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ABSTRACT

The master's thesis is focused on the processing of high-resolution retinal images. The
aim of this work is to obtain images of higher quality from a sequence of low-quality
frames. The frames are first pre-processed by using bilateral filtering and contrast en-
hancement. The shift between the frames in the imaging sequence is estimated using
phase correlation, and these frames are then fused together using the averaging through
the frames and the super-resolution technique, more specifically regularization based
on bilateral total variance. The resulting median quality scores of obtained images are
PIQUE 0.2600, NIQE 0.0701, and BRISQUE 0.3936 for the averaging technique and
PIQUE 0.1063, NIQE 0.0507, and BRISQUE 0.1570 for super-resolution technique.

KEYWORDS

adaptive optics, retinal images, phase correlation, super-resolution techniques, bilateral
filtering, blurry frame detection

ABSTRAKT

Diplomova praca je zamerana na spracovavanie obrazov sietnice s vysokym rozliSenim.
Cielom prace je zlepsit vyslednt kvalitu vyslednych snimkov sietnice ziskanych zo sek-
vencie snimkov nizsej kvality. Jednotlivé snimky s najskor spracované pomocou bilate-
ralnej filtracie a zlepSenia kontrastu. v dalSom kroku s odstranené rozmazané snimky
a snimky zobrazujlce iné Casti sietnice. Posun medzi jednotlivymi snimkami v sekvencii
sa odhaduje pomocou fazovej korelacie, a tieto obrazy st potom flizované do vysled-
ného snimku s vysokym rozliSenim pomocou priemerovania a vyuzitia superrozliSovace;j
techniky, presnejSie regularizacie pomocou bilaterdlneho celkového rozptylu. Vysledné
medianové hodnoty skére kvality ziskanych obrazov si PIQUE 0.2600, NIQE 0.0701,
a BRISQUE 0.3936 pre techniku priemerovania, a PIQUE 0.1063, NIQE 0.0507, and
BRISQUE 0.1570 pre superrozliSovaciu techniku.
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ROZSIRENY ABSTRAKT

Zobrazovanie sietnice a vyvoj technik na jej analyzu je dolezité z dovodu, Ze ¢o i len
malé zmeny na jej povrchu moézu odhalit poruchy cirkulacie, nervové ochorenia a v

neposlednom rade aj o¢né ochorenia.

Prvy oftalmoskop bol vynajdeny ceskym vedcom Janom Evangelistom Purkyné,
a neskor bol zlepseny Charlesom Babbagom a Hermannom Helmholtzom. Tento
vynalez pomohol oénym lekdrom pri rutinnych vysetreniach. Medzi dalsie vynalezy
patri fundus kamera, ale vSetky zariadenia poskytovali len dvojdimenzionalne obrazy
sietnice. Prvym pokusom o zobrazenie sietice ako trojrozmerného obrazu bol vynélez
stereo fundus kamery. V poslednych desafrociach sa na trojdimenzionalne zobra-
zovanie sietnice pouzivaji pokrocilejsie metdédy, napriklad oc¢né koherencéna tomo-
grafia, a techniky vyuzivajuce adaptivnu optiku, napriklad skenovacia laserova of-

talmoskopia.

Hlavnou myslienkou adaptivnej optiky je kompenzacia optickych aberacii v zobra-
zovacom systéme oka (rohovka, zrenica a Sosovka). Systém na takéto zobrazovanie
sa vacsinou sklada z troch ¢asti - zo senzoru vlnoplochy, korektoru vinoplochy a kon-
trolného systému. RoOzne aberacie optického systému sa nachdadzaji aj v zdravom
oku. Niektoré z nich sa daji odstranit pomocou o¢nych sosoviek, medzi tieto abera-
cie patria astigmatizmus a rozostrenie, ale dalsie aberdcie (zvac¢Sa nepravidelné) sa

daju korigovat az systémami adaptivnej optiky.

V ramci tejto diplomovej prace je navrhnuty algoritmus na ziskanie jedného snimku
vysokej kvality zo sekvencie snimkov nizsej kvality. Tieto snimky st najskor pred-
spracované pomocou bilateralnej filtracie a iprave kontrastu, nasledne st detegované
rozmazané snimky a snimky zachytavajice rozliéné casti sietnice, a tieto st odstra-
nené. V poslednom kroku st zvysné snimky licované pomocou fazovej korelacie, a
vysledkom st dva obrazky vysokej kvality - jeden je ziskany priemerovanim z nalico-
vanej sekvencie a druhy pomocou superrozliSovacej techniky (regularizicia zalozend

na bilatralnom totalnom rozptyle).
Popis riesenia

V tejto diplomovej praci boli pouzité data nasnimané kamerou Imagine Eyes v
spolupraci s Univerzitou v Lipsku. Sekvencie boli nasnimané od desiatich zdravych
subjektov. Pri snimani subjekty sledovali pohybujtci sa ciel, preto nasnimané
obrazky zachytavaju rozne casti sietnice. Sada dat obsahuje 119 sekvencii, pricom
kazda sekvencia obsahuje 40 snimkov s rozlisSenim 1279x1279 pixelov. Vysledné
snimky ziskané pomocou softvéru Imagine Eyes maju rozlisenie 1500x1500 pixelov.
Na snimkach je mozné pozorovat svetlé body predstavujice jednotlivé fotoreceptory

a tmavé Casti s mensim poctom fotoreceptorov predstavuju cievne kapilary.



V prvom kroku je potrebné zaistit, aby rozsah hodnot intenzit v snimkach vyuzival
celt stupnicu Sedej v rozsahu 0 az 1. Kedze "surové" snimky maji rozsah intenzit
od 0 do priblizne 0,05, je pouzita linearna transformacia pre vyuzitie celej skaly

Sedej.

V dalsom kroku je odstranené nerovnomerné osvetlenie scény. Snimky st pri snimani
scény najviac osvetlené v strede a smerom k okrajom mnozstvo svetla klesa, co je
neziaduce. Kopia kazdej snimky je preto silne rozmazana Gaussovym filtrom s
velkostou smerodajnej odchylky 20, a tato képia je néasledne odcitana od pévodnej
snimky. Dalej je opédtovne pouzitd transformécia histogramu pre vyuzitie celej $kély

Sedej.

Poslednym krokom predspracovania snimkov je bilateralna filtracia a tprava kon-
trastu. Bilateralna filtracia potlac¢i Sumovt zlozku a zachova hrany, a tpravou kon-
trastu je dosiahnuté zvyraznenie fotoreceptorov a ciev.

Dalsim délezitym krokom je odstranenie rozmazanych snimkov, ktoré vznikli v
dosledku rychleho pohybu o¢i pocas snimania sekvencie. Pre detekciu je najskor na
kazdu snimku aplikovany Cannyho detektor hran, a nésledne bindrna maska , ktora
je zlozend z nul v strede, len na okrajoch (20 pixelov od kazdého okraja) su jednotky,
a logicka operacia and. Ako posledny krok detekcie je vypocitané percentudlne za-
stupenie bielych pixelov na okraji obrazu. Predpoklad je taky, Ze ostré snimky majua
hlavny podiel hran v strednej ¢asti snimky, kedze okraje st znehodnotené v dosledku
snimania s nerovnomernym osvetlenim, a rozmazané snimky obsahuji nadetegované
hrany nahodne po celej snimke. Preto ak je percentudlne zastipenie bielych pixelov
reprezentujicich hrany menej ako 10 %, je snimka povazovana za ostri a moze sa
vyuzivat v dalsich krokoch.

Dal$fm problémom st snimky v ramci jednej sekvencie, ktoré zachytévaji rozdielne
Casti sietnice. Tieto su detegované pomocou normalizovanej vzajomnej korelacie. Ak
je maximalny koeficient vzajomnej korelacie medzi dvomi nasledujicimi snimkami
mensi ako 0,3, sekvencia je rozdelena do dvoch skupin, a ta ktora obsahuje viac
snimkov vstupuje do dalSej analyzy. V dostupnych sekvenciach nastava len pripad s
dvomi skupinami, pri inych datach by sa musel pocitat koeficient vzajomnej korelacie
este raz v ramci kazdej skupiny.

Snimky, ktoré presli predoslou analyzou, st vo findlnom kroku licované pomocou
fazovej korelacie. Fazova korelacia bola zvolena z dévodu, ze hlavné pohyby medzi
snimkami st sposobené translaciou, rotaciou a skalovanim, a fazova korelacia dokaze
odhadnif vsetky tieto transformécie v potrebnom rozsahu. Pred vstupom do fazy
licovania st z kazdého snimku odrezané rozmazané okraje, kedze pri licovani by

mohlo déjst k prekryvu ostrej casti s okrajom a naslednej strate informécie o stave



sietnice, a teda snimky v ramci sekvencie maju rozlisenie 1000x1000 pixelov. Prvy

vysledny obraz vysokej kvality je ziskany po procese licovania priemerovanim.

Druhy vysledny obraz je ziskany pomocou superrozlisovacej techniky - regularizacie
pomocou bilaterdlneho celkového rozptylu. V tejto technike sa vyuzivaju trans-
formacné matice ziskané fazovou korelaciou, a je potrebné vhodne nastavif para-
matere regularizacie - zvacsovaci faktor je nastaveny na hodnotu 2, sirka rozptylovej
funkcie je nastavend na 0,3, regularizacna vaha A je nastavend na hodnotu 0,65,
faktor P na hodnotu 2, maximalny pocet iteracii je nastaveny na hodnotu 7, a max-
im4lna pripustna chyba je nastavend na hodnotu 1.1071%. Do tejto met6édy vstupuji
snimky bez akejkolvek filtracie a upravy kontrastu, len s korigovanym osvetlenim,
kedze samotna filtracia prebieha v ramci regularizacie. Vysledny obraz ma rozlise-
nie 2000x2000 pixelov. Vysledny obraz je nasledne kntrastne upraveny tak, aby boli

zvyraznené struktury sietnice.
Vysledky

Oba vysledné obrazy vysokej kvality si porovnavané s dostupnym Imagine Eyes
obrazom pomocou metrik na odhad kvality obrazu bez potreby referencného obrazu
- PIQUE, NIQE a BRISQUE. Vysledné skére tychto metrik pre obraz najvyssej
kvality sa blizi k nule, pre nekvalitny obraz sa blizi k jednej. Medianové skore pre
obraz vzniknuty priemerovanim s PIQUE 0,2600, NIQE 0,0701 a BRISQUE 0,3936,
pre obraz vzniknuty superrozliSovacou technikou su PIQUE 0,1063, NIQE 0,0507 a
BRISQUE 0,1570. V porovnani s medianovymi skére pre dostupné Imagine Eyes
obrazy - PIQUE 0,5739, NIQE 0,0918 a BRISQUE 0,4538 - st vysledné obrazy
lepsej kvality a teda ciel prace je splneny. Najkvalitnejsie obrazy vznikli pomocou
superrozliSovacej techniky, aj ked v tychto obrazoch si fazsie rozlisitelné jednotlivé
fotoreceptory. Naopak, ak sekvencia snimala cast sietnice, ktora obsahovala cievy,
tak tato technika ich dokazala vyrazne zlepsit aj zo subjektivneho pohladu. Obrazy
vzniknuté priemerovanim dosahuji horsej kvality, ¢o moze byt sposobené tym, ze
po odstraneni rozmazanych okrajov doslo k vzniku okrajovych artefaktov (¢ierne
pixely na okrajoch). Vyhodou tohto obrazu je ale fakt, ze fotoreceptory st viditelne

ohranicené.

Nedostatky uvedenych metdd by sa dali odstranift pouzitim dalSej techniky licov-
ania v pripade vysledného obrazu vzniknutého priemerovanim, napriklad lokalnej
techniky licovania, a presnejsim odhadom nastavovanych parametrov v pripade su-
perrozlisovacej techniky, napriklad nastavenim optimalnych parametrov pre kazdu

sekvenciu zvlast.
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Introduction

The retina and techniques for analysing the retina are of great interest due to the
ability of the retina to convert incident light into a neural signal that is processed
by the visual cortex of the brain. Furthermore, because the retina is metabolically
active tissue with a double blood supply it allows for the non-invasive examination
of blood flow. As a result the retina can manifest a variety of circulation and brain
related diseases as well as eye related diseases. The retina allows the detection and

diagnosis of such diseases through high resolution imaging techniques [1].

The optical system of the human eye that transforms light beams into the image, pre-
vents direct examination of the retina. The French physician Jean Mary attempted
the first experiment to image the retina by dipping a cat in water. While doing
this experiment he discovered that the cat’s retinal vessels are visible externally
while under water[1]. The first ophthalmoscope was invented by Czech scientist Jan
Evangelista Purkyne[2] and it was later reinvented by Charles Babbage [3], to be
reinvented one more time by Hermann Helmholtz [4]. With this invention retinal ex-
aminations became routine for ophthalmologists. The ophthalmoscope was not very
comfortable to use, so the fundus camera was developed [5]. Even though the cam-
era is still used it only provides two-dimensional retinal images. There was a need
for three-dimensional images. This lead to the stereo fundus camera which captured
the retinal images from different angles and these images were combined by the eye
of the observer into a three-dimensional image [6]. Later more advanced techniques
to obtain three-dimensional images were introduced, optical coherence tomography
and adaptive optics scanning laser ophthalmoscopy these allow the observation of

the layers of retinal tissue [1].

The work presented here is centred on the pre-processing and registration of high-
resolution retinal images. The chapter 1 summarises the anatomical and physiolog-
ical description of the human eye. The chapter 2 defines the technique of adaptive
optics and how imaging using this technique works, including an overview of its use
in retinal imaging. The chapter 3introduces the current approaches to filter and
register retinal images. The final chapter 4 discusses how the designed algorithm is

implemented and tested.

12



1 Human eye

Human vision detects a very narrow light spectrum, approximately from 400 nanome-
ters to 750 nanometers. The wavelength of 400 nanometers is perceived as the colour
blue and the wavelength of 750 nanometers as the colour red [7]. The full spectrum
of the visible light is displayed in figure 1.1. The light travels through the optical
system to the retina and photosensitive receptors, which detect and transfer the

information about visible light to the brain.

I
570

400 445 475 510 590 650 780 nm

Fig. 1.1: Visible spectrum of the light

1.1 Anatomy of the eye

The eye consists of the eye; extraocular muscles, eyelids, conjunctiva, and lacrimal
glands. The eyeball is made of three layers, or coats: the outer layer called fibrous

tunica, the middle layer named wvascular tunic, and inner layer called the retina
[3].

The fibrous tunica consists of the cornea and sclera. 5/6 of the outer layer is formed
by the sclera. It is firm, opaque and white-coloured. The cornea forms the residual

1/6 of the outer layer. It is transparent and in contrast to the sclera innervated.

The cornea is also part of the optical system of the eye [8].

The vascular tunic is composed of the choroid, ciliary body, and iris. The choroid
is made of a large amount of blood vessels and pigment cells. It is located in the
posterior 2/3 of the eyeball. The ciliary body is placed in the continuation of the
choroid anteriorly. It includes ciliary muscles which control the shape of lens and
changes refraction of light ray - accommodation of the eye. The lens is an elastic
biconvex structure located behind the iris. The iris is located at the very front of
the middle layer. In the middle of the iris is the pupil. Light enters the eye through

the pupil. The color of the iris depends on the amount of pigmentation [8].

The retina consists of two sections. The first section is in the anterior part and is
made entirely of pigment cells. The second section is in the posterior, optical part

and is made of bipolar and ganglion cells, and the most importantly rods and cones.

13



The place where the optical nerve exits the retina, is called the optic disc or blind

spot. Fovea consists only of cones and is the place of the sharpest vision [8].

Vs Sclera

Ciliary body 2
ligament ;

b Retina
Cornea - - 4

i Fovea (center
e [ R of visual field)
Pupil *—--{ 4~ Optic nerve
Agueous —
humor i
Lens

- Central artery
and vein of the retina

Optic disc
(blind spot)

Vitreous humor

Fig. 1.2: The structure of the eye [9]

Aqueous humor is a clear fluid contained in the eye chambers. The anterior chamber
is located between the cornea and the iris, and the posterior chamber is placed

between the iris and the lens [§].

Vitreous humor is a gelatinous mass filling the part of the eye behind the lens [8].

The structure of the eye is displayed in figure 1.2.

1.2 Vision

As said in the previous section, the retinal receptors are called rods and cones. The
rodes are most sensitive to the wavelength of about 500 nm and are responsible for
night (scotopic) vision since they are sensitive to changes of light intensity. There
are three types of cones, and each type is sensitive to the different wavelength range
- the first type is shortwave (for wavelengths from 415 to 440 nm, which corresponds
to blue color), the second type is mediumwave (for wavelengths from 520 to 540 nm,
which corresponds to green color) and the last type is longwave (for wavelengths from
550 to 570 nm, which corresponds to reddish color). The cones are responsible for

color (photopic) vision since they are sensitive to changes of wavelength [10].

Color vision occurs by mixing of three basic colors - red, green and blue, and thus
the other colors and their shades are created. Normal vision is trichromatic. When
the sensitivity for a certain color is reduced, it is referred to as anomaly. The
loss of sensitivity for a certain color is referred to as anopia. For red color it is

called as protanomaly or protanopia, for green color it is called deuteranomaly or
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deuteranopia and for blue color it is called tritanomaly or tritanopia. When no type
of cones is functional, the vision is greyscaled and it is called monochromacy [10].
In figure 1.3 is displayed, how different types of color blind people see the color

spectrum.

A

Normal vision Protanopia Deuteranopia Tritanopia Monochromacy

Fig. 1.3: Different types of color blindness

1.3 Eye movements

Eye movements can be generally classified into three main categories - fization,

saccades, and smooth pursuit [11].

Fixation is a movement that consists of stays and jumps from current stay to another.
These stays last for about 100 ms. In measured eye-movement data, the positions

of gaze are concentrated and the velocity is slow [11].

Saccades are fast eye-movements between two fixation points. A saccade is able to
cover angle from 1° to about 40°, but typically between 15° and 20°, and the speed
ranges between 30°/s and 500°/s. In measured data, the positions of gaze jump from
the last fixation to next with high velocity [11].

Smooth pursuits appear only when eyes are tracking moving targets. This movement
is continuous to ensue following targets. Smooth pursuits are usually slower than
saccades, speed depends on the speed of targets, usually below 30°/s. In measured
data, the positions of gaze change while following the target, and, as said before,

the velocity is determined by the speed of moving target [11].
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2 Retinal imaging

Imaging of the retina is very important in many medical fields. Besides ophthal-
mology, which is a logical outcome, retinal imaging is used in other fields as well.
Such example can be neurology or cardiology, which may utilize imaging of retinal
vascularity and nerve fibers. There are lots of different approaches how to image the

retina. In this chapter, the main focus is on the use of adaptive optics [12].

2.1 Adaptive optics

Before the first use of adaptive optics in retinal imaging over 20 years ago [13], it was
used in astronomy, more precisely in astronomical telescopes, to improve the loss of

resolution from irregularities in atmosphere such as wind and moisture [14].

The main idea is to compensate optical aberrations in the optical system. In oph-
thalmology, it is the three optical elements of the eye - the cornea, the pupil, and
the lens that contribute to the aberrations. The imaging system aided by adap-
tive optics usually consists of three components - a wavefront sensor, a wavefront

corrector, and a control system uniting the previous two components [14].

As displayed in figure 2.1, the distorted wavefront from the source or imaged object is
gathered and directed to the wavefront sensor via a deformable mirror (the wavefront
corrector). The wavefront sensor measures the distortions in the incoming wavefront,
and this information is sent to the control system. The control system analyses
this information and computes the commands for the wavefront correctors. After
the corrector receives the commands, the surface shape of the deformable mirror
is adjusted. This process is iterative, and it is iterating until a certain degree of
correction is achieved. As a result, the imaging system obtains images with enhanced

quality [15].
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Fig. 2.1: Adaptive optics-aided system [15]
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2.1.1 Wavefront sensing

For wavefront sensing, the Hartmann-Shack sensor (HS sensor) is mostly used in
ophthalmology. This sensor is composed of an array of the microlenses in front of a
detector. When the aberrated wavefront reaches the array of microlens, it produces
a distribution of spots on the detector. Each microlens has an intended position on
the detector, and the Hartmann-Shack detector evaluates how each detected spot
varies from its expected position. The calculated deviation is then used to conclude
the wavefront slope and amplitude at each location. This information is used to

determine the type and magnitude of distortions across the wavefront [14].

In figure 2.2 is shown, how different type of the wavefront (planar and non-planar)
is displayed on the detector. In the case of the planar wavefront, the spots format a
regular grid of spots (blue), and in the case of the non-planar distorted wavefront,

the spots are located irregularly (red) [16].
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Fig. 2.2: Function of Hartmann-Shack sensor

2.1.2 Wavefront correction

Generally, there are two techniques used for wavefront correction - piston-segmented
devices and continuous surface mirrors. The latter are mainly used. The deformable
mirror consists of a reflective faceplate deflected by a series of actuators, which are
either segmented or continuous. Since the segmented deformable mirror lead to
more disruptive effects induced by diffraction, so the continuous deformable mirrors

are used in adaptive optics retinal imaging [14].
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2.1.3 Zernike polynomials and coeffients

The Zernike polynomials are used for evaluating of the optical quality of an imaging

system, because of their ability to describe the wave aberrations [17].

The standard Zernike polynomials are a product of radial polynomials R(r) and

angular functions ©™(0)
Zy'(p,0) = N'R;'©™ (), (2.1)
where N is the constant of normalisation, n is the highest power of radial polyno-
mial, and m is the azimutial frequency of the angular function [17].
The radial polynomials are defined in [17] as
(/2 (s — )1

Rii(p) = z:;] sl(otm — g)l(2om )!p

n—2s (2.2)

and angular function is defined in [17] as

cos(mb), m > 0,
™) = (2.3)
sin(m#), m < 0.
In the table 2.1, the first nine Zernike coefficients and their corresponding polyno-

mials and optical aberrations are shown.
Tab. 2.1: Zernike coeffients [18]

n | m | No. | Polynomial Aberration

00 0 1 piston

1] 1 1 pcost x-tilt

1] 1 2 psind y-tilt

110 3 2p—1 focus

212 4 p*cos20 astigmatism at 0° and focus
212 5 p*sin20 astigmatism at 45° and focus
21| 6 | (3p*—2)pcoshd coma and x-tilt

21| 7 |(3p*—2)psind coma and y-tilt

210 | 8 | 6pr—6p*>+1 spherical and focus

2.2 Use of adaptive optics in retinal imaging

The normal human eye suffers from many aberrations decreasing image quality
attain ability. Despite the ophthalmic lenses are able to correct defocus and astig-
matism, still can not correct all aberrations, for example, spherical aberrations,
coma, and lots of irregular aberrations. Adaptive optics could possibly correct these

aberrations [19].
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2.2.1 Adaptive optics flood illumination

The original application of this technique was to understand cone density and ar-
rangement of basic psychophysical responses. In the next years following this appli-
cation, the use of adaptive optics advance from use in understanding normal vision

to exploring pathologies of the retina [14].

Among the advantages of adaptive optics flood illumination is the use of a spinning
diffuser to eliminate speckle from the source of the light. However, it has a low axial
resolution, which leads to decreasing of longitudinal cone density measurements, and
the efficiency was reduced by its long imaging time per frame. The latter was later

fixed by the use of the superluminescent diode as a light source [14].

2.2.2 Adaptive optics scanning laser ophthalmoscopy

This technique improves the image contrast of the previous technique. The retina
is scanned by a single-point light beam (laser beam), and the scattered light from

each point is registered by the detector, and the image is created [14].

In this system there are used different modes of detection. The confocal method is
used for imaging the rod receptors and elements of the optic nerve, since the resulting
image is of higher contrast and allows retinal sectioning. The non-confocal method
is used for visualization of retinal pigment epithelium (known as dark-field imaging
because of no need for autofluorescence) and of inner segments of photoreceptors
(split-detection imaging). The parallel use of both of these methods is applied in
the imaging of the retinal structure, mainly in imaging of the retina with inherited
retinal diseases. The main disadvantage of this technique is the tendency for image

distortion and the inability of serial image creation [14].

2.2.3 Adaptive optics optical coherence tomography

The latest technological advance in retinal imaging was adding adaptive optics to
optical coherence tomography. The native optical coherence tomography offers axial
optical resolution at the subcellar level, but the axial and transverse resolution is
limited by optical aberrations, so the fusion with adaptive optics system solves this
limitation [14].

These systems are used in three-dimensional visualizations of photoreceptors, retinal
nerve fibers, and retinal vessels. With the use of this technique complementary
with the adaptive optics scanning laser ophthalmology, the resulting image has an
ultrahigh axial resolution of tomography and reduced eye movement effects of the

scanning laser ophthalmology [14].
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2.3 Retinal pathologies detectable by adaptive op-
tics

Retinal imaging via adaptive optics provides high resolution in vivo images, which
are used to improve in understanding retinal structure and how is the retina affected

by age, sex, or some diseases [20].

2.3.1 Diabetes

It is known that diabetes affects mainly the inner retina, but outer retina is involved
in diabetic eye disease as well. It can either be a decrease in cone numbers or an

increase in the irregularity of cones [20].

In diabetic eyes is mainly affected retinal circulation. This can be seen as areas where
the cones are about 25 % less reflective. The photoreceptors have high metabolic
demand and limited support circulation, and diabetes is also neurodegenerative.
Both neural and vascular systems of the retina can be imaged by adaptive optics,

so it is helpful in monitoring changes in these systems [20].

2.3.2 Myopia and aging

As one is aging, the number of cones in the central 2 degrees of the retina is decreas-
ing. The lower number of cones in this area in older subjects is consistent with other

suggestions - the fovea changes shape with aging and loses photopigment [20].

The adaptive optics imaging can show cones that are surviving in myopic eyes over

areas that are atrophied [20].

2.3.3 Retinal degenerations

With new researched therapies for retinal degenerations, there is increased demand
for imaging, that is able to measure the retinal damage, and adaptive optics imaging
can do this [20].

As being said before, adaptive optics imaging is able to make precise measurements
of numbers and locations of cones, as well as rodes measurements. On top of this,

adaptive optics systems can test visual sensitivity [20].

For example, this type of retinal imaging can be used for discrimination of phe-
notypic color deficiencies. The cones are either formed, but their outer segment is

abnormal and they appear dark in the image, or are missing completely [20].
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2.3.4 Measuring of retinal vasculature and blood flow

The retinal blood vessels are used majorly for the detection of many diseases, such as
hypertension and diabetes. The measurements used for this are for example vessel
caliber, vascular perfusion, blood velocity, oxygen saturation, and autoregulation of

vascular parameters [20].

Blood and blood vessels scatter light and filter wavelengths, which leads to decreased
visual sensitivity. As a result, the size of the foveal avascular zone is closely related
to the amount of inner retinal tissue present at the edge. When the tissue is thicker
than normal, the blood vessels are needed to provide the support of the tissue, thus

the retina is operating near a critical density of vascularity [20].

Another measurement is the change in vascular wall thickness. The wall thickness
is estimated as the width of a bright stripe that goes down the center of retinal
arteries. It is clarified by adaptive optics imaging, that the majority of the central
bright region arises from the reflections from the moving erythrocytes which are

flowing through the vessel [20].

With adaptive optics imaging, it is possible to reveal even mild changes in the retinal

vasculature, which can be one of the first indicators of diabetes [20].

2.3.5 Nerve fiber layer

Adaptive optics imaging makes the visualization of the nerve fiber layer in great
quality possible. It allows the identification of fibers and shows changes in reflectance

with glaucomatous damage, even when the damage is mild [20].

In diseases that cause damage to the nerve fiber layer, for example, a cotton wool
spot, adaptive optics imaging can reveal the development of small cell changes
20].
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3 Image processing approaches

In retinal imaging there are many different algorithms for the filtering of retinal
images, for the registration of the images, and for the detection of blurry images in

the sequence.

3.1 Filtering

For removing the noise and blurring from images, the different types of filters are
used, depending on the type of noise affecting the image. One of the most common
type is an additive Gaussian noise that affects all the pixels in the image indepen-
dently on their intensity values. The most basic way to reduce the noise in the
images affected by this type of noise is the averaging convolutional filter. Another
common type is an impulsive noise, also known as salt-and-pepper noise. It affects
only isolated pixels or groups of pixels, and its values are very high in comparison
with the intensity values of the image, so it turns out like bright pixels or dark pixels
in the image. The median filter can be used to remove this type of noise from the

image [21].

For the purpose of this thesis, the main focus is on median filtering, bilateral filtering

and hybrid filtering (bilateral filter and coherence diffusion).

3.1.1 Median Filtering

The retinal images can be enhanced by the application of a median filter and then by
a nonlinear diffusion filter [22]. The median filter is a mask operator, which implies
that the neighborhood pixels are considered, as well as the reference pixel itself,
to decide which of them is assigned to the output. This operator selects the pixel,
which is in the middle position of the sorted sequence of the input pixels. This is in
principle a nonlinear operation. The main benefit of the median filtering is that it
preserves sharp edges, and removes little objects, which are smaller than the mask
23].

This method can effectively improve the signal-noise-ratio in retinal sequences. Sub-
sequently, the contrast limited adaptive histogram equalization can be used to en-

hance the contrast of blood vessels [12].

3.1.2 Bilateral filtering

This technique smoothes images while it preserves edges, and therefore meets the

requirements for succesful image denoising. It uses two low-pass kernel functions,
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the first one is called spatial kernel and its purpose is to assign lower weights to pixels
farther from current pixel, and the second one is a range kernel that assigns lower
weights to pixels with larger differences in intensity values. The choice of the latter
is important, as it allows the edge-preserving effect. The filter is based on a weighted
averaging of nearby pixels, and is non-linear, which leads to high-computational cost
[24].

3.1.3 Hybrid filtering

The images can be also enhanced and filtered by a hybrid method. First, bilateral
filtering is used to reduce a large-scale noise, then, an improved coherence diffusion
is used, and lastly, an edge enhancement algorithm is used to improve contrast.
Then, it is determined that the noise distribution is of a Gaussian shape and that
knowledge is used to choose the bilateral filtering method, rather than the traditional
filtering methods, as it has better performance for Gaussian noise. The results of this
method depend highly on the noise estimation. If the chosen root mean square of
the noise is too high, the bilateral filtering is degraded to Gaussian filter, and edges
are blurred, if it is too low, the bilateral filtering is not able to reduce the noise.
The coherence diffusion is used to filter any residual noise and enhance coherence
structures. In flat image regions, isotropic diffusion is used to supress noise, and
near edges, anisotropic diffusion is applied to regularize and ehnance edges. The
edge enhancement algorithm is used to improve the contrast of the weak edges.
The image edges and brightness are extracted from the image and then are merged
into the result of the previous methods (bilateral filtering and coherence diffusion)
[25].

3.2 Image registration

Image registration is a method that provides a pair of images (or set of images),
that are spatially consistent. This means that in each of these images a particular
pixel corresponds to the unique position in the imaged object. One of the images is
commonly considered undistorted, so it is taken as a reference image. Sometimes,
the reference image is one image from the set, that is distorted the least [23]. To
ensure that the corresponding pixels are in the same position throughout the set of

images, the image transformation is used [21].

The first step in image registration is estimation of transformation matrix. This ma-
trix contains informations about the movement between the images, such as transla-

tion, rotation, scaling and shearing. The transformations that take only translation
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and rotation into account are called rigid transformations. The transformations that

consider also scaling and shearing are named affine transformations [21].

Based on the principle of adaptive optics data acquisition the shearing distortion
approaches zero, thus can be omitted. In the following subsection, the similarity
criteria are introduced, as well as the estimation of the transformation matrix with

the use of phase correlation and rigid global registration, and local registration.

3.2.1 Similarity criteria

For computing global similarity, there are many different criteria. The most com-
mon are intensity-based and information-based global criteria. The first criteria are
based on comparing intensity values in reference and registering images. However,
intensity values in registering images are slightly modified in every step as a con-
sequence of interpolation. The examples of intensity-based criteria are correlation
coefficient criterion (equation 3.1) and angle (cosine) criterion (equation 3.2). In
these equations a stands for reference image, a stands for the mean value of ref-
erence picture, b stands for registering image and b stands for the mean value of
registering image. In the case of identical images, the correlation criterion is equal
to zero, and the angle criterion is equal to one. The intensity-based criteria are

mostly used for the monomodal set of images [23].

>i(ar — @) (b, — b)

VEi(ar — a)2 (b — b)?

Calab) = 20— Ziab (3.2)

allbl a0

The information-based criteria do not work with intensity values, but rather with

Ccco(a,b) = (3.1)

similar geometrical features, so it is suitable for registration of the multimodal set
of images. The most used is mutual information (equation 3.3)), which is calculated
based on the joint histogram. In this equation, [4p stands for mutual information,
H, and Hp stand for information in reference and registering images, respectively,
and H,p stands for joint information of the union of these images [23].

Iap=Hs+ Hp — Hyp (3.3)

Joint histogram

The joint histogram for two equally sized (reference and registering) gray-scale im-
ages is a matrix of the size q x r, where ¢ and r is the number of gray shades
in reference and registering image, respectively. When the joint histogram of two

identical images is created, it looks like one line of nonzero values on the diagonal
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of the matrix (figure 3.1, left). If the images are identical, but one of them was
transformed by a point operator (for example, contrast enhancement), the nonzero
values are located on the curve, which corresponds to the transforming function (fig-
ure 3.1, centre). When the images are geometrically transformed, the line is slightly
scattered (figure 3.1, right), but the line (and therefore dependence) is still visible
23].

50 100 150 200 250 50 100 150 200 250 100 150 200 250

Fig. 3.1: Histogram matrices for different cases - two identical images
(left), one of the images has enhanced contrast (centre), geometrically

transformed images (right) [23]

3.2.2 Global rigid transformation

In the global registration, the denoised images are registered rigidly. The reference

image is one that was taken in the middle of a timed sequence [26].

To determine how much the registered image is shifted from the reference image,

the minimizing of the mean square differences (equation 3.4)

Overlappingarea
(xshifb yshift) = aigﬂln( Z (Iref (xia yz) - Iregistering (xz - A'I> Yi — Ay))z/N)
T,AY i=1,...N

(3.4)
is used, where g5 and ygpipe are mutual shifts in the directions of x and y axes,
Lycperence and Iyegistering are intensity values of reference and registering image, re-

spectively, and N is the total number of pixels in the overlapping area [26].

3.2.3 Phase correlation

This method of global image registration is based on the Fourier transform. For using
this approach, the retinal images have to meet the following conditions: they must
be of high contrast and the edges must be present in the image. The employment of
this method is for the shift estimation based on translation property of the discrete
Fourier transform. It can also be used for estimation of rotation and change of
scaling, with usage of rotation property and change of scaling property, respectively
[12] [21].
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In the spectral domain, two displaced images are defined as
Fy(u,v) = Fi(u,v) x e**otv=vo, (3.5)

where F and F5 are the spectra of the two images, v and v are the spatial frequences

in the directions of x and y axes, and z( and y, are the displaced positions [12].

The inverse Fourier transform (equation 3.6) of normalised cross spectrum leads to

Dirac function at the position (xg, o)

Fy(u,v).Ff (u,v) }

_ _ :FT‘l{
6(z — 0,y — Yo) | Fo(u,v).Fy (u,v)|

(3.6)
where 0(x —xo, y — o) is the mentioned Dirac function, F; is the Fourier spectrum of
the second image, Fy is the complex conjugate Fourier spectrum of the first image
[12].

The accuracy of the shift estimation may be affected by edge effects, which are
caused by the periodicity of discrete Fourier transform and different values of pixels
on the edges of the image. These effects are eliminated by employing of the window
function, which decreases the significance of pixels located on the edge of the image,

such as Hann or Hamming function [21].

The input images to the phase correlation have to be identical because otherwise
the Dirac impulse will not be formed on the output. When the input images are not
identical, for example, they originate from different imaging modalities, in the output
matrix are another impulses besides the Dirac impulse, and the shift estimation is

impossible [21].

Another limitation of the shift estimation is the inability to distinquish between a
large shift in the positive direction and a small shift in the negative direction, so it is
important to have apriori knowledge about the direction of the shift [21]. The phase
correlation can be also used for estimation of rotation and scaling. For the rotation
estimation the rotation property of 2D Fourier transform is used. The rotation angle
is estimated from the translation of the amplitude spectra of the pair of images in
the polar coordinates. The scaling is estimated similarly, the only diferences are
the use of scaling property of the 2D Fourier transform instead of rotation property,
and the scaling is estimated using translation of spectra in the log-polar coordinates

instead of the simple polar coordinates [21].
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3.2.4 Local motion estimation (optical flow method)

This approach consists of several steps - detection of tracking points, Lucas-Kanade
tracking, and then the global transformation. The probability map of tracking
points is computed from the enhanced image, and it is updated with every registered
frame. Then, the Lucas-Kanade algorithm is used for tracking. In this algorithm,
one optical flow vector is estimated at each pixel of the image. In the Lucas-Kanade
paradigm, the displacement at some pixel is estimated by presuming that it is a
rigid motion of a small window centered on the pixel. The size of the window can
be really small because large motions are reduced by the phase correlation, so even
the smallest motion can be captured. After that, the quality of each tracking point
is estimated and finally, the images are registered using the chosen tracking points.
This whole process is applied iteratively until the change of parameters between the

two iterations is small [12].

3.2.5 Interpolation

After the geometrical transformation (for example, the one mentioned in the previ-
ous subsection) is used in discrete space, the transformed pixels have to be assigned
back to the discrete grid, as they are often dislocated. If the interpolation is not

performed, the resulting images may be distorted or artifacts may appear [23].

The ideal (and hardly used in practice) method of interpolation is interpolation
with the use of two-dimensional function sinc. However, the sinc function is very
complex and works in theory with an infinite number of pixels, which increases
the time computational complexity. Because of this, other, less accurate methods
are used, for example, the nearest-neighbor method of interpolation, the bilinear
interpolation, or the bicubic interpolation. The two main requirements for these
methods are the good approximation of interpolation properties of function sinc and
the use of the smallest number of pixels that are on the input of the interpolation
function. These requirements are, logically, the opposites, and each of the methods

requires a certain degree of compromise [21].

The nearest-neighbor method of interpolation is the simplest and fastest method out
of the methods listed in the previous paragraph. This algorithm assigns the value of
the nearest point in the discrete grid to the interpolated value, as seen in figure 3.2 on
the left, where the values A’, B’, C’ and D’ are the values at interpolated position
and A, B, C and D are values of assigned nearest neighbor, respectively. In the
resulting interpolated image there are discontinuities due to staircase interpolating
function and in the frequency domain, the spectrum of the image is affected by

aliasing interference. To overcame these limitations, the input image should be
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upsampled, or the use of this function should be the final step before the image is
displayed [23] [21].

For better results the bilinear interpolation is used. This method is more complex
than the nearest-neighbor method. The new value at the interpolated position is
assigned to the value from the curved surface at the corresponding position. The
curved surface is computed out of four neighbor pixels, as is displayed in figure 3.2
on the right. The X’ is value at interpolated position and A, B, C and D are values
of neighboring pixels. In comparison with the nearest-neighbor method, the aliasing
interference is suppressed and the interpolating function is continuous. This method
is good for displaying, but the use is limited when the following image processing is

more complex [23] [21].

Fig. 3.2: Interpolating value of pixel for nearest-neighbor method (left) and
bilinear interpolation (right) [21]

3.3 Detection of blurry images

When registering images, it is assumed that all frames from the sequence are not
blurred to ensure the good quality of the final image. However, the eye or head move-

ments result in blurred images, so they must be eliminated before analysis.

The extraction of four features can be used to classify, whether the frame is distorted
or not. The features are the mean value of the frame, the entropy of the frame, edge
image, and phase correlation. The first feature is dependant on the intensity of the
image. The intensity is higher during eye blink because more light is reflected back
from the eyelid. The second feature, frame entropy, is computed as a convolution be-
tween the original, undistorted frame, and the point-spread function which describes
the distortion. The third feature is estimated by convolution of the frame with the
Sobel operator to enhance the edges. If the image is blurred, the edges are blurred,

too. The last parameter is approached with the use of cross-correlation spectrum
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and the inverse Fourier transform between the original scene and the frame. The
result of this is a 2D Gaussian function positioned at different locations. The width
of this function gives information about the blurriness [27]. For classification were
in [27] used three classificators - support vector machine, naive Bayes, and quadratic

discriminant analysis classifier.

3.4 Super-resolution reconstruction

The super-resolution reconstruction comes from the fusion of multiple low-resolution
images into one single frame with improved and increased spatial resolution and
removed noise and blurring. Most super-resolution reconstruction algorithms are
based on L1 or L2 norm, which means that they are sensitive to the noise estimation
28].

The popular matrix notation used for formulation of general super-resolution model

represented in the pixel domain is defined as
Y, =DiH'"FX+V, k=1..N (3.7)

where the matrix Fj, is the motion between the high-resolution frame (magnified with
factor r) X and the kth low-resolution frame Y, H{*" is the blur matrix which
models the camera’s point spread function, matrix D, represents the decimation
operator, vector V, is the system noise and N is the number of low-resolution
frames [29].

There are many methods that do this, such as nonuniform interpolation, frequency
domain, maximum likelihood, maximum a posteriori, and projection onto convex
sets [28].

3.4.1 Frequency domain methods

These methods are based on the spatial aliasing effect and were among the first to
be presented for the super-resolution reconstruction. They are quite simple and not
computationally complex, but the model is only for global geometrical transform
and linear space-invariant blur, and it is hard to use the spatial domain a priori

knowledge for regularization [28].

3.4.2 Projection onto convex sets methods

These methods can include a prior: information, in contrast to frequency domain

methods, but they have high computational cost and slow convergence [28].
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3.4.3 Maximum a posteriori regularization methods

These algorithms are based on the stochastic regularization technique of Bayesian
maximum a posteriori estimation by minimizing a cost function. The determination

of the regularization parameter is crucial for image restoration [28].

There are many approaches for estimating the super-resolution reconstructed image.
For the purpose of this thesis, the regularization based on bilateral total variance is

explained in detail.
Regularization based on bilateral total variance

Super-resolution reconstruction is an ill-posed problem, meaning that for the under-
determined case exist an infinite number of solutions that satisfy the general super-
resolution model (equation 3.7). Accordingly, the regularization is necessary, and
when considering possible regularization terms, the one which results in a high-
resolution image with sharp edges and is relatively simple to implement should be
desired [29].

The regularization term balances the lack of measurement information with prior
knowledge about the desired high-resolution result and is represented as a penalty

factor in the minimization cost function

N

X = argmin [Z p(Y, DiH FLX) + AT (X) (3.8)
X k=1

where ) is the scalar regularization parameter, which is used for weighting the first

term (similarity cost) against the second term (regularization cost) and Y is the

regularization cost function [29].

One of the most used regularization cost functions is the Tikhonov cost function.
This function is based on limiting the total energy of the image or forcing spatial
smoothness. The edges and noise are of high-frequency energy, and therefore are

removed, and the resulting image does not contain sharp edges [29].

The total variation method, in contrast to the Tikhonov cost function, preserves the
edges in the resulting image, because it is based on L; norm of the magnitude of
the gradient [29].

The bilateral total variation regularization function is easy to implement and pre-

serves edges. It is defined as

P P
Terv(X) Y. > o™i+ X - SiSZnX”l (3.9)

|[=—P m=0

where S! and S," are operators that shift X by [ and m pixels in horizontal and

vertical directions, respectively, giving several scales of derivatives, « is scalar weight
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in range of 0 to 1, and is applied for decaying effect of the regularization terms- If the
factor P is equal to one, the regularization is simplified into total variation function
[29].

3.5 Image quality assessment

Image quality can be described as the deviation from the ideal or reference model.
The decrease of image quality can be affected by the noise and the distortion of the
image [30].

Several techniques and metrics can be used for objective image quality assessment.
These techniques can be divided into two categories. The categories differ in the
availability of the reference image. The first category is a full-reference approach,
where the main focus is on the quality assessment of the test image in comparison
with the reference image. The second category is a no-reference approach, where

the quality is assessed from test image only [30].

3.5.1 Full-reference approach

There are many estimators of image quality in comparison with the reference image,
such as Mean Square Error, Structure Similarity Index Method, Feature Similarity
Index Method, etc.

Mean Square Error (MSE)

MSE is the most common estimator of image quality. It is a full-reference metric
and the value zero means the best quality (the images are identical). MSE is a

representation of absolute error [30].

MSE between two images f(x,y) and g(x,y) is defined as

MSE = ﬁ > 3 lo(nm) — fn,m)] (3.10)

where M and N are the sizes of images vertically and horizontally [30].

Structure Similarity Index Method (SSIM)

SSIM is perception-based model. Image degradation is considered as the change of
perception in structural information. It is full-reference metric and the value one

means the best quality (images are identical) [30].
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Feature Similarity Index Method (FSIM)

FSIM maps the features and measures the similarities between two images - full-
reference metric. The value one means the highest similarity (images are identical)
[30].

This metric is based on two criteria - phase congruency and gradient magnitude.
Phase congruency relies on the features in the spectral domain and is contrast in-

variant. Gradient magnitude is computed via convolutional masks [30].

FSIM from the two images f; and f5 is defined as

SL((L’) = [Spc(l’)]a.[SG(l’)]ﬂ (311)
where a and (8 are parameters used to adjust the relative importance of Spo and
Se [30].

Spc is similarity based on phase congruency. It is defined as

_ 2PCPCy+Th
- PC} + PC3+ T,
where PCY and PCy are phase congruency maps extracted from images f; and fs

Spe (3.12)

respectively, and 7} is a positive constant [30] .

S is similarity calculated from magnitude gradient maps G and G5 extracted from

images f1 and fy, and is defined as

264Gy + Ty

S, =221 "=
T R+ T

(3.13)

where T} is a positive constant [30].

3.5.2 No-reference approach

In case the reference picture is not available, some algorithms are trained to evaluate
image quality as the human eye does, for example, Perception-based Image Quality
Evaluator, Natural Image Quality Evaluator, and Blind Referenceless Image Spatial

Quality Evaluator.

Perception based Image Quality Evaluator (PIQUE)

This method originates from an idea of how the human eye perceives the quality of
the image. At first, humans see prominent points in the image or regions that are
spatially active. After that, the overall image quality increases with local quality at
block levels. For computing the PIQUE score, at first, the distortions are estimated

only on prominent spatial regions, and then at the local block levels [31].
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The PIQUE score lies in the range of 0 to 1. If the score is near zero, it means that
the image quality is high. If the score is near one, it represents an image of low

quality [31].

Natural Image Quality Evaluator (NIQE)

This method is based on a space domain natural statistic model. Firstly, a multi-
variate Gaussian model of the features for the image quality assessment is extracted
from the database of natural images. Secondly, the distance between this model and
a multivariate Gaussian fit of the natural scene features that are extracted from the

test image is computed [32].

As in the case of the PIQUE score, the lower NIQE score means better image quality
32].

Blind Referenceless Image Spatial Quality Evaluator (BRISQUE)

This method uses locally normalized luminance coefficients, rather than distortion-
specific features as the methods mentioned before. As in the previous method, the
model had to be trained on an image database, and then is used to quantify the

quality of the test image [33].

As in the previous non-reference methods, the BRISQUE score lies usually in the

range of 0 to 1, the lower score meaning better image quality [33].
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4 Proposed algorithm

The image sequences used in this work were taken by flood-illumination camera
(rtx1, Imagine Eyes, Orsay,France) in cooperation with the University of Leipzig.
The retinal images originate from ten healthy subjects. During imaging the subjects
focused on a moving light target. Therefore the images are captured in different retina
locations. The locations correspond to eye movement involved by eye fixation on

movable target.

The raw data are 119 sequences, consisting of 40 frames, eac frame has a resolution
1279 x 1279 pixels. The sequences are acquired with non-uniform lighting. The size
of the resulting adaptive images from the software Imagine Eyes is 1500x1500 pix-
els.The example of an Imagine Eyes image is in figure 4.1 , where the bright spots cor-
respond to individual photoreceptors and the vessels are typically depicted as darker
capillary areas with lower photoreceptor occurance. For an accurate estimation of
resolution each eye is measured separately, in these images the 1.1 mm? corresponds

to 4°x4° in the captured scene (computed using the Bennett formula).

Fig. 4.1: An example of a resulting image obtained by the Imagine Eyes

software

The goal of this work is to create one high-quality image from each sequence. The
frames in the sequence capture same retinal area, but due to minor and involuntary
eye movements are not mutually registered. Furthermore each frame is burdened
by uneven illumination and noise and several frames in a sequence are blurred.
To obtain the image of the best quality possible, this burdens are removed, and
then the frames are registered. The resulting high-quality images are obtained by
two methods - averaging of the registered sequence and with the super-resolution

technique.
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4.1 Image pre-processing

The sequence of raw frames is loaded into the three-dimensional matrix. Each of

the images is pre-processed separately.

Firstly, the value range of the processed image is transformed to use the full range
from 0 to 1. Asis displayed in figure 4.2, the intensity values of the raw image are in
the range from 0 to approximately 0.05 and after the transformation, the full range

of normalized grayscale values is used.

L 10° Histogram of the raw image
25 T T T T T T

| | l | | | | l | | l
o 0.1 02 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Intensity values [-]

«10* Histogram with the usage of the full range of grayscale values
T T T T

0 0.1 02 0.3 0.4 0.5 06 07 08 0.9 1
Intensity values [-]

Fig. 4.2: Histogram of raw image (top) and histogram of image with

the usage of full range of grayscale values (bottom)

4.1.1 Correction of non-uniform illumination

The frames are obtained with non-uniform lighting - the central area is very bright
and the edges are darker, even after the histogram normalization (figure 4.3 on the
left).

To correct this non-uniformity, a copy of the frame is highly blurred by the applica-
tion of a Gaussian filter where the standard deviation of the Gaussian distribution
was empirically determined and set to 20. The Gaussian filter with high standard
deviation removes all the small objects in the image like cones or inhomogenities
(figure 4.3, centre). However, if the standard deviation is set to a too high value,
the usage of the blurred frame could lead to distortion of the frame rather than to

frame with uniform illumination.

The last step in this process is the substraction of the blurred frame from the original

frame, where the result is normalized again to the scale between 0-1 (figure 4.3,
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right). Alternatively, the division could be used instead of substraction, but the

results are of higher quality with the use of substraction.

Image with non-uniform illumination Image blurred by Gaussian filter Image with uniform illumination

Fig. 4.3: Raw frame (left), blurred frame (centre), frame with uniform

illumination (right)

4.1.2 Noise reduction

For noise reduction, the bilateral filter is used. In the developing stage of this step
many other denoising options were considered and tested, including median filter,
averaging filter and adaptive Wiener filter, but the results after the use of bilateral
filter were the most promising, because the others smudged the photoreceptors and

that is undesirable for the purpose of this thesis.

After filtering, the contrast is adjusted to saturate the bottom and top 1 % of all
pixel values. This step helps to visually distinguish between the white photoreceptors
at the top pixel values and the blood vessels and background at the bottom pixel

values.

The process of filtering is displayed in figure 4.4. The centre image shows the
image after bilateral filtering and the right image shows the image after contrast
adjustment. The bilateral filtering suppressed noise in the image and the contrast

adjustment highlighted the structures in the image.

Image before filtering Image after bilateral filtering Image after contrast adjustment

Fig. 4.4: Image before noise reduction (left), image after bilateral

filtering (centre), image after contrast adjustment (right)
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4.1.3 Detection of blurred frames

One of the key parts of image pre-processing in this thesis is the detection and
removal of blurred frames. These frames are mostly the results of fast eye movements

which decrease the quality of the resulting image.

To detect these frames, the Canny edge detector is applied first. The edges in
the frame are set tovalue of one representing white pixels. The non-edges and
background are set to a value of zero representing black pixels. In the non-blurry
frames the majority of edges are situated in the centre of the image as a result of
uneven illumination of the raw frames. However, in the blurry frames the edges are

detected randomly across the whole frame.

In the first step of the detection, a logical mask the same size as the frame is
applied to a frame with detected edges. The mask is an area of zeroes in the centre
(1239x1239 pixels) and ones on the edges (20 pixels on each side) (figure ??). When
performing a logical operation and between the mask and frame, the edges found
in the centre of the resulting frame are set to zero. The outer part of the frame has

preserved white pixels with detected edges.

After that, the percentage of white pixels in the outer part of the image is computed

as:

number of white pixels in the outer part of the image

percentage = (4.1)

number of all pizels in the outer part of the image
If the percentage of white pixels is higher than an empirically determined 10 % then

the frame is declared blurred and therefore removed.

The following figures show examples of the different types of frame. Figure 4.5 shows
a blurry frame and figure 4.6 shows a sharp frame. In each figure the left image is
the original, the centre image is after Canny edge detection and the right image is
after the mask is applied. The centre images in these figure show that, the sharp
frame has edges mostly in the centre of the image while the blurry frame has edges

randomly across the whole image.
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Frame after mask aplication, percentage:
0.19711

Blurry frame

Fig. 4.5: Blurry frame

Frame after mask aplication, percentage:

Sharp frame Frame after Canny edge detection 0.01943

Fig. 4.6: Sharp frame

During the sequence pre-processing arise another problem, caused by frames that
capture different part of retina. This shift within a sequence is initiated by extensive
eye movement and disables the registration of the neighboring dissimilar frames. To
detect this frames, the normalized cross-correlation between neighboring frames is
used (for example, it is computed between the first frame and second frame, then

between the second frame and the thirs frame and so on).

As a first step the normalized cross-correlation is computed, then the highest peak
with the maximum cross-correlation coefficient is found. When the value is lower
than the threshold, the sequence is divided. In the majority of the sequences, the
main sequence is divided into two groups, and whichever group contains more frames
is used in the next stage of proposed algorithm. To determine whether the frames
belong only to two groups, or should be divided into more groups, the normalized
cross-correlation coefficients could be computed in a loop until the condition of them

not being below the threshold is not met.

The range of the maximum value of the normalized cross-correlation, from one image

sequence, is shown in the figure 4.7. Each of the groups is of different color - the
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first group is red and the second group is blue. It is obvious that the red group

contains more frames, and therefore is used in further analysis.

Range of maximum values of normalized cross-correlation coefficients
T T T T T T

o
©

o
co

o
~l

o
o))

04

Normalized cross-correlation coefficient
o
(@]

| | | |
5 10 15 20 25 30
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Fig. 4.7: Range of maximum values of normalized cross-correlation

coefficients

Figure 4.8 shows two neighboring frames (frame number 7 and frame number 8) and
their maximum normalized cross-correlation coefficients. It is obvious that these
frames are very different from each other, and the low cross-correlation coefficient

only confirms this observation.

Frame 7 from image sequence

Frame 8 from image sequence

Fig. 4.8: Two neighboring frames with different parts of retina captured.

Maximum normalized cross-correlation coefficient: 0.086806
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4.2 Image registration

As the frames in a sequence are shifted because of eye movements, an estimation
of the shift, rotation and scaling between the frames is needed. During the de-
velopment of this algorithm, the rigid transformation followed by local registration
using the optical flow method was considered. However, this was dropped because
of its computational complexity. Also, the properties of the image registration using
phase correlation are computed simultaneously, and give more sufficient results. The
transformation matrix is computed between the first frame of te sequence and the
following frames, so in the sequence of 40 frames, the resulting number of matrices
is 39.

In the first step of this stage of algorithm, the blurry edges are cut off all the frames
that were selected in the previous stages. The resulting resolution of the frames is
1000x1000 pixels. In the next step, the transformation matrices are computed with
phase correlation and applied to the frames. The first resulting image is obtained

as the averaged image from the transformed frames (figure 4.9).

Fig. 4.9: An example of a resulting image obtained by the averaging

technique

4.3 Super-resolution reconstruction

Another method of producing a resulting image is with super-resolution reconstruc-
tion, specifically bilateral total variation regularization. This was previously ex-
plained in section 3.4.3. This method was chosen because it preserves the edges,

removes the noise and blurriness while obtaining a single super-resolution image
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from multiple low-resolution frames. There are several parameters that are required
to set up before reconstruction - magnification factor, in this case it is set to 2, width
of the point-spread function that is set to 0.3, regularization weight A set to 0.00015,
factor P set to 2, weight « set to 0.65, maximum iterations set to 7, and measure of
absolute tolerance to 1.1071%. All of these parameters were determined empirically.
The L1 regularization norm is used. The transformation matrices obtained in the

registration via phase correlation are also used in this method.

The sequence of low-resolution frames used in this method are non-registered frames
before the application of a bilateral filter and before contrast enhancement, with the
blurred edges cut off. For this task a multiframe super-resolution toolbox is used

from the Friedrich-Alexander University Erlangen-Nturnberg [34].

In the final step, the contrast of the resulting high-resolution image is adjusted in

the way described in section 4.1.2 to highlight the structures in the scene.

The resulting image is displayed in the figure 4.10.

Fig. 4.10: An example of a resulting image obtained by the

super-resolution technique

4.4 Results

As stated in section 3.5, there are many metrics to evaluate the quality of the images.
Since there are no reference pictures available to compare with the resulting images,
only the no-reference metrics of PIQUE, NIQUE and BRISQUE are used. These are
computed from the available Imagine Eyes, the super-resolution and the averaged

resulting images. The resolution of the Imagine Eyes image is 1500x1500 pixels and
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of the averaged image is 1000x1000 pixels. The resolution of the super-resolution
image is 2000x2000 pixels.

The resulting scores are displayed in the boxplots 4.11 for PIQUE scores, 4.12 for
NIQE scores and 4.13 for BRISQUE scores. The minimum, median and maximum
scores for each set is displayed in table 4.1. From the boxplots and table it is obvious
that the highest quality images are obtained from super-resolution technique because

the scores are closest to zero.

The boxplots provide visualisations the scores from the whole dataset. The bottom
and top of each box are the 25th and 75th percentiles of scores of each method,
respectively. The red line in the middle of each box is the median of the scores of
the resulting images. The whiskers are lines extending above and below each box.
Observations beyond the whisker length are marked as outliers. An outlier appears

as a red + sign.

PIQUE score
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Fig. 4.11: Boxplots of PIQUE scores of the sets of available Imagine

Eyes images, averaged images and super-resolution images
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Fig. 4.12: Boxplots of NIQE scores of the sets of available Imagine Eyes

images, averaged images and super-resolution image
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Fig. 4.13: Boxplots of BRISQUE scores of the sets of available Imagine

Eyes images, averaged images and super-resolution image
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Tab. 4.1: Minimum, median and maximum scores for each set of resulting images

Imagine Eyes | Averaged | Super-resolution
images images images
PIQUE maximum 0.6954 0.4507 0.2056
median 0.5739 0.2600 0.1063
minimum 0.4032 0.0756 0.0731
NIQE mazimum 0.1088 0.0890 0.0874
median 0.0918 0.0.0701 0.0507
minimum 0.0619 0.0378 0.0378
BRISQUE | maximum 0.5227 0.4456 0.4043
median 0.4538 0.3936 0.1570
minimum 0.4252 0.0323 0.0313

When all three resulting images are displayed in full resolution (figures 4.14 and
4.15), the super-resolution image is also subjectively evaluated as the highest quality
image. The averaged image has artefacts of black pixels, as a result of shifts between
frames and the cutting of the blurred edges. It is, however of higher quality than
the resulting image would be with the retaining of the blurred edges, as the blurred
parts would lead to the loss and degradation of the information, and it was decided
that for the purpose of this thesis the resulting images with edge artifacts are more

desirable than the resulting images with the degraded parts because of blur.

Averaging image

Fig. 4.14: Imagine eye image and two resulting images (example one)
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Imagine eye image Averaging image Super—+esoclution image

Fig. 4.15: Imagine eye image and two resulting images (example two)

When the images are maginified (figures 4.16, 4.17 and 4.18), the imperfections are
clearly visible. The Imagine Eyes and averaged images look similar, the photore-
ceptors are bounded and are clearly visible, but in the super-resolution image, the
photoreceptors that are close and have the same illuminance are clustered (as seen in
figure 4.16). On the other hand, the areas that are blurred in both the Imagine Eyes
and the averaged image are sharpened in the super-resolution image. The super-
resolution image is in general less blurry than the other two, since it is resistant to
lower accuracy of the image registration. Also, the super-resolution image is able to
highlight the blood-vessels (as seen in figures 4.17 and 4.18).

Imagine eye image
oy 0 T U

Averaging image Superresolution image

Fig. 4.16: Details of the Imagine Eyes (600x600 px), the averaging
(400x400px) and the super-resolution resulting image (800x800px),

example one
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Supe

Imagine eye image
3 e

rresolution image

Fig. 4.17: Details of the Imagine Eyes (600x600 px), the averaging
(400x400px) and the super-resolution resulting image (800x800px),

example two

Imagine eye image Averaging image Super-esolution image

Fig. 4.18: Details of the Imagine Eyes (600x600 px), the averaging
(400x400px) and the super-resolution resulting image (800x800px),

example three
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5 Discussion

In this thesis, the four stages of the final algorithm are proposed. The first stage is
for equalization of the non-uniform illumination. The second stage is for detection
and removal of the blurred frames. Then the frames captured in different retina
area (included within a sequence) are detached. The fourth and final stage is for

obtaining high quality resulting images using two separate methods.

The first stage of algorithm is the correction of non-uniform illuminance of the scene.
This is done by the substraction of a highly blurred frame (by application of Gaussian
filter with high standard deviation) from the original frame. This method is proved
quite succesful, but is sensitive to the setting of the standard deviation. Setting of
a too high standard deviation causes the formation of the artifacts. Logically, the
next step is the transformation of the frames to ensure that the entire range of grey

values is used.

The second stage of the algorithm is the detection and removal of blurry frames.
This is based on an empirically proven fact that after the application of the Canny
detector on frames, less than 10 % of white pixels representing edges is located on
the edges of the frame if the frame is sharp. This algorithm succesfully reveals most
of the blurred images, but the overall performance could be improved with the use

of more sophisticated methods such as measuring the spectrum width.

The third stage of the algorithm is the detection and removal of frames captured
after extensive eye movements. These frames captures different retina locations as
the rest of the frames. To detect these frames a normalized cross-correlation is used.
When the value of the maximum coeffiecient is less than 0.3, that means that these
frames are excluded from further analysis. The performance of this algorithm is
challenging, mainly because of computational cost of performing normalized cross-

correlation for the images of this size.

The fourth and the most important stage of the algorithm is obtaining of resulting
single-frame high-quality image. This is done using two methods - averaging and

the super-resolution technique.

The resulting image from the first method is obtained by estimating the transfor-
mation matrices with phase correlation, then transforming the frames and lastly
averaging through third dimension of the transformed frames in sequence. The re-
sulting images are very similar to the available Imagine Eyes images. Although
they are sometimes more blurry and usually contains an artifact on the edges. The
main advantage of this method is that the photoreceptors are clearly separated. The

method is less successful in registration of images focused on blood vessels. This
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leads us to possible further improvement of registration technique, which is more
reliable andd that is able to estimate even the smallest shifts and rotations. The
median of image quality scores obtained by this method are - PIQUE: 0.2600, NIQE:
0.0701, and BRISQUE: 0.3936. The quality scores are not that close to zero as the
scores of the images obtained with the second technique, particularly because of the
artifacts and overall blurriness, but are still lower than in the Imagine Eyes resulting

images obtained by the available software.

The super-resolution technique provides resulting images of the highest quality with
median scores - PIQUE: 0.1063, NIQE: 0.0507, and BRISQUE: 0.1570. The bilat-
eral total variation regularization is used to preserve edges, remove the noise and
blurriness. The advantage of this method is its resistance to low accurate image reg-
istration, in opposite to as the first method, but the photoreceptors in the most of
the resulting images are not clearly separated, they are often clustered or smudged,
and have no strong boundaries. The performance of this method was excellent in
the frames containing blood vessels, as seen in figure 4.15. The disadvantages of this
method could be solved by determination of the paramaters for the bilateral total

variation regularization for each frame, or at least for each sequence separately.

All these algorithms were tested on the total of 119 image sequences. The first three
stages of the final algorithm give good and stable performance for all the sequences.
The performance of the last two stages depends on the content of the sequence.
The first method gives more accurate results in the sequences with minimum blood-
vessels, lots of photoreceptors and slight movements, while the second method is
better when used on sequences containing larger movements and blood-vessels. The
resulting images obtained from both methods are objectively of better quality than
the Imagine Eyes images obtained by available software with median scores - PIQUE:
0.5739, NIQE: 0.0918, BRISQUE: 0.4538. These images are, when evaluated sub-
jectively in some sequences, of better quality, because they have no edge artifacts
compared with the averaged images. The photoreceptors are also clearly visible and

are not smudged compared with the super-resolution images.
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Conclusion

The main focus of this master’s thesis is on the use of adaptive optics in retinal
imaging and processing of these images. The aim of this thesis is to improve the
quality of theses images with the use of phase correlation and super-resolution tech-

niques.

The first chapter contains a description of the human eye from the anatomical and
physiological point of view. In the second chapter adaptive optics is defined and the
principles of this technique are explained. Also in this chapter is an overview of the
use of adaptive optics in retinal imaging. The third chapter contains an explanation
of the current approaches in the processing of adaptive optics retinal images. The
fourth chapter outlines the design and testing of the designed algorithm for image

pre-processing, registration and obtaining the single-frame high-quality result.

The performance of the described algorithm is relatively good. The last part of it is
divided into two approaches. The first approach is based on averaging the registered
image sequence and gives better results in the image sequences that contain min-
imum blood-vessels and little movements between the frames. The first approach
is also able to display the photoreceptors better. Although the quality scores are
slightly worse than scores of the resulting image from the second approach that is
based on the super-resolution technique. The second approach is clearly better in
the image sequences containing thick blood-vessels and large eye movements. The
median quality scores are - PIQUE 0.2600 for averaged images and 0.1063 for super-
resolution images, NIQE 0.0701 for averaged images and 0.0507 for super-resolution
images, and BRISQUE 0.3936 for averaged images and 0.1570 for superresolution
images. Objectively, the images obtained by the second approach are of better

quality.

The main benefit of this work is the improvement of the resulting image in compar-
ison with the resulting image obtained from already available software. This could
possibly, after some improvements, be used for faster and possibly better diagnosis

of retinal pathologies and other disease

In the future this thesis could be extended by better estimating of the used param-
eters for the super-resolution technique. These parameters were determined mostly
empirically, and are the same for all the sequences used. The extension could include

estimation for each sequence separately.
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