
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

IED S I M U L A T O R W I T H A S U P P O R T O F I N D U S T R I A L
C O M M U N I C A T I O N G O O S E
SIMULÁTOR IED S PODPOROU KOMUNIKACE GOOSE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ LÁDR
AUTOR PRÁCE

SUPERVISOR Ing. PETR MATOUŠEK, Ph.D., M.A.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav informačních systémů (UIFS) Akademický rok 2018/2019

Z a d á n í b a k a l á ř s k é p r á c e
22165

Student:
Program:
Název:

Ládr Tomáš
Informační technologie
S imulá tor IED s p o d p o r o u komun ikace GOOSE
IED S imula tor w i th a Suppo r t of Indust r ia l Commun i ca t i on GOOSE

Kategorie: Počítačové sítě
Zadání:

1. Seznamte se fungováním komunikace SCADA a průmyslovým protokolem IEC 61850
(GOOSE).

2. Podívejte se na dostupné softwarové klienty/servery pro standard IEC 61850. Popište
jejich chování, konfiguraci a možnosti použití.

3. Prostudujte specifikaci vybraného zařízení IED (Intelligent Electronic Device) a navrhněte
softwarový simulátor tohoto zařízení.

4. Implementujte simulátor IED včetně komunikace GOOSE.
5. Ověřte chování simulátoru oproti reálnému systému za použití dostupných datasetů.
6. Zhodnoťte své výsledky a použití vytvořeného simulátoru.

Literatura:
• David Hanes, Gonzalo Salqueiro, Patrick Grossetete, Rob Barton, and Jereme Henry. loT

Fundamentals. Networking Technologies, Protocol and Use Cases for the Internet of
Things. Cisco Press, 2017.

• Eric D. Knapp, Joel T. Langill: Industrial Network Security. Securing Critical Infrastructure
Networks for Smart Grid, SCADA, and Other Industrial Control Systems, Syngress,
Elsevier Inc, 2015.

• MATOUŠEK Petr. Description of IEC 61850 Communication. FIT-TR-2018-01, Brno:
Fakulta informačních technologií VUT v Brně, 2018.

• H. Leon, O Montez, M. Stemmer and F. Vasques, "Simulation models for IEC 61850
communication in electrical substations using GOOSE and SMV time-critical messages,"
2016 IEEE World Conference on Factory Communication Systems (WFCS), Aveiro,
2016, pp. 1-8.

Pro udělení zápočtu za první semestr je požadováno:
• Body 1 až 4.

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Ma toušek Petr, Ing., Ph.D., M.A.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 25. října 2018

Zadání bakalářské práce/22165/2018/xladrt00 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this bachelors thesis is to create simulator of I E D working as publisher of the
protocol I E C 6 1 8 5 0 - G O O S E . For achieving of this goal the l ibrary l ibIEC61850 has been
used. D u r i n g the work on this project an emulator of G O O S E publisher was implemented.
There are experiments val idat ing the emulated communicat ion i n the report. The merit
of this thesis is creation of an open-source emulator for operating system L inux , because
other existing solutions are commercial .

Abstrakt
Cílem t é t o b a k a l á ř s k é p r á c e je vy tvo řen í s i m u l á t o r u I E D pracuj íc ího jako publisher pro­
tokolu I E C 6 1 8 5 0 - G O O S E . P r o dosažen í tohoto cíle by la p o u ž i t a knihovna l ibIEC61850.
V r á m c i p r á c e bylo n a i m p l e m e n t o v á n e m u l á t o r zař ízení komuniku j íc ího p o m o c í protokolu
G O O S E . Zp ráva obsahuje experimenty validující emulovanou komunikaci . P ř í n o s e m t é t o
p ráce je v y t v o ř e n í open-source tohoto typu e m l á t o r u pro o p e r a č n í s y s t é m L inux , p ro tože
o s t a t n í existuj ící řešní jsou komerčn í .

Keywords
S C A D A , I E C 61850, I E C 61850-GOOSE, I E D , emulation, R T U , O T , industr ia l networks,
IoT, l ibIEC61850

Klíčová slova
S C A D A , I E C 61850, I E C 61850-GOOSE, I E D , emulace, R T U , O T , p růmys lové s í tě , IoT,
l ibIEC61850

Reference
L Ä D R , Tomas. IED Simulator with a Support of Industrial Communication GOOSE. Brno ,
2019. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor Ing. Pe t r Matousek, P h . D . , M . A .

I E D S i m u l a t o r w i t h a S u p p o r t o f I n d u s t r i a l C o m ­
m u n i c a t i o n G O O S E

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work
under the supervision of Ing. Pe t ra Matouska P h . D . , M . A . The supplementary information
was provided by Ing. Petr D i t t r i c h P h . D . and D r . Stephane Mocanu . A l l the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included i n the list of references.

Tomas L a d r
Ju ly 31, 2019

Acknowledgements
I would like to thank Ing. Pe t r Matousek P h . D . for his academic support, guidance, feedback
and advice required for the creation of this thesis. Furthermore I would like to thank D r .
Stephane M o c a n u for provided dataset and my friends at GreyCor tex for their advice and
suggestions.

Contents

1 Introduction 3

2 Introduction to the I E C 6 1 8 5 0 - G O O S E protocol 4
2.1 I E C 61850 standard 4
2.2 I E C 61850 information model 5

2.2.1 Information model 5
2.2.2 N a m i n g practise 7
2.2.3 D a t a types 8

2.3 Descript ion of G O O S E protocol 9
2.3.1 Configuration of G O O S E export 9
2.3.2 G O O S E message format 9
2.3.3 Communica t ion pattern 11
2.3.4 Types of devices using G O O S E protocol 12

2.4 Summary 12

3 Exist ing tools and libraries for S C A D A simulation 13
3.1 Ex i s t ing solutions for I E D simulat ion 13

3.1.1 O M N e T + + 13
3.1.2 61850 Test Suite P r o 14
3.1.3 I E D E x p l o r e r 14
3.1.4 S m a r t G r i d w a r e ® I E C 61850 I E D Simulator 14
3.1.5 S i m F l e x ™ I E C 61850 Client Simulator 14
3.1.6 I E C 61850 TesT Software 15
3.1.7 Summary 15

3.2 S C A D A communicat ion libraries 15
3.2.1 openIEC61850 15
3.2.2 1 M E C 6 1 8 5 0 15
3.2.3 rapid61850 16
3.2.4 IEC-61850 L ib ra ry 16
3.2.5 I E C 61850 Source Code L ib ra ry 16
3.2.6 Compar ison 16

3.3 Summary 17

4 Design and implementation of the emulator 18
4.1 Design 18

4.1.1 Block scheme of the emulator 18
4.1.2 Configurat ion file format 19

4.2 Implementation 22

1

4.2.1 Con t ro l block 22
4.2.2 Configurat ion block 23
4.2.3 Emula t ion block 23
4.2.4 Enhancements of l ibIEC61850 24
4.2.5 Generat ion of configuration from S C L file 24
4.2.6 Summary 27

5 Comparison of communication of emulator and real devices 28
5.1 Methodology and requirements for emulator 28
5.2 Compar ison of emulated communicat ion and replayed packet capture 28

5.2.1 Dataset w i th one G O O S E export 29
5.2.2 Dataset w i th mult iple G O O S E exports 30

5.3 Result of emulation based on manual ly created configuration 33
5.4 Val ida t ion of generated communicat ion wi th a th i rd party software 36

5.5 Summary 37

6 Conclusion 38

Bibl iography 39

Appendices 41

A D T D description for the X M L configuration files 42

B Example of an S C L with G O O S E export 43

C Configuration file generated from A p e n d i x B 46

D User manual 47

E Configuration files used for experiment from Section 5.3 49

2

Chapter 1

Introduction

The security of industr ia l networks became important topic in the recent past. This topic
is very wide, but there is a lack of open-source software usable for testing and education
purposes. The goal of this thesis is to create a solution usable for s imulat ion or emulation
of a device communicat ing using I E C 6 1 8 5 0 - G O O S E protocol.

To achieve this goal we have to learn how do networks using I E C 61850 standard work.
We have to understand how does the G O O S E protocol work, how does the G O O S E message
look like, what data does it contain and how are these data obtained from the hosting
physical devices. We have to understand how are G O O S E messages transmit ted through
the network. These information are contained i n the next chapter.

In Chapter 3, we introduce already existing solutions for this problem. We w i l l look for
applications prepared created for simulation of devices using I E C 61850 standard. We w i l l
also look for software libraries, which would help us wit implementat ion of our solution.

We w i l l design and implement a solution of this problem. This process is described in
Chapter 4. For this we w i l l use the knowledge obtained during the previous work. In the
Chapter 5, we w i l l propose and realize experiments to find out i f the implemented solution
is corresponding to the standard. For these experiments we w i l l have to obtain datasets
based on a communicat ion from a real network.

3

Chapter 2

Introduction to the IEC
61850-GOOSE protocol

The goal of this chapter is to describe the theory that is important for an understanding
of this thesis. The chapter is d ivided into three sections. The first part briefly describes
the I E C 61850 [2, 3, 4, 5, 1] standard, because the G O O S E [5] protocol is a part of the
standard. The second section describes an information model of I E C 61850 standard and
data types used. The model is important because the G O O S E messages contain applicat ion
data which are extracted from this model . It also describes relations between I E C 61850
and ISO 9506 information models. The last part describes the G O O S E protocol in more
details. It also contains a depiction of configuration possibilities of G O O S E exports using
Structured Con t ro l Language (S C L) configuration language.

2.1 I E C 61850 standard

The purpose of the I E C 61850 standard is to provide means for interoperabili ty between
functions performed in substation by physical devices produced by different suppliers [3].
Th is goal is achieved by defining a common information model used by devices, a map­
ping of several communicat ion protocols on this model and defining common configuration
possibilities for intelligent electronic devices (IEDs) .

Currently, the functions defined by the standard are mapped onto three communicat ion
protocols [10]:

• Manufactur ing Message Specification (M M S) protocol supports two different types of
communicat ion [6]:

— Client /server communicat ion model which is used for cal l ing certain service pr im­
itives of objects from the data model described in Section 2.2.

— Condi t ioned reporting by a server without any previous client request. For ex­
ample, these reports can be conditioned by an occurrence of a specific event or
by elapsing defined specified time.

• Sampled Measured Values (S M V) protocol periodical ly transfers t ime-cri t ical data
such as currents and voltages. The protocol uses Ethernet-based multicast [8]. The
data to be transmit ted are defined in datasets defined on logical node " L L N 0 " [4].

4

• Generic Object Oriented Substation Event (G O O S E) protocol exchanges measured
data among I E D s i n the network. These data can be used for t r ipping and interlocking
circuits [10]. The dataset and export itself is defined for any logical node wi th in a
logical device [5].

2.2 I E C 61850 information model

This section contains a description of an information model used by the I E C 61850 standard.
The model is important for an understanding of the format of data sent using the G O O S E
messages.

The first subsection describes, how data and metadata are stored in an I E D and how are
they represented in an I E C 61850 network. This description is based on the ISO 9506 [6]
information model and shows how the I E C 61850 standard extends this information model
[5, 9].

The second subsection explains the naming practice used by the I E C 61850 data model.
The th i rd part of this section shows how the data are represented and depicts the data

types used by the I E C 61850 model which are based on Abst rac t Syntax Nota t ion One
(A S N . l) [4].

2.2.1 I n f o r m a t i o n m o d e l

The information model of I E C 61850 is based on a model defined by the ISO 9506 standard.
This model uses an object-oriented model l ing method [9, 12], see i n Figure 2.1.

Objects

Figure 2.1: ISO 9506 information model

In Figure 2.1 we can see a physical device. The device is supposed to represent one I E D
in an industr ia l network. Accord ing to the information model of the ISO 9506 standard,
this device contains 1 to n V i r t u a l Manufactur ing Devices (V M D s) . A V M D is a software
entity, which provides externally visible behaviour of the I E D . A V M D contains an abstract
representation of resources and functionality provided by the physical device as well as
service primitives (methods) used for processing data of these resources. The resources are
usually real physical devices connected to an I E D (such as voltmeter, relay, etc.) [6].

D a t a i n a V M D are stored as a hierarchy of objects. Objects are instances of several
predefined classes (named variable, domain, ...). A l l objects can contain data w i th A S N . l
data types or other objects. They contain service primitives used for work wi th the data

5

as well . The number of objects i n one layer or max ima l level of nesting is not l imi ted by
the ISO 9506 standard [12].

The top-level object in the hierarchy can be of a type domain. A domain is to be viewed
as a subset of capabilities of its V M D . E a c h domain is implemented i n one V M D only and
therefore domains are not distr ibuted. A n object which is subordinate of a domain is called
domain-specific object [6].

Service primitives are software procedures stored in a V M D used for processing data
stored by the V M D . A service pr imit ive might be used for wr i t ing or reading data of V M D
or its objects, exploration data structure of V M D or simple computat ion using the data [6].

The information model was used as a template for creation of the information model
used by the I E C 61850 standard. The I E C 61850 information model is extended and
mapped on the model defined by ISO 9506.

A PhV
Amp Vohs

MX

PhV
V.. :•.

Functional Constraints
DC

•E5crlj]llDn

Logical
MMXU1

Measurement Unit #1

Data ob jec ts Data Objecrs

PDS
PDULOII

POS
PDSbon

Functional Constraints
ST CO

Statui Contro

Nodes
XCBR1

Circuit Breaker #1

Data ob jec ts

A PhV

MX

PHV

Functional Constraints
DC

•es^rlpllcr

Logical
MMXU2

Measurement Unit #2

Data ob jec ts

POS

Functional
ST

Data ob jec ts

POS

Constraints
CO

Nodes
XCBR2

Circuit Breaker #2

Logical Devic ;s (e.g. relayl)

Server class instance

Physical Device

Figure 2.2: I E C 61850 information model [11]

In Figure 2.2 we can see an example of an I E C 61850 information model . We can see
that physical device contains Server class instance which is mapped one to one on a V M D .
The instance contains more than zero logical devices which are mapped on domains from
the ISO 9506 information model [4, 5].

A logical device stands for a l l information produced and consumed by a group of domain-
specific applicat ion functions. E a c h logical device contains three attributes:

• L D N a m e - the name of the instance. This attr ibute unambiguously identifies its
logical node in a subnetwork.

• L D R e f - contains a reference of this logical device.

• a list of entities called logical nodes. E a c h logical device has to contain three or more
logical nodes. Two of these mandatory logical nodes are related to common issues of
logical device:

— logical-node-zero (L L N 0) which contains common data of logical device

— logical-node-physical-device (L P H D) which represents common data of physical
device hosting this logical device

6

The rest of logical nodes are used for the description of substation functions [3, 4, 10].

A logical node is defined as the smallest entity wi th in the substation which is able to
exchange data. A logical node is a v i r tua l representation of substation equipment. Th is
entity groups together data and service primitives related to one substation function. A l l
logical nodes consist of many attributes, but only those described below are important for
our project [4, 10]:

• L N N a m e - unambiguous identifier of the logical node wi th in its logical device.

• L N R e f - unique path to the logical node (L D N a m e / L N N a m e) .

• DataObject - a list of a l l data objects contained in the logical node.

• DataSet - a list of lists of data objects. Its elements are used for the generation of
reports and some service primitives.

• G O O S E C o n t r o l B l o c k - an attr ibute which holds a definition of G O O S E export.

A l l data from substation equipment are stored i n data objects, which provide means
for the definition of typed data i n logical node. A data object has to have one of the data
types described i n section 2.1.3. D a t a objects are divided into mult iple predefined groups
according to their specific usage. These groups are called functional constraints and they
are defined i n I E C 61850 standard [4].

In Table 2.1, we can see a simplified mapping of I E C 61850 standard on ISO 9506
information model.

I E C 61850 ISO 9506
Server Class
Logica l Device class
Logica l Node class
D a t a Object class
DataSet class

V i r t u a l Manufactur ing Device
domain
named variable
named variable
named variable list

Table 2.1: Simplified mapping of I E C 61850 on ISO 9506 information model [9]

2.2.2 N a m i n g pract ise

The I E C 61850 is defines a standardized way for addressing of data objects. Figure 2.3
shows the default addressing scheme.

LDName LNName I DataObjectNaine $ i DataObjectNaine S DataAttributeName

Data Object Reference

Figure 2.3: Default naming scheme of I E C 61850 [3, 9]

Each object reference is a path i n the hierarchy of objects existing i n the V M D . The
reference consists of ObjectName attributes of instances in the path. These are the logical
device name, logical node name, data object name and data at tr ibute name. The functional

7

constraint (F C) is not shown in the object reference and the information about it mapped
differently. The 8-1 of the I E C 61850 standard maps functional constraints between logical
node name and data object name [10, 4, 5].

2.2.3 D a t a types

The I E C 61850-7-2 there are defines several pr imit ive and complex data types for applica­
t ion data of each mapped protocol. We can see an overview of pr imit ive types i n Table 2.2.
The max ima l length of string data types is not defined i n the standard. The length of each
string at tr ibute is declared by its definition [4].

Name Value range
B O O L E A N
I N T 8 -128 to 127
I N T 1 6 -32 768 to 32 767
I N T 3 2 -8 388 608 to 8 388 607
INT128 -2**127 to (2**127)-1
I N T 8 U Unsigned integer, 0 to 255
I N T 1 6 U Unsigned integer, 0 to 65 535
I N T 2 4 U Unsigned integer, 0 to 16 777 215
I N T 3 2 U Unsigned integer, 0 to 4 294 967 295
F L O A T 3 2 Range of values and precision as specified

by I E E E 754 single-precision floating-point
F L O A T 6 4 Range of values and precision as specified

by I E E E 754 double-precision floating point
E N U M E R A T E D Ordered set of values, defined where type is used
C O D E D E N U M -128 to 127
O C T E D S T R I N G M a x i m a l length shall be defined where type is used
V I S I B L E S T R I N G M a x i m a l length shall be defined where type is used
U N I C O D E D S T R I N G M a x i m a l length shall be defined where type is used

Table 2.2: P r imi t ive data types

The standard contains complex data types as well: the array and the structure. B o t h
complex types consist of one or more elements which are pr imit ive or complex data type.
The only difference between array and structure is that an array contains elements of the
same type. The structure can hold elements of different types. We can see an overview of
complex data types in Table 2.3. [4]

Name Descript ion
A R R A Y
S T R U C T U R E

Col lect ion of elements w i th the same data type
Col lect ion of elements w i th different data types

Table 2.3: Complex data types

8

2.3 Description of G O O S E protocol
In this section, we clarify basic facts about G O O S E protocol. We describe containings of
packets and applicat ion data sent by the protocol as well as the messaging pattern used by
the protocol and types of devices which use the protocol.

The usual purpose of G O O S E protocol is the exchange of time-sensitive measured or
status information of physical equipment of substation among I E D s i n the network. These
measurements are used for protection or informative purposes i n the substation. The com­
municat ion is usually t ransmit ted as multicast or broadcast on a local network using I E E E
802.3 Ethernet [10].

The export is defined in a S C L file. Each export uses user-defined dataset. B o t h dataset
and export are declared on any logical node i n the network. The number of exports is not
l imi ted [5].

2.3.1 C o n f i g u r a t i o n of G O O S E export

A l l G O O S E exports are configured using S C L files. The System Configurat ion description
Language (S C L) is an X M L based language used for configuration of I E D s . G O O S E ex­
ports are defined on logical nodes as well as datasets used by G O O S E exports. L i s t ing
2.1 shows a simplified example of a logical node definition. We can see that G S E C o n t r o l
and DataSet elements are defined in the L i s t ing . We can see that the export is defined in
G S E C o n t r o l element and has a dataset to be user-defined as well as its A p p I D and name.
The dataset to be used is defined as Da taSe t_2 i n DataSet element. Also there has to be
an export type defined i n G S E C o n t r o l element. In our case, the defined type is " G O O S E "
[2].

1 <LN0 lnClass="LLN0" inst="" lnType="SIPROTEC5_LNType_LLN0_Application" desc="General
">

2 <DataSet n a m c = "DataSet 2">
3 <Private type="Siemens-GUID">39a7b23bd383477bb0bb3dl4cb48c734</Private>
4 <FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="SPC" daName

="stVal" fc="ST" />
5 <FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="SPC" daName

="q" fc="ST" />
6 <FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="DPCCB"

daName="stVal" fc="ST" />
7 <FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="DPCCB"

daName="q" fc="ST" />
8 </DataSet>
9 <GSEControl datSet="DataSet_2" con£Rev="20001" appID="ASNERIESl_CAL/Application/

LLN0/Control_DataSet_2" iiamc="Control_DataSet_2" type="GOOSE" />
10 </LN0>

Li s t ing 2.1: A n example of the S C L configuration file example

2.3.2 G O O S E message format

The G O O S E protocol is related to three layers of the ISO OSI model: the physical layer,
the data l ink layer and the applicat ion layer. In Figure 2.4, we can see an example of
G O O S E packet encapsulated into I E E E 802.3 Ethernet frame. In Figure, we can see that
G O O S E has four fields on the l ink layer. Each of these fields is two bytes long. The field

9

called A P P I D is an attr ibute that allows identification of applicat ion association of received
G O O S E message. The Length field contains information about the count of bytes of A P D U .
There also are two reserved fields, where only one bit is used for identification of simulated
communicat ion [10, 4].

Preamble

• s t MAC addr

Src MAC addr

EtherType

APPID

Length

Reservedl

Reserved2

APDU

FCS

GOOSE in Ethernet Frame

GOOSE APDU

Figure 2.4: G O O S E message format [10]

O n applicat ion layer the frame has an App l i ca t ion Pro toco l D a t a Un i t (A P D U) , which
contains G O O S E applicat ion data. The A P D U and uses B E R encoding, which is one of
encodings defined by A S N . l . In the A P D U , we can find twelve fields:

• GocbRef field contains G O O S E control block reference. G O O S E C o n t r o l B l o c k is part
of the logical node and contains the configuration of a G O O S E export.

• t imeAllowedtoLive field contains "time at which the at tr ibute S t N u m was incre­
mented. It informs subscribers of how long to wait for the next repeti t ion of the
message" [10].

• DatSet keeps a reference on the dataset used for the export.

10

• G o I D field contains a reference on applicat ion association of the export.

• S t N u m and S q N u m are used for identification of a specific frame i n a flow. The
field S t N u m is incremented whenever the applicat ion data contained i n A l l D a t a holds
different values than the previous frame. The field S q N u m is incremented w i t h each
frame sent. W h e n S t N u m is incremented S q N u m is set to zero.

• Simulat ion flag is used to indicate frames which are generated during simulation.

• ConfRef contains a count of changes, which have been done on dataset referenced by
DatSet.

• N d s C o m flag contains T R U E value when G O O S E Con t ro l Block requires further
configuration. For example, this occurs when DatSet value is set to N U L L .

• NumDatSe tEnt r ies field contains a count of elements of A l l D a t a .

The A l l D a t a field contains applicat ion data. These data are values of objects, which
are part of dataset referenced by DatSet value. Each DatSet is defined on the logical node
using an S C L file. The data have to have data types listed i n Subsection 2.2.3. Figure 2.5
shows an example of A l l D a t a field from a G O O S E message. In the Figure, we can see that
A l l D a t a section contains four elements. Three of these elements have data type bit-str ing
(octet string) and one is boolean. The messages were decoded using B E R encoding. The
Basic Encod ing Rules (B E R) is a way of encoding of A S N . l structures. [10, 7, 4].

No. Time Source Destination Protocol Length Infa
1 Q.000000 Ipcas_fa:c0:45 Iec-Tc57_01:00:01 GOOSE 221
2 2.000891 Ipcas_fa:c8:45 Iec-Tc57_01:00:Ol GOOSE 221
3 4.00155S Ipcas_fa : cO:45 Iec-Tc57_01:00 : 01 GOOSE 221

• a l l D a t a : 4 items
• Data: boolean (3)

boolean: False
• Data: b i t - s t r i n g (4)

Padding: 3
b i t - s t r i n g : 0000

• Data: b i t - s t r i n g (4)
Padding: 6
b i t - s t r i n g : cS

• Data: b i t - s t r i n g (4)
Padding: 3
b i t - s t r i n g : 0000

Figure 2.5: A l l D a t a example

2.3.3 C o m m u n i c a t i o n p a t t e r n

G O O S E messages are usually t ransmit ted using multicast or broadcast. For this purpose
publisher-subscriber messaging pattern is used. The pattern defines two possible behaviours
of communicat ing devices: the publisher and the subscriber. Each physical device can
behave as a publisher or subscriber or both. A publisher is a device which produces messages
and sends them v i a the network. A subscriber is a device which processes the information

11

obtained from messages produced by a publisher and invokes some inner act ion based on
the information. Figure 2.6 shows an example of the publisher-subscriber communicat ion.
We can see that there might be mult iple subscribers processing one stream of published
messages.

Client
(Subscriber)

Server Client
(Publisher) (Subscriber)

Client
(Subscriber)

Figure 2.6: Publ isher subscriber pat tern [4]

2.3.4 T y p e s of devices us ing G O O S E p r o t o c o l

According to Subsection 2.3.3 we might split devices into two groups. F i rs t group is con­
sisted of devices which are subscribing for G O O S E communicat ion. The second group
contains a l l publishing devices. Each physical device might be i n both of these groups.
Subscribing I E D s process the data received on applicat ion layer, but they do not generate
any G O O S E response. We disregard this group of devices i n this thesis. The focus of this
thesis is the group of publishing devices. These devices generate a l l the G O O S E traffic,
which is visible on the network.

2.4 Summary
In this chapter we depicted basic theoretical knowledge which is necessary for understanding
of function of the emulator created for this project. We described the information model
used by devices communicat ing using the I E C 6 1 8 5 0 - G O O S E protocol as well as its origin.
We also described how data are stored and how are they represented i n I E D s . We depicted
how the data are t ransmit ted using G O O S E , what is the message format and we split a l l
devices using the protocol into two logical groups, where only one can be simulated by the
software produced for this thesis.

12

Chapter 3

Existing tools and libraries for
S C A D A simulation

The goal of this chapter is to describe software which can be used for emulation of network
wi th I E C 61850 devices. In the first section, we describe software emulators which support
the I E C 61850 standard. We depict their capabilities and requirement for their usage. In
the second section we briefly introduce existing software libraries which can be used for the
implementation of I E C 6 1 8 5 0 - G O O S E simulator.

3.1 Existing solutions for I E D simulation

This section provides information about existing tools for s imulat ion of intelligent devices
communicat ing by protocols of the IEC61850 standard. We look for a tool which is able
to generate G O O S E messages on a real network interface. The tool should also be able
to generate this communicat ion i n real-time. The tool has to be configurable to let the
user define the export well enough to make the communicat ion look like communicat ion
generated by a real I E D . We consider the platform the tool based on as well.

In this section, we can find descriptions of existing solutions. A t the end of the section,
we can find a brief comparison.

3.1.1 O M N e T + +

The O M N e T + H - 1 is a simulation l ibrary and framework used pr imar i ly for bui ld ing discrete
event network simulators. Protocol-specific functionality has to be provided by plugins,
which are usually developed as independent projects. The framework provides its own
Eclipse-based I D E and runtime user interface.

The O M N e T + + l ibrary uses an I N E T framework as a standard protocol model library.
The I N E T contains s imulat ion models for Internet stack and other popular protocols. The
I N E T framework is open-source and heavily relies on the community around it w i t h its
maintenance and development. The framework is developed by OpenS im L t d . company. It
is released under Academic P u b l i c License for academic and educational usage. Commerc ia l
application requires purchase of different license.

The O M N e T + + simulator itself does not generate any output usable for s imulat ion
of G O O S E communicat ion i n a real network. A l l of the simulations run i n a software

1https://omnetpp.org/

13

https://omnetpp.org/

environment of the tool . There is an existing module for generation of P C A P traces of
the communicat ion. One of the flaws of the packet captures is obsolesce of timestamps
in frames during replaying of the communicat ion on the physical network interface. The
simulator also does not support G O O S E protocol i n default. We found one existing module
for O M N E T + - 1 - which makes the simulat ion of G O O S E possible. There are two major flaws
of this module. The first is dependence on its platform which is Windows 7. The second
flaw is that a l l of the documentation is wri t ten i n Portuguese.

3.1.2 61850 Test Suite Pro

61850 Test Suite P r o 2 a tool-set for testing and troubleshooting networks which depend on
devices which use I E C 61850 standard. This tool-set is developed for the Windows platform.
For example, it provides tools for validat ion of configuration S C L files, description of data
flow in the network and interface for display of applicat ion data form a l l the network.

One of these tools is called I E D simulator. This tool is able to load the information
model from the S C L file. The applicat ion is able to generate G O O S E messages and process
them. The communicat ion generated by the tool is sent to a physical interface.

This tool-box is commercial , but an evaluation license is provided after registration on
the company website. The company Triangle Mic roWorks , Inc. is the maintainer of this
project.

3.1.3 IEDExplorer

This software'^ is an open-source project focused on testing of I E C 61850 I E D s . Its main
purposes are testing and education. Th is tool can connect to an existing I E D over the M M S
communicat ion protocol. It can be used for reading and wr i t ing values into D a t a Objects,
capture and inspect M M S packets, inspect the S C L files and also explore and send G O O S E
messages. It only runs in . N E T environment on Windows . This tool has no L i n u x support.
It is released under G N U General P u b l i c License.

3.1.4 S m a r t G r i d w a r e ® I E C 61850 I E D Simulator

This app l ica t ion 1 is browser-based I E C 61850 I E D simulator. It runs as a web server and
provides support for a l l protocols of I E C 61850 including G O O S E . It is configured using
S C L files. The software is able to simulate mult iple I E D s at once. There is a possibil i ty to
generate exports in S C L or J S O N implemented.

This tool is commercial but some evaluation version is available on producers website.
It is implemented in J A V A and supports Windows, L i n u x and M a c O S platforms.

3.1.5 S i m F l e x ™ I E C 61850 Client Simulator

S i m F l e x ™ I E C 61850 Client S imula tor 5 is a tool used for verification of configuration of
I E C 61850 based I E D s . T h i s software comes w i t h an implementat ion of the test cases
defined i n I E C 61850-10. It is designed to perform tests of I E C 61850 I E D s but it is also
able to publ ish G O O S E messages. This software is commercial and there is only a free

2http: / / www.trianglemicroworks.com/products/testing-and-configuration-tools/61850-test-suite-pro-
pages/overview

3littps: / / sourceforge.net / projects / iedexplorer /
4littp: / / www.smartgridware.com/java_iec61850 ied simulator.html
5 http: //www.gridclone. com/p/simflextm-iec-61850-client-simulator

14

http://www.trianglemicroworks.com/products/testing-and-configuration-tools/61850-test-suite-pro-
http://sourceforge.net
http://www.smartgridware.com/java_iec61850
http://www.gridclone

t r i a l license available. It is developed by Gr idClone B . V . company and it is supported on
Windows platform.

3.1.6 I E C 61850 TesT Software

This software 6 is used for simulation, monitor ing and testing I E D s on an existing substation
network. It is able to generate and process S V and G O O S E messages for tests of the I E D s
functionality. The tool allows script ing to support more complex testing scenarios. The
output of this software is generated i n C O M T R A D E format. I E C 61850 TesT Software is
configurable using a S C L file. It is also able to generate S C L files that comply wi th I E C
61850 parts 6 and 7. Th is software is commercial as well and it is developed by Doble
Engineering Company. It is supported on Windows platform only. N o evaluation licence is
offered by the company.

3.1.7 Summary

There are mult iple exit ing software solutions capable of s imulat ion of devices generating
I E C 6 1 8 5 0 - G O O S E messages described. A l l of the solutions described in this chapter have
this support implemented. A l l of the discovered solutions are supported only on Windows
wi th one exception. A l l of these applications are able to generate real-time G O O S E mes­
sages except O M N E T + + which is able to generate only packet captures. The O M N E T + +
is an only open-source solution found. A l l of these tools are configurable using S C L or
graphical user interface.

3.2 S C A D A communication libraries

The purpose of this section is to describe existing libraries usable for simulation of devices
communicat ing by protocols of I E C 61850 standard. The comparison of libraries is done
by considering their implementat ion language, support of I E C 6 1 8 5 0 - G O O S E protocol and
the licences the libraries are released under.

3.2.1 openIEC61850

OpenIEC61850 7 is an open-source library. It is wr i t ten i n Java language and is a part of
O p e n M U C framework which implements mult iple communicat ion standards (I E C 60870-
5-104, A S N . l) . The l ibrary is licensed under the Apache 2.0 license and is maintained by
O p e n M U C department of Fraunhofer Institute for Solar Energy Systems (ISE) i n Freiburg,
Germany. Because of programming language chosen by the authors, the l ibrary can be used
for fast development and is easily deployable on any platform. The main drawback of this
l ibrary is that it contains I E C 6 1 8 5 0 - M M S client/server only. Th is means the l ibrary is not
usable for this thesis.

3.2.2 libIEC61850

This l i b r a r y 8 provides an implementat ion of I E C 6 1 8 5 0 - M M S client/server, I E C 6 1 8 5 0 - G O O S E
publisher/subscriber and IEC61850-SV publisher/subscriber. It is designed according to

6https: / / www.doble.com/product / software-61850-test /
7https://www.openmuc.org/iec-61850/
8https://libiec61850.com/libiec61850/

15

http://www.doble.com/product
https://www.openmuc.org/iec-61850/
https://libiec61850.com/libiec61850/

the second edit ion of the standard. The l ibrary is wr i t ten i n C , but it contains . N E T and
P y t h o n wrappers al lowing the l ibrary to be used i n high-level languages. The last release
contains J A V A A P I . It is released under G P L v 3 license. The l ibrary is maintained by the
company M Z Automat ion G m b H .

3.2.3 rapid61850

The goal of this software 9 is to automatical ly generate C / C + + code for sending and re­
ceiving I E C 6 1 8 5 0 - G O O S E and IEC61850-SV communicat ion. Passed S C L file is used for
the generation. The l ibrary also validates the S C L file. There is also the possibil i ty to
use S W I G for creation of high-level languages wrappers. A u t h o r of this l ibrary is Steven
B l a i r and is published under G P L v 2 license. The Eclipse I D E wi th the Ecl ipse Mode l ing
Framework is the mandatory environment for development and running this l ibrary. The
A P I of this l ibrary is complicated and hardly understandable.

3.2.4 IEC-61850 Library

IEC-61850 L i b r a r y 1 0 is a commercial l ibrary and it is maintained by J P E m b e d d e d company.
The company offers a free evaluation version of the software. For licensing purposes, the
royalty-free licensing model is used. Th is software is implemented i n C + + and uses the
object-oriented paradigm. The l ibrary supports a l l protocols defined in IEC61850 standard.

3.2.5 I E C 61850 Source Code Library

This commercial l i b r a r y 1 1 is produced by Triangle M i c r o Works, Inc. The producer offers a
free evaluation licence for this product. The L ib ra ry supports a l l protocols of I E C 61850
including G O O S E . A l l components included are implemented i n C / C + + or . N E T .

3.2.6 Comparison

We were able to find five existing libraries which are usable for s imulat ion of I E C 61850
communicat ion. In Table 3.1 we can see the comparison between a l l of these libraries.

Name License G O O S E support Language
openIEC61850 Apache 2.0 no J A V A
l ibIEC61850 G P L v 3 yes C
rapid61850 G P L v 2 yes C / C + +
IEC-61850 L i b r a r y commercial yes C / C + +
I E C 61850 Source Code L ib ra ry commercial yes C / C + + or . N E T

Table 3.1: Libraries comparison

The crucial trait for consideration is actual support of I E C 6 1 8 5 0 - G O O S E protocol.
A l l libraries without this support are not usable for this thesis. A l l commercial libraries
are not suitable as well . There are two libraries, which meet these conditions. B o t h of
these are implemented i n C / C + + , so there is no difference for us. The difference is i n the

9https://github.com/stevenblair/rapid61850
10http://www.jpembedded.eu/en/tab/iec-61850-library/
11littp://www.trianglemicroworks.com/products/source-code-libraries/iec-61850-scl-pages

16

https://github.com/stevenblair/rapid61850
http://www.jpembedded.eu/en/tab/iec-61850-library/
http://www.trianglemicroworks.com/products/source-code-libraries/iec-61850-scl-pages

purpose and implementat ion of libraries. Rapid61850 is supposed to automatical ly generate
C / C + + code, which is supposed to generate and read G O O S E communicat ion. Th is code
is generated from S C L files. Th is is not convenient for the purpose of this thesis. O n the
other hand, l ibIEC61850 is tool prepared for the implementat ion of G O O S E publisher or
subscriber. Tha t is the reason why find the l ibrary more suitable. For the implementat ion
part of this thesis, we chose the l ibIEC61850 library.

3.3 Summary

In this chapter, we described existing software whose purpose is the simulation of devices
communicat ing using I E C 61850 standard. In the first part of the chapter, we introduced
already existing software capable of this s imulat ion. We described the requirements and
drawbacks of these applications. In the second part, we depicted existing libraries usable for
implementation of I E C 6 1 8 5 0 - G O O S E simulator. We described their capabilities, compared
them and explained the choice of the l ibrary for this thesis.

17

Chapter 4

Design and implementation of the
emulator

This chapter contains two parts. The first part contains a description of the design of the
emulator. There is wri t ten how the emulator should work and what w i l l it emulate. In the
section, there also is a description of blocks which compose the emulator. In the second
part, we describe the implementat ion of the emulator. We clarify the choice of programming
languages used and describe how d id we proceed during the implementation. We describe
how the emulator can be configured and how the configuration can be created from an S C L
file. We also describe the fixes we had to make to the l ibrary used for the implementation.

4.1 Design

This part is about the design of the emulating system. This system has to be able to
generate G O O S E communicat ion just like a G O O S E publisher would. The input of the
emulator should be a capture file which contains G O O S E communicat ion. The emulator
should also be configurable wi th a different type of input, which would let the user start
an emulation without need for any existing capture. The emulation should generate some
k ind of output, which w i l l enable the user to check the course of emulation.

4.1.1 B l o c k scheme of the emula tor

The system is supposed to consist of mult iple separate blocks. The purpose of each of these
blocks is described i n this part. In Figure 4.1 we can see the design of the emulator. There
are three blocks i n the scheme. Each of these blocks has its purpose i n the final emulator.
We can see that there are two types of arrows going i n and out of the blocks. The blue
arrows denote inputs and red arrows denote outputs. The square labelled as " N I C " is not
meant to be a block.

The first block is the control block. The first purpose of this block is to be the interface
between the rest of the blocks and the user. The block has two types of input . One of these
is a capture file. Th is file is used as a template for the emulation. The second possible
input of this block is a file containing a prepared transcript of the emulation. The output
of this block is a capture file containing the output of the emulation block.

The second block is the configuration block. The objective of this block is to automat­
ical ly generate a configuration. The input of the block is a capture file which contains the

18

communicat ion to be emulated. A n automatical ly generated configuration file is the output
of this block. The block is controlled by the control block.

Configuration Block

input
capture file

Emulation Block

emulated
communicat ion

configuration
Me

set of
configuration

files

NIC

input
capture file

I k A

or
configuration

file

emulated
communicat ion

output
capture file

Figure 4.1: Emula to r design diagram

4.1.2 C o n f i g u r a t i o n file format

In this work we sometimes substitute a configuration file for a "transcript of emulation". The
emulator needs to get a transcript of emulation, which enables to run emulation according
to user-defined parameters. For this purpose, we chose to use an X M L format for these
configuration files. The reasons for this choice are that it is simple to manually create or
edit X M L files and there is a lot of existing tools which enable to easily work wi th this
format of files.

In L i s t ing 4.1 we can see a simple example of the configuration file. E a c h configuration
file can contain only one transcript of emulation. In L i s t ing we can see that configuration
element is the root element of the file. A l l other elements have to be nested in this element.
Next we can see an element named headers Values. This element contains information about
one sequence of G O O S E messages. In a configuration file generated by the configuration
block, this element would contain a l l packets which have the same values i n the G O O S E
header and have the same applicat ion data values. W h e n any change would be found a
new element headers Values would appear i n the configuration file. There are four elements
nested i n the headers Values element. The timeCount element holds the count of packets
sent i n this series. The elements timeStart and timeEnd hold the information about the
start and end of the stream of packets in seconds i n relation to start of the whole emulation.

19

The element gooseValues holds information about the G O O S E header and the applica­
t ion data that are supposed to be in the messages. The elements contained in the goose-
Values element follow:

20

src - Holds source M A C address. The data-type of the value is a string.

dst - Holds source M A C address. The data-type of the value is a string.

goID - Keeps the reference on the applicat ion association of the export. The data-type
of the value is a string.

goCb - Keeps the reference on the G O O S E C o n t r o l B l o c k of this export. The data-type
of the value is a string.

datSet - Holds the reference on the DataSet used by this export. The data-type of
the value is a string.

confRef - Keeps the count of changes, that has been done to the exported DataSet.
The data-type of the value is an integer.

needsComm - W h e n the export needs to be reconfigured, the non-zero value is con­
tained by this field. Else zero is contained.

allowedTTL - Informs subscribers when should the next message arrive. The data­
type of the value is an integer.

appID - Holds information which enables a subscriber to identify appl icat ion as­
sociation of received message. The value is string, which represents a number in
hexadecimal.

vlanID - Contains ID of V L A N . If no V L A N is used the element contains -1 . The
data-type of the value is an integer.

vlanPrio - Contains pr ior i ty of V L A N . If no V L A N is used the element contains -1 .
The data-type of the value is an integer.

21

1 <?xml version="1.0" encoding="UTF—8"?>
2 <configuraton>
3 <headersValues>
4 <gooseValues>
5 <src>00:00:00:00:00:OK/src>
6 <dst>00:00:00:00:00:02</dst>
7 <goID>LLN0/Control_DataSet_2</goID>
s <goCb>LLN0GOControl_DataSet_2</goCb>
9 <datSet>LLN0$DataSet_2</datSet>

10 <con£Rev>l</con£Rev>
n <needsComm>0</needsComm>
12 <allowedTTL>3000</allowedTTL>
13 <dataValues>
14 <goose.boolean>0< / goose.boolean>
15 </dataValues>
16 <appID>0x0K/appID>
17 <vlanID>4</vlanID>
18 <vlanPrio>0</vlanPrio>
19 </gooseValues>
20 <timeCount>10</timeCount>
21 <timeStart>0</timeStart>
22 <timeEnd>10</timeEnd>
23 </headersValues>
24 </configuraton>

Li s t ing 4.1: X M L configuration file example

The last type of element contained by headersValues is gooseValues. Th is element can
appear mult iple times in headersValues and each of these elements contains one element
of the applicat ion data. These elements contain one element each. This element differs
because of type of value contained i n it.

4.2 Implementation

In this section, we describe how the blocks from Figure 4.1 are implemented. We depict
how the emulation is set up. We also depict how the important parts of the emulator are
programmed. We explain how the emulation transcript generated automatical ly and how
we can generate it manually from an S C L file. There is a description of enhancements that
we d id to l ibIEC61850 l ibrary to make it work satisfyingly.

4.2.1 C o n t r o l b lock

The purpose of this block is to check the format of input and make proper steps to get
val id configuration files from this input . There are two possible types of input . The first
of these is a directory containing prepared configuration files. E a c h of these files is used as
a transcript of emulation for one stream of packets. W i t h one stream of packets, we mean
communicat ion between one source and one destination device.

The second type of input is the capture file. W h e n a file i n P C A P format is passed, this
block passes the file to configuration block. The configuration block prepares transcripts of
emulation into specified directory.

W h e n configuration files are ready, the control block passes the directory containing the
configuration files to the emulation block and starts the emulation. D u r i n g the emulation,

22

the control block captures G O O S E packets on the specified network interface. The emula­
t ion happens on the same interface. The result of this is output capture file, which contains
the G O O S E communicat ion generated during the emulation.

This block is implemented i n script Control.rb. Th is script is programmed i n R u b y
language. We chose this language because its syntax is very simple. In the language, it is
easy to ca l l system uti l i t ies as well . R u b y also offers a wide variety of modules, which can
be used for work w i t h serialization formats. It is simple and reliable to use standard ways
for instal l ing these modules offered by Ruby.

4.2.2 C o n f i g u r a t i o n b lock

This block is responsible for the generation of configuration files from the passed capture file.
The block uses tshark u t i l i ty to read a l l G O O S E packets from the capture file. After that
tshark generates meta-data about a l l of G O O S E packets i n J S O N format. This meta-data is
processed for each packet. The statistics for each of packet flows is taken. After processing
al l of the meta-data for each packet flow the new configuration file is generated. These files
are generated into a directory. The path to this directory is defined as a parameter.

This block is also programmed i n the R u b y language. The reasons for picking this
language are the same as for the control block from section 4.2.1.

4.2.3 E m u l a t i o n b lock

This block is responsible for the emulation of G O O S E communicat ion. The input of this
block is a path to a directory, which contains a set of configuration files. These files have
been i n a format defined by the D T D description from Annex A . The data from these files
are parsed and stored into an internal data structure. For each of the stream of packets, a
separate thread is created. These threads generate G O O S E packets according to metadata
read from the configuration. Every configuration file has its own thread.

l void* replayCommunication(publisherParameters* params) {
2 usleep(params->startOf ThisFlow - params->absoluteStartOfEmulation);
3 f o r (i n t j = 0; j < params->gooseValueListCount; j++) {
4 timeParameters* tParams = params->timeParams[j];
5 i n t pktDelay = (tParams->endTime - tParams->startTime) / tParams->packetCount;
6 f o r (i n t i = 0; i < tParams->packetCount; i++) {
7 usleep(pktDelay);
8 i f (GoosePublisher_publish(params->pub, params->gooseValueList[j]) == -1) {
9 \\ p r i n t s error message

10 }
11 }
12 }
13 return NULL;
14 }

Lis t ing 4.2: Pseudocode of t ransmit t ing part of the emulator

In L i s t i ng 4.2 we can see simplified pseudocode of part of the emulator. This part is
used for transmission of G O O S E packets. This pseudocode runs in its own thread. This
function gets a parameter publisherParameters* params, which is a pointer on a structure
of type publisherParameters. Th is structure contains a l l data necessary for running the
emulation of G O O S E publisher. In the second line, we can see how the synchronization of

23

starts of different packet flows is done. The thread sleeps for the difference between the
start of the first packet flow and the packet flow which is supposed to be emulated by this
thread.

There is two for cycles i n L i s t ing . The first of them iterates through a l l of the sets of
packets which are supposed to be transmitted. B y the set of packets, we mean a series of
packets, which have the same values in headers and the same applicat ion data. In the inner
representation of the packet series is always a count of packets and their values. For each
series of packets is counted a delay between packets. It can be seen on the fifth line.

The nested cycle iterates through the count of packets i n one packet stream. For each
of these packets, the thread sleeps for the previously counted delay. After the sleep, the
function for publishing of G O O S E messages is called. The parameters for the packet to be
sent are the same for each message i n the stream. If the G O O S E message can not be sent,
the error message is printed and the t ransmit t ing process continues.

There are mult iple flaws to the implementation. The first of them is that the t iming of
t ransmit ted packets might not be the same i f packet capture input is used. The messages
from one flow are sent w i th the same delay. If G O O S E messages i n the packet capture were
not spread linearly the t iming would be different. The second flaw is that the emulator
does not support complex data types i n applicat ion data of messages.

We can find the implementat ion of this block is i n the goose_publisher_emulator.c
file. This code is wri t ten i n the C language. We chose this language because it is the
programming language used for the implementat ion of l ibIEC61850 library. Th is is the
l ibrary which was used for the emulation process.

4.2.4 E n h a n c e m e n t s of l i b I E C 6 1 8 5 0

Dur ing the implementation, we found mult iple imperfections i n the l ibIEC61850 library.
We had to fix these flaws i n order to be able to make the emulation work as it should.
The first flaw was that the l ibrary d id not let the user set the source M A C address of
G O O S E messages. A fixed M A C address was filled into messages. We fixed this by adding
a parameter, which keeps the M A C address to the necessary functions.

The second flaw was that the l ibrary stat ically added I E E E 802.1Q tag. Even messages
without specification of this had V L A N prior i ty and V L A N ID fields in Ethernet frame.
We fixed this w i th adding a condit ion which adds these field into Ethernet frame when
requested.

4.2.5 G e n e r a t i o n of conf igurat ion f r o m S C L file

The configuration file can be created manually. We can par t ia l ly create configuration file
from an S C L file. The first missing part of configuration is the values of applicat ion data
to be sent. To fill this information user should know datatypes defined i n I E C 61850-7-2.
The second part is the information about the number of packets and the t ime information
about the emulation. The th i rd part is the source M A C address of the communicat ion.

In A n n e x B we can see a very simplified S C L file. Th is S C L file contains a definition of
a G O O S E export. We created a transcript of emulation from this S C L file. The transcript
can be found i n A n n e x C . The data for the configuration file were obtained by the following
steps:

24

src - contains source M A C address. This depends on Network Interface C a r d of source
device i n the network. User can choose any M A C address and the emulation w i l l work
the same.

dst - contains destination M A C address. This address can be found i n G S E block
from L i s t i ng B . l .

goID + confRef - can be found in the G S E C o n t r o l block defining the G O O S E export.
The element goID is supposed to contain the value of appID. The element confRef is
supposed to contain the value of confRev. These elements are i n the L i s t ing B . l .

goCb - contains the reference on the G O O S E C o n t r o l B l o c k i n the I E C 61850 informa­
t ion model . This reference is consisted of:

— name attribute of I E D element

— inst at tr ibute of LDev ice element

— InClass attr ibute of L N O element

— name attribute of G S E C o n t r o l element

The first three are separated w i t h a slash sign. The last two are separated wi th a
dollar sign. A l l of these elements are i n L i s t ing B . l .

datSet - contains the reference on the dataset i n the I E C 61850 information model.
This reference is consisted of:

— name attribute of I E D element

— inst at tr ibute of LDev ice element

— InClass attr ibute of L N O element

— name attribute of DataSet element

The first three are separated w i t h a slash sign. The last two are separated wi th a
dollar sign. A l l of these elements are i n L i s t ing B . l .

needsComm - is usually generated by the publishing I E D . The meaning of the element
is to inform i f the export needs to be reconfigured. C a n be user-defined depending on
users goal w i th the emulation.

allowedTTL - is filled by the publishing I E D as well . The user has to choose the value.

dataValues - depends on dataset which is used for the G O O S E export. We can see
its name i n G S E C o n t r o l element i n datSet attr ibute i n L i s t ing 4.3. This dataset is
defined i n the same logical node i n DataSet element. In the DataSet element, we can
see there are four elements defined.

25

1 <LNO lnClass="LLNO" inst="" lnType="SIPROTEC5_LNType_LLN0_Application" desc="
General" >

2 <DataSet namc=" DataSet 2">
3 <FCDA ldlnst="Application" prefix="" lnClass="USER" lnlnst="l" doName="SPC"

daName="stVal" fc="ST" />
4 <FCDA ldlnst="Application" prefix="" lnClass="USER" lnlnst="l" doName="SPC"

daName="q" fc="ST" />
5 <FCDA ldlnst="Application" prefix="" lnClass="USER" lnlnst="l" doName="DPCCB

" daName="stVal" fc="ST" />
6 <FCDA ldlnst="Application" prefix="" lnClass="USER" lnlnst="l" doName="DPCCB

" daName="q" fc="ST" />
7 </DataSet>
8 <GSEControl datSet="DataSet_2" confRev="20001" appID="ASNERIESl_CAL/

Application/LLNO/Control DataSet 2" name="Control DataSet 2" t y p e = "
GOOSE" />

9 </LN0>

Lis t ing 4.3: S C L defmiton of dataset and goose export

Each of these elements contains at tr ibute InClass. Us ing this attr ibute we can identify
the element L N o d e T y p e , which belongs to this class of logical node. We can see
L N o d e T y p e element i n L i s t ing 4.4. In L N o d e T y p e element, we can see that the
logical node of this class contains two data objects. They are called DPCCB and
SPC These D O elements have an at tr ibute called type. The type DPCCB is " D P C " .
In L i s t ing 4.4 we can see elements D O T y p e . The value of id at tr ibute of D O T y p e
element and the value of type at tr ibute of D O element have to match. If we take a
look at D O T y p e wi th id ' D P C , we can see data attributes of this data object.

These data attributes are important for the resolution of datatypes of dataValues in
emulated G O O S E export. If we take a look at daName attributes of DataSet element
of L i s t ing 4.3 and resolve which D O T y p e belongs to which element of the dataset we
can find a proper order for datatypes in the dataset in the transcript of emulation. To
determine the actual A S N . l datatype, you have to search for the value of the bType
attribute in the I E C 61850-6.

1 <LNodeType id="SIPR0TEC5_LNType_USER_Universal" lnClass="USER">
2 <D0 name="DPCCB" t y p e = " D P C " />
3 <D0 name="SPC" type="SPC" />
4 </LNodeType>
5

6 <DOType id="SPC"">
7 <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN" />
8 <DA qclig="true" fc="ST" name="q" bType="Quality" />
9 </DOType>

10 <DOType id="DPC">
n <DA dclig="true" fc="ST" name="stVal" bType="Dbpos" />
12 <DA qclig="true" fc="ST" name="q" bType="Quality" />
13 </DOType>

Li s t ing 4.4: S C L definition of logical node related data objects

• appID + vlanID + vlanPrio - can be found i n G S E block from Lis t ing B . l .

• timeCount - was chosen by the user. Contains amount of packets to be sent. A l l of
these packets would have values taken from gooseValues.

26

• timeStart + timeEnd - are chosen by the user as well , but user has to have i n mind
t ime restrictions from the G S E block. This block can be seen in L i s t ing B . l starting
on the fifth line. The elements MinTime and MaxTime define min ima l and max ima l
delay between packets. The values of timeStart and timeEnd have to be adjusted
according to MinTime and MaxTime.

4.2.6 S u m m a r y

In this chapter, we described the design and the implementat ion of the emulator. In the
description of the design, there is a block scheme of the emulator w i t h an explanation of
planned inputs, outputs and roles of each block. There is also the depiction of X M L format
used for the transcripts of emulation.

In the second part of this chapter, we described the implementation. In this part, we
can find a depiction of possible usages, inputs and outputs of blocks the emulator. We
also described software tools used for the implementat ion and we clarified why we chose
them. We described changes we had to do to the l ibrary used for the implementat ion of
the emulator. We also outl ined the process which has to be used to create a transcript of
emulation from an S C L file.

27

Chapter 5

Comparison of communication of
emulator and real devices

In this chapter we describe the experiments done for val idat ion of the emulator. Fi rs t
we define a methodology we use evaluation of experiment results. Next we do multiple
experiments. In the first experiment we compare the result of emulation wi th a real dataset.
In the second experiment we generate artificial transcripts of emulation, and compare the
results w i t h expected result.

One part of work on this project was an internship i n G I P S A - l a b 1 , Grenoble, France.
Dur ing the internship we obtained the dataset used for this project.

5.1 Methodology and requirements for emulator

Dur ing the experiments we record a packet capture of the communicat ion generated by the
emulator. We use this capture for comparison between the dataset used and the result of
emulation. We check val idi ty of headers and applicat ion data of the capture. We compare
the t ime course of the capture in relation to the dataset. We visualize both, the dataset
and the emulation capture, using the Wi resha rk 2 . We also use Wireshark for the analysis
of packet captures.

The emulator is implemented to behave like an I E D wi th a new G O O S E export. Th is
means that stNum and sqNum behave according to the I E C 61850 standard. The simulation
flag is set to " T R U E " because the s imulat ion is not generated by a real device. Th is is the
purpose of the flag. T h e t imestamp (£) is set to the t ime of publishing of the message. The
field numDatSetEntrie is automatical ly generated according to the count of elements i n the
allData l ist . The rest of G O O S E applicat ion data is set using the configuration file.

5.2 Comparison of emulated communication and replayed
packet capture

In this experiment we used two datasets obtained in G I P S A - l a b . B o t h datasets are stored
as packet captures. We used these packet captures as inputs for the simulator. For each
dataset a transcript of emulation was created.

1http: / / www.gipsa-lab.fr/
2https://www. wireshark.org/

28

http://www.gipsa-lab.fr/
https://www
http://wireshark.org/

5.2.1 Datase t w i t h one G O O S E expor t

The dataset is contained i n the file goose_test_l.pcapng. In the Table 5.1 there is infor­
mat ion about length and t iming of G O O S E messages. These messages have approximately
two seconds delay between each other. In Figure 5.1 we can see the appl icat ion data of
the first dataset. There is ten G O O S E messages. A l l of the messages contain the same
application data.

N o . Timestampfs] Length
0 0.000000 221
1 2.000891 221
2 4.001558 221
3 6.002258 221
4 8.002674 221
5 10.003350 221
6 12.003227 221
7 14.002880 221
8 16.003414 221
9 18.003278 221

Table 5.1: T ime information of goose_test_l.pcapng

• Ethernet I I , Ere: Ipcas_fa:cQ:45 (00:09:8e:fa:cB:45), Dst: Iec-Tc57_Bl:HQ:S1 (01:Gc:cd:01:00:01)
T GOOSE

APPID: 0 X 0 0 0 1 (1)
Length: 2B7
Reserved 1: 0x0000 (0)
Reserved 2: 0x0000 (0)

T goosePdu
gocbRef: ASNERIESl_CALApplication/LLN0$G0SControl_DataSet_2
timeAllowedtoLive: 3GBB
datSet: ASNERIESl_CALApplication/LLN0$DataSet_2
goID: ASNERIESl_CAL/Application/LLN0/Control_DataSet_2
t : Jun 21, 2019 12:52:30.737999975 UTC
stNum: 1
sqNum: 1169
t e s t : False
confRev: 20001
ndsCom: False
numDatSetEntries: 4

T a l l D a t a : 4 items
T Data: boolean (3)

boolean: False
T Data: b i t - s t r i n g (4)

Padding: 3
b i t - s t r i n g : 0000

T Data: b i t - s t r i n g (4)
Padding: 6
b i t - s t r i n g : c0

T Data: b i t - s t r i n g (4)
Padding: 3
b i t - s t r i n g : 0000

Figure 5.1: Containings of goose_test_l.pcapng

The result of emulation is visible i n Table 5.2 and Figure 5.2. We can see the t iming
differs i n tenths of milliseconds. For each message sent the t ime delay adds up. The lengths
of messages are different because of the difference in value of stNum element. The dataset
was not recorded since the start of communicat ion. The emulator behaves like a device

29

which started the communicat ion wi th the first emulated packet. The first packet of com­
municat ion starts w i th stNum set to zero. The rest of applicat ion data is the same.

N o . Timestampfs] Length
0 0.000000 218
1 2.000585 218
2 4.001260 218
3 6.001847 218
4 8.002385 218
5 10.003009 218
6 12.003653 218
7 14.004324 218
8 16.005061 218
9 18.005763 218

Table 5.2: T i m i n g of the emulation of the first dataset

• Ethernet I I , Src: Ipcas_fa:c6 :45 (00:69:Be:fa:cO:45), Dst: Iec-Tc57_01:as:61 (fll:6c:cd:01:00:01)
T GOOSE

APPID: 0x0001 (1)
Length: 264
Reserved 1: 8x0000 (0)
Reserved 2: 0x0000 (0)

T goosePdu
gocbRef: ASNERIESl_CALApplication/LLN0$G0$Control_DataSet_2
timeAllowedtoLive: 3660
datset: ASNERIESl_CALApplication/LLN0$DataSet_2
goID: ASNERIESl_CAL/Application/LLN0/Control_DataSet_2
t : J u l 30, 2019 23:25:23.301999906 UTC
stNum: 1
sqKlum: 9
t e s t : True
confRev: 2BBB1
ndsCom: False
numDatSetEntries: 4

T a l l D a t a : 4 items
T Data: boolean (3)

boolean: False
T Data: b i t - s t r i n g (4)

Padding: 3
b i t - s t r i n g : B6

T Data: b i t - s t r i n g (4)
Padding: 6
b i t - s t r i n g : c6

T Data: b i t - s t r i n g (4)
Padding: 3
b i t - s t r i n g : 06

Figure 5.2: App l i ca t i on data from the emulation of the first dataset

5.2.2 Datase t w i t h mul t ip l e G O O S E exports

The data set for this experiment is goose_test_2.pcapng. We can see the information about
this dataset in Table 5.3, Figure 5.3 and Figure 5.4. In this dataset there are two G O O S E
publishers defined. The first flow contains thirteen packets. A l l of them have the same
application data, see Figure 5.3. They have two seconds delay between each other. There
is one exception. Packets seven and eight have four seconds delay.

The second flow contains three packets. The flow starts approximately eight seconds
after the first one. The packets of this flow have approximately ten seconds delay. The

30

packets contain also the same applicat ion data, see Figure 5.4. The applicat ion data between
flows are different.

No. Timestampfs] Length
0 0.000000 221
1 2.001065 221
2 4.001909 221
3 6.002377 221
4 8.002208 221
5 10.002700 221
6 12.002397 221
7 14.002397 221
8 18.002581 221
9 20.002511 221
10 22.003082 221
11 24.002913 221
12 26.003427 221

N o . Timestamp[s] Length
0 8.602129 162
1 18.502551 162
2 28.403189 162

Table 5.3: T i m e information of goose_test_2.pcapng

•Ethernet I I , Src: Ipcas_fa:cO:45 (08:09:8e:fa:cfl:45), Dst: Iec-Tc57_01:00:01 (01:0c:cd:01:00:01)
T GOOSE

APPID: 0x0001 (1)
Length: 267
Reserved 1: 6x0660 (6)
Reserved 2: 6x6660 (6)

» goosePdu
gocbRef: ASNERIESl_CALApplication/LLN0$G0$Control_DataSet_2
timeAllowedtoLive: 3009
datset: ASNERIESl_CALApplication/LLN9$DataSet_2
goID: ASNERIESl_CAL/Application/LLN0/Control_DataSet_2
t : Oct 22, 201B 09:04:26.566359221 UTC
stNum: 1
sqNum: 1256
t e s t ; False
confRev: 20061
ndscom: False
numDatSetEntries: 4

» a l l D a t a : 4 items
T Data: boolean (3)

boolean: False
» Data: b i t - s t r i n g (4)

Padding: 3
b i t - s t r i n g : 0000

T Data: b i t - s t r i n g (4)
Padding: 6
b i t - s t r i n g : cO

T Data: b i t - s t r i n g (4)
Padding: 3
b i t - s t r i n g : 0000

Figure 5.3: Containings of the first flow of goose_test_2.pcapng

31

• Ethernet I I , Src: AbbGy/Me_25:OB:a2 {00:21:cl:25:OB:a2), Dst: Iec-Tc57_Ql:QQ:QQ {Gl:Gc:cd:Gl:GQ:QO)
T GOOSE

APPID: OXOOOI (1)
Length: 14B
Reserved 1: 0x0300 (0)
Reserved 2: Oxaaas (0)

T goosePdu
gocbRef: AAlJiq01AlLD0/LLN0$G0$LEDs_info
timeAllowedtoLive: 11000
datSet : AA1 J1Q01A1LD0/LLIJ0$LEDS_0N_QFF
goID: AA1J1Q01A1LD0/LLN0.LEDs_info
t : Sep 2B, 201B 08:39:58.06B465173 UTC
stNum: 1
sqNum: 209850
t e s t : False
confRev: IBB
ndsCom: False
numDatSetEntries: 2

» a l l D a t a : 2 items
T Data: boolean (3)

boolean: False
T Data: boolean (3)

boolean: False

Figure 5.4: Containings of the second flow of goose_test_2.pcapng

We automatical ly created the configuration files from the dataset. We can see the results
of emulation in Table 5.4, Figure 5.5 and Figure 5.6. There is a difference i n t iming of first
flow between the dataset and the emulation. In the emulated communicat ion the doubled
delay disappeared. The automatical ly created configuration contains only metadata about
the course of communicat ion from the dataset. The emulator sends G O O S E messages wi th
periodical delays. The t iming of the second flow is the same as the t iming i n the dataset.

We can also notice the difference i n lengths of messages. T h i s difference is caused by
the generation of newsqNum from zero again.

No . Timestampfs] Length
0 0.000000 218
1 2.167143 218
2 4.334350 218
3 6.501651 218
4 8.668883 218
5 10.836058 218
6 13.003317 218
7 15.170571 218
8 17.337889 218
9 19.505177 218
10 21.672391 218
11 23.839641 218
12 26.007058 218

Table 5.4: T i m i n g of the

N o . Timestampfs] Length
0 8.602220 160
1 18.503015 160
2 28.403900 160

of the second dataset

32

• Ethernet I I , Src: Ipcas_fa:cO:45 {00:09:8e:fa:cQ:45), Dst: Iec-Tc57_01:OO:G1 {Ql:0c:cd:01:00:01)
T GOOSE

APPID: 0 X 0 0 0 1 (1)
Length: 204
Reserved 1: 0x0000 (O)
Reserved 2: 0x0000 (B)

T goosePdu
gocbRef: ASNERIESl_CALApplication/LLN0SG0$Control_DataSet_2
timeAllowedtoLive: 3000
datSet; ASNERIESl_CALApplication/LLN0SDataSet_2
goID: ASNERIESl_CAL/Application/LLN0/Control_DataSet_2
t : J u l 31, 2019 02:37:36.675999999 UTC
stNum: 1
sqNum: 0
t e s t : True
confRev: 20001
ndsCom: False
numDatSetEntries: 4

T a l l D a t a : 4 items
T Data: boolean (3)

boolean: False
T Data: b i t - s t r i n g (4)

Padding: 3
b i t - s t r i n g : 00

T Data: b i t - s t r i n g (4)
Padding: 6
b i t - s t r i n g : cO

T Data: b i t - s t r i n g (4)
Padding: 3
b i t - s t r i n g : 00

Figure 5.5: App l i ca t i on data from the emulation of the first flow of the second dataset

•Ethernet I I , Src: Abb0y/Me_25:QB:a2 (BQ:21:cl:25:08:a2), Dst: Iec-Tc57_01:BG:BB (Bl:Bc:cd:B1:BB:BS)
» GOOSE

APPID: 0x0001 (1)
Length: 14-6
Reserved 1: GxOOOO (0)
Reserved 2: 0x0000 (0)

T goosePdu
gocbRef: AA1JlQ01AlLD0/LLN0$G0$LEDs_inf0
timeAllowedtoLive: 11BBB
datSet: AA1J1Q01A1LD0/LLN0$LEDS_0N_0FF
goID: AA1J1QO1A1LDO/LLN0.LEDs_info
t : J u l 31, 2019 02:37:36.674999952 UTC
stNum: 1
sqNum: O
t e s t : True
confRev: IBB
ndsCom: False
numDatSetEntries: 2

T a l l D a t a : 2 items
T Data: boolean (3)

boolean: False
T Data: boolean (3)

boolean: False

Figure 5.6: App l i ca t i on data from the emulation of the second flow of the second dataset

5.3 Result of emulation based on manually created configu­
ration

In this experiment we used manual ly created configuration files. These files are visible
in A p p e n d i x E . There are two flows declared. In one of the flows there is a change in
application data during the emulation. The expected t ime course is to be seen i n Table 5.5
and Table 5.6. For the estimate of t ime course following equation was used:

packet_number * (flow_end_time — flow_start_time) = estimate

33

One flow should contain I E E E 802.1Q tag during the emulation. In this manually
created configuration we have a l l supported datatypes.

N o . Est imate [s] N o . Timestampfs]
0 0.000000 0 0.000000
1 0.444444 1 0.444905
2 0.888888 2 0.889669
3 1.333332 3 1.334391
4 1.777776 4 1.779154
5 2.222220 5 2.223936
6 2.666664 6 2.668693
7 3.111108 7 3.113526
8 3.555552 8 3.558333
9 3.999996 9 4.003158

Table 5.5: Expec ted (left) and actual (right) t iming (source M A C = 42:42:42:42:42:42)

No . Timestampfs] N o . Timestampfs]
0 0.000000 0 0.000000
1 0.750000 1 0.750402
2 1.500000 2 1.500654
3 2.250000 3 2.250911
4 3.000000 4 3.001318
5 3.750000 5 3.751718
6 4.500000 6 4.502113
7 5.250000 7 5.252417
8 6.000000 8 6.002774
9 6.750000 9 6.753194

Table 5.6: Expec ted (left) and actual (right) t iming (source M A C = 00:09:8e:fa:c0:45)

In the Table 5.5 and Table 5.6 we can see a comparison between t ime courses of the
two flows. There is a the smal l delay between messages. It is approximately four tenths
of mill isecond. Figure 5.7, Figure 5.8 and Figure 5.9 show applicat ion data from this
communicat ion. In Figure 5.7 i n allData there is a octet-string. The data are malformed
by Wireshark. The rest of appl icat ion data of this flow corresponds to configuration from
Lis t ing E .2 .

In Figure 5.8 and Figure 5.9 there is one flow. The flow is interesting because it has
changed values in allData in the middle of flow. The floating-point is malformed by Wire -
shark as well . The rest of applicat ion data corresponds to L i s t i ng E . l . We can see the first
flow does not have I E E E 802.1Q tag but the second flow does.

34

• Ethernet I I , Src: 42:42:42:42:42:42 {42:42:42:42:42:42), Dst: GO:GO:QQ_QQ:GO:02 {QG:GQ:QQ:GG:GG:02)
T GOOSE

APPID: 0 X 0 0 0 2 (2)
Length: 215
Reserved 1: GxGGOO {0)
Reserved 2: QxGOSS {G)

T goosePdu
gocbRef: IEDl/Application/LLN0GOControl_DataSet_2
timeAllowedtoLive: 3BBB
datset: IEDl/Application/LLN0$DataSet_2
goID: IEDl/Application/LLNO/Control_DataSet_2
t : J u l 31, 2019 04:53:17 9B0999946 UTC
stNum: 1
sqNum: 0
t e s t : True
confRev: 2GGG1
ndsCom: False
numDatSetEntries: 4

T a l l D a t a : 4 items
T Data: unsigned (6)

unsigned: 100000
» Data: o c t e t - s t r i n g (9)

o c t e t - s t r i n g : 303030303030
T Data: v i s i b l e - s t r i n g (10)

v i s i b l e - s t r i n g : t e s t _ v i s i b l e _ s t r i n g
» Data: mMSString (16)

mMEString: test_mms_string

Figure 5.7: App l i ca t ion data from the emulation flow (source M A C = 42:42:42:42:42:42)

• Ethernet I I , Ere: Ipcas_fa:cG:45 {GG:09:Be:fa:cG:45), Dst: Iec-Tc57_Bl:GG:01 {01:Gc:cd:G1:00:G1)
• BG2.1Q V i r t u a l LAN, PRI: 4, DEI: 0, ID: 1
T GOOSE

APPID: 0 X 0 0 0 1 (1)
Length: 2G6
Reserved 1: OxGOOO (0)
Reserved 2: OxGGOO (0)

» goosePdu
gocbRef: ASNERIESl_CALApplication/LLN0GOControl_DataSet_2
timeAllowedtoLive: 3GG0
datset: ASWERIESl_CALApplication/LLNOSDataSet_2
goID: ASNERIESl_CAL/Application/LLN0/Control_DataSet_2
t : J u l 31, 2019 B4:53:17.9B0999946 UTC
stNum: 1
sqNum: B
te s t : True
confRev: 20GG1
ndsCom: False
numDatSetEntries: 4

T a l l D a t a : 4 items
T Data: boolean (3)

boolean: False
T Data: integer (5)

integer: 42
T Data: f l o a t i n g - p o i n t (7)

f l o a t i n g - p o i n t : GB42B4B40O
T Data: b i t - s t r i n g (4)

Padding: 3
b i t - s t r i n g : GG

Figure 5.8: App l i ca t ion data from the emulated flow (source M A C = 00:09:8e:fa:c0:45) first
part

35

• Ethernet I I , Src: Ipcas_fa:cO:45 (00:09:Be:fa:cB:45), Dst: Iec-Tc57_01:6fl:B1 (61:Bo:cd:01:00:01)
• BB2.1Q V i r t u a l LAN, PRI: 4, DEI: 0, ID: 1
» GOOSE

APPID: 0x0001 (1)
Length: 206
Reserved 1: BxEGBO (a)
Reserved 2: BxBGOO (B)

T goosePdu
gocbRef: ASNERIESl_CALApplication/LLN0GQControl_DataSet_2
timeAllowedtoLive: 30BB
datSet: ASNERIESl_CALApplication/LLN0$DataSet_2
goID: ASNERIESl_CAL/Application/LLrJ0/Control_DataSet_2
t : J u l 31, 2019 B5:B2:12.3B2999956 UTC
stNum: 1
sqNum: 5
t e s t : True
confRev: 2BBB1
ndsCom: False
numDatSetEntries: 4

T a l l D a t a : 4 items
T Data: boolean (3)

boolean: True
T Data: integer (5)

integer: 24
T Data: f l o a t i n g - p o i n t (7)

f l o a t i n g - p o i n t : 0B42109000
T Data: b i t - s t r i n g (4)

Padding: 6
b i t - s t r i n g : 00

Figure 5.9: App l i ca t ion data from the emulated flow (source M A C = 00:09:8e:fa:c0:45)
second part

5.4 Validation of generated communication with a third party
software

To confirm that the communicat ion generated by the emulator is val id according to the
I E C 61850 standard, we used a th i rd party software. The applicat ion GreyCor tex M e n d e l 3

is used for network analysis including industr ia l networks.
The packet capture goose_test_l.pcapng was emulated on the applicat ion. In Figure

5.10 we can see statistics of l ink layer. In comparison wi th Table 5.2, there is approximately
the same data. In Figure 5.11 we can see applicat ion data. W h e n we compare the data
wi th the applicat ion data from Figure 5.2 the data are the same.

Flow Link layer Network layer Transport layer Application Layer

Source Destination

Packet Count: 10 0

Packets Size[B]: 2 2k 0

Payload Size|B]: 2 0k 0

MAC Address: [T] rjO:09:Be:fa:cO:4S ® 01 Oc cc:01:30:01

MAC Vendor: Ipcas

Input Interface: enpOsS

Figure 5.10: L i n k layer i n GreyCor tex Mendel

https: / / www.greycortex.com/mendel

36

http://www.greycortex.com/mendel

Flow Link layer Network layer Transport layer Application Layer

Service: IEC61850-GDOSE

{
"request": {
"GOOSEpdu": {
"goo-sePdu": {

"gocbRef: " AS NERIE S1 j : AL Ap p U ca t io n / LLN 0 $G0 $ C ont rol _D a t aSe t_2",
"sqNum": 0,
"aUData": [

i
"boolean": false

i
"bit-string": "09"

}.
{

"bit-string": "CB"
}.
{

"bit-string": "96"
}

I.
"goID": " ASN E RIES1 j : A L / Ap pi i c at i on/ LLN9/ C ont rol _D a t aSe t_2 " :

" t " : 1564557882615999996,
"test": true,
"timeAllowedtoLive": 3Q09,
"datSet": ,,ASNERIESl_CALApplicatit^n/LLr^e$[)ataSet_2,,,
"numDatSetEntries": 4,
"stWum": 1,
"confRev": 28001,
"ndsCom": false

}
}

}
}

Figure 5.11: App l i ca t ion layer in GreyCor tex Mendel

5.5 Summary

In this chapter we d id mult iple experiments. The i r goal was to validate the behavior of the
emulator. F i r s t we experimented w i t h datasets we obtained i n G I P S A - l a b . We managed
to generate the communicat ion matching the requirements from Section 5.1. T h e n we
manually generated transcripts of emulation wi th more complex communicat ion. W i t h this
we confirmed the emulator can change applicat ion data value i n the middle of flow and it
can add I E E E 802.1Q tag to the Ethernet frame. W i t h the last experiment we validated the
emulator against th i rd party software. Th is experiment confirmed that the communicat ion
is generated according to I E C 61850 standard.

37

Chapter 6

Conclusion

There is a lack of software applications for testing and simulat ion of devices which use
protocols of I E C 61850 standard. The purpose of this work is to create an emulator of
devices communicat ing using I E C 6 1 8 5 0 - G O O S E protocol. We fulfilled this purpose by
implementation of the emulator of publisher devices of the G O O S E protocol. We validated
the emulator w i th several experiments. We used datasets obtained during an internship in
G I P S A - l a b , Grenoble, France. These datasets contain communicat ion from a real devices.
We used these datasets as input of the emulator and then we compared these two com­
munications. A l s o we manual ly generated a few transcripts of emulation for val idat ion of
support of extreme cases. We were not able to get a real dataset containing these cases. To
validate the emulated communicat ion we used a th i rd party software GreyCor tex Mendel
which is able to parse G O O S E messages. The emulator is used i n the GreyCor tex company
for testing purposes. The assignment was fulfilled.

In the future we are going to create the improve the applicat ion to make it even more
useful for research and testing purposes. We would love to add support for M M S server
and client. To make this possible, we w i l l have to implement support for containing of I E C
61850 information model . Because of this, we need to add support for configuration using
S C L files. W h e n we w i l l have the information model stored we can add support for S V
protocol. We could also add G U I for making work wi th the emulator simpler.

38

Bibliography

[1] I E C - T C 5 7 : Communication networks and systems for power utility automation -
Part 9-2: Specific Communication Service Mapping (SCSM) - Sampled values over
ISO/IEC 8802-3. International Electrotechnical Commiss ion. 2004.

[2] I E C - T C 5 7 : Communication networks and systems for power utility automation -
Part 6: Configuration description language for communication in power utility
automation systems related to IEDs . International Electrotechnical Commission.
2010.

[3] I E C - T C 5 7 : Communication networks and systems for power utility automation -
Part 7-1: Principles and models. International Electrotechnical Commiss ion. 2010.

[4] I E C - T C 5 7 : Communication networks and systems for power utility automation -
Part 7-2: Basic information and communication structure. International
Electrotechnical Commiss ion. 2010.

[5] I E C - T C 5 7 : Communication networks and systems for power utility automation -
Part 8-1: Specific Communication Service Mapping (SCSM) - Mappings to MMS
(ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3. International Electrotechnical
Commiss ion. 2010.

[6] I S O / T C 1 8 4 / S C 5 : Industrial automation systems - Manufacturing Message
Specification, Part 1: Service definition . International Organizat ion for
Standardizat ion. 2003.

[7] I T U - T : OSI networking and system aspects - Abstract Syntax Notation One (ASN.l).
International Telecommunication Un ion . 2015.

[8] L E O N , H . ; M O N T E Z , C ; S T E M M E R , M . ; et a l . : Simulat ion models for I E C 61850
communicat ion i n electrical substations using G O O S E and S M V time-cri t ical
messages. In 2016 IEEE World Conference on Factory Communication Systems
(WFCS). M a y 2016. pp. 1-8. doi:10.1109/WFCS.2016.7496500.
Retrieved from: https://ieeexplore.ieee.org/document/7496500

[9] M A C K I E W I C Z , R . E . : Overview of I E C 61850 and Benefits. In 2006 IEEE PES
Power Systems Conference and Exposition. Oct 2006. pp. 623-630.
doi:10.1109/PSCE.2006.296392.
Retrieved from: https://ieeexplore.ieee.org/document/4075831

[10] M A T O U S E K , P. : Descr ipt ion of I E C 61850 Communica t ion . Technical report. 2018.
Retrieved from: http: //www.f it.vutbr.cz/research/view_pub.php.cs?id=11832

39

https://ieeexplore.ieee.org/document/7496500
https://ieeexplore.ieee.org/document/4075831
http://www.f

[11] M O H A G H E G H I , S.; S T O U P I S , J . ; W A N G , Z . : Communica t ion protocols and
networks for power systems-current status and future trends. In 2009 IEEE/PES
Power Systems Conference and Exposition. M a r c h 2009. pp. 1-9.
doi:10.1109/PSCE.2009.4840174.
Retrieved from: https://ieeexplore.ieee.org/document/4840174

[12] S C H W A R Z , K . : Manufactur ing message specification-iso 9506 (mms). Schwarz
Consulting Company, Karlsruhe, Germany. Available from World Wide Web:< URL:
http://www. nettedautomation. com/download/MMS-Rl-2_2008-02-26. pdf. 2008.
Retrieved from: https: //www.semanticscholar.org/paper/Manufacturing-
Message-Specif ication-7„E27„807,93-IS0-9506-Schwarz-Schwarz/
40e6fIea9fafeb582750df7ae725dldd836659f6

40

https://ieeexplore.ieee.org/document/4840174
http://www
http://www.semanticscholar.org/paper/Manufacturing-

Appendices

41

Appendix A

D T D description for the X M L
configuration files

1 <!ELEMENT configuration (headersValues+)>
2 <!ELEMENT headersValues (gooseValues,timeCount,timeStart,timeEnd)>
3 <!ELEMENT gooseValues (src,dst,goID,goCb,datSet,con£Rev,needsComm,allowedTTL,dataValues-l-:

appID,vlanID,vlanPrio) >
4
5 <!ELEMENT src (#PCDATA)>
6 <! E L E M E N T dst (#PCDATA)>
7 <[ELEMENT goID (#PCDATA)>
s <!ELEMENT goCb (#PCDATA)>
9 <!ELEMENT datSet (#PCDATA)>

10 <!ELEMENT confRev (#PCDATA)>
n <!ELEMENT needsComm (#PCDATA)>
12 <!ELEMENT dataValues (#PCDATA)>
13 <!ELEMENT appID (#PCDATA)>
14 <!ELEMENT vlanID (#PCDATA)>
is <!ELEMENT vlanPrio (#PCDATA)>
16 <!ELEMENT dataValues (goose.integer-|-, goose.unsigned-l-, goose.floating_point+, goose.boolean+.

goose.octet_string+, goose.visible_string+, goose.mMSString+, goose.bit_string+)>
17
is <!ELEMENT goose.integer (#PCDATA)>
19 <!ELEMENT goose.unsigned (#PCDATA)>
20 <!ELEMENT goose.floating_point (#PCDATA)>
21 <!ELEMENT goose.boolean (#PCDATA)>
22 <!ELEMENT goose.octet_string (#PCDATA)>
23 <!ELEMENT goose.visible_string (#PCDATA)>
24 <!ELEMENT goose.mMSString (#PCDATA)>
25 <!ELEMENT goose.bit_string (#PCDATA)>

Lis t ing A . l : D T D description of the X M L configuration files

42

Appendix B

Example of an S C L with G O O S E
export

This S C L file was obtained from Stephane Mocanu , Grenoble I N P . The file contains sim­
plified configuration of a substation wi th devices using I E C 61850.

i <SCL>
2 < Communication
3 <SubNetwork name="ProcessBusSubnet" type="8—MMS">
4 <ConnectedAP iedName="ASNERIES 1_CAL" apName="E">
5 <GSE ldlnst="Application" cbName="Control DataSet 2">
6 <Address>
7 <P type="MAC-Address" xs i : type="tP_MAC-Address">01-0C-CD

-01-00-01</P>
8 <P type="VLAN—ID" xsi : type="tP_VLAN-ID">000</P>
9 <P type="VLAN—PRIORITY" xs i : type=" tP_VLAN-PRIORITY">4</P>

10 <P type="APPID" xs i : type=" tP_APPID">000K/P>
n </Address>
12 <MinTime unit="s" multiplier="m">10</MinTime>
13 <MaxTime unit="s" multiplier="m">2000</MaxTime>
14 </GSE>
15 </Connected AP>
16 </SubNetwork>
17 </Communication>
18
19 <IED desc="ASNERIESl_CAL_6MD85" name="ASNERIES 1 C AL" type="6MD85">
20 < Services nameLengtli="64">
21 <ClientServices goose="true" gsse="false" bufReport="false" unbufReport="false" readLog

="false" sv="false" supportsLdName="true" maxGOOSE="128">
22 <TimeSyncProt sntp="true" />
23 </ClientServices>
24 </Services>
25 <AccessPoint desc="Port E" name="E" router="false" clock="false">
26 <Server timeout="0">
27 <Autlientication none="true" />
28 <LDevice desc= "Application" inst="Application" >
29 <LN0 lnClass="LLN0" inst="" lnType="SIPROTEC5_LNType_LLN0_Application"

desc=" General" >
30 <DataSet name= "DataSet 2">
31 <FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="

SPC" daName="stVal" fc="ST" />
32 <FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="

SPC" daName="q" fc="ST" />

43

<FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="
DPCCB" daName="stVal" fc="ST" />

<FCDA ldInst="Application" prefix="" lnClass="USER" lnlnst="l" doName="
DPCCB" daName="q" fc="ST" />

</DataSet>
<GSEControl datSet="DataSet_2" con£Rev="20001" appID="ASNERIESl_CAL

/Application/LLNO/Control DataSet 2" name= "Control DataSet 2" t y p e
="GOOSE" />

</LN0>
<LN lnClass="USER" inst="l" lnType= nSIPROTEC5_LNType_USER_Universal*

desc="Novion Test" prefix="">
<DOI namc= "DPCCB" desc="CB Position">

<DAI name="dataNs">
< Val>Siprotec5 / user—denned < / Val>

</DAI>
</DOI>
<DOI name="SPC" desc="SPC">

<DAI name="dataNs">
< Val>Siprotec5 / user—denned < / Val>

</DAI>
</DOI>

</LN>
</LDevice>

</Server>
< / AccessPoint >

</IED>

<IED name="MU_02" type="Siprotec-7SX8xx">
< Services nameLength="64">

<ConfDataSet max="5" maxAttributes="30" modify="true" />
<GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
<SMVSettings cbName="Fix" datSet="Fix" svID="Conf" optFields="Conf" smpRate="Fix

" samplesPerSec="false" pdcTimeStamp="false">
<SmpRate>80</SmpRate>

</SMVSettings>
<GOOSE max="3" />
<SMVsc max="l" delivery= "multicast" deliveryConf="false" />
<ConfLNs fixPrefix="true" fixLnInst="true" />
<ClientServices goose="true" maxGOOSE="3" supportsLdName="false" maxAttributes="

60" gsse="false" bufReport="false" unbufReport="false" readLog="false" sv="false"
maxReports="0" maxSMV="0">

<TimeSyncProt sntp="true" c37 238="false" other="true" />
</ClientServices>
<SupSubscription maxGo="0" maxSv="0" />
<RedProt hsr="true" prp="true" rstp="true" />

</Services>
<AccessPoint name="Pl">

<Server>
<Authentication none="true" />
<LDevice inst="MU01" desc="Mu01">

<LN inst="l" prefix="ASN" desc="ASNGGI01" lnClass="GGIO" lnType="MU_02/
CTRL/ASNGGI01">

<DOI namc="SPCS03" desc= "external Single Point O N / O F F (ExSP)">
<Private t y p e = "Siemens—Dir">Rx</Private>
<DAI name="ctlModel">

<Val>status—only</Val>
</DAI>

</DOI>
<DOI name="DPCS01" desc= "external double indication (ExDI)">

44

83 <Private type="Siemens—Dir">Rx</Private>
84 <DAI name="ctlModel">
85 <Val>status—only</Val>
86 </DAI>
87 </DOI>
88 <Inputs>
89 <ExtRef doName="SPC" daName="stVal" intAddr="CTRL/ASNGGI01/ST/

SPCS03/stVal" serviceType="GOOSE" iedName= "ASNERIES 1 C A L "
ldlnst="Application" lnClass="USER" lnlnst="l" srcCBName="
Control DataSet 2" srcLDInst="Application" srcLNClass="LLNO" />

go <ExtRef doName="SPC" daName="q" intAddr="CTRL/ASNGGI01/ST/
SPCS03/q" serviceType="GOOSE" iedName="ASNERIES 1_CAL" ldlnst
="Application" lnClass="USER" lnlnst="l" srcCBName="
Control DataSet 2" srcLDInst="Application" srcLNClass="LLNO" />

91 <ExtRef doName="DPCCB" daName="stVal" in tAddr="CTRL/ASNGGIOl/
ST/DPCSOl/s tVal" serviceType="GOOSE" iedName="
ASNERIES 1_CAL" ldInst="Application" lnClass="USER" lnlnst="l"
srcCBName= "Control DataSet 2" srcLDInst="Application" srcLNClass=
"LLNO" />

92 <ExtRef doName="DPCCB" daName="q" in tAddr="CTRL/ASNGGIOl/ST/
DPCSOl /q" serviceType="GOOSE" iedName=" ASNERIES 1_CAL" ldlnst
="Application" lnClass="USER" lnlnst="l" srcCBName="
Control DataSet 2" srcLDInst="Application" srcLNClass="LLNO" />

93 </Inputs>
94 </LN>
95 </LDevice>
96 </Server>
97 < / AccessPoint >
98 </IED>
99

100 <LNodeType id="SIPROTEC5_LNType_USER_Universal" lnClass="USER">
101 <DO name="SPC" type="SPC_ID" />
102 <DO name="DPCCB" t y p e = " D P C _ I D " />
103 </LNodeType>
104
105 <DOType id="SPC_ID" cdc="SPC">
106 <DA dchg="true" fc="ST" namc="stVal" bType= "BOOLEAN" />
107 <DA qchg="true" fc="ST" name="q" bType="Quality" />
108 </DOType>
109 <DOType id="DPC_ID" cdc="DPC">
no <DA dclig="true" fc="ST" name="stVal" bType="Dbpos" />
i n <DA qchg="true" fc="ST" name="q" bType="Quality" />
112 </DOType>
us </SCL>

Li s t ing B . l : Example of an S C L wi th G O O S E export

45

Appendix C

Configuration file generated from
Apendix B

i <configuraton>
2 <headersValues>
3 <gooseValues>
4 <src>00:00:00:00:00:0K/src>
5 <dst>01:0c:cd:01:00:0K/dst>
6 <goID > ASNERIES1_CAL /Application/LLN0/Control_DataSet_2 < /goID >
7 <goCb>ASNERIESl_CAL/Application/LLN0$Control_DataSet_2</goCb>
s <datSet>ASNERIESl_CAL/Application/LLN0$DataSet_2</datSet>
9 <confRev>20001</confRev>

10 <needsComm>0</needsComm>
n <allowedTTL>3000</allowedTTL>
12 <dataValues>
13 <goose.boolean>0< / goose.boolean>
14 </dataValues>
15 <dataValues>
16 <goose.bit_string>00:00</goose.bit_string>
17 </dataValues>
is <dataValues>
19 <goose.bit_string>cO</goose.bit_string>
20 </dataValues>
21 <dataValues>
22 <goose.bit_string>00:00</goose.bit_string>
23 </dataValues>
24 <appID>0x0000000K/appID>
25 <vlanID>000</vlanID>
26 <vlanPrio>4</vlanPrio>
27 </gooseValues>
28 <timeCount>10</timeCount>
29 <timeStart>0</timeStart>
30 <timeEnd>10</timeEnd>
31 </headersValues>
32 </configuraton>

Li s t ing C . l : Configuration file generated from S C L from L i s t i ng B . l

46

Appendix D

User manual

The root folder of this project contains:

• ConfigurationCreator.rb - script used for creation of configuration files from capture
file - please, use Control . rb instead for this purpose

• Control . rb - script for directing od the emulation

• examples - folder containing an example dataset

— pcap - contains packet captures usable for an emulation

— x m l - contains examples of configuration files

• goose_publisher_emulator.c - file containing implementat ion of the emulator

• libiec61850-1.3 - folder containing the libiec61850 folder

• Makefile - makefile

• R E A D M E . m d - the file containing this text

• scl - directory containing an example of S C L file (can not be an input of emulator)

For compilat ion and proper work, the project requires following packages:

• gcc-4.8.5

• ruby-2.0.0p648

• libxml2-devel-2.9.1-6

The instal lat ion process was tested on Ubuntu 16.04-

For instal lat ion please navigate into project root folder and use following commands:

• sudo apt-get insta l l gcc ruby l ibxml2-devel

• gem instal l gyoku

• make

Please, always run the emulator using Control.rb. To run the emulation you can use fol­
lowing examples:

47

• to run emulation from capture file use following command:
sudo ruby Control . rb -p < inpu t_pcap> -r -o <output_f i le>

• to run emulation wi th a directory wi th prepared transcripts of emulation use following
command:
sudo ruby Control . rb -c <configurat ion_directory> -r -o <output_f i le>

• to run emulation wi th prepared configuration files on specific network interface:
sudo ruby Control . rb -c <configurat ion_directory> -r - i <interface>

• to run configuration generation:

ruby Control . rb -c <configurat ion_directory> -p < input_f i le>

C o m m a n d line parameters of Control . rb :

• -i - output interface

• -p - input pcap file

• -o - output pcap file

• -r - run emulation

• -c - configuration directory

For manual creation of configuration files you can use following blank template:

i <configuraton>
2 <headersValues> <! can be repeated >
3 <gooseValues>
4 <src></src> <! string format: " X X : X X : X X : X X : X X : X X " >
5 <dst></dst> <! string format: " X X : X X : X X : X X : X X : X X " >
6 <goIDx/goID> <! string >
7 <goCb></goCb> <! string >
s <datSetx/datSet> <! string >
9 <confRevX/confRev> <! integer >

10 <needsCommx/needsComm> <! integer >
n <allowedTTLx/allowedTTL> <!—integer—>
12 <dataValues> <! can be repeated >
13 <goose.boolean></goose.boolean> <! integer >
14 </dataValues>
15 <appID></appID> <! string containing hexa integer in format "0x0001" >
16 <vlanID></vlanID> <! integer >
17 <vlanPrio></vlanPrio> <! integer >
is </gooseValues>
19 <timeCountx/timeCount> <! integer—>
20 <timeStartx/timeStart> <!—float >
21 <t imeEndx/t imeEnd> <! float >
22 </headersValues>
23 </configuraton>

Li s t ing D . l : B l ank configuration file

18

Appendix E

Configuration files used for
experiment from Section 5.3

In this appendix there are the configuration files used for the experiment from Section 5.3.

i <configuraton>
2 <headersValues>
3 <gooseValues>
4 <src>00:09:8e:fa:c0:45</src>
5 <dst>01:0c:cd:01:00:0K/dst>
6 <goID>ASNERIESl_CAL/Application/LLN0/Control_DataSet_2</goID>
7 <goCb>ASNERIESl_CALApplication/LLN0GOControl_DataSet_2</goCb>
s <datSet>ASNERIESl_CALApplication/LLN0$DataSet_2</datSet>
9 <confRev>2000K/con£Rev>

10 <needsComm>0</needsComm>
n <allowedTTL>3000</allowedTTL>
12 <dataValues>
13 <goose.boolean>0< / goose.boolean>
14 </dataValues>
15 <dataValues>
16 < go ose. integer > 42 < /go ose. integer >
17 </dataValues>
is <dataValues>
19 <goose.floating_point>42.42</goose.floating_point>
20 </dataValues>
21 <dataValues>
22 <goose.bit_string>00</goose.bit_string>
23 </dataValues>
24 <appID>0x0000000K/appID>
25 <vlanID>K/vlanID>
26 <vlanPrio>4</vlanPrio>
27 </gooseValues>
28 <timeCount>5</timeCount>
29 <timeStart>0</timeStart>
30 <timeEnd>3</timeEnd>
31 </headersValues>
32 <headersValues>
33 <gooseValues>
34 <src>00:09:8e:fa:c0:45</src>
35 <dst>01:0c:cd:01:00:0K/dst>
36 <goID>ASNERIESl_CAL/Application/LLN0/Control_DataSet_2</goID>
37 <goCb>ASNERIESl_CALApplication/LLN0GOControl_DataSet_2</goCb>

49

38 <datSet>ASNERIESl_CALApplication/LLN0$DataSet_2</datSet>
39 <confRev>2000K/confRev>
40 <needsComm>0</needsComm>
41 <allowedTTL>3000</allowedTTL>
42 <dataValues>
43 <goose.boolean>l</goose.boolean>
44 </dataValues>
45 <dataValues>
46 < go ose. integer > 24 < /go ose. integer >
47 </dataValues>
48 <dataValues>
49 <goose.floating_point>24.24</goose.floating_point>
so </dataValues>
51 <dataValues>
52 <goose.bit_string>00</goose.bit_string>
53 </dataValues>
54 <appID>0x0000000K/appID>
55 <vlanID>K/vlanID>
56 <vlanPrio>4</vlanPrio>
57 </gooseValues>
58 <timeCount>5</timeCount>
59 <timeStart>3</timeStart>
60 <timeEnd>6</timeEnd>
61 </headersValues>
62 </configuraton>

Li s t ing E . l : Configuration file generated from S C L from L i s t i ng B . l

50

i <configuraton>
2 <headersValues>
3 <gooseValues>
4 <src>42:42:42:42:42:42</src>
5 <dst>00:00:00:00:00:02</dst>
6 <goID >IED 1 / Application/LLNO/Control_DataSet_2 < /goID >
7 <goCb>IEDl/Application/LLN0GOControl_DataSet_2</goCb>
s <datSet>IEDl/Application/LLN0$DataSet_2</datSet>
9 <conffiev>20001</confRev>

10 <needsComm>0</needsComm>
n <allowedTTL>3000</allowedTTL>
12 <dataValues>
13 < go ose. unsigned >0100000</goose. unsigned >
14 </dataValues>
15 <dataValues>
16 <goose.octet_string>000000</goose.octet_string>
17 </dataValues>
i s <dataValues>
19 <goose. visible string>test visible string< / goose.visible string>
20 </dataValues>
21 <dataValues>
22 <goose.mMSString>test mms string</goose.mMSString>
23 </dataValues>
24 <appID>0x00000002</appID>
25 <vlanID>-K/vlanID>
26 <vlanPrio> —l</vlanPrio>
27 </gooseValues>
28 <timeCount>10</timeCount>
29 <timeStart>0</timeStart>
30 <timeEnd>4</timeEnd>
31 </headersValues>
32 </configuraton>

Li s t ing E .2 : Configuration file generated from S C L from L i s t i ng B . l

51

