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Abstract 

Image segmentation plays an important role in medical image analysis. Many segmenta

tion algorithms exist. Most of them produce data which are more or less not suitable for 

further surface extraction and anatomical modeling of human tissues. In this thesis, a novel 

segmentation technique based on the 3D Delaunay triangulation is proposed. A modified 

variational tetrahedral meshing approach is used to adapt a tetrahedral mesh to the under

lying C T volumetric data, so that image edges are well approximated in the mesh. In order 

to classify tetrahedra into regions/tissues whose characteristics are similar, three different 

clustering schemes are presented. Finally, several methods for improving quality of the 

mesh and its adaptation to the image structure are also discussed. 
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Chapter 1 

Introduction 

Medical imaging devices like the Computed Tomography (CT) and the Magnetic Reso

nance (MRI) can be used to inspect patient body from the inside. These imaging devices 

produce image data detailing human anatomy within a scanned patient body part. The 

medical data obtained as planar image slices are mainly used for diagnostic purposes. 

The most frequent way of medical diagnostics is investigation of such slices as 

grayscale images. However, the C T / M R I data make possible to explore other ways of 

medical diagnostics and treatment. Modern image data visualization and 3D modeling 

techniques can be used for design of custom-made implants, surgery planning, training, 

and navigation of surgeons. 

Substantial step of many image understanding methods is the segmentation that sep

arates objects (i.e. tissues) in the image. The segmentation plays an important role and 

provides crucial information for subsequent tasks such as tissue recognition, 3D modeling 

and visualization. 

A novel vector segmentation algorithm based on the 3D Delaunay triangulation is pro

posed in this thesis. Tetrahedral mesh is used to divide a three-dimensional image data into 

several non-overlapping regions whose characteristics are similar. Methods for isotropic 

mesh construction and its adaptation to the underlying image structure are presented, so 

that the final mesh contains larger tetrahedra inside image regions while the size decreases 

close to the region boundaries. 

Applying the vector segmentation a classified mesh whose tetrahedra are grouped into 

individual regions is obtained. Such mesh contains all information necessary to reconstruct 

geometry of any region (~ human tissue). The polygonal surface model can be easily 

derived. 
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4 Chapter 1. Introduction 

This thesis is organized as follows. First, a review of recent trends in medical treat

ment in conjunction with formulation of thesis objectives is given in Chap. 2. Then an 

introduction to medical image processing is given in Chap. 3, and prerequisites related to 

the Delaunay triangulation and meshing are summarized in Chap. 4. Further, a survey of 

existing segmentation techniques relevant to the thesis is given in Chap. 5. The proposed 

Delaunay-based vector segmentation is described in Chap. 6 including the discussion of 

some implementation details and specific optimization techniques. Finally, experimental 

results are shown in Chap. 7 followed by discussion and conclusions. 



Chapter 2 

Motivation 

Modern computer graphics and techniques like the volume rendering were introduced to 

surgeons trying to develop novel methods of the medical treatment. Nowadays, recent 

research in this area is aimed at: 

• direct 3D visualization of medical images (volume rendering) [12,50], 

• 3D anatomical modeling [59], 

• surgery planning and training - so called virtual surgery [24,27], 

• computer aided surgery [11,68], 

• and implants design (Fig. 2.3). 

Transparent visualization of the segmented C T / M R I data is significant to acquire accu

rate medical diagnosis. The term volume rendering [12,50] is used to describe techniques 

which allow direct visualization of three-dimensional data. 

Benefit of viewing the data as a three-dimensional rather than as individual planes is 

obvious. The segmented tissues can be observed from any view point, thus the patient 

anatomy can be investigated much precisely and more easily. 

2.1 Anatomical Models 

The medical image data can be used to create three-dimensional surface models of human 

anatomy. After a segmentation of discrete volumetric data, e.g. acquired by C T / M R I 

imaging, 3D surface models such as those in Fig. 2.2 can be derived. 

5 



6 Chapter 2. Motivation 

(a) (b) (c) 

Figure 2.1: Three alternative volume rendering methods: (a) Maxima Intensity Projec
tion (MIP) displays structures of maximal importance; (b) value integration results in 
X-ray like images; (c) non-photorealistic rendering enhancing contours. Published by 
Hauser et al. [50]. 

The advantage of a surface representation of human anatomy is that it gives a three-

dimensional view from any angle, this is an improvement over the traditional investigation 

of two-dimensional grayscale images. Surface models can be extracted from segmented 

data using a number of algorithms, for example the Marching Cubes [59]. A detailed study 

of the most important surface reconstruction algorithms is given in Sec. 5.2. 

Figure 2.2: Surface model of a human skull (a) and custom made implant (b) for plastic 
surgery. Realized in cooperation with Faculty Hospital in Olomouc. 

Many medical image segmentation algorithms can be found in the literature. This 
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thesis does not try to summarize them all. Only those techniques, related to the topic of 

the thesis, are discussed in Chap. 5. 

Figure 2.3: Custom-made implant realized by P. Krsek in cooperation with Czech company 
Beznoska a.s., the producer of orthopedic implants and instruments. 

Research at the Faculty of Information Technology in Brno is aimed at 3D surface 

modeling of tissue geometry for implants design, surgery planning and simulation (see 

Fig. 2.3). In conjunction with St. Anne's University Hospital in Brno and Faculty Hos

pital Brno, clinical applications in aesthetic surgery, orthopaedics and dental surgery are 

investigated [60, 111]. 

M e d i c a l 

imaging 

device 

Model 
materialization 

- C N C m i l l i n g 

- 3 D printers 

3D geometrical 
modeling 

} 3 D geometrical model 

- Po lygonal meshes 

- N U R B S surfaces 

R e a l model 

Figure 2.4: 3D geometric modeling of human tissues. 



8 Chapter 2. Motivation 

2.2 Medical Image Segmentation 

The main goal of the segmentation process is to divide an image into parts that correspond 

to tissues of particular types. In other words, it is the process of labeling each pixel in 

a medical image to indicate the tissue type or anatomical structure. The segmentation is 

one of the most important steps in the analysis of the medical image data. The precise 

segmentation is crucial for 3D modeling of tissues and anatomical structures. Hence, it 

helps in diagnosis, surgery planning, surgery simulation, etc. 

(a) (b) 

Figure 2.5: The segmented C T slice (b) and the original image (a). 

In terms of the medical imaging, input to the segmentation process is a series of image 

slices, the result of a single C T or M R I scan. More information about medical image 

segmentation and its formal definition can be found in Chap. 3.4. 

2.2.1 Difficulties of the Segmentation 

There are many aspects that make general segmentation a difficult task. The first aspect 

is the imaging process itself. The chosen imaging method provides relevant information 

about the tissue of interest, but this does not mean that individual tissues wi l l be separable. 

Strong edges may not be present around the borders. Such tissue is more detectable by the 

human eye than by even sophisticated computer algorithm. 

The second aspect is the complexity and variability of the human anatomy. Due to 

the nature of the segmentation problem, most of the algorithms are specific to a particular 
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Figure 2.6: Artifacts caused by metallic objects present in the C T image data. 

problem. Certain knowledge must be built into the algorithm. Therefore, such method is 

not suitable for other problems. 

Moreover, the C T image data are sometimes damaged by artifacts when metallic ob

jects are present in the patient body (Fig. 2.6). 

Another important feature of the segmentation is automation. Performing automated 

segmentation still remains one of the most difficult problems. Although many researchers 

have shown success with automation in some cases, there is no generic algorithm which 

can perform automatic segmentation on any given data set. 

2.3 Thesis Objectives 

This thesis aims at the anatomical modeling of human tissues and techniques of medical 

image segmentation suitable for this kind of modeling. A 3D model of desired tissue is 

made on the basis of the segmented data. Most often, the segmentation step is done semi-

automatically. Results of the segmentation are manually verified and corrected which may 

be very time consuming. 

A n inconvenience can be found in the assumption that a surgeon or assistant is skilled 

in the segmentation and its verification. In addition, it is necessary to do a lot of additional 

work different from traditional medical treatment. Even thought the surgeons understand 

all the advantages that these techniques may bring into the medicine, only few of them are 
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willing to do such work. Therefore, it is very hard to establish these techniques in clinical 

practice. 

Department of Computer Graphics and Multimedia at FIT BUT, namely P. Krsek and 

M. Spanel, cooperates on the research of the anatomical modeling in clinical applica

tions [60, 111] for many years trying to establishing them in practice. It was important 

to keep in mind that the field of clinical applications is very wide in our case while objec

tives of this thesis were formulated: 

Accurate surface approximation. In case of anatomical modeling, an error between re

constructed surfaces of human tissues and a "ground truth" must be minimal to 

guarantee correctness of a planned surgery. Therefore, more attention is given to 

surface reconstruction methods that work directly with volumetric data without any 

post-processing steps which may increase the surface error. 

General algorithm. Because of the wide field of clinical applications, knowledge-based 

methods of tissue modeling which uses atlas of human anatomy are not suitable. Be

sides, in case of traumatic injury, most of the knowledge-based methods fail because 

such events are not present in training data. Unfortunately, traumatic injuries are 

typical incidents when the anatomical modeling helps in surgery planning. The goal 

is to propose a general algorithm, in a certain manner, that is not aimed at concrete 

treatment, tissue type, or situation. 

Real data. Difficulty of the segmentation is the analysis of real C T / M R I data. It is im

portant to deal with noise in the imaging process as well as inhomogeneity of the 

tissues. Some pre-processing algorithms (noise removal, M R inhomogeneity cor

rection, etc.) as well as robust segmentation algorithms must be suggested. 

High-quality surface meshes. Most frequently, anatomical models are used for surgery 

planning and custom-made implants design. However, mesh structure suitable for 

numerical simulations is necessary for some tasks. Hence, high-quality meshes 

should be produced by the modeling being able to describe interior structure of tis

sues as well. 

High degree of automation. The goal is to develop segmentation algorithm which wi l l 

work mostly automatically. Minimal manual corrections of the segmentation are 

required. Because manual corrections are always needed, it must be easy to modify 

the final segmentation. 



Chapter 3 

Background: Medical Image Processing 

A n increasing number of different diagnostic imaging techniques have been introduced in 

clinical applications in the last few years. Nowadays, medical images are obtained from 

different acquisition devices including Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), Ultrasound, etc. Each of them carries both the structural and the functional 

information on human tissues. A short overview of medical imaging and medical image 

processing techniques related to the topic of the thesis is given in this chapter. 

3.1 Computed Tomography 

Computed tomography [51,83] is a modern extension of the traditional X-ray examination. 

The X-ray beam scans a slice of the anatomy from multiple angles. Each slice pixel is then 

calculated combining the measurements from the multiple angles. The C T produces data 

in a planar 2D form as a series of slices through the examined part of the patient body. 

The C T intensity is relative to that of water which is zero. In the same manner, the 

different tissues have a different predefined intensity values. This feature makes possible 

to use some low-level automated segmentation. The C T is very sensitive to differences in 

density and produces good anatomical images of organs and soft tissues [72]. 

3.2 Magnetic Resonance 

The magnetic resonance [82,83] represents information of a chemical nature. The different 

intensities in the image reflect mainly the density of hydrogen atoms. The method has its 

11 



12 Chapter 3. Background: Medical Image Processing 

(a) (b) 

Figure 3.1: Sample C T (a) and M R I (b) slice through the human head. Notice that there 
are black areas in place of the bones in the M R I slice. The bones don't disturb the M R 
signal. 

theoretical base in advanced nuclear physics. The main advantage of the M R imaging 

is that image intensity varies for different soft tissues. In addition, bones do not disturb 

the M R signal (see Fig. 3.1). Therefore, it is used to examine soft tissues and to find 

pathological changes like tumours. 

3.3 CT/MRI Data Preprocessing 

In medical imaging, different tissues can appear very similar, making it difficult to inter

pret the image. The visual examination of medical images is essential in the diagnosis. In 

order to visualize relevant anatomy, the image can be adjusted through a process known as 

windowing [119]. In fact, the windowing is a simple linear intensity scaling that increases 

contrast between tissues of interest. Intensity scaling allows one to focus on specific inten

sity bands in the image (see Fig. 3.2) by stretching the band of interest into the dynamic 

range of a display. 

3.3.1 Enhancing Contrast 

Furthermore, to obtain images with a greater detail of relevant anatomy, a contrast medium 

which highlights certain tissues is typically injected into a patient body [15]. However, for 
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Figure 3.2: Adjusting density window of the C T image using linear intensity scaling. 

many applications, there is no known contrast medium capable of differentiating between 

the relevant tissue types. For these reasons, it is helpful to enhance contrast by more 

computationally intensive image processing techniques. 

A comprehensive survey of contrast enhancing methods applied in the medical imaging 

can be found in [4]. Here, a brief overview of selected methods is given with a reference 

to literature. Some techniques, the power-law technique, the anisotropic filtering and the 

bilateral filter, are described in more detail as they are further utilized in the thesis. 

3.3.2 Enhancement in Spatial Domain 

Most of the contrast enhancement techniques [4,46] can be classified into two groups. 

Enhancement in spatial domain manipulates image pixels directly, while frequency domain 

approaches modify the Fourier transform of an image. Many spatial domain methods have 

been applied in the past: 

• gray level transformations - linear, logarithmic, power-law and piecewise-linear 

transformation functions, 

• histogram equalization and matching, 

• linear and non-linear spatial smoothing filters - mean and median filtering, 

• sharpening smoothing filters - unsharp masking, etc. 
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Power-law transformations [46] are useful for general-purpose contrast manipulation. 

The power-law transformation, also called gamma correction, is defined by the formula: 

s = cry (3.1) 

where c and y are positive constants. When y is less than 1, The transformation maps a 

narrow range of dark values into a wider range, and it does the opposite for the higher 

values. The inverse effect, compression of gray levels, is obtained when y is greater than 

1. 

Figure 3.3: Result of the power-law contrast enhancement. 

Histogram equalization is widely utilized for global image enhancement [16]. The 

image contrast is adjusted by mapping obtained from the integral of the image histogram. 

The histogram equalization assigns approximately equal number of pixels to each user-

specified gray-scale levels ~ uniform distribution. Although this method is very simple, it 

does not take into account local details. In addition, global histogram equalization has the 

undesired effect of overemphasizing noise. 

In diagnostic medical images, local details may be more important than global contrast. 

Therefore, a number of local adaptive histogram equalization and local adaptive contrast 

enhancement methods [16,53,88] have been proposed in the past. These algorithms map 

the gray values of pixels using the relationships obtained from the local histograms. 



3.3. CT/MRI Data Preprocessing 15 

3.3.3 Frequency Domain and Multi-scale Techniques 

Filtering can be also done in the frequency domain [39,39,118]. Low frequencies in the 

Fourier transform give the gray-level appearance of a smooth image. High frequencies 

show detail, such as edges and noise. A filter that reduces high frequencies while passing 

low frequencies is called a low-pass filter and provides noise suppression or image smooth

ing. A filter with the opposite characteristics is called a high-pass filter. The commonly 

used Butterworth high-pass and low-pass filters are presented in [4] as a good contrast 

enhancing filters. 

Multi-scale methods can decompose an image into components, which can be used to 

improve contrast in the image. The Laplacian Pyramid [39] and the Fast Wavelet Trans

form (FWT) [4,58] are both typical multi-scale methods. In general, enhancement by 

means of the Laplacian Pyramid was applied to X-ray images [101]. Wavelet-based meth

ods were mainly used in the context of mammography [66]. Besides, there are also some 

applications to the C T / M R I images. 

Performance comparison of both methods can be found in [30], where Dippel et al. 

stated that enhancement based on the F W T suffers from one serious drawback, the intro

duction of visible artifacts when large structures are enhanced strongly. The Laplacian 

Pyramid allows a smooth enhancement of large structures, such that visible artifacts can 

be avoided. 
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(a) (b) (c) 

Figure 3.5: Multi-scale contrast enhancement of X-ray images: the original image (a); 
skull processed with Laplacian pyramid (b); and skull processed with wavelet pyramid 
(c) [30]. 

3.3.4 Anisotropic Filtering 

Anisotropic filtering [92] performs piecewise smoothing of the original image. Its strength 

lies in the fact that it deals with local image structures which can be preserved and their 

positions wi l l not be affected. The filtering process can be formulated as a diffusion. The 

filtering is suppressed at boundaries by locally adaptive diffusion strength. The diffusion 

process of anisotropic filtering can be expressed by the equation: 

dt 
I(x,t) — div(c(x,t) x \/I(x,t)) (3.2) 

The function I(x,t) is the image intensity. The diffusion strength is controlled by c(x,t), 

where x represents the spatial coordinates, and t is the iteration step. The diffusion function 

I(x,t) depends on the magnitude of the image intensity gradient and mainly diffuses within 

homogenous regions and does not affect edges and boundaries. The diffusion function 3.3 

has been used frequently. 

c(x,t) — exp (3.3) 

The parameter K is chosen according to the noise level and the edge strength. The rela

tionship between the parameter K and the gradient V / can be explained by the flux function 
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(|> = c x V / . For example, maximum flux is generated when the gradient equals to K . Below 

K , the flux reduces to zero, because only minimal flux takes place in homogeneous regions. 

Above K , the flux again decreases to zero, stopping diffusion at locations of high gradients. 

A proper choice of the diffusion parameter not only preserves, but also enhances edges. 

(a) (b) 

Figure 3.6: Nonlinear anisotropic filtering of M R I data: the original image (a); and result 
of the filtering (b) [43]. 

The filtering of discrete signals requires a reformulation of the method. To filter dis

crete ID signal, it can be shown [92] that 

I(t + At) « I(t) + Atx^rl (3.4) 
d 

= l(t)+AtX bright-tyleft) (3-5) 

where fright and §iefi are the flow contributions estimated by the flux function. 

Local gradient estimates are calculated as differences between neighboring image pix

els instead of differentiation. Stability of the iterated processing can be obtained by choos

ing a proper integration constant dt — 1/5(1/7) while using 4-connected (8-connected) 

neighborhood structure. 

Since an image usually consist of several objects with different contrasts, it is important 

to be adaptive to different areas with different gradients. The general idea is to apply 

adaptive filtering. The diffusion process depends critically on the value of K. Therefore, 

the gradient in different areas of the image can be calculated and K is chosen less than the 

edge gradient and larger than the average value of noise. 
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# iterations it im*) 

Figure 3.7: Illustration of the important property of the anisotropic filtering - iterative edge 
sharpening and noise suppression. Reprinted from [43]. 

Gerig et cd. [43] presented an extension of the anisotropic filtering to 3D and multichan

nel data. Results of their M R I brain images filtering illustrate efficient noise reduction in 

homogeneous image regions, while object contours and boundaries are not only preserved, 

but even improved (Fig. 3.6). 

3.3.5 Bilateral Filtering 

A very popular image filtering technique is a bilateral filter. Similarly to the anisotropic 

filter, also the bilateral filter is able to remove noise while preserving important features 

like edges in the image. 

A simple approach to the image smoothing is averaging of nearby pixels to compute 

an estimate of the original pixel value. The Gaussian low-pass filter performs an averaging 

using a set of weights defined over a normal distribution such that points nearby the sample 

point have greater weights and more distant points have the smaller weights. This type of 

filtering is independent of the underlying image structure, thus blurring of edges can be 

seen as a side effect of the filtering [7]. 

The idea of bilateral filtering, defined by Tomasi [104], is to smooth images while 

preserving edges by means of nonlinear combination of nearby pixel values. In order to 

achieve this, the influence of pixels is weighted by two different Gaussian functions g and 

c - one in the image space (the geometric closeness) and second in the signal space (the 
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photometric similarity). The idea of weighting in the signal space assumes there wi l l be 

a large difference in the signal close to sharp edges, so the difference between the sample 

point and nearby pixels can be used to evaluate influence of each pixel within a local 

neighbourhood. The following equation is the discrete formulation of bilateral filtering: 

= zmg(\\r-x\\)c(\m-m\) 0.6) 
* W PER 

where k{x) is a normalization factor - the sum of all weights given by the g and c functions, 

and R is a local neighbourhood of the sample pixel x. 

The set of contributions from c varies within the image, as they depend on the actual 

set of differences observed across the neighbourhood. Therefore, in many papers [87,123], 

distant optimization and approximation techniques have been presented to provide not only 

effective, but also fast filtering method. 

(a) (b) 

Figure 3.8: These images show results of the 3D bilateral filtering. Notice the bilateral 
filter performs smoothing while preserving important image features [7]. 

The bilateral filtering approach combining spatial and signal weights has shown to 

be robust and flexible to a variety of applications. For an example, a mesh smoothing 

algorithm based on bilateral filtering has been presented by Jones et al. [55]. Finally, an 
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extension of the original formulation of bilateral filtering for use on 3D volumetric data 

has been proposed by Bethel et cd. [7]. 

3.4 Image Segmentation 

The image segmentation can be formally defined [97] as the process of partitioning a digital 

image into multiple segments. The goal of segmentation is to simplify and/or change the 

representation of an image into something that is more meaningful and easier to analyze. 

The image segmentation is typically used to locate objects and boundaries in images. More 

precisely, image segmentation is the process of assigning a label to every pixel in an image 

such that pixels with the same label share certain visual characteristics. 

4> 

(a) 

Figure 3.9: Result of a simple histogram thresholding. The segmented image (b) contains 
three different labels: hard tissues (i.e. bones), soft tissues and the bright background. 

In medical image processing, the main goal of the segmentation is to divide an image 

into parts that correspond to tissues of particular types. In other words, label of each 

pixel in a medical image indicates the tissue type or anatomical structure. In terms of the 

C T / M R I medical imaging, input to the segmentation process is a series of grayscale slices, 

the result of a single C T or M R I scan. 

The segmentation is one of the most important steps in the analysis of the medical 

image data. The precise segmentation is crucial for 3D modeling of tissues and anatomical 

structures. Hence, it helps in diagnosis, surgery planning, surgery simulation, etc. 
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3.5 Segmentation as Clustering 

One natural view of the segmentation [39] is that we are attempting to determine which 

components of a data set naturally belong together. This problem is known as clustering. 

There is a wide literature [4,39,46] discussing the clustering for image segmentation. 

In this thesis, three different clustering techniques wil l be proposed to partially solve 

the segmentation problem. First two techniques (the Fuzzy C-means (FCM) [95] algorithm 

and clustering based on the Gaussian Mixture Model ( G M M ) [81]) are built upon the 

idea of grouping. Data items that "make sense" are collected together according to some 

model. The third graph-based algorithm [8] is a partitioning technique. A large data set is 

decomposed into pieces that are "good" according to our model [39]. 

The new graph segmentation technique presented by Boykov et al. [8] belongs to the 

group of algorithms building search trees for detecting augmenting paths in the graph. The 

drawback of their approach is that the augmenting paths found are not necessarily shortest 

augmenting path. The algorithm iteratively repeats the following three stages: 

• growth stage - search trees grow until they touch giving a shortest path, 

• augmentation stage - the found path is augmented, search trees are broken into 

forests, 

• adoption stage - trees are restored. 

In most examples, their min-cut/max-flow algorithm proceeds faster than any other 

method, including the push-relabel [45] and Dinic's algorithm [29] which are known to 

outperform other min-cut/max-flow techniques. 

Detail analysis of different clustering techniques is not the primary aim of the thesis. 

Please, follow given references to the literature for more details. 

3.6 Difficulties of Medical Image Segmentation 

Due to the nature of the segmentation problem, there is a lot of aspects that make the 

segmentation a difficult task [83,121]: 

• the imaging process itself, 

• variability of the human anatomy, 
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• imaging a moving patient, 

• artifacts appear in the data, 

• automation. 

3.6.1 Imaging Process 

The first aspect is the imaging process itself. The imaging modality, for example M R I , 

CT, or ultrasound, is chosen so that its interactions with the tissues of interest wi l l provide 

relevant information about the tissue in the resulting output image. But this does not mean 

that the anatomical feature wil l be separable from its background. Strong edges may not 

be present around borders of tissues. Due to noise in the imaging process as well as to 

inhomogeneity of the tissue, such region is more detectable by the human eye than by even 

sophisticated computer algorithms. Simple techniques, such as thresholding and pixel-

based clustering, are not usually sufficient when applied to medical data. 

3.6.2 Human Anatomy 

The second fundamental aspect that makes segmentation difficult is the complexity and 

variability of the anatomy that is being analyzed. This makes general segmentation a 

difficult problem. 

Figure 3.10: Illustration of variability of the human anatomy. Due to a serious damage of 
the hip joint, the precise segmentation is very difficult, even thought a certain knowledge 
of the "common" anatomy is built into the segmentation process. 
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3.6.3 Artifacts 

The C T scanners usually require the patient to remain extremely still for several minutes. 

This is often difficult, and in the case of involuntary movement (Fig. 3.11), such as the 

heart beating or breathing, becomes impossible. 

The conventional algorithms used in C T sometimes produce artifacts (i.e. the impres

sion of features which are not actually there). This is particularly true when metallic objects 

are present in the patient's body. 

Figure 3.11: Image artifacts caused by breathing (a) and metallic objects (b). 

3.6.4 Automation 

A n important desired feature of the segmentation is automation. Performing automated 

segmentation still remains one of the most difficult problems in the world of segmenta

tion. Although researchers have shown success with automation in some cases, there is no 

generic algorithm which can perform automatic segmentation on any given data set. 

(a) (b) 
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Chapter 4 

Background: Delaunay Triangulation and 
Meshing 

A mesh generation aims at tessellation of a bounded 3D domain Q. with tetrahedra [42]. 

Algorithms for 3D mesh generation have been intensively studied over the last years. Ba

sically, three main families of algorithms have been described in the literature: 

• Octree methods [126,127], 

• Advancing front methods [54,122], 

• Delaunay-basedmethods [1,14,25,61,70]. 

The octree technique recursively subdivides the cube containing the geometric model 

until the desired resolution is reached. Advancing front method (Fig. 4.1) starts from a 

boundary and moves a front, adding new vertices, from the boundary towards empty space 

within the domain. Several heuristics are used to ensure that the generated tetrahedra have 

desired shape and size. Global optimization steps can also be performed to improve the 

mesh quality. A good survey of these methods can be found in [14,86]. 

This chapter briefly summarizes basic principles and difficulties of a Delaunay triangu

lation which is one of the most popular triangulation and meshing method. The Delaunay 

triangulation and its construction methods are introduced, while those methods later used 

in the thesis are described in more detail. The following definitions are based on [42]. 

25 
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(a) (b) 

Figure 4.1: Advancing front method starts meshing from the boundary [59]. 

4.1 Delaunay Triangulation 

Every triangle (tetrahedron in 3D space) of the Delaunay triangulation (DT for short) sat

isfies the Delaunay criterion shown in Fig. 4.3. This criterion, referred to as the empty 

sphere criterion, means that every circumcircle (circumsphere in 3D) associated with the 

mesh element e does not contain any vertices, except those of the element e. This criterion 

is a characterization of the Delaunay triangulation and it leads to several other characteris

tics. 

Figure 4.2: Two-dimensional Delaunay triangulation. 

The D T maximizes the minimum angle, and minimizes the maximum smallest en

closing circle for each triangle. Therefore, the Delaunay triangulation of a set of points 

generates regularly shaped triangles and is preferred over alternative triangulations. 
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(a) (b) 

Figure 4.3: Delaunay criterion: satisfied empty sphere criterion (a); and violated criterion 
(b). Reprinted from [59]. 

Delaunay triangulations are also very attractive from a robustness point of view due to 

simplicity of the Delaunay criterion. In addition, various local transformations can be used 

to improve quality of the triangulation. 

Figure 4.4: Figure shows the relationship between the Voronoi diagram [42] (dashed) and 
the Delaunay triangulation (solid). 

The Delaunay triangulation can be constructed by using several methods. Most com

mon is the Incremental Method which wi l l be described first [42]. 

4.1.1 Incremental Construction Method 

Be Tl the Delaunay triangulation of the first i points, we consider the (i+ l)th point of 

this set, denoted as P. The purpose of incremental method is to obtain Tl+l the Delaunay 
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triangulation including P as a vertex. The location of P, with respect to Tl, falls in two 

categories: 

• P is enclosed in Tl (i.e. P lies inside the convex hull/envelope of all vertices in Tl), 

• or P is outside of Tl. 

In the first case (Fig. 4.5a) the set of elements in Tl whose circumcircle (circumsphere) 

contains P - the cavity of P - is removed from T', and the set of elements formed by 

joining P with external edges of the cavity is added to Tl. 

Figure 4.5: Incremental construction of the DT. Inserting point P (P G T' on the left side 
and P outside of Tl on the right) [59]. 

In the second case, cavity is the same set enriched by the set of elements formed by 

joining P with the edges in Tl visible from P. Several proofs of the incremental method 

can be given. Detailed study can be found in [42]. 

4.2 Constrained Delaunay Triangulation 

Given a set of constraints specified as a set of edges, or a set of edges and faces in 3D, Con

strained Delaunay triangulation (CDT) is a triangulation where those constraints remain 

as entities of the resulting mesh [42]. 

The C D T leads to the problem of recovering the edge/face constraints from the initially 

constructed triangulation, or simply, the problem of edge/face recovery. Such problem has 
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been successfully solved in two-dimensional spaces, while it is still under active investiga

tion in the 3D space. 

There are two classes of methods depending on how the constraints must be satisfied. 

The first kind performs local modifications to enforce the given constraints, while the other 

kind tends to modify the constraints and creates an admissible set of constraints. A con

straint partitioning method is a simple representative of the second class. 

4.2.1 Constraint Partitioning Method 

Some edges in constraints are not edges of the given triangulation. The key idea is to re-

triangulate every triangle intersected by a constrained edge while ensuring that the created 

sub-edges are in the resulting triangulation. Each missing constrained edge is processed as 

follows 

• Find intersection points of triangles and the constrained edge AB. Let Pi,Pi, • • • ,Pn 

be these points. 

• Introduce the edges AP\,P\Pi,... ,PnB in the triangulation. 

• Re-mesh the triangles while maintaining this list of edges. 

Each missing edge, with endpoints A and B , can be then retrieved in the triangulation 

as the edges APi,PiPi,.. .,P„B. In practice, a unique operator is required that re-meshes a 

given triangle with two sub-triangles having a specified point lying on one of its edges as 

vertex. 

Advantage of the constraint partitioning method is that it can be easily extended to 3D. 

On the other side, it may be difficult to guarantee that the mesh remains Delaunay and no 

poorly shaped tetrahedra appear in the mesh. 

4.3 Mesh Quality 

A n ideal tetrahedron, having the best quality, is equilateral. There are many measures of the 

quality regarding the ideal shape. The most general one is ratio of the longest tetrahedron 
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edge and the radius of its inscribed sphere [59]. The normalized form 4.1 is preferred in 

practice. 

Q(t) = > 1 (4.1) 

In the equation, lmax is the length of the longest edge and r-ms is the radius of the inscribed 

circle. The ideal triangle has the normalized quality equal to 1. Any other triangle has the 

value greater. 

(a) (b) (c) 

Figure 4.7: Examples of inappropriately shaped tetrahedra - the spear (a); the cap (b); and 
the sliver ~ almost flat tetrahedron (c). 

The radius ratio [105], defined as the ratio of the radius of the inscribed sphere to the 

radius of the circumsphere, is another popular measure of tetrahedron quality. It is desired 
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to ensure that radius ratio of all tetrahedra are bounded from below by a constant. 

A widely used criterion for the mesh quality is the minimum dihedral angle. This 

measure is more intuitive and geometrically meaningful than the edge-radius ratio or any 

other quality measure based on a ratio. Some valuable conclusions on different quality 

measures can also be found in [98]. 

4.3.1 Delaunay Refinement 

Many Delaunay refinement methods [18,19,99] exist that improve tetrahedra locally by 

inserting new nodes to maintain the Delaunay criterion. However, most Delaunay refine

ment algorithms fail at removing all poorly shaped tetrahedra. A special class of almost 

flat tetrahedra, so called slivers, may remain in the triangulation. In the sliver, the minimal 

dihedral angle can be very close to zero (see Fig. 4.7). The presence of slivers in the mesh 

may cause troubles for many numerical methods and further processing. 

Different approaches of removing slivers from a 3D Delaunay mesh were studied. 

Cheng et al. [17] provide a sliver exudation technique based on a weighted Delaunay trian

gulation is applied to a triangulation obtained by Delaunay refinement. The main strategy 

of the algorithm consists of assigning a weight to each vertex so that the weighted Delau

nay triangulation is free of any slivers after connectivity updates, without any changes over 

the vertex locations. 

The main disadvantage of the sliver exudation is that the process often ends with slivers 

near the boundary [105]. This is mainly due to the fact that sliver exudation is not allowed 

to modify the topology of the boundary of the mesh. Hence, weight assignments close to 

the boundary are constrained and do not remove the slivers. 

4.3.2 Sliver Perturbation 

L i et al. [70] proposed a sliver removal algorithm based on explicit random perturbation of 

vertices incident to slivers in an almost good mesh. The idea is based on the fact that for 

any triangle qrs, the region of locations of the vertex p such that the tetrahedron pqrs is a 

sliver, is very small. Moving the point p out of this region ensures that the tetrahedron is 

not a sliver anymore, or has disappeared once the Delaunay connectivity is updated. This 

is achieved by moving the point p to a new location inside a small ball centered at p, whose 

radius is proportional to the distance from p to its nearest neighbor. L i et al. show that for 
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certain values of the involved parameters, there always exist some points in this ball which 

are outside all regions that form slivers with nearby triangles. 

Tournois et al. [105] presented a more efficient algorithm for sliver elimination and 

improving the dihedral angles of a 3D Delaunay triangulation. The algorithm inspired 

by L i ' s random perturbation works in a more deterministic way by choosing a favored 

perturbation direction for each vertex incident to one or more slivers. 

Figure 4.8: Delaunay meshes after the sliver perturbation algorithm proposed by 
Tournois et al. [105]. 

The key idea consists of performing a gradient ascent over the sliver circumsphere 

radius as well as a gradient descent over the sliver volume. However, in the cases where 

all vertices of a sliver are on the domain boundary, the perturbation can fail in removing a 

sliver as the boundary vertices are too constrained. 

4.4 Isotropic Meshing 

Most applications have specific requirements on the size and shape of elements in the 

mesh. A i m of the isotropic meshing is to locate vertices so that the resulting mesh consists 

of almost regular tetrahedra (~ all faces are equilateral triangles). In addition, the element 

size is close to a predefined size constraint. 



33 4.4. Isotropic Meshing 

One of the existing methods to create the points in accordance with the size specifica

tions contained, creation of points along the edges [42], wi l l be discussed here. 

According to [42], control space H(Q.) (so called sizing field) is a function hp defined 

at any point P(x,y,z) of space. This function specifies the size of the elements in the mesh. 

The control space can be computed from the data, manually defined, or estimated with 

respect to the current mesh structure in an iterative process. 

Let AB be an edge having endpoints A and B. Length of the edge in the control space 

metric can be calculated as follows: 

l„(AB) = \ \ A B \ \ m +

2

W \ (4.2) 

where \\AB\\ is the real distance between A and B. The size h(P) is the desired length of all 

the edges originating from the point P defined by the control space. 

A n alternative definition 4.3 of the edge length exists. This modified definition has 

a positive influence on resulting meshes and provides better control of the control space 

gradation. 

(4.3) 
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The key idea of the algorithm is to create new points along existing edges in the trian-

gulation and obtain nearly equilateral tetrahedra having edges of unit length in the control 

space (= length h in the real space). 

Figure 4.10: The original triangular mesh (a) and the mesh after edge splitting and subse
quent optimization of poorly shaped triangles by adding points into the center of triangle's 
circumcircle (b). 

Construction of the points along the edge AB. Let T be a threshold value < 1, for 

instance 0.1. If IH(AB) < T, the edge is not divided, otherwise a new point in the middle 

of the edge A B is introduced. Both obtained sub-edges are recursively tested and divided 

if necessary. Once we have a sequence of points QQ ... QN such that 

lH(Qi,Qi+i)<T (4.4) 

where QQ — A and QN — B, the final set of points dividing the edge AB can be found. 
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Introducing a new point to the mesh. The smallest index i satisfying criterion 4.5 is 

found and the point Qi is introduced to the mesh as new vertex. Iterating this process and 

comparing the sum to the increasing values 2 ,3 , . . . results in construction of several new 

points along the edge. 

Applied to every edge in the current mesh, a large set of points is obtained. This set 

must be filtered to discard all points too close to any other before adding points to the 

mesh. 

Many approaches based on energy minimization [1,25,32,61] have been proposed as 

a powerful tool in meshing. In this thesis, a vector segmentation technique, built upon 

a Variational Tetrahedral Meshing (shortly V T M ) approach [1], is presented. A simple 

minimization procedure alternates two steps: 

• global 3D Delaunay triangulation optimizing connectivity, 

• local vertex relocation, 

to consistently and efficiently minimize a global energy (4.6) over the domain. It results in 

a robust meshing technique that generates high quality meshes in terms of radius ratios, as 

well as angles. 

In this energy equation, |Q,-| is the volume of the 1-ring neighborhood of vertex X,-, and the 

last term is constant for a given fixed mesh M. 

As shown in [1], a derivation of the quadratic energy in X ; leads to a simple formula 

X* representing optimal position of the interior vertex X ; in its 1-ring. In geometric terms, 

the formula can be expressed as: 

X > ( G ; , G ; + i ) > l (4.5) 
7=0 

4.5 Variational Meshing 

(4.6) 

''I Tjecii 
I \Tj\cj. (4.7) 

file:///Tj/cj
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Figure 4.11: Variational Tetrahedral Meshing: Given the boundary of a domain, A l -
liez et cd. compute the local feature size of this boundary as well as an interior sizing 
field (left), before constructing a mesh with a prescribed number of vertices and a smooth 
gradation conforming to the sizing field (right). The resulting tetrahedra are all well-shaped 
(i.e. nearly regular). The figure and the description were adopted from [1]. 

where Cj is the circumcenter of tetrahedra 7). In other words, a vertex is moved at the 

barycenter of its neighboring circumshells. 

4.5.1 Extension to Isotropic Meshes 

The previous expressions apply to uniform meshing. To extend the equation to allow 

isotropic meshing, the sizing field H is introduced into the equation (4.7). A mass density 

in space can be defined and used in computation of the optimal vertex position. This 

density should agree with the sizing field. All iez et al. [1] use a one-point approximation 

of the sizing field in a tetrahedron and defines the mass density as being l/h3, since the 

local volume of a tetrahedra should be roughly the cube of the ideal edge size. Thus, the 

optimality condition is modified as follows: 
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where is the centroid of tetrahedron 7^. Finally, the variational tetrahedral meshing can 

be summarized by the iterative algorithm: 

1. Generate initial vertices X,-. 

2. Repeat the following alternating steps until convergence: 

• Construct Delaunay triangulation M. 

• Move vertices X; to their optimal positions X*. 

4.5.2 Sizing Field 

Alliez et al. presented a default sizing field robust for a large spectrum of mesh types. 

Definition of the sizing field is built on the notion of local feature size that corresponds to 

the combination of domain boundary curvature and thickness as well. 

The local feature size lfs{P) at a point P of domain boundary is defined as the distance 

d(P, Sfc(n)) to a medial axis S^Sl). The medial axis, or skeleton of the domain, is the locus 

of all centers of maximal balls inscribed in the boundary. Given the local feature size on 

the boundary, we need a controllable way to extrapolate this function to the interior. The 

function 

hp = min [Kd(S, P) + lfs(S)] (4.9) 

satisfies this criterion. The parameter K controls gradation of the resulting field, K — 0 

being the uniform case. 
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Chapter 5 

State of the Art in Anatomical Modeling 

This thesis deals with the problem of 3D geometric modeling of human tissues. The most 

important phases of this complex task are medical image segmentation and subsequent 

surface reconstruction. 

5.1 Medical Image Segmentation 

In relation to the geometric modeling of human tissues, all medical image segmentation 

algorithms can be classified into two groups: 

• techniques based on raster segmentation - a pixel value in the segmented image 

denotes label of an image region, or particular tissue type; 

• and vector-based segmentation - region boundaries, and perhaps the internal struc

ture, are represented as a set of vector graphic primitives (i.e. lines, curves, polygons, 

etc.) directly 

It is necessary to note that such classification is not very common, however, it makes a 

good sense in reference to the geometric modeling. 

In this chapter, both categories are discussed in reference to the subsequent surface 

reconstruction. A short survey of vector-based segmentation techniques is given too. The 

presented methods form the basis of the most of the segmentation techniques nowadays. 

39 
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5.1.1 Raster-based Image Segmentation 

A lot of 2D/3D segmentation algorithms can be found in the literature (Fuzzy C-means 

clustering [91,94], Hidden Markov Fields [74], Watershed transform [47,48], neural net

works [73], etc.). 

4- O r i g i n a l vo lumetr ic 4- Segmented raster data 

raster data 

- Optimization (shape o f elements) 

Figure 5.1: Scheme of the traditional way of the 3D anatomical modeling based on raster 
image segmentation. 

Raster-based methods produce data which are not suitable for the geometric modeling 

(see Fig. 5.1) - each pixel value denotes label of an image region. Most often, an algo

rithm such as Marching Cubes [71] is applied to reconstruct surfaces from the raster data. 

Further, decimation and smoothing of the model are required and may not be elementary 

(Sec. 5.2). Applied smoothing and decimation methods may not shrink significant edges 

and corners and they must preserve volume of the original model. 

5.1.2 Vector-based Image Segmentation 

Vector-based segmentation techniques try to overcome previously described raster methods 

in efficiency and surface reconstruction simplicity. The most widely used vector segmen-
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tation methods are based on deformable models [120,124]. 

5.1.3 Deformable Contour Models 

The deformable models, sometimes called Active Contour Models [76], are curves, sur

faces, or solids defined within an image or volume domain, and they deform under the 

influence of external and internal forces derived from image characteristics. The internal 

forces regulate the ability of the contour to stretch at a specific point while preserving some 

degree of geometric smoothness. The external forces attract the contour to specific image 

features. 

This type of active contour models is called parametric models - Snakes [28, 124]. 

There is also a second type of active contours - the geometric models [31,69], best known 

is the Level-Set method. 

Figure 5.2: Segmentation of a cross sectional image of a human vertebra with a topologi-
cally adaptable snake. The snake begins as a single closed curve and becomes three closed 
curves. Images were published by Mclnerney and Terzopoulos in [76]. 

The deformable models are robust against noise and boundary gaps. These models are 

also capable of adjusting themselves to significant variability of human anatomy. Main 

disadvantage is that they require manual initialization and interaction during the segmen

tation. In more automatic methods, the initial model must usually be placed close to the 

region boundaries to guarantee good performance. 

Extension of the deformable models to 3D space is not a trivial task. Numerous re

searchers have explored application of deformable surface models to volumetric medical 

images [10,22,65,78]. A deformable surface model capable of segmenting complex in

ternal organs such as the cortex of the brain has been proposed [75,77]. The model is 

represented as a closed triangulated surface. This representation is more efficient, much 

less sensitive to initialization and spurious image features. 
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Figure 5.3: Artificial boundary surfaces extracted at different levels of volume image pyra
mid and brain cortical surfaces extracted from M R volume image pyramid [90]. 

5.1.4 Level-Sets 

The level-set segmentation [31,69] solves the energy based active contours minimization 

problem by the computation of minimal distance curves. In this approach, a curve is 

embedded as a zero level set of a higher dimensional surface, Fig. 5.4. The entire surface 

is evolved to minimize a metric defined by the curvature and image gradient. 

Leventon et al. presented a level-set method that incorporates prior information about 

the intensity and curvature profile of the structure from a training set of images and bound

aries [69]. The intensity distribution as a function of signed distance from the object bound

ary is modeled. A curvature profile acts as a boundary regularization term specific to the 

shape being extracted. 

In general, level-set methods are used for highly convex shapes. These approaches 

achieve shape recognition requiring a little knowledge about the surface. In addition, ini

tialization must be done close to the desired boundary, and it often requires user interaction 

for initial starting. 
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Figure 5.4: Level-sets of an embedding function u for a closed two-dimensional curve C. 
The curve is the zero level set of the higher dimensional surface u. The entire surface is 
evolved to minimize a metric defined by the curvature and image gradient [69]. 

Figure 5.5: Initial, middle, and final steps in the 2D femur segmentation. The cyan curve 
in the last frame is manually segmented ground truth. Reprinted from [69]. 

5.1.5 Active Appearance Models 

In recent years, the Active Appearance Models ( A A M s ) [23,102] have achieved much suc

cess in medical applications. This knowledge-based method uses a prior model of what is 

expected in the image. It typically attempts to find the best match of the model to a new im

age. A statistical approach based on the Principal Component Analysis (PCA) [35] is used 

to build the model analyzing the appearance of a set of training samples, while the model 

parameters can be adjusted to fit unseen images and hence perform image registration. 

The main drawback of A A M s , much like any knowledge-based method, is the anatom

ical variability. Accurate segmentation of complex structures is very difficult. Hence, these 

approaches are best suited for segmenting structures which are, in some way, stable over 

the population of study. Objects such as blood vessels are not suitable. Due to the design 

of the A A M s , occlusions may cause the model fitting to fail. Finally, A A M s are dependent 

on a good, mostly manual, initialization. 
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Figure 5.6: A A M of the metacarpals. From the left to right: independent analysis of 
each model point, texture variance and A A M optimized to fit the test image. Reprinted 
from [102]. 

5.1.6 3D AAM 

Mitchell et al. [79] presented an extension of A A M s to 3D space for three-dimensional 

segmentation of cardiac M R and ultrasound images. In that paper, solution for several 

problems of the extension of A A M s to 3D space is given - point correspondence in 3D, 

model alignment, and 3D image warping. 

(a) (b) 

Figure 5.7: Three-dimensional A A M matching process. The initial position of the model 
(a); and the final match (b). Adopted from [79]. 
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5.2 Surface Reconstruction 

Many surface reconstruction algorithms able to create polygonal model of a desired region 

exist. A l l methods necessarily need to know which voxels form the region. Such definition 

of regions (i.e. separation of meaningful parts of an image) is the principal aim of the 

image segmentation. 

5.2.1 Isosurfaces 

For extracting boundary surfaces of three-dimensional regions directly from the given dis

crete volume data, the iso-surface algorithms [113] can be used. Isosurfaces are defined 

by connecting voxels with intensities equal to a given isovalue (intensity) in a 3D volume. 

Having the volume data, the isosurfaces may be extracted using an algorithm similar to the 

Marching Cubes [71]. 

\ 1 set-value 

Position \ . • 115 .2 

1 V 

Figure 5.8: Isosurfaces extracted for three different isovalues [113]. 

5.2.2 Marching Cubes 

Marching Cubes [71] (MC) algorithm creates a polygonal representation of predefined 

surfaces from a discrete volumetric data. It uses a divide-and-conquer approach to locate 
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the surface in a logical cube created from eight adjacent voxels. The algorithm determines 

how the surface intersects this cube, then moves (or marchs) to the next cube. 

(a) (b) (c) 

Figure 5.9: Final polygonal surface after the Marching Cubes (a); and the same model 
after smoothing and decimation (b,c) [59]. 

Unfortunately, a significant noise in the data causes that artifacts appear in the result. 

To deal with this problem a three-dimensional smoothing filter must be applied to the 

original data, or certain surface-smoothing algorithms were introduced. 

The M C can not detect sharp features of the extracted isosurface [126]. The enhanced 

distance field representation and the extended M C algorithm [56] were introduced to ex

tract feature sensitive isosurfaces from the volume data. The grid snapping method [80] 

reduces the number of elements in an approximated isocontour and also improves the as

pect ratio of the elements. 

5.2.3 Surface Smoothing 

Different algorithms address the surface smoothing problem with varying success and there 

is no general algorithm, which works reliably in all cases [117]. 

One of the basic approaches to smoothing is the improved laplacian operator [114] 

which works by averaging position of the vertex with its neighbourhood. The main dis

advantages of the original laplacian operator [41], shrinking of the volume, is reduced by 

moving the smoothed vertices back a bit. Another improvements were presented [103] 

which operate in alternating inward and outward diffusion of vertices in order to maintain 

the shape of the mesh. 
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The bilateral mesh denoising approach [38,67] has been quite successful in smoothing. 

It is essentially a bilateral filter applied on a mesh topology and works by filtering vertex 

positions in directions of their normals. B y tuning parameters of the filter, the bilateral 

denoising is able to preserve sharp edges and corners in the mesh. 

5.3 Unstructured Meshing 

The three main families of algorithms for unstructured 3D mesh generation have been 

already described in Chap. 4: 

• octree methods [126,127], 

• advancing front methods [54,122], 

• and Delunay-based methods [ 1,14,25,61,70]. 

Here, the recent work on surface approximation and optimal Delaunay triangulations is 

discussed in reference to medical applications and surface modeling. 

Figure 5.10: Direct surface extraction from volumetric data. Zhang et al. [127]. 

Zhang et al. [126] presented an algorithm to extract adaptive and quality 3D meshes di

rectly from volumetric imaging data. In order to extract tetrahedral (or hexahedral) meshes, 

their approach combines bilateral and anisotropic diffusion filtering of the original data, 

with contour spectrum, iso-surface and interval volume selection. A top-down octree sub

division coupled with the dual contouring method is used to rapidly extract adaptive 3D 
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finite element meshes from volumetric imaging data (see Fig. 5.10). The main contribu

tions of their approach is extension of the dual contouring method to crack-free interval 

volume tetrahedral/hexahedral meshing with feature sensitive adaptation [125]. 

Figure 5.11: A tetrahedron mesh produced by isosurface stuffing. At the lower right is a 
histogram of tetrahedron dihedral angles. The extreme dihedral angles are 15.2 and 158.2. 
Labelle et cd. [64]. 

In 2007, the isosurface stuffing algorithm [64] was presented that fills an iso-surface 

with a uniformly sized tetrahedral mesh whose dihedral angles are bounded. The algorithm 

is fast, numerically robust, and easy to implement because, like the Marching Cubes, it 

generates tetrahedra from a small set of pre-computed stencils. A variant of the algorithm 

creates a mesh with internal grading: on the boundary, where high resolution is generally 

desired, the elements are fine and uniformly sized, and in the interior they may be coarser 

and vary in size. However, the algorithm does not permit grading of both surface and 

interior tetrahedra and has a strong bound on the dihedral angles. 

Variational approaches relying on energy minimization have been presented as a power

ful and robust tool in meshing. These methods basically define energies that they minimize 

through vertex displacements and/or connectivity changes in the current mesh. 

Du and Wang [32] propose to generate meshes that are dual to optimal Voronoi di

agrams. The centroidal Voronoi tessellation [34] based Delaunay triangulation provides 

an optimal distribution of generating points with respect to a given density function and 

generates a high-quality mesh. By establishing an appropriate relationship between the 
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Figure 5.12: Results obtained by the approach of Dardenne et al. from artificial discrete 
data - rasterized input surface models. Histograms show the distributions of tetrahedron 
quality in each mesh [25]. 

density function and the specified sizing field and applying the Lloyds iteration, the con

strained mesh is obtained as a natural global optimization of the initial mesh. Simple local 

operations such as edges-faces flipping are also used to further improve the mesh. 

Following Du and Wang, another tetrahedral mesh generation algorithm based on cen-

troidal Voronoi tesselation, which takes volumetric segmented data as an input, has been 

presented [25]. The algorithm performs clustering of the original voxels. A vertex replaces 

each cluster and the set of created vertices is triangulated in order to obtain a tetrahedral 

mesh, taking into account both the accuracy of the representation and the elements quality 

The medial axis of the original shape is used to generate a vertex density function in 

order to mesh more densely certain complex regions of the domain. The resulting meshes 

exhibit good element's quality with respect to minimal dihedral angle. 

All iez et al. [1] presented a new variational tetrahedral meshing technique that use a 

simple quadratic energy and allow for global changes in mesh connectivity during energy 

minimization. 

This meshing algorithm allows to create graded meshes, and defines a sizing field pre

scribing the desired tetrahedra sizes within the domain. A fast marching construction of 

the sizing field is proposed based on the notion of local feature size which corresponds to 

the combination of surface curvature and domain thickness. The sizing field estimation 
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Figure 5.13: Results by All iez et al. [1] meshing the interior of the Stanford bunny. The 
cutaway views show the well shaped elements inside the domain. 

starts from discrete skeleton (or medial axis) of the domain. 

This technique produces nicely shaped tetrahedra throughout the domain, however, 

slivers (i.e. degenerate elements) could appear near the domain boundary, as the boundary 

vertices are unaffected by the 3D optimization [105]. 
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Delaunay-based Vector Segmentation 

Numerous researchers use triangulations and meshes as a spatial support in their scientific 

computations (e.g. solid and fluid mechanics). In the field of biomechanical simulation, 

reliable applications in dental surgery, for example the interaction of the human mandible 

with dental implants [36], can be found. 

Figure 6.1: Results of the proposed vector segmentation method: surface extracted directly 
from the tetrahedral mesh (a); histogram of minimal dihedral angles on the surface (b); cut 
through the tetrahedral mesh (c). 

In this thesis, a novel vector segmentation technique based on the 3D Delaunay Tri

angulation is proposed. Tetrahedral mesh is used to partition volumetric image data into 

regions whose characteristics, such as intensity and texture, are similar. Process of the 

51 
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mesh construction respects significant image edges. Therefore, surfaces of image regions 

are well approximated by the tessellation grid of the mesh and can be easily derived. 

6.1 Delaunay Triangulation for Image Segmentation 

A particular problem of the segmentation is image partitioning into a set of non-

overlapping regions r\,... ,rn so that the variation of some property (such as mean pixel 

value, variance, etc.) within each region is either constant, or follows a simple model. 

It has been shown [26,44,96] that Delaunay triangulation can be used to effectively 

partition an image and simultaneously, the tessellation grid of the Delaunay triangulation 

can be adapted to the structure of the image by combining region and edge information 

(see Fig. 6.2). 

Figure 6.2: Tessellation grid of the 2D Delaunay triangulation adapted to the underlying 
image structure [115]. 

Constructing the DT, the image is divided into a number of non-overlapping vector 

primitives t\,t2, • • • ,tn - triangles in 2D space and tetrahedra in 3D. These primitives are 

not segments of the image by itself, but they belong to image regions ry_. Each region is 

composed of a number of such elements. 

This relationship can be expressed by a region membership function. Hard assign

ment means that this function assigns exactly one region to each tetrahedron. In practice, 
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membership function of the form 

m(ti,rk) =p(rk\ti) (6.1) 

making a soft assignment of tetrahedra overcomes the hard one and leads to better results. 

The soft membership function is usually a likelihood function p(rk\ti) assigning each tetra

hedron into every image region with some certainty. The value is higher as the similarity 

of the tetrahedron and the region increases. 

C T / M R I volumetric Candidate vertices 

Figure 6.3: Basic scheme of the Delaunay-based vector segmentation. 

6.2 Delaunay-based Vector Segmentation 

Based on the introduced principles, the adaptive Delaunay-based vector segmentation is 

proposed as follows: 

1. Data preprocessing - Noise reduction by means of the 3D anisotropic (or bilateral) 

filtering (Sec. 3.3.4). 
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2. 3D edge and corner detection - Candidate vertices lying on region boundaries, 

meaningful edges and corners are located. 

3. Initial Delaunay triangulation - Tetrahedral mesh is constructed from the prese

lected set of candidate vertices. 

4. Iterative adaptation - The triangulation is adapted to the underlying image struc

ture by means of isotropic edge splitting (introduces new vertices to the mesh), 

and variational meshing (optimizes vertex positions so that quality of tetrahedra in

creases). 

5. Mesh segmentation - Final classification of tetrahedra into image regions according 

to results of some data clustering method. 

The idea of the vector segmentation is also illustrated in Fig. 6.3, while details of all 

individual phases of the segmentation are discussed in next sections. 

6.3 Data Preprocessing 

A n important part of the vector segmentation is adaptation of the tetrahedral mesh to an 

image structure which is derived from the found image edges. The adaptation process is 

strongly affected by quality of the edge detection. Therefore, it is highly recommended to 

filter the input data in order to deal with noise in the data. 

Figure 6.4: Anisotropic filter - neighboring nodes used to calculate the flow <|> between 
voxels. 

Anisotropic (or bilateral) filtering (Sec. 3.3.4) performs piecewise smoothing of the 

image, and its strength lies in the fact that object contours and boundaries are not only 

preserved, but even improved. 
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In the preprocessing step of the vector segmentation, a 3D anisotropic filtering is ap

plied to the volumetric data. Gerig et al. [43] described such extension of the anisotropic 

filter into 3D space. The ID discrete formulation (Eq. 3.4) of the filter can be easily refor

mulated as: 

/(/ + At) = I(t) + Atx (fc - tyd + <h - tyr + - <y (6.2) 

The 3D discrete formulation results in simple, local operations over the image. In the 

first step, the flow § is calculated between neighboring nodes (Fig. 6.4). In the second step, 

the node intensities are updated by the local sum of the flow contributions. The flow may 

be also calculated between diagonally neighboring voxels, resulting in better smoothing 

results. In that case, the integration constant At must be adjusted. 

(c) (d) 

Figure 6.5: Result of the 3D anisotropic filtering of C T data: original slices (a); result for 
the value of K = 100 (b); K = 200 (c); and K = 400 (c). 
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6.4 3D Edge and Corner Detection 

The triangulation starts from a set of candidate vertices distributed over the entire image. 

These candidates can be found by various, more or less sophisticated, image edge detection 

algorithms [5,13,49,89,93,100] extended to 3D space. 

Figure 6.6: Sampled initial set of vertices found by the edge and corner detection. 

Because of the complex nature of medical image data (Sec. 3.6), detection of meaning

ful edges that form boundary of desired tissues may be very problematic. Character and 

strength of edges differ between tissues. Moreover, extremely thin and weak edges may 

be present in the image data. Such edges must be also detected to approximate surface of 

tissues properly. In practice, this leads to highly sensitive setting of the edge detector that, 

unfortunately, results in many false detections of "noisy", less meaningful edges. In this 

thesis, a simple tissue-selective edge detection approach is proposed to partially reduce this 

undesired effect. 

6.4.1 Tissue-Selective Edge Detection 

The tissue-selective edge detection means that the edge detection is divided into separate 

steps (or parallel stages) per concrete tissue type. Before the detection starts, the image data 

are pre-processed using the power-law contrast enhancement technique (see Sec. 3.3.2) 

to increase contrast of the desired tissue against all others. Then edges of the highlighted 

tissue are detected. In the end, all found edges from all different tissues are merged together 

into a single image (see Fig. 6.7). 
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Figure 6.7: Scheme of the tissue-selective edge detection. 

In our experiments, the well known Canny edge detector has been used in each step. 

Basic principle of the Canny detector remains unchanged in 3D space. The original im

age is filtered by the 3D Gaussian convolution filter. Afterwards, 3D Sobel operators are 

applied to estimate image derivatives in x, y and z directions (Fig. 6.8). 
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Figure 6.8: Convolution kernels of the 3D Sobel operator in x and z axis. 

Finally, edges are detected and refined by the help of image post-processing techniques 

like the non-maxima suppression and the hysteresis [13]. 

6.4.2 3D SUSAN Corner Detector 

In order to respect significant features in the volumetric data during the meshing, we have 

modified the Susan corner detector [100] extending its functionality into 3D space. The 

Susan (Smallest Univalue Segment Assimilating Nucleus) detector was originally devel

oped to locate feature points in 2D images. 
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Analogous to Smith and Brady, the modified 3D S U S A N places a spherical mask R 

over the voxel to be tested (the nucleus). The voxel in this mask is represented by v e R. 

The nucleus is at vo Every voxel is compared to the nucleus using the distance function: 

Cr = exp(.(!J^JM)\ (6.3) 
H ' / 

where w is the brightness difference threshold. This function has the appearance of a 

smoothed rectangular function. The w parameter does affect the number of corners re

ported because it determines the allowed variation in brightness within the mask. 

Response of the S U S A N detector [100] is defined as 

, , f T - n(R) if n(R) < T SUSAN(R) = { v ; ^ v ; ( 6 _ 4 ) 

I 0 otherwise, 

where T G< 0,1 > is geometric threshold, and n(R) is area of the S U S A N given by: 

i y vt£R 

In Eq. 6.5, is the number of voxels within a spherical mask R used as a normalization 

factor. If cv is the rectangular function, then the previously defined area represents the 

number of voxels in the mask having brightness similar to the nucleus. This portion of the 

mask is called the USAN [100]. 

For successful corner detection, two further steps must be done. In a first step, the 

centroid of the U S A N is found. A proper corner wi l l have the centroid far from the nucleus. 
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(c) (d) 

Figure 6.10: Results of the 3D S U S A N detector - corner points found in C T data. 

The second step insists that all points on the line from the nucleus through the centroid out 

to the edge of the mask are in the U S A N . 

6.5 Initial Delaunay Triangulation 

To construct the image partition, the edge points are sampled and together with all corner 

points ordered by their significance. While the initial D T is being constructed by the 

common Incremental Method (Sec.4.1.1), vertices located on strong edges are taken first 

(see Fig. 6.11). 

6.6 Iterative Adaptation 

Fundamental phase of the proposed segmentation method is adaptation of the tessellation 

mesh to cover the underlying image structure representing the anatomy of human tissues. 
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Figure 6.11: Incremental construction of the Delauny triangulation (the 2D case). The 
number of vertices increases from left to right. 

The following four main steps are repeated until the triangulation satisfies some conver

gence criterion (or just several times): 

1. Isotropic edge splitting - creation of points along existing edges introduces new 

points to the mesh, 

2. Variational meshing - optimization of the tessellation grid by means of vertex mov

ing, 

3. Boundary refinement - creation of new vertices along image edges to guarantee 

that all edges are well approximated by the tessellation grid. 

During the iterative adaptation, only new vertices are gradually introduced to the mesh. 

The idea is to grow the mesh (in the sense of number of vertices) until a predefined limit 

is reached. A n advantage of such progressive concept is that computational expensive 

operations like vertex removal and local re-meshing of the cavity are not necessary. 

Before a new vertex is inserted to the mesh, several constraints are checked - min

imal length of edges that wi l l arise ( L m ! n ) , minimal dihedral angle inside newly created 

tetrahedra (ocm ! n), etc. In practice, these constraints guarantee that chosen parameters like 

minimal edge length wi l l be satisfied in the final mesh. Moreover, it prevents corruption of 

the mesh and failures caused by a limited precision of math operations. 
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Figure 6.12: The initial Delaunay triangulation (a) and the final mesh after the iterative 
adaptation (b). Parameters of the sizing field were chosen to be K — 0.8 and Tavg — 10mm. 

6.6.1 Isotropic Edge Splitting 

In this phase, the isotropic meshing algorithm creating new points along existing edges 

and another well known technique of tetrahedral mesh optimization, splitting of maxi

mal/longest edge [42], are combined together. 

Instead of maximal edges, those edges crossing significant image edges are divided. 

A new vertex is inserted to the mesh at the point of intersection of both edges. This ap

proach is partially similar to the constrained Delaunay triangulation. Unlike the previously 

described constraint partitioning method, the set of constraints is implicitly defined by all 

detected image edges in this case. The whole isotropic edge splitting process can be briefly 

formulated as follows: 

1. Prepare the control space H. 

2. Sequentially process every edge AB in the current triangulation Tl: 

• Find all intersection points P, of the edge and image edges. 

• Introduce the sub-edges AP\, P\P2, • • •, PnB in the triangulation. 

• Divide all sub-edges in the sense of isotropic meshing algorithm (Sec. 4.4). 

3. Filter the set of newly created points to discard vertices too close to any other point 

respecting the control space metric. 

4. Insert points to the mesh Tl —> Tl+ . 
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5. Continue from the step 2 until convergence. 

To prevent degradation and over-partitioning of the mesh, the angle between the tetra

hedron et edge and the image edge e; is computed. The splitting operation is performed 

only if the angle is greater than a given threshold 1 6 ( 0 , 1 ) : 

Hi = (dx,dy,dz) (6.6) 

et-rii\ 

I N H I 

Edges that are almost parallel with an image edge remain unchanged. Normal n ; of the 

image edge (i.e. derivatives dx, dy, dz) can be found applying various local differential 

operators, e.g. the mentioned 3D Sobel operators. 
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Figure 6.14: New vertices introduced by the edge splitting. Green crossings denote newly 
created vertices, while red ones represent vertices rejected due to the angle between image 
edge normal and the examined edge - both edges are almost parallel. 

The splitting phase is similar to the one described in Sec. 4.4. The only difference is 

in the definition of the sizing field, so called control space. The control space prescribes 

length of edges in the mesh. In our case, the control space enforces creation of larger 

tetrahedra inside image regions and smaller ones along region boundaries (image edges). 

Apparently, definition of the sizing field strongly affects quality of the final mesh. 

In this sense, the control space H(£l) can be defined in the same way as the sizing field 

given by Eq. 4.9. This definition is robust and produces high quality meshes. 

6.6.2 Preparing Control Space 

Instead of the conventional domain boundary, we define the control space to respect found 

image edges. Thus, we generate the control space differently: 

1. Estimate distance transform from all detected image edges first. 

2. Find local maxima of the distance transform in order to identify medial axis. 

3. Evaluate local feature size lfs{P) on image edges using inverse distance transform 

propagating value from the medial axis. 

4. Generate control space distributing lfs(P) from edges using the formula (4.9). 

This sizing field is relative. It describes the inhomogeneity of the required edge length. 

The real edge length is proportional to this relative value, and depending on the prescribed 
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Figure 6.15: Pseudo-colored slices through the three-dimensional control space prescrib
ing size of tetrahedra inside the mesh. Dark values stand for small tetrahedra close to 
image edges. 

number of vertices. Such relative sizing is satisfactory for variational meshing, but it must 

be normalized for the isotropic edge splitting algorithm we use for introducing new vertices 

into the mesh. The normalization is simply given by: 

h'P = h P T ^ - , (6.8) 

where Tavg is the desired average tetrahedron edge size. If the point P lies exactly on an 

image edge, the control space value may be very small. Therefore, the minimal edge length 

Lmin must be also specified in practice. 

6.6.3 Variational Meshing 

The variational meshing phase, alternating connectivity and geometry optimization, is an 

important part of the algorithm. The mesh energy is minimized by moving each interior 

vertex to its optimal position within its 1-ring neighborhood (Fig. 6.21). Further, the energy 

is minimized by computing the 3D Delaunay triangulation of these new sites optimizing 

the connectivity of vertices. 

A l l boundary vertices are treated differently. In order to identify the current boundary 

vertices, each voxel V, lying on an image edge is examined. Its nearest vertex Sj in the 

mesh is located, and the distance d(Vt,Sj) as well as the coordinates of V; (multiplied by 
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the distance d) are accumulated at that vertex. To deal with corner points, the distance d is 

weighted according to the point type. Corner points have the weight significantly greater 

than edge points, thus the closest vertex is attracted directly in place of the image corner. 

(a) 

(c) 

(b) 

(d) 

Figure 6.16: Variational tetrahedral meshing ( V T M ) - influence of the number of iterations 
on the mesh quality: the initial mesh (a); the same mesh after 3 iterations of the V T M 
algorithm (b); the mesh after 10 iterations (c); and 50 iterations (d). 

Afterwards, vertices with a non-zero distance sum are those boundary vertices we are 

looking for. Focused on the boundary vertices that require a specific treatment, these ver

tices are moved to the average value they each have accumulated during the pass over 

all edge voxels. Such kind of iterative optimization is called Lloyd's algorithm [33], also 

known as Voronoi iteration or relaxation. 

6.6.4 Boundary Refinement 

The boundary refinement increases quality of the mesh in the sense of image edges ap

proximation. Similarly to other Delaunay refinement methods, new vertices are added to 

the mesh to guarantee this criterion. 
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(a) (b) 

Figure 6.17: Illustration of the boundary refinement algorithm in two-dimensional space. 
Vertex S{ with an accumulated value (~ distance from its closest edge point VXJjZ) that is 
not itself located on an image edge exists in the mesh. Hence, a new vertex is added to the 
mesh in place of the point V. 

In the first step, an algorithm similar to the identification of boundary vertices during 

the variational meshing is applied to locate proper places for new vertices: 

1. Prepare an array of accumulators containing coordinates and distance of the edge 

point closest to each vertex. Initialize the distance to some large value dmax. 

2. For each voxel V/ lying on an image edge: 

(a) Locate its nearest vertex Sj. 

(b) Compare the distance d(Vt,Sj) with the value currently stored in the corre

sponding accumulator. 

(c) If the distance is smaller, exchange the values in the accumulator. 

In the second step, all accumulators that contain a distance lower than dmax are investi

gated. If there is a vertex with an accumulated value that is not itself located on an image 

edge, a new vertex is added to the mesh in place of the closest image edge point - the 

coordinates in the accumulator. 

6.6.5 Dealing with Slivers 

The variational meshing technique produces well shaped tetrahedra through the domain. 

Unfortunately, slivers could appear near the domain boundary, as the boundary vertices are 

guided by Lloyd relaxation, thus unaffected by the 3D optimization (Fig. 6.18). 
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Figure 6.18: Slivers that occur in the final mesh close to domain boundaries. 

Two powerful techniques [70,105] capable of eliminating almost all slivers in the mesh 

were briefly described in Sec. 4.3.2. Both algorithms are based on explicit random pertur

bation of vertices incident to slivers. The region of locations of a vertex p such that the 

tetrahedron incident to p is a sliver, is very small. Moving the point out of this region 

ensures that the sliver disappears once the Delaunay connectivity is updated. 

Figure 6.19: Tetrahedra refinement inserting a new vertex in the center of the circumsphere. 

Towards creation of a sliver-free mesh, after each iteration of the adaptation scheme, 

the mesh is repeatedly tested for slivers, and new vertices lying in the center of sliver 

circumspheres are inserted to the mesh with a small random perturbation. If such addition 

does not eliminate the sliver, or generates new one, the vertex position is perturbed again. 

Such vertex perturbation continues until an optimal position is found, thus the sliver is 

successfully removed. 
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6.7 Mesh Segmentation 

Within the mesh segmentation phase, all tetrahedra are classified into individual image 

regions which hopefully correspond to tissues of particular type. 

Every tetrahedron tj of the mesh is characterized by its feature vector. Individual fea

tures detail image structure of the tetrahedron, and perhaps its close neighborhood. Feature 

vectors may be grouped by the help of any conventional unsupervised clustering technique 

that classifies feature vectors into a certain number of classes. 

Figure 6.20: Result of the tetrahedral mesh segmentation phase - orthogonal cuts through 
the classified mesh. 

6.7.1 Clustering Techniques 

Three different algorithms are proposed for the unsupervised clustering of feature vectors 

(Sec. 3.5) into image regions: 

• Fuzzy C-means (shortly FCM) algorithm [95], 

• Gaussian Mixture Model optimized by the popular Expectation-Maximization (EM-

GMM) algorithm [81]. 

• Min-Cut/Max-Flow graph-based algorithm [8]. 
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First two techniques do not take into account any spatial/global information about the 

tetrahedra, since the classification is performed within local vicinity of processed tetrahe

dron. 

Improvements can be made by incorporating global principles. Viewing the mesh as 

undirected graph, with edges weighted according to the similarity of feature vectors, would 

allow one to use graph algorithms (graph cuts, path-based clustering, etc.) for the segmen

tation. In this sense, the Min-Cut/Max-Flow [8] algorithm is used to cut a graph whose 

edges are evaluated according to a similarity of two adjacent tetrahedra. 

N 

m(P,Q) = J > , - - a | (6.9) 
i=l 

s(P,Q) = } P i ' q i (6.10) 

The similarity of two adjacent tetrahedra (i.e. two feature vectors P and Q) can be 

defined as a distance function in the feature space. Most common choice is the Manhat

tan (Eq. 6.9) or the Cosine (Eq. 6.10) distance function. A n alternative is the use of simple 

criterions described in Sec. 6.7.4. 

6.7.2 Feature Extraction 

In fact, the first two components of a tetrahedron's feature vector are mean pixel value 

/j(ti) and intensity variance a(f;) of voxels inside the tetrahedron. Others may cover image 

texture/shape properties: 

• features derived from gray level co-occurrence matrices [62,106], 

• local moments of the image function [107], 

• histogram of Local Binary Patterns (LBP) [37,84,85], 

• wavelet features [2,3,109], etc. 

and spatial configuration of adjacent tetrahedra. 
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LBP Texture Features. Local binary patterns [84] were presented by T. Ojala as a robust 

feature extraction technique capable to differentiate textures in an image. In the last few 

years, L B P have received a lot of attention from many researchers. The L B P feature was 

succesfully applied to a wide range of different applications from texture analysis to face 

detection and recognition. See [85], for more details on L B P features, and their principles. 

A n advantage of the L B P feature is its simplicity. Extraction of L B P features is very 

fast for 2D images, so the L B P may also be a good choice in case of volumetric data. A 

novel method for the fast computation of fully rotation invariant local binary patterns on 

3D volume data has been presented by Fehr et al. [37]. 

In this work, a simple extension of the L B P framework is used in all experiments with 

texture-based classification of tetrahedral meshes. Three individual rotation invariant, uni

form L B P "image" features [85] are extracted in each possible direction (i.e. X Y , X Z and 

Y Z planes). The final feature vector contains three concatenated normalized histograms of 

these L B P features extracted from within the tetrahedron. 

Any texture feature extraction is problematic i f a tetrahedron is relatively small, just 

a few voxels are available. In that case, the texture analysis fails. Simple grouping of 

adjacent tetrahedra into larger units may reduce this problem. Another solution may be to 

reject classification of small tetrahedra, and use only relevant portion of the data. These 

non-classified tetrahedra, that appear mostly near to region boundary, wi l l be assigned to 

particular regions in a next merging phase. 

6.7.3 Agglomerative Merging 

Topology of the tetrahedral mesh is suitable for image segmentation techniques such as 

region growing and merging. Instead of pixels and the traditional 4 - and 8- pixel connect

edness, tetrahedra adjacency is incorporated. 

In the vector segmentation scheme, the agglomerative region merging [63] is used to 

assign non-classified, small tetrahedra into already known segments. 

The agglomerative merging starts with a partition of the volumetric data into N regions 

(each region consists of one or more tetrahedra), and sequentially reduces the number of 

regions by merging the best pair of regions among all possible pairs in terms of a given 

criterion. This merging process is repeated until the required number of segments is ob

tained. 
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Since only adjacent pairs of regions can be candidates for merging, the similarities 

can be represented as a region adjacency graph (RAG) in which nodes and edges denote 

regions and pairs of adjacent regions. To update the graph efficiently after merging a pair 

of regions, the graph is represented as a sparse matrix. In order to speedup the search for 

a pair of similar regions, an index of a matrix row containing the maximal similarity is 

stored and updated after the merging of two regions is performed. 

Figure 6.22: Result of the proposed agglomerative merging. The merging was applied 
as the post-processing step after the mesh segmentation via more sophisticated statistical 
clustering. 

The general procedure of agglomerative merging can be summarized as follows: 
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1. Construct a graph which represents adjacency of regions and calculate similarity of 

all possible (i.e. adjacent) pairs of regions. 

2. Search for the best pair of regions to merge. 

3. Merge the pair of regions, recompute features related with the regions and update 

the graph structure. 

4. Repeat the merging until no more regions can be merged, or the final number of 

regions was reached. 

In practice, performance of this algorithm can be improved by a simple weighting of 

the similarity of two adjacent regions according to the number of voxels in both regions: 

C M = ^ 1 S ( r i , r j ) . (6.11) 

If the final number of regions is unknown, the stopping criterion for the merging should 

be a ratio between similarities Ct-i(ri,rj) and Ct(ri,rj) of last two merged pairs of re

gions. To prevent early termination of the algorithm, approximately first 10% of all possi

ble merges are made without any checking of this termination criterion. 

6.7.4 Similarity Measures 

Let ti and tj be two feature vectors extracted for a group of adjacent tetrahedra, or a single 

tetrahedron. Similarity measure is a function whose value is greater as the difference 

between two feature vectors increases. Basic similarity measures are the mean intensity 

value and statistical test of the similarity based on voxel value variance: 

1 2 

S^{rj,n) = e x P ( - ^ 2 \Vn-Prj] ), (6.12) 

o(ri)o(rj) 
Sa{rj,ri) = — « 7 \-> ( 6 - 1 3 ) 

where the parameter p affects sensitivity of the measure and o(r,-) is the variance of inten

sity in the region r, and o(n,j) is the variance of intensity in a joint region r, U rj. Both p 

and a are components of the feature vector. 



6.7. Mesh Segmentation 73 

These basic similarity measures can be evaluated for very small tetrahedra (~ couple 

of voxels), therefore they serve as a merging criterion during the agglomerative merging 

when too small non-classified tetrahedra along boundaries are assigned into neighboring 

segments. 

6.7.5 Noise Reduction 

Due to noisy input data and classification errors, some isolated tetrahedra, classified to a 

region different from its neighbors, may appear in the segmented mesh. This kind of mis-

classification can be reduced using a simple filtering scheme similar to the median filter

ing [39] known from image processing. The noise reduction phase processes sequentially 

each tetrahedron tj in the mesh in the following way: 

1. Identify region of the tetrahedron tj as well as all regions of tetrahedra adjacent to 

any edge of tj (i.e. the 1-ring neighborhood). 

2. Estimate histogram of occurrences of particular regions weighted by volume of tetra

hedra. 

3. If there is a significant maxima in the histogram different from the original region, 

re-classify the current tetrahedron tj. 

Repeating the filtering until no change may lead to large changes in the classification. 

So, the maximal number of iterations is limited. In practice, two or three iterations are 

enough. 

6.7.6 Tissue Classification 

Result of the segmentation phase is the classified mesh, all tetrahedra are classified into one 

of the regions. However, a relationship between theses regions and human tissues is un

known. A unique tissue name or label should be assigned to every region in order to create 

a 3D model of the tissue. This can be accomplished manually, according to a density-tissue 

relationship, or by using an anatomical atlas. This step of the mesh segmentation is not 

addressed in the thesis, the manual selection of region(s) of interest is performed. 
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Figure 6.23: Surfaces extracted from a segmented mesh: an original surface without any 
filtering (a); the same surface after filtering of isolated small parts (b); artifacts that some
times appear close to sharp edges (c); and the surface after a fine smoothing that removes 
only the artifacts, but preserves all other features (e.g. one iteration of the tuned Taubin's 
smoothing algorithm [103]). 

6.7.7 Surface Extraction 

Once the mesh is properly segmented, surface of any region can be easily extracted. A l l 

tetrahedra through the mesh are traversed looking for boundary faces that forms surface 

of the desired region. Boundary faces can be intuitively identified as faces between two 

different regions: 

1. Clear the output set of faces Sk - closed surface of the region R^. 

2. Sequentially process every tetrahedron t{ in the classified mesh: 
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• If the tetrahedron ti is classified into the region 

Rk = avgR.maxm(ti,Ri) 

- Retrieve all tetrahedra tj adjacent to t{. 

- If tj is classified into a region different from R^, then add face fij incident 

to both tetrahedra to % 

3. Save the extracted surface S^. 

The extracted surface is closed and its mosaic conforms to the chosen parameters of 

the meshing - minimal required edge length LM{N, coefficient K that controls gradation of 

the mesh, and the desired average tetrahedron size TAVG. 

After the extraction, small isolated parts of the surface may be filtered to obtain a single 

closed surface i f required. Moreover, to avoid artifacts that rarely appear on the surface, 

the final surface can be filtered for sharp spikes (Fig. 6.23). 
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Chapter 7 

Experimental Results 

In this chapter, results of the introduced vector segmentation method are discussed, com

pared to a traditional surface reconstruction technique based on the Marching Cubes 

method. The vector segmentation was mainly designed for segmentation of volumetric 

medical images towards anatomical modeling of fundamental tissues (i.e. soft and bone 

tissue) and their surfaces. In order to evaluate precision, advantages and disadvantages of 

this method, number of experiments on real medical C T data, as well as on artificial vol

umetric data, were carried out. However, due to the complexity and variability of medical 

images, the testing was divided into several separate tasks: 

Surface accuracy. Evaluation of an accuracy of surfaces extracted from meshes, and com

parison with the traditional Marching Cubes method followed by smoothing and 

decimation. 

Mesh quality. Evaluation of produced tetrahedral meshes with respect to the quality of 

tetrahedra, distribution of dihedral angles through the mesh, the number of slivers, 

etc. 

Mesh segmentation. Comparison of different unsupervised clustering techniques applied 

to meshes to classify tetrahedra into segments. Manually annotated medical C T data 

are used as a ground truth. 

77 
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7.1 Surface Accuracy 

In case of the anatomical modeling, an error between reconstructed surfaces of human tis

sues and a "ground truth" must be minimal to guarantee correctness of a planned surgery, 

or accuracy of a custom-made implant. 

Figure 7.1: Error between two meshes seen as a distance between closest points sampled 
on the surface [20]. 

The following evaluation of the surface accuracy compares surfaces produced by the 

vector segmentation algorithm against ones made by the traditional Marching Cubes (MC) 

method followed by mesh smoothing and mesh decimation steps (for more details see 

Sec. 5.2.2). Since the smoothing is crucial for overall precision of the surface, two standard 

approaches were tested: 

• Taubin's smoothing algorithm [103] that maintains the volume of the mesh, 

• H C algorithm [114] that preserves sharp edges and corners in the mesh. 

The M C algorithm produces very large meshes. Hence, after the smoothing, the 

Quadric Edge Collapse decimation algorithm, a variant of the well known edge collapse 

algorithm based on quadric error metric proposed by Michael Garland and Paul Heck-

bert [41], was used to reduce size of the mesh - the number of triangles. This re-meshing 

technique, as well as both the utilized smoothing methods, are implemented in the Mesh-

Lab [21] tool which is de facto standard in the area of meshing. 

7.1.1 Artificial Data 

Artificial volumetric data of basic solids such as rectangular solid, cylinder, cone, semi-

sphere, pyramid and the Stanford bunny (Fig. 7.2) were generated for the testing. A n idea 
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of this measurement is to rasterize a solid into 3D raster, reconstruct surfaces from obtained 

volumetric data, and evaluate error between the reconstruction and the original surface of 

the solid. 

Model 
Num. of faces 

Bbox diagonal [mm] 

bunny cone sphere cuboid toroid cylinder 
69664 64 960 12 1024 182 

206 154 196 183 164 182 

Table 7.1: Solids used for surface accuracy testing. 

A l l solids (Tab. 7.1) were fitted into a volume having size 256x256x256 voxels. The 

real voxel size was chosen to be 0.5mm in all directions. 

7.1.2 Surface Approximation Error 

A n error between reconstructed surface and the original model is estimated using the 

Metro [20] tool. The Metro allows one to compare the difference between a pair of surfaces 

(e.g. a triangulated mesh and its simplified representation) by adopting a surface sampling 

approach and point-to-surface distance computation. 

The approximation error between two meshes is defined as the distance between cor

responding sections of the meshes (Fig. 7.1). Given a point p and a surface S, the distance 

e(p,S) is defined as: 

e(p,S) — min dip, v), (7.1) 
v£S 

where d(p,v) is the Euclidean distance between two points p and v. 

R M S = ^ X l + X 2 +

N - + X n (7.2) 

In the following testing, the mean distance, maximum distance and quadratic mean 

(i.e. root mean square - R M S ) error between the two meshes are presented as measures of 

the surface accuracy. 
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Figure 7.2: Alignment of surfaces performed before evaluation of the approximation error. 
The original solids serve as a reference for the error measurement. 

7.1.3 Alignment of Surfaces 

Before any comparison of two meshes, both meshes are precisely aligned using the ICP 

(Iterative Closest Point) [6] algorithm. Such alignment is very important. It eliminates er

rors caused by the differences in an internal implementation of different meshing methods. 

Each algorithm handles a regular grid of voxels in rather different way which may cause 

errors equal to approximately half the size of voxel. 

7.1.4 Case Study - Stanford Bunny 

First, an accuracy of surfaces produced by the iterative mesh adaptation scheme (Sec. 6.6) 

wil l be evaluated for a single model only - the Stanford bunny. This allows to ex

plain differences between the vector segmentation technique (VSeg for short) and both 

the MC+HC and MC+Taubin combinations of the Marching Cubes method with one of 

the mesh smoothing filters. 

As mentioned above, the original bunny was rasterized into a volume of 256 3 voxels, 

the synthetic volumetric data of the bunny was created. Afterwards, its surface was recon

structed using all compared techniques. Surfaces were aligned against the original model, 

and the approximation error was calculated. 

Fig. 7.4 shows histograms of error distribution for surface models of different level of 

detail as returned by the Metro tool. Height of the histogram column denotes the fraction 
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(a) (b) 

Figure 7.3: The bunny colored by interpolating and mapping the surface approximation 
error: the M C + H C method (a), and VSeg method (b). The error was computed in each 
vertex as the mean of the errors on the incident faces. 

of the surface having an adequate error. A l l histograms are normalized, so that the sum of 

all columns should give 1. 

In case of the MC-based methods, meshes ware decimated to exactly 10k, 20k and 

50k faces. Parameters of the vector segmentation (K that controls gradation of the mesh, 

average tetrahedron size Tavg and minimal allowed length of tetrahedra edges LO T,„) were 

chosen to produce almost the same number of faces. 

Apparently, the VSeg method outperforms both the smoothing-based methods. How

ever, the difference is more evident for smaller meshes. As the number of faces increases, 

the error distribution of the VSeg method moves towards the M C + H C method which seems 

to produce lower error than the MC+Taubin combination. Direct meshing of volumetric 

image data seems to be more accurate approach then post-processing methods smoothing 

reconstructed surfaces without any relationship to the original image data. 

Similarly, graphs of the mean error (distance) and the R M S value shown in Fig. 7.6 

maintain the assumption that for smaller meshes the VSeg method approximates surfaces 

significantly better the the M C + H C and MC+Taubin methods. 

The question is why the performance decreases with the increasing number of faces? 

In fact, this behavior is opposite to the one of M C + H C and MC+Taubin methods. The 
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Figure 7.4: Histograms of the surface approximation error for three meshes with a different 
level of detail (number of faces) - the bunny model. 

answer lies in the iterative adaptation of the mesh to the underlying image structure. To 

obtain a more detailed surface, the minimal allowed edge length L m ! n must be decreased. 

However, the resolution of the raster data is limited. Decreasing the L m ! n down to the real 

size of a single voxel causes the relocation of vertices along image edges to not perform 

optimally (Fig. 7.5). In the extreme case, the optimal vertex position is calculated as an 

average of a single "edge" voxel. 
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Figure 7.6: Surface approximation error - the bunny model at different level of details. 

7.1.5 Overall Statistics 

This close relation between the surface approximation error and the minimal allowed edge 

length Lfnin in the tatrahedra mesh was confirmed by evaluating the overall error for all 
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models in the test dataset. Fig. 7.7 illustrates the overall mean approximation error and 

the maximal error depending on the number of faces in the mesh. The same behaviour 

as with the bunny model can be seen. The VSeg method outperforms the smoothing-

based methods for smaller meshes up to 20k faces. As the number of faces increases, the 

mean error of the VSeg method grows too. For meshes larger the 35k faces, the surface 

approximation error exceeds the error of the M C + H C method. 

0.230 

0.210 

0.190 

0.170 

0.150 
20000 40000 60000 

Num. of Faces 
80000 100000 

Surface 
Reconstruction 

Error 
(all models) 

— MC+HC 
— MC+Taubin 

Vseg 
120000 

1.650 

1.150 

Q 0.650 

0.150 
20000 40000 60000 80000 

Num. of Faces 
100000 

Surface 
Reconstruction 

Error 
(all models) 

— M C + H C 
— MC+Taubin 

Vseg 
120000 

0.250 

0.230 

0.210 

I 0.190 

0.170 

0.150 
20000 40000 60000 

Num. of Faces 
80000 100000 

Surface 
Reconstruction 

Error 
(all models) 

— M C + H C 
— MC+Taubin 

Vseg 
120000 

Figure 7.7: Overall surface approximation error - whole set of test models. 

A n interesting effect of the number of faces to the maximal error is notable in the same 

Fig. 7.7. In general, the maximal error, or maximal distance between sampled points on 

compared surfaces, is much greater for surfaces obtained by the VSeg method than the 

ones produced by the MC-based approaches. 

Analogous to the previous discussion, explanation of the large maximal error in meshes 
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produced by the vector segmentation is the matter of the meshing process itself. The 

isotropic meshing generates high quality meshes with almost equilateral tetrahedra. There

fore, close to the sharp surface edges, the final mesh approximates the surface very roughly 

because of the limitation of tetrahedra shape and also the chosen minimal edge length. Il

lustration of this problem can be found in Fig. 7.8. 

(c) (d) 

Figure 7.8: Error distribution on the reconstructed surface. The mean error of the VSeg 
method (a,c) over the entire surface is lower then the error of M C + H C method (b,d). On 
the other hand, the maximum error is larger along the sharp edges, approximately l x for 
this model. 

In Sec. 6.4.2, a modified 3D S U S A N corner detector has been proposed to detect sharp 

edges (corners) in the volumetric data. The idea of the corner detection is to refine the 

mesh close to the detected corner points, and moreover to attract vertices directly to the 

corner places. The corner detection, however, does not perform good while processing the 

artificial volumetric data. The reason way errors proportional to the minimal edge length 

are caused close to the sharp edges. 
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A n exciting result of this experiment is that the mean error of all tested methods is 

lower than half of the voxel ( A x = Ay — Az — 0.5mm). 

7.2 Mesh Quality 

The core of the vector segmentation algorithm is built upon the isotropic variational mesh

ing approach (Sec. 6.6). The meshing phase is used for partitioning of the volumetric data, 

while the structure of the mesh is iteratively optimized to provide good distribution of di

hedral angles in the mesh, and adapted to the underlying image data. Goal of the mesh 

adaptation is to generate meshes where faces of tetrahedra adjacent to image edges ap

proximate boundaries of individual image regions. The proposed iterative mesh adaptation 

scheme was developed to produce high quality meshes suitable for many practical appli

cations. Not only for the surface reconstruction of a desired tissue, but also for simulations 

that takes the internal structure of the tissue into account. The quality of produced meshes 

is discussed in this chapter. 

7.2.1 Adjusting Parameters 

There are several parameters of the meshing process that must be chosen initially. These 

parameters affect gradation of the mesh, average size of elements through the mesh, etc. 

For a detailed description of all capabilities of the meshing technique proposed in this 

thesis, few figures illustrating the effect of varying parameters can be found here. 

To be more specific, there are three main parameters that control the isotropic meshing: 

• K > 0 ... the K parameter controls gradation/isotropy of the mesh, 

• Tavg (avg. tetrahedron size) ... the parameter represents the control space scaling 

factor, the Tavg prescribes size to tetrahedra through the mesh, 

• Lmin ••• the minimal edge length. 

Setting smaller K results in a visible gradation of the mesh not only inside the domain, 

but also on boundaries. The local feature size derived from medial axis (Sec. 6.6.2) takes 

more importance. As the K increases, the gradation depends more on the distance from the 

boundary, the gradation affects only interior parts of the mesh. 
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Figure 7.9: Influence of K and r a v , g parameters on sizing of tetrahedra and gradation of the 
mesh. 

The minimal edge length L m ! n must be chosen very carefully. The reason is the compu

tation time which strongly depends on the minimal length. In time of the mesh adaptation, 

the Lmin value is used for filtering of newly created vertices, so a properly chosen value 

may reduce runtime by early rejecting wrongly positioned vertices. 
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Figure 7.10: Example of surfaces extracted from tetrahedral meshes (a); cuts through the 
same meshes colored according to the tetrahedra quality; and histograms of minimal dihe
dral angles (c). 
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7.2.2 Minimal Dihedral Angles 

A good measure of a mesh quality is the distribution of minimal dihedral angles through 

the mesh (Sec. 4.3). Fig. 7.10 shows histograms of dihedral angles for three different 

tetrahedral meshes made by the iterative meshing technique proposed in this thesis. The 

variational meshing approach introduced by All iez et al. has been modified to work di

rectly with volumetric data, and further extended by other techniques such as the boundary 

refinement and the sliver removal based on vertex perturbations (Sec. 6.6). 

The original V T M approach produces well shaped tetrahedra inside the domain. How

ever, poorly shaped tetrahedra and slivers may appear close to the boundary. Unfortunately, 

the same problem appears in case of the VSeg meshing method. Meshes in the middle of 

Fig. 7.10 are colored according to the quality of tetrahedra. Clearly, the quality of tetra

hedra decreases as getting closer to the boundaries - the red shading moves towards blue. 

Even thought the embedded sliver elimination algorithm removes a large number of poorly 

shaped tetrahedra, it does not ensure that all slivers wi l l be successfully eliminated. This 

is the reason why tetrahedra of a low quality (ocm ! n < 3°) are still present in all histograms. 

Figure 7.11: Illustration of slivers (ocm ! n < 3°) that still remain in tetrahedral meshes after 
the mesh adaptation phase. 

Because all boundary vertices are treated differently during the variational meshing, 

the quality of triangles approximating boundary of regions (i.e. tissues) is not affected 

by this knot. On the other hand, this ambiguity of the meshing process, when there are 

two types of vertices managed differently (interior vs. boundary vertices), is the source of 

the inappropriately shaped tetrahedra near the boundary. Recently, J. Tournois [105] has 

presented a new modification of the original V T M algorithm that particularly solves this 

problem and produces almost sliver free meshes. 
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One of the objectives of this thesis was to provide meshes suitable not only for surface 

modeling, but also for numerical simulations. The presence of slivers may cause instability 

of such simulations. Hence, this aspect of the presented VSeg technique remains open and 

wil l be addressed in the future. A smallest dihedral angle should be guaranteed. 

7.2.3 Surface Quality 

Surface of a desired region can be extracted directly from the mesh after the segmenta

tion. In the extraction process, boundary faces are identified as faces between two distant 

regions. Quality of the extracted surface can be examined from two different sides. In the 

previous chapter, the approximation error of the surface has been studied. Here, the quality 

of surface with respect to the shape of triangles is briefly summarized. 

Figure 7.12: Quality of surfaces reconstructed using the VSeg method (a) and the M C + H C 
method. Histograms show distribution of dihedral angles. 

In Fig. 7.12, surfaces extracted from tetrahedral meshes (the VSeg method) are com

pared against surfaces obtained from the M C + H C method. Contrast between both meth

ods is evident. The VSeg approach itself produces well shaped triangles along the entire 
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surface, and moreover size of triangles is automatically adjusted according to a local com

plexity of the surface. Definitely, the M C meshes on the righthand side may be improved 

by existing re-meshing techniques, but such kind of post-processing increases the approx

imation error again. 

7.3 Mesh Segmentation 

During the mesh segmentation phase, all tetrahedra are classified into particular image re

gions with the aid of selected unsupervised clustering techniques. Every tetrahedron of the 

mesh is characterized by its feature vector that details image structure of the tetrahedron. 

Accuracy of this last step of the vector segmentation approach is discussed in this 

section. As suggested in Sec. 6.7, three conventional clustering techniques were selected 

for testing with respect to our requirements (surface reconstruction of main tissues, i.e. 

bones): 

• Fuzzy C-means (FCM) algorithm [95], 

• Gaussian Mixture Model optimized by the Expectation-Maximization (EM-GMM) 

algorithm [81], 

• Min-Cut/Max-Flow graph-based algorithm [8,9,40,57]. Many thanks to O. Veksler 

for his freely available implementation of the Min-Cut/Max-Flow algorithm [112]. 

These algorithms, in two different configurations of feature vectors - with or without 

L B P texture features, were tested on several C T data sets and their results were compared 

against manually annotated data - the ground truth. 

In both the configurations, clustering techniques classify only relevant, sufficiently 

large tetrahedra. Very small tetrahedra (fewer then 10-30 voxels) remain unclassified. 

These non-classified tetrahedra, that appear mostly near to region boundaries, are assigned 

to particular regions in the subsequent merging phase (Sec. 6.7.3) which uses a linear com

bination of two simple similarity measures presented in Sec. 6.7.4. 

7.3.1 Test CT Data 

Medical C T imaging data having resolution mostly 512x512 pixels per slice were used 

in all the subsequent experiments. Concrete parameters of selected datasets are listed in 
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Tab. 7.2, highlighted data sets were manually annotated (segmented) by an expert. These 

data sets wi l l be used for evaluation of segmentation error and comparison of methods in 

the following experiments. Here, I would like to thank to 3Dim-Laboratory s.r.o. company 

for providing part of the test data. 

Dataset Size Num. of slices Resolution [mm] 

Ö 1 headl 512x512 147 0 .38x0.38x0.60 1 headl 512x512 147 0 .38x0.38x0.60 

1 head2 512x512 197 0.45 x 0.45 x 1.00 

1 head3 512x512 169 0.45 x 0.45 x 1.00 H 1 pelvis 1 512x512 119 0.83 x 0.83 x 2.00 

1 pelvis2 512x512 318 0.63 x 0.63 x 0.70 

pelvis3 512x512 169 0.75 x 0.75 x 1.59 

pelvis4 512x512 125 0.86 x 0.86 x 2.00 

n 
L A knees 

512x512 367 0.73 x 0.73 x 0.62 

1 
arteries 512x512 200 0.78 x 0.78 x 1.60 

Table 7.2: Medical C T data selected for testing. 

Manual segmentation of medical images is a very complicated task (Sec. 3.6). Not 

unfrequently, the segmentation made by different people varies. Every expert has his own 

view of the data and the correct segmentation. In order to quantify this phenomenon, one 

of the datasets were segmented by four different experts. Tab. 7.3 summarizes the obtained 

results. 

A n important issue is that the average error between two manual segmentations of the 

same data is about 0.96, measured by the F-measure of goodness which is described below. 

Occasionally, the error grows up (the F-measure decreases under) 0.92. 
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Soft tis./Bone tis. M a n l Man2 Man3 Man4 
M a n l - 0.921465 0.965222 0.895532 
Man2 0.974299 - 0.948906 0.971415 
Man3 0.993253 0.978834 - 0.922118 
Man3 0.977621 0.979286 0.982031 -

Table 7.3: Difference between manual segmentations of the same dataset provided by four 
experts. The F-measure of goodness was calculated for soft tissues and hard tissues (i.e. 
bones). 

7.3.2 Measuring Segmentation Accuracy 

A way to match a segmentation to the ground truth is needed in order to evaluate per

formance of a segmentation algorithm. Many sophisticated measures of segmentation ac

curacy can be found in the literature [52,108]. A n often used measure of segmentation 

goodness, sufficient for our task, is the F-measure [110] which is also very popular in in

formation retrieval and natural language processing. The F-measure combines recall r and 

precision p with an equal weight in the equation of the form: 

F -?UL p - TP r- T p (73) 
Measure- r + p , P~ T p + F p > * ~ Tp+Fn ^ 

where p is the number of correctly labeled voxels (so called true positives Tp) divided by 

the total number of voxels labeled as belonging to the same region. The recall r is defined 

as the number of true positives divided by the total number of elements that actually should 

belong to the positive class (see Fig. 7.13). A perfect score of the F-measure is 1, in the 

worst case the measure is equal to 0. 

Ground Truth 

False 
Positives 

(Fp) 

3s (Tp)-ŷ  
(^n) y precision 

f recall 
^ .True \ 

[ False Positives) 
I Negatives ( T p ) ^ 

Figure 7.13: Illustration of the F-measure. 
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7.3.3 Meshing Segmented Data 

Without too much effort, the Delaunay-based segmentation can be applied to already seg

mented data. Only the edge detection step and the mesh segmentation must be modified. 

Actually, both steps are simplified. Image edges are detected at those points where two 

adjacent regions touch each other. The assignment of a tetrahedron into a concrete region 

is made according to the labeling of voxels in the tetrahedron's interior. 

In this case, the ability of the VSeg technique to mesh volumetric data is used for 

surface reconstruction. Fig. 7.14 shows an error between the obtained mesh and the seg

mented volumetric data. The F-measure rates how precisely the mesh approximates the 

original data. To compare this difference, all tetrahedra are rasterized into the volume data 

of the same size as the original one. 
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Figure 7.14: Surface reconstruction error when meshing already pre-segmented data. The 
red line implies the error observed when several people labeled a same C T dataset (see 
Tab. 7.3). 

The measured average error of tested surfaces 0.96 represents approximately an upper 

limit (= best possible value) one can get when using the VSeg method. Results show that 

the error depends on initial setting of the meshing, it generally grows for meshes with larger 

tetrahedra. However, i f adequate meshing parameters were chosen, the value is almost the 

same as the error, or variations, produced by different people when segmenting a same 

dataset (Tab. 7.3). 
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Figure 7.15: Surfaces reconstructed from pre-segmented data. In the red areas of the sur
face, small anatomical structures are weakly approximated because their size is relatively 
small compared to a prescribed minimal edge length. 

In practice, large portion of this error is caused by limitations of the meshing process. 

A l l image structures smaller than the chosen minimal edge length L m ! n are lost. The mesh 

cannot approximate structures so small (Fig. 7.15). 

7.3.4 Segmentation of Medical CT Data 

In the last experiment, three different unsupervised clustering techniques (namely FCM, 

GMM+EM and Min-Cut/Max-Flow) were applied to meshes to classify tetrahedra into 

individual regions/segments. Analogous to the previous section, all meshes were raster-

ized into a volume of the same size as the original data. A n error between the rasterized 

mesh and manually segmented data (the ground-truth) was rated by the F-measure (7.3). 

The calculated error implies how precisely the classified mesh approximates the manually 

segmented data. 

Fig. 7.16 recapitulates results of the mesh segmentation. A l l parameters of the meshing 

phase were experimentally set to optimal values (most often K — 1.5, Tavg — 50 and Lm{n — 

1.5). As a reference, the FCM clustering method was also applied directly to the volumetric 

data. 

Results show that all clustering techniques are able to distinguish soft tissue from the 

bone tissue. When compared to the manual segmentation, the VSeg method provides 
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Figure 7.16: Overall segmentation error of the VSeg method. Three alternative clustering 
methods (FCM, GMM+EM and Min-Cut/Max-Flow) are compared to the straight FCM 
clustering of volumetric data (voxel FCM). 

precise segmentation of the same quality as the voxel-based F C M clustering of the original 

image data. The segmentation error of soft tissues is comparable to the variation of manual 

segmentation of the same dataset by different individuals (Sec. 7.3.1). 

Not the worse results occur in case of bone segmentation from the head3 dataset. The 

VSeg method still produces quite good results. However, the measured error of the bone 

tissue segmentation significantly grows (i.e. value of the F-measure decreases) for the two 

remaining datasets. Only the graph-based Min-Cut/Max-Flow algorithm provides reason

able results. Why the VSeg mesh segmentation does not achieve good results for these two 

datasets? 

Due to the thickness of the cortical bone and regarding resolution of C T data, very thin 
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(a) (b) (c) 

Figure 7.17: Result of the mesh segmentation i f weak edges are present in the C T data: 
the original data - negative (a); surface derived from the classified mesh (b); result of the 
same method when applied to the manually segmented data (c). 

edges are present in the image data which are practically undetectable by conventional edge 

detection techniques without more knowledge of the data (Fig. 7.17). Therefore, such kind 

of (non)edges is not well approximated during the meshing process which causes more 

errors in the final mesh segmentation. 

Only the Min- Cut/Max-Flow clustering technique is able to partially overcome the 

problem of missing edges. Because the method takes spatial image structure more into 

account, results of this graph method overcomes other techniques. Unfortunately, once 

created the mesh structure cannot be changed, so the final surface is only a rough approxi

mation of the bone tissue. This nature of some medical C T data is also one of the reasons 

to allow manual corrections of the mesh segmentation. 

Several experiments with a texture-based clustering of tetrahedral meshes were also 

performed. Normalized histogram of simple LBP image features (Sec. 6.7.2) forms an ex

tra part of a tetrahedron feature vector. Results of the texture-based mesh segmentation are 

not presented here. Actually, this extension does not improve results of the classification 

for the finally selected set of test C T data. Anyhow, for different kind of data (e.g. MRI) , 

the texture-based segmentation may produce qualitatively better results. 
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Figure 7.18: Surfaces extracted from the classified mesh - the colored plastic pipe was 
wrongly classified in to the same region as the bone tissue. 

7.4 Runtime Statistics 

Basic runtime statistics can be found in Fig. 7.19. The measurement was divided into four 

stages: preprocessing of input data (i.e. anisotropic filtering), initialization of the meshing 

(the edge and corner detection; generation of the control space), iterative adaptation of the 

mesh, and the mesh segmentation. A l l phases take approximately 25 — 50 minutes on a 

standard PC with Intel Core2Duo 2.54GHz processor depending on a concrete size of the 

data and specific parameters of the meshing algorithm. 

In fact the runtime of the vector segmentation is not very impressive. In comparison 

with traditional surface reconstruction techniques like the M C algorithm (+ subsequent 

smoothing), the VSeg method loses. These techniques are able to reconstruct surfaces in 
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Figure 7.19: Runtime statistics of the VSeg method for different meshing setup. These 
statistics were measured for the knees dataset (512x512x367 voxels). 

a much less time - just about minutes. However, such comparison is a bit unfair. Beside 

the surface, the VSeg method produces more comprehensive representation of the data -

tetrahedral mesh - which may be useful for many other tasks. 

In addition, surfaces of all desired tissues are reconstructed at once, and any further cor

rection of the segmentation does not lead to a completely new rerun of the reconstruction. 

This is due to a close relationship between the obtained tetrahedral mesh and all extracted 

surfaces. Local modifications of the mesh, such as adding of new vertices and reclassifica

tion of tetrahedra, can be easily projected onto an already existing surface identifying a set 

of modified tetrahedron faces. 

A i m of the thesis was to prove the concept of volumetric data segmentation based on 

Delaunay meshing. Not much attention was paid to the optimization of the implemen

tation. The whole segmentation is divided into many blocks which is handy for making 

experiments, but not very effective due to unnecessary coping of data, repetitive allocations 

of large memory blocks, etc. 

7.5 Summary and Future Work 

Different experiments were carried out in order to proof qualities of the proposed vector 

segmentation approach. A short recapitulation of all results presented above is given here. 
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Surface accuracy. A n error between reconstructed surfaces of human tissues and a 

ground truth must be minimal in order to guarantee the correctness of a surgery planning. 

In the first test, the accuracy of surface reconstruction was measured on synthetic models 

of solids. The VSeg method outperformed the both smoothing-based methods (MC+HC 

and MC+Taubin) for relatively small meshes - the smallest tetrahedra is larger then the 

voxel. In that case, direct meshing of volumetric image data is more accurate approach 

then the post-processing methods smoothing reconstructed surfaces without any relation

ship to the original image data. However, close to sharp surface edges, the final mesh 

approximates the surface very roughly because of the limitation of tetrahedra size - the 

minimal tetrahedron edge length is prescribed. Therefore, the maximal error is greater for 

surfaces obtained by the VSeg method than the ones produced by other approaches. 

Mesh quality. The VSeg approach produces well shaped triangles along the entire sur

face, while the size of triangles is automatically adjusted according to the local complexity 

of the surface. However, the iterative mesh adaptation scheme was designed to produce 

high quality tetrahedral meshes suitable for many practical applications, not only the sur

face reconstruction of a desired tissue, but also for simulations that take an internal struc

ture of tissues into account. 

K— 1.2, Tavg = 80 K — 2.0, Tavg = 30 

Figure 7.20: Influence of the meshing parameters K and Tavg to the structure of final sur
faces. 

A n inconvenience of the described meshing technique is that the quality of tetrahedra 

decreases as getting closer to the boundaries and slivers appear close to the boundaries. 
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Hence, the sliver elimination algorithm has been incorporated into the iterative meshing 

phase. This modification successfully removes a large number of slivers, however it does 

not ensure that all slivers wi l l be successfully eliminated. This inconvenience of the pre

sented VSeg technique should be further improved. 

Mesh segmentation. The overall VSeg approach including the mesh segmentation phase 

was applied on selected C T datasets, aimed at surface modeling of soft and bone tissues. 

Results of three different tetrahedra clustering techniques have been compared against 

manually segmented ground truth. Among the methods, the graph-based Min-Cut/Max-

Flow clustering technique gives best results. In general, graph clustering techniques ap

pear to be very promising as the mesh structure of clustered data suits well to the idea of 

represent volume data using a graph structure. 

Only the Min-Cut/Max-Flow clustering technique is able to deal with the problem of 

weak edges in the image data (i.e. very thin cortical bone). The final surface is only a 

rough approximation of the bone tissue because the mesh structure does not approximate 

(missing) image edges well. In future, the problem of missing edges should be resolved 

in several ways. A set of manually annotated edges can be defined before the meshing 

process starts, or the mesh structure can be locally modified after the automatic meshing 

finishes. Another improvements can be made by incorporating more sophisticated edge 

detection techniques in the VSeg approach. In spite of that, manual corrections wi l l be 

always necessary due to the unpredictable character of medical data in case of traumatic 

injury, which is unfortunately the case when anatomical modeling of tissues should help 

in a surgery planning. 

In conclusion, the proposed vector segmentation can be successfully used for surface 

reconstruction of desired tissues, as well as for meshing of the interior structure of the 

tissues for the numerical simulation. Obtained results show that the current concept works 

very well for certain C T data and is applicable to anatomical modeling of a human skull 

or soft tissues (i.e. craniectomy in case of traumatic brain injury, or cranioplasty). For 

the purpose of plain surface reconstruction from an already pre-segmented data, the VSeg 

method produces surfaces of more than reasonable quality and can be used as is. 

Anyhow, I believe that the concept of vector segmentation is quite universal, thus appli

cable to a wider variety of problems whenever volumetric data of some kind are processed. 

The only limitation of the present concept is that the meshing phase is based on edge de

tection. 



102 Chapter 7. Experimental Results 

During elaboration of this work, a new framework for volumetric data processing, tetra-

hedral meshing and Delaunay-based 2D/3D segmentation has been developed. This frame

work is freely available for research purposes [116]. 



Chapter 8 

Conclusion 

This dissertation thesis presents a novel technique for segmentation of volumetric medical 

images aimed at surface reconstruction of fundamental human tissues (i.e. bone and soft 

tissues). This technique of vector segmentation is based on the 3D Delaunay triangulation. 

Tetrahedral mesh is used to divide volumetric data into several disjoint regions whose 

characteristics are similar. A l l tetrahedra in the mesh are classified into individual image 

regions by means of clustering. Finally, certain methods for improving quality of the mesh 

and its adaptation to the underlying image structure have also been presented. 

Such direct meshing of volumetric image data appears to be more accurate approach 

then traditional techniques which start with an iso-surface extraction followed by the sur

face decimation and smoothing without any relationship to the original image data. Nev

ertheless, this idea of the segmentation has several other advantages. 

A more effective representation of the image structure is obtained which approximates 

the original raster data. The mesh representation decreases complexity of the subsequent 

segmentation because of processing a reduced number of tetrahedra instead of a large 

number of voxels. The obtained tetrahedral representation is also suitable for numerical 

simulations that take the internal structure of tissues into account. 

If the original image data are affected by artifacts, or the data structure is too com

plicated due to traumatic injury, manual corrections of the segmentation can be directly 

applied to the reconstructed surface. It is not necessary to restart the whole meshing pro

cesses. There is a close relationship between the obtained tetrahedral mesh and all ex

tracted surfaces. Actually, surface triangles are faces of tetrahedra in the mesh. Simple 

modifications of the mesh, such as adding new vertices, removing old ones, or manual 

reclassification of tetrahedra, affect the mesh locally, thus these changes can be directly 

103 
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projected onto an already extracted surface of the desired tissue. 

The concept of vector segmentation is quite general and presented experiments demon

strate its functionality for specific type of C T data. After several minor modifications, it is 

applicable to a wider variety of problems whenever volumetric data are processed. 

However, several inconveniences can be still found in the method that are not very 

favourable from the practical point of view. Even thought the quality of reconstructed 

surfaces is sufficient for many applications, the quality of produced tetrahedral meshes is 

not as good as it could be. Slivers still appear close to region boundaries, and the method 

does not guarantee minimum dihedral angle in the mesh. 

Another disadvantage can be found in the edge detection step which is crucial for 

precise approximation of image boundaries. The proposed tissue-selective edge detection 

works well for selected C T data. Many parameters of the detection must be tuned to 

provide desirable results for other type of C T data. The edge detection limits potential 

application of the method in other research fields when different kind of volumetric data is 

used. 

Theses aspects of the proposed vector segmentation technique should be addressed in 

the future work. In addition, many sophisticated image segmentation and classification 

techniques exist that may be modified to work with the mesh structure. We would like to 

correct the misclassification of the segmentation step by incorporating more sophisticated 

image features modeling spatial properties of particular image regions into the classifica

tion process. 
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138883 vertices, 136266 faces 
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122 Sample Results 

Input dataset: CT-pelvis3; meshing parameters: K — 1.5, Tavg — 50mm, and LOT,„ = 1.5mm. 

105758 vertices, 211320 faces 



118850 vertices, 238164 faces 



124 Sample Results 

Input dataset: CT-arteries; meshing parameters: K — 0.8, Tavg — 50mm, and L, 

1.5mm. 

100613 vertices, 202084 faces 

172915 vertices, 347336 faces 


