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Abstrakt Wignerova funkce lineárńıho harmonického os-
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kvantového tuhého setrvačńıku a otev́ıraj́ı cestu
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Introduction

In quantum mechanics one often uses the wave picture, based on complex-valued wave
functions, to describe the possible states of a considered system. A more illustrative
way is to use the phase space formalism to represent the system. A phase space is
a space of eigenvalues of the canonical operators fully describing the system and the
possible states are represented by quasiprobability distributions. The simplest phase
space is obtained for systems characterized by canonically conjugate position and mo-
mentum operators, x̂ and p̂, respectively, which is a plane. There also exist uniquely
defined quasiprobability distributions for this system, including, e.g. the Wigner func-
tion W (x, p) [1]. But there are other systems, for example, a hybrid system described
by an operator Â with integer eigenvalues a ∈ Z and an operator B̂ whose eigenvalue
is an arbitrary real number b ∈ R. How would this change the corresponding phase
space and would the Wigner function W (a, b) be uniquely defined? This thesis aims to
investigate a particular instance of the hybrid system, where Â is the z-th component
of the angular momentum operator and B̂ is a complex exponential of an angle. The
thesis will also investigate their phase space and possible constructions of their Wigner
function.

The phase space formulation of quantum mechanics was fully developed by H. Groe-
newold [2] and J. Moyal [3], building on earlier works of H. Weyl [4], E. Wigner [1]. One
tries to find a mapping relating operators from the Hilbert space to functions on the
phase space. The advantage of the quantum phase space is that we can give quantum
states a “visual” representation by the so-called quasiprobability distribution, which is
a quantum analogy of a classical probability distribution in the classical phase space of
statistical mechanics [5–12]. The term “quasiprobability” reflects the fact that unlike
classical probability distributions the distributions representing quantum states may
loose some of the properties of an ordinary probability distribution, e.g. it can be
negative.

This phase space representation was developed in the context of the system char-
acterized by the position x̂ and momentum p̂ operators, obeying the commutation
rule [x̂, p̂] = iℏ1. As we said above, their phase space is a plane R2 = {[x, p];x, p ∈ R}.
Their Wigner function of a density matrix ρ̂ is defined as

W (x, p) =
1

2πℏ

∫ +∞

−∞

〈
x− x′

2

∣∣∣∣ ρ̂ ∣∣∣∣x+ x′

2

〉
e

ipx′
ℏ dx′ , (1)

which can be viewed as a Fourier transform of the off-diagonal elements of the density
matrix ρ̂ in the eigenbasis {|x⟩}x∈R of the position operator x̂. Notice, that for a
given ρ̂, the Wigner function W (x, p) is uniquely defined. A fundamental quantum
system described by such operators is the system of a point mass, the well-known
linear harmonic oscillator1 with one degree of freedom. This system can be used to

1Here and throughout this thesis we mean the quantum linear harmonic oscillator.
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model light [13], collective spin of an atomic ensemble [14], motional degree of freedom
of a trapped ion [15], mechanical mode of a movable cavity mirror [16], etc.

However, with the increasing control of elementary constituents of matter, the in-
terest in a more complex fundamental quantum system has risen. Namely, for many
quantum systems description based on a model of a point mass is insufficient. This
is because this model does not adequately describe the behavior connected with the
rotation of the system. The concept of a rigid body was developed to fill this gap,
as to be a closer approximation of real bodies, which also takes into account their
geometric shape. The simplest model of such a body is a system composed of just
two point masses held at a constant (rigid) distance apart, the so-called rigid rotor.
This textbook problem can be solved analytically [17] and provides explanations of
basic phenomena connected with the rotation of bodies. For example, single-photon
orbital angular momentum [18], azimuthal evolution of optical beams [19] and molec-
ular rotations [20] can be modeled by this system. Conceivable applications include
orientation-dependent metrology [21–23], ultracold chemistry [24, 25], highly sensitive
torque sensors [26, 27], realizations of a quantum heat engine [28] and levitated nano-
magnets [29], to cite a few. If we are interested in the spectra of a given model, then
the quantum rigid rotor presents a suitable description of such a system.

Quantum rigid rotor represents one of the fundamental canonical systems of quan-
tum mechanics, similarly as the potential dam or linear harmonic oscillator. The
predictions we get from this system are in agreement with real observations. Com-
pared to the linear harmonic oscillator, some aspects of the quantum rigid rotor are
not as well developed. One of them being the description of its complementary vari-
ables and with them, closely related, their phase space formulation. In analogy with
the linear harmonic oscillator the momentum variable p is replaced by the variable
L, as the component of angular momentum along the axis orthogonal to the plane of
rotation. One may be temped to put the angular position ϕ in the place of position x,
however this may entail many pitfalls and calls for a very subtle analysis [30, 31]. The
most satisfactory approach avoiding these difficulties is based on the use of an unitary
exponential operator Ê, or equivalently Hermitian sine Ŝ and cosine Ĉ operators, as
the complementary observables to L̂ [32]. In this thesis we follow the latter approach
to develop the phase space method corresponding to the variables E and L.

Building on the latter ideas one can introduce the concept of the Wigner function
in two ways. One is based on the group-theoretical methods [33] and leads to rather
complex expressions. The other one is more intuitive and simpler and utilises analogies
with the linear harmonic oscillator [34, 35]. In the second approach, in contrast with
the linear harmonic oscillator, one can adopt different phase conventions leading to
different Wigner functions, which are generally equipped with different properties. So
far, the optimal phase convention, which would lead to the Wigner function possessing
the maximum amount of properties, has not been found.

In the present thesis we seek this phase convention and compare the resulting
Wigner functions with the existing ones. Lastly we analyze the behavior of the various
Wigner functions and provide their visualization.
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Chapter 1

Introduction of the complementary
variables

In this chapter we introduce the complementary variables of the quantum rigid rotor,
as well as the states minimizing their uncertainty relations.

1.1 Complementary variables of the quantum rigid

rotor

The basic complementary observables of the quantum rigid rotor have been found to
be the Hermitian angular momentum operator L̂ and the unitary operator Ê, which
satisfy the following commutation relation:[

Ê, L̂
]
= Ê , (1.1)

of the Euclidean algebra e(2) of the Euclidean group E(2) of the rigid motions in the
plane [32]. In the ϕ-representation the operators L̂ and Ê (in units of the reduced
Planck constant ℏ) read as

L̂ = −i ∂
∂ϕ

, Ê = e−iϕ . (1.2)

Notice, that the commutation relation (1.1) is not as simple as the commutation relation
of the position x̂ and momentum p̂ operators [x̂, p̂] = i1 (in units of the reduced Planck
constant ℏ), where (up to a constant) these operators commute to the identity operator.

However the commutation relation (1.1) is not of the complex form
[
Â, B̂

]
= Ĉ,

where Â ̸= B̂ ̸= Ĉ, since our operators commute to another operator that we already
know (the exponential operator Ê). In this sense the commutation relation (1.1) is in
the next class of difficulty after the commutation relation [x̂, p̂] = i1.

To find the eigenstates of the angular momentum operator L̂ we need to solve the
eigenvalue problem

− i
∂

∂ϕ
Ψn(ϕ) = nΨn(ϕ) , (1.3)

whose solution is, in addition, required to be 2π-periodic, i.e., to satisfy

Ψn(ϕ+ 2π) = Ψn(ϕ) .

3



By solving the differential equation we find the normalized eigenfunctions of the oper-
ator L̂ in the form

Ψn(ϕ) = ⟨ϕ|n⟩ = 1√
2π
einϕ , (1.4)

where n ∈ Z are integer eigenvalues of L̂. Further, the eigenfunctions (1.4) are or-
thonormal with respect to the scalar product

⟨ψ1|ψ2⟩ =
∫ 2π

0

dϕψ∗
1(ϕ)ψ2(ϕ) , (1.5)

i.e.,

⟨Ψl|Ψk⟩ =
∫ 2π

0

dϕΨ∗
l (ϕ)Ψk(ϕ) = δl,k , (1.6)

where δl,k is the Kronecker delta

δm,n =

{
1 , if m = n ,

0 , if m ̸= n ; for m,n ∈ Z ,
(1.7)

and the eigenfunctions (1.4) comprise an orthonormal basis in the Hilbert space L2(0, 2π)
of all square-integrable functions on the interval [0, 2π) with the scalar product (1.5),
which is therefore the state space of the considered system.

Independently of the representation, we can express the eigenvalue equation (1.3)
as

L̂ |n⟩ = n |n⟩ , (1.8)

and the orthonormality condition (1.6) by the equation

⟨l|k⟩ = δl,k . (1.9)

Finally, the basis {|n⟩}n∈Z satisfies the following completeness condition∑
n∈Z

|n⟩⟨n| = 1 . (1.10)

Similarly, we can write an eigenvalue equation for the unitary operator Ê

Ê |ϕ⟩ = e−iϕ |ϕ⟩ , (1.11)

where |ϕ⟩ can be written as

|ϕ⟩ = 1√
2π

∑
n∈Z

e−inϕ |n⟩ , ϕ ∈ [0, 2π) , (1.12)

which can be viewed as the discrete Fourier transform of the angular momentum eigen-
states. They satisfy the normalization condition

⟨ϕ|ϕ′⟩ = δ2π(ϕ− ϕ′) , (1.13)

4



where

δ2π(ϕ) =
1

2π

∑
k∈Z

eikϕ =
∑
k∈Z

δ(ϕ− 2kπ) , (1.14)

is the 2π-periodic delta function (or Dirac comb). Notice, these eigenstates (1.12) are
not normalizable, however they satisfy the following resolution of the identity∫ 2π

0

dϕ |ϕ⟩⟨ϕ| = 1 . (1.15)

Using the commutation relation (1.1) one can show that

L̂Ê |n⟩ = (n− 1)Ê |n⟩ , (1.16)

which implies Ê |n⟩ is an eigenstate of L̂ corresponding to the eigenvalue n − 1 and
therefore

Ê |n⟩ = |n− 1⟩ . (1.17)

Likewise it can be found that
Ê† |n⟩ = |n+ 1⟩ . (1.18)

Rather than working with the unitary operator Ê, it is convenient to work with its
real and imaginary part, defined as

Ŝ =
Ê† − Ê

2i
, Ĉ =

Ê† + Ê

2
, (1.19)

which are the Hermitian sine and cosine operators [36] and satisfy the following com-
mutation relations: [

Ŝ, L̂
]
= iĈ ,

[
Ĉ, L̂

]
= −iŜ ,

[
Ŝ, Ĉ

]
= 0 . (1.20)

The first commutation relation reveals that the operators L̂ and Ŝ are incompatible
and it implies the uncertainty relations

⟨(∆L̂)2⟩ ⟨(∆Ŝ)2⟩ ≥ 1

4
| ⟨Ĉ⟩|

2
. (1.21)

In order to capture the richness of the system under study, we consider a more
generic unitary operator

Êα = eiαÊ , (1.22)

which is the operator Ê shifted by an arbitrary angle α. The commutation relation (1.1)
now reads as [

Êα, L̂
]
= Êα . (1.23)

Rephrased in terms of the Hermitian operators

Ŝα =
Ê†
α − Êα
2i

, Ĉα =
Ê†
α + Êα
2

, (1.24)

the commutation relations (1.20) are then[
Ŝα, L̂

]
= iĈα ,

[
Ĉα, L̂

]
= −iŜα ,

[
Ŝα, Ĉα

]
= 0 , (1.25)

and the uncertainty relations of our interest are given by

⟨(∆L̂)2⟩ ⟨(∆Ŝα)2⟩ ≥
1

4
| ⟨Ĉα⟩|

2
. (1.26)
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1.1.1 Complmentarity

It can be shown that the observables Ŝα and L̂ are complementary. Since the eigenstate
|ϕ⟩ of the exponential operator Êα is also an eigenstate of the Hermitian operator Ŝα
(by construction), from the Eq. (1.12), we see that the probability of measuring the
value n of the angular momentum along the axis orthogonal to the plane of rotation
on a system in a state |ϕ⟩ is

|⟨n|ϕ⟩|2 = 1

2π
, ∀n ∈ Z , ∀ϕ ∈ [0, 2π) , (1.27)

which is a constant and therefore the bases {|n⟩}n∈Z and {|ϕ⟩}ϕ∈[0,2π) are mutually
unbiased. Meaning, if we measure the state to have precisely the angular momentum
n, then we cannot make any predictions about its angular position ϕ, i.e. the probability
distribution is constant as a function of ϕ, and vice versa. Thus the operators Ŝα (and,
by construction, Êα) and L̂ are complementary.

1.2 Minimum uncertainty states (MUS)

One can show [32, 33, 37] that the states minimizing the inequality (1.26) are, in the
L-representation, given by

|n, α⟩ = 1√
I0 (2κ)

∑
l∈Z

ei(n−l)αIn−l (κ) |l⟩ , (1.28)

where κ ≥ 0 represents the spread of the angular position ϕ and In (z) is the modified
Bessel function (see Appendix A for its definition and properties)

In (z) =

∫ π

−π

dϕ

2π
ez cosϕ+inϕ , for n ∈ Z , z ∈ C . (1.29)

In the ϕ-representation the minimum uncertainty states (1.28) reads as

|n, α⟩ =
∫ 2π

0

dϕψn,α(ϕ) |ϕ⟩ ,

ψn,α(ϕ) = ⟨ϕ|n, α⟩ = eκ cos(ϕ−α)+inϕ√
2πI0 (2κ)

, (1.30)

where the generating function∑
m∈Z

Im (z) exp(imϕ) = exp(z cosϕ) , (A.10)

has been used (see Appendix A).
The MUS |n, α⟩ yield von Mises distribution for the angular position ϕ, i.e.

|⟨ϕ|n, α⟩|2 = e2κ cos(ϕ−α)

2πI0 (2κ)
, (1.31)

and due to this, the states will be referred to as the von Mises states.
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The von Mises states resolve the identity as∑
n∈Z

∫ α0+2π

α0

dα

2π
|n, α⟩⟨n, α| = 1 , (1.32)

where α0 is an arbitrary angle.
In what follows we show that the von Mises states allow us to develop a phase

space description for the angular momentum L and angular position ϕ, which closely
resembles the phase space description for quadrature operators based on standard
coherent states.
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Chapter 2

Mathematical tools

Having introduced the quantum system under study, we develop some mathematical
tools we are going to be using in the pursuit of the phase space description of this
system.

2.1 The Fourier transform

The key mathematical tool used by us will be the Fourier transform of an operator (or
a function) A(n, α) of an integer n, and an angle α [34]

(FÂ)(l, ϕ) =
∑
n∈Z

∫ α0+2π

α0

dα

2π
ei(lα−ϕn)Â(n, α) , (2.1)

where α0 is an arbitrary angle. Notice that, since n is an integer, this Fourier transform
is always 2π-periodic. Making use of the filtration property of the 2π-periodic delta
function (1.14) on the interval of length 2π, one can easily show the following analogy
of the Parseval formula for commuting operators Â(n, α) and B̂(n, α):

∑
l∈Z

∫ α0+2π

α0

(FÂ)(l, ϕ)(FB̂)†(l, ϕ) dϕ =
∑
n∈Z

∫ α0+2π

α0

Â(n, α)B̂†(n, α) dα . (2.2)

where the symbol † stands for the Hermitian conjugate. From the knowledge of the
convolution theorem for the Fourier transform we can derive the following equality for
commuting operators Â(n, α) and B̂(n, α)

[F(ÂB̂)](n, α) =
∑
l∈Z

∫ α0+2π

α0

dϕ

2π
(FÂ)(n− l, α− ϕ)(FB̂)(l, ϕ) = (FÂ) ∗ (FB̂)(n, α) ,

(2.3)
where α0 is an arbitrary angle. Finally, we can also derive the formula for the double
Fourier transform

[F(FÂ)](l, ϕ) = Â(l, ϕ0) = Â(l, ϕ− 2kπ) , (2.4)

where we used the fact, that an arbitrary angle ϕ ∈ R can be decomposed as ϕ = ϕ0 + 2kπ,
where ϕ0 ∈ [α0, α0 + 2π) and k ∈ Z. Clearly, the Fourier transform (2.1) is its own
inverse, if only if Â(n, α) is 2π-periodic. Since for a 2π-periodic Â(n, α) the Fourier
transform (2.1) is independent of α0, for simplicity we set α0 = 0 in what follows.
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2.2 Commuting extensions of angular momentum

and angular position operators

The starting point of our considerations is a composite system consisting of the signal
system s and the ancillary system a with the Hilbert state space Hs ⊗ Ha. For this
system we introduce the total angular momentum operator L̂ and the angular difference
operator Ê by the formulas [38]

L̂ = L̂s + L̂a , Ê = ÊsÊ
†
a . (2.5)

These operators commute, [L̂, Ê ] = 0, and therefore possess a common eigenbasis

|N,Φ⟩sa =
1√
2π

∑
l∈Z

e−ilΦ |l +N⟩s |−l⟩a , (2.6)

which satisfy the eigenvalue equations

L̂ |N,Φ⟩sa = N |N,Φ⟩sa ,
Ê |N,Φ⟩sa = e−iΦ |N,Φ⟩sa ,
Ê† |N,Φ⟩sa = eiΦ |N,Φ⟩sa . (2.7)

The states (2.6) are therefore the eigenstates of L̂ and Ŝ = (Ê†−Ê)/2i corresponding to
eigenvalues N and sinΦ, respectively. The states (2.6) further satisfy the orthogonality
relation

⟨M,Ψ|N,Φ⟩ = δM,Nδ2π(Ψ− Φ) , (2.8)

and fulfill the following completeness condition

∑
N∈Z

∫ 2π

0

dΦ |N,Φ⟩sa ⟨N,Φ| = 1sa . (2.9)

Note that due to the obvious 2π-periodicity of the operator |N,Φ⟩sa ⟨N,Φ| the resolu-
tion of identity can be written as

∑
N∈Z

∫ α0+2π

α0

dΦ |N,Φ⟩sa ⟨N,Φ| = 1sa , (2.10)

where α0 is an arbitrary angle.
These states will be essential in developing the phase space representation of the

system of L̂ and Ê.
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Chapter 3

Phase space representation

In this chapter we finally develop the phase space representation of our system of L̂
and Ê. Preforming the Fourier transform of the MUS leads us to a crucial phase
decomposition and introduction of the displacement operator. Next we introduce the
notion of phase space distributions, the relation of the Q-function, Wigner function and
the P -function. Lastly, we present the required properties, that our Wigner function
should have.

3.1 Displacement operator

The phase space representation relies on the Fourier transform of the projectors onto
the eigenstates (2.6), i.e.

2π (F |N, θ⟩sa ⟨N, θ|) (l, ϕ) = Ê−le−iL̂ϕ = Ê−l
s e

−iL̂sϕÊl
ae

−iL̂aϕ , (3.1)

where |N, θ⟩sa is the eigenstate (2.6) corresponding the eigenvalues N and sin θ. The

first equality follows directly from the application of the operator Ê−le−iL̂ϕ to the
resolution of identity (2.9) for the eigenstates |N, θ⟩sa. Let us now average both sides
of the equation (3.1) over the von Mises vacuum state |0, 0⟩a of the ancillary system a
with the spread parameter κ. This gives

(F |N, θ⟩s ⟨N, θ|) (l, ϕ) = o(l, ϕ)Ê−l
s e

−iL̂sϕ , (3.2)

where |N, θ⟩s is the signal von Mises state and

o(l, ϕ) =a⟨0, 0| Êl
ae

−iL̂aϕ |0, 0⟩a
1
= ⟨0, 0|−l, ϕ⟩ 2

= e−il
ϕ
2
Il
[
2κ cos

(
ϕ
2

)]
I0 (2κ)

. (3.3)

To get the left-hand side (LHS) of Eq. (3.2) we used a ⟨0, 0|N, θ⟩sa = |N, θ⟩s /
√
2π,

where |N, θ⟩s is the signal von Mises state. The equality 1 in Eq. (3.3) is a consequence
of the formula

Ê−le−iL̂ϕ |0, 0⟩ = |l, ϕ⟩ , (3.4)
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which follows from the relations

e−iL̂ϕ |n, α⟩ = e−inϕ |n, α+ ϕ⟩ ,
Ê−l |n, α⟩ = |n+ l, α⟩ , (3.5)

where |n, α⟩ is the von Mises state (1.28). As for the equality 2 in Eq. (3.3) it follows
from the overlap formula

⟨n′, α′|n, α⟩ = e
i(n−n′)

(
α+α′

2

)
In−n′

[
2κ cos

(
α−α′

2

)]
I0 (2κ)

, (3.6)

derived in the Supplemental material of [38].
By setting N=n, θ=α in (3.2) and inserting the right-hand side (RHS) of Eq. (3.3)

into the RHS of Eq. (3.2) we finally get the following expression for the Fourier trans-
form of the von Mises states:

(F |n, α⟩s ⟨n, α|) (l, ϕ) = e−il
ϕ
2
Il
[
2κ cos

(
ϕ
2

)]
I0 (2κ)

Ê−l
s e

−iL̂sϕ . (3.7)

With respect to what follows it is now convenient to decompose the phase factor
exp(−ilϕ/2) as

e−il
ϕ
2 = eiγj(l,ϕ)eiδj(l,ϕ), (3.8)

i.e.,

γj(l, ϕ) + δj(l, ϕ) = −lϕ
2
+ 2kπ, k ∈ Z . (3.9)

This allows us to express Eq. (3.7) in the following form

(F |n, α⟩⟨n, α|) (l, ϕ) = oj(l, ϕ)D̂j(l, ϕ) , (3.10)

where

oj(l, ϕ) = eiγj(l,ϕ)
Il
[
2κ cos

(
ϕ
2

)]
I0 (2κ)

, (3.11)

D̂j(l, ϕ) = eiδj(l,ϕ)Ê−le−iL̂ϕ , (3.12)

and the system index s has been dropped for simplicity. Note that

oj(l, ϕ) = ei[γj(l,ϕ)+l
ϕ
2 ] ⟨0, 0|−l, ϕ⟩ , (3.13)

and it is (up to the phase factor exp
[
i
(
γj + lϕ

2

)]
) the overlap of the von Mises state

|−l, ϕ⟩ with the “vacuum” von Mises state |0, 0⟩. Further, making use of Eq. (3.4), we
see that

D̂j(l, ϕ) |0, 0⟩ = eiδj(l,ϕ) |l, ϕ⟩ , (3.14)

and thus the operator D̂j(l, ϕ) can be called as the displacement operator [34, 39]

in analogy with the displacement operator D̂(α) = exp
(
αâ† − α∗â

)
of the harmonic

oscillator generating a coherent state |α⟩ from the vacuum state |0⟩, i.e. D̂(α) |0⟩ = |α⟩.
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Let us look closer at some other properties of the displacement operator. Firstly,

D̂†
j(l, ϕ) = e−iδj(l,ϕ)eiL̂ϕÊl = D̂−1

j (l, ϕ) (3.15)

and the operator (3.12) is unitary. Secondly, the displacement operator (3.12) also
exhibits the following completeness property:

Tr
[
D̂†
j(n, α)D̂j(l, ϕ)

]
= 2πδl,nδ2π(α− ϕ) (3.16)

and thus it comprises an operator basis. Also notice the following property

ÊleiL̂ϕ = eilϕeiL̂ϕÊl , (3.17)

which will be useful, later, in developing the required properties of the Wigner func-
tions Wj(n, α).

3.2 Phase space distributions

The Fourier transform of the projector onto the von Mises states (3.10) plays a cen-
tral role in our approach of developing (development of) the phase space methods for
angular momentum L and angular position ϕ. The phase space methods rely on the
introduction of a phase space for the considered system. In the present case it is a
set of equidistant rings (each ring is one unit away from the other) on a surface of
a cylinder of radius one (Ref. [32] and in particular Fig. 1. of Ref. [38]), i.e. the
set S1 × Z (here S1 denotes the unit circle and Z the set of integers). The formalism
of phase space quasiprobability distributions has been developed in the context of the
linear harmonic oscillator. For this system, we distinguish three main quasiprobability
distributions, including the Q-function [40], Wigner function [1] and P -function [41,
42]. In analogy with the quasiprobability distributions of the linear harmonic oscillator,
we can introduce similar distributions for the angular momentum L and the angular
position ϕ. In the existing literature the main attention has been paid to the Wigner
function, which was constructed using group-theoretical methods in Refs. [33, 43] and
employing analogies with the linear harmonic oscillator in Refs. [34, 39, 44]. Building
on the latter ideas we can introduce an analogy of the Q-function, for a density matrix
ρ̂, by the following formula [38]:

Qρ̂(n, α) =
⟨n, α|ρ̂|n, α⟩

2π
, (3.18)

where |n, α⟩ is the von Mises state. The Q-function is normalized as

∑
n∈Z

∫ 2π

0

dαQρ̂(n, α) = 1. (3.19)

Like in the standard probability theory, we also introduce the respective characteristic
function of the Q-function as the Fourier transform of the Q-function,

CQρ̂(l, ϕ) = (FQρ̂)(l, ϕ). (3.20)

To further express the RHS we can use the Fourier transform of the von Mises state (3.10).
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Namely, by averaging the Fourier transform over the rescaled density matrix ρ̂/(2π)
we get

CQρ̂(l, ϕ) = (FQρ̂)(l, ϕ) =
1

2π
Tr [ρ̂ (F|n, α⟩ ⟨n, α|) (l, ϕ)] = oj(l, ϕ)CW ρ̂

j
(l, ϕ) , (3.21)

where we introduced the characteristic function

CW ρ̂
j
(l, ϕ) =

1

2π
Tr
[
ρ̂D̂j(l, ϕ)

]
. (3.22)

Recalling the relationship among the characteristic functions of the Q-function, Wigner
function and P -function of a linear harmonic oscillator [45]

CQρ̂(α) = e−
|α|2
2 C ρ̂

W (α) = e−|α|2C ρ̂
P (α) , (3.23)

we see that the function (3.22) can be interpreted as the characteristic function of the
Wigner function, which is given by the Fourier transform

W ρ̂
j (n, α) = (FCW ρ̂

j
)(n, α) . (3.24)

However, unlike the case of the linear harmonic oscillator, here for each choice of the
phase δj(l, ϕ) we get a different Wigner function Wj(n, α) which may possess different
properties. Note also, that for the considered system the “overlap” oj(l, ϕ), Eq. (3.13),
plays the same role as the overlap ⟨α|0⟩ = exp(−|α|2/2) of the vacuum state |0⟩ and
the coherent state |α⟩ of the linear harmonic oscillator, for the system of the linear
harmonic oscillator. We can rewrite Eq. (3.24) with the help of Eq. (3.22) as the
following mean

W ρ̂
j (n, α) =

1

2π
Tr
[
ρ̂Ŵj(n, α)

]
, (3.25)

of the operator

Ŵj(n, α) = (FD̂j)(n, α) =
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)D̂j(l, ϕ) , (3.26)

which is the Fourier transform of the displacement operator. Also note that

Ŵj(0, 0) =
∑
l∈Z

∫ 2π

0

dϕ

2π
D̂j(l, ϕ) , (3.27)

and

Ŵj(n, α) = D̂j(n, α)Ŵj(0, 0)D̂
†
j(n, α) , (3.28)

where the property (3.17) has been used. The operator (3.28) also exhibits the com-
pleteness property

Tr
[
Ŵ†

j (n, α)Ŵj(l, ϕ)
]
= 2πδl,nδ2π(α− ϕ) (3.29)

and thus it forms an operator basis.
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By performing the Fourier transform of the formula (3.20) and using Eq. (2.3) one gets

Qρ̂(n, α) = (Foj) ∗
(
FCW ρ̂

j

)
(n, α) =

(
kj ∗W ρ̂

j

)
(n, α) , (3.30)

where

kj(n, α) = (Foj) (n, α) =
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)oj(l, ϕ) , (3.31)

is the kernel of the convolution relating the Q-function and the Wigner function. Again,
for each γj(l, ϕ) we get a different kernel of the convolution, which can be a simple
function for some choice of γj(l, ϕ) but a complicated function for some other choice.
Before moving to various choices of the phases let us introduce an analogy of the P -
function. Notice that due to the completeness condition (3.16) we can express any
density matrix ρ̂ as

ρ̂ =
∑
l∈Z

∫ 2π

0

dϕρ(l, ϕ)D̂†
j(l, ϕ) , (3.32)

where

ρ(l, ϕ) =
1

2π
Tr
[
ρ̂D̂j(l, ϕ)

]
. (3.33)

By comparing the last equation with Eq. (3.22) we see that

ρ(l, ϕ) = CW ρ̂
j
(l, ϕ) , (3.34)

thus

ρ̂ =
∑
l∈Z

∫ 2π

0

dϕCW ρ̂
j
(l, ϕ)D̂†

j(l, ϕ) . (3.35)

Inserting
[
o∗j(l, ϕ)

]−1
o∗j(l, ϕ) = 1 into the integrand we obtain

ρ̂ =
∑
l∈Z

∫ 2π

0

dϕ
[
o∗j(l, ϕ)

]−1
CW ρ̂

j
(l, ϕ)

[
oj(l, ϕ)D̂j(l, ϕ)

]†
, (3.36)

and using (2.2) we get the P -representation of any density matrix

ρ̂ =
∑
n∈Z

∫ 2π

0

dαP ρ̂(n, α) |n, α⟩⟨n, α| , (3.37)

where we introduced the P -function as the Fourier transform

P ρ̂(n, α) = (FCP ρ̂) (n, α) , (3.38)

of the corresponding characteristic function CP ρ̂(l, ϕ) defined by

CW ρ̂
j
(l, ϕ) = o∗j(l, ϕ)CP ρ̂(l, ϕ) . (3.39)

Applying the Fourier transform to both sides of the latter equality and using the
formula (2.3) we arrive at the following relation between the P -function and the Wigner
function:

W ρ̂
j (n, α) =

[(
Fo∗j

)
(m,β) ∗ P ρ̂(m,β)

]
(n, α) . (3.40)
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Hence making use of the P -function of the von Mises state |n, α⟩,

P |n,α⟩(m,β) = δn,mδ2π(α− β) , (3.41)

we can express the Wigner function of the state as

W
|n,α⟩
j (m,β) =

1

2π

(
Fo∗j

)
(m− n, β − α) . (3.42)

Because of the definition of the Fourier transform (2.1) it is easy to show that

(FÂ∗)(l, ϕ) = [(FÂ)(−l,−ϕ)]∗ , (3.43)

this implies (
Fo∗j

)
(n, α) = [(Foj) (−n,−α)]∗ = k∗j (−n,−α) , (3.44)

and the Wigner function of the von Mises state is connected to the kernel as follows

W
|n,α⟩
j (m,β) =

1

2π
k∗j (n−m,α− β) , (3.45)

or in the other direction, the kernel can be recovered from the Wigner function like

kj(n, α) = 2π
(
W

|n+m,α+β⟩
j (m,β)

)∗
. (3.46)

From (3.30) we can immediately see that

Qρ̂(n, α) =
∑
l∈Z

∫ 2π

0

dϕ
(
W

|n,α⟩
j (l, ϕ)

)∗
W ρ̂
j (l, ϕ) , (3.47)

and the Q-function of a density matrix ρ̂ is an overlap of the complex conjugate of
the Wigner function of the von Mises state W

|n,α⟩
j and the Wigner function W ρ̂

j of the
density matrix ρ̂. Finally from Eq. (3.40) we get

W ρ̂
j (n, α) =

∑
l∈Z

∫ 2π

0

dϕW
|−n,−α⟩
j (−l,−ϕ)P ρ̂(l, ϕ) , (3.48)

which is an analogous relation between the Wigner function and the P -function.

3.3 Required properties of the Wigner function

The choice of the phases γj(l, ϕ) and δj(l, ϕ) are dictated by the following properties
which the Wigner function should have.

1. Reality. The Wigner function (3.24) should be real, i.e.

W ∗
j (n, α) = Wj(n, α) . (3.49)

In order to get a real Wigner function the operator (3.26) must be Hermitian,
which requires fulfilment of the following condition:

D̂†(−l, 2π − ϕ) = D̂(l, ϕ). (3.50)

This condition is satisfied if

δj(−l, 2π − ϕ) = −δj(l, ϕ)− lϕ+ 2mπ , m ∈ Z . (3.51)

Clearly, only special choices of δj(l, ϕ) satisfy this condition.
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2. Marginal distributions. One of the useful properties of the Wigner function is
that the integration (summation) of the Wigner function (3.24), of a pure state
density matrix ρ̂, with respect to α (n) should possess the probability distribution
of n (α), i.e.

∫ 2π

0

W ρ̂
j (n, α)dα = Tr [ρ̂ |n⟩⟨n|] ≡ p(n) ,∑

n∈Z

W ρ̂
j (n, α) = Tr [ρ̂ |α⟩⟨α|] ≡ q(α) . (3.52)

The former equality requires

δj(0, ϕ) = 2nπ , n ∈ Z , (3.53)

and the latter equality requires

δj(l, 0) = 2rπ , r ∈ Z . (3.54)

3. Normalization. The Wigner function (3.24) should be normalized as

∑
n∈Z

∫ 2π

0

dαW ρ̂
j (n, α) = 1 . (3.55)

The normalization condition holds, whenever

δj(0, 0) = 2sπ , s ∈ Z . (3.56)

Notice, that if either of the conditions (3.53), (3.54) is satisfied, the condi-
tion (3.56) is automatically obeyed and the Wigner function is properly nor-
malized.

4. Periodicity. This is a new property which is not encountered for the Wigner func-
tion of the linear harmonic oscillator. From the definition of the Fourier trans-
form (2.1) it follows that the Wigner function (3.24), the Wigner operator (3.26)
and the kernel (3.31) are always 2π-periodic for any choice of γj(l, ϕ) and δj(l, ϕ).

However, there are choices for which the displacement operator D̂j(l, ϕ) and the
overlap oj(l, ϕ) are not 2π-periodic. This, for example, causes the Wigner func-
tion (3.24) as well as the kernel kj (3.31) to be real only on some interval of
length 2π, but not any interval of that length. Moreover, the obtained formu-
las are complicated. For this reason, it makes sense to require 2π-periodicity
of D̂j(l, ϕ) and oj(l, ϕ).

The displacement operator D̂j(l, ϕ) is 2π-periodic if

δj(l, ϕ+ 2π) = δj(l, ϕ) + 2tπ , t ∈ Z , (3.57)

and the overlap oj(l, ϕ) is 2π-periodic if

γj(l, ϕ+ 2π) + lπ = γj(l, ϕ) + 2uπ , u ∈ Z . (3.58)
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5. Simplicity. This is a rather vague but practical property. Namely, below we
will see that some choice of phases γj(l, ϕ) and δj(l, ϕ) leads to considerably
simpler expressions for the Wigner functions of basic states like |n⟩, |ϕ⟩, |n, α⟩,
as well as the kernel kj(n, α), whereas some other choice yields more complicated
expressions making calculations with them involved and cumbersome.

6. Relation to the parity operator. In the case of the linear harmonic oscillator the
Wigner function is the mean of the displaced parity operator [46]. For the present
system the parity operator is given by

P̂ =
∑
l∈Z

|−l⟩⟨l| =
∫ α0+2π

α0

|−ϕ⟩⟨ϕ| dϕ , (3.59)

or equivalently

P̂ =
1

2

(∑
l∈Z

|−l⟩⟨l|+
∫ α0+2π

α0

|−ϕ⟩⟨ϕ| dϕ

)
, (3.60)

where α0 is an arbitrary angle and P̂ is the parity operator about the origin of
the phase space cylinder, i.e. the point n = 0, α = 0.

Since P̂ is the parity operator it has the following property

P̂ = P̂ † = P̂−1 . (3.61)

whose actions on the operators L̂ and Ê are

P̂ L̂P̂ = −L̂ ,
P̂ ÊP̂ = Ê† . (3.62)

Notice, that from Eq. (3.25) we can conclude that the operator Ŵj(n, α) com-
prising an operator basis is equivalent to being able to write the Wigner function
W ρ̂
j (n, α) as the mean (3.25) of the operator Ŵj(n, α). However, if we set the

operator Ŵj(n, α) to be the displaced parity operator of our system, i.e.

Ŵj(n, α) = P̂n,α = D̂j(n, α)P̂ D̂
†
j(n, α) , (3.63)

we do not get an operator that comprises an operator basis [35]. Thus the Wigner
function W ρ̂

j (n, α) cannot be written as the mean value of the displaced parity
operator (3.63) for our system.
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Chapter 4

Results

This chapter contains original results of the present thesis, that rely on the decompo-
sition introduced in the Section 3.1. First we summarize the most important choices
of phases γj(l, ϕ) and δj(l, ϕ), which already appeared in the literature and discuss
their strengths and weaknesses. Next we propose our own decomposition, which is the
optimal compromise between the fulfilment of the required properties and simplicity of
the resulting expressions. We also show that by relaxing the reality condition we arrive
to a particularly simple phase space distribution, which coincides with the Kirkwood
quasiprobability distribution function [47, 48]. Finally, we analyze the behavior of the
Wigner functions corresponding to these choices, as well as provide a visualisation of
the real Wigner functions.

Before doing that, for convenience, we list once again the required properties of the
Wigner function, discussed more deeply in Section 3.3.

4.1 Recapitulation of the required properties

1. Decomposition of the original phase

γj(l, ϕ) + δj(l, ϕ) = −lϕ
2
+ 2kπ, k ∈ Z . (3.9)

2. Reality
δj(−l, 2π − ϕ) = −δj(l, ϕ)− lϕ+ 2mπ , m ∈ Z . (3.51)

3. Marginal distributions
δj(0, ϕ) = 2nπ , n ∈ Z , (3.53)

δj(l, 0) = 2rπ , r ∈ Z . (3.54)

4. Normalization
δj(0, 0) = 2sπ , s ∈ Z . (3.56)

5. Periodicity of D̂j(l, ϕ)

δj(l, ϕ+ 2π) = δj(l, ϕ) + 2tπ , t ∈ Z . (3.57)

6. Periodicity of oj(l, ϕ)

γj(l, ϕ+ 2π) + lπ = γj(l, ϕ) + 2uπ , u ∈ Z . (3.58)
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4.2 Different choices of phases

In what follows we analyze different choices of the phases γj(l, ϕ) and δj(l, ϕ) and
discuss the properties of the corresponding Wigner functions Wj(n, α) and the ker-
nels kj(n, α), as well as provide explicit expressions of the Wigner functions for basic
states: |n⟩, |ϕ⟩, |n, α⟩. All the discussed phase choices fulfil Eqs. (3.53), (3.54) and there-
fore the corresponding Wigner functions posses correct marginal distributions and are
properly normalized. For these reasons below we only discuss reality, periodicity and
simplicity properties of the studied functions.

Before doing that, notice that the fulfilment of Eqs. (3.53), (3.54) makes the Wigner

functions of the angular momentum eigenstate W
|n⟩
j (m,β) and angular position eigen-

state W
|ϕ⟩
j (m,β) independent of j, i.e. (for detailed computation see Appendix B.1)

W |n⟩(m,β) =
1

2π
δm,n , (4.1)

W |ϕ⟩(m,β) =
1

2π
δ2π(β − ϕ) . (4.2)

Note that W |n⟩(m,β) is independent of β and the Wigner function is normalized,
reflecting the normalization of |n⟩. The Wigner functionW |ϕ⟩(m,β), on the other hand,
is independent of m and is not normalized due to the fact that |ϕ⟩ is not normalizable.

Now for the different choices of phases.

1) Let

γ1(l, ϕ) = 0 and δ1(l, ϕ) = −lϕ
2
.

This choice has been investigated thoroughly in Refs. [34, 35, 39]. Notice that for
this choice the conditions (3.57) and (3.58) are not satisfied, thus both D̂1(l, ϕ)
and o1(l, ϕ) are not 2π-periodic. Also Eq. (3.51) is not satisfied and the Wigner
function is not real on an arbitrary interval of length 2π. However the reality of
the Wigner function can be saved in the following way.

Let us explicitly write down the displacement operator

D̂1(l, ϕ) = e−il
ϕ
2 Êle−iL̂ϕ , (4.3)

note that
D̂†

1(l, ϕ) = D̂1(−l,−ϕ) , (4.4)

where the property (3.17) has been used. From this and Eq. (3.22) it follows that

C∗
W1

(l, ϕ) = CW1(−l,−ϕ) , (4.5)

and by the definition of the Wigner function (3.24) we can write

W1(n, α) = (FCW1) (n, α) =
∑
l∈Z

∫ π

−π

dϕ

2π
ei(nϕ−αl)CW1(l, ϕ) . (4.6)
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Further
W ∗

1 (n, α) = [(FCW1) (n, α)]
∗ =

(
FC∗

W1

)
(−n,−α) , (4.7)

where we used Eq. (3.43), and finally using Eq. (4.5) we get

(
FC∗

W1

)
(−n,−α) =

∑
l∈Z

∫ π

−π

dϕ

2π
e−i(nϕ−αl)CW1(−l,−ϕ) = W1(n, α) , (4.8)

and the Wigner function W1(n, α) is real.

Notice that in Eq. (4.6) and Eq. (4.8) it was essential to restrict ourselves to a
symmetric interval (−π, π], so the Wigner function W1(n, α) is real only on the
interval (−π, π]. This restriction of the interval will be present for any integration
with this choice of phases γ1(l, ϕ) and δ1(l, ϕ).

With the help of Eq. (3.26) we compute the Wigner operator [35, 39]

Ŵ1(n, α) =
∑
p∈Z

e−i2pα |n+ p⟩⟨n− p|+1

π

∑
p,q∈Z

(−1)n−q

q − n+ 1
2

e−i(2p+1)α |p+ q + 1⟩⟨q − p| .

(4.9)
I. Rigas et al. [35, 39] have found the overlap of the von Mises state |n, α⟩ with
the momentum eigenstate |k⟩ to be

⟨k|n, α⟩ = e
−
[
ikα+

(k−n)2

2

]
√
ϑ3(0,

1
e
)

, (4.10)

where ϑ3(ξ, q) denotes the third Jacobi theta function [49]

ϑ3(ξ, q) =
∑
n∈Z

ei2nξqn
2

. (4.11)

For the properties of ϑ3(ξ, q) see Appendix C of Ref. [32].

The Wigner function of the von Mises state |n, α⟩ takes the form

W
|n,α⟩
1 (m,β) = W

|n,α⟩
+ (m,β) +W

|n,α⟩
− (m,β) , (4.12)

where [35, 39]

W
|n,α⟩
+ (m,β) =

e−(m−n)2

2πϑ3(0,
1
e
)
ϑ3

(
β − α,

1

e

)
, (4.13)

and [35, 39]

W
|n,α⟩
− (m,β) =

ei(α−β)−
1
2

2π2ϑ3(0,
1
e
)
ϑ3

(
β − α +

i

2
,
1

e

)∑
l∈Z

(−1)l−m+n e−l
2−l

l + n−m+ 1
2

.

(4.14)
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Using the Eq. (3.46) we find the kernel of this Wigner function as

k1(n, α) = k+(n, α) + k−(n, α) , (4.15)

where

k+(n, α) =
e−n

2

ϑ3(0,
1
e
)
ϑ3

(
α,

1

e

)
, (4.16)

and

k−(n, α) =
e−iα−

1
2

πϑ3(0,
1
e
)
ϑ3

(
i

2
+ α,

1

e

)∑
l∈Z

(−1)l+n
e−l

2−l

l + n+ 1
2

. (4.17)

Another way of approaching this is through the overlap

⟨k|n, α⟩ = ei(n−k)α√
I0 (2κ)

In−k (κ) , (4.18)

where we simply computed the overlap of the angular momentum eigenstate |k⟩
and the von Mises state |n, α⟩ (1.28).
The Wigner function (4.12) then takes the form (for detailed computation see
Appendix B.2)

W
|n,α⟩
+ (m,β) =

I2(m−n) [2κ cos(α− β)]

2πI0 (2κ)
, (4.19)

and

W
|n,α⟩
− (m,β) =

1

2π2I0 (2κ)

∑
q∈Z

(−1)m−q

q −m+ 1
2

I2(q−n)+1 [2κ cos(β − α)] . (4.20)

and the corresponding kernels are

k+(n, α) =
I2n [2κ cosα]

I0 (2κ)
, (4.21)

and

k−(n, α) =
1

πI0 (2κ)

∑
(l=q−m)∈Z

(−1)l

l + 1
2

I2(l−n)+1 (2κ cosα) . (4.22)

Notice, that from Eq. (4.19) and Eq. (4.20) we can immediately check, that the

Wigner function W
|n,α⟩
1 (m,β) is real. But let us reiterate, due to the restriction

of the interval to (−π, π] the Wigner function W
|n,α⟩
1 (m,β) is real only on this

interval.

Either way, as one can see, the Wigner function takes on a rather complicated
form. Even though this Wigner function is real it is real only on a specific interval
of length 2π. Also the expressions are pretty complicated, which can be seen from
Eqs. (4.19) and (4.20).

2) One can try to find the best choice of the phases γj(l, ϕ) and δj(l, ϕ), for which
the corresponding Wigner function Wj(m,β) possesses the maximum amount of
required properties. This requires solving the, rather complex, set of equations
listed in Section 4.1. Interestingly it can be done and the result can be the
following choice:

γ2(l, ϕ) =

(
l

2
−
⌊
l

2

⌋)
ϕ and δ2(l, ϕ) =

⌊
− l

2

⌋
ϕ , (4.23)
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where we introduced the floor function ⌊l/2⌋ of l/2 defined as⌊
l

2

⌋
=

{
l
2
, if l is even ,

l−1
2
, if l is odd ,

(4.24)

which satisfies the identity ⌊
l

2

⌋
−
⌊
−l
2

⌋
= l . (4.25)

Further, using (3.31) we get the kernel (for detailed computation see Appendix B.3)

k2(n, α) =
1

I0 (2κ)
[I2n (2κ cosα) + I2n+1 (2κ cosα)] . (4.26)

Through Eq. (3.45) one immediately gets to the Wigner function of the von Mises
state

W
|n,α⟩
2 (m,β) =

1

2πI0 (2κ)

{
I2(m−n) [2κ cos(β − α)] + I2(m−n)−1 [2κ cos(β − α)]

}
.

(4.27)
Notice, due to the fact that In (z) ∈ R for z ∈ R, the Wigner function is real
on any interval of length 2π, which stems from the satisfaction of the reality
condition (3.51).

Computing the Wigner operator (3.27) one arrives at the following expression
(for detailed computation see Appendix B.4)

Ŵ2(0, 0) = (1 + Ê)P̂ , (4.28)

and by (3.28) we get

Ŵ2(n, α) = D̂2(n, α)(1 + Ê)P̂ D̂†
2(n, α) , (4.29)

where P̂ is the parity operator (3.59). The Wigner operator (4.29) coincides (up
to the definition of the operator Ê) with the Wigner operator obtained, with the
help of heuristic arguments, in Ref. [48].

As we can see, it is possible to get a real Wigner function with relatively simple
expressions for basic states |n⟩, |ϕ⟩ and |n, α⟩. Granted, this requires solving the
set of equations in Section 4.1, but the reward is the simplicity of the resulting
expressions.

Let us note that I. Rigas et al. [35] also tried for a choice of δ(l, ϕ), that would
create a Wigner function of a simpler expression than (4.13) and (4.14). They
discussed only the displacement operator D̂j(l, ϕ) and the phase choice they made
was

δ̃2(l, ϕ) = −lϕ
2
+

[
1− (−1)l

4

]
ϕ , (4.30)

which is equivalent to making the following choice of phases

γ̃2(l, ϕ) =

(⌊
l

2

⌋
− l

2

)
ϕ = −γ2(l, ϕ) and δ̃2(l, ϕ) = −

⌊
l

2

⌋
ϕ . (4.31)
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This choice leads to the kernel (for detailed computation see Appendix B.5)

k̃2(n, α) =
1

I0 (2κ)
[I2n (2κ cosα) + I2n−1 (2κ cosα)] , (4.32)

which is very similar to k2(n, α) (4.26).

With the help of Eq. (3.45) we find the Wigner function for the von Mises state
to be

W̃
|n,α⟩
2 (m,β) =

1

2πI0 (2κ)

{
I2(m−n) [2κ cos(β − α)] + I2(m−n)+1 [2κ cos(β − α)]

}
,

(4.33)

which is again very similar to W
|n,α⟩
2 (m,β) (4.27).

The Wigner operator
ˆ̃W2(0, 0) turns out to be (for detailed computation see

Appendix B.6)
ˆ̃W2(0, 0) = (1 + Ê†)P̂ , (4.34)

and by (3.28) we get

ˆ̃W2(n, α) = D̂(n, α)(1 + Ê†)P̂ D̂†(n, α) , (4.35)

where P̂ is the parity operator (3.59). Let us note that the Wigner operator
(4.35) coincides (up to the factor 1/(2π) and the definition of the displacement
operator D̂(l, ϕ) (3.12)) with the Wigner operator (53) of Ref. [35].

The similarity of the kernels (compare Eqs. (4.26) and (4.32)), Wigner func-
tions of the von Mises state (compare Eqs. (4.27) and (4.33)) and the Wigner
operators (compare Eqs. (4.29) and (4.35)) begs us to seek a deeper connection

between W
|n,α⟩
2 (m,β) and W̃

|n,α⟩
2 (m,β). Indeed, one can show that (for detailed

computation see Appendix B.7)

W̃
|n,α⟩
2 (m,β) = W

|−n,−α⟩
2 (−m,−β) . (4.36)

3) It is interesting to relax the reality condition (3.51), in order to find a choice of
phases, which would create the simplest forms of k3, W3 and Ŵ3, resulting in
very simple calculations with these expressions.

With this in mind let

γ3(l, ϕ) = −lϕ
2
, and δ3(l, ϕ) = 0 .

One can check that all the conditions listed in Section 4.1 are satisfied except
for (3.51), i.e. both D̂3(l, ϕ) and o3(l, ϕ) are 2π-periodic, but the Wigner function
is generally complex-valued. Which is exactly what we were aiming for.

The kernel turns out to be (for detailed computation see Appendix B.8)

k3(n, α) =
In (κ)

I0 (2κ)
eκ cosα−inα . (4.37)

Using Eq. (3.45) we get the Wigner function for the von Mises state |n, α⟩ in the
form

W
|n,α⟩
3 (m,β) =

Im−n (κ)

2πI0 (2κ)
eκ cos(β−α)+i(m−n)(β−α) . (4.38)
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Computing the Wigner operator (3.26) one gets (for detailed computation see
Appendix B.9)

Ŵ3(n, α) = 2π |α⟩ ⟨α|n⟩ ⟨n| , (4.39)

note, that this Wigner operator is not hermitian, therefore, via Eq. (3.25), the
corresponding Wigner function W ρ̂

3 (m,β) is generally complex-valued. However
observe, that the expressions for the kernel (4.37) and the Wigner function (4.38)
are the simplest among the ones we presented.

To demonstrate the simplicity of this complex-valued Wigner function we swiftly
compute the Wigner functions of the angular momentum eigenstate |n⟩

W
|n⟩
3 (m,β) =

1

2π
⟨n|Ŵ3(m,β)|n⟩ = ⟨n|β⟩ ⟨β|m⟩ ⟨m|n⟩ =

=
1

2π
ei(m−n)βδm,n =

1

2π
δm,n ,

and the angular position eigenstate |ϕ⟩

W
|ϕ⟩
3 (m,β) = ⟨ϕ|β⟩ ⟨β|m⟩ ⟨m|ϕ⟩ = 1

2π
δ2π(ϕ− β)eim(β−ϕ) =

=
1

2π
δ2π(ϕ− β) .

Which agrees with the statement we said at the beginning of this section. Imag-
ine, that for some reason we would not have the knowledge of Eqs. (4.1) and (4.2),
then computing these equations would be much more difficult with the opera-
tor (4.9) or (4.29). More importantly this tells us, that even though the Wigner
operator (4.39) is not hermitian and the Wigner function is generally complex-
valued, we can obtain Wigner functions that are real.

Let us note that because of the form of the operator (4.39) this complex-valued
function W3(m,β) can be in fact identified [48] with the Kirkwood quasiproba-
bility distribution function [47].

We have already seen the P -function of the von Mises state |n, α⟩, Eq. (3.41), and
several Wigner functions of this state, (4.12), (4.27) and (4.38)). For completeness we
present the Q-function of the von Mises state, which due to the definition (3.18) and
with the help of the overlap formula (3.6) turns out to be

Q|n,α⟩(m,β) =
I2n−m

[
2κ cos

(
α−β
2

)]
2πI20 (2κ)

, (4.40)

and, using Eqs. (3.52) with the help of Eqs. (4.18) and (1.31), the marginal distributions
are

p|n,α⟩(m) =
I2n−m(κ)

I20 (2κ)
, (4.41)

q|n,α⟩(β) =
e2κ cos(α−β)

2πI20 (2κ)
. (4.42)
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Of course there are other possible choices of γj(l, ϕ) and δj(l, ϕ), however the choice
is limited if one wants to preserve the properties of the Wigner function. The periodicity
of D̂j(l, ϕ), Eq. (3.57), and oj(l, ϕ), Eq. (3.58), requires the dependence on ϕ to be
linear and ϕ always has to be multiplying l. The dependence on l also has to be
linear, since a nonlinear dependence on l creates many computational difficulties very
early on. For example some quadratic phase choices in l could be γ(l, ϕ) = l2ϕ/2 and
δ(l, ϕ) = −l(l + 1)ϕ/2 or γ(l, ϕ) = −l2ϕ/2 and δ(l, ϕ) = l(l − 1)ϕ/2, which satisfy all
the required conditions, but create computational difficulties. Also notice, if we want
to satisfy the marginal distributions conditions, Eqs. (3.53) and (3.54), there cannot
be any absolute terms in the expressions of γj(l, ϕ) and δj(l, ϕ).

The possibility to go from a uniquely defined Q-function to a uniquely defined
P -function via different Wigner functions is depicted in Figure 4.1.

 

Figure 4.1: Graphical representation of several paths from a uniquely defined Q-
function through different Wigner functions W1, W2 and W3 to a uniquely defined
P -function. Some paths may lead through other quasiprobability distributions (e.g.
Kirkwood quasiprobability distribution function K). Other possible choices of phases
γj(l, ϕ) and δj(l, ϕ) exist, leading to other Wigner functions and paths, which are not
depicted.
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4.2.1 Overview of the phase choices

Let us collect previous results in neat tables. As we mentioned at the start of Sec-
tion 4.2, the Wigner functions of the angular momentum eigenstate |n⟩ and angular
position eigenstate |ϕ⟩ are independent of j so we will not include them in the tables.
Inspection of the Tab. 4.1 and Tab. 4.2 reveals that the simplest Wigner function
is W

|n,α⟩
3 (m,β), but it is complex-valued. On the other hand the Wigner function

W
|n,α⟩
1 (m,β) is real, but very complicated to compute with. The optimal choice seems

to be W
|n,α⟩
2 (m,β).

Table 4.1: Reality of the Wigner function W
|n,α⟩
j (m,β), periodicity of the operator

D̂j(l, ϕ) and overlap oj(l, ϕ) for different choices of γj(l, ϕ) and δj(l, ϕ).

j γj(l, ϕ) δj(l, ϕ) real periodicity of D̂j(l, ϕ) periodicity of oj(l, ϕ)

1 0 −lϕ/2 ✓ × ×
2 (l/2− ⌊l/2⌋)ϕ ⌊−l/2⌋ϕ ✓ ✓ ✓
3 −lϕ/2 0 × ✓ ✓

Table 4.2: Kernels kj(n, α) and Wigner functions of the von Mises state |n, α⟩ for
different choices of γj(l, ϕ) and δj(l, ϕ).

j kj(n, α) · I0 (2κ) W
|n,α⟩
j (m,β) · 2πI0 (2κ)

1 complex formula: (4.15)·I0 (2κ) complex formula: (4.12)/[2πI0 (2κ)]
2 I2n (2κ cosα) + I2n+1 (2κ cosα) I2(m−n) [2κ cos(β − α)] + I2(m−n)−1 [2κ cos(β − α)]
3 In (κ) exp(κ cosα− inα) Im−n (κ) exp[κ cos(β − α) + i(m− n)(β − α)]

4.3 Behavior of the Wigner functions

In this section we analyze the behavior of our Wigner functions for the von Mises
vacuum state |0, 0⟩ and provide their visualization.

Because W
|0,0⟩
1 (m,β) takes on a rather complicated form (also this Wigner function

was somewhat analyzed in Ref. [35]) and W
|0,0⟩
3 (m,β) is complex-valued, therefore

it cannot be depicted, we restrict ourselves to the Wigner function W
|0,0⟩
2 (m,β) and

consequently W̃
|0,0⟩
2 (m,β), due to Eq. (4.36). Visualization will be provided for all

Wigner functions, we presented, that are real.
Due to the reality of the Wigner function W

|0,0⟩
1 (m,β) we analyze the functions on

the interval β ∈ (−π, π]. This correspond to cutting the phase space cylinder along
the line ϕ = π and unraveling it into a two-dimensional “plane” with m ∈ Z on one
axis and β ∈ (−π, π] on the orthogonal axis.

4.3.1 Analysis

For a detailed analysis see Appendix C. Here we list the main takeaways. The Wigner
function

W
|0,0⟩
2 (m,β) =

1

2πI0 (2κ)
{I2m (2κ cos β) + I2m−1 (2κ cos β)} , (4.43)
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is even in β. From Eq. (4.36) it follows that

W̃
|0,0⟩
2 (m,β) = W

|0,0⟩
2 (−m,β) , ∀m ∈ Z and β ∈ R . (4.44)

Due to this fact, the results of the analysis ofW
|0,0⟩
2 (m,β) will be the same as W̃

|0,0⟩
2 (m,β),

except for where the sign of the index m would matter.
For the case of the spread parameter κ = 0, from the formula (4.43), using In (0) = δn,0

we get

W
|0,0⟩
2 (m,β) =

1

2π
δm,0 , (4.45)

which is the Wigner function of the angular momentum eigenstate, Eq. (4.1) with n = 0.
Much more interesting is the case when κ > 0. For this case the Wigner functions

W
|0,0⟩
2 (m,β), as functions of β, have points of potential extrema at β = ±π, β = ±π

2

and β = 0. There is a global maximum at β = 0 for every m. At β = ±π
2
the Wigner

function (4.43) takes the form

W
|0,0⟩
2

(
m,

π

2

)
=

1

2πI0 (2κ)
δm,0 , (4.46)

and except for W
|0,0⟩
2 (0, β), all the Wigner functions W

|0,0⟩
2 (m,β) are equal to zero at

β = ±π
2
. Further,

W
|0,0⟩
2 (m,±π) = 1

2πI0 (2κ)
[I2m (2κ)− I2m−1 (2κ)]

{
< 0 , if m ∈ Z+ ,

> 0 , if m ∈ Z−
0 .

(4.47)

Equation (4.47) coupled with Eq. (4.46) tells us that the Wigner functionsW
|0,0⟩
2 (m,β)

of non-positive integers m are non-negative on the whole interval β ∈ (−π, π]. Thanks
to Eq. (4.44) we immediately see that

W̃
|0,0⟩
2 (m,±π)

{
> 0 , if m ∈ Z+

0 ,

< 0 , if m ∈ Z− ,
(4.48)

and the Wigner functions W̃
|0,0⟩
2 (m,β) of non-negative integers m are non-negative on

the whole interval β ∈ (−π, π].
The Wigner functions W

|0,0⟩
2 (m, 0) have a global maximum at m = 0. As m in-

creases the Wigner functions W
|0,0⟩
2 (m, 0) descend for m ∈ Z+ and ascend for m ∈ Z−.

The speed of the descend [ascend] of W
|0,0⟩
2 (m, 0) is at least as fast as a geometric se-

ries with the ratio I1 (2κ) /I0 (2κ) [I2 (2κ) /I1 (2κ)] for the Wigner functions of positive
[negative] integers m, i.e.

0 <
W

|0,0⟩
2 (m, 0)

W
|0,0⟩
2 (0, 0)

≤
[
I1 (2κ)

I0 (2κ)

]m
, 0 <

W
|0,0⟩
2 (−m, 0)
W

|0,0⟩
2 (0, 0)

≤
[
I2 (2κ)

I1 (2κ)

]m
, ∀m ∈ Z+

0 ,

(4.49)
where equality occurs if m = 0. This can be seen in Fig. 4.2 and Fig. 4.3. Using
Eq. (4.44) we get the following inequalities

0 <
W̃

|0,0⟩
2 (m, 0)

W̃
|0,0⟩
2 (0, 0)

≤
[
I2 (2κ)

I1 (2κ)

]m
, 0 <

W̃
|0,0⟩
2 (−m, 0)
W̃

|0,0⟩
2 (0, 0)

≤
[
I1 (2κ)

I0 (2κ)

]m
, ∀m ∈ N0 ,

(4.50)
where equality occurs if m = 0, and the descending [ascending] ratios are switched,
just as one would expect.
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[I1(2κ)/I0(2κ)]m

Figure 4.2: The quotient of the Wigner functions W
|0,0⟩
2 (m, 0)/W

|0,0⟩
2 (0, 0) decreases

at least as fast as [I1 (2κ) /I0 (2κ)]
m (here shown for κ = 2).
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[I2(2κ)/I1(2κ)]m

Figure 4.3: The quotient of the Wigner functionsW
|0,0⟩
2 (−m, 0)/W |0,0⟩

2 (0, 0) decreases
at least as fast as [I2 (2κ) /I1 (2κ)]

m (here shown for κ = 2).
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4.3.2 Visualization

Here we provide visualization of the real Wigner functionsW
|0,0⟩
j (m,β), j = 1, 2, of the

“vacuum” von Mises state |0, 0⟩. For better distinguishability we set κ = 2.

Although we did not analyze the Wigner functionW
|0,0⟩
1 (m,β) mainly because of its

complicated expression, Eq. (4.12), for completeness we include the graphs in Fig. 4.4

and Fig. 4.5. We can see many similarities with W
|0,0⟩
2 (m,β), e.g. they are even

functions of β, they have a global maximum at β = 0 for any m (better seen from

Fig. 4.5), close to β = ±π we see that for odd m the Wigner functions W
|0,0⟩
1 (m,β)

take on negative values and for even integers m the Wigner functions W
|0,0⟩
1 (m,β) stay

non-negative on the whole interval (−π, π].

-3 -2 -
π

2
-1 0 1 π

2
2 3

0.00
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0.10

0.15

0.20

0.25

0.30

β

W
1
(m
,β
) W1(0,β)

W1(1,β)

W1(2,β)

W1(3,β)

Figure 4.4: Two-dimensional plot of the Wigner functions W
|0,0⟩
1 (m,β) for various m

and β ∈ (−π, π). Only a few functions are depicted, because other Wigner functions

W
|0,0⟩
1 (m,β) would not be distinguishable.
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Figure 4.5: Three-dimensional plot of the Wigner functions W
|0,0⟩
1 (m,β) for various

m and β ∈ (−π, π].

Moving on toW
|0,0⟩
2 (m,β), which we can see in Fig. 4.6(a), all the Wigner functions

W
|0,0⟩
2 (m,β) have a global maximum at β = 0. Except for W

|0,0⟩
2 (0, β) all Wigner func-

tions are equal to zero at β = ±π
2
. All Wigner functionsW

|0,0⟩
2 (m,β) of positive integers

m are negative on the interval
(
−π,−π

2

)
∪
(
π
2
, π
)
and all Wigner functions W

|0,0⟩
2 (m,β)

of non-positive integersm are non-negative on the whole interval β ∈ (−π, π]. Further,
in Fig. 4.6(b) we see, that the Wigner functions W

|0,0⟩
2 (m,β), as a functions of m, have

a maximum at m = 0 and rapidly decrease as m moves further from the origin. All of
this is in agreement with our analysis.

30



-3 -2 -
π

2
-1 0 1 π

2
2 3

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

β

W
2
(m
,β
)

W2(-3,β)

W2(-2,β)

W2(-1,β)

W2(0,β)

W2(1,β)

W2(2,β)

W2(3,β)

(a) 2D plot

W2(-3,β)
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(b) 3D plot

Figure 4.6: Two-dimensional plot (a) and three-dimensional plot (b) of the Wigner

functions W
|0,0⟩
2 (m,β) for various m and β ∈ (−π, π].
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Conclusion

The aim of this thesis was to investigate a system of operators Ê and L̂ characterizing
a quantum system of the quantum rigid rotor. Ê being the complex exponential of
the angular position and L̂ the component of the angular momentum along the axis
orthogonal to the plane of rotation. To achieve this we used the phase space formalism,
where the possible states of a considered system are represented by quasiprobability
distributions. In analogy with the linear harmonic oscillator, the Wigner function was
chosen as this quasiprobability distribution.

The system of a quantum rigid rotor is not as simple as the system of a linear
harmonic oscillator. Namely, because both x̂ and p̂ have continuous spectra, the phase
space of the linear harmonic oscillator is a plane. However, due to the fact that L̂ has
integer eigenvalues and Ê having complex eigenvalues of magnitude always equal to
one, the phase space of a quantum rigid rotor is a set of equidistant rings (each ring is
one unit away from the other) on a surface of a cylinder with radius one.

The Wigner function is a uniquely defined concept for the system of the linear
harmonic oscillator. For the quantum rotor we have found that, in developing the
Wigner function, one can adopt different phase conventions leading to different Wigner
functions with generally different properties. In order to obtain a Wigner function with
the maximum amount of required properties, such as reality, providing the correct
marginals, normalization, etc., the phase convention has to satisfy certain conditions.
We have found these conditions. We reviewed some phase conventions which already
appeared in the literature and discussed their strengths and weaknesses. Surprisingly,
we were able to solve the set of equations given by the conditions and derived a new
Wigner function satisfying all of the required conditions.

Additionally, we found that by sacrificing the reality property of the Wigner func-
tion, we can arrive at a particularly simple phase space quasiprobability distribution,
which has very simple expression and allows for easy computations.

The newly introduced Wigner function for the quantum rotor can be applied anal-
ogously as in the case of the linear harmonic oscillator. This includes, for instance,
analysis of the performance of quantum information protocols with mixed states or
development of the inseparability criteria in phase space.

Finding of a Wigner function of a quantum rotor, which is equipped with the largest
number of the required properties, can be also viewed as the first step towards devel-
opment of the complete phase space formalism for this system. When undertaking this
endeavour a number of questions have to be addressed encompassing, e.g., the question
what would be the analogy of the normal, symmetrical and anti-normal orderings for
the observables of the angular momentum and angular position, how would thermal
state and the Gaussian state look like.
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Our results also unveil that the simplest quasiprobability distribution is obtained
if one resigns one of the basic properties of the Wigner function, which is its reality.
This rises a question as to whether one really has to be guided by the properties of the
Wigner function of the linear harmonic oscillator when dealing with other quantum
systems.

We believe that our results will stimulate further research aiming to harness quan-
tum properties of systems beyond position and momentum of a linear harmonic oscil-
lator.
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Appendix A

Modified Bessel function

The modified Bessel function of an integer order n and complex argument z can be
expressed as the following integral [50]

In (z) =

∫ α0+2π

α0

dϕ

2π
ez cosϕ+inϕ , (A.1)

where α0 is an arbitrary angle. Hence, one can easily find that

In (z) = I−n (z) , In (−z) = (−1)nIn (z) , In (0) = δn,0 , (A.2)

and In (z) is real for real z, where in the derivation of the last equality we used a result
from complex analysis ∫ α0+2π

α0

dϕ

2π
ei(m−n)ϕ = δm,n , (A.3)

where α0 is an arbitrary angle. Besides, the modified Bessel function fulfils the recur-
rence relations [50]

In−1 (z)− In+1 (z) =
2n

z
In (z) , (A.4)

and

In−1 (z) + In+1 (z) = 2
d

dz
In (z) . (A.5)

Our calculations with the modified Bessel functions are greatly simplified by the
addition theorem [50]∑

m∈Z

(−1)mIν+m (Z) Im (z) eimϕ = eiνψIν (ω) , (A.6)

where ν ∈ Z and

ω =
√
Z2 + z2 − 2Zz cosϕ ,

ω cosψ = Z − z cosϕ ,

ω sinψ = z sinϕ . (A.7)

In particular, the addition theorem yields∑
m∈Z

Im (κ) Im+ν (κ) e
imϕ = e−iν

ϕ
2 Iν

[
2κ cos

(
ϕ

2

)]
, (A.8)
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which for the special case ν = ϕ = 0 gives∑
m∈Z

I2m(κ) = I0 (2κ) . (A.9)

From the definition of the modified Bessel function (A.1), using the Dirac comb (1.14),
one can swiftly derive the following generating function∑

m∈Z

Im (z) eimϕ = ez cosϕ . (A.10)

Let us also note that R.P.Soni [51] established the following inequality

0 < Iν+1 (x) < Iν (x) , ν > −1

2
, x > 0 . (A.11)

Since we work with modified Bessel functions of integer order we get

0 < In+1 (x) < In (x) , n ∈ Z+
0 , x > 0 ,

0 < In−1 (x) < In (x) , n ∈ Z−
0 , x > 0 , (A.12)

and most importantly
In (x) > 0 , n ∈ Z , x > 0 . (A.13)
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Appendix B

Computation of certain
mathematical objects

B.1 Independence of W |n⟩(m,β) and W |ϕ⟩(m,β) on

the phase choice

From the definition of the Wigner function as the mean

W ρ̂
j (n, α) =

1

2π
Tr
[
ρ̂Ŵj(n, α)

]
, (3.25)

of the operator

Ŵj(n, α) =
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)D̂j(l, ϕ) , (3.26)

we see, that

W
|n⟩
j (m,β) =

1

2π
Tr
[
|n⟩⟨n| Ŵj(m,β)

]
=

1

2π
⟨n|Ŵj(m,β)|n⟩ =

=
1

2π
⟨n|
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(mϕ−βl)D̂j(l, ϕ)|n⟩ =

1

2π

∑
l∈Z

∫ 2π

0

dϕ

2π
ei(mϕ−βl) ⟨n|D̂j(l, ϕ)|n⟩ .

Now, noticing that

D̂j(l, ϕ) |n⟩ = eiδj(l,ϕ)Ê−le−iL̂ϕ |n⟩ = ei[δj(l,ϕ)−nϕ] |n+ l⟩ , (B.1)

so the expectation value is

⟨n|D̂j(l, ϕ)|n⟩ = ei[δj(l,ϕ)−nϕ]δl,0 = e−inϕδl,0 , (B.2)

where we assume, that the condition for marginal distributions

δj(0, ϕ) = 2nπ , n ∈ Z , (3.53)

holds. From this it follows that

W |n⟩(m,β) =
1

2π

∑
l∈Z

∫ 2π

0

dϕ

2π
ei(mϕ−βl)e−inϕδl,0 =

1

2π

∫ 2π

0

dϕ

2π
ei(m−n)ϕ =

1

2π
δm,n . (4.1)
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Similarly

W
|ϕ⟩
j (m,β) =

1

2π
Tr
[
|ϕ⟩⟨ϕ| Ŵj(m,β)

]
=

1

2π

∑
n∈Z

∫ 2π

0

dα

2π
ei(mα−βn) ⟨ϕ|D̂j(n, α)|ϕ⟩ ,

(B.3)
where the expectation value

⟨ϕ|D̂j(n, α)|ϕ⟩ = ⟨ϕ|eiδj(n,α)Ê−ne−iL̂α|ϕ⟩ = ⟨ϕ| ei[δj(n,α)+n(ϕ+α)] |ϕ+ α⟩ =
= ei[δj(n,α)+n(ϕ+α)]δ2π(α) = einϕδ2π(α) ,

where we assume, that the condition for marginal distributions

δj(l, 0) = 2rπ , r ∈ Z , (3.54)

holds. Finally

W |ϕ⟩(m,β) =
1

2π

∑
n∈Z

∫ 2π

0

dα

2π
ei(mα−βn)einϕδ2π(α) =

1

2π

∑
n∈Z

1

2π
ein(ϕ−β) =

=
1

2π
δ2π(β − ϕ) . (4.2)

B.2 Computation of theWigner functionW
|n,α⟩
1 (m,β)

We start with the decomposition of the Wigner function W
|n,α⟩
1 (m,β)

W
|n,α⟩
1 (m,β) = W

|n,α⟩
+ (m,β) +W

|n,α⟩
− (m,β) , (4.12)

which comes from the form of the Wigner operator

Ŵ1(n, α) =
∑
p∈Z

e−i2pα |n+ p⟩⟨n− p|+ 1

π

∑
p,q∈Z

(−1)n−q

q − n+ 1
2

e−i(2p+1)α |p+ q + 1⟩⟨q − p| .

(4.9)
From here, using Eq. (3.25), we get

W
|n,α⟩
+ (m,β) =

1

2π
⟨n, α|

(∑
p∈Z

e−i2pβ |m+ p⟩⟨m− p|

)
|n, α⟩ =

=
1

2πI0 (2κ)

∑
p∈Z

e−i2pβe−i[n−(m+p)]αIn−(m+p) (κ) e
i[n−(m−p)]αIn−(m−p) (κ) ,

where we used the overlap (4.18). After some cancellations and using the symme-
try (A.2) we get

W
|n,α⟩
+ (m,β) =

1

2πI0 (2κ)

∑
p∈Z

e−i2p(α−β)Ip+(m−n) (κ) Ip−(m−n) (κ) =

=
e−i2(m−n)(α−β)

2πI0 (2κ)

∑
l∈Z

Il (κ) Il−2(m−n) (κ) e
i2l(α−β) =

=
I2(m−n) [2κ cos(α− β)]

2πI0 (2κ)
, (4.19)
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where to get the last equality we used the addition theorem (A.8).
To get the second part of Eq. (4.12) we again use Eq. (3.25) and overlap (4.18) to

find that

W
|n,α⟩
− (m,β) =

1

2π2I0 (2κ)

∑
p,q∈Z

(−1)m−qei(2p+1)(β−α)

q −m+ 1
2

In−(q−p) (κ) In−(p+q+1) (κ) =

=
∑
q∈Z

(−1)m−qei(β−α)

2π2I0 (2κ) (q −m+ 1
2
)

∑
p∈Z

In−(q−p) (κ) In−(p+q+1) (κ) e
i2p(β−α) =

=
∑
q∈Z

(−1)m−qei[2(q−n)+1](β−α)

2π2I0 (2κ) (q −m+ 1
2
)

∑
l∈Z

Il (κ) Il+2(q−n)+1 (κ) e
i2l(β−α) ,

using the addition theorem (A.8) and after some simple cancellations we arrive at

W
|n,α⟩
− (m,β) =

1

2π2I0 (2κ)

∑
q∈Z

(−1)m−q

q −m+ 1
2

I2(q−n)+1 [2κ cos(β − α)] . (4.20)

B.3 Computation of the kernel k2(n, α)

To achieve the expression for the kernel k2(n, α) we first inspect the overlap

o2(l, ϕ) = eiγ2(l,ϕ)
Il
[
2κ cos

(
ϕ
2

)]
I0 (2κ)

=
ei(

l
2
−⌊ l

2⌋)ϕei l2ϕ

I0 (2κ)

∑
m∈Z

Im (κ) Im+l (κ) e
imϕ ,

where to get the last equality the addition theorem (A.8) has been used. Next, we
collect terms and get

o2(l, ϕ) =
1

I0 (2κ)

∑
m∈Z

ei(l−⌊
l
2⌋+m)ϕIm (κ) Im+l (κ) ,

and using the identity (4.25) we get

o2(l, ϕ) =
∑
m∈Z

ei(m−⌊− l
2⌋)ϕIm (κ) Im+l (κ)

I0 (2κ)
.

Now from the definition of the kernel (3.31) it follows

k2(n, α) =
∑
l,m∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−lα)

ei(m−⌊− l
2⌋)ϕIm (κ) Im+l (κ)

I0 (2κ)

=
∑
l,m∈Z

∫ 2π

0

dϕ

2π
e−ilα

ei(m−⌊− l
2⌋+n)ϕIm (κ) Im+l (κ)

I0 (2κ)
.

Due to the definition of the floor function (4.24) we need to split the sum into an odd
part and an even part, i.e.

k2(n, α) =
∑
m,j∈Z

∫ 2π

0

dϕ

2πI0 (2κ)
Im (κ) Im+2j (κ) e

i(n+m+j)ϕe−i2jα+

+
∑
m,j∈Z

∫ 2π

0

dϕ

2πI0 (2κ)
Im (κ) Im+2j−1 (κ) e

i(n+m+j)ϕe−i(2j−1)α ,
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using the Kronecker delta (A.3) we get

k2(n, α) =
∑
m∈Z

Im (κ)

I0 (2κ)

[
Im+2(−n−m) (κ) e

−i2(−n−m)α + Im+2(−n−m)−1 (κ) e
−i[2(−n−m)−1]α

]
=

=
∑
m∈Z

Im (κ)

I0 (2κ)

[
I−m−2n (κ) e

i2nαei2mα + I−m−2n−1 (κ) e
i2mαei(2n+1)α

]
=

=
1

I0 (2κ)

[(∑
m∈Z

Im (κ) Im+2n (κ) e
i2mα

)
ei2nα +

(∑
m∈Z

Im (κ) Im+2n+1 (κ) e
i2mα

)
ei(2n+1)α

]
,

where, to get the last equality, we used the symmetry property (A.2). After applying
the addition theorem (A.8) for the sums over the index m, we arrive at

k2(n, α) =
1

I0 (2κ)
[I2n (2κ cosα) + I2n+1 (2κ cosα)] (4.26)

B.4 Computation of the Wigner operator Ŵ2(0, 0)

The operator Ŵ2(0, 0) is given by Eq. (3.27)

Ŵ2(0, 0) =
∑
l∈Z

∫ 2π

0

dϕ

2π
D̂2(l, ϕ) =

∑
l∈Z

∫ 2π

0

dϕ

2π
eiδ2(l,ϕ)Ê−le−iL̂ϕ =

=
∑
l∈Z

∫ 2π

0

dϕ

2π
ei⌊−

l
2⌋ϕ
∑
k∈Z

e−ikϕ |k + l⟩⟨k| ,

applying the rules of the floor function (4.24) we need to split the sum into an odd
part and an even part, i.e.

Ŵ2(0, 0) =
∑
j∈Z

∫ 2π

0

dϕ

2π
e−ijϕ

∑
k∈Z

e−ikϕ |k + 2j⟩⟨k|+
∑
j∈Z

∫ 2π

0

dϕ

2π
e−ijϕ

∑
k∈Z

e−ikϕ |k + 2j − 1⟩⟨k| =

=
∑
j,k∈Z

∫ 2π

0

dϕ

2π
e−i(j+k)ϕ |k + 2j⟩⟨k|+

∑
j,k∈Z

∫ 2π

0

dϕ

2π
e−i(j+k)ϕ |k + 2j − 1⟩⟨k| =

=
∑
k∈Z

|k − 2k⟩⟨k|+
∑
k∈Z

|k − 2k − 1⟩⟨k| =
∑
k∈Z

|−k⟩⟨k|+
∑
k∈Z

|−k − 1⟩⟨k| =

= P̂ + Ê
∑
k∈Z

|−k⟩⟨k| = P̂ + ÊP̂ = (1 + Ê)P̂ . (4.28)

B.5 Computation of the kernel k̃2(n, α)

First we inspect the overlap

õ2(l, ϕ) = eiγ̃2(l,ϕ)
Il
[
2κ cos

(
ϕ
2

)]
I0 (2κ)

=
ei(⌊

l
2⌋− l

2)ϕei
l
2
ϕ

I0 (2κ)

∑
m∈Z

Im (κ) Im+l (κ) e
imϕ ,

where to get the last equality the addition theorem (A.8) has been used. Next, we
collect terms and get

o2(l, ϕ) =
1

I0 (2κ)

∑
m∈Z

ei(⌊
l
2⌋+m)ϕIm (κ) Im+l (κ) .
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From the definition of the kernel (3.31) it follows

k̃2(n, α) =
∑
l,m∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−lα)

ei(⌊
l
2⌋+m)ϕIm (κ) Im+l (κ)

I0 (2κ)

=
∑
l,m∈Z

∫ 2π

0

dϕ

2π
e−ilα

ei(⌊
l
2⌋+m+n)ϕIm (κ) Im+l (κ)

I0 (2κ)
.

Because of the definition of the floor function (4.24) we need to split the sum into an
odd part and an even part, i.e.

k̃2(n, α) =
∑
m,j∈Z

∫ 2π

0

dϕ

2πI0 (2κ)
Im (κ) Im+2j (κ) e

i(n+m+j)ϕe−i2jα+

+
∑
m,j∈Z

∫ 2π

0

dϕ

2πI0 (2κ)
Im (κ) Im+2j+1 (κ) e

i(n+m+j)ϕe−i(2j+1)α ,

and using the Kronecker delta (A.3) we get

k̃2(n, α) =
∑
m∈Z

Im (κ)

I0 (2κ)

[
Im+2(−n−m) (κ) e

−i2(−n−m)α + Im+2(−n−m)+1 (κ) e
−i[2(−n−m)+1]α

]
=

=
∑
m∈Z

Im (κ)

I0 (2κ)

[
I−m−2n (κ) e

i2nαei2mα + I−m−2n+1 (κ) e
i2mαei(2n−1)α

]
=

=
1

I0 (2κ)

[(∑
m∈Z

Im (κ) Im+2n (κ) e
i2mα

)
ei2nα +

(∑
m∈Z

Im (κ) Im+2n−1 (κ) e
i2mα

)
ei(2n−1)α

]
,

where, to get the last equality, we used the symmetry property (A.2). After applying
the addition theorem (A.8) for the sums over the index m, we arrive at

k2(n, α) =
1

I0 (2κ)
[I2n (2κ cosα) + I2n−1 (2κ cosα)] . (4.32)

B.6 Computation of the Wigner operator
ˆ̃W2(n, α)

The operator
ˆ̃W2(0, 0) is given by Eq. (3.27)

ˆ̃W2(0, 0) =
∑
l∈Z

∫ 2π

0

dϕ

2π
ˆ̃
D2(l, ϕ) =

∑
l∈Z

∫ 2π

0

dϕ

2π
eiδ̃2(l,ϕ)Ê−le−iL̂ϕ =

=
∑
l∈Z

∫ 2π

0

dϕ

2π
e−i⌊

l
2⌋ϕ
∑
k∈Z

e−ikϕ |k + l⟩⟨k| ,

applying the rules of the floor function (4.24) we need to split the sum into an odd
part and an even part, i.e.

ˆ̃W2(0, 0) =
∑
j∈Z

∫ 2π

0

dϕ

2π
e−ijϕ

∑
k∈Z

e−ikϕ |k + 2j⟩⟨k|+
∑
j∈Z

∫ 2π

0

dϕ

2π
e−ijϕ

∑
k∈Z

e−ikϕ |k + 2j + 1⟩⟨k| =

=
∑
j,k∈Z

∫ 2π

0

dϕ

2π
e−i(j+k)ϕ |k + 2j⟩⟨k|+

∑
j,k∈Z

∫ 2π

0

dϕ

2π
e−i(j+k)ϕ |k + 2j + 1⟩⟨k| ,
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and using the Kronecker delta (A.3) we get

ˆ̃W2(0, 0) =
∑
k∈Z

|k − 2k⟩⟨k|+
∑
k∈Z

|k − 2k + 1⟩⟨k| =
∑
k∈Z

|−k⟩⟨k|+
∑
k∈Z

|−k + 1⟩⟨k| =

= P̂ + Ê†
∑
k∈Z

|−k⟩⟨k| = P̂ + Ê†P̂ = (1 + Ê†)P̂ . (4.34)

B.7 Relation between W̃
|n,α⟩
2 (m,β) and W

|n,α⟩
2 (m,β)

We start by stating that both Wigner operators

Ŵ2(0, 0) = (1 + Ê)P̂ ,

ˆ̃W2(0, 0) = (1 + Ê†)P̂ ,

are Hermitian, since for both choices of δ2(l, ϕ) and δ̃2(l, ϕ) the reality condition (3.51)
is satisfied. That, in turn, tells us that the operators

Ŵ2(n, α) = D̂2(n, α)Ŵ2(0, 0)D̂
†
2(n, α) = Ê−ne−iL̂αŴ2(0, 0)

[
Ê−ne−iL̂α

]†
=

= D̂(n, α)Ŵ2(0, 0)D̂
†(n, α) ,

ˆ̃W2(n, α) =
ˆ̃
D2(n, α)

ˆ̃W2(0, 0)
ˆ̃
D†

2(n, α) = Ê−ne−iL̂α
ˆ̃W2(0, 0)

[
Ê−ne−iL̂α

]†
=

= D̂(n, α)
ˆ̃W2(0, 0)D̂

†(n, α) ,

are also Hermitian. Note that for the purposes of this section we defined the operator
D̂(n, α) as

D̂(n, α) = Ê−ne−iL̂α . (B.4)

This allows us to write the following

ˆ̃W2(n, α) =
ˆ̃
D(n, α)

ˆ̃W2(0, 0)
ˆ̃
D†(n, α) =

ˆ̃
D(n, α)

ˆ̃W†
2(0, 0)

ˆ̃
D†(n, α) =

=
ˆ̃
D(n, α)P̂ (1 + Ê)

ˆ̃
D†(n, α) = P̂ P̂

ˆ̃
D(n, α)P̂ (1 + Ê)P̂ P̂

ˆ̃
D†(n, α)P̂ P̂ =

= P̂

{[
P̂
ˆ̃
D(n, α)P̂

]
Ŵ2(0, 0)

[
P̂
ˆ̃
D(n, α)P̂

]†}
P̂ ,

where we have used the property of the parity operator P̂ (3.61). The action of the

parity operator on the displacement operator
ˆ̃
D(n, α) is

P̂
ˆ̃
D(n, α)P̂ = P̂ Ê−nP̂ P̂ e−iL̂αP̂ = ÊneiL̂α = Ê−(−n)e−iL̂(−α) = D̂(−n,−α) ,

where we have used the actions of the parity operator on the operators Ê and L̂ (3.62).
Thus we get

ˆ̃W2(n, α) = P̂ D̂(−n,−α)Ŵ2(0, 0)D̂
†(−n,−α)P̂ = P̂Ŵ2(−n,−α)P̂ . (B.5)

Looking at the definition of the Wigner function

W ρ̂
j (n, α) =

1

2π
Tr
[
ρ̂Ŵj(n, α)

]
, (3.25)
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we see that

W̃ ρ̂
2 (m,β) =

1

2π
Tr

[
ρ̂
ˆ̃W2(m,β)

]
=

1

2π
Tr
[
ρ̂P̂Ŵ2(−m,−β)P̂

]
=

1

2π
Tr
[
P̂ ρ̂P̂Ŵ2(−m,−β)

]
=

= W P̂ ρ̂P̂
2 (−m,−β) . (B.6)

Inspecting what is the action of the parity operator on the von Mises state (1.28), we
get

P̂ |n, α⟩ = 1√
I0 (2κ)

∑
l∈Z

ei(n−l)αIn−l (κ) P̂ |l⟩ = 1√
I0 (2κ)

∑
l∈Z

ei(n−l)αIn−l (κ) |−l⟩ =

=
1√

I0 (2κ)

∑
k∈Z

ei(n+k)αIn+k (κ) |k⟩ =
1√

I0 (2κ)

∑
k∈Z

ei(−n−k)(−α)I−n−k (κ) |k⟩ ,

where in the last equality we used the symmetry property (A.2), thus

P̂ |n, α⟩ = |−n,−α⟩ , (B.7)

and finally, using Eq. (B.6) with Eq. (B.7), we arrive at

W̃
|n,α⟩
2 (m,β) = W

|−n,−α⟩
2 (−m,−β) . (4.36)

B.8 Computation of the kernel k3(n, α)

To find the kernel k3(n, α) we need to preform the Fourier transform of the overlap
o3(l, ϕ)

k3(n, α) = (Fo1(l, ϕ))(n, α) =
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)o1(l, ϕ) =

=
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)e−il

ϕ
2
Il
[
2κ cos

(
ϕ
2

)]
I0 (2κ)

=
∑
l∈Z

∫ 2π

0

dϕ

2πI0 (2κ)
ei(nϕ−αl)

∑
m∈Z

Im (κ) Im+l (κ) e
imϕ ,

where to get the last equality the addition theorem (A.8) has been used. Further, using
the Kronecker delta (A.3) we get

k3(n, α) =
1

I0 (2κ)

∑
l,m∈Z

Im (κ) Im+l (κ) e
−ilαδm,−n =

In (κ)

I0 (2κ)

∑
l∈Z

Il−n (κ) e
−ilα ,

where the symmetry in orders of the modified Bessel function (A.2) has been used,

k3(n, α) =
e−inα

I0 (2κ)
In (κ)

∑
m∈Z

Im (κ) e−imα =
In (κ)

I0 (2κ)
eκ cosα−inα , (4.37)

where the generating function (A.10) has been used.
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B.9 Computation of the Wigner operator Ŵ3(n, α)

From the definition of the Wigner operator (3.26) we see that

Ŵ3(n, α) = (FD̂3)(n, α) =
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)D̂3(l, ϕ) =

=
∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)Ê−le−iL̂ϕ =

∑
l∈Z

∫ 2π

0

dϕ

2π
ei(nϕ−αl)

∑
k∈Z

e−ikϕ |k + l⟩⟨k|

using the Kronecker delta (A.3) we get

Ŵ3(n, α) =
∑
l,k∈Z

e−ilα |k + l⟩⟨k| δn,k =
∑
l∈Z

e−ilα |n+ l⟩⟨n| =

= einα
∑
m∈Z

e−imα |m⟩⟨n| = einα
√
2π |α⟩⟨n| ,

where to get the last equality we used the expression for the |ϕ⟩ state in the {|n⟩}n∈Z

basis

|ϕ⟩ = 1√
2π

∑
n∈Z

e−inϕ |n⟩ . (1.12)

Finally, noticing the overlap

⟨ϕ|k⟩ = 1√
2π

∑
n∈Z

einϕ ⟨n|k⟩ = 1√
2π

∑
n∈Z

einϕδn,k =
1√
2π
eikϕ ,

we arrive at a very simple Wigner operator

Ŵ3(n, α) = 2π |α⟩ ⟨α|n⟩ ⟨n| . (4.39)
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Appendix C

Analysis of the Wigner functions

C.1 Behavior as functions of m and β

Here we will analyze the Wigner functions W
|0,0⟩
2 (m,β) and W̃

|0,0⟩
2 (m,β). We will start

with W
|0,0⟩
2 (m,β), since the transition to W̃

|0,0⟩
2 (m,β) is easy due to the fact that

W̃
|0,0⟩
2 (m,β) = W

|0,0⟩
2 (−m,β) , ∀m ∈ Z and β ∈ R . (4.44)

Let us write down W
|0,0⟩
2 (m,β) explicitly

W
|0,0⟩
2 (m,β) =

1

2πI0 (2κ)
[I2m (2κ cos β) + I2m−1 (2κ cos β)] , (4.43)

from which it is obvious that W
|0,0⟩
2 (m,β) is 2π-periodic and even as a function of β.

Because the function is even we can further restrict the analysis to the interval [0, π].
Note that for the case of the spread parameter κ = 0, using In (0) = δn,0, we get

W
|0,0⟩
2 (m,β) =

1

2π
δm,0 , (4.45)

which is the Wigner function of the angular momentum eigenstate, Eq. (4.1) with n = 0.
Bellow we will analyze the case when κ > 0.

Computing the first derivative and setting it equal to zero we get

dW
|0,0⟩
2 (m,β)

dβ
= − sin β

2πI0 (2κ)

[
dI2m (2κ cos β)

d cos β
+

dI2m−1 (2κ cos β)

d cos β

]
= 0 , (C.1)

which is satisfied if β = 0, β = π or

dI2m (2κ cos β)

d cos β
=

dI2m−1 (−2κ cos β)

d cos β
, (C.2)

where we used the fact that In (−z) = (−1)nIn (z) (see Appemdix A for the properties
of the modified Bessel function). This equation boils down to

e2κ cosβ cosϕ+i2mϕ = e−2κ cosβ cosϕ+i(2m+1)ϕ , (C.3)

which is satisfied if β = π
2
. So the points of potential exetrema are at β = 0, β = π

2

and β = π.
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Next we will investigate these points. Computing the second derivative and setting
β = 0 we get

d2W
|0,0⟩
2 (m,β)

dβ2

∣∣∣∣∣
β=0

= − 2κ cos β

2πI0 (2κ)

[
dI2m (2κ cos β)

d2κ cos β
+

dI2m−1 (2κ cos β)

d2κ cos β

]∣∣∣∣
β=0

−

− sin β

2πI0 (2κ)

d

dβ

[
dI2m (2κ cos β)

d cos β
+

dI2m−1 (2κ cos β)

d cos β

]∣∣∣∣
β=0

,

noticing that the second term is equal to zero and using the derivative of the modified
Bessel function Eq. (A.5), we arrive at

d2W
|0,0⟩
2 (m,β)

dβ2

∣∣∣∣∣
β=0

= − κ cos β

2πI0 (2κ)
[I2m−1 (2κ cos β) + I2m+1 (2κ cos β)]

∣∣∣∣
β=0

−

− κ cos β

2πI0 (2κ)
[I2m−2 (2κ cos β) + I2m (2κ cos β)]

∣∣∣∣
β=0

=

= − κ

2πI0 (2κ)
[I2m−1 (2κ) + I2m+1 (2κ) + I2m−2 (2κ) + I2m (2κ)] ,

since Eq. (A.13) holds, the above expression is negative irrespective of the order and

therefore W
|0,0⟩
2 (m,β) has a local maximum at β = 0 for every m ∈ Z.

For β = π
2
we get

W
|0,0⟩
2

(
m,

π

2

)
=

1

2πI0 (2κ)
δm,0 , (4.46)

and except for W
|0,0⟩
2 (0, β), all the Wigner functions W

|0,0⟩
2 (m,β) are equal to zero

at β = π
2
.

For β = π the Wigner function takes the following form

W
|0,0⟩
2 (m,π) =

1

2πI0 (2κ)
[I2m (2κ)− I2m−1 (2κ)] , (C.4)

where we used (A.2). Further

1

2πI0 (2κ)
[I2m (2κ)− I2m−1 (2κ)]

{
< 0 , if m ∈ Z+ ,

> 0 , if m ∈ Z−
0 ,

(4.47)

where we used (A.12). Here we can see that for positive integers m the corresponding

Wigner functions W
|0,0⟩
2 (m,π) take on negative values, and for non-positive integers m

the corresponding Wigner functionsW
|0,0⟩
2 (m,β) are non-negative on the whole interval

(−π, π].
Lastly notice that

W
|0,0⟩
2 (m, 0) >

∣∣∣W |0,0⟩
2 (m,π)

∣∣∣ , (C.5)

is the same as saying

I2m+1 (2κ) > 0 ∀m ∈ Z−, I2m (2κ) > 0 ∀m ∈ Z+
0 , (C.6)

which is obviously true because of Eq. (A.13). So W
|0,0⟩
2 (m,β) has a global maximum

at β = 0 for any m ∈ Z.
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Because of Eq. (C.5) it suffices to investigate the behavior of the peaks W
|0,0⟩
2 (m, 0)

to get an intuition on the behavior of the Wigner functions W
|0,0⟩
2 (m,β) as functions

of m. Using Eq. (A.12) we find the following inequalities:

W
|0,0⟩
2 (0, 0) > W

|0,0⟩
2 (m, 0) > 0 , ∀m ∈ Z − {0} , (C.7)

and W
|0,0⟩
2 (m, 0) has a global maximum at m = 0.

W
|0,0⟩
2 (m, 0) > W

|0,0⟩
2 (m+ 1, 0) > 0 , ∀m ∈ Z+ , (C.8)

and the Wigner functions are descending for m ∈ Z+.

W
|0,0⟩
2 (m+ 1, 0) > W

|0,0⟩
2 (m, 0) > 0 , ∀m ∈ Z− , (C.9)

and the Wigner functions are ascending for m ∈ Z−.
Due to Eq. (4.44) the only difference in the analysis of W̃

|0,0⟩
2 (m,β) is in the following

inequalities

W̃
|0,0⟩
2 (m,π) =

1

2πI0 (2κ)
[I2m (2κ)− I2m+1 (2κ)]

{
> 0 , if m ∈ Z+

0 ,

< 0 , if m ∈ Z− ,
(4.48)

i.e. the Wigner functions W̃
|0,0⟩
2 (m,β) of negative integers m take on negative values

at β = π and the Wigner functions W̃
|0,0⟩
2 (m,β) of non-negative integers m are non-

negative on the whole interval β ∈ (−π, π].

C.2 Descending behavior

Here we estimate the speed with which W
|0,0⟩
2 (m,β) decreases as a function of m.

Due to (C.5) it suffices to analyze the decreasing of W
|0,0⟩
2 (m, 0). From (A.12) we can

estimate the Wigner functions W
|0,0⟩
2 (m, 0) from bellow and above in the following way

0 < 2N I2m−1 (2κ) < W
|0,0⟩
2 (m, 0) = N [I2m (2κ) + I2m−1 (2κ)] < 2N I2m (2κ) , (C.10)

for all m ∈ Z−
0 , and

0 < 2N I2m (2κ) < W
|0,0⟩
2 (m, 0) = N [I2m (2κ) + I2m−1 (2κ)] < 2N I2m−1 (2κ) ,

(C.11)

for all m ∈ Z+, where N = 1/[2πI0 (2κ)]. Then

W
|0,0⟩
2 (m, 0)

W
|0,0⟩
2 (m+ 1, 0)

<
I2m (2κ)

I2m+1 (2κ)
< 1 , ∀m ∈ Z− , (C.12)

and

W
|0,0⟩
2 (m+ 1, 0)

W
|0,0⟩
2 (m, 0)

<
I2m+1 (2κ)

I2m (2κ)
< 1 , ∀m ∈ Z+

0 . (C.13)
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Due to the ascending (descending) behavior of the modified Bessel functions for neg-
ative (non-negative) integer orders (A.12) we can estimate the quotients by the first
terms in the set as

W
|0,0⟩
2 (m, 0)

W
|0,0⟩
2 (m+ 1, 0)

<
I2 (2κ)

I1 (2κ)
< 1 , ∀m ∈ Z− , (C.14)

and

W
|0,0⟩
2 (m+ 1, 0)

W
|0,0⟩
2 (m, 0)

<
I1 (2κ)

I0 (2κ)
< 1 , ∀m ∈ Z+

0 . (C.15)

From here it is easy to show that

0 <
W

|0,0⟩
2 (−m, 0)
W

|0,0⟩
2 (0, 0)

≤
[
I2 (2κ)

I1 (2κ)

]m
, 0 <

W
|0,0⟩
2 (m, 0)

W
|0,0⟩
2 (0, 0)

≤
[
I1 (2κ)

I0 (2κ)

]m
, ∀m ∈ Z+

0 ,

(4.49)

where equality occurs if m = 0. So for a given κ > 0 the Wigner functionsW
|0,0⟩
2 (m,β),

as functions ofm, decrease at least as fast as a geometric series with the ratio I2 (2κ) /I1 (2κ)
for the Wigner function of negative integers m and I1 (2κ) /I0 (2κ) for the Wigner
function of positive integers m, as can be seen in Figure 4.2 and Figure 4.3. Further,
Eq (4.44) tells us that

0 <
W̃

|0,0⟩
2 (m, 0)

W̃
|0,0⟩
2 (0, 0)

≤
[
I2 (2κ)

I1 (2κ)

]m
, 0 <

W̃
|0,0⟩
2 (−m, 0)
W̃

|0,0⟩
2 (0, 0)

≤
[
I1 (2κ)

I0 (2κ)

]m
, ∀m ∈ Z+

0 ,

(4.50)

where equality occurs if m = 0 and in the case of W̃
|0,0⟩
2 (m,β) the ratios have been

switched.
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negative Wigner functions for orbital angular momentum states”. In: Phys. Rev.
A 81 (2010), p. 012101.
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