
Czech University of Life Sciences Prague

Faculty of Economics and Management

 Department of Information Engineering

Diploma Thesis

Microservices and Serverless architecture in web application

Apu Md Foyjur Rahman

© 2020 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

MD FOYJUR RAHMAN APU

Systems Engineering and Informatics

Informatics

Thesis title

Microservices and Serverless Architecture in Web Applications

Objectives of thesis

The goal of this thesis is to explain the difference between monolithic approach and microservices in the
web applications, describe the benefits of the serverless architecture in the web applications, single page
applications in the Front-end development, the benefits and uses of the Containers, FaaS (Function as
a Service). There will be also prepared an overview and the model of the proposed application in
microservices and serverless architecture and the implementation of the proposed application

Methodology

In the beginning, the research of all the sources and prepare a good overview of the problem at hand
will be performed. Next, the foundation by extracting all the relevant information from the sources, and
creation comprehensive text with all the information mentioned above into literature overview. In the
second part of the theoretical chapter, there will be description of all the services and technologies, which
we will use in the implementation part, and description why do we choose them and what are their benefits
including creation and design the model of the proposed simple web application. In the practical part, the
implementation and steps needed to achieve the final working application will be documented.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

microservices; serverless architecture; docker; web application; single page application

Recommended information sources

Nygard, Michael T. 2007. Release It! (Design and Deploy Production-Ready SoGware). 2007. ISBN-10:
0-9787392-1-3, ISBN-13: 978-0-9787392-1-8.

Rady, Ben. 2016. Serverless Single Page Apps. 2016. ISBN: 978-1-68050-149-0.
Richardson, Chris. Microservices Patterns. microservices.io. [Online]

https://microservices.io/resources/index.html.

The proposed extent of the thesis

60 – 100 pages

Keywords

Expected date of thesis defence

2019/20 WS – FEM (February 2020)

The Diploma Thesis Supervisor

doc. Ing. Vojtěch Merunka, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 25. 11. 2019

Ing. Martin Pelikán, Ph.D.

Head of department

Electronic approval: 25. 11. 2019

Ing. Martin Pelikán, Ph.D.

Dean

Prague on 31. 03. 2020

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

Declaration

I declare that I have worked on my diploma thesis titled "Microservices and Serverless

architecture in web application" by myself, and I have used only the sources mentioned at the end of the

argument. As the author of the diploma thesis, I declare that the thesis does not break the copyrights of any

person.

In Prague on …………………. ___________________________

 Apu Md Foyjur Rahman

Acknowledgment

I wish to thank my supervisor, doc. Ing. Vojtěch Merunka, Ph.D.for his support and guidance while

working on this thesis. His invaluable insights about research have formed the basis of this thesis. I would

also like to thanks our guest instructor Mr. Ing. Josef Pospíšil who also supported me patiently me

throughout my dissertation work

Additionally, I would like to thank my family and close friends for their encouragement, support, and

belief in me.

Microservices and Serverless architecture in web

application

Abstract

The terminology "Microservice Architecture" has jumped over the decade a particular way

of designing/architecting software applications as a bundle of independently deployable

service. Microservice is not a new term, but it is an evolutionary term/architecture to find

out a pathway to do revolutionary things that already took place in cloud, web, server

virtualization, mobile, containerization. This is an explicit responsive architecture to this

fantastic technology landscape that currently we live in. Alongside the term "Serverless

Architecture" comes with a side by side to maximize and hassle-free automation in all life

cycle of the application product. The Serverless architecture or computing offers the

potential of application software in the cloud in the manner of auto-scaling, pay-as-you-go.

This is a new trend in cloud computing, which enabled the business to get rid of underlying

infrastructure issues.

My thesis aims to provide a more conclusive answer of how the Microservices and

Serverless architecture reshape the current web application world.

In this study, we find out the difference between the classic monolithic and Microservices

approach, Serverless architecture and standard backend approach, Single page and

contemporary front-end approach, containers, and server hosting as well as FaaS and SaaS

overview and some other third party services. We also conducted a single page application

based on proposed architecture.

Keywords: Microservice, Serverless Architecture, Cloud, Docker, Virtualization,

scalability, Single page application, Web Application, SPA.

6

Table of content

1 Introduction .. 12

2 Objectives and Methodology ... 14

3.1 Objectives ... 14

3.2 Methodology .. 14

2.2.1 Research Methodology ... 14

3 Literature Review .. 16

3.1 Introduction .. 16

3.2 Definition of Terms .. 16

3.2.1 Microservices .. 16

3.3 OS-Level Virtualization ... 18

3.4 Monolithic Architecture ... 19

3.5 Software Application ... 21

3.6 Principles of the Microservice Architecture .. 22

3.6.1 Microservice Architectural Constraints .. 23

3.7 Conceptual design .. 26

2.2.2 Software Functional components.. 26

3.8 REST Architectural Styles and Architectural Constraints 26

3.9 Microservices Architectural Style .. 27

3.10 Characteristics of Microservices .. 28

3.11 Challenges to a Microservice Architecture .. 30

3.12 Microservice Architecture, DevOps and Containers 31

3.13 Cloud Computing ... 31

2.2.3 Cloud Computing Service Delivery Models ... 33

3.14 Serverless architecture ... 35

3.15 Deployment Models ... 36

3.16 Virtualization Technologies ... 37

3.17 Docker Architecture ... 40

3.18 Docker Containers and the Cloud Ecosystem .. 44

2.2.4 Docker Extensions .. 46

3.19 Scaling up Microservices Kubernetes .. 53

3.20 Scaling up microservices with Apache Mesos ... 56

3.21 Containerized Application Management.. 57

3.22 Docker Plugin Architecture ... 60

3.22.1 Volume Plugins... 61

3.22.2 Network Plugins ... 63

2.2.5 Types of Container Networking ... 63

3.23 Container Networking Model .. 65

7

Microservices Discovery Techniques.. 69

4 Practical Part .. 73

2.2.6 Infrastructure ... 73

2.2.7 Backend .. 73

2.2.8 Frontend .. 74

3.1 Authentication .. 75

2.2.9 Authorization levels .. 76

3.2 Dashboard .. 77

3.3 Order Life Cycle .. 77

3.4 Order attributes... 77

3.5 Dials ... 79

3.6 Resorts .. 79

3.7 Employees .. 79

3.8 Subscribers ... 80

3.9 Suppliers ... 80

5 Results and Discussion ... 81

6 Recommendations for Future Work .. 82

7 Conclusion ... 83

8 References ... 86

List of pictures

Figure 1: DevOps Cycle .. 18
Figure 2: Docker Architecture ... 19

Figure 3: Monolithic Architecture ... 20
Figure 4: Microservice mechanisms for loose coupling .. 25
Figure 5: Microservice Architecture Conceptual Model ... 26

Figure 6: Microservice Hierarchical tree ... 27
Figure 7: Comparison of OS-Level Virtualization and Full Virtualization (Source: Docker

Inc.) .. 38
Figure 8: Docker Architecture (Source: geekflare) ... 40
Figure 9: Docker Engine Architecture (Source: Docker Inc.) ... 42

Figure 10: Docker Public or Private Registries ... 45
Figure 11: Open Container Layered Architecture [Docker Inc.] ... 46

Figure 12: Swarm Orchestration Architecture [Docker Inc] ... 50
Figure 13: The elements of Docker Swarm cluster based on Raft Consensus Algorithm .. 52

Figure 14: Kubernetes Master-slave design illustrating its microservices and container-

based architecture (Marko Lukŝa, 2016) ... 55
Figure 15: Mesos Two Level Orchestration Architecture ... 57
Figure 16: Docker plugin Architecture showing the extensions and interfaces to other

systems ... 61
Figure 17: The Docker Volumes Plugin Architecture ... 62

8

Figure 18: The Container Network Model (CNM) .. 66
Figure 19: Apps Backend Repository .. 74

Figure 21: Apps Frontend .. 75
Figure 22: Auth0 Login page ... 76

List of tables

Table 1: Characteristics of Cloud Computing ... 33
Table 2: Various cloud computing service delivery models.. 34

List of abbreviations
1. List of abbreviations………………………………………………………………11

9

List of abbreviations

HTTP HyperText Transport Protocol

API Application Programming Interface

SCM Source Control Management

SBT Simple Build Tool

OS Operating System

SOA Service Oriented Protocol

REST Representational State Transfer

IDE Integrated Development Environment

SMA Scalable Microservice Architecture

IP Internet Protocol

DNS Dynamic Name System

IT Information Technology

SAAS Software AS A Service

SOAP Simple Object Access Protocol

ESB Enterprise Service Bus

LXC LinuX Containers

VM Virtual Machine

CPU Central Processing Unit

WSDL Web Service Description Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

IEEE Institute of Electrical &Electronics Engineers

SLA Service Level Agreements

10

NIST National Institute of Standards

KVM Kernel Virtual Machine

VMM Virtual Machine Monitor

PAAS Platform As A Service

NIST Infrastructure As A Service

UTS Unix Time Sharing

PID Process ID number space

SDN Software Defined Networking

CNM Container Networking Model

BGP Border Gateway Protocol

CQRS Command Query Responsibility Segregation

SRV Record SeRVice Record

LAN Local Area Network

RPC Remote Procedure Call

AMQP Active Message Queuing Protocol

DSRM Design Science Research Methodology

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

AUFS Advanced multi layered Unification FileSystem

SHA Secure Hash Algorithm

CI Continuous Integration

CD Continuous Delivery

SDK Software Development Kit

UI User Interface

POM Project Object Model

11

NIST National Institute of Standards

KVM Kernel Virtual Machine

VMM Virtual Machine Monitor

PAAS Platform As A Service

NIST Infrastructure As A Service

UTS Unix Time Sharing

PID Process ID number space

SDN Software Defined Networking

CNM Container Networking Model

BGP Border Gateway Protocol

CQRS Command Query Responsibility Segregation

SRV Record SeRVice Record

LAN Local Area Network

RPC Remote Procedure Call

AMQP Active Message Queuing Protocol

DSRM Design Science Research Methodology

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

AUFS Advanced multi layered Unification FileSystem

SHA Secure Hash Algorithm

CI Continuous Integration

CD Continuous Delivery

SDK Software Development Kit

UI User Interface

POM Project Object Model

12

1 Introduction

In this modern world, the infinite number of people and devices itself is gaining

access to applications throughout the internet. This is massively increasing the demands on

the system, which should be available and reliable at any time as they need. This is why

many developers, architects, and Software companies started to research how to address

and resolve these challenges.

As a result, the terms Microservices architecture came up. Microservices is a new

architectural model that emerged in the past few years. There is no appropriate or official

definition of the Microservice architecture model, but in short, Microservice is a collection

of small pieces of autonomous services. It evolves a consensus over time in the industry.

Microservices architecture enables small teams of developers to focus on individual

services, each of them has a specific task, and the Serverless computing facilitates these

Microservices up and running with the least effort and time. The serverless meaning

function of distributed computing and Serverless computing is not a technical term but

refers to a system where software systems are deploying in a cloud platform. Here the

people who are developing the software/application and use the service are not concern

about the underlying infrastructure. So cloud computing is on-demand availability of

computer systems resources, especially the underlying resources like the power of

computing, storage, etc. without direct intervention by the consumer.

This dissertation aims to explore various architecture for web application and compare the

capabilities, performance, agility, scalability between the monolithic and Microservice

architecture.

In the modern era, the evolution of cloud computing excessively switches the strategy of

developers to build and implement applications. In its Top 10 Strategical Technology

Trends for 2016 (Gartner Research, 2015), states that ― “The service architecture and

mesh app are what enables delivery of apps and services to the flexible and dynamic

environment of the digital mesh. This architecture can ensure users' requirements as their

demand. It conducts together with the many information sources, devices, apps, services,

13

and microservices into a flexible architecture in which apps extend across multiple

endpoint devices and can coordinate with one another to produce a continuous digital

experience. IT will increasingly deliver services as cloud services in the mesh app and

service architecture, supported by software-defined application architectures, containers,

and microservices. IT needs a DevOps mindset to bring together development and

operations in support of continuous development, and continuous integration and

delivery.”

Software architecture has witnessed increasing interest from both the academia and the

software industry. There has existed various software architecture for distributed systems

including but not limited to Common Object Request Broker Architecture (CORBA),

Distributed Component Object Model (DCOM), and Service-Oriented Architecture (SOA).

Most of these designs were led by a consortium of large software Vendors and had little

backing from the open-source community.

14

2 Objectives and Methodology

3.1 Objectives

 Explain the difference between the monolithic approach and Microservices in web

applications.

 Which reference architecture can best serve as the base for scalable web services?

 The principal research question, we derived the following specific questions:

1. What aspects are influencing the adoption of Microservice Architecture?

2. To what extend can containerization enhance the design and implementation

of Microservice Architecture?

3. To what extend can Microservice architecture improve the scalability of

web services?

4. To what extend can Microservice testing be automated?

 Develop and test a scalable Microservice Architecture for web services

 Describe the benefits of Serverless architecture in web applications.

 Describe single-page applications in Front-end development.

 Describe the benefits and uses of the Containers.

 Describe the various virtualization technologies.

 Prepare an overview and the model of the proposed application in Microservices

and Serverless architecture.

 Implement the proposed application

3.2 Methodology

In the study, we employ two types of methods that are conducted concurrently. The

research methodology will, however, inform the system development methodology.

2.2.1 Research Methodology

In these studies, a research methodology called Design Science Research Methodology

(DSRM) is employed. The object that we propose is a scalable Microservice Architecture

for Web Service. Research phases that have to be carried out in DSRM are (Peffers,

Tuunanen, Rothenberger, & Chatterjee, 2007):

15

1) Problem denotation & study(evaluation of current practice)

2) Determine the objectives of a solution (what would a better artifact accomplish?)

3) Prototype design & development

4) Prototype demonstration (finding a suitable context then use the artifact to solve

problems)

5) Prototype evaluation (observing how effective it is in solving the problem)

6) Communication.

Problem Definition and Analysis

After this point, usually, the process iterates back to step (2) or (3). Following this

DSRM method, we first investigate the market to gain insight into state of the art relating

to Microservice Architecture (step 1 in DSRM). Based on the findings of this market

analysis, we will identify issues associated with the platforms concerning scalability,

which motivates the need for a new platform. Current technology used, architecture

components, and functionality gaps will be acknowledged as well. Step (1) will be covered

in chapter 1 and 2 in this report.

Defining objectives of a solution

In the next step (2), we will propose requirements and architecture components that

need to be incorporated into the platform design based on the literature study. This phase is

necessary to illustrate the inadequacy of solutions in the market in achieving our project

goals. We will carry out a literature study on the topics of web application architecture,

system-level virtualization, and scalability. In the practical portion, describe our

implementation and steps needed to achieve the final working application.

16

3 Literature Review

3.1 Introduction

The increasing number of connected devices is exponentially rising. According to

(Gartner Research, 2015) the number of mobile devices will increase from the current six

billion to twenty billion by the year 2020. In recent years the Microservice Architecture e

has become famous for building web applications (Adrian Cockcroft, 2014), Twitter

(Jeremy Cloud, 2013). Microservices is an Architectural style that realizes a single

Software System as many small individual loosely coupled applications that communicate

over a network. Each application has its own software development lifecycle. This

decoupling allows many small teams to work on individual applications. All forms then

converge to deliver one software product to the users, who perceive the whole architecture

as one single system. The Microservice Architecture approach allows faster delivery of

smaller incremental changes to an application.

On the one hand, the Microservice Architecture approach builds on Agile Methodology

and DevOps principles. The DevOps philosophy is the realization that software

development (Dev) and operations (Ops) teams need to communicate and collaborate to

enable organizations to shorten the time it takes to transform developed software into

running services. DevOps employs some practices that are well suited to the use of

virtualization. Virtualization, OS-level virtualization, or Docker containerization, in

particular, is key to automating most of the software deployment operations. In the

following section, we define the terms that are used in this thesis.

3.2 Definition of Terms

3.2.1 Microservices

An architectural style that extends SOA principles by decomposing of an application into

single-purpose, loosely coupled services managed by cross-functional teams (Martin

Fowler et al., 2014).

17

Microservice Architecture

Microservice Architecture is being adopted by software as a Service (SaaS) and Function

as a Service (FaaS) vendors due to the need to shorten software development cycles from

several months to minutes. In this regard, Microservice Architecture is one of the

prerequisites for agile methodologies based on DevOps. DevOps principles advocate for

automation of most tasks of software deployment and are more inclined to use cloud

computing technologies such as virtualization. Both Microservice Architecture introduces

challenges such as increased inter-process communication, high fault rate, increased

number of tests, and the need for consistency in the distributed data stores. Various

desperate tools have been used to address these challenges. One mechanism based on OS-

Level virtualization introduced by a Silicon Valley start-up called Docker is proposed as a

means to simplify the realization of Microservice Architecture.

The Microservice Architecture was pioneered by web-scale companies (Netflix, Amazon,

eBay, twitter), and is a paradigm shift for service development for fast-moving business

needs. Microservice Architecture has accelerated innovation in these companies by

enabling them to meet digital business challenges. (Stackify, 2019)

Continuous Delivery

Continuous Delivery (Humble et al., 2010) is a software development discipline that

enables the on-demand deployment of software to any domain. With uninterrupted

delivery, the software delivery life cycle will be automated as much as possible. It

leverages techniques like Continuous Integration and Continuous Deployment and

embraces DevOps.

On-demand Integration

On-demand Integration is a software development approach where members of a team

integrate their work regularly, leading to multiple integrations per day. Each integration

test is verified by an automated build to detect integration problems as quickly as possible

(Martin Fowler et al., 2014).

18

Configuration Management

Configuration management or infrastructure automation -refers to monitoring and

controlling changes to the software codebase. It‘s a constant practice for establishing and

maintaining consistent product performance, especially in DevOps environments.

DevOps

DevOps is a set of exercises intended to minimize the execution period between

committing a change to a system and the deployment being placed into average production

while ensuring high quality. DevOps is a cultural and technical movement that focuses on

building and operating high-velocity organizations (Chef 2014, IBM 2014).

DevOps is an IT organizational model in which system administrators work side-by-side

with developers in a single, coordinated, agile environment. DevOps also breaks down

corporate walls, and it promotes a fundamentally different way of solving IT problems

(Rackspace, 2015).

Figure 1: DevOps Cycle

3.3 OS-Level Virtualization

Operating System-level virtualization is a technology that partitions the operating system

and creates multiple isolated Virtual Machines (VM). OS-level virtualization is a virtual

execution environment that can be forked instantly from the base working environment

(Yang Yu, 2007; J. Lakshmi, 2010; Mathijs J.S, 2014).

19

Operating System-level virtualization has been widely used to improve security,

manageability, and availability of today‘s complex software environment, with small

runtime and resource overhead, and with minimal changes to the existing computing

infrastructure (Pasa Maharjan, 2011).

Docker

Docker is a free, open-source project that automates the packaging, shipping and

deployment of applications using containers, by delivering an additional layer of

abstraction and automation of OS-Level Virtualization on Linux (Vladimír Jurenka,

2015). Docker engine quickly wraps up any application and all its libraries and

dependencies into a lightweight, portable, self-sufficient container that can run on any

Linux based system (Kavita Argarwal, 2015).

Figure 2: Docker Architecture

3.4 Monolithic Architecture

Monolithic architecture is a set up used for traditional server-side systems. The entire

system function is based on a single application. A monolithic architecture consists of

various kinds of components as required for the desired application that is all tightly

coupled together and has to be developed, implements, and managed as one entity meaning

application bundle all its functionality and service into a single workable unit. All the

components are running on the same file system. This kind of system has various

20

advantages. First, it is faster to develop, and it doesn't need to communicate via APIs.

Monolithic by the name means composed of all functions in one piece.

Figure 3: Monolithic Architecture

Benefits of Monolithic Architecture

When the terms come into account to develop a server-side application that consists of

different types of components:

• Presentation – Subject to handling HTTP requests and responding with JSON/XML

or either HTML (For web services API)

• Business Logic – The application of business logic

• Database access – Database object is responsible for accessing the database.

• Application integration – Possible to integration (e.g., via messaging or REST API)

21

Despite having a logically modular-based architecture, the application resides in the form

of packaged and deployed as a monolith. The benefits of monolithic architecture as

follows:

• Simple to develop

• Simple to conduct the testing. For example, to implement end-to-end testing by

only launching the application and testing the UI.

• Simple to deploy. It just needs to copy of the packaged application to a server.

• It can be simple to scale horizontally by running multiple copies behind a load

balancer.

• In the early stages, the monolithic approach works well, and most of the prominent

and eminent applications which exist till the date were started as a monolith.

Drawbacks of Monolithic Architecture

• Monolithic is a simple approach but limitation in size and complexity

• An application becomes large and difficult to understand as well as not easy to fast

changes and correctly.

• The system start-up time can be slower, depending on the size of the application.

• It must re-deploy the complete application on each change/update.

• Continuous expansion is challenging

• Scalability is very complicated when other modules have resource requirements.

• There is a significant impact on application reliability. The potential bug can bring

down the entire process of application. Since all the parts of the application are

a blend, that bug can cause the availability of the whole application.

• The monolithic application cannot embrace new technologies due to its limitations.

Any changes in a component (framework) or language causes influence an

entire system

3.5 Software Application

A Software application is the implementation of capabilities and virtualization by building

and deploying a set of instruction through coding using a programming language. The

users of an application can observe its real-world effects during operation. It is becoming a

common trend to implement most capabilities through software. i.e., software-defined

Networking, Network Function Virtualization, and Software-Defined Storage.

22

Process

An Operating System process is the concrete representation of a software application at

runtime. One method always belongs to one app, and software applications may have

many running processes. A process instance exists during execution, while a process type

is a logical entity embodying the opportunity to execute process instances of it. A process

type usually manifests itself in some way in the source code of an application.

Web Service

A web service facilitates the availability of capabilities of an application to other

applications via a network. Web services enable communication between program

functions, without the necessity of middleware. The possible ways of access are defined

through a service interface.

3.6 Principles of the Microservice Architecture

The core principles of the Microservice Architecture are:

1. Modeled Around Business Domain: Domain-driven features enable us to find

stable and reusable boundaries.

2. Automation Culture: Microservice is a compound of many moving parts means

automation is a crucial factor.

3. Hide implementation specification: The drawbacks of the distributed system can

often become tightly coupled with their provided services together.

4. Decentralize features: To achieve liberty, it can urge out of the center,

architecturally, and organizationally.

5. Deploy Autonomously/Independently: The most significant characteristic of

microservices know as.

6. Consumer First: Make the service available and easy to consume, as a creator of

an API

7. Failure Isolation: Since microservice is a piece of service, it’s easier to isolate the

affected part and spin-up the workable copy.

8. Highly Manifest: Microservice contains many moving parts, so what is happening

in the system always can be challenging.

23

Because microservices are small, they are easier to produce, and it matters a great deal less

what your implementation language is. Microservices may be entirely disposable, as

rewriting your functionality is not that much work. Microservices communicate over the

network using messages. Microservices are wholly defined by the messages they accept,

and the messages they emit. From the point of view, an individual microservice instance,

and from the developer writing that microservice, there is only content arriving, and

content to send. In deployment, that microservice instance may be participating in a

request/response configuration, or a publish/subscribe arrangement or any number of

variants. How messages are distributed is not a defining characteristic of the Microservice

Architecture. All distribution strategies are welcome without prejudice.

A network of microservices is dynamic. It consists of large numbers of independent

processes running in parallel. You are free to add and remove an instance of services at

will. This makes scaling, fault tolerance, and continuous delivery, and low risk. Naturally,

you will need some automation to control the extensive network of services. This is where

OS-level virtualization or containerization comes in. Containerization is becoming the

preferred means of automating the building, packaging, and deployment of microservices.

Containerization enables automation and gives you real control of your software

development and deployment system, and immunizes you against human error. This is a

barely low-risk procedure compared to big bang monolith deployments. (SAM Newman,

2015)

3.6.1 Microservice Architectural Constraints

Microservices is a contemporary software and delivery pattern, where applications are

orchestrated several pieces of runtime services.

With Microservices, a software component is a hand over as an autonomous runtime

service by a well-defined universal API. The microservices approach permits much

quicker delivery of smaller steady changes to an application. On the other hand,

Microservices needs expertise in spread programming and can become n functional

nightmare without having proper tools in place. The following characteristics must-have in

the microservices architecture style:

24

 Resilient

 Formulate

 Minimal

 Elastic, and

 Accomplish

Formulate

A microservice must provide an interface that is steady and is formulated to support

service composition service.

Microservice APIs should be formulated with a popular way of identifying, manipulating

resources, representing, and describing the schema and supported operations of API.

The identical interface obstacle of the REST API architectural design stated this in detail.

A microservice pattern should be designed to promote composition patterns like linking,

aggregation, and high-level functions like as caching, gateways, and proxies.

Minimal

A Microservice should only contain highly conjunctive entities.

In software, conjunctive is a dimension of whether things belong together. A module has

high cohesion if all the functions and objects in it are targeted on the same tasks. Higher

cohesion leads to more maintainable software.

Elastic

A microservice should be able to scale, up and down, respectively, of other services within

the same application.

This obligation implies based on load or other factors. It is possible to fine-tune application

performance, resource usage, and availability. This obligation can be identified in different

ways. Still, a well-known pattern is to design the system so that it can run multiple

stateless representatives of each microservices, and there is a method for registration,

Service naming, and discovery alongside with routing and load-balancing requests.

Resilient

25

A microservices might be failed without impacting other services within the same

application.

A failure of an individual service instance must have minimal impact on the application. A

breakdown of all the instances of a microservice should only bump a single application,

and users must be able to continue with the rest of the application without collision.

Accomplish

A microservice should be functionally and operationally complete.

The creator of C++, Mr. Bjarne Stroustrup, said that a good interface should be "minimal

but complete." For example: as small as possible but no smaller.

Likewise, a Microservice might offer a complete function, minimum dependencies (loose

coupling) to other services in the application. It is crucial. Otherwise, it becomes

unattainable to version control and upgrade separate services. (Nirmata, 2015)

Figure 4: Microservice mechanisms for loose coupling

26

3.7 Conceptual design

Figure 5: Microservice Architecture Conceptual Model

2.2.2 Software Functional components

Software functional component is reasonably big-scale code construction within an

application, with an explicitly-defined API, that could potentially be exchanged out for

another implementation. Microservice Architecture is an extension of the component-

based software system and is distinguished by the fact that the code base is divided into

discrete pieces that provide services through well-defined, limited interactions with other

components.

3.8 REST Architectural Styles and Architectural Constraints

Fielding definition (Roy T. Fielding, 2000) of architectural style involves architectural

constraints. Fielding defines Architectural style as a coordinated set of structural restraints

that limited the roles and features of architectural components and the allowed

relationships among those elements within any architecture that conform to that style. For

this reason, consistent with his definition, he introduced REST through a set of constraints,

i.e., client-server, stateless, cache, and uniform interface.

27

REST is a set of obstruction that informs the design of scalable hypermedia web

applications. REST architectural style claims that these constraints will result in an

architecture that works well in the areas of scalability, resiliency, usability, and

accessibility. It seems to be accepted nowadays that REST indeed does lead to designs that

are less tightly coupled than the more traditional architectures that have been informing the

design of distributed systems and enterprise IT architectures.

3.9 Microservices Architectural Style

Figure 6: Microservice Hierarchical tree

Each user request is satisfied by a sequence of services

 Most services are internally available

 Each service communicates with other services through service interfaces

There is no particular definition of the Microservice architectural style, there are specific

common characteristics such as automated deployment, intelligence in the endpoints, and

decentralized control of languages and data.

28

3.10 Characteristics of Microservices

Independent Scaling

Scalability is how a computer system, network, or process able to deal with a growing

amount of workload capably or its ability to be enlarged to accommodate that growth

(Wikipedia). According to Amazon ―a service is said to be scalable if when we increase

the resources in a system, it results in improved performance in a manner proportional to

resources added. [adopted by Martin L. Abbott et al., 2015].

X-Axis scalability

X-axis scaling composed of running manifold replication of an application beyond a load

balancer. If there are N replicas, then each reproduction handles 1/N of the load. This is a

conventional, commonly used approach of scaling an application.

Z-Axis scalability

Z-axis scalability is achieved widely used to make data stores more elastic. Data is divided

(a.k.a. sharded) across a set of servers based on an attribute of each record.

Y-Axis scalability

29

Unlike the X-axis and Z-axis, which consist of running multiple, identical copies of the

application, Y-axis axis scaling splits the form into various contrasting services. Every

service is responsible for one or more closely related functions. Each Microservices can be

scaled independently.

 Identified bottlenecks can be addressed directly

 Data sharding can be applied to Microservice as required

 Components of the System that do not represent bottlenecks can remain un-scaled

and straightforward

Discrete Transformation of the Features

Microservices can be expanded without affecting other services

 For example, you can deploy a new version of service without re-deploying the

whole system

 You can also step further as to replace the service by a complete rewrite. This is

achieved through API versioning. A new API is introduced while the old can only

be retired after the service consumers have migrated to the new API. In practice,

the service may have several stable API versions.

Stable Interfaces – Standardized Communication

Communication between Microservices is often standardized using HTTP(S), gRPC, and

AMQP – battle-tested and broadly available transport protocols. HTTP has been proven as

the dominant protocol on the World Wide Web that is highly scalable.

REST – uniform interfaces on data as resources with known manipulation means

 Client-Server: Separation of logic from the user interface

 Stateless: no client context on the server

 Cacheable: reduce redundant interaction between client and server

 Layered system: intermediaries may relay communication between client and

server (e.g., for load balancing)

30

 Code on demand: serve code to be executed on the client (e.g., JavaScript)

 Uniform interface

JSON – simple data representation format

REST and JSON are convenient because they simplify interface evolution

3.11 Challenges to a Microservice Architecture

Any application architecture that strives to solve issues of scaling does have several

concerns, given the complicated nature of existing systems. Decoupling an application into

discrete services means that there are now more moving parts to maintain.

Complex Orchestration

While a critical benefit of Microservice is its streamlined orchestration capabilities, more

services mean maintaining more deployment flows.

Internal Service communication

Dissociate services need a reliable, effective way to communicate internally with various

components of an entire application. Which hosted in the individually microservice

instances. Delivering data over the network put forward latency and potential failure,

which can interfere with the user experience. A common approach is to add API Gateway

to coordinate all communication between users and services.

Data Reliability

As with any circulate architecture, ensuring compatibility is a challenge, both for data at

rest and data in motion. Multiple replicated databases and continuous data delivery can

easily lead to inconsistencies without the proper mechanisms in place.

Support High Availability

Ensuring high-availability is a necessity in any production system. Microservice provides

more effective isolation and scalability; however, the uptime of each service contributes to

the overall availability of applications. Each facility must then have its own distributed

measures implemented to ensure application-wide availability.

Testing

31

While maintaining code and dependencies tight means a more straightforward

development environment for particular services, it does inject challenges with examining

as it delineates to the whole application. Services will often need to interact with each

other or depend on a data origin or API. Testing one service individually would then

require a complete test environment to be effective.

3.12 Microservice Architecture, DevOps and Containers

DevOps is a Pre-requisite to Successfully dramatize Microservices

Microservices, DevOps, and Containers are very interrelated and like birds of same

feathers flock together. Monolithic application, when split into Microservices, enables

higher modularity that leads to a more coherent set of functions that are independent of the

rest of the system. DevOps is the practice each team uses to build and operate these

Microservices, allowing each side to have a shared success story amongst the diverse set of

roles of the entire system. Containers have become the way these Microservices are

packaged, deployed, and released on infrastructure. This leads to better infrastructure

utilization and simplifies the way a change is moved from a development environment to

the production environment.

As monolithic applications are incrementally functionally decomposed into foundational

platform services and vertical services, you no longer just have a single release team to

build, deploy, and test your application. Microservice Architecture results in more frequent

and more significant numbers of smaller applications being deployed. DevOps is what

allows you to do more frequent deployments and scale to handle the growing number of

new teams releasing frequent changes. Containerization facilitates and end-to-end pipeline

for the software lifecycle. DevOps is a prerequisite for being able to successfully adopt

Microservice at scale in a given organization (IBM, 2015).

3.13 Cloud Computing

The vast development of cloud computing technology in the recent past has a substantial

impact on Service provisioning landscape as more and more enterprises begin to adopt this

technology. The term "Cloud Computing" is currently a hot and highly discussed topic in

both the technical, economic, and research world. It is used for describing what happens

when applications and services hosted in remote data centers such as Amazon, Azure, or

32

Cloud Foundry. Cloud computing is not so new. However, more currently, though, cloud

computing refers to many different types of services and applications being delivered in

the internet cloud. Cloud computing definition remains unclear. Many people within the

industrial and academic community have attempted to define what "Cloud Computing"

really is, and what typical characteristics it presents.

A formal definition for cloud computing is given by (Buyya et al. 2009) as "Cloud is a

parallel and distributed computing system composed of a collection of internally connected

and virtualized systems which are dynamically catered and presented as one or more

unified computing resources based on service-level-agreements (SLA) established through

negotiation between the service provider and consumers."

According to National Institute of Standards and Technology (NIST) Cloud computing is

defined as ―a model for facilitating ubiquitous, convenient, real-time network access to a

shared pool of configurable computing resources (e.g., servers, networks, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction‖ (P. Mell et al. 2011). This cloud model

is consists of five essential characteristics, three service models, and several evolving

deployment models.

Characteristics and Benefits of Cloud Computing

One of the essential aspects possessed by cloud computing is elasticity, which is the ability

to dynamically scale up or scale down computing resources whenever required to match

with system workload within a compact time frame (typically within minutes). Through

elasticity, users of cloud computing could avoid the risk of over-provisioning

(underutilization) and under-provisioning (saturation). Other notable characteristics,

including on-demand self-service, resource pooling, and multi-tenancy (multiple customers

can use the same computing infrastructure and network, which results in an increase

utilization rate). (Jula, Sundararajan, & Othman, 2014)

The essential characteristics of Cloud Computing are extracted from its definition (Mell &

Grance 2011, Mahmood & Hill 2011) and are summarized in Table 1.

33

Table 1: Characteristics of Cloud Computing

On-demand self-service Enables the users to access and

consume computing capabilities with

limited
interaction between user and service
provider.

Broad network access The computing capabilities and resources

are available online and can be used by

different
users through standardized mechanisms.

Resource pooling Heterogeneous computing resources can be

combined and automatically assigned to

serve
different users based on a multi-tenant
model.

Highly Scalable Every computing capability and resource

can be provisioned rapidly, elastically

and/or automatically to scale horizontally

or
vertically.

Metrics provision Provide monitoring, controlling and

reporting for billing purpose and

transparency between the service provider

and the user
automatically.

The characteristics above can imply various benefits for potential customers. The most

major benefits of Cloud Computing are the following: (Mahmood & Hill, 2011).

 Cost Reduction can be achieved by avoiding CAPEX for software and hardware

acquisition. Massive cost reduction for OPEX and training.

 Scalability can achieve by adopting virtualization technology, resulting in

innovation and change capacity for the organization

 Access to various IT Services for small and medium enterprises is available at per

second/minute billing. Cloud Ecosystems provide disaster recovery and business

continuity plans through the regional distribution of resources.

 Availability users can ubiquitously access their resources.

2.2.3 Cloud Computing Service Delivery Models

Three different cloud computing service delivery models could be distinguished (Jula et

al., 2014; Rimal, Jukan, Katsaros, & Goeleven, 2010; Mell & Grance, 2011). Four

34

more service models are emerging. These are Container as a Service [CaaS], Function as a

Service [FaaS], DataBase as a Service [DaaS], and Docker Based PaaS (Alex Williams et

al., 2016).

Table 2: Various cloud computing service delivery models

Service Model Description Example Service

Container as

a Service

Encapsulates several components of the

software development lifecycle such as

Container orchestration and registries

Amazon EC2

Container

Service, Docker

cloud

Function as

a Service or

Backend as

a Service

Based on ―serverless‖ architecture where

you don‘t have to manage the

infrastructure used to execute your code:

scaling, availability, patching and so on

are taken care of by the
service itself.

AWS Lambda,

Google Cloud

Function,

IronWorker

Database as

a Service

A shared, consolidated platform to

provision database services using a self-

service model for provisioning those

resources with Elasticity to scale out and

scale back database resources.

Amazon

DynamoBD,

Google‘s Firebase,

Oracle 12c

Software as

a Service

(SaaS)

Service Providers) offer the computing

capability which is deployed on a Cloud

infrastructure. The consumers can access

the applications through a web browser

or a program interface. The software is

installed in the Data centre where it can

be managed,
controlled and updated.

Gmail, Google

Docs, YouTube,

Facebook,

SalesForce.com.

Platform as a

Service

(PaaS)

The consumers are provided with a

platform where they can deploy their

applications. The platform provides

programming languages, tools, and

libraries that can be used by the

consumers to build and run their

applications.

Elastic

Beanstalk,

Microsoft

Azure.

35

Docker-

based PAAS

This kind of infrastructure is built from

the ground up using containerization

platform such Docker

Deis, Flynn,

Cloud Foundry

and Openshift

Infrastructur

e as a Service

(IaaS)

The consumer is provided with

fundamental computing resources such

as storage, networks, or processing. The

consumer can use these computing

resources to deploy and run applications

or even operating systems.

(EC2, Windows

Azure Virtual

Machines,

Google

Compute

Engine.

3.14 Serverless architecture

Serverless architecture is an emerging trend that is quickly gaining momentum. The idea is

to be able to run server-side code without worrying about the messy details of provisioning

and setting up servers. You write code, upload it, and it spin-up. All the challenges of

managing the infrastructure, provisioning servers, auto-scaling, installing languages, and

frameworks are eliminated and hidden away by the vendor. Examples include AWS

Lambda and Google Cloud Function. According to (Danilo Poccia, 2016), the introduction

of AWS Lambda, the abstraction layer is set higher, allowing developers to upload their

code grouped in functions, and let the platform execute those functions.

Iron.io, a startup, has also introduced IronWorker as a serverless architecture that enables

engineers to guide the machines to execute code in reaction to a particular context. It can

facilitate in the operation as it comes in, like cleaning up data, providing notifications at

scale, delivering out emails, or handling mobile check-ins quickly.

IronWorker can be used for a wide range of purposes. IronMQ message queue tools can be

run on public clouds or in on-premises data centers. According to (Ivan Dwyer, 2016),

whereas AWS Lambda is limited to Node.js, Java, and Python, IronWorker provides

Clojure, Go, .NET, PHP, Python, Ruby, and binary code.

http://deis.io/
https://flynn.io/

36

Google Cloud Function is a simplified approach for developers to create individual

purpose, standalone operations that react to cloud functions without the need to manage a

server or runtime environment.

Going serverless requires a slightly discrete action to software design and architecture. The

backend service is broken down into small pieces of standalone functionality that execute a

single task in react to a user action or event. In serverless architecture, the backend is

composed of thin, single-purpose microservices that are event-driven, and the business

logic moved from the backend to the client. It becomes the central orchestrator, calling

various functions to perform some action for the user when needed.

Serverless architecture requires astute clients that know about and talk to a wide range of

remote functions. While mobile app developers have had productive frameworks and

platforms that allowed them to build complex logic on the client quickly, things weren‘t so

simple for web applications. But thanks to productive client-side application frameworks

like Angular 2 and a fast HTTP/2 protocol, it is now possible to build sophisticated

applications seamlessly into the browser. This will help drive the serverless trend even

further.

3.15 Deployment Models

In the previous section, the essential service models were discussed. These services can be

deployed in various ways.

Private Cloud

The Cloud-based solution is provisioned and used by a single enterprise. Private Clouds

inherit the characteristics of Cloud Computing (e.g., elastic service provisioning,

virtualization, etcetera) and provide more benefits to the enterprise (Armbrust et al.,

2009).

Community Cloud

The Community Cloud is similar to the private Cloud, but the community Cloud is owned

and shared among a group of organizations. These organizations must share the same

37

concerns, such as policy, mission, compliance considerations, and security requirements

(Mell & Grance, 2011).

Public Cloud

The public Cloud is when the provisioning of Cloud-based solutions is publicly available

for open use. The services are ubiquitous and accessible through an Internet connection,

but this deployment model poses many security and privacy concerns (Armbrust et al.

2009, Mell & Grance 2011)

Hybrid Cloud

Hybrid Cloud blends at least two distinct deployment models (e.g., public, private, or

community Cloud) which are tailored to provide data and application portability. In that

way, some of the resources are residing on-premise, while others are outsourced

(Mahmood & Hill 2011).

3.16 Virtualization Technologies

The virtualization techniques of interest in our study can be grouped into two categories:

Full virtualization and Operating System-level (OS-level) virtualization. The foundation of

Full virtualization is computer hardware mimicry. A host machine delivered mimics the

hardware environments for its guests to run their separate OS like they are run as the

independent machine. The worlds most virtualization solution provides are VMware and

Kernel Virtual Machine (KVM). Conversely, in the container-based virtualization system,

it shared the host operating system kernel to the entire guest system or containers. The host

hardware isolates all the dependencies guests into different virtual machines, which mimic

a new dedicated running environment for each guest and prevent them from accessing

unrelated resources (Tam Le Nhan, 2013).

Full Virtualization Approach

Full virtualization aspects, also known as the original virtualization technology, refers to

that whole virtual machine that replicates the entire underlying hardware, including

38

processors, storage, memory, peripherals, etc. It is not compulsory to make any

modification to run operating systems or other system software in a virtual machine. The

Docker layered architecture diagram is shown on the left in figure 7.

Figure 7: Comparison of OS-Level Virtualization and Full Virtualization (Source: Docker

Inc.)

Linux Based Containers

LXC (Linux Container is a standard virtualization solution for Linux. LXC provides

several kernel features to achieve the virtualization goal, such as kernel namespaces and

control groups. Kernel namespaces facilitate a group of processes to have their own

namespace and thereby isolating these processes from any means, not in the same

namespace.

Choice of Virtualization Platform

Full virtualization approach offers the best isolation and resource protection mechanisms.

OS-level virtualization provides the best performance and service density at the expense of

isolation.

OS-Level virtualization was chosen due to its low overhead, small footprint, and resulting

in higher container density. This is an essential consideration for Web services that are

39

typically built for commodity hardware. Among different OS-Level virtualization

applications, we choose Linux based Container called Docker.

Design Through Abstraction

A system may be orchestrate of many levels of notion and many phases of operation, each

with its own software architecture. A web-based system consists of servers, databases,

clients, load balancers, and gateways.

Software architecture represents an abstraction of system behavior at that level, such that

architectural elements are delineated by the abstract interfaces they provide to other parts

at that level (L. Bass et al., 1998). Within each component may be found another

architecture, defining the system of sub-elements that implement the behavior represented

by the parent element‘s abstract interface. This recursion of architecture continues down to

the most basic system elements: those that cannot be decomposed into less obscure parts.

The concept of containerization is a means of abstracting system behavior so that that a

container may hide the inner components from a developer who intends to use this

container in system design. A virtual machine is a container that can house several other

containers that are at different levels of abstraction. All the details of how the container

provides the required functionality and runtime behavior are hidden from the outside

world. The container only exposes a uniform interface so that it can interact with other

systems at that level. This is the principle on which Docker is based.

Mechanical systems follow similar abstractions. A car only exposes a uniform interface to

the driver, but within a vehicle, there are several levels of system abstractions. Within the

car, we have other systems such as the engine, the electronic control unit, and the

Transmission system whose inner workings the driver requires not to know to drive the

car.

Software Architecture Abstraction Through Containerization

Software architecture abstraction has been made possible by advances in virtualization.

Running any software on any hardware platform was made possible by the introduction of

Virtual machines. A virtual machine runs on top of a Virtual Machine Monitor (VMM) or

40

Hypervisor. The hypervisor acts as an interface between the virtual machine and the

underlying Kernel or Hardware. The cloud computing paradigm is based on the concept of

virtualization. Containerization though not a new idea is a subject of much debate in the

last two years. This was after Docker Inc. popularized Containers in 2013. Within two

years, Docker containers, which are based on Linux Containers (LXC) is promising to

change the course of virtualization and the whole cloud computing ecosystem.

Docker containers go further, adding layers of abstraction and deployment management

features. Among the benefits of this new infrastructure, technology is that containers that

have these capabilities reduce coding, deployment time, and OS licensing costs. The VM

model blends an application, a full guest OS, and disk emulation. In contrast, the container

model uses just the application‘s dependencies and runs them directly on a host OS.

Containers do not launch a separate OS for each application but share the host kernel while

maintaining the isolation of resources and processes where required. A Docker application

container takes the basic notion of LXCs, adds simplified ways of interacting with the

underlying kernel, and makes the whole portable (or interoperable).

3.17 Docker Architecture

Figure 8: Docker Architecture (Source: geekflare)

41

Docker API

The Docker daemon has a remote API, and this is what the Docker command-line tool uses

to communicate with the Docker engine. Since Docker API is well documented in the

public repository, so it's very convenient to use an external means to access the API. This

provides all manners of tooling, from mapping deployed Docker containers to servers, to

automated deployments, to distributed schedulers. As you embrace Docker over time,

likely, you will increasingly find the API to be a good integration point for this tooling.

This API has made it possible to integrate Docker to other technologies such as Software

Defined Networking and distributed Filing and storage.

Docker Client

The Docker client supports 64-bit versions of Linux kernel, Mac OS X, and Windows due

to the Unix underpinnings of these operating systems. To develop an application or

environment to the Docker on non-Linux platforms, It's necessary to leverage VMs or

remote established Linux hosts to provide a Docker server. However, this state of affairs is

changing with the introduction of docker for windows and OS.

Docker Engine

Docker engine release 18.09 + consists of the following features

42

Figure 9: Docker Engine Architecture (Source: Docker Inc.)

 Orchestration: comes with inbuild orchestration capability using Swarm. The

inbuild Swarm is simple to use and enhances container security through the use of

TLS.

 DNS round-robin load balancing: It‘s now possible to load balance between

containers with Docker‘s networking. If you give multiple containers the same

alias, Docker‘s service discovery will return the addresses of all of the containers

for round-robin DNS.

 VLAN support: VLAN support has been added for Docker networks so that you

can integrate better with the existing networking infrastructure.

 IPv6 service discovery: Engine‘s DNS-based service discovery system can now

return AAAA records.

 Yubikey hardware image signing: this is the ability to sign images with hardware

Yubikeys.

 Labels on networks and volumes: You can now attach arbitrary key/value data to

networks and sizes, in the same way, you could with containers and images.

43

 Better handling of low disk space with device-mapper storage:

The dm.min_free_space option has been added to make device-mapper fail more

gracefully when running out of disk space.

 Consistent status field in docker inspects: This is a little thing, but handy if you

use the Docker API. Docker examination now has a Status field, a single consistent

value to define a container‘s state (running, stopped, restarting, etc.).

Containers

The container is a runtime instance for an image. Docker API or CLI enables to

user/developer to create, move, start, stop, or delete functionality. A Container can connect

one or more networks and possible to attach storage to it. A container by default well

isolated from another container and its underlying host machine. Docker provides isolated

functionality that enables the container’s network, storage, and other subsystems isolation

one from another.

Example docker run command

$ docker run -i -t centos /bin/bash

Service

Service provides the container scaling functionality across the multiple Docker daemons.

It’s working together as a swarm along with numerous managers and workers. All the

members of the swarm is a daemon of docker, and communicating among them by using

Docker API. A Service also maintains the number of replicas available at any given time.

By default, a Service doing load-balancing between all the worker nodes.

Benefits of Containerization.

 Containers are Lightweight

Not only is Docker quicker than a traditional VM to spin up, but it‘s also more lightweight

to move around because it's shared the host OS kernel.

44

 Fast application deployment – containers include the minimal runtime

requirements, libraries, and dependencies of the application, allowing them to be

deployed quickly.

 Portability across machines – A container can be transferred to another machine

that runs Docker and executes in a different machine without having any

compatibility constraints.

 Edition control and element reuse – you can shadow following versions of a

container, inspect varieties, or fall-back to the previous versions.

 Sharing – Docker using docker hub as a container registry or a remote repository

to share your container with others.

 Lightweight trail and insignificant burden – Containerized images are typically

minimal, which facilitates rapid delivery and reduces the time to deploy a new

application.

 Simplified maintenance – Containerization reduces effort and risk of problems

with application dependencies.

3.18 Docker Containers and the Cloud Ecosystem

 Images – A Docker image is made up of filesystems layered over one another. At

the center is a boot filesystem, bootfs, which resembles the typical Linux boot

filesystem. An image contains the whole filesystem that will be available to the

application, and other metadata, such as the path to the executable that should be

executed when the image is run

 Registries – A Docker Registry is a service that stores your Docker images and

facilitates the secure sharing of those images between developers and machines.

When you build your image, you can run within the same machine, or you can push

(upload) the image to a docker hub registry and then pull (download) it on another

computer and run it there. Some records are public, allowing anyone to pull images

from it, while others are private, only accessible to specific people or machines.

45

 Containers –A running Docker Image is called a container and is a process running

on the machine that has Docker daemon. A container is resource-constrained,

meaning it can only access and use up the number of resources (CPU, RAM, etc.)

that are allocated to it.

Figure 10: Docker Public or Private Registries

Docker Machine

Docker Machine enables the user to store Docker machines in diverse environments,

alongside virtual machines that stay on the local system, cloud providers, or any physical

computers. Docker Machine builds a Docker host, use the Docker Engine client as required

to develop images and formulate containers on the host. Docker can be found 32 and 64-bit

versions of Linux, Windows, and Mac OS X.

Open Container Ecosystem

There is a massive community aligning to use Docker, mainly developers and system

administrators. Like the DevOps evolution, this has expedited more salutary tools by

employing code to compelling problems. Wherever are rifts in the tooling given by

Docker, other companies and individuals have stepped up to offer viable and open source

46

solutions. That means they hosted on public repositories and can be modified by any others

to fit their needs.

The figure below illustrates how the container architecture is layered. Note the layering of

different services to simplify container management. As Docker enters its maturity, it will

interact will the various layers of technologies.

Figure 11: Open Container Layered Architecture [Docker Inc.]

2.2.4 Docker Extensions

For Docker to be useful in supporting the distributed application, it has to possess the

following capabilities.

 Portable beyond the environments: Docker can operate any Linux based host

machine where you can define how the application will run in a different context

like development, testing, staging, and production seamlessly.

 Portable beyond providers: Docker enables us to move your application between

different cloud providers and your own servers, or run it across several providers.

47

 Composable: You want to be able to split up your application into multiple

services.

Scaling up microservices with Docker compose

Docker-compose is a tool for defining and running complex applications with Docker.

With Compose, it is used yml file where multi-container application instructions in a single

file, with a single the application, will be up and running, which does everything that needs

to be done to get it running. Using Compose is a three-step process. Determine your app‘s

environment with a Dockerfile so it can be duplicated anywhere ok system. [Docker Inc.]

1. Determine your app‘s environment with a Dockerfile so it can be replicated

anywhere.

2. Determine the settings that make up your app in docker-compose.yml so they can

be run together in an isolated environment:

3. Lastly, run docker-compose up, and will start and run your entire app.

The primary function of Docker Compose is the creation of Microservice Architecture,

meaning the containers and the links between them. But the tool is capable of much more.

Scaling up microservices with Docker Swarm

Docker Swarm unlocks one of the key limitations of Docker, where the containers could

only run on a single Docker host. Docker Swarm is a native clustering mechanism for

Docker. It spins a pool of Docker hosts into a single, virtual host.

Swarm terminology

This section introduces some of the concepts unique to the cluster management and

orchestration features of Docker Engine 1.12.

SwarmKit

The cluster management and orchestration characteristic embedded in the Docker Engine

and those are built by the SwarmKit. Docker Engines engage in a cluster are running in

Swarm mode. You enable Swarm mode for the Engine by either initializing a swarm or

joining an existing Swarm.

48

A Swarm is a bunch of Docker Engines where you deploy services. The Docker Engine

CLI includes the commands for Swarm management, such as adding and removing nodes.

The CLI also contains the controls you need to deploy services to the Swarm and manage

service orchestration.

When you run Docker Engine outside of Swarm mode, you execute container commands.

When enabling docker-engine in Swarm mode, you orchestrate services.

 Node

A worker node is an instance of the Docker Engine engaging in the Swarm cluster. Which

sole purpose is to execute the containers in the docker. It is not possible to create swarm

worker nodes without having at least one manager node. By default characteristics, all

managers act as also workers node.

Worker nodes receive the request from the manager nodes and execute tasks according to

that. The agent notifies the manager node of the current state of its assigned functions so

the manager can maintain the desired state.

 Services and Tasks

A Service is the definition of the group of tasks to execute on the worker nodes by

instruction from manager nodes. It is the interior architecture of the Swarm system, and

only the root user can interact with the swarm system. When you create a job, it is

necessary to specify which image from the container to use and commands to execute

internally ongoing operational containers.

In the distributed services model, the Swarm manager replicates a specific number of

replica tasks within the nodes based on to scale you set in the desired state. For global

services, the Swarm runs one job for the tasks on every available node in a cluster.

 Load Balancing

The Swarm manager uses inbound load balancing to expose the services.

49

It enables swarm available externally. The Swarm manager can automatically allot the

service PublishedPort, or you can configure a PublishedPort for the service in the 30000-

32767 range.

External components, such as load balancers in the cloud able to access the service on the

PublishedPort from any of the nodes in the cluster. All nodes in the Swarm cluster route

inbound connections to a running task instance.

Swarm mode has an internal DNS component that automatically assigns each service in the

Swarm a DNS entry. The Swarm manager uses internal load balancing to distribute

requests among services within the cluster based upon the DNS name of the service

Swarm Orchestration Architecture

A Swarm orchestration is a not a centralized and highly available group of Docker nodes.

Each node is an independent sub-system that has all the built-in capabilities, and it can

create a pool of shared resources as per schedule Dockerized tasks.

A Swarm of Docker nodes can produce a programmable network topology. The operator

can choose which nodes are performing as managers and which are as workers. This

includes standard configurations like sharing managers node across multiple availability

zones. Because these roles are compelling, they can be altered at any time through the API

or CLI calls.

Managers are in charge of coordinating the cluster. It provides the service API, scheduling

jobs (containers), undertakes containers that have failed health checks, and much more. On

the other hand, worker nodes providing a much-unsophisticated function, that executing

the tasks to reproduce containers and routing data traffic expected for specific boxes. In

production environments, it is recommended to having nodes nominated as either

managers or workers nodes. In this method, managers do not run containers, thus

minimizing their workload and risky surface. In contrast, one of Swarm mode‘s security

advances is that worker nodes do not have access to information in the data store or the

API.

50

The raft is used to share data between managers for durable consistency (at the cost of

write speed and limited volume). In contrast, gossip is used between workers for fast

communication and high volume and transmission between managers and workers node

has separate requirements still.

Figure 12: Swarm Orchestration Architecture [Docker Inc]

 Raft Consensus algorithm

According to (Diego Ongaro et al., 2014), Raft is an understandable and straightforward

cluster consensus protocol. At any proposed time, the particular server is in one of three

states: leader, follower, or candidate. Under regular operation, there is precisely one leader,

and all of the other servers are followers. Followers are passive: they issue no requests on

their own but simply respond to applications from leaders and candidates. The leader deals

with all client requests, and if a client contacts a follower, the follower redirects it to the

leader.

When a nodeact as a manager node, it joins a Raft concurrence group to yield information

and execute the leader election. The centaral authority called leader, which making the

scheduling decision across the swarm which including list of nodes, services and tasks. .

That operation is distributed across each manager node through a built-in Raft store.

[Docker Inc.]

51

The ultimate optimization is in how efficiently the data is ensured both in terms of size

(protocol buffers) and performance (domain-specific indexing ok system). It is possible to

run through instantly query from memory the containers that are running on a particular

machine, the containers that are unhealthy for a specific service, etc.

 Manager-Worker Communication

Worker nodes communicate with manager nodes using gRPC. This fast protocol works

exceptionally well in noisy networking conditions. Workers nodes continuously sending

out their given task status and heartbeat state, so the managers can verify the worker node

is still alive.

The following diagram illustrates the dispatcher parts of the manager node, which

eventually communicates with workers nodes. It is liable for dispatching tasks to each

worker, while the worker (though an executor parts) is in charge of translating those tasks

into containers and creating them.

52

Figure 13: The elements of Docker Swarm cluster based on Raft Consensus Algorithm

Service initiation

The user sends the service definition to the API. The API accepts and stores the service

state before forwarding the request to the Orchestrator.

 Orchestrator accommodates expected state(as defined by the system user) with the

existent state (which is being operated on the Swarm). It will catch the latest

53

service created by the API and react to that by the start of a task (assuming in this

case, the user requested only one instance of the service)

 Allocator allocates resources for jobs. It will notice a brand new facility (generated

by API) and the latest task (bring up by the orchestrator) and will allocate IP

addresses for both.

 Scheduler is responsible for assigning tasks to worker nodes. It will inform a task

to the unused node. For that reason, it starts scheduling. The scheduler tries to find

the best match based on some criteria su.ch as constraints, resources. Finally, it will

assign the task to one of the nodes

 Dispatcher is where workers connect to. Once workers are connected to the

Dispatcher, they wait for instructions. In this way, a task assigned by the scheduler

will eventually flow down to the worker.

Allocator, Scheduler, and Dispatcher will perform the same steps as explained above, and

the two new tasks will land on workers.

3.19 Scaling up Microservices Kubernetes

Kubernetes is an open-source project to manage a cluster of Linux containers (Docker and

rkt) as a single system, managing and running containers across multiple hosts, offering

co-location of containers, service discovery and replication control. Google started it and

now it is used by several software vendors. Kubernetes 1.4 has added more capabilities

such as

 The Kubernetes allows users to set up services that span multiple clusters that can

even be hosted across multiple clouds.

 Support stateful applications like databases. The project now also features

improved autoscaling support.

 Support for rkt as an alternative container runtime to Docker‘s runtime.

54

support for twice as many nodes in a cluster as before (up to 2,000) and services can now

span different availability zones

The design of Kubernetes is a combination of microservices and small control loops, and

this achieves the desired emergent behavior by combining the effects of separate,

autonomous entities that collaborate. This is an improved design selection in divergence to

a consolidate orchestration system, which may be simpler to build at first but tends to

become brittle and rigid over time, especially in the presence of unanticipated errors or

state changes.

A Kubernetes cluster is composed of two parts:

 The Kubernetes Control Plane - is highly scalable microservice-based and

loosely coupled components which controls and manages the whole Kubernetes

system.

 Worker nodes - Containerized hosts who run the actual applications you deploy in

the Kubernetes cluster. The elements of the control plane are (Marko Lukŝa,

2016): The API Server. Which you use to communicate with and perform

operations on the Kubernetes cluster the Scheduler, which is responsible for

scheduling your apps (assigning a worker node to each deployable component of

your application), the Replication Controller, which performs cluster-level

functions, such as replicating components, keeping track of worker nodes, etc.

 etcd, a reliable distributed store that stores the whole cluster configuration

persistently. The worker nodes, on the other hand, run. Docker, which runs your

containers.

 Kubelet: which talks to the master node and controls Docker on that node.

 Kube Proxy, which proxies and load balance network traffic between your

application components.

55

Figure 14: Kubernetes Master-slave design illustrating its microservices and container-

based architecture (Marko Lukŝa, 2016)

Thanks to the development of Linux namespaces, VMs, IPv6, and software-defined

networking. Kubernetes can take a more user-friendly approach that eliminates these

complications: every service gets its own IP address, allowing developers to choose ports

rather than requiring their software to adapt to the ones chosen by the infrastructure, and

removes the infrastructure complexity of managing ports.

Kubernetes derivatives

Asian telecommunications giant Huawei Technologies has released its own container

orchestration engine, the Cloud Container Engine (CCE). CCE is based on Kubernetes.

CoreOS launched a project called Stackanetes, which was designed to run OpenStack as an

application on your infrastructure, just like any other application. In effect, Stackanetes

uses the Kubernetes orchestration engine to manage a distributed OpenStack deployment.

Learning from Google‘s over ten years of experience of running every application inside a

container, Mirantis has decided to make OpenStack more scalable and manageable by

running it using Kubernetes. By packaging OpenStack services so Kubernetes can manage

56

them, Mirantis is addressing many of OpenStack‘s scaling, management, and operational

challenges, making it, in theory, as scalable as any microservice.

3.20 Scaling up microservices with Apache Mesos

Mesos architecture is quite different from Kubernetes. The main difference in the design is

that Mesos employs two-level scheduler architecture. The actual scheduling tasks delegate

to frameworks. The master can be a very scalable light-weight piece of code. It enables

rapid growth in the number of frameworks that Mesos supports. In Mesos, there is no need

to add brand new code to the master and slave modules every time a new framework

during the iteration. Instead, the developer can focus on their application and framework

without worrying about the underlayer system.

57

Figure 15: Mesos Two Level Orchestration Architecture

3.21 Containerized Application Management

According (Alex Williams, 2016), it takes roughly 16 man-hours per year per VM for

patching, updating the OS, antivirus, etc. And this is for infrastructures that are reasonably

automated. If they‘re not automated, it probably takes longer. Multiply that by the number

of VMs in your environment, that‘s a lot of OPEX. Kubernetes, on the other hand, is a

58

great system, but it requires a lot of manpower to install and maintain. It requires a lot of

resources. When you look at reasons why it‘s not taking off faster, it‘s that there‘s a

learning curve.

The cluster management tools that are dominating the container orchestration scene

include Docker Swarm, Kubernetes, and Mesos. All these tools come with different use

cases, and it is difficult to rely on one and omit others. Under the production environment,

it may be possible to have containerized management tools that fully automates the cluster

management tasks using various orchestration tools. In the following subsections, we look

at numerous such attempts.

Kontena

Kontena is a free, open-source system for deploying, scaling, managing, and monitoring

containerized applications beyond multiple instances on any type of cloud infrastructure.

Initially, it's targeted for running applications composed of various containers, such as

elastic, distributed micro-services.

Both Docker Swarm and Kubernetes influence the architecture of Kontena, so it had some

opportunities to learn from those projects‘mistakes and successes. It's working like

Kubernetes at a level of abstraction but higher than containers. The first building

components of Kontena are called services. The other main parts of Kontena‘s architecture

are the grid, services, the master node, host nodes, and the Kontena CLI.

The Master Node

Similar to Kubernetes, Kontena works on master-slave architecture. The Master node

doesn't like other orchestration solutions. It doesn't provide any additional underlying

processing power. The primary role is to provide audit logging and management of

containers purely.. Kontena‘s other component is called host nodes — are what offer the

processing power and run the physical Docker containers.

59

Kontena CLI

If you have played with docker-compose, it can find Kontena very inherent. When it is not

a one-one match, Kontena‘s kontena.yml files are very close to the docker-compose.yml

file. It is possible to have a base docker-compose.yml file that can be extended and

reference using a kontena.yml file. Kontena‘s strengths lie in

· Easy installation: Kontena works on any public cloud, on-premises, or hybrid and

requires minimal effort to install. The platform doesn't require maintenance and includes

automatic updates. Instead, developers spend more time working on their own projects or

applications.

· Scalability: Compare to the other platforms, Kontena is suitable for running even the

smallest container, and it may be scaled up when it required. This scalability means

developers have a tool to define the right size for their unique organizational needs.

· Open source: Kontena is a free, open-source, and it can integrate with other

orchestration, as well as leading software-as-a-service offerings aimed at monitoring and

logging. This minimizes vendor lock-in and ensures developers have a wide array of

options available to them.

Kontena version 0.15 supports the following features.

· CLI plugins - CLI functionality can be extended with plugins. All provisioning

features are now available as a separate plugin.

· Health checks - It's now possible to configure health checks for each service.

· Let's Encrypt support - Support for issuing Let's Encrypt certificates using the

DNS challenge.

· Load Balancer Sticky Sessions - Now, it's possible to configure the load balancer to

use sticky sessions.

Kontena able to proposes a more complete and automated container that includes more

functionality such as orchestration, scheduling, network overlay, load balancing, and

secrets management.

60

3.22 Docker Plugin Architecture

During the Docker Conference held on 22nd June, 2015 Docker announced a plugin

architecture. The Docker ecosystem of tool-makers is growing exponentially. The value of

plugins is to integrate this ecosystem seamlessly with the Docker Engine. Customization

leads to applications that fit the end-users‘ needs better. This extensibility must retain

Docker‘s portability, consistency, and ease of use. That is the idea behind Docker plugins:

one set of interchangeable tools via one Docker open platform. A user can swap out a

plugin and replace with another without having to modify their application. You can swap

in different volumes, networking, composition, or scheduling framework, depending on

user preferences and the individual requirements of each user‘s requests.

 Volume Plugins: It allows third-party container data management solutions to

provide data volumes for containers that operate on data, such as databases, queues,

and key-value stores and other stateful applications that use the file system.

 Network Plugins: This allows third-party container networking solutions to

connect containers to container networks, making it easier for vessels to talk to

each other even if they are running on different machines.

In both cases, the plugin mechanism takes a piece of core functionality that Docker already

provides and allows users and tool-makers to load, or write, plugins that extend that feature

is crisp, new, and exciting ways.

61

Figure 16: Docker plugin Architecture showing the extensions and interfaces to other

systems

3.22.1 Volume Plugins

Starting with version 1.8, Docker introduced support for third-party volume plugins.

Existing tools, including Docker command-line interface (CLI), Compose and Swarm,

work seamlessly with plugins. Kubernetes 1.3+ also has excellent support for volume

plugins (databases).

According to Docker, volume plugins enable engine deployments to be integrated with

external storage systems and data volumes to persist beyond the lifetime of a single-engine

host. Customers can start with the default local driver that ships along with Docker, and

move to a third-party plugin to meet specific user storage requirements. Further volume

62

plugin enables containerized applications to interface with filesystems, block storage,

object storage, software-defined storage.

Currently, Docker supports more than a dozen third-party volume plugins for use with

Azure File Storage, Google Compute Engine persistent disks, NetApp Storage, and

vSphere.

Basics of Volume Plugin Architecture

Docker ships with a default driver that supports local, host-based volumes. When

additional plugin is available, the same workflow can be extended to support new

backends.

The third-party volume plugins are installed separately, which typically ship with their

own command-line tools to manage the lifecycle of storage volumes. Docker‘s volume

plugins can support multiple backend drivers that interface with popular filesystems, block

storage devices, object storage services, and distributed filesystems storage.

Figure 17: The Docker Volumes Plugin Architecture

63

Flocker works with mainstream orchestration engines such as Docker Swarm, Kubernetes,

and Mesos. It supports storage environments ranging from Amazon Elastic Block Store

(EBS), GCE persistent disk, OpenStack Cinder, vSAN, vSphere, and more.

3.22.2 Network Plugins

Container networking technology is an excellent enabler for scalable microservices.

Container networking types of concern to us include:

 Overlay

 Underlay

2.2.5 Types of Container Networking

Container networking types can be categorized based on IP-per-container versus IP-per-

pod models and the requirement of network address translation (NAT) versus no

interpretation needed.

Overlay

Overlays employ tunnels to deliver communication across and between hosts. Many

tunneling technologies exist, such as virtual extensible local area network (VXLAN).

VXLAN has been the tunneling technology of choice for Docker libnetwork, whose multi-

host networking entered as a native capability in the 1.9 Docker engine release. Multi-host

networking requires additional parameters when launching the Docker daemon, as well as

a key-value store. Some overlays rely on a distributed key-value store. If you‘re doing

container orchestration, you‘ll already have distributed key-value store lying around.

Docker Swarm has inbuilt support for overlay networking.

Underlays

There are two types of underlay networking based, namely media access control virtual

local area network (MACvlan) and internet protocol VLAN (IPvlan). Both network drivers

are conceptually more straightforward and eliminate the need for port mapping and are

more efficient.

64

MACvlan

MACvlan allows the creation of multiple virtual network interfaces behind the host‘s

single physical interface. Each virtual interface has unique MAC and IP addresses

assigned, with a restriction: the IP addresses need to be in the same broadcast domain as

the physical interface. MACvlan networking is a way of eliminating the need for the Linux

bridge, NAT, and port-mapping, allowing you to connect directly to the physical interface.

The host cannot reach the containers. The container is isolated from the host. This is useful

for service providers or multi-tenant scenarios and has more isolation than the bridge

model.

IPvlan

IPvlan is similar to MACvlan in that it creates a new virtual network interface and assigns

each a unique IP address. The difference is that the same MAC address is used for all pods

or containers on a host, i.e: the same MAC address of the physical interface. Best run on

kernels 4.2 or newer, IPvlan may operate in either L2 or L3 modes. Like MACvlan, IPvlan

L2 mode requires that IP addresses assigned to subinterfaces be in the same subnet as the

physical interface. IPvlan L3 mode, however, requires that container networks and IP

addresses be on a different subnet than the parent physical interface.

MACvlan and IPvlan

When choosing between these two underlay types, consider whether or not you need the

network to be able to see the MAC address of the individual container. In this sense,

IPvlan L3 mode operates as you would expect an L3 router to behave.

Docker is experimenting with Border Gateway Protocol (BGP). While static routes can be

created on top of the rack switch, projects like goBGP have sprouted up as a container

ecosystem-friendly way to provide neighbor peering and route exchange functionality.

Although multiple modes of networking are supported on a given host, MACvlan and

IPvlan can‘t be used on the same physical interface concurrently. In short, if you‘re used to

running trunks down to hosts, L2 mode is for you. If the scale is a primary concern, L3 has

the potential for a massive scale.

65

3.23 Container Networking Model

Container Network Model (CNM) formalizes the steps required to provide networking for

containers while providing an abstraction that can be used to support multiple network

drivers. Libnetwork is the canonical implementation of the CNM. Libnetwork provides an

interface between the Docker daemon and network drivers. The network controller is

responsible for pairing a driver to a network. Each driver is responsible for managing the

network it owns, including services provided to that network like IPAM. With one driver

per network, multiple drivers can be used concurrently with containers.

Libnetwork

Libnetwork implements Container Network Model (CNM), which formalizes the steps

required to provide networking for containers while providing an abstraction that can be

used to support multiple network drivers. Libnetwork delivers a unified API for integrating

networking solutions from Weave, Nuage, Cisco, Microsoft, Calico, Midokura, and

VMware into Docker. Finally, Libnetwork implements the Container Network Model

(CNM).

The CNM contains several different constructs

 Endpoint

 Network

 Sandbox

66

Figure 18: The Container Network Model (CNM)

Endpoint

A network interface can be used for communication over a specific network. Endpoints

join exactly one network, and multiple parameters can exist within a single Network

Sandbox.

Network

A Network is a uniquely identifiable group of Endpoints that can communicate with each

other directly. An implementation of a Network could be a Linux bridge, a VLAN, VPN,

etc. A network consists of many endpoints. You could create networks A and B that are

entirely isolated.

Sandbox

An isolated environment that allows Network configuration for a Docker Container. This

includes the management of the container's interfaces, routing table, and DNS settings. A

Sandbox may contain many endpoints from multiple networks.

Container Networking Interface

The CNI (Container Network Interface) project consists of a specification and libraries for

writing plugins to configure network interfaces in Linux containers, along with several

supported plugins. CNI concerns itself only with network connectivity of containers and

67

removing allocated resources when the container is deleted. Multiple plugins may be run at

one time with a container joining networks driven by different plugins. CNI plugins

support two commands to add and remove container network interfaces to and from

networks. Add gets invoked by the container runtime when it creates a container. Delete

gets invoked by the container runtime when it tears down a container instance.

Container Network Model and Container Networking Interface

Both container standardization models democratize the selection of which type of

container networking may be used for creating and managing network stacks for

containers. Both models allow containers to join one or more networks. And each allows

he container runtime to launch the network in its own namespace, segregating the

application/business logic of the container to the network to the network driver.

CNI supports integration with third-party IPAM and can be used with any container

runtime while CNM is designed to support the Docker runtime engine only. With CNI‘s

simplistic approach, it‘s been argued that it‘s comparatively easier to create a CNI plugin

than a CNM plugin.

These models promote modularity, composability and choice by fostering an ecosystem of

innovation by third-party vendors who deliver advanced networking capabilities. The

orchestration of network micro-segmentation can become simple API calls to attach,

detach, and swap networks.

Container Networking in OpenStack

OpenStack is a framework for managing, defining, and utilizing cloud resources. The

official OpenStack website (www.openstack.org) describes the framework as open-

source software for building private and public clouds.‖ According to (V.K. Cody

Bumgardner, 2015), OpenStack Software delivers a massively scalable cloud operating

system.

According to the online publication (Alex Willams et al. 2016), OpenStack is rapidly

becoming a core building block for companies such as AT&T, Verizon, BMW,

Volkswagen, and Walmart, that are building private cloud infrastructures. OpenStack has

http://www.thenewstack.io/tag/OpenStack

68

become an integration engine that bridges the union of containers, bare metal, and virtual

machines. OpenStack brings these resources together in one platform and supports a

variety of networking and scaling approaches and storage options.

OpenStack delivers choice, scalability, and the flexibility to adopt new technologies.

Initially focused on infrastructure automation for virtual machines, OpenStack supports

container networking through two projects, namely Kuryr and Magnum.

Kuryr

Kuryr, a project providing container networking, currently works as a remote driver for

libnetwork to provide networking for Docker using Neutron as a backend network engine.

Support for CNM has been delivered, and the roadmap for this project includes support for

CNI.

Magnum

Magnum, a project providing Containers as a Service (CaaS) and leveraging Heat to

instantiate clusters running other container orchestration engines, currently uses non-

Neutron networking options for containers.

Network Driver Plugins

 Weave

Weave uses open vSwitch architecture, and containerized applications are interlinked and

appear to be plugged into the same network switch, with no need to configure port

mappings, links, etc. Services provided by application containers on the weave network are

accessible to the outside world, regardless of where those containers are running

(Weaveworks, 2015).

69

 Calico

Calico employs the underlay solution for interconnecting Virtual Machines or Linux

Containers. Instead of a vSwitch, Calico operates a vRouter function in each computes

node. The vRouter uses the existing L3 forwarding capabilities of the Linux kernel, which

are configured by a local agent (Felix) that programs the L3 Forwarding Information

Base with details of IP addresses assigned to the workloads hosted in that compute node

(Cloudsoft, 2015).

Calico provides high scalability because it‘s based on the same principles as the Internet,

using the Border Gateway Protocol (BGP) at the control plane. With well-known

implementations, BGP can handle tens of thousands of distinct routes comfortably. And

because Calico connects virtual machines or containers directly via IP, it scales beyond the

data center and natively supports cloud connectivity across any geographic distribution.

Microservices Discovery Techniques

Service discovery is a mechanism for locating where the Microservices are hosted. Once

you have several microservices forming your application, your attention inevitably turns to

know where on earth everything is. Perhaps you want to know what is running in a given

environment so you know what you should be monitoring. Maybe it‘s as simple as

knowing where your customer service is so that those Microservices that use it know

where to find it. Or perhaps you just want to make it easy for developers in your

organization to know what APIs are available so they don‘t reinvent the wheel.

DNS

DNS has a host of advantages, the main one being it is such a well-understood and well-

used standard that almost any technology stack will support. Unfortunately, while several

services exist for managing DNS inside an organization, few of them seem designed for an

environment where we are dealing with highly disposable hosts, making updating DNS

entries somewhat painful.

70

Dynamic Service Discovery

The downsides of DNS as a way of finding nodes in a highly dynamic environment have

led to several alternative systems, most of which involve the service registering itself with

some central registry, which in turn offers the ability to look up these services later on.

Often, these systems do more than just providing service registration and discovery.

Ectd

Etcd is an open-source distributed key-value store that serves as the backbone of

distributed systems by providing a canonical hub for cluster coordination and state

management.

Etcd is written in Go and uses the Raft Consensus protocol. The raft is a protocol for

multiple nodes to maintain identical logs of state-changing commands, and any node in a

raft node may be treated as the master. It will coordinate with the others to agree on which

order state changes happen in.

Zookeeper was initially developed as part of the Hadoop project. It is used for an almost

bewildering array of use cases, including configuration management, synchronizing data

between services, leader election, message queues, and as a naming service.

Like many similar types of systems, Zookeeper relies on running several nodes in a cluster

to provide various guarantees. This means you should expect to be running at least three

Zookeeper nodes. Most of the smarts in Zookeeper are around ensuring that data is

replicated safely between these nodes and that things remain consistent when nodes fail.

Zookeeper is often used as a general configuration store, so you could also store service-

specific configuration in it, allowing you to do tasks like dynamically changing log levels

or turning off features of a running system.

Consul

Like Zookeeper, Consul supports both configuration management and service discovery.

But it goes further than Zookeeper in providing more support for these critical use cases.

71

For example, it exposes an HTTP interface for service discovery, and one of Consul‘s

killer features is that it provides a DNS server out of the box; specifically, it can serve SRV

records, which give you both an IP and port for a given name. This means if part of your

system uses DNS already and can support SRV records, you can just drop in Consul and

start using it without any changes to your existing policy.

Consul also builds in other capabilities that you might find useful, such as the ability to

perform health checks on nodes. This means that Consul could well overlap the

capabilities provided by other dedicated monitoring tools, although you would more likely

use Consul as a source of this information and then pull it into a more comprehensive

dashboard or alerting system.

Consul heavily relies on a RESTful HTTP interface for everything from registering a

service, querying the key/value store, or inserting health checks. This makes integration

with different technology stacks very straight forward.

Microservices Interprocess Communication

Each microservice instance is housed in its own container; hence there must exist a

mechanism for inter-container communication. The lethal combination of HTTP and JSON

resulted in a new Architectural style called REST. REST has become wildly popular

among web developers. Many applications rely on REST, even for internal serialization

and communication patterns. But HTTP is not the most efficient protocol for exchanging

messages across services running in the same context, same network, and possibly the

same machine. HTTP‘s convenience comes with a huge performance trade-offf, hence the

need for finding an optimal communication framework for microservices.

gRPC

gRPC, is based on client-server architecture whereby an application can directly call

methods on a server application on a different machine as if it was a local object, making it

easier for you to create distributed applications and services. gRPC is based around the

72

idea of defining a service, specifying the methods that can be called remotely with their

parameters and return types. On the server-side, the server implements this interface and

runs a gRPC server to handle client calls. On the client-side, the client provides the same

methods as the server.

When compared to REST, gRPC offers better performance and security. It heavily

promotes the use of SSL/TLS to authenticate the server and to encrypt all the data

exchanged between the client and the server. gRPC uses HTTP/2 to support highly

scalable APIs. The use of binary rather than text minimizes the payload. HTTP/2 requests

are multiplexed over a single TCP connection, allowing multiple concurrent messages to

be in flight without compromising network resource usage. It uses header compression to

reduce the size of requests and responses.

Multi-Language Support

gRPC clients and servers can run and talk to each other in heterogeneous environments.

For example, you can easily create a gRPC server in Java with clients in Go, Python, or

Ruby.

gRPC uses protocol buffers, Google‘s open-source mechanism for serializing structured

data. Proto3 is the latest version of protocol buffers and is recommended because it has a

slightly simplified syntax, some useful new features, and supports lots more languages.

This is currently available in Java, C++, Python, Objective-C, C#, JavaNano (Android

Java), Ruby, JavaScript, and Go language generator with more languages in development.

73

4 Practical Part

The aim of this section describes the contingent implementation of the application.

It includes various technologies, data-flow, front-end, and back-end terminology.

In terms of

2.2.6 Infrastructure

All infrastructure software is Open Source, which is under a GPL license meaning free to

use, and we can both view and edit its code, which we often do. All of the system's

infrastructure will be in the cloud. All communication between the backend and front end

will be a secure HTTPS protocol.

2.2.7 Backend

All background operations such as calculating, storing, and versioning data will be

implemented as a Feathers.js application providing a documented API for the frontend

application.

Feathers is a very lightweight web framework that is very useful for creating real-time

applications. It supports REST APIs using TypeScript or JavaScript.

Feathers support almost every backend technology out there. It also can interact with any

frontend technology like Angular, React Native, React, VueJS, Android or ios, supports

over a dozen database.

74

Figure 19: Apps Backend Repository

2.2.8 Frontend

The frontend of the system will be developed as a so-called single-page application using

the React.js JavaScript framework, where all interactions take place only on the browser

side, and business operations are performed via the API, as mentioned in the backend

section.

React.js is a framework developed by Facebook, which is also its largest user. We believe

that what is suitable for FaceBook, as the most visited site in the world, is ideal for your

system.

Visually, the system will be built on Google's Material Design.

Material design is a design language. Material design is a new perspective on what the

human and device relationship can be. It’s a way for designers to collaborate with users. It

is a cross-platform design framework developed by google in 2014.

The list of tools used to develop the application frontend:

ClojureScript

React.js

75

Rum

Potok

Material Design Components

Figure 20: Apps Frontend

3.1 Authentication

Different users with different levels of authority over data will log on to the system. A

third-party service will provide this login that the system will use, namely

Auth0. http://auth0.com.

Auth0 is the most accessible and most straightforward tool to enable administrators to

manage user identities, including creating and provisioning, password resets, blocking, and

deleting users. It’s effortless and quickly connect to the application. Auth0 also provide to

set up rules and access analytics dashboard and possible to customize the login page. It has

an extensive list of features:

 Universal Login (Social logins, MFA)

http://auth0.com/

76

 Single Sign-on

 Multifactor Authentication (SMS, Email, Google Authenticator, etc.)

 Breached Password Detection and Brute force protection

 User Management

 Passwordless (SMS/Magic link)

 Machine to Machine (Internal/External APIs and Applications)

Figure 21: Auth0 Login page

2.2.9 Authorization levels

 Administrator

The administrator is a superuser of the system. The administrator has full access rights to

create, modify, delete all the information carried in the system.

77

 Executive

This role has similar rights to the administrator, only limited to its part of the company

(center, economic, workshop) department without the possibility to change or delete data

concerning the whole company. Some processes will also be subject to administrator

approval.

 Ordinary Employee

It only uses the information contained in the system, or adds some related to its (hours

worked, costs). Most actions on data will be subject to approval by the manager or

administrator.

3.2 Dashboard

The dashboard of the whole system, where every user will see the most relevant

information for him at the moment. Initially in text form, later graphically rendered. There

will also be links to frequently used events.

3.3 Order Life Cycle

The first and most important plan will be the life cycle of the order. This plan will be run

in time, from its inception, through changes during its implementation, to its closure.

Furthermore, there will be a list of all orders in the system in which it will be possible to

search and filter. Reports and visual reports can also be created from selections and filters.

3.4 Order attributes

Creator

The employee who created the order is pre-filled according to the logged-in user.

Date of establishment

78

The date on which the order is created automatically pre-filled according to the current

date/time.

Order number

The order number consists of four parts, which together make up its full value.

 center number selection from the list or according to logged in user

 section number selection from the list according to the selected center number

 order sequence automatically followed by a number by center number and order

number

 year of establishment separated by a dash, automatically according to the current

date

Type of order

Internal or external order.

Name of the contract

For internal, the name is selected from the domestic order codebook. A new name is

created for the external job.

Planned launch

Select a date from the calendar

Scheduled completion

Select a date from the calendar.

Subscriber

For internal Internal for external selection from the subscriber list.

Comment

List of dated text notes to which information about the course of the event can be added.

Brief description of the contract

For external order only.

Order price

For internal order price set to zero. For external, it contains value without VAT, percentage

of VAT, and the final price with VAT.

79

3.5 Dials

There will be a part of the system for the management and management of all code list

items existing in the company. Codebooks are understood as information that does not

change primarily in time and has a registration identifier.

It will be possible to view all items, to see and edit their data for individual items or to

mark them as deleted. Repairs and deletions will never mean loss of information. All

historical data will be stored in the system for future reference.

The code lists will be primarily filled before the system is put into operation, according to

data already existing in the company.

3.6 Resorts

Individual parts of the company, according to the standard division currently used.

Standard information such as its identification number and manager is kept at the center.

3.7 Employees

List of all employees in the company. For every employee, there is kept standard

information necessary for personnel management of the company:

 Title before the name

 Name

 Surname

 Title after name

 Center

 Birthdate

 Place of birth

 Place of residence

 Identification number

 Employed by

 Employed in

 Position according to the code list

 Basic salary CZK / hour

 Premium CZK / hour

 Skills

80

3.8 Subscribers

List of all customers with which the company cooperates. They will be kept:

 The number generated at creation

 Name

 Billing address

 IČ

 VAT no

 Bank account

 Contact person

o Name

o Position

o Center

o Telephone

o Email

o Note

3.9 Suppliers

List of all suppliers with which the company cooperates. They will be kept:

 The number generated at creation

 Name

 Billing address

 IČ

 VAT no

 Offered services

 Bank account

 Contact person

o Name

o Position

o Center

o Telephone

o Email

o Note

81

5 Results and Discussion

In the thesis, we employ the trend of technology in web application. Today in the digital

era business mastered agile, cost effective, responsive and scalable. To improve the

scalability of web services using OS-Level Virtualization. The no. n of processors can be

interpreted to mean the number of containers. Scalability is handled at the orchestration

layer. The design of three cluster orchestration, namely Docker Swarm, Kubernetes, and

Mesos, was examined in sections 3.14 and 3.15 respectively. The orchestration layer has

the role of minimizing contention and crosstalk as the system is scaled up. According to

the model that is based on USL, the expected behavior as the system is scaled up is shown

below. However, our results showed that for well-designed orchestration layer contention

delay is wholly eliminated, and coherency delay is minimal. The coefficient of contention

delay sigma was zero while the coefficient of coherency delay was found to be 0.0004475

In section 3.15, we discussed the design of the orchestration layer for the three cluster

orchestration software. Docker Swarm 3.12.18 has a simpler architecture based on the Raft

consensus algorithm to handle contention delay arising from the need to coordinate the

state of the containers that are constantly changing as the microservices are scaled up and

down. Looking keenly at the Docker Swarm architecture, one will notice that it is based on

a Microservice Architecture. Inter-container communication is achieved using the gRPC

protocol that is built on the fast and high efficient HTTP/2 and protocol buffers protocol.

Kubernetes is based on a very complex architecture, which is an improvement of the

battle-tested Borg and Omega. Both Borg and Omega have been in use by Google for over

several years to run Google data centers. It was noted that as Google moved from Borg to

Omega and to open-source Kubernetes, the architecture was gradually changed from

monolithic to microservices.

Model Validation

Using the scalability model and test results generated by Jeff Nickoloff, we managed to

measure the performance of the Docker Swarm and Kubernetes architecture. Our finding

showed that both the two software are capable of scaling of a cluster to over 1000 nodes.

Within this range, both systems scaled linearly as the number of the container were

82

increased from 1 to 30000. Regression analysis done using the R software found out that

the sigma coefficient () and Kamma () factor was found to be zero, meaning that the

effect of contention for shared resources and coherency delay for data to become consistent

was non-existent.

6 Recommendations for Future Work

Microservices is a promising architecture, and Containerization abstracts the complexity

introduced by splitting an application into independent and composable functional units.

However, given that microservices dictate that DevOps as the best development

methodology, there is a need to investigate and research on the strategies for organizations

to use to transition from monolithic to Microservice Architecture.

The introduction of containers in data centers to supplement Virtual machines should be

investigated further to devise mechanisms of integrating all Orchestration technologies to

improve the isolation of processes running on a single host. This will enhance security in

data centers and hasten the adoption of containers in the cloud. There is a need to develop

the microservices development and deployment framework that is extensible and can use

the popular orchestration software as plugins.

Microservices development frameworks should be designed to exploit the functions that

are being offered at the orchestration layer. For example, developers should be able to

create microservices endpoints by importing this information from the Docker Compose

files.

To simplify software development, there is a need to enhance the Docker Compose files to

be capable of having enough information for creating microservices without the need to

use other development tools. JHipster is JVM based development tool that can be

enhanced to exploit the Docker Compose information to simplify the generation of

microservices code.

The size of images also poses challenges because they consume a lot of network capacity

as they are moved from registries to development and production environment. Further

83

research based on Unikernels, light-weight Virtual Machines, and Serverless Computing is

required to enhance cloud security and reduce the size of images.

7 Conclusion

The introduction of Microservice Architecture has reinforced the resolve for

agility in the software industry. Containerization is promising to transform

IT in a more profound way than full virtualization. The scalability and the

associated cost reduction and energy saving that can be achieved when the

two technologies are applied concurrently is enormous.

The most crucial resource in IT is Humanware. However, it was discovered that for large

project teams working on monolithic software, the man-month law works in reverse as you

increase the number of developers. This means that the performance of the team is not

proportional to the increased man-hours. Microservice Architecture enables scalable

development of software since small manageable cross-functional teams can handle each

Microservice.

Similarly, a monolithic application will scale horizontally by consuming more virtual

machines or servers. Given that the monolith comprises software components whose

functionality has varying demand from the users, it becomes wasteful to assign more

resources to all software components equally. The Microservice Architecture addresses

this problem by enabling scalability on a functional dimension. By splitting the application

into smaller units, the workforce per unit can be resized accordingly to enhance

productivity. The number of technologies supported may be scaled accordingly as the need

arises.

By employing distributed data stores in Microservice Architecture, scalability is enhanced

by eliminating coherency delay that is prevalent in relational databases. The developer has

the flexibility to choose the right database technology. Factors influencing the adoption of

Microservice Architecture include virtualization, containerization, and the Internet of

things.

To What Extent Can Containerization Enhance Design and Implementation of

Microservice Architecture?

84

Containerization abstracts the complexity that is introduced by Microservice Architecture.

Most functions that arise due to splitting a monolith into microservices such load

balancing, health checks, etc. are handled at the orchestration layer. Similarly, the features

such as service discovery, scheduling, inter-container communication are hidden from the

developer and managed at the orchestration layer. The Docker Architecture is extensible

through the use of plugins. Volume plugins allow third-party container data management

solutions to provide data volumes for containers that operate on data, such as databases,

queues, and key-value stores and other stateful applications that use the file system.

Network plugins allow third-party container networking solutions to connect containers to

container networks, making it easier for containers to talk to each other even if they are

running on different machines. Docker Swarm is a powerful cluster management tool that

is capable of handling over 1000 hosts and scheduling up to 30000 containers.

To What Extent Can Microservice Architecture Improve the Scalability of Web

Services?

Scalability of web applications can be achieved through vertical scaling, horizontal scaling

and functional scaling. By using Microservice Architecture it becomes possible to split a

web application into smaller units that can be packaged as containers for efficient

utilization of the hardware and software resources. With containerized microservices you

can achieve a high software density in a data centre than using a virtual machine. This

means that scaling up and down a given function in a web application is easier, faster and

less costly.

Scalability is multi-dimensional. Containerized Microservices makes functional scalability

possible. Using Docker Compose, we managed to demonstrate how you can scale up

service by specifying the number of containers using Command Line Interface. By varying

the number of containers for a given microservice, we were able to achieve the desired

scalability.

Microservice Architecture reduces friction amongst developer teams, operations team and

quality assurance teams. As you scale up by adding developers to monolithic system the

man-months increases. The coordination effort for a team of n members is proportional to

85

n(n-1). By splitting the monolith into microservices you are able to assign 3-5 people to

one microservice and this reduces friction though reduced coordination effort.

On the infrastructure side, it has been found the only 15-30 % of the servers are used in

data centers while the rest of servers are on standby but consuming power. With

microservices, you only scale those microservices that are receiving higher user requests.

One is able to back more containers per host machine and considerably reduce the OPEX

by eliminating the need for operating system per virtual machine. With the proper mix of

containers and virtual machines, you are can achieve high isolation and security, making

multi-tenancy in data centers. With the orchestration layer forming an abstraction layer, the

complexity arising from microservices is hidden from the developer. Based on the analysis

of the results using the scalability model, Docker Swarm was found to scale linearly with

the increase in the number of containers up to thirty thousand containers placed over one

thousand hosts in the AWS cloud. We repeated this test using our own data measured

using a cluster of five machines, and it was found that throughput increased linearly with

the number of the container. This means that the contention delay is eliminated and has no

effect on scalability. Coherency delay that is caused process waiting for data to be

consistent is minimal; This delay can be handled by using ACID 2.0 design principles.

86

8 References

Adrian Cockcroft, (2014), ―Migrating to Microservice‖. In: QCon London.

Agile Manifesto (Accessed on 3/07/2015) URL: http://www.agilemanifesto.org/

Alex Williams,(2016), ―The Docker and Container Ecosystem eBook Series‖, The New Stack.

Alex Williams, (2014), ―Flocker, A Nascent Docker Service For Making Containers Portable,

Data and All.

Bob Williamson et al,(2015) ―Akka in Action Manning‖.

Brendan et al.(2015), ― Borg, Omega, and Kubernetes, Lessons learned from three container-

management systems over a decade‖, Google Inc.

Cloudsoft , ―Container Networking plugin‖, (accessed 17/07/2015) URL:

http://www.projectcalico.org/learn

Cody Bumgardner, (2015), ― Openstack in action, Manning publications‖

Conway et al , (1968), ―How do Committees Invent?‖, Datamation 14 (5): 28–31.

D. Ongaro , J. Ousterhout, (2014), ― In Search of an Understandable Consensus Algorithm In

2014 USENIX Annual Technical Conference, pages 305-319, Philadelphia,PA.

Damon Edwards, ―What is DevOps?‖ (Accessed on 3/7/2015)

http://dev2ops.org/blog/2010/2/22/what-is-DevOps.html

Danilo Poccia, (2016), ―AWS Lambda in Action, Event-Driven Serverless Applications‖ First

Edition, Manning .

David Hilley et al.(2009), ―Cloud computing: A taxonomy of platform and infrastructure-level

offerings‖.

Edward A. Lee, (2006), ―The Problem with Threads‖ Technical Report No. UCB/EECS-2006-1

L. Bass, P. Clements, and R. Kazman, (1998), ―Software Architecture in Practice” , Addison

Wesley, Reading, Mass.

http://www.agilemanifesto.org/
http://www.projectcalico.org/learn
http://www.melconway.com/research/committees.html
http://en.wikipedia.org/wiki/Datamation
http://dev2ops.org/blog/2010/2/22/what-is-devops.html

87

L. G. Williams and C. U. Smith, (2004), ―Web Application Scalability: A Model-Based

Approach,‖ Proceedings of the Computer Measurement Group, Las Vegas.

L. Qian, Z. Luo, Y. Du, and L. Guo, (2009), ― Cloud computing: An overview. In Proceedings

of the 1st International Conference on Cloud Computing, CloudCom ‘09, pages 626–631,

Berlin, Heidelberg, Springer-Verlag.

Leonard Richardson, Sam Ruby, (2007), ―RESTful Web Services‖, O‘Relly.

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. (2009), ―Above the clouds: A Berkeley view of

cloud computing‖, Technical Report UCB/EECS-2009-28, EECS Department,

Universityof California, Berkeley.

Mahmood, Z., Hill, R. (2011). Cloud Computing for Enterprise Architectures. Computer

Communications and Networks, Springer

Martin C. Roberts et (2016), ―Agile Principles, Patterns, and Practices in C#‖, First Edition

Prentice Hall .

Martin Fouler http://martinfowler.com/articles/Microservice.html accessed on 19-6-2015

Martin Fowler and James Lewis. Microservice (Accessed on 25/06/2015). 2014.

URL:http://martinfowler.com/articles/Microservice.html

Mathijs Jeroen Scheepers, (2014), ―Virtualization and Containerization of Application

Infrastructure: A comparison‖ University of Twende.

Neil J. Gunther, (2007), ―A Review of "Guerilla Capacity Planning: A Tactical Approach to

Planning for Highly Scalable Applications and Services, Performance Dynamics

Company.

P. Mell and T. Grance. (2011), ―The NIST definition of cloud computing‖, Technical report,

National Institute of Standard and Technology - NIST.

Pasa Maharjan (2016), ―Comparing and Measuring Network Event Dispatch Mechanisms in

Virtual Hosts‖ Mater of Science Thesis, Tampere University of Technology.

http://martinfowler.com/articles/Microservice.html
http://martinfowler.com/articles/microservices.html

