BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

IED SIMULATOR WITH A SUPPORT OF INDUSTRIAL
COMMUNICATION GOOSE

SIMULATOR IED S PODPOROU KOMUNIKACE GOOSE

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR TOMAS LADR
AUTOR PRACE

SUPERVISOR Ing. PETR MATOU§EK, Ph.D., M.A.

VEDOUCI PRACE

BRNO 2019

Vysoké uéeni technické v Brné
Fakulta informacnich technologii

Ustav informacnich systém((UIFS) Akademicky rok 2018/2019
Zadani bakalaiské prace ||||||||ﬂ|2|ﬂ_!!|j|||||||||

Student: Ladr Tomas
Program: Informaéni technologie
Nazev: Simulator IED s podporou komunikace GOOSE
IED Simulator with a Support of Industrial Communication GOOSE
Kategorie: PocitaCové sité
Zadani:
1. Seznamte se fungovanim komunikace SCADA a priimyslovym protokolem IEC 61850
(GOOSE).
2. Podivejte se na dostupné softwarové klienty/servery pro standard IEC 61850. Popiste
jejich chovani, konfiguraci a moznosti pouZiti.
3. Prostudujte specifikaci vybraného zafizeni IED (Intelligent Electronic Device) a navrhnéte
softwarovy simulator tohoto zafizeni.
4. Implementujte simulator IED v€etné komunikace GOOSE.
5. Ovéite chovani simulatoru oproti redlnému systému za pouziti dostupnych datasett.
6. Zhodnot'te své vysledky a pouziti vytvofeného simulatoru.
Literatura:

¢ David Hanes, Gonzalo Salqueiro, Patrick Grossetete, Rob Barton, and Jereme Henry. [oT
Fundamentals. Networking Technologies, Protocol and Use Cases for the Internet of
Things. Cisco Press, 2017.

e Eric D. Knapp, Joel T. Langill: Industrial Network Security. Securing Critical Infrastructure
Networks for Smart Grid, SCADA, and Other Industrial Control Systems, Syngress,
Elsevier Inc, 2015.

* MATOUSEK Petr. Description of IEC 61850 Communication. FIT-TR-2018-01, Brno:
Fakulta informaénich technologii VUT v Brné, 2018.

¢ H. Ledn, C. Montez, M. Stemmer and F. Vasques, "Simulation models for IEC 61850
communication in electrical substations using GOOSE and SMV time-critical messages,"
2016 IEEE World Conference on Factory Communication Systems (WFCS), Aveiro,
2016, pp. 1-8.

Pro udéleni zapoctu za prvni semestr je poZzadovano:

e Body 1 az 4.

Podrobné zavazné pokyny pro vypracovani prace viz http://www.fit.vutbr.cz/info/szz/
Vedouci prace: Matousek Petr, Ing., Ph.D., M.A.

Vedouci Ustavu: Kolar Dusan, doc. Dr. Ing.

Datum zadani: 1. listopadu 2018

Datum odevzdani: 15. kvétna 2019

Datum schvaleni: 25. fijna 2018

Zadani bakalarské prace/22165/2018/xladrt00 Strana 1z 1

http://www.fit.vutbr.cz/info/szz/

Abstract

The goal of this bachelors thesis is to create simulator of IED working as publisher of the
protocol IEC 61850-GOOSE. For achieving of this goal the library libIEC61850 has been
used. During the work on this project an emulator of GOOSE publisher was implemented.
There are experiments validating the emulated communication in the report. The merit
of this thesis is creation of an open-source emulator for operating system Linux, because
other existing solutions are commercial.

Abstrakt

Cilem této bakalarské prace je vytvoreni simulatoru IED pracujiciho jako publisher pro-
tokolu IEC 61850-GOOSE. Pro dosazeni tohoto cile byla pouzita knihovna libIEC61850.
V ramci prace bylo naimplementovan emulator zaifizeni komunikujictho pomoci protokolu
GOOSE. Zprava obsahuje experimenty validujici emulovanou komunikaci. Pfinosem této
prace je vytvoreni open-source tohoto typu emlatoru pro operac¢ni systém Linux, protoze
ostatni existujici resni jsou komercni.

Keywords

SCADA, IEC 61850, IEC 61850-GOOSE, IED, emulation, RTU, OT, industrial networks,
ToT libIEC61850

Klicova slova

SCADA, IEC 61850, IEC 61850-GOOSE, IED, emulace, RTU, OT, prumyslové sité, IoT,
libIEC61850

Reference

LADR, Tom4s. IED Simulator with a Support of Industrial Communication GOOSE. Brno,
2019. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Petr Matousek, Ph.D., M.A.

IED Simulator with a Support of Industrial Com-
munication GOOSE

Declaration

Hereby I declare that this bachelor’s thesis was prepared as an original author’s work
under the supervision of Ing. Petra Matouska Ph.D., M.A. The supplementary information
was provided by Ing. Petr Dittrich Ph.D. and Dr. Stéphane Mocanu. All the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included in the list of references.

Tomés Ladr
July 31, 2019

Acknowledgements

I would like to thank Ing. Petr Matousek Ph.D. for his academic support, guidance, feedback
and advice required for the creation of this thesis. Furthermore I would like to thank Dr.
Stéphane Mocanu for provided dataset and my friends at GreyCortex for their advice and
suggestions.

Contents

2.1
2.2

2.3

2.4

3.1

3.2

3.3

4.1

4.2

Introduction

Introduction to the IEC 61850-GOOSE protocol

IEC 61850 standard
IEC 61850 information model
2.2.1 Information model 0oL
2.2.2 Naming practiseo o000
2.2.3 Datatypes e
Description of GOOSE protocol
2.3.1 Configuration of GOOSE export
2.3.2 GOOSE message format
2.3.3 Communication pattern 0oL
2.3.4 Types of devices using GOOSE protocol
SUIMIMATY .« + v v v e e e e e e e e e e e e e

Existing tools and libraries for SCADA simulation

Existing solutions for IED simulation
3.1.1 OMNeTH+ . . o o e e
3.1.2 61850 Test Suite Pro Lo o
3.1.3 IEDExplorer
3.1.4 SmartGridware® IEC 61850 IED Simulator
3.1.5 SimFlex™ IEC 61850 Client Simulator
3.1.6 IEC 61850 TesT Software
3.1.7 Summary e
SCADA communication libraries
3.2.1 openlEC61850
3.2.2 ULbIECEI850 o v e e
3.2.3 rapid61850
3.2.4 IEC-61850 Library v v v vt e
3.2.5 IEC 61850 Source Code Library
3.2.6 Comparison e
SUIMIMATY . .« « v v v o e e e e e e e e e e e e e e

Design and implementation of the emulator

Design o
4.1.1 Block scheme of the emulator
4.1.2 Configuration file formato
Implementation Lo e

[9Y]

N

— O © © 00 g Ut U

13
13
13
14
14
14
14
15
15
15
15
15
16
16
16
16
17

4.2.1 Control block
4.2.2 Configuration block 0 o oL
4.2.3 Emulation block o
4.2.4 Enhancements of ibIEC61850
4.2.5 Generation of configuration from SCL file
4.2.6 Summary e e e

5 Comparison of communication of emulator and real devices

5.1 Methodology and requirements for emulator
5.2 Comparison of emulated communication and replayed packet capture

5.2.1 Dataset with one GOOSE export

5.2.2 Dataset with multiple GOOSE exports
5.3 Result of emulation based on manually created configuration
5.4 Validation of generated communication with a third party software
5.5 Summary ... Lo

6 Conclusion

Bibliography

Appendices

A DTD description for the XML configuration files
B Example of an SCL with GOOSE export

C Configuration file generated from Apendix B

D User manual
E

Configuration files used for experiment from Section 5.3

28
28
28
29
30
33
36
37

38

39

41

42

43

46

47

49

Chapter 1

Introduction

The security of industrial networks became important topic in the recent past. This topic
is very wide, but there is a lack of open-source software usable for testing and education
purposes. The goal of this thesis is to create a solution usable for simulation or emulation
of a device communicating using IEC 61850-GOOSE protocol.

To achieve this goal we have to learn how do networks using IEC 61850 standard work.
We have to understand how does the GOOSE protocol work, how does the GOOSE message
look like, what data does it contain and how are these data obtained from the hosting
physical devices. We have to understand how are GOOSE messages transmitted through
the network. These information are contained in the next chapter.

In Chapter 3, we introduce already existing solutions for this problem. We will look for
applications prepared created for simulation of devices using IEC 61850 standard. We will
also look for software libraries, which would help us wit implementation of our solution.

We will design and implement a solution of this problem. This process is described in
Chapter 4. For this we will use the knowledge obtained during the previous work. In the
Chapter 5, we will propose and realize experiments to find out if the implemented solution
is corresponding to the standard. For these experiments we will have to obtain datasets
based on a communication from a real network.

Chapter 2

Introduction to the IEC
61850-GOOSE protocol

The goal of this chapter is to describe the theory that is important for an understanding
of this thesis. The chapter is divided into three sections. The first part briefly describes
the TEC 61850 [2, 3, 4, 5, 1] standard, because the GOOSE [5] protocol is a part of the
standard. The second section describes an information model of IEC 61850 standard and
data types used. The model is important because the GOOSE messages contain application
data which are extracted from this model. It also describes relations between IEC 61850
and ISO 9506 information models. The last part describes the GOOSE protocol in more
details. It also contains a depiction of configuration possibilities of GOOSE exports using
Structured Control Language (SCL) configuration language.

2.1 IEC 61850 standard

The purpose of the IEC 61850 standard is to provide means for interoperability between
functions performed in substation by physical devices produced by different suppliers [3].
This goal is achieved by defining a common information model used by devices, a map-
ping of several communication protocols on this model and defining common configuration
possibilities for intelligent electronic devices (IEDs).

Currently, the functions defined by the standard are mapped onto three communication
protocols [10]:

e Manufacturing Message Specification (MMS) protocol supports two different types of
communication [6]:

— Client /server communication model which is used for calling certain service prim-
itives of objects from the data model described in Section 2.2.

— Conditioned reporting by a server without any previous client request. For ex-
ample, these reports can be conditioned by an occurrence of a specific event or
by elapsing defined specified time.

e Sampled Measured Values (SMV) protocol periodically transfers time-critical data
such as currents and voltages. The protocol uses Ethernet-based multicast [8]. The
data to be transmitted are defined in datasets defined on logical node “LLNO0” [4].

e Generic Object Oriented Substation Event (GOOSE) protocol exchanges measured
data among IEDs in the network. These data can be used for tripping and interlocking
circuits [10]. The dataset and export itself is defined for any logical node within a
logical device [5].

2.2 IEC 61850 information model

This section contains a description of an information model used by the IEC 61850 standard.
The model is important for an understanding of the format of data sent using the GOOSE
messages.

The first subsection describes, how data and metadata are stored in an IED and how are
they represented in an IEC 61850 network. This description is based on the ISO 9506 [6]
information model and shows how the IEC 61850 standard extends this information model
[5, 9].

The second subsection explains the naming practice used by the IEC 61850 data model.

The third part of this section shows how the data are represented and depicts the data
types used by the IEC 61850 model which are based on Abstract Syntax Notation One
(ASN.1) [4].

2.2.1 Information model

The information model of IEC 61850 is based on a model defined by the ISO 9506 standard.
This model uses an object-oriented modelling method [9, 12], see in Figure 2.1.

™ Objects

Hierarchy|of objects
Virtual Manufacturing Devices (VMDs)

Physical Device

l

Figure 2.1: ISO 9506 information model

In Figure 2.1 we can see a physical device. The device is supposed to represent one IED
in an industrial network. According to the information model of the ISO 9506 standard,
this device contains 1 to n Virtual Manufacturing Devices (VMDs). A VMD is a software
entity, which provides externally visible behaviour of the IED. A VMD contains an abstract
representation of resources and functionality provided by the physical device as well as
service primitives (methods) used for processing data of these resources. The resources are
usually real physical devices connected to an IED (such as voltmeter, relay, etc.) [6].

Data in a VMD are stored as a hierarchy of objects. Objects are instances of several
predefined classes (named variable, domain, ...). All objects can contain data with ASN.1
data types or other objects. They contain service primitives used for work with the data

as well. The number of objects in one layer or maximal level of nesting is not limited by
the ISO 9506 standard [12].

The top-level object in the hierarchy can be of a type domain. A domain is to be viewed
as a subset of capabilities of its VMD. Each domain is implemented in one VMD only and
therefore domains are not distributed. An object which is subordinate of a domain is called
domain-specific object [6].

Service primitives are software procedures stored in a VMD used for processing data
stored by the VMD. A service primitive might be used for writing or reading data of VMD
or its objects, exploration data structure of VMD or simple computation using the data [6].

The information model was used as a template for creation of the information model
used by the IEC 61850 standard. The IEC 61850 information model is extended and
mapped on the model defined by ISO 9506.

r

y e o i i o
p P - /. 4 > v
.)/ J/ ,/ ,/ i ¥ £ : // 4
Data Objects Data Objects Data Objects Data Objects Data Objects Data Objects Data Objects Data Objects
A | Phv A |Phv POS POS A | PhV A |PhV POS POS
Amp | VoRs Amp | Voks Position Position Amp | VoRs Amp | WoRs Position Poesition
Functional Constraints Functional Constraints Functional Constraints Functional Constraints
T (& C
Meanzure Description Stus Conbrols Meanzure Description Status Controls
Logical Nodes Logical Nodes
MMXUL ~ XCBR1 MMXuU2 ~ XCBR2
Measurement Unit #1 Circuit Breaker #1 Measurement Unit #2 Circuit Breaker #2
Logical Devices (e.g. relayl)
Server class instance

Physical Device

l

Figure 2.2: IEC 61850 information model [11]

In Figure 2.2 we can see an example of an IEC 61850 information model. We can see
that physical device contains Server class instance which is mapped one to one on a VMD.
The instance contains more than zero logical devices which are mapped on domains from
the ISO 9506 information model [4, 5].

A logical device stands for all information produced and consumed by a group of domain-
specific application functions. Each logical device contains three attributes:

e LDName - the name of the instance. This attribute unambiguously identifies its
logical node in a subnetwork.

e LDRef - contains a reference of this logical device.

e a list of entities called logical nodes. Each logical device has to contain three or more
logical nodes. Two of these mandatory logical nodes are related to common issues of
logical device:

— logical-node-zero (LLNO) which contains common data of logical device

— logical-node-physical-device (LPHD) which represents common data of physical
device hosting this logical device

The rest of logical nodes are used for the description of substation functions [3, 4, 10].

A logical node is defined as the smallest entity within the substation which is able to
exchange data. A logical node is a virtual representation of substation equipment. This
entity groups together data and service primitives related to one substation function. All
logical nodes consist of many attributes, but only those described below are important for
our project [4, 10]:

e LNName - unambiguous identifier of the logical node within its logical device.
e LNRef - unique path to the logical node (LDName/LNName).
e DataObject - a list of all data objects contained in the logical node.

e DataSet - a list of lists of data objects. Its elements are used for the generation of
reports and some service primitives.

e GOOSEControlBlock - an attribute which holds a definition of GOOSE export.

All data from substation equipment are stored in data objects, which provide means
for the definition of typed data in logical node. A data object has to have one of the data
types described in section 2.1.3. Data objects are divided into multiple predefined groups
according to their specific usage. These groups are called functional constraints and they
are defined in IEC 61850 standard [4].

In Table 2.1, we can see a simplified mapping of IEC 61850 standard on ISO 9506
information model.

TEC 61850 ISO 9506

Server Class Virtual Manufacturing Device
Logical Device class | domain

Logical Node class named variable

Data Object class named variable

DataSet class named variable list

Table 2.1: Simplified mapping of IEC 61850 on ISO 9506 information model [9]

2.2.2 Naming practise

The IEC 61850 is defines a standardized way for addressing of data objects. Figure 2.3
shows the default addressing scheme.

r i
LDName |/| LNName |$| DataObjectName [$! DataObjectName |$|DataAttributeName FC

Data Object Reference

Figure 2.3: Default naming scheme of IEC 61850 [3, 9]

Each object reference is a path in the hierarchy of objects existing in the VMD. The
reference consists of ObjectName attributes of instances in the path. These are the logical
device name, logical node name, data object name and data attribute name. The functional

constraint (FC) is not shown in the object reference and the information about it mapped
differently. The 8-1 of the IEC 61850 standard maps functional constraints between logical
node name and data object name [10, 4, 5].

2.2.3 Data types

The IEC 61850-7-2 there are defines several primitive and complex data types for applica-
tion data of each mapped protocol. We can see an overview of primitive types in Table 2.2.
The maximal length of string data types is not defined in the standard. The length of each
string attribute is declared by its definition [4].

Name Value range
BOOLEAN
INTS -128 to 127
INT16 -32 768 to 32 767
INT32 -8 388 608 to 8 388 607
INT128 -2%*127 to (2%*127)-1
INT8U Unsigned integer, 0 to 255
INT16U Unsigned integer, 0 to 65 535
INT24U Unsigned integer, 0 to 16 777 215
INT32U Unsigned integer, 0 to 4 294 967 295
FLOAT32 Range of values and precision as specified
by IEEE 754 single-precision floating-point
FLOATG64 Range of values and precision as specified
by IEEE 754 double-precision floating point
ENUMERATED Ordered set of values, defined where type is used
CODED ENUM -128 to 127
OCTED STRING Maximal length shall be defined where type is used
VISIBLE STRING Maximal length shall be defined where type is used
UNICODED STRING | Maximal length shall be defined where type is used

Table 2.2: Primitive data types

The standard contains complex data types as well: the array and the structure. Both
complex types consist of one or more elements which are primitive or complex data type.
The only difference between array and structure is that an array contains elements of the
same type. The structure can hold elements of different types. We can see an overview of
complex data types in Table 2.3. [4]

Name Description
ARRAY Collection of elements with the same data type
STRUCTURE | Collection of elements with different data types

Table 2.3: Complex data types

2.3 Description of GOOSE protocol

In this section, we clarify basic facts about GOOSE protocol. We describe containings of
packets and application data sent by the protocol as well as the messaging pattern used by
the protocol and types of devices which use the protocol.

The usual purpose of GOOSE protocol is the exchange of time-sensitive measured or
status information of physical equipment of substation among IEDs in the network. These
measurements are used for protection or informative purposes in the substation. The com-
munication is usually transmitted as multicast or broadcast on a local network using IEEE
802.3 Ethernet [10].

The export is defined in a SCL file. Each export uses user-defined dataset. Both dataset
and export are declared on any logical node in the network. The number of exports is not
limited [5].

2.3.1 Configuration of GOOSE export

All GOOSE exports are configured using SCL files. The System Configuration description
Language (SCL) is an XML based language used for configuration of IEDs. GOOSE ex-
ports are defined on logical nodes as well as datasets used by GOOSE exports. Listing
2.1 shows a simplified example of a logical node definition. We can see that GSEControl
and DataSet elements are defined in the Listing. We can see that the export is defined in
GSEControl element and has a dataset to be user-defined as well as its AppID and name.
The dataset to be used is defined as DataSet_ 2 in DataSet element. Also there has to be
an export type defined in GSEControl element. In our case, the defined type is “GOOSE”

[2].

1 <LNO InClass="LLNQ" inst="" InType="SIPROTEC5_ LNType_LLNO_Application" desc="General

>

2 <DataSet name="DataSet_ 2">

3 <Private type="Siemens—GUID">39a7b23bd383477bb0bb3d14cb48¢734< /Private>

4 <FCDA ldInst="Application" prefix="" InClass="USER" InInst="1" doName="SPC" daName
="stVal" fc="ST" />

5 <FCDA ldInst="Application" prefix="" InClass="USER" InInst="1" doName="SPC" daName
="q" fc="ST" />

6 <FCDA 1dInst="Application" prefix=""InClass="USER" InInst="1" doName="DPCCB"
daName="stVal" fc="ST" />

7 <FCDA 1dInst="Application" prefix=""InClass="USER" InInst="1" doName="DPCCB"

daName="q" fc="ST" />
8 < /DataSet>
9 <GSEControl datSet="DataSet_ 2" confRev="20001" appID="ASNERIES1_CAL/Application/
LLNO/Control_DataSet_ 2" name="Control_DataSet_ 2" type="GOOSE" />
10 </LNO>

Listing 2.1: An example of the SCL configuration file example

2.3.2 GOOSE message format

The GOOSE protocol is related to three layers of the ISO OSI model: the physical layer,
the data link layer and the application layer. In Figure 2.4, we can see an example of
GOOSE packet encapsulated into IEEE 802.3 Ethernet frame. In Figure, we can see that
GOOSE has four fields on the link layer. Each of these fields is two bytes long. The field

called APPID is an attribute that allows identification of application association of received
GOOSE message. The Length field contains information about the count of bytes of APDU.
There also are two reserved fields, where only one bit is used for identification of simulated
communication [10, 4].

gocbRef
Freamble
timeAllowedToLive
Dst MAC addr
datSet
Src MAC addr
golD
EtherType
t
APPID
stMum
Length
sgMNum
Reservedl
simulation
Reservedz
confRef
APDU
ndsCom
FCS
numbDatSetEntries
GOOSE in Ethernet Frame
allData
GOOSE APDU

Figure 2.4: GOOSE message format [10]

On application layer the frame has an Application Protocol Data Unit (APDU), which
contains GOOSE application data. The APDU and uses BER encoding, which is one of
encodings defined by ASN.1. In the APDU, we can find twelve fields:

e GocbRef field contains GOOSE control block reference. GOOSEControlBlock is part
of the logical node and contains the configuration of a GOOSE export.

e timeAllowedtoLive field contains “time at which the attribute StNum was incre-
mented. It informs subscribers of how long to wait for the next repetition of the
message” [10].

e DatSet keeps a reference on the dataset used for the export.

10

e GolD field contains a reference on application association of the export.

e StNum and SqNum are used for identification of a specific frame in a flow. The
field StNum is incremented whenever the application data contained in AllData holds
different values than the previous frame. The field SqNum is incremented with each
frame sent. When StNum is incremented SqNum is set to zero.

e Simulation flag is used to indicate frames which are generated during simulation.

e ConfRef contains a count of changes, which have been done on dataset referenced by
DatSet.

e NdsCom flag contains TRUE value when GOOSE Control Block requires further
configuration. For example, this occurs when DatSet value is set to NULL.

e NumDatSetEntries field contains a count of elements of AllData.

The AllData field contains application data. These data are values of objects, which
are part of dataset referenced by DatSet value. Each DatSet is defined on the logical node
using an SCL file. The data have to have data types listed in Subsection 2.2.3. Figure 2.5
shows an example of AllData field from a GOOSE message. In the Figure, we can see that
AllData section contains four elements. Three of these elements have data type bit-string
(octet string) and one is boolean. The messages were decoded using BER encoding. The
Basic Encoding Rules (BER) is a way of encoding of ASN.1 structures. [10, 7, 4].

No. Time Source Destination Protocol Length Info
10.000000 Ipcas_fa:cB:45 Tec-TcS57_081:80:01 GOOSE 221

v allData: 4 items

¥ Data: boolean (3)
boolean: False

¥ Data: bit-string (4)
Padding: 3
bit-string: OO

¥ Data: bit-string (4)
Padding: 6
bit-string: c@

¥ Data: bit-string (4)
Padding: 3
bit-string: OO

Figure 2.5: AllData example

2.3.3 Communication pattern

GOOSE messages are usually transmitted using multicast or broadcast. For this purpose
publisher-subscriber messaging pattern is used. The pattern defines two possible behaviours
of communicating devices: the publisher and the subscriber. Each physical device can
behave as a publisher or subscriber or both. A publisher is a device which produces messages
and sends them via the network. A subscriber is a device which processes the information

11

obtained from messages produced by a publisher and invokes some inner action based on
the information. Figure 2.6 shows an example of the publisher-subscriber communication.
We can see that there might be multiple subscribers processing one stream of published
messages.

Client
(Subscriber)

Server .| Client
(Publisher) (Subscriber)

Client
(Subscriber)

Figure 2.6: Publisher subscriber pattern [4]

2.3.4 Types of devices using GOOSE protocol

According to Subsection 2.3.3 we might split devices into two groups. First group is con-
sisted of devices which are subscribing for GOOSE communication. The second group
contains all publishing devices. Each physical device might be in both of these groups.
Subscribing IEDs process the data received on application layer, but they do not generate
any GOOSE response. We disregard this group of devices in this thesis. The focus of this
thesis is the group of publishing devices. These devices generate all the GOOSE traffic,
which is visible on the network.

2.4 Summary

In this chapter we depicted basic theoretical knowledge which is necessary for understanding
of function of the emulator created for this project. We described the information model
used by devices communicating using the IEC 61850-GOOSE protocol as well as its origin.
We also described how data are stored and how are they represented in IEDs. We depicted
how the data are transmitted using GOOSE, what is the message format and we split all
devices using the protocol into two logical groups, where only one can be simulated by the
software produced for this thesis.

12

Chapter 3

Existing tools and libraries for
SCADA simulation

The goal of this chapter is to describe software which can be used for emulation of network
with IEC 61850 devices. In the first section, we describe software emulators which support
the IEC 61850 standard. We depict their capabilities and requirement for their usage. In
the second section we briefly introduce existing software libraries which can be used for the
implementation of IEC 61850-GOOSE simulator.

3.1 Existing solutions for IED simulation

This section provides information about existing tools for simulation of intelligent devices
communicating by protocols of the IEC61850 standard. We look for a tool which is able
to generate GOOSE messages on a real network interface. The tool should also be able
to generate this communication in real-time. The tool has to be configurable to let the
user define the export well enough to make the communication look like communication
generated by a real IED. We consider the platform the tool based on as well.

In this section, we can find descriptions of existing solutions. At the end of the section,
we can find a brief comparison.

3.1.1 OMNeTH+

The OMNeT++" is a simulation library and framework used primarily for building discrete
event network simulators. Protocol-specific functionality has to be provided by plugins,
which are usually developed as independent projects. The framework provides its own
Eclipse-based IDE and runtime user interface.

The OMNeT++ library uses an INET framework as a standard protocol model library.
The INET contains simulation models for Internet stack and other popular protocols. The
INET framework is open-source and heavily relies on the community around it with its
maintenance and development. The framework is developed by OpenSim Ltd. company. It
is released under Academic Public License for academic and educational usage. Commercial
application requires purchase of different license.

The OMNeT++ simulator itself does not generate any output usable for simulation
of GOOSE communication in a real network. All of the simulations run in a software

"https:/ /omnetpp.org/

13

https://omnetpp.org/

environment of the tool. There is an existing module for generation of PCAP traces of
the communication. One of the flaws of the packet captures is obsolesce of timestamps
in frames during replaying of the communication on the physical network interface. The
simulator also does not support GOOSE protocol in default. We found one existing module
for OMNET++ which makes the simulation of GOOSE possible. There are two major flaws
of this module. The first is dependence on its platform which is Windows 7. The second
flaw is that all of the documentation is written in Portuguese.

3.1.2 61850 Test Suite Pro

61850 Test Suite Pro” a tool-set for testing and troubleshooting networks which depend on
devices which use IEC 61850 standard. This tool-set is developed for the Windows platform.
For example, it provides tools for validation of configuration SCL files, description of data
flow in the network and interface for display of application data form all the network.

One of these tools is called IED simulator. This tool is able to load the information
model from the SCL file. The application is able to generate GOOSE messages and process
them. The communication generated by the tool is sent to a physical interface.

This tool-box is commercial, but an evaluation license is provided after registration on
the company website. The company Triangle MicroWorks, Inc. is the maintainer of this
project.

3.1.3 IEDExplorer

This software® is an open-source project focused on testing of IEC 61850 IEDs. Its main

purposes are testing and education. This tool can connect to an existing IED over the MMS
communication protocol. It can be used for reading and writing values into Data Objects,
capture and inspect MMS packets, inspect the SCL files and also explore and send GOOSE
messages. It only runs in .NET environment on Windows. This tool has no Linux support.
It is released under GNU General Public License.

3.1.4 SmartGridware® IEC 61850 IED Simulator

This application” is browser-based IEC 61850 IED simulator. It runs as a web server and
provides support for all protocols of IEC 61850 including GOOSE. It is configured using
SCL files. The software is able to simulate multiple IEDs at once. There is a possibility to
generate exports in SCL or JSON implemented.

This tool is commercial but some evaluation version is available on producers website.
It is implemented in JAVA and supports Windows, Linux and MacOS platforms.

3.1.5 SimFlex™ IEC 61850 Client Simulator

SimFlex™ IEC 61850 Client Simulator” is a tool used for verification of configuration of
IEC 61850 based IEDs. This software comes with an implementation of the test cases
defined in IEC 61850-10. It is designed to perform tests of IEC 61850 IEDs but it is also

able to publish GOOSE messages. This software is commercial and there is only a free

Zhttp://www.trianglemicroworks.com/products/testing-and-configuration-tools/61850-test-suite-pro-
pages/overview

Shttps:/ /sourceforge.net /projects/iedexplorer/

“http://www.smartgridware.com/java_ iec61850_ied_simulator.html

http://www.gridclone.com/p/simflextm-iec-61850-client-simulator

14

http://www.trianglemicroworks.com/products/testing-and-configuration-tools/61850-test-suite-pro-
http://sourceforge.net
http://www.smartgridware.com/java_iec61850
http://www.gridclone

trial license available. It is developed by GridClone B.V. company and it is supported on
Windows platform.

3.1.6 IEC 61850 TesT Software

This software® is used for simulation, monitoring and testing IEDs on an existing substation

network. It is able to generate and process SV and GOOSE messages for tests of the IEDs
functionality. The tool allows scripting to support more complex testing scenarios. The
output of this software is generated in COMTRADE format. IEC 61850 TesT Software is
configurable using a SCL file. It is also able to generate SCL files that comply with IEC
61850 parts 6 and 7. This software is commercial as well and it is developed by Doble
Engineering Company. It is supported on Windows platform only. No evaluation licence is
offered by the company.

3.1.7 Summary

There are multiple exiting software solutions capable of simulation of devices generating
TEC61850-GOOSE messages described. All of the solutions described in this chapter have
this support implemented. All of the discovered solutions are supported only on Windows
with one exception. All of these applications are able to generate real-time GOOSE mes-
sages except OMNET-++ which is able to generate only packet captures. The OMNET++
is an only open-source solution found. All of these tools are configurable using SCL or
graphical user interface.

3.2 SCADA communication libraries

The purpose of this section is to describe existing libraries usable for simulation of devices
communicating by protocols of IEC 61850 standard. The comparison of libraries is done
by considering their implementation language, support of IEC 61850-GOOSE protocol and
the licences the libraries are released under.

3.2.1 openlEC61850

OpenlEC618507 is an open-source library. It is written in Java language and is a part of
OpenMUC framework which implements multiple communication standards (IEC 60870-
5-104, ASN.1). The library is licensed under the Apache 2.0 license and is maintained by
OpenMUC department of Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg,
Germany. Because of programming language chosen by the authors, the library can be used
for fast development and is easily deployable on any platform. The main drawback of this
library is that it contains IEC61850-MMS client /server only. This means the library is not
usable for this thesis.

3.2.2 LibIEC61850

This library® provides an implementation of IEC61850-MMS client /server, IEC61850-GOOSE
publisher /subscriber and TEC61850-SV publisher /subscriber. It is designed according to

Shttps://www.doble.com/product /software-61850-test /
"https:/ /www.openmuc.org/iec-61850/
Shttps:/ /libiec61850.com /libiec61850/

15

http://www.doble.com/product
https://www.openmuc.org/iec-61850/
https://libiec61850.com/libiec61850/

the second edition of the standard. The library is written in C, but it contains .NET and
Python wrappers allowing the library to be used in high-level languages. The last release
contains JAVA API. It is released under GPLv3 license. The library is maintained by the
company MZ Automation GmbH.

3.2.3 rapid61850

The goal of this software’ is to automatically generate C/C++ code for sending and re-
ceiving TEC61850-GOOSE and IEC61850-SV communication. Passed SCL file is used for
the generation. The library also validates the SCL file. There is also the possibility to
use SWIG for creation of high-level languages wrappers. Author of this library is Steven
Blair and is published under GPLv2 license. The Eclipse IDE with the Eclipse Modeling
Framework is the mandatory environment for development and running this library. The
API of this library is complicated and hardly understandable.

3.2.4 1IEC-61850 Library

IEC-61850 Library'” is a commercial library and it is maintained by JPEmbedded company.
The company offers a free evaluation version of the software. For licensing purposes, the
royalty-free licensing model is used. This software is implemented in C++ and uses the
object-oriented paradigm. The library supports all protocols defined in IEC61850 standard.

3.2.5 IEC 61850 Source Code Library

This commercial library'! is produced by Triangle MicroWorks, Inc. The producer offers a
free evaluation licence for this product. The Library supports all protocols of IEC 61850
including GOOSE. All components included are implemented in C/C++ or .NET.

3.2.6 Comparison

We were able to find five existing libraries which are usable for simulation of IEC 61850
communication. In Table 3.1 we can see the comparison between all of these libraries.

Name License GOOSE support | Language
openlEC61850 Apache 2.0 | no JAVA
libIEC61850 GPLv3 yes C

rapid61850 GPLv2 yes C/C++
IEC-61850 Library commercial | yes C/C++

IEC 61850 Source Code Library | commercial | yes C/C++ or .NET

Table 3.1: Libraries comparison

The crucial trait for consideration is actual support of IEC 61850-GOOSE protocol.
All libraries without this support are not usable for this thesis. All commercial libraries
are not suitable as well. There are two libraries, which meet these conditions. Both of
these are implemented in C/C++, so there is no difference for us. The difference is in the

“https://github.com/stevenblair/rapid61850
Ohttp://www.jpembedded.eu/en /tab/iec-61850-library/
Hhttp://www.trianglemicroworks.com/products/source-code-libraries/iec-61850-scl-pages

16

https://github.com/stevenblair/rapid61850
http://www.jpembedded.eu/en/tab/iec-61850-library/
http://www.trianglemicroworks.com/products/source-code-libraries/iec-61850-scl-pages

purpose and implementation of libraries. Rapid61850 is supposed to automatically generate
C/C++ code, which is supposed to generate and read GOOSE communication. This code
is generated from SCL files. This is not convenient for the purpose of this thesis. On the
other hand, libIEC61850 is tool prepared for the implementation of GOOSE publisher or
subscriber. That is the reason why find the library more suitable. For the implementation
part of this thesis, we chose the libIEC61850 library.

3.3 Summary

In this chapter, we described existing software whose purpose is the simulation of devices
communicating using IEC 61850 standard. In the first part of the chapter, we introduced
already existing software capable of this simulation. We described the requirements and
drawbacks of these applications. In the second part, we depicted existing libraries usable for
implementation of IEC 61850-GOOSE simulator. We described their capabilities, compared
them and explained the choice of the library for this thesis.

17

Chapter 4

Design and implementation of the
emulator

This chapter contains two parts. The first part contains a description of the design of the
emulator. There is written how the emulator should work and what will it emulate. In the
section, there also is a description of blocks which compose the emulator. In the second
part, we describe the implementation of the emulator. We clarify the choice of programming
languages used and describe how did we proceed during the implementation. We describe
how the emulator can be configured and how the configuration can be created from an SCL
file. We also describe the fixes we had to make to the library used for the implementation.

4.1 Design

This part is about the design of the emulating system. This system has to be able to
generate GOOSE communication just like a GOOSE publisher would. The input of the
emulator should be a capture file which contains GOOSE communication. The emulator
should also be configurable with a different type of input, which would let the user start
an emulation without need for any existing capture. The emulation should generate some
kind of output, which will enable the user to check the course of emulation.

4.1.1 Block scheme of the emulator

The system is supposed to consist of multiple separate blocks. The purpose of each of these
blocks is described in this part. In Figure 4.1 we can see the design of the emulator. There
are three blocks in the scheme. Each of these blocks has its purpose in the final emulator.
We can see that there are two types of arrows going in and out of the blocks. The blue
arrows denote inputs and red arrows denote outputs. The square labelled as “NIC” is not
meant to be a block.

The first block is the control block. The first purpose of this block is to be the interface
between the rest of the blocks and the user. The block has two types of input. One of these
is a capture file. This file is used as a template for the emulation. The second possible
input of this block is a file containing a prepared transcript of the emulation. The output
of this block is a capture file containing the output of the emulation block.

The second block is the configuration block. The objective of this block is to automat-
ically generate a configuration. The input of the block is a capture file which contains the

18

communication to be emulated. An automatically generated configuration file is the output
of this block. The block is controlled by the control block.

emulated
communication
Configuration Block Emulation Block
A i
¥
nput configuration .,”ﬁ:l,}”w i
capture file file R
I files
Control Block ;{¢———

o i Nas ||."

communicatiorn

input _ configuration output
apture file file capture file

Figure 4.1: Emulator design diagram

4.1.2 Configuration file format

In this work we sometimes substitute a configuration file for a “transcript of emulation”. The
emulator needs to get a transcript of emulation, which enables to run emulation according
to user-defined parameters. For this purpose, we chose to use an XML format for these
configuration files. The reasons for this choice are that it is simple to manually create or
edit XML files and there is a lot of existing tools which enable to easily work with this
format of files.

In Listing 4.1 we can see a simple example of the configuration file. Each configuration
file can contain only one transcript of emulation. In Listing we can see that configuration
element is the root element of the file. All other elements have to be nested in this element.
Next we can see an element named headers Values. This element contains information about
one sequence of GOOSE messages. In a configuration file generated by the configuration
block, this element would contain all packets which have the same values in the GOOSE
header and have the same application data values. When any change would be found a
new element headersValues would appear in the configuration file. There are four elements
nested in the headersValues element. The timeCount element holds the count of packets
sent in this series. The elements timeStart and timeEnd hold the information about the
start and end of the stream of packets in seconds in relation to start of the whole emulation.

19

The element gooseValues holds information about the GOOSE header and the applica-
tion data that are supposed to be in the messages. The elements contained in the goose-
Values element follow:

20

src - Holds source MAC address. The data-type of the value is a string.
dst - Holds source MAC address. The data-type of the value is a string.

golD - Keeps the reference on the application association of the export. The data-type
of the value is a string.

goCb - Keeps the reference on the GOOSEControlBlock of this export. The data-type
of the value is a string.

datSet - Holds the reference on the DataSet used by this export. The data-type of
the value is a string.

confRef - Keeps the count of changes, that has been done to the exported DataSet.
The data-type of the value is an integer.

needsComm - When the export needs to be reconfigured, the non-zero value is con-
tained by this field. Else zero is contained.

allowedTTL - Informs subscribers when should the next message arrive. The data-
type of the value is an integer.

applD - Holds information which enables a subscriber to identify application as-
sociation of received message. The value is string, which represents a number in
hexadecimal.

vlanID - Contains ID of VLAN. If no VLAN is used the element contains -1. The
data-type of the value is an integer.

vlanPrio - Contains priority of VLAN. If no VLAN is used the element contains -1.
The data-type of the value is an integer.

21

1 <?xml version="1.0" encoding="UTF-8"7?>
2 <configuraton>
3 <headersValues>
4 <gooseValues>
5 <sre>00:00:00:00:00:01< /src>
6 <dst>00:00:00:00:00:02< /dst>
7 <goID>LLN(/Control_DataSet_ 2</golD>
8 <goCb>LLN0GOControl_DataSet_ 2</goCb>
9 <datSet>LLNO$DataSet 2</datSet>
10 <confRev>1</confRev>
11 <needsComm>0< /needsComm>
12 <allowedTTL>3000< /allowed TTL>
13 <dataValues>
14 <goose.boolean>0< /goose.boolean>
15 </dataValues>
16 <appID>0x01< /applD>
17 <vlanID>4< /vlanID >
18 <vlanPrio>0</vlanPrio>
19 < /gooseValues>
20 <timeCount>10< /timeCount>
21 <timeStart>0</timeStart>
22 <timeEnd>10</timeEnd>
23 < /headersValues>
24 </configuraton>

Listing 4.1: XML configuration file example

The last type of element contained by headersValues is gooseValues. This element can
appear multiple times in headersValues and each of these elements contains one element
of the application data. These elements contain one element each. This element differs
because of type of value contained in it.

4.2 Implementation

In this section, we describe how the blocks from Figure 4.1 are implemented. We depict
how the emulation is set up. We also depict how the important parts of the emulator are
programmed. We explain how the emulation transcript generated automatically and how
we can generate it manually from an SCL file. There is a description of enhancements that
we did to libIEC61850 library to make it work satisfyingly.

4.2.1 Control block

The purpose of this block is to check the format of input and make proper steps to get
valid configuration files from this input. There are two possible types of input. The first
of these is a directory containing prepared configuration files. Each of these files is used as
a transcript of emulation for one stream of packets. With one stream of packets, we mean
communication between one source and one destination device.

The second type of input is the capture file. When a file in PCAP format is passed, this
block passes the file to configuration block. The configuration block prepares transcripts of
emulation into specified directory.

When configuration files are ready, the control block passes the directory containing the
configuration files to the emulation block and starts the emulation. During the emulation,

22

the control block captures GOOSE packets on the specified network interface. The emula-
tion happens on the same interface. The result of this is output capture file, which contains
the GOOSE communication generated during the emulation.

This block is implemented in script Control.rb. This script is programmed in Ruby
language. We chose this language because its syntax is very simple. In the language, it is
easy to call system utilities as well. Ruby also offers a wide variety of modules, which can
be used for work with serialization formats. It is simple and reliable to use standard ways
for installing these modules offered by Ruby.

4.2.2 Configuration block

This block is responsible for the generation of configuration files from the passed capture file.
The block uses tshark utility to read all GOOSE packets from the capture file. After that
tshark generates meta-data about all of GOOSE packets in JSON format. This meta-data is
processed for each packet. The statistics for each of packet flows is taken. After processing
all of the meta-data for each packet flow the new configuration file is generated. These files
are generated into a directory. The path to this directory is defined as a parameter.

This block is also programmed in the Ruby language. The reasons for picking this
language are the same as for the control block from section 4.2.1.

4.2.3 Emulation block

This block is responsible for the emulation of GOOSE communication. The input of this
block is a path to a directory, which contains a set of configuration files. These files have
been in a format defined by the DTD description from Annex A. The data from these files
are parsed and stored into an internal data structure. For each of the stream of packets, a
separate thread is created. These threads generate GOOSE packets according to metadata
read from the configuration. Every configuration file has its own thread.

1 void* replayCommunication(publisherParameters* params) {

2 usleep(params->start0fThisFlow - params->absoluteStartOfEmulation);

3 for (int j = 0; j < params->gooseValueListCount; j++) {

4 timeParameters* tParams = params->timeParams[j];

5 int pktDelay = (tParams->endTime - tParams->startTime) / tParams->packetCount;
6 for (int i = 0; i < tParams->packetCount; i++) {

7 usleep(pktDelay) ;

8 if (GoosePublisher_publish(params->pub, params->gooseValuelList[j]) == -1) {
9 \\ prints error message

10 }

11 }

12 }

13 return NULL;

Listing 4.2: Pseudocode of transmitting part of the emulator

In Listing 4.2 we can see simplified pseudocode of part of the emulator. This part is
used for transmission of GOOSE packets. This pseudocode runs in its own thread. This
function gets a parameter publisherParameters* params, which is a pointer on a structure
of type publisherParameters. This structure contains all data necessary for running the
emulation of GOOSE publisher. In the second line, we can see how the synchronization of

23

starts of different packet flows is done. The thread sleeps for the difference between the
start of the first packet flow and the packet flow which is supposed to be emulated by this
thread.

There is two for cycles in Listing. The first of them iterates through all of the sets of
packets which are supposed to be transmitted. By the set of packets, we mean a series of
packets, which have the same values in headers and the same application data. In the inner
representation of the packet series is always a count of packets and their values. For each
series of packets is counted a delay between packets. It can be seen on the fifth line.

The nested cycle iterates through the count of packets in one packet stream. For each
of these packets, the thread sleeps for the previously counted delay. After the sleep, the
function for publishing of GOOSE messages is called. The parameters for the packet to be
sent are the same for each message in the stream. If the GOOSE message can not be sent,
the error message is printed and the transmitting process continues.

There are multiple flaws to the implementation. The first of them is that the timing of
transmitted packets might not be the same if packet capture input is used. The messages
from one flow are sent with the same delay. If GOOSE messages in the packet capture were
not spread linearly the timing would be different. The second flaw is that the emulator
does not support complex data types in application data of messages.

We can find the implementation of this block is in the goose publisher _emulator.c
file. This code is written in the C language. We chose this language because it is the
programming language used for the implementation of libIEC61850 library. This is the
library which was used for the emulation process.

4.2.4 Enhancements of libIEC61850

During the implementation, we found multiple imperfections in the libIEC61850 library.
We had to fix these flaws in order to be able to make the emulation work as it should.
The first flaw was that the library did not let the user set the source MAC address of
GOOSE messages. A fixed MAC address was filled into messages. We fixed this by adding
a parameter, which keeps the MAC address to the necessary functions.

The second flaw was that the library statically added IEEE 802.1Q tag. Even messages
without specification of this had VLAN priority and VLAN ID fields in Ethernet frame.
We fixed this with adding a condition which adds these field into Ethernet frame when
requested.

4.2.5 Generation of configuration from SCL file

The configuration file can be created manually. We can partially create configuration file
from an SCL file. The first missing part of configuration is the values of application data
to be sent. To fill this information user should know datatypes defined in IEC 61850-7-2.
The second part is the information about the number of packets and the time information
about the emulation. The third part is the source MAC address of the communication.

In Annex B we can see a very simplified SCL file. This SCL file contains a definition of
a GOOSE export. We created a transcript of emulation from this SCL file. The transcript
can be found in Annex C. The data for the configuration file were obtained by the following
steps:

24

src - contains source MAC address. This depends on Network Interface Card of source
device in the network. User can choose any MAC address and the emulation will work
the same.

dst - contains destination MAC address. This address can be found in GSE block
from Listing B.1.

golD + confRef - can be found in the GSEControl block defining the GOOSE export.
The element golD is supposed to contain the value of appID. The element confRef is
supposed to contain the value of confRev. These elements are in the Listing B.1.

goCb - contains the reference on the GOOSEControlBlock in the IEC 61850 informa-
tion model. This reference is consisted of:
— name attribute of IED element

inst attribute of LDevice element

InClass attribute of LNO element

— name attribute of GSEControl element

The first three are separated with a slash sign. The last two are separated with a
dollar sign. All of these elements are in Listing B.1.

datSet - contains the reference on the dataset in the IEC 61850 information model.
This reference is consisted of:

name attribute of IED element
inst attribute of LDevice element

— InClass attribute of LNO element

name attribute of DataSet element

The first three are separated with a slash sign. The last two are separated with a
dollar sign. All of these elements are in Listing B.1.

needsComm - is usually generated by the publishing IED. The meaning of the element
is to inform if the export needs to be reconfigured. Can be user-defined depending on
users goal with the emulation.

allowedTTL - is filled by the publishing IED as well. The user has to choose the value.

dataValues - depends on dataset which is used for the GOOSE export. We can see
its name in GSEControl element in datSet attribute in Listing 4.3. This dataset is
defined in the same logical node in DataSet element. In the DataSet element, we can
see there are four elements defined.

25

1 <LNO InClass="LLNQ" inst="" InType="SIPROTEC5_ LNType_LLNO_ Application" desc="

General">

2 <DataSet name="DataSet 2">

3 <FCDA IldInst="Application" prefix="" InClass="USER" InInst="1" doName="SPC"
daName="stVal" fc="ST" />

4 <FCDA IldInst="Application" prefix="" InClass="USER" InInst="1" doName="SPC"
daName="q" fc="ST" />

5 <FCDA IldInst="Application" prefix="" InClass="USER" InInst="1" doName="DPCCB
" daName="stVal" fc="ST" />

6 <FCDA IldInst="Application" prefix="" InClass="USER" InInst="1" doName="DPCCB

" daName="q" fc="ST" />
7 </DataSet>
8 <GSEControl datSet="DataSet_2" confRev="20001" appID="ASNERIES1_CAL/
Application/LLN0O/Control_DataSet_ 2" name="Control_DataSet_ 2" type="
GOOSE" />
o </LNO>

Listing 4.3: SCL definiton of dataset and goose export

Fach of these elements contains attribute InClass. Using this attribute we can identify
the element LNodeType, which belongs to this class of logical node. We can see
LNodeType element in Listing 4.4. In LNodeType element, we can see that the
logical node of this class contains two data objects. They are called DPCCB and
SPC. These DO elements have an attribute called type. The type DPCCB is “DPC”.
In Listing 4.4 we can see elements DOType. The value of id attribute of DOType
element and the value of type attribute of DO element have to match. If we take a
look at DOType with id 'DPC’, we can see data attributes of this data object.

These data attributes are important for the resolution of datatypes of dataValues in
emulated GOOSE export. If we take a look at daName attributes of DataSet element
of Listing 4.3 and resolve which DOType belongs to which element of the dataset we
can find a proper order for datatypes in the dataset in the transcript of emulation. To
determine the actual ASN.1 datatype, you have to search for the value of the bType
attribute in the IEC 61850-6.

<LNodeType id="SIPROTEC5_LNType USER_ Universal" InClass="USER">
<DO name="DPCCB" type="DPC" />
<DO name="SPC" type="SPC" />

</LNodeType>

<DOType id="SPC"">
<DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN" />
<DA qchg="true" fc="ST" name="q" bType="Quality" />
</DOType>
10 <DOType id="DPC">
11 <DA dchg="true" fc="ST" name="stVal" bType="Dbpos" />
12 <DA qchg="true" fc="ST" name="q" bType="Quality" />
</DOType>

© 0 N O o W N

Listing 4.4: SCL definition of logical node related data objects

e applD + vlanID + vlanPrio - can be found in GSE block from Listing B.1.

e timeCount - was chosen by the user. Contains amount of packets to be sent. All of
these packets would have values taken from gooseValues.

26

e timeStart + timeFnd - are chosen by the user as well, but user has to have in mind
time restrictions from the GSE block. This block can be seen in Listing B.1 starting
on the fifth line. The elements MinTime and MazTime define minimal and maximal
delay between packets. The values of timeStart and timeEnd have to be adjusted
according to MinTime and MaxTime.

4.2.6 Summary

In this chapter, we described the design and the implementation of the emulator. In the
description of the design, there is a block scheme of the emulator with an explanation of
planned inputs, outputs and roles of each block. There is also the depiction of XML format
used for the transcripts of emulation.

In the second part of this chapter, we described the implementation. In this part, we
can find a depiction of possible usages, inputs and outputs of blocks the emulator. We
also described software tools used for the implementation and we clarified why we chose
them. We described changes we had to do to the library used for the implementation of
the emulator. We also outlined the process which has to be used to create a transcript of
emulation from an SCL file.

27

Chapter 5

Comparison of communication of
emulator and real devices

In this chapter we describe the experiments done for validation of the emulator. First
we define a methodology we use evaluation of experiment results. Next we do multiple
experiments. In the first experiment we compare the result of emulation with a real dataset.
In the second experiment we generate artificial transcripts of emulation, and compare the
results with expected result.

One part of work on this project was an internship in GIPSA-lab', Grenoble, France.
During the internship we obtained the dataset used for this project.

5.1 Methodology and requirements for emulator

During the experiments we record a packet capture of the communication generated by the
emulator. We use this capture for comparison between the dataset used and the result of
emulation. We check validity of headers and application data of the capture. We compare
the time course of the capture in relation to the dataset. We visualize both, the dataset
and the emulation capture, using the Wireshark?. We also use Wireshark for the analysis
of packet captures.

The emulator is implemented to behave like an IED with a new GOOSE export. This
means that stNum and sgNum behave according to the IEC 61850 standard. The simulation
flag is set to “TRUE” because the simulation is not generated by a real device. This is the
purpose of the flag. The timestamp (¢) is set to the time of publishing of the message. The
field numDatSetEntrie is automatically generated according to the count of elements in the
allData list. The rest of GOOSE application data is set using the configuration file.

5.2 Comparison of emulated communication and replayed
packet capture
In this experiment we used two datasets obtained in GIPSA-lab. Both datasets are stored

as packet captures. We used these packet captures as inputs for the simulator. For each
dataset a transcript of emulation was created.

Yhttp://www.gipsa-lab.fr/
*https:/ /www.wireshark.org/

28

http://www.gipsa-lab.fr/
https://www
http://wireshark.org/

5.2.1 Dataset with one GOOSE export

The dataset is contained in the file goose test 1.pcapng. In the Table 5.1 there is infor-
mation about length and timing of GOOSE messages. These messages have approximately
two seconds delay between each other. In Figure 5.1 we can see the application data of
the first dataset. There is ten GOOSE messages. All of the messages contain the same
application data.

No. | Timestamp|s] | Length
0 0.000000 221
1 2.000891 221
2 4.001558 221
3 6.002258 221
4 8.002674 221
5 10.003350 221
6 12.003227 221
7 14.002880 221
8 16.003414 221
9 18.003278 221

Table 5.1: Time information of goose test_ 1.pcapng

» Ethernet II, Src: Ipcas_fa:c0:45 (P0:09:8e:fa:c0:45), Dst: Iec-Tch57_01:00:01 (01:0c:cd:01:00:01)

¥ GOOSE
APPID: @x0801 (1)
Length: 27

Reserved 1: 0xeeee (0)
Reserved 2: 0xee0e (0)
¥ goosePdu
gocbRef: ASNERIES1_CALApplication/LLNOGOControl_DataSet_2
timeAllowedtoLive: 3000
datSet: ASNERIES1_CALApplication/LLN@$DataSet_2
goID: ASNERIES1_CAL/Application/LLN@/Control_DataSet_2
t: Jun 21, 2019 12:52:30.737999975 UTC
StNum: 1
sqNum: 1169
test: False
confRev: 20001
ndsCom: False
numbDatSetEntries: 4
allData: 4 items
v Data: boolean (3)
boolean: False
¥ Data: bit-string (4)
Padding: 3
bit-string: 0600
¥ Data: bit-string (4)
Padding: 6
bit-string: c@
¥ Data: bit-string (4)
Padding: 3
bit-string: ©EE0

4

Figure 5.1: Containings of goose test 1.pcapng

The result of emulation is visible in Table 5.2 and Figure 5.2. We can see the timing
differs in tenths of milliseconds. For each message sent the time delay adds up. The lengths
of messages are different because of the difference in value of stNum element. The dataset
was not recorded since the start of communication. The emulator behaves like a device

29

which started the communication with the first emulated packet. The first packet of com-
munication starts with stNum set to zero. The rest of application data is the same.

No. | Timestamp|s] | Length
0 0.000000 218
1 2.000585 218
2 4.001260 218
3 6.001847 218
4 8.002385 218
5 10.003009 218
6 12.003653 218
7 14.004324 218
8 16.005061 218
9 18.005763 218

Table 5.2: Timing of the emulation of the first dataset

» Ethernet II, Src: Ipcas_fa:c0:45 (00:09:8e:fa:c0:45), Dst: Iec-Tc57 _01:00:01 (01:€c:cd:01:00:01)
¥ GOOSE
APPID: 0x8001 (1)
Length: 204
Reserved 1: 0xeeee (0)
Reserved 2: exeeee (0)
¥ goosePdu
gocbRef: ASNERIES1_CALApplication/LLN@$GOSControl DataSet_2
timeAllowedtoLive: 3000
datSet: ASNERIES1_CALApplication/LLNO$DataSet_2
goID: ASNERIES1_CAL/Application/LLN@/Control_DataSet_2
t: Jul 30, 2019 23:25:23.801999986 UTC
StNum: 1
sqNum: 9
test: True
confRev: 20001
ndsCom: False
numDatSetEntries: 4
allData: 4 items
¥ Data: boolean (3)
boolean: False
¥ Data: bit-string (4)
Padding: 3
bit-string: @@
¥ Data: bit-string (4)
Padding: 6
bit-string: c@
¥ Data: bit-string (4)
Padding: 3
bit-string: 0@

4

Figure 5.2: Application data from the emulation of the first dataset

5.2.2 Dataset with multiple GOOSE exports

The data set for this experiment is goose _test_2.pcapng. We can see the information about
this dataset in Table 5.3, Figure 5.3 and Figure 5.4. In this dataset there are two GOOSE
publishers defined. The first flow contains thirteen packets. All of them have the same
application data, see Figure 5.3. They have two seconds delay between each other. There
is one exception. Packets seven and eight have four seconds delay.

The second flow contains three packets. The flow starts approximately eight seconds
after the first one. The packets of this flow have approximately ten seconds delay. The

30

packets contain also the same application data, see Figure 5.4. The application data between
flows are different.

No. | Timestampls] | Length

0 0.000000 221

1 2.001065 221

2 4.001909 221

3 6.002377 221

4 8.002208 221 No. | Timestampls| | Length
) 10.002700 221 0 8.602129 162
6 12.002397 221 1 18.502551 162
7 14.002397 221 2 28.403189 162
8 18.002581 221

9 20.002511 221

10 | 22.003082 221

11 24.002913 221

12 | 26.003427 221

Table 5.3: Time information of goose_ test_ 2.pcapng

» Ethernet II, src: Ipcasffa:ée:dﬁ (ﬁe:éé:ﬁe:fazcez45); Dst: iec—TcS?,@i:Gﬁ:@i (01:Pc:cd:P1:00:61)

¥ GOOSE
APPID: 0x0001 (1)
Length: 207

Reserved 1: ©x0000 (@)
Reserved 2: 0x0000 (0)
¥ goosePdu
gocbRef: ASNERIES1_CALApplication/LLNGGOControl DataSet 2
timeAllowedtoLive: 3000
datSet: ASNERIES1_CALApplication/LLN@$DataSet_2
goID: ASNERIES1_CAL/Application/LLN®/Control_DataSet_2
t: Oct 22, 2018 ©9:04:26.566359221 UTC
StNum: 1
sgNum: 1250
test: False
confRev: 20001
ndsCom: False
numDatSetEntries: 4
v allpata: 4 items
v Data: boolean (3)
boolean: False
v Data: bit-string (4)
Padding: 3
bit-string: 0000
v Data: bit-string (4)
Padding: 6
bit-string: c@
v Data: bit-string (4)
Padding: 3
bit-string: eeee

Figure 5.3: Containings of the first flow of goose__test_2.pcapng

31

» Ethernet II, Src: AbbOy/Me_25:08:a2 (00:21:c1:25:08:a2), Dst: Iec-Tc57_01:00:00 (€1:0c:cd:01:00:00)
v GOOSE

APPID: 8x0001 (1)

Length: 148

Reserved 1: 0xeeee (0)

Reserved 2: exeeee (0)

¥ goosePdu

gocbRef: AA1J1Q01A1LDO/LLNO$GOSLEDs_info
timeAllowedtolLive: 11000
datSet: AA1J1QO1A1LDO/LLNESLEDS_ON_OFF
goID: AA1J1QO1A1LDO/LLNO.LEDs_info
t: Sep 28, 2018 08:39:58.068465173 UTC
StNum: 1
sgqNum: 209858
test: False
confRev: 100
ndsCom: False
numDatSetEntries: 2

v allData: 2 items
¥ Data: boolean (3)

boolean: False
¥ Data: boolean (3)
boolean: False

Figure 5.4: Containings of the second flow of goose test_2.pcapng

We automatically created the configuration files from the dataset. We can see the results
of emulation in Table 5.4, Figure 5.5 and Figure 5.6. There is a difference in timing of first
flow between the dataset and the emulation. In the emulated communication the doubled
delay disappeared. The automatically created configuration contains only metadata about
the course of communication from the dataset. The emulator sends GOOSE messages with
periodical delays. The timing of the second flow is the same as the timing in the dataset.

We can also notice the difference in lengths of messages. This difference is caused by
the generation of newsgNum from zero again.

No. | Timestamp[s| | Length

0 0.000000 218

1 2.167143 218

2 4.334350 218

3 6.501651 218

4 8.668883 218 No. | Timestamp[s] | Length
5 10.836058 218 0 8.602220 160
6 13.003317 218 1 18.503015 160
7 15.170571 218 2 28.403900 160
8 17.337889 218

9 19.505177 218

10 21.672391 218

11 23.839641 218

12 | 26.007058 218

Table 5.4: Timing of the emulation of the second dataset

32

» Ethernet II, Src: Ipcas_fa:c0:45 (00:09:8e:fa:c0:45), Dst: Iec-Tc57_01:00:01 (01:0c:cd:01:00:01)

v GOOSE
APPID: 8x8001 (1)
Length: 204

Reserved 1: 0x0000 (0)
Reserved 2: 0x0000 (@)
¥ goosePdu
gocbRef: ASNERIES1 CALApplication/LLNOGOControl_DataSet_2
timeAllowedtoLive: 3000
datSet: ASNERIES1_CALApplication/LLN@$DataSet_2
goID: ASNERIES1_CAL/Application/LLN®/Control_DataSet_2
t: Jul 31, 2019 02:37:36.675999999 UTC
stNum: 1
sgNum: @
test: True
confRev: 20001
ndsCom: False
numDatSetEntries: 4
v allData: 4 items
v Data: boolean (3)
boolean: False
v Data: bit-string (4)
Padding: 3
bit-string: 00
v Data: bit-string (4)
Padding: 6
bit-string: c@
v Data: bit-string (4)
Padding: 3
bit-string: @@

Figure 5.5: Application data from the emulation of the first flow of the second dataset

» Ethernet II, Src: AbbOy/Me_25:08:a2 (00:21:c1:25:08:a2), Dst: Iec-Tc57_01:00:00 (01:@c:cd:01:00:00)
¥ GOOSE
APPID: @x0001 (1)
Length: 146
Reserved 1: @xe@eee (@)
Reserved 2: 0x0000 (0)
¥ goosePdu
gochRef: AA1J1Q@1A1LDO/LLNO$GOSLEDs_info
timeAllowedtolive: 11000
datSet: AA1J1QO1A1LDO/LLNOSLEDs_ON_OFF
goID: AA1J1Q®1A1LDO/LLNE.LEDs_info
t: Jul 31, 2019 ©2:37:36.674999952 UTC
StNum: 1
sgNum: @
test: True
confRev: 188
ndsCom: False
numDatSetEntries: 2
allData: 2 items
v Data: boolean (3)
boolean: False
¥ Data: boolean (3)
boolean: False

Ll

Figure 5.6: Application data from the emulation of the second flow of the second dataset
5.3 Result of emulation based on manually created configu-
ration

In this experiment we used manually created configuration files. These files are visible
in Appendix E. There are two flows declared. In one of the flows there is a change in
application data during the emulation. The expected time course is to be seen in Table 5.5
and Table 5.6. For the estimate of time course following equation was used:

packet__number x (flow_end_time — flow__start_time) = estimate

33

One flow should contain IEEE 802.1Q tag during the emulation. In this manually
created configuration we have all supported datatypes.

No. | Estimatels] No. | Timestamp]s]
0 0.000000 0 0.000000
1 0.444444 1 0.444905
2 0.888888 2 0.889669
3 1.333332 3 1.334391
4 1.777776 4 1.779154
5 2.222220 5 2.223936
6 2.666664 6 2.668693
7 3.111108 7 3.113526
8 3.555552 8 3.958333
9 3.999996 9 4.003158

Table 5.5: Expected (left) and actual (right) timing (source MAC = 42:42:42:42:42:42)

No. | Timestamps] No. | Timestampls]
0 0.000000 0 0.000000
1 0.750000 1 0.750402
2 1.500000 2 1.500654
3 2.250000 3 2.250911
4 3.000000 4 3.001318
5 3.750000 5 3.751718
6 4.500000 6 4.502113
7 5.250000 7 5.252417
8 6.000000 8 6.002774
9 6.750000 9 6.753194

Table 5.6: Expected (left) and actual (right) timing (source MAC = 00:09:8e:fa:c0:45)

In the Table 5.5 and Table 5.6 we can see a comparison between time courses of the
two flows. There is a the small delay between messages. It is approximately four tenths
of millisecond. Figure 5.7, Figure 5.8 and Figure 5.9 show application data from this
communication. In Figure 5.7 in allData there is a octet-string. The data are malformed
by Wireshark. The rest of application data of this flow corresponds to configuration from
Listing E.2.

In Figure 5.8 and Figure 5.9 there is one flow. The flow is interesting because it has
changed values in allData in the middle of flow. The floating-point is malformed by Wire-
shark as well. The rest of application data corresponds to Listing E.1. We can see the first
flow does not have IEEE 802.1Q tag but the second flow does.

34

» Ethernet II, Src: 42:42:42:42:42:42 (42:42:42:42:42:42), Dst: 00:00:00_00:00:02 (00:00:00:00:00:02)

¥ GOOSE
APPID: 8x0002 (2)
Length: 215

Reserved 1: 0xeeee (0)
Reserved 2: exeeee (0)
¥ goosePdu
gocbRef: IED1/Application/LLNe@GOControl_ DataSet_2
timeAllowedtoLive: 3000
datSet: IED1/Application/LLNe$DataSet_2
goID: IED1/Application/LLN@/Control_DataSet_2
t: Jul 31, 2019 ©4:53:17.980999946 UTC
StNum: 1
sqNum: @
test: True
confRev: 20001
ndsCom: False
numbDatSetEntries: 4
allData: 4 items
v Data: unsigned (6)
unsigned: 106060660
v Data: octet-string (9)
octet-string: 303030303030
v Data: visible-string (10)
visible-string: test_wvisible_string
v Data: mMSString (16)
mMSString: test_mms_string

4

Figure 5.7: Application data from the emulation flow (source MAC = 42:42:42:42:42:42)

» Ethernet II, Src: Ipcas_fa:c0:45 (00:09:8e:Ta:c0@:45), Dst: Iec-Tc57_01:00:01 (01:0c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1

¥ GOOSE
APPID: 8x00081 (1)
Length: 206

Reserved 1: 0x0000 (@)
Reserved 2: Oxeeee (@)
¥ goosePdu
gochRef: ASNERIES1 CALApplication/LLN®GOControl_DataSet_2
timeAllowedtoLive: 3000
datSet: ASNERIES1_CALApplication/LLNe$DataSet_2
goID: ASNERIES1_CAL/Application/LLN@/Control_DataSet_2
t: Jul 31, 2019 04:53:17.980999946 UTC
stNum: 1
sqNum: @
test: True
confRev: 20001
ndsCom: False
numbDatSetEntries: 4
v allData: 4 items
¥ Data: boolean (3)
boolean: False
v Data: integer (5)
integer: 42
¥ Data: floating-point (7)
floating-point: 0842848400
¥ Data: bit-string (4)
Padding: 3
bit-string: @e

Figure 5.8: Application data from the emulated flow (source MAC = 00:09:8e:fa:c0:45) first
part

35

» Ethernet II, Src: Ipcas fa:c0:45 (00:09:8e:fa:c0:45), Dst: Iec-Tc57_01:00:01 (01:0c:cd:01:00:01)
» 802.1Q Virtual LAN, PRI: 4, DEI: @, ID: 1

v GOOSE
APPID: 0x0001 (1)
Length: 206

Reserved 1: 0x0000 (8)
Reserved 2: OxQ000 (0)
v goosePdu
gocbRef: ASNERIES1 _CALApplication/LLNOGOControl_DataSet_2
timeAllowedtoLive: 308080
datSet: ASNERIES1_CALApplication/LLNG@$DataSet_2
goID: ASNERIES1 CAL/Application/LLN@/Control DataSet 2
t: Jul 31, 2019 ©5:02:12.382999956 UTC
stNum: 1
sqNum: 5
test: True
confRev: 20001
ndsCom: False
numDatSetEntries: 4
allData: 4 items
v Data: boolean (3)
boolean: True
v Data: integer (5)
integer: 24
v Data: floating-point (7)
floating-point: 0842109000
v Data: bit-string (4)
Padding: 6
bit-string: @@

4

Figure 5.9: Application data from the emulated flow (source MAC = 00:09:8e:fa:c0:45)
second part

5.4 Validation of generated communication with a third party
software

To confirm that the communication generated by the emulator is valid according to the
IEC 61850 standard, we used a third party software. The application GreyCortex Mendel®
is used for network analysis including industrial networks.

The packet capture goose test 1.pcapng was emulated on the application. In Figure
5.10 we can see statistics of link layer. In comparison with Table 5.2, there is approximately

the same data. In Figure 5.11 we can see application data. When we compare the data
with the application data from Figure 5.2 the data are the same.

Flow Link layer Network layer Transport layer Application Layer

Source Destination
Packet Count: 10 0
Packets Size[B]: 22k 0
Payload Size[B]: 20k 0
MAC Address: [«] 00:09:8efa:c0:45 ®@ 01:0cicd:01:00:01
MAC Vendor: Ipcas
Input Interface: enp0s8

Figure 5.10: Link layer in GreyCortex Mendel

3https://www.greycortex.com/mendel

36

http://www.greycortex.com/mendel

Flow Link layer ~ Metwork layer ~ Transport layer ~ Application Layer

Service: IEC61850-GO0SE

"request”: {
"GOOSEpdu": {
"goosePdu”: {

"gocbRef": "ASNERIES1 CALApplication/LLN@$3GO$Control_DataSet 2",
"sqNum": @,
"allData": [

"boolean": false

"bit-string": "@@"

"bit-string": "C@"

}
{
}
{
}
{

"bit-string": "@@"
}

s

"goID": "ASNERIES1 CAL/Application/LLN®/Control DataSet 2",
"t": 1564557882615999996,

"test": true,

"timeAllowedtolLive": 3000,

"datSet": "ASNERIES1 CALApplication/LLN@$DataSet 2",
"numDatSetEntries”: 4,

"stMum": 1,

"confRev": 20001,

"ndsCom": false

Figure 5.11: Application layer in GreyCortex Mendel

5.5 Summary

In this chapter we did multiple experiments. Their goal was to validate the behavior of the
emulator. First we experimented with datasets we obtained in GIPSA-lab. We managed
to generate the communication matching the requirements from Section 5.1. Then we
manually generated transcripts of emulation with more complex communication. With this
we confirmed the emulator can change application data value in the middle of flow and it
can add IEEE 802.1Q tag to the Ethernet frame. With the last experiment we validated the
emulator against third party software. This experiment confirmed that the communication
is generated according to IEC 61850 standard.

37

Chapter 6

Conclusion

There is a lack of software applications for testing and simulation of devices which use
protocols of IEC 61850 standard. The purpose of this work is to create an emulator of
devices communicating using IEC 61850-GOOSE protocol. We fulfilled this purpose by
implementation of the emulator of publisher devices of the GOOSE protocol. We validated
the emulator with several experiments. We used datasets obtained during an internship in
GIPSA-lab, Grenoble, France. These datasets contain communication from a real devices.
We used these datasets as input of the emulator and then we compared these two com-
munications. Also we manually generated a few transcripts of emulation for validation of
support of extreme cases. We were not able to get a real dataset containing these cases. To
validate the emulated communication we used a third party software GreyCortex Mendel
which is able to parse GOOSE messages. The emulator is used in the GreyCortex company
for testing purposes. The assignment was fulfilled.

In the future we are going to create the improve the application to make it even more
useful for research and testing purposes. We would love to add support for MMS server
and client. To make this possible, we will have to implement support for containing of IEC
61850 information model. Because of this, we need to add support for configuration using
SCL files. When we will have the information model stored we can add support for SV
protocol. We could also add GUI for making work with the emulator simpler.

38

Bibliography

1]

IEC-TC57: Communication networks and systems for power utility automation —
Part 9-2: Specific Communication Service Mapping (SCSM) — Sampled values over
ISO/IEC 8802-3. International Electrotechnical Commission. 2004.

IEC-TC57: Communication networks and systems for power utility automation —
Part 6: Configuration description language for communication in power utility
automation systems related to IEDs . International Electrotechnical Commission.
2010.

IEC-TC57: Communication networks and systems for power utility automation —
Part 7-1: Principles and models. International Electrotechnical Commission. 2010.

IEC-TC57: Communication networks and systems for power utility automation —
Part 7-2: Basic information and communication structure. International
Electrotechnical Commission. 2010.

IEC-TC57: Communication networks and systems for power utility automation —
Part 8-1: Specific Communication Service Mapping (SCSM) — Mappings to MMS
(ISO 9506-1 and 1SO 9506-2) and to ISO/IEC 8802-3. International Electrotechnical
Commission. 2010.

ISO/TC184/SC5: Industrial automation systems — Manufacturing Message
Specification, Part 1: Service definition . International Organization for
Standardization. 2003.

ITU-T: OSI networking and system aspects — Abstract Syntaz Notation One (ASN.1).
International Telecommunication Union. 2015.

LEON, H.; MONTEZ, C.; STEMMER, M.; et al.: Simulation models for IEC 61850
communication in electrical substations using GOOSE and SMV time-critical
messages. In 2016 IEEE World Conference on Factory Communication Systems
(WFCS). May 2016. pp. 1-8. d0i:10.1109/WFCS.2016.7496500.

Retrieved from: https://ieeexplore.ieee.org/document /7496500

MACKIEWICZ, R. E.: Overview of IEC 61850 and Benefits. In 2006 IEEE PES
Power Systems Conference and Exposition. Oct 2006. pp. 623—-630.
doi:10.1109/PSCE.2006.296392.

Retrieved from: https://ieeexplore.ieee.org/document/4075831

MATOUSEK, P.: Description of IEC 61850 Communication. Technical report. 2018.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php.cs?7id=11832

39

https://ieeexplore.ieee.org/document/7496500
https://ieeexplore.ieee.org/document/4075831
http://www.f

[11]

MOHAGHEGHI, S.; STOUPIS, J.; WANG, Z.: Communication protocols and
networks for power systems-current status and future trends. In 2009 IEEE/PES
Power Systems Conference and Exposition. March 2009. pp. 1-9.
doi:10.1109/PSCE.2009.4840174.

Retrieved from: https://ieeexplore.ieee.org/document /4840174

SCHWARZ, K.: Manufacturing message specification-iso 9506 (mms). Schwarz
Consulting Company, Karlsruhe, Germany. Available from World Wide Web:< URL:
http://www. nettedautomation. com/download/MMS-R1-2_2008-02-26. pdf. 2008.
Retrieved from: https://www.semanticscholar.org/paper/Manufacturing-
Message-Specification-%E2%80%93-1S0-9506-Schwarz-Schwarz/
40e6flea9fafebb82750df7ae725d1dd836659f6

40

https://ieeexplore.ieee.org/document/4840174
http://www
http://www.semanticscholar.org/paper/Manufacturing-

Appendices

41

Appendix A

DTD description for the XML
configuration files

w

© 0 N & U

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

<!ELEMENT configuration (headersValues+)>

<IELEMENT headersValues (gooseValues,timeCount,timeStart,timeEnd)>

<IELEMENT gooseValues (src,dst,golD,goCb,datSet,confRev,needsComm,allowed TTL,dataValues+,
applD,vlanID,vlanPrio)>

<IELEMENT src (#PCDATA)>

<IELEMENT dst (#PCDATA)>

<IELEMENT goID (#PCDATA)>

<IELEMENT goCb (#PCDATA)>

<IELEMENT datSet (#PCDATA)>

<!ELEMENT confRev (#PCDATA)>

<!ELEMENT needsComm (#PCDATA)>

<!ELEMENT dataValues (#PCDATA)>

<IELEMENT appID (#PCDATA)>

<!ELEMENT vlanID (#PCDATA)>

<IELEMENT vlanPrio (#PCDATA)>

<IELEMENT dataValues (goose.integer+, goose.unsigned+, goose.floating point+, goose.boolean—,
goose.octet_string+, goose.visible_string+, goose.mMSString+, goose.bit_ string+)>

<!ELEMENT goose.integer (#PCDATA)>
<!ELEMENT goose.unsigned (#PCDATA)>
<IELEMENT goose.floating_point (#PCDATA)>
<!ELEMENT goose.boolean (#PCDATA)>
<!ELEMENT goose.octet_string (#PCDATA)>
<!ELEMENT goose.visible_string (#PCDATA)>
<!ELEMENT goose.mMSString (#PCDATA)>
<IELEMENT goose.bit_ string (#PCDATA)>

Listing A.1: DTD description of the XML configuration files

42

Appendix B

Example of an SCL with GOOSE
export

This SCL file was obtained from Stéphane Mocanu, Grenoble INP. The file contains sim-
plified configuration of a substation with devices using IEC 61850.

I T N R N SO R

(09

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29

30
31

32

<SCL>

<Communication>
<SubNetwork name="ProcessBusSubnet" type="8—MMS">
<ConnectedAP iedName="ASNERIES1__CAL" apName="E">
<GSE IdInst="Application" cbName="Control_ DataSet_ 2">
<Address>
<P type="MAC—Address" xsi:type="tP_ MAC—Address">01-0C—-CD

—01-00—01</P>
<P type="VLAN-ID" xsi:type="tP_ VLAN—ID">000</P>
<P type="VLAN—PRIORITY" xsi:type="tP_ VLAN—PRIORITY">4</P>
<P type="APPID" xsi:type="tP_ APPID">0001</P>
</Address>
<MinTime unit="s" multiplier="m">10</MinTime>
<MaxTime unit="s" multiplier="m">2000< /MaxTime>
</GSE>
</Connected AP >
< /SubNetwork >
</Communication>

<IED desc="ASNERIES1_CAL_6MD85" name="ASNERIES1_CAL" type="6MD85">
<Services nameLength="64">
<ClientServices goose="true" gsse="false" bufReport="false" unbufReport="false" readLog
="false" sv="false" supportsLdName="true"' maxGOOSE="128">
<TimeSyncProt sntp="true" />
</ClientServices>
</Services>
<AccessPoint desc="Port E" name="E" router="false" clock="false">
<Server timeout="0">
<Authentication none="true" />
<LDevice desc="Application" inst="Application">
<LNO InClass="LLNOQ" inst="" InType="SIPROTEC5_ LNType_LLNO_ Application"
desc="General">
<DataSet name="DataSet 2">
<FCDA 1dInst="Application" prefix="" InClass="USER" InInst="1" doName="
SPC" daName="stVal" fc="ST" />
<FCDA 1dInst="Application" prefix="" InClass="USER" InInst="1" doName="
SPC" daName="q" fc="ST" />

43

33

34

35
36

37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75

76
7
78
79
80
81
82

<FCDA 1dInst="Application" prefix="" InClass="USER" InInst="1" doName="
DPCCB" daName="stVal" fc="ST" />
<FCDA 1dInst="Application" prefix="" InClass="USER" InInst="1" doName="
DPCCB" daName="q" fc="ST" />
< /DataSet>
<GSEControl datSet="DataSet_ 2" confRev="20001" appID="ASNERIES1_CAL
/Application/LLNO/Control_DataSet_ 2" name="Control_DataSet_ 2" type
="GOOSE" />
</LNO>
<LN InClass="USER'" inst="1" InType="SIPROTEC5_ LNType_ USER, Universal"
desc="Novion Test" prefix="">
<DOI name="DPCCB" desc="CB Position">
<DAI name="dataNs">
<Val>Siprotec5/user—defined</Val>
</DAI>
</DOI>
<DOI name="SPC" desc="SPC">
<DAI name="dataNs">
<Val>Siprotec5/user—defined</Val>
</DAI>
</DOI>
</LN>
</LDevice>
</Server>
< /AccessPoint >
</IED>

<IED name="MU_ 02" type="Siprotec—75X8xx">
<Services nameLength="64">
<ConfDataSet max="5" maxAttributes="30" modify="true" />
<GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
<SMVSettings cbhName="Fix" datSet="Fix" svID="Conf" optFields="Conf" smpRate="Fix
" samplesPerSec="false" pdcTimeStamp="false" >
<SmpRate>80</SmpRate>
</SMVSettings>
<GOOSE max="3" />
<SMVsc max="1" delivery="multicast" deliveryConf="false" />
<ConfLNs fixPrefix="true" fixLnInst="true" />
<ClientServices goose="true" maxGOOSE="3" supportsLdName="false" maxAttributes="
60" gsse="false" bufReport="false" unbufReport="false" readLog="false" sv="*false"
maxReports="0" maxSMV="0">
<TimeSyncProt sntp="true" ¢37_238="false" other="true" />
</ClientServices>
<SupSubscription maxGo="0" maxSv="0" />
<RedProt hsr="true" prp="true" rstp="true" />
</Services>
<AccessPoint name="P1">
<Server>
<Authentication none="true" />
<LDevice inst="MUQ1" desc="Mu01">
<LN inst="1" prefix="ASN" desc="ASNGGIO1" InClass="GGIO" InType="MU_ 02/
CTRL/ASNGGIO1">
<DOI name="SPCS03" desc="external Single Point ON/OFF (ExSP)">
<Private type="Siemens—Dir">Rx< /Private>
<DAI name="ctIModel" >
<Val>status—only</Val>
</DAI>
</DOI>
<DOI name="DPCSO1" desc="external double indication (ExDI)">

44

83 <Private type="Siemens—Dir">Rx< /Private>

84 <DAI name="ctIModel" >

85 <Val>status—only</Val>

86 </DAI>

87 </DOI>

88 <Inputs>

89 <ExtRef doName="SPC" daName="stVal" intAddr="CTRL/ASNGGIO1/ST/
SPCSO3/stVal" serviceType="GOOSE" iedName="ASNERIES1_ CAL"
ldInst="Application" InClass="USER" InInst="1" srcCBName="
Control_DataSet_ 2" srcLDInst="Application" srcLNClass="LLNO0" />

90 <ExtRef doName="SPC" daName="q" intAddr="CTRL/ASNGGIO1/ST/
SPCS03/q" serviceType="GOOSE" iedName="ASNERIES1_CAL" ldInst
="Application" InClass="USER" Inlnst="1" srcCBName="
Control_DataSet_ 2" srcLDInst="Application" srcLNClass="LLNO0" />

91 <ExtRef doName="DPCCB" daName="stVal" intAddr="CTRL/ASNGGIO1/
ST/DPCSO1/stVal" serviceType="GOOSE" iedName="
ASNERIES1_CAL" ldInst="Application" InClass="USER" InInst="1"
srcCBName="Control__DataSet_ 2" srcLDInst="Application" srcLNClass=
"LLNO" />

92 <ExtRef doName="DPCCB" daName="q" intAddr="CTRL/ASNGGIO1/ST/
DPCSO1/q" serviceType="GOOSE" iedName="ASNERIES1_CAL" 1dInst
="Application" InClass="USER" Inlnst="1" srcCBName="
Control_DataSet_ 2" srcLDInst="Application" srcLNClass="LLNO0" />

93 </Inputs>

94 </LN>

95 </LDevice>

96 </Server>

97 < /AccessPoint >

98 </IED>

99

100 <LNodeType id="SIPROTEC5_ LNType_USER_ Universal" InClass="USER">

101 <DO name="SPC" type="SPC_ID" />

102 <DO name="DPCCB" type="DPC _ID" />

103 </LNodeType>

104

105 <DOType id="SPC_ID" cdc="SPC">

106 <DA dchg="true" fc="ST" name="stVal" bType="BOOLEAN" />

107 <DA qchg="true" fc="ST" name="q" bType="Quality" />

108 </DOType>

109 <DOType id="DPC_ID" cde="DPC">

110 <DA dchg="true" fc="ST" name="stVal"' bType="Dbpos" />

111 <DA qchg="true" fc="ST" name="q" bType="Quality" />

112 </DOType>

113 </SCL>

Listing B.1: Example of an SCL with GOOSE export

45

Appendix C

Configuration file generated from
Apendix B

1 <configuraton>
2 <headersValues>
3 <gooseValues>
4 <sre>00:00:00:00:00:01< /src>
5 <dst>01:0c:cd:01:00:01< /dst>
6 <goID>ASNERIES1 CAL/Application/LLNO/Control DataSet 2</golD>
7 <goCb>ASNERIES1_CAL/Application/LLN0$Control_DataSet_ 2</goCb>
8 <datSet>ASNERIES1_CAL/Application/LLN0$DataSet_ 2</datSet>
9 <confRev>20001< /confRev>
10 <needsComm>0< /needsComm>
11 <allowedTTL>3000< /allowed TTL>
12 <dataValues>
13 <goose.boolean>0< /goose.boolean>
14 </dataValues>
15 <dataValues>
16 <goose.bit_ string>00:00< /goose.bit__string>
17 </dataValues>
18 <dataValues>
19 <goose.bit_string>c0< /goose.bit__string>
20 </dataValues>
21 <dataValues>
22 <goose.bit_ string>00:00< /goose.bit__string>
23 </dataValues>
24 <appID>0x00000001< /appIlD>
25 <vlanID>000< /vlanID>
26 <vlanPrio>4< /vlanPrio>
27 < /gooseValues>
28 <timeCount>10< /timeCount >
29 <timeStart>0</timeStart>
30 <timeEnd>10</timeEnd>
31 < /headersValues>
32 </configuraton>

Listing C.1: Configuration file generated from SCL from Listing B.1

46

Appendix D

User manual

The root folder of this project contains:

e ConfigurationCreator.rb - script used for creation of configuration files from capture
file - please, use Control.rb instead for this purpose

e Control.rb - script for directing od the emulation
e examples - folder containing an example dataset

— pcap - contains packet captures usable for an emulation

— xml - contains examples of configuration files
e goose_ publisher__emulator.c - file containing implementation of the emulator
e libiec61850-1.3 - folder containing the libiec61850 folder
e Makefile - makefile
¢ README.md - the file containing this text
e scl - directory containing an example of SCL file (can not be an input of emulator)

For compilation and proper work, the project requires following packages:

e gcc-4.8.5
e ruby-2.0.0p648

o libxml2-devel-2.9.1-6

The installation process was tested on Ubuntu 16.04.
For installation please navigate into project root folder and use following commands:

e sudo apt-get install gce ruby libxml2-devel
e gem install gyoku
e make

Please, always run the emulator using Control.rb. To run the emulation you can use fol-
lowing examples:

47

e to run emulation from capture file use following command:
sudo ruby Control.rb -p <input_ pcap> -r -o <output_ file>

e to run emulation with a directory with prepared transcripts of emulation use following
command:
sudo ruby Control.rb -¢ <configuration_ directory> -r -o <output_ file>

e to run emulation with prepared configuration files on specific network interface:
sudo ruby Control.rb -¢ <configuration_ directory> -r -i <interface>

e to run configuration generation:
ruby Control.rb -¢ <configuration_ directory> -p <input_ file>

Command line parameters of Control.rb :

e -j - output interface
e -p - input pcap file
e -0 - output pcap file
e -r - run emulation

e ¢ - configuration directory

For manual creation of configuration files you can use following blank template:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<configuraton>
<headersValues> <!——can be repeated——>
<gooseValues>

<sre>< /sre> <!——string format: "XX:XX: XX:XX:XX:XX"——>
<dst></dst> <!——string format: "XX:XX:XX:XX: XX:XX"——>
<golD>< /golD> <!——string——>
<goCb></goCb> <!——string——>
<datSet></datSet> <!——string——>
<confRev></confRev> <!——integer——>

<needsComm>< /needsComm> <!——integer——>
<allowedTTL>< /allowedTTL> <!——integer——>
<dataValues> <!——can be repeated——>
<goose.boolean>< /goose.boolean> <!——integer——>
< /dataValues>
<applD>< /appID> <!——string containing hexa integer in format "0x0001"——>
<vlanID>< /vlanID> <!——integer——>
<vlanPrio></vlanPrio> <!——integer——>
< /gooseValues>
<timeCount>< /timeCount> <!——integer——>
<timeStart>< /timeStart> <!——float——>
<timeEnd></timeEnd> <!——float——>
< /headersValues>
< /configuraton>

Listing D.1: Blank configuration file

48

Appendix E

Configuration files used for
experiment from Section 5.3

In this appendix there are the configuration files used for the experiment from Section 5.3.

1 <configuraton>
2 <headersValues>
3 <gooseValues>
4 <sre>00:09:8e:fa:c0:45< /src>
5 <dst>01:0c:cd:01:00:01< /dst>
6 <goID>ASNERIES1 CAL/Application/LLNO/Control DataSet 2</golD>
7 <goCb>ASNERIES1_CALApplication/LLNOGOControl_DataSet_ 2</goCb>
8 <datSet>ASNERIES1_CALApplication/LLN0$DataSet_ 2</datSet>
9 <confRev>20001< /confRev>

10 <needsComm>0< /needsComm>

11 <allowedTTL>3000< /allowed TTL>

12 <dataValues>

13 <goose.boolean>0< /goose.boolean>

14 </dataValues>

15 <dataValues>

16 <goose.integer>42< /goose.integer>

17 </dataValues>

18 <dataValues>

19 <goose.floating_ point>42.42< /goose.floating_point>

20 </dataValues>

21 <dataValues>

22 <goose.bit_string>00< /goose.bit_ string>

23 </dataValues>

24 <appID>0x00000001< /appIlD>

25 <vlanID>1</vlanID >

26 <vlanPrio>4< /vlanPrio>

27 < /gooseValues>

28 <timeCount>5</timeCount >

29 <timeStart>0</timeStart>

30 <timeEnd>3</timeEnd>

31 < /headersValues>
32 <headersValues>

33 <gooseValues>

34 <sre>00:09:8e:fa:c0:45< /src>

35 <dst>01:0c:cd:01:00:01< /dst>

36 <goID>ASNERIES1 CAL/Application/LLNO/Control DataSet 2</golD>

37 <goCb>ASNERIES1_CALApplication/LLNOGOControl_DataSet_ 2</goCb>

49

38 <datSet>ASNERIES1_CALApplication/LLN0$DataSet_ 2</datSet>
39 <confRev>20001< /confRev>

40 <needsComm>0< /needsComm>

41 <allowedTTL>3000< /allowed TTL>

42 <dataValues>

43 <goose.boolean>1< /goose.boolean>

44 </dataValues>

45 <dataValues>

46 <goose.integer>24< /goose.integer>

a7 </dataValues>

48 <dataValues>

49 <goose.floating_ point>24.24< /goose.floating_point>
50 </dataValues>

51 <dataValues>

52 <goose.bit_string>00< /goose.bit_ string>
53 </dataValues>

54 <appID>0x00000001< /appIlD>

55 <vlanID>1</vlanID >

56 <vlanPrio>4< /vlanPrio>

57 < /gooseValues>

58 <timeCount>5</timeCount >

59 <timeStart>3</timeStart>

60 <timeEnd>6</timeEnd>

61 < /headersValues>

62 </configuraton>

Listing E.1: Configuration file generated from SCL from Listing B.1

50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

<configuraton>
<headersValues>
<gooseValues>
<sre>42:42:42:42:42:42< /sre>
<dst>00:00:00:00:00:02< /dst>
<goID>IED1/Application/LLN0Q/Control_DataSet_ 2</golD>
<goCb>IED1/Application/LLNOGOControl DataSet_2</goCb>
<datSet>IED1/Application/LLNO$DataSet_ 2</datSet>
<confRev>20001< /confRev>
<needsComm>0< /needsComm>
<allowedTTL>3000< /allowed TTL>
<dataValues>
<goose.unsigned>0100000< /goose.unsigned >
< /dataValues>
<dataValues>
<goose.octet_string>000000< /goose.octet__string>
< /dataValues>
<dataValues>
<goose.visible_string>test_ visible_string</goose.visible_ string>
< /dataValues>
<dataValues>
<goose.mMSString>test__mms_ string< /goose.mMSString>
< /dataValues>
<appID>0x00000002< /applD>
<vlanID>—-1</vlanID>
<vlanPrio>—1</vlanPrio>
< /gooseValues>
<timeCount>10< /timeCount >
<timeStart>0</timeStart>
<timeEnd>4< /timeEnd>
< /headersValues>
< /configuraton>

Listing E.2: Configuration file generated from SCL from Listing B.1

51

