshes are presented as measures of

the surface accuracy.
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Figure 7.2: Alignment of surfaces performed before evaluation of the approximation error.

The original solids serve as a reference for the error measurement.

7.1.3 Alignment of Surfaces

Before any comparison of two meshes, both meshes are precisely aligned using the ICP

(Iterative Closest Point) [6] algorithm. Such alignment is very important. It eliminates er-

rors caused by the differences in an internal implementation of different meshing methods.

Each algorithm handles a regular grid of voxels in rather different way which may cause

errors equal to approximately half the size of voxel.

7.1.4 Case Study – Stanford Bunny

First, an accuracy of surfaces produced by the iterative mesh adaptation scheme (Sec. 6.6)

will be evaluated for a single model only – the Stanford bunny. This allows to ex-

plain differences between the vector segmentation technique (VSeg for short) and both

the MC+HC and MC+Taubin combinations of the Marching Cubes method with one of

the mesh smoothing filters.

As mentioned above, the original bunny was rasterized into a volume of 2563 voxels,

the synthetic volumetric data of the bunny was created. Afterwards, its surface was recon-

structed using all compared techniques. Surfaces were aligned against the original model,

and the approximation error was calculated.

Fig. 7.4 shows histograms of error distribution for surface models of different level of

detail as returned by the Metro tool. Height of the histogram column denotes the fraction
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(a) (b)

Figure 7.3: The bunny colored by interpolating and mapping the surface approximation

error: the MC+HC method (a), and VSeg method (b). The error was computed in each

vertex as the mean of the errors on the incident faces.

of the surface having an adequate error. All histograms are normalized, so that the sum of

all columns should give 1.

In case of the MC-based methods, meshes ware decimated to exactly 10k, 20k and

50k faces. Parameters of the vector segmentation (K that controls gradation of the mesh,

average tetrahedron size Tavg and minimal allowed length of tetrahedra edges Lmin) were

chosen to produce almost the same number of faces.

Apparently, the VSeg method outperforms both the smoothing-based methods. How-

ever, the difference is more evident for smaller meshes. As the number of faces increases,

the error distribution of the VSeg method moves towards the MC+HC method which seems

to produce lower error than the MC+Taubin combination. Direct meshing of volumetric

image data seems to be more accurate approach then post-processing methods smoothing

reconstructed surfaces without any relationship to the original image data.

Similarly, graphs of the mean error (distance) and the RMS value shown in Fig. 7.6

maintain the assumption that for smaller meshes the VSeg method approximates surfaces

significantly better the the MC+HC and MC+Taubin methods.

The question is why the performance decreases with the increasing number of faces?

In fact, this behavior is opposite to the one of MC+HC and MC+Taubin methods. The
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Figure 7.4: Histograms of the surface approximation error for three meshes with a different

level of detail (number of faces) – the bunny model.

answer lies in the iterative adaptation of the mesh to the underlying image structure. To

obtain a more detailed surface, the minimal allowed edge length Lmin must be decreased.

However, the resolution of the raster data is limited. Decreasing the Lmin down to the real

size of a single voxel causes the relocation of vertices along image edges to not perform

optimally (Fig. 7.5). In the extreme case, the optimal vertex position is calculated as an

average of a single ”edge” voxel.
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(a) (b)

Figure 7.5: Surfaces extracted from meshes with different setting of the minimal tetrahe-

dron edge length: Lmin = 1.5mm (a); and Lmin equal to the voxel size 0.5mm (b). Too small

Lmin results in poorly smoothed surfaces.
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Figure 7.6: Surface approximation error – the bunny model at different level of details.

7.1.5 Overall Statistics

This close relation between the surface approximation error and the minimal allowed edge

length Lmin in the tatrahedra mesh was confirmed by evaluating the overall error for all
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models in the test dataset. Fig. 7.7 illustrates the overall mean approximation error and

the maximal error depending on the number of faces in the mesh. The same behaviour

as with the bunny model can be seen. The VSeg method outperforms the smoothing-

based methods for smaller meshes up to 20k faces. As the number of faces increases, the

mean error of the VSeg method grows too. For meshes larger the 35k faces, the surface

approximation error exceeds the error of the MC+HC method.
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Figure 7.7: Overall surface approximation error – whole set of test models.

An interesting effect of the number of faces to the maximal error is notable in the same

Fig. 7.7. In general, the maximal error, or maximal distance between sampled points on

compared surfaces, is much greater for surfaces obtained by the VSeg method than the

ones produced by the MC-based approaches.

Analogous to the previous discussion, explanation of the large maximal error in meshes
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produced by the vector segmentation is the matter of the meshing process itself. The

isotropic meshing generates high quality meshes with almost equilateral tetrahedra. There-

fore, close to the sharp surface edges, the final mesh approximates the surface very roughly

because of the limitation of tetrahedra shape and also the chosen minimal edge length. Il-

lustration of this problem can be found in Fig. 7.8.

(a) (b)

(c) (d)

Figure 7.8: Error distribution on the reconstructed surface. The mean error of the VSeg

method (a,c) over the entire surface is lower then the error of MC+HC method (b,d). On

the other hand, the maximum error is larger along the sharp edges, approximately 1x for

this model.

In Sec. 6.4.2, a modified 3D SUSAN corner detector has been proposed to detect sharp

edges (corners) in the volumetric data. The idea of the corner detection is to refine the

mesh close to the detected corner points, and moreover to attract vertices directly to the

corner places. The corner detection, however, does not perform good while processing the

artificial volumetric data. The reason way errors proportional to the minimal edge length

are caused close to the sharp edges.
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An exciting result of this experiment is that the mean error of all tested methods is

lower than half of the voxel (△x =△y =△z = 0.5mm).

7.2 Mesh Quality

The core of the vector segmentation algorithm is built upon the isotropic variational mesh-

ing approach (Sec. 6.6). The meshing phase is used for partitioning of the volumetric data,

while the structure of the mesh is iteratively optimized to provide good distribution of di-

hedral angles in the mesh, and adapted to the underlying image data. Goal of the mesh

adaptation is to generate meshes where faces of tetrahedra adjacent to image edges ap-

proximate boundaries of individual image regions. The proposed iterative mesh adaptation

scheme was developed to produce high quality meshes suitable for many practical appli-

cations. Not only for the surface reconstruction of a desired tissue, but also for simulations

that takes the internal structure of the tissue into account. The quality of produced meshes

is discussed in this chapter.

7.2.1 Adjusting Parameters

There are several parameters of the meshing process that must be chosen initially. These

parameters affect gradation of the mesh, average size of elements through the mesh, etc.

For a detailed description of all capabilities of the meshing technique proposed in this

thesis, few figures illustrating the effect of varying parameters can be found here.

To be more specific, there are three main parameters that control the isotropic meshing:

• K ≥ 0 ... the K parameter controls gradation/isotropy of the mesh,

• Tavg (avg. tetrahedron size) ... the parameter represents the control space scaling

factor, the Tavg prescribes size to tetrahedra through the mesh,

• Lmin ... the minimal edge length.

Setting smaller K results in a visible gradation of the mesh not only inside the domain,

but also on boundaries. The local feature size derived from medial axis (Sec. 6.6.2) takes

more importance. As the K increases, the gradation depends more on the distance from the

boundary, the gradation affects only interior parts of the mesh.
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K = 0.8, Tavg = 80 K = 0.8, Tavg = 30

K = 1.2, Tavg = 80 K = 1.2, Tavg = 30

K = 2.0, Tavg = 80 K = 2.0, Tavg = 30

Figure 7.9: Influence of K and Tavg parameters on sizing of tetrahedra and gradation of the

mesh.

The minimal edge length Lmin must be chosen very carefully. The reason is the compu-

tation time which strongly depends on the minimal length. In time of the mesh adaptation,

the Lmin value is used for filtering of newly created vertices, so a properly chosen value

may reduce runtime by early rejecting wrongly positioned vertices.
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αmean = 25.7◦

αmean = 24.7◦

αmean = 24.3◦

(a) (b) (c)

Figure 7.10: Example of surfaces extracted from tetrahedral meshes (a); cuts through the

same meshes colored according to the tetrahedra quality; and histograms of minimal dihe-

dral angles (c).
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7.2.2 Minimal Dihedral Angles

A good measure of a mesh quality is the distribution of minimal dihedral angles through

the mesh (Sec. 4.3). Fig. 7.10 shows histograms of dihedral angles for three different

tetrahedral meshes made by the iterative meshing technique proposed in this thesis. The

variational meshing approach introduced by Alliez et al. has been modified to work di-

rectly with volumetric data, and further extended by other techniques such as the boundary

refinement and the sliver removal based on vertex perturbations (Sec. 6.6).

The original VTM approach produces well shaped tetrahedra inside the domain. How-

ever, poorly shaped tetrahedra and slivers may appear close to the boundary. Unfortunately,

the same problem appears in case of the VSeg meshing method. Meshes in the middle of

Fig. 7.10 are colored according to the quality of tetrahedra. Clearly, the quality of tetra-

hedra decreases as getting closer to the boundaries – the red shading moves towards blue.

Even thought the embedded sliver elimination algorithm removes a large number of poorly

shaped tetrahedra, it does not ensure that all slivers will be successfully eliminated. This

is the reason why tetrahedra of a low quality (αmin < 3◦) are still present in all histograms.

Figure 7.11: Illustration of slivers (αmin < 3◦) that still remain in tetrahedral meshes after

the mesh adaptation phase.

Because all boundary vertices are treated differently during the variational meshing,

the quality of triangles approximating boundary of regions (i.e. tissues) is not affected

by this knot. On the other hand, this ambiguity of the meshing process, when there are

two types of vertices managed differently (interior vs. boundary vertices), is the source of

the inappropriately shaped tetrahedra near the boundary. Recently, J. Tournois [105] has

presented a new modification of the original VTM algorithm that particularly solves this

problem and produces almost sliver free meshes.
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One of the objectives of this thesis was to provide meshes suitable not only for surface

modeling, but also for numerical simulations. The presence of slivers may cause instability

of such simulations. Hence, this aspect of the presented VSeg technique remains open and

will be addressed in the future. A smallest dihedral angle should be guaranteed.

7.2.3 Surface Quality

Surface of a desired region can be extracted directly from the mesh after the segmenta-

tion. In the extraction process, boundary faces are identified as faces between two distant

regions. Quality of the extracted surface can be examined from two different sides. In the

previous chapter, the approximation error of the surface has been studied. Here, the quality

of surface with respect to the shape of triangles is briefly summarized.

αmin = 7.1◦, αmean = 44.9◦ αmin = 0.04◦, αmean = 45.4◦

αmin = 3.4◦, αmean = 45.4◦ αmin = 0.03◦, αmean = 48.3◦

(a) (b)

Figure 7.12: Quality of surfaces reconstructed using the VSeg method (a) and the MC+HC

method. Histograms show distribution of dihedral angles.

In Fig. 7.12, surfaces extracted from tetrahedral meshes (the VSeg method) are com-

pared against surfaces obtained from the MC+HC method. Contrast between both meth-

ods is evident. The VSeg approach itself produces well shaped triangles along the entire
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surface, and moreover size of triangles is automatically adjusted according to a local com-

plexity of the surface. Definitely, the MC meshes on the righthand side may be improved

by existing re-meshing techniques, but such kind of post-processing increases the approx-

imation error again.

7.3 Mesh Segmentation

During the mesh segmentation phase, all tetrahedra are classified into particular image re-

gions with the aid of selected unsupervised clustering techniques. Every tetrahedron of the

mesh is characterized by its feature vector that details image structure of the tetrahedron.

Accuracy of this last step of the vector segmentation approach is discussed in this

section. As suggested in Sec. 6.7, three conventional clustering techniques were selected

for testing with respect to our requirements (surface reconstruction of main tissues, i.e.

bones):

• Fuzzy C-means (FCM) algorithm [95],

• Gaussian Mixture Model optimized by the Expectation-Maximization (EM-GMM)

algorithm [81],

• Min-Cut/Max-Flow graph-based algorithm [8, 9, 40, 57]. Many thanks to O. Veksler

for his freely available implementation of the Min-Cut/Max-Flow algorithm [112].

These algorithms, in two different configurations of feature vectors – with or without

LBP texture features, were tested on several CT data sets and their results were compared

against manually annotated data – the ground truth.

In both the configurations, clustering techniques classify only relevant, sufficiently

large tetrahedra. Very small tetrahedra (fewer then 10–30 voxels) remain unclassified.

These non-classified tetrahedra, that appear mostly near to region boundaries, are assigned

to particular regions in the subsequent merging phase (Sec. 6.7.3) which uses a linear com-

bination of two simple similarity measures presented in Sec. 6.7.4.

7.3.1 Test CT Data

Medical CT imaging data having resolution mostly 512x512 pixels per slice were used

in all the subsequent experiments. Concrete parameters of selected datasets are listed in
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Tab. 7.2, highlighted data sets were manually annotated (segmented) by an expert. These

data sets will be used for evaluation of segmentation error and comparison of methods in

the following experiments. Here, I would like to thank to 3Dim–Laboratory s.r.o. company

for providing part of the test data.

Dataset Size Num. of slices Resolution [mm]

head1 512 x 512 147 0.38 x 0.38 x 0.60

head2 512 x 512 197 0.45 x 0.45 x 1.00

head3 512 x 512 169 0.45 x 0.45 x 1.00

pelvis1 512 x 512 119 0.83 x 0.83 x 2.00

pelvis2 512 x 512 318 0.63 x 0.63 x 0.70

pelvis3 512 x 512 169 0.75 x 0.75 x 1.59

pelvis4 512 x 512 125 0.86 x 0.86 x 2.00

knees 512 x 512 367 0.73 x 0.73 x 0.62

arteries 512 x 512 200 0.78 x 0.78 x 1.60

Table 7.2: Medical CT data selected for testing.

Manual segmentation of medical images is a very complicated task (Sec. 3.6). Not

unfrequently, the segmentation made by different people varies. Every expert has his own

view of the data and the correct segmentation. In order to quantify this phenomenon, one

of the datasets were segmented by four different experts. Tab. 7.3 summarizes the obtained

results.

An important issue is that the average error between two manual segmentations of the

same data is about 0.96, measured by the F-measure of goodness which is described below.

Occasionally, the error grows up (the F-measure decreases under) 0.92.
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Soft tis./Bone tis. Man1 Man2 Man3 Man4

Man1 - 0.921465 0.965222 0.895532

Man2 0.974299 - 0.948906 0.971415

Man3 0.993253 0.978834 - 0.922118

Man3 0.977621 0.979286 0.982031 -

Table 7.3: Difference between manual segmentations of the same dataset provided by four

experts. The F-measure of goodness was calculated for soft tissues and hard tissues (i.e.

bones).

7.3.2 Measuring Segmentation Accuracy

A way to match a segmentation to the ground truth is needed in order to evaluate per-

formance of a segmentation algorithm. Many sophisticated measures of segmentation ac-

curacy can be found in the literature [52, 108]. An often used measure of segmentation

goodness, sufficient for our task, is the F-measure [110] which is also very popular in in-

formation retrieval and natural language processing. The F-measure combines recall r and

precision p with an equal weight in the equation of the form:

Fmeasure =
2rp

r+ p
, p =

Tp

Tp +Fp
, r =

Tp

Tp +Fn
(7.3)

where p is the number of correctly labeled voxels (so called true positives Tp) divided by

the total number of voxels labeled as belonging to the same region. The recall r is defined

as the number of true positives divided by the total number of elements that actually should

belong to the positive class (see Fig. 7.13). A perfect score of the F-measure is 1, in the

worst case the measure is equal to 0.
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Figure 7.13: Illustration of the F-measure.
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7.3.3 Meshing Segmented Data

Without too much effort, the Delaunay-based segmentation can be applied to already seg-

mented data. Only the edge detection step and the mesh segmentation must be modified.

Actually, both steps are simplified. Image edges are detected at those points where two

adjacent regions touch each other. The assignment of a tetrahedron into a concrete region

is made according to the labeling of voxels in the tetrahedron’s interior.

In this case, the ability of the VSeg technique to mesh volumetric data is used for

surface reconstruction. Fig. 7.14 shows an error between the obtained mesh and the seg-

mented volumetric data. The F-measure rates how precisely the mesh approximates the

original data. To compare this difference, all tetrahedra are rasterized into the volume data

of the same size as the original one.
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Figure 7.14: Surface reconstruction error when meshing already pre-segmented data. The

red line implies the error observed when several people labeled a same CT dataset (see

Tab. 7.3).

The measured average error of tested surfaces 0.96 represents approximately an upper

limit (= best possible value) one can get when using the VSeg method. Results show that

the error depends on initial setting of the meshing, it generally grows for meshes with larger

tetrahedra. However, if adequate meshing parameters were chosen, the value is almost the

same as the error, or variations, produced by different people when segmenting a same

dataset (Tab. 7.3).
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Figure 7.15: Surfaces reconstructed from pre-segmented data. In the red areas of the sur-

face, small anatomical structures are weakly approximated because their size is relatively

small compared to a prescribed minimal edge length.

In practice, large portion of this error is caused by limitations of the meshing process.

All image structures smaller than the chosen minimal edge length Lmin are lost. The mesh

cannot approximate structures so small (Fig. 7.15).

7.3.4 Segmentation of Medical CT Data

In the last experiment, three different unsupervised clustering techniques (namely FCM,

GMM+EM and Min-Cut/Max-Flow) were applied to meshes to classify tetrahedra into

individual regions/segments. Analogous to the previous section, all meshes were raster-

ized into a volume of the same size as the original data. An error between the rasterized

mesh and manually segmented data (the ground-truth) was rated by the F-measure (7.3).

The calculated error implies how precisely the classified mesh approximates the manually

segmented data.

Fig. 7.16 recapitulates results of the mesh segmentation. All parameters of the meshing

phase were experimentally set to optimal values (most often K = 1.5, Tavg = 50 and Lmin =

1.5). As a reference, the FCM clustering method was also applied directly to the volumetric

data.

Results show that all clustering techniques are able to distinguish soft tissue from the

bone tissue. When compared to the manual segmentation, the VSeg method provides
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Figure 7.16: Overall segmentation error of the VSeg method. Three alternative clustering

methods (FCM, GMM+EM and Min-Cut/Max-Flow) are compared to the straight FCM

clustering of volumetric data (voxel FCM).

precise segmentation of the same quality as the voxel-based FCM clustering of the original

image data. The segmentation error of soft tissues is comparable to the variation of manual

segmentation of the same dataset by different individuals (Sec. 7.3.1).

Not the worse results occur in case of bone segmentation from the head3 dataset. The

VSeg method still produces quite good results. However, the measured error of the bone

tissue segmentation significantly grows (i.e. value of the F-measure decreases) for the two

remaining datasets. Only the graph-based Min-Cut/Max-Flow algorithm provides reason-

able results. Why the VSeg mesh segmentation does not achieve good results for these two

datasets?

Due to the thickness of the cortical bone and regarding resolution of CT data, very thin
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(a) (b) (c)

Figure 7.17: Result of the mesh segmentation if weak edges are present in the CT data:

the original data – negative (a); surface derived from the classified mesh (b); result of the

same method when applied to the manually segmented data (c).

edges are present in the image data which are practically undetectable by conventional edge

detection techniques without more knowledge of the data (Fig. 7.17). Therefore, such kind

of (non)edges is not well approximated during the meshing process which causes more

errors in the final mesh segmentation.

Only the Min-Cut/Max-Flow clustering technique is able to partially overcome the

problem of missing edges. Because the method takes spatial image structure more into

account, results of this graph method overcomes other techniques. Unfortunately, once

created the mesh structure cannot be changed, so the final surface is only a rough approxi-

mation of the bone tissue. This nature of some medical CT data is also one of the reasons

to allow manual corrections of the mesh segmentation.

Several experiments with a texture-based clustering of tetrahedral meshes were also

performed. Normalized histogram of simple LBP image features (Sec. 6.7.2) forms an ex-

tra part of a tetrahedron feature vector. Results of the texture-based mesh segmentation are

not presented here. Actually, this extension does not improve results of the classification

for the finally selected set of test CT data. Anyhow, for different kind of data (e.g. MRI),

the texture-based segmentation may produce qualitatively better results.
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Figure 7.18: Surfaces extracted from the classified mesh – the colored plastic pipe was

wrongly classified in to the same region as the bone tissue.

7.4 Runtime Statistics

Basic runtime statistics can be found in Fig. 7.19. The measurement was divided into four

stages: preprocessing of input data (i.e. anisotropic filtering), initialization of the meshing

(the edge and corner detection; generation of the control space), iterative adaptation of the

mesh, and the mesh segmentation. All phases take approximately 25− 50 minutes on a

standard PC with Intel Core2Duo 2.54GHz processor depending on a concrete size of the

data and specific parameters of the meshing algorithm.

In fact the runtime of the vector segmentation is not very impressive. In comparison

with traditional surface reconstruction techniques like the MC algorithm (+ subsequent

smoothing), the VSeg method loses. These techniques are able to reconstruct surfaces in
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Figure 7.19: Runtime statistics of the VSeg method for different meshing setup. These

statistics were measured for the knees dataset (512x512x367 voxels).

a much less time – just about minutes. However, such comparison is a bit unfair. Beside

the surface, the VSeg method produces more comprehensive representation of the data –

tetrahedral mesh – which may be useful for many other tasks.

In addition, surfaces of all desired tissues are reconstructed at once, and any further cor-

rection of the segmentation does not lead to a completely new rerun of the reconstruction.

This is due to a close relationship between the obtained tetrahedral mesh and all extracted

surfaces. Local modifications of the mesh, such as adding of new vertices and reclassifica-

tion of tetrahedra, can be easily projected onto an already existing surface identifying a set

of modified tetrahedron faces.

Aim of the thesis was to prove the concept of volumetric data segmentation based on

Delaunay meshing. Not much attention was paid to the optimization of the implemen-

tation. The whole segmentation is divided into many blocks which is handy for making

experiments, but not very effective due to unnecessary coping of data, repetitive allocations

of large memory blocks, etc.

7.5 Summary and Future Work

Different experiments were carried out in order to proof qualities of the proposed vector

segmentation approach. A short recapitulation of all results presented above is given here.
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Surface accuracy. An error between reconstructed surfaces of human tissues and a

ground truth must be minimal in order to guarantee the correctness of a surgery planning.

In the first test, the accuracy of surface reconstruction was measured on synthetic models

of solids. The VSeg method outperformed the both smoothing-based methods (MC+HC

and MC+Taubin) for relatively small meshes – the smallest tetrahedra is larger then the

voxel. In that case, direct meshing of volumetric image data is more accurate approach

then the post-processing methods smoothing reconstructed surfaces without any relation-

ship to the original image data. However, close to sharp surface edges, the final mesh

approximates the surface very roughly because of the limitation of tetrahedra size – the

minimal tetrahedron edge length is prescribed. Therefore, the maximal error is greater for

surfaces obtained by the VSeg method than the ones produced by other approaches.

Mesh quality. The VSeg approach produces well shaped triangles along the entire sur-

face, while the size of triangles is automatically adjusted according to the local complexity

of the surface. However, the iterative mesh adaptation scheme was designed to produce

high quality tetrahedral meshes suitable for many practical applications, not only the sur-

face reconstruction of a desired tissue, but also for simulations that take an internal struc-

ture of tissues into account.

K = 1.2, Tavg = 80 K = 2.0, Tavg = 30

Figure 7.20: Influence of the meshing parameters K and Tavg to the structure of final sur-

faces.

An inconvenience of the described meshing technique is that the quality of tetrahedra

decreases as getting closer to the boundaries and slivers appear close to the boundaries.
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Hence, the sliver elimination algorithm has been incorporated into the iterative meshing

phase. This modification successfully removes a large number of slivers, however it does

not ensure that all slivers will be successfully eliminated. This inconvenience of the pre-

sented VSeg technique should be further improved.

Mesh segmentation. The overall VSeg approach including the mesh segmentation phase

was applied on selected CT datasets, aimed at surface modeling of soft and bone tissues.

Results of three different tetrahedra clustering techniques have been compared against

manually segmented ground truth. Among the methods, the graph-based Min-Cut/Max-

Flow clustering technique gives best results. In general, graph clustering techniques ap-

pear to be very promising as the mesh structure of clustered data suits well to the idea of

represent volume data using a graph structure.

Only the Min-Cut/Max-Flow clustering technique is able to deal with the problem of

weak edges in the image data (i.e. very thin cortical bone). The final surface is only a

rough approximation of the bone tissue because the mesh structure does not approximate

(missing) image edges well. In future, the problem of missing edges should be resolved

in several ways. A set of manually annotated edges can be defined before the meshing

process starts, or the mesh structure can be locally modified after the automatic meshing

finishes. Another improvements can be made by incorporating more sophisticated edge

detection techniques in the VSeg approach. In spite of that, manual corrections will be

always necessary due to the unpredictable character of medical data in case of traumatic

injury, which is unfortunately the case when anatomical modeling of tissues should help

in a surgery planning.

In conclusion, the proposed vector segmentation can be successfully used for surface

reconstruction of desired tissues, as well as for meshing of the interior structure of the

tissues for the numerical simulation. Obtained results show that the current concept works

very well for certain CT data and is applicable to anatomical modeling of a human skull

or soft tissues (i.e. craniectomy in case of traumatic brain injury, or cranioplasty). For

the purpose of plain surface reconstruction from an already pre-segmented data, the VSeg

method produces surfaces of more than reasonable quality and can be used as is.

Anyhow, I believe that the concept of vector segmentation is quite universal, thus appli-

cable to a wider variety of problems whenever volumetric data of some kind are processed.

The only limitation of the present concept is that the meshing phase is based on edge de-

tection.
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During elaboration of this work, a new framework for volumetric data processing, tetra-

hedral meshing and Delaunay-based 2D/3D segmentation has been developed. This frame-

work is freely available for research purposes [116].
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Conclusion

This dissertation thesis presents a novel technique for segmentation of volumetric medical

images aimed at surface reconstruction of fundamental human tissues (i.e. bone and soft

tissues). This technique of vector segmentation is based on the 3D Delaunay triangulation.

Tetrahedral mesh is used to divide volumetric data into several disjoint regions whose

characteristics are similar. All tetrahedra in the mesh are classified into individual image

regions by means of clustering. Finally, certain methods for improving quality of the mesh

and its adaptation to the underlying image structure have also been presented.

Such direct meshing of volumetric image data appears to be more accurate approach

then traditional techniques which start with an iso-surface extraction followed by the sur-

face decimation and smoothing without any relationship to the original image data. Nev-

ertheless, this idea of the segmentation has several other advantages.

A more effective representation of the image structure is obtained which approximates

the original raster data. The mesh representation decreases complexity of the subsequent

segmentation because of processing a reduced number of tetrahedra instead of a large

number of voxels. The obtained tetrahedral representation is also suitable for numerical

simulations that take the internal structure of tissues into account.

If the original image data are affected by artifacts, or the data structure is too com-

plicated due to traumatic injury, manual corrections of the segmentation can be directly

applied to the reconstructed surface. It is not necessary to restart the whole meshing pro-

cesses. There is a close relationship between the obtained tetrahedral mesh and all ex-

tracted surfaces. Actually, surface triangles are faces of tetrahedra in the mesh. Simple

modifications of the mesh, such as adding new vertices, removing old ones, or manual

reclassification of tetrahedra, affect the mesh locally, thus these changes can be directly
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projected onto an already extracted surface of the desired tissue.

The concept of vector segmentation is quite general and presented experiments demon-

strate its functionality for specific type of CT data. After several minor modifications, it is

applicable to a wider variety of problems whenever volumetric data are processed.

However, several inconveniences can be still found in the method that are not very

favourable from the practical point of view. Even thought the quality of reconstructed

surfaces is sufficient for many applications, the quality of produced tetrahedral meshes is

not as good as it could be. Slivers still appear close to region boundaries, and the method

does not guarantee minimum dihedral angle in the mesh.

Another disadvantage can be found in the edge detection step which is crucial for

precise approximation of image boundaries. The proposed tissue-selective edge detection

works well for selected CT data. Many parameters of the detection must be tuned to

provide desirable results for other type of CT data. The edge detection limits potential

application of the method in other research fields when different kind of volumetric data is

used.

Theses aspects of the proposed vector segmentation technique should be addressed in

the future work. In addition, many sophisticated image segmentation and classification

techniques exist that may be modified to work with the mesh structure. We would like to

correct the misclassification of the segmentation step by incorporating more sophisticated

image features modeling spatial properties of particular image regions into the classifica-

tion process.
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Sample Results

Input dataset: CT–head2; meshing parameters: K = 1.5, Tavg = 50mm, and Lmin = 1.5mm.

82885 vertices, 165348 faces

127528 vertices, 256060 faces
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120 Sample Results

Input dataset: CT–knees; meshing parameters: K = 1.5, Tavg = 30mm, and Lmin = 1.0mm.

125444 vertices, 250518 faces

138883 vertices, 136266 faces



121

Input dataset: CT–head3; meshing parameters: K = 1.5, Tavg = 50mm, and Lmin = 1.5mm.

89131 vertices, 178124 faces

87833 vertices, 176318 faces



122 Sample Results

Input dataset: CT–pelvis3; meshing parameters: K = 1.5, Tavg = 50mm, and Lmin = 1.5mm.

77033 vertices, 154356 faces

105758 vertices, 211320 faces
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Input dataset: CT–pelvis2; meshing parameters: K = 0.8, Tavg = 50mm, and Lmin = 1.5mm.

83938 vertices, 168308 faces

118850 vertices, 238164 faces



124 Sample Results

Input dataset: CT–arteries; meshing parameters: K = 0.8, Tavg = 50mm, and Lmin =

1.5mm.

100613 vertices, 202084 faces

172915 vertices, 347336 faces


