
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EXTEND USBGUARD TO SUPPORT EXTERNAL
AUTHORIZATION POLICY SOURCES
PODPORA EXTERNÝCH ZDROJOV AUTORIZAČNEJ POLITIKY PRE USBGUARD

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR RADOVAN SROKA
AUTOR PRÁCE

SUPERVISOR Dr. Ing. PETR PERINGER
VEDOUCÍ PRÁCE

BRNO 2018

Bachelor's Thesis Specification/21006/2017/xsroka00

Brno University of Technology - Faculty of Information Technology

D e p a r t m e n t of In te l l i gen t S y s t e m s A c a d e m i c y e a r 2 0 1 7 / 2 0 1 8

Bachelor's Thesis Specification
For: S r o k a R a d o v a n
B ranch of s t udy : I n f o rma t i on T e chno l o gy

I Ex tend U S B G u a r d to S u p p o r t Externa l A u t h o r i z a t i o n Pol icy
S o u r c e s

C a t e g o r y : Se cu r i t y

Ins t ruc t i ons for p ro jec t wo rk :
1. S t udy t he U S B G u a r d pro jec t . Ge t to unde r s t and its impac t on L inux secu r i t y and

p r o b l e m s wi th r ogue U S B dev i c e s .
2. Des i gn an in te rna l API to suppo r t cen t ra l i z ed m a n a g e m e n t of po l i c ies , wh i ch wil l

a l low U S B G u a r d to hand l e U S B r ights a c co rd i ng to po l i cy ru les f r om mu l t i p l e sou r ces .
AP I s hou l d a l low for i m p l e m e n t a t i o n of va r i ou s b a c k end s (LDAP , S S S D) .

3. I m p l e m e n t n e ce s s a r y c hange s to the U S B G u a r d and e x t end its t e s t su i t e . Wr i t e
d o c u m e n t a t i o n for i m p l e m e n t e d par t of U S B G u a r d pro jec t .

4. Eva l ua t e the i m p l e m e n t a t i o n and sugge s t the poss ib le f u tu re e n h a n c e m e n t s .

Bas i c r e f e r ences :
• A c co r d i ng to r e c o m m e n d a t i o n s of c onsu l t an t (Dan ie l Kopeček, RedHa t) .
• U S B G u a r d h o m e page: h t t p s : / / d kope c ek . g i t h ub . i o / u s bgua r d /

De ta i l ed f o rma l spec i f i ca t i ons can be f ound at h t t p : / /www. f i t . vu tb r . c z / i n f o / s z z /

The Bachelor's Thesis must define its purpose, describe a current state of the art, introduce the theoretical
and technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

S u p e r v i s o r : Pe r inger Petr , Dr. Ing . , D ITS FIT BUT
Beg i nn i ng of wo rk : N o v e m b e r 1, 2 0 1 7
Da te of de l i v e r y : May 16, 2 0 1 8

Petr Hanáček
Associate Professor and Head of Department

https://dkopecek.github.io/usbguard/
http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis deals with a security aspect of using external USB devices on Linux. It also
describes the USBGuard project and its alternatives as well as advantages and disadvantages
of centralized management. The main goal of this thesis is to add ability to manage the
USBGuard policy centrally via L D A P . The USBGuard extension includes implementation
of L D A P functionality and the new public A P I that handles various sources of policy. This
thesis defines the new USBGuard L D A P schema and its attributes on the L D A P server
side.

Abstrakt
Táto práca sa zaoberá dopadom používania externých USB zariadení na bezpečnosť v rámci
operačného systému Linux. Taktiež popisuje USBGuard projekt, jeho alternatívy ako aj
výhody či nevýhody centralizovanej správy. Hlavým cieľom tejto práce je pridať možnosť
spravovania USBGuardu centrálne pomocou L D A P u . Toto rozšírenie zahŕňa dizajn verej
ného rozhrania pre rôzne zdroje politík a implementáciu L D A P funkcionality. Táto práca
definuje novú USBGuard L D A P schému a jej atribúty na strane serveru.

Keywords
USBGuard, security, USB, policy, centralized management, L D A P , C++, Linux, operating
system, directory service

Kľúčové slová
USBGuard, bezpečnosť, USB, politika, centralizovaný manažment, L D A P , C++, Linux,
operačný systém, adresářová služba

Reference
S R O K A , Radovan. Extend USBGuard to Support External
Authorization Policy Sources. Brno, 2018. Bachelor's thesis. Brno University of Technol
ogy, Faculty of Information Technology. Supervisor Dr. Ing. Petr Peringer

Rozšírený abstrakt
Táto práca sa zaoberá dopadom používania externých USB zariadení na bezpečnosť v rámci
operačného systému Linux. Tieto zariadenia bývajú častým bezpečnostným rizikom a zdro
jom mnohých útokov škodlivých softvérov. Vďaka přenositelnosti týchto USB zariadení je
šírenie škodlivého softvéru veľmi rýchle a efektívne. Z tohoto dôvodu je potrebné sa im
brániť. Existuje viacero nástrojov na ochranu pred takýmto typom útokov.

Jedným z nich je USBGuard. Táto práca popisuje USBGuard projekt a jeho alter
natívy. USBGuard je softvér, ktorý zabezpečuje operačný systém z pohľadu USB zariadení
a zberníc. Tento softvér dokáže blokovať alebo povoľovať rôzne USB zariadenia. USBGuard
sa rozhoduje podľa aktuálneho súboru pravidiel alebo politiky, ktoré načítal zo súboru.
Tento prístup ale nieje dostačujúci z dôvodu, že nedokáže škálovať vo veľkých infrastruk
turách. Tento nedostatok sa prejavuje hlavne vo firemnom prostredí kde je veľký problém
spravovať velký počet strojov manuálne.

V tejto práci sa okrem iného rozoberá aj problematika centralizovanej správy, jej výhody
a nevýhody. Centralizovaná správa alebo manažment je prístup, ktorý pomáha spravovať
veľké infrastruktury s podstatne menšou námahou a výrazne redukuje manuálnu prácu,
ktorá je drahá. Ako hlavný zdroj externých politík bol zvolený L D A P ktorý je už dlhodobo
bežnou súčasťou centralizácie. L D A P server je adresářová služba obsahujúca adresár so
stromovou štruktúrou, ktorá sa typicky používa na hierarchické ukladanie rôznych dát ne
jakej organizácie. V našom prípade sa táto adresářová služba sa stará o centrálne uloženie
zdieľaných pravidiel, ktoré tvoria politiku.

Táto práca sa z veľkej časti venuje návrhu dátového modelu zvaného tiež L D A P schéma
pre USBGuard pravidlá. Tento model definuje ako sú konkrétne pravidlá uložené a za
komponované do L D A P adresára. Hlavnou častou tejto schémy je objektová trieda, ktorá
sa skladá z mnohých atribútov. Táto trieda popisuje zložený dátový typ pre USBGuard
pravidlo. L D A P atribúty sa mapujú z pôvodných USBGuard atribútov. L D A P schéma
pridáva ešte ďalšie špecializované atribúty pre centralizovanú správu a manažment. Tieto
extra atribúty pridávajú možnosť špecializovať pravidlá pre konkrétne stroje alebo množiny
strojov. Okrem toho, dokážu vynútiť poradie pravidiel stiahnutých z L D A P u čo je pre
USBGuard veľmi dôležité. Pre tieto L D A P pravidlá týkajúce sa USBGuardu bola vytvorená
nová organizačná jednotka. Táto jednotka reprezentuje pod-strom v rámci L D A P u v ktorom
sa budú nachádzať všetky nedefinované pravidlá.

Ďalšia časť tejto práce sa venuje rozšíreniu samotného USBGuardu. Toto rozšíre
nie zahŕňa dizajn verejného rozhrania pre rôzne zdroje politík, vďaka čomu je možné
kedykoľvek rozšíriť USBGuard o ďalší externý zdroj pravidiel. Dizajn verejného rozhra
nia sa je reprezentovaný bázovou triedou, ktorá sa typicky musí podediť a výsledná trieda
musí implementovat všetky potrebné metódy vyžadované rozhraním. Za týmto verejným
rozhraním sa skrýva vnútorná logika, ktorá je schopná spravovať rôzne zdroje politík. Táto
logika detekuje nastavenie nejakého zdroja politík a následne vytvára potrebné objekty na
spracovanie takýchto pravidiel. USBGuard je úplne oddelený od typu zdroja a spôsobu
jeho vytvárania a pracuje iba s týmto generickým rozhraním. Toto rozhranie je v tejto
práci implementované hneď dva krát.

Prvým príkladom takejto implementácie je súborový zdroj pravidiel. Vďaka tomuto
zdroju je USBGuard schopný pracovať s lokálnou politikou uloženou v konfiguračnom sú
bore. Táto funkcionalita síce bola prítomná v USBGuarde aj predtým ale implementácia
nevyhovovala novému rozhraniu. Syntax a sémantika daného konfiguračného súboru sa
oproti predchádzajúcej implementácii nezmenila. Funkcionalita tohoto modulu je spätne

kompatibilná s pôvodnou implementáciou čo bol pôvodný zámer. Táto implementácia je
hlavným přednastaveným zdrojom a je zvolená vždy ak nieje špecifikované inak.

Druhým príkladom implementácie tohoto rozhrania je L D A P zdroj pravidiel. Táto im
plementácia umožňuje spravovať USBGuard centrálne tak, že sa všetky potrebné pravidlá
sťahujú priamo z L D A P serveru. Veľkou časťou tejto implementácie je L D A P klient, ktorý
sa stará o celkovú komunikáciu s L D A P . Tento klient je schopný vytvoriť spojenie a požiadať
o príslušné pravidlá. Tieto pravidlá sa po uplynutí daného intervalu označia ako neplatné
a musia sa stiahnuť opäť. Parametre L D A P klienta sú nastaviteľné pomocou nového konfig
uračného súboru, ktorý vznikol ako súčasť tejto práce. Tento L D A P konfiguračný súbor má
taktiež svoju manuálovú stránku, ktorá dokumentuje jeho syntax a štruktúru. USBGuard
je možné zostaviť aj bez L D A P funkcionality ak nieje potrebná, čo redukuje závislosti,
zostavovací celkovú veľkosť konečného spustitelného súboru.

Poslednou časťou tejto práce je rozšírenie testovacej sady o testy pokrývajúce pridaný
kód. Táto testovacia sada je súčasťou Travis C L Keďže tieto testy sú spúšťané nad každou
navrhnutou zmenou, pomáhajú nachádzať defekty už v skorej fáze vývoja a tým sa zvyšuje
kvalita kódu. Táto sada testuje najzákladnejšie prípady použitia USBGuardu a L D A P u .

Extend U S B G u a r d to Support External
Author izat ion Pol icy Sources

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Dr. Ing. Petr Peringer(FIT) and Be. Daniel Kopecek(Red Hat Czech).
A l l the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

Radovan Sroka
May 16, 2018

Acknowledgements
I would like to thank my supervisor Dr. Ing. Petr Peringer(FIT) for guidance of formal
part of this thesis. I would also like to thank Be. Daniel Kopecek(Red Hat Czech) for his
technical insight and many valuable discussions.

Contents

1 Introduction 2

2 The USBGuard 3
2.1 Architecture of the USBGuard 3
2.2 The USBGuard Daemon 5

2.2.1 Configuration 7
2.2.2 Policy 7

2.3 Command Line Utilities 10
2.4 The USBGuard Alternatives 11

3 Centralized Management 13
3.1 Common Storage Solutions 13
3.2 Lightweight Directory Access Protocol (LDAP) 14

3.2.1 L D A P Data Interchange Format 14
3.2.2 Operations and Utilities 15
3.2.3 L D A P Schema 16

3.3 Other Tools for Centralized Management 17

4 Design of the USBGuard Extension 18
4.1 The USBGuard Daemon Extension 18

4.1.1 RuleSet Interface 21
4.1.2 Design of Classes 22

4.2 L D A P Server Schema 25
4.2.1 L D A P Attributes 26
4.2.2 Additional Attributes 27
4.2.3 L D A P ObjectClass 28

5 Implementation Details 30
5.1 Provided Changes 30

5.1.1 Daemon Extension 30
5.1.2 C L I L D A P Support 33

5.2 Quick Guide 34

5.3 Test Suite Extension 36

6 Conclusion 38

Bibliography 39

A Content of Attached Media 42

1

Chapter 1

Introduction

In the last decades, the field of information technology has grown exponentially. Very
important problem resulting from such growth that we have to solve today is the computer
security[4]. Almost everybody who has ever got in touch with today's technology knows at
least some basic security principles.

There are many security tools nowadays and they have various purposes. These tools
are defending regular user against multiple security threats such as malware, exploits, con
fidential data leaks and many other attacks.

Common sources of the malware are often unknown USB devices. Users tend to insert
every device they find into their computers. A n attacker can use such a device to target
an attack against user. To defend against these types of attacks, there are tools that are
protecting USB ports. One of these tools is the USBGuard.

The USBGuard project[15] is an open source project focused mainly on Linux[26]. The
USBGuard daemon secures operating system from early boot and it handles USB devices
which are inserted or removed. Running daemon always ensures that a policy will be applied
to the right device and that device is eventually blocked or allowed.

At the beginning, the main idea of the USBGuard project was to have a policy file
stored on actual machine with corresponding rules inside. The problem with this approach
is that using of local policy does not is scale in large infrastructure, because it is hard to
deploy a configuration for every machine manually.

Centralized management is very important today and it is included in almost every
infrastructure in the world. Medium and large size infrastructures are even impossible to
manage without such technology that centralized management provides. The goal of this
thesis is to introduce the possibility to manage USBGuard policy centrally.

The USBGuard needs completely new internal A P I for management of multiple policy
sources. This A P I has to be extensible so there will be possibility to add any source in future
very easily. This thesis demonstrates functionality of the USBGuard that uses file based
policy as well as LDAP[1G] based policy. File based policy provides backward compatibility
with previous behavior whereas L D A P based policy provides fully centralized management
solution. It is also necessary to create some basic test cases that cover changed code and
behavior.

2

Chapter 2

The U S B G u a r d

The USBGuard project[15] is an open source project. That means that sources are publicly
available1. This project is written in pure C++[28] and it is shipping under G N U General
Public License v2.0. Moreover it is targeted on G N U Linux. The project began three years
ago. Few years back, people did not really care about memory sticks or other USB devices.
They did not treat them as security threat, until one social experiment[30] conducted
something interesting.

In the experiment they dropped 297 memory sticks in few places. It was in parking
lot, hallway and classrooms. They were watching how people react in such situation. They
found out that 290 sticks were picked up. But 68% of people really plugged them in. They
were browsing files and trying to determine who the owner is. A n d only 45% of people
somehow publicly announced that they had found a memory stick. The outcome of this
experiment was really unsatisfactory.

Another example can be Stuxnet[9]. Over fifteen Iranian facilities were attacked and
infiltrated by this worm. It is believed that this attack was initiated by a random worker's
USB drive.

But much more dangerous threat is a BadUSB[6] concept. It is the main problem that
The USBGuard was designed to face. The BadUSB is concept that can turn one device into
another. By reprogramming device controller, attacker can fake its device very easily. The
most of devices have no protection from such injection. After reprogramming, our device
can behave like normal keyboard, mouse or memory stick. Even malware scanner does not
have to notice it. The problem is, that malware scanner is not able to scan device firmware.
Therefore it is complicated to detect such a device. Behavioral detecting does not work at
all, because it behaves like any other device. Such device can install some malware, steal
the data or spoof the network by changing DNS configuration and redirect the traffic.

Today, the USBGuard is packaged and runs on the most of the popular Linux distri
butions 2, from debian-based like Debian, Ubuntu and Mint trough RPM-based like R H E L
or CentOS, Fedora to Gentoo and ArchLinux. In case when the package is missing in
distribution repositories, it is still possible to build The USBGuard from sources.

2.1 A r c h i t e c t u r e of the U S B G u a r d

The USBGuard project can be divided into few small parts. See figure 2.1.

1Source code: https://github.com/USBGuard/usbguard
2State of The USBGuard: https://repology.org/metapackage/usbguard/versions

3

https://github.com/USBGuard/usbguard
https://repology.org/metapackage/usbguard/versions

Policy File

Reads

IPC <• •

System calls •

Library calls >

Action •

The
USBGuard
Daemon

D-BUS
Daemon

CLI utilities

D-BUS

b«- - l
x_

libusbguard - USBGuard API

USB device events
USB device (de)authorization

D-BUS
3rd-party

apps

3rd-party
apps

Figure 2.1: The USBGuard internal architecture

4

• Libusbguard - This is the USBGuard library, it implements most of the functionality.
It defines all interfaces and IPC.

• The USBGuard daemon - Linux daemon which is running in background, uses
libusbguard. Responds to USB events.

• CLI utilities - Command line interface, group of bash utilities mostly for manage
ment.

• G U I - Graphical user interface, QT[] applet which is running in system tray, notifies
users about events.

• D - B U S daemon - D-BUS[] is another daemon which is running in the background
and it behaves like a bridge. It is a bridge between USBGuard daemon and rest of
the system connected to the D-BUS.

• IPC - A n Inter-Process Communication. A l l parts of The USBGuard project com
municate via IPC. A n internal implementation includes Google Protocol Buffers [7].

o USBGuard daemon <—> G U I

o USBGuard daemon <—> C L I

o USBGuard daemon <—> D-BUS

robim vsetko pre to aby som dosiel vo s

2.2 T h e U S B G u a r d D a e m o n

The first and the most fundamental problem The USBGuard daemon is facing is to gather
as much metadata as possible about every connected device. The USBGuard daemon
somehow has to recognize events from USB devices, process them and respond as expected.
Respond means authorize. Authorization is little bit tricky but it is essential part of the
project.

Interaction with Kernel

In operating system theory, kernel is running in privileged mode. It has unlimited access
to all hardware that is connected to the computer. User Space is environment provided
by Kernel. In this environment, user's or user space processes are running. Such process
has a very limited access. It has its own memory map totally separated from kernel. Also,
some parts of memory are only for reading and not for writing and some parts are filled
with zeros from kernel. When user space process wants to communicate with some device,
allocate memory or request some other resources, it has to use system call. System calls are
basically functions. User space process can use them to communicate with Kernel directly.
Kernel will provide access to device.

SysFS Filesystem

The SysFS is pseudo filesystem used in linux environment. This pseudo filesystem is ker
nel interface accessible from user space. Kernel exports most of its structures as tree of
directories and files. It represents the state of kernel and its subsystems. We can find there
various information about buses and devices. A l l files there are virtual.

5

Userspace /dev[10]

UDev is a user space daemon also called dynamic device manager. It generates device events
for the rest of the system and takes care of /dev directory. It receives uevents directly from
kernel whenever a device is added, removed or has changed its state.

U S B Authorization^]

USB authorization in kernel was implemented in 2007. This implementation makes possible
to set authorization flag for each device. It is even possible to set default authorization flag
for all connected devices. In other words, we can basically set flag and reject everything.
It is also possible to disable USB devices via kernel parameters during boot.

Authorize a device to connect (Allow):

> echo 1 > /sys/bus/usb/devices/DEVICE/authorized

Deauthorize a device (Block):

> echo 0 > /sys/bus/usb/devices/DEVICE/authorized

Set new devices connected to hostX to be deauthorized by default:

> echo 0 > /sys/bus/usb/devices/usbX/authorized_default

Remove the lock down:

> echo 1 > /sys/bus/usb/devices/usbX/authorized_default

Reject device from kernel (Reject):

> echo 1 > /sys/bus/usb/devices/DEVICE/remove

For more information see the kernel documentation.

This approach has some advantages. It is fully manageable from user space and it
requires root's permissions. It is very simple to use.

This authorization mechanism is quite unique. It has not been implemented in BSD,
Windows or Apple's X N U kernel yet. The lack of any similar mechanism really complicates
porting of the USBGuard project to some other platform in future.

Socket

A socket is another abstraction provided by kernel. It is a transient object used for inter
process communication. It is created as a result of the socket system call. It exists only as
long as some process is still referring to it. There are many different kinds of sockets, most
of them representing some subset of network stack. Communication via network socket can
even be between processes on two machines across the network.

Netlink socket [] is specific type of socket. It is used for inter-process communication
as well. Interesting thing is, that it handles communication between Kernel space and user
space. There are many sockets in Netlink socket family. In most cases this socket is used
for notification of events from kernel. For example Audit, SELinux, UDev, Firewall and
many others are using Netlink socket for notifications. Firewall even writes to that socket

G

when its configuration changes. After that, kernel has to update internal structures to be
consistent.

Notifying of the USBGuard Daemon

The USBGuard daemon holds the descriptor which represents the netlink socket. Type of
netlink socket is NETLINK_KOBJECT_UEVENT. There are messages from kernel side which are
comming trough the netlink socket to the client application based in user space. These
messages are interpretable as struct cmsghdr which is included from sys/socket.h header
in standard POSIX[] compliant system. They have many meanings but most of them
represent changes in SysFS. We should call them events. These events tell us for exam
ple whether some device was plugged in or unplugged from the operating system. The
USBGuard daemon is listening on the other side of the socket and waiting for notifications.
When the notification arrives, the daemon has to parse it and from that notification it can
determine path to device in SysFS tree. From files in that path the daemon is able to easily
read all metadata about notified device which are important.

2.2.1 Configuration

The configuration file is stored in /etc/usbguard/usbguard-daemon.conf by default. It is
very similar to any other standard Linux daemon configuration. It has a key value syntax
with assignment symbol between. We can change some defaults there. That means we can
set how the USBGuard daemon should treat inserted devices or devices that were present
before daemon started. We can also manage access control list for IPC protocol. Access
control specifies which user or group may communicate via IPC. Complete specification of
this configuration file may differ from one distribution to another. The upstream man page
is here[l]. "

2.2.2 Policy

The policy file should be stored in /etc/usbguard/rules. conf but it needs to be set
explicitly in usbguard-daemon.conf as RuleFile=/etc/usbguard/rules. conf. Without
setting RuleFile option, the USBGuard daemon will run with runtime policy. It will use
implicit targets for each device and any modification of policy will not be saved.

The First Match

The first match is a security approach when the vector of rules is iterated over. One rule
can be more specific than other. In this iteration we are looking for the first rule that
matches an object with all attributes and conditions that were specified. The order of rules
in vector is mandatory. In this case it is really common to order rules from more to less
specific. Therefore last rules are mostly generic ones.

There is another approach as well and it is called the best match. There is also the
vector of rules iterated over. But in this iteration we are looking for the most specific
match. The order is not that mandatory. It is, only in situation when we cannot decide
which match was more specific. In some applications it is easy to say which attributes
are more important than others and of course there are applications which are not that
straightforward.

7

This approach is mostly introducing ambiguity and confusion. In the USBGuard all
attributes are even so it is not possible to use the best match. It is using the first match
for as much simplicity as possible.

Targets

We can describe the target as a final state of device in a case of match. In other words,
when device appears and it matches the rule, The USBGuard daemon will handle device
according to the rule target. There are three types of targets in The USBGuard.

• Allow - device will be allowed

• Blocked - device will be blocked, it will be not possible to use device but it will be
still present in kernel

• Reject - device will be removed and deallocated from kernel

Implicit Targets

Implicit target is the target that always matches. It can be interpreted as the very last rule
in the vector which is implicit. It will match even when no other rule matches. We can set
the value of the attribute in the daemon configuration as ImplicitPolicyTarget=block.
As regular target can be Allow, Block, Reject.

Syntax

Each rule in the policy file has to be compliant to rule language. This rule language has a
grammar which is expressed in BNF-like syntax.

rule ::= target device_id device_attributes conditions,

target ::= "allow" | "block" | "reject".

device_id ::= "*:*" | vendor_id ":*" | vendor_id ":" product_id.

device_attributes ::= device_attributes | attribute.

device_attributes ::= .

conditions ::= conditions | condition,

conditions ::= .

We were talking about targets in 2.2.2 already. The minimal rule always contains the
target and nothing else. Such rule will always match any device. Every attribute of a device
can be represented as a string value where double quotes are optional, or as a list. List
always starts with { and ends with }. It contains multiple string values separated by space.
These two snippets are doing the same:

allow id 8087: :8001 serial "678ABCD" name "some device" via-port "1-1"

allow id 8087: :8001

via-

serial

port {

{ "678ABCD" > name { "some device" > \

"1-1" >

8

Device Specification

Device specification[] is set of attributes that are describing the device. Each USB device
should be unique from specification point of view. Unfortunately this is not true. Many
devices, especially cheaper ones, do not have their attributes specified. Even device id can
be generic.

Device ID is colon separated pair vendor id:product_id. Both are 16 bits values rep
resented as hexadecimal numbers. Each USB device should be assigned such a pair from
its manufacturer, to be unique as a product. In rule syntax it is possible to use asterisk
instead of both vendor and product id.

Attributes

To match rule all attributes have to match as well.

• hash - Hash of all device attributes - " [0-9a-f] {32}".

• parent-hash - Hash of parent device in USB tree

• name - Name of device e.g. "Yubikey NEO 0TP+U2F+CCID".

• serial - Serial number e.g. "60A44C425324B13079960052".

• via-port - Port through which the device is connected, is platform specific id. On
linux it is usually in form of b-n and both are unsigned integers e.g. "3-3".

• with-interface - Interface that the device provides. This interface is represented by
three 8bit numbers with colon as delimiter. By these numbers we can determine class
of device see3 e.g. 03:01:01

Operators

A l l attribues above were specified as one string value. We can specify them also as a list.
Typically, the list is used for via-port attribute. Instead of "3-3" it is possible to use {
"3-3" >. When we want to add 3-1 and 2-2 to list, it is simply { "3-3" "3-1" "2-2" >.

To specify the way how the list should match we can use operators. There are five
operators in our rule language. Since operators are mutually exclusive, it is possible to use
only one operator at once.

• all-of - The device attribute will match when it contains all of rule attribute specified
values.

• one-of - The device attribute will match when it contains at least one of rule attribute
specified values.

• none-of - The device attribute will match when it doesn't contain any of rule at
tribute specified values.

• equals - The device attribute will match when it contains exactly the same rule
attribute specified values.

3 USB classes: http://www.usb.org/developers/defined_class

9

http://www.usb.org/developers/defined_class

• equals-ordered - The device attribute will match when it contains exactly the same
rule attribute specified values in the same order.

Conditions

Each rule can be enhanced with rule condition. Rule condition can further restrict whether
the rule matches or not.

i f [!]condition

i f [operator] { [!]conditionA [!]conditionB ... }

Operators are the same as before but interpretation is little bit different.

• all-of - The result is true when all of the given conditions were evaluated as true.

• one-of - The result is true when at least one of the given conditions was evaluated
as true.

• none-of - The result is true when none of the given conditions were evaluated as
true.

• equals - The same as all-of.

• equals-ordered - The same as all-of.

Exapmles

Here are some examples of rules:

allow id 2516:0047 serial "" name "MasterKeys Pro L White" \

hash "7AtbAP7t4dTSMe5ezL2/t5PLpeRtN4ceVPc8ImlGwoI=" \

parent-hash "0krTUwAUxn55t8+ezGtkhdgxjz9TIluGUS+bjFE+iC4=" \

with-interface { 03:01:01 03:00:00 03:00:00 >

block id 5986:0366 serial "" name "Integrated Camera" \

hash "lH/nqeBIvjxjKsNuSxYsIr/UbIcpeaBRlcwwGPVEkkg="

allow id 1050:0116 serial { "" > name { "Yubikey NE0 0TP+U2F+CCID" >

allow id 1038:1702 serial "" name "SteelSeries Rival 100 Gaming Mouse"

allow id 0951:1666 serial "60A44C425324B13079960052" \

name "DataTraveler 3.0"

More information about the USBGuard project and configuration can be found on the
USBGuard website[15].

2.3 C o m m a n d L i n e U t i l i t i e s

The USBGuard project provides command line utilities. These utilities are there for man
agement. Each utility is starting with usbguard command and it is followed by sub
command.

> usbguard <sub-command>

10

• list-devices - List all recognized devices

• allow-device <id> - Allow device

• block-device <id> - Block device

• reject-device <id> - Reject device

• list-rules - List all rules used by Daemon

• append-rule <rule> - Append the rule to current RuleSet

• remove-rule <id> - Remove rule by ID

• generate-policy - Generate policy from recognized devices

• watch - Watch an IPC and print everything to S T D O U T

• read-descriptor <file> - Read usb descriptor from file and print it in human-
readable form

• add-user <name> - Add privileges to specified user for using an IPC

• remove-user <name> - Remove privileges to specified user for using an IPC

The generate-policy is a command line utility which is used for generation of policy.
It can be executed as usbguard generate-policy. It is suitable mostly for beginners.
It enumerates all devices connected to the system and prints allow rule for each device.
Usually user wants to redirect output to the regular policy file. This command has to
be executed under root's permissions. The user can specify granularity of the rule via
command line arguments. He can omit or add any attribute he wants. It makes sense to
use hash based policy in case of leakage. After leak of hash based policy, an attacker cannot
figure out any of device attributes.

2.4 T h e U S B G u a r d Al ternat ives

The USBGuard is not the only alternative, there are a few others. It basically is the only
solution on linux platform if we do not count any work around solutions.

Blacklisting of a Kernel Module

The very first solution to block some device was blacklisting of its kernel module. Af
ter such action, module is not in kernel so no one is able to use the device. Black
listing is provided inside kernel and location of blacklist file may differ between linux
distributions. Ubuntu has file located in /etc/modprobe .d/blacklist and fedora has
/lib/modprobe .d/dist-blacklist. conf. Overall granularity is really bad. One can
blacklist usb-storage module and disable all USB storage devices, but it is not very com
fortable.

11

Blocking U S B Devices with UDev

To work around the USBGuard functionality it is possible to use UDev rules and here is
an example of such rule:

ACTION!="add", GOTO="deauthorize_end"

SUBSYSTEM!="usb", GOTO="deauthorize_end"

TEST!="authorized", GOTO="deauthorize_end"

make hubs deauthorize a l l devices by default

TEST=="authorized_default", ATTR{authorized_default>="0"

G0T0="deauthorize_end"

whitelist specific devices

ENV{ID_VENDOR>=="Yubico", ENV{ID_MODEL>=="Yubikey_NEO*", ENV{valid>="l"

authorize matched devices, warn about the rest

ENV{valid}=="l", ENV{valid>="", ATTR{authorized>="l", \

G0T0="deauthorize_end"

RUN+="/usr/local/bin/usb-unauthorized $devpath"

LABEL="deauthorize_end"

This UDev rule was inspired from GitHub example . A n d this is the equivalent USBGuard
based rule for comparison:

allow 1050:0010 serial "0001234567" name "Yubico Yubikey II" \

with-interface "03:01:01"

Problem of UDev solution is in the complexity of scripts. Each user has to parse the
same set of attributes about devices. This fact multiplies the effort because the same
problem is being resolved again and again. Of course inconsistency of solution increases the
security risk. In this case, the USBGuard comes with consistency and is trying to minimize
the security risk, user's effort and complexity. As we can see UDev rules are not sufficient
at all because one needs to maintain user scripts which are quite clumsy. Moreover these
scripts are not very reusable.

Other Alternatives

M y U S B O n l y [20] is commercial product developed by Japanese company with the same
name. They focus on USB security and they have a few products in their portfolio. A l l of
their solutions are targeted for Windows operating system. Functionality is more or less
the same. Possibility to send email notification when unauthorized device is connected to
the computer is a convenient feature.

Gilisoft U S B Lock [13] is a software for Windows that can also lock USB ports. It is a
commercial product but it has trial version to experiment with. Gilisoft is a company which
focuses on encryption, security and privacy tools and integration between their products is
pretty good.

NetWrix U S B Blocker [] is a free software available for Windows. The biggest
disadvantage is that the tool is no longer available.

"Example: https://gist.github.com/grawity/52aad7d648735a236b0d

12

https://gist.github.com/grawity/52aad7d648735a236b0d

Chapter 3

Centralized Management

A n infrastructure solution is a solution in information technology which can be described
as defined set of hardware and software stacks. Such infrastructure provides resources for
whatever is running on top of that. In regular infrastructure the cost of management is no
ticeable. The cost of management grows remarkably with complexity of infrastructure. The
complexity is usually increasing naturally with time. The use of centralized management
is a good practice which is trying to reduce the cost of management in infrastructure.

3.1 C o m m o n Storage Solutions

There are many solutions for centralized management out there. From low level tools to
complex sophisticated concepts. Usually we can spot a pattern here. They are using some
back-end storage to store a shared management data. The data may be structured, it
depends on concrete solution.

The simplest storage has key-value structure. Such storage can be very powerful, dis
tributed and easy to implement. Usage is pretty simple as well. Lets say we know a key
and we use this key in query and hopefully we will get a result or error if key does not exist.
Existing solutions are for example NoSQL, Dynamo, Etcd and many others.

Another possibility to store a data is relational database. This solution is widely used
between applications. One can create a data model very easily and use it. Database can
be very efficient if data model is correct and normalized. Normalization should get rid of
any redundancy. It is possible to use relational database as back-end storage but relational
schema does not cover management data ideally. Management data can vary and it is hard
to normalize them. Relational database is optimized for data which are changing really
quickly and management data are static most of the time. That is why this solution is not
very welcomed in this field.

Another, more suitable and the most popular family of solutions are directory services.
The main idea is quite old and recycled over and over again. Directory services are optimized
for reading which is good if we have more or less static data. This fact makes these
directories very popular. The data can even be redundant if it affects reading or overall
performance in a good way. The data is much more structured here, hierarchical structure
is representing relations. In spite of that, internal implementation does not necessarily have
to include any trees.

The main idea is to keep information about whole organization in one place. Directory
is a root of a big tree and there are sub-trees which are called organizational units. Such

13

unit describes large part of the organization. There are many predefined units e.g. users,
groups, computers and many others. We can also define our own units.

Directory server is an implementation of such directory which can be very similar to
standard database.

3.2 Lightweight D i r e c t o r y Access P r o t o c o l (L D A P)

Lightweight Directory Access Protocol[16] also known as L D A P is an open source vendor-
neutral standard for accessing any directory service over internet protocol. This L D A P
defines a standard interface which hides every L D A P compliant directory server behind
standard generic one. This is actually very handy because L D A P client application does
not have to worry about the type of directory server.

The communication between L D A P client and server is provided by queries. L D A P v 3
is the latest version of protocol from June 2006 and it is used widely. Big part of L D A P
specification is T L S support. L D A P was created as lightweight successor of X.500[3]
protocol. It is also called X.500-lite.

3.2.1 L D A P Data Interchange Format

Shortly L D I F is a standard plain text interchange format for L D A P . Structure of this file
is very similar to key value representation but eventually, it is not. There are a few basic
fields used in L D A P .

dn - Distinguished Name. Unique name that identifies an entry in the directory.

dc - Domain Component. It represents a single component of the domain.
www.vutbr.cz =4> dc=www,dc=vutbr,dc=com.

ou - Organizational Unit. It represents a group membership.
We can tell that a user is part of some group.

objectClass - Object Class. It represents class or data type of defined object.

cn - Common Name. The name of the object.

This is example of the simple entry of class "organizationalRole" which is called "The
Postmaster".

dn: cn=The Postmaster,dc=example,dc=com

objectClass: organizationalRole

cn: The Postmaster

A n example of regular POSIX group.

dn: cn=random_group,ou=groups,dc=example,dc=com

objectClass: top

objectClass: posixGroup

gidNumber: 678

A n example of regular POSIX user which is member of previously defined group.

14

http://www.vutbr.cz

dn: uid=adam,ou=users,dc=example,dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: adam

uid: adam

uidNumber: 16859

gidNumber: 678

homeDirectory: /home/adam

loginShell: /bin/bash

userPassword: {crypt}x

shadowLastChange: 0

3.2.2 Operations and Utilities

There are several operations that we can do in L D A P . Utilities described in this section are
part of OpenLDAP project.

• A D D - It will insert a new entry into directory server internal database.

Adding is provided by L D A P C L I utility which is called ldapadd.

> ldapadd -f /tmp/newentry.ldif

• M O D I F Y - It will modify an existing entry in directory server internal database.

Modifying is provided by L D A P C L I utility which is called ldapmodif y.

> ldapmodify -f /tmp/modifyentry.ldif

• D E L E T E - It will delete an existing entry in directory server internal database.

Deleting is provided by L D A P C L I utility which is called ldapdelete.

> ldapdelete -f /tmp/deleteentry.ldif

• S E A R C H - L D A P provides operation search that can return some results which are
matching a filter.

Searching is provided by L D A P C L I utility which is called ldapsearch.

> # returns everything

> ldapsearch 'objectClass=*'

> # returns everything about user adam

> ldapsearch '(&(uid=adam)(ou=users))'

> # returns each person which is called John or

> # its email starts with prefix John

> ldapsearch '(&(objectClass=person)(|(givenName=John)(mail=john*)))'

15

3.2.3 L D A P Schema

According to the Oracle documentation[8], schema specifies "among other rules, the types of
objects that a directory may have and the mandatory and optional attributes of each object
type. The Lightweight Directory Access Protocol (LDAP) version 3 defines a schema based
on the X.500 standard for common objects found in a network, such as countries, localities,
organizations, people, groups, and devices. In the L D A P v3, the schema is available from
the directory. That is, it is represented as entries in the directory and its information as
attributes of those entries."

In relational database, schema contains metadata on how is the database structured.
Metadata describes each table and its columns within database. Columns usually have data
types and there are specified restrictions for columns and rows. L D A P schema provides
more or less the same kind of metadata, but upon substantially different internal structure.

DIT a.k.a. directory information tree is representing hierarchical structure of distin
guished names of entries inside of directory service database.

OID a.k.a. object identifier is or should be unique identifier of the object. It is basically
sequence of numbers separated by dots. OIDs are used heavily in many areas of information
technology e.g. in S N M P . It may look like "10.6.58.47.9". They are uniquely identifying
data types in L D A P . Printable string OID is "1.3.6.1.4.1.1466.115.121.1.44" and boolean
has "1.3.6.1.4.1.1466.115.121.1.7".

There are several types of elements that traditional schema must contain according to the
L D A P documentation[17].

• Attribute syntaxes - define the types of data that can be represented in a directory
server.

• Matching rules - define the kinds of comparisons that can be performed against
L D A P data.

• Attribute types - define named units of information that may be stored in entries.

• Object classes - define named collections of attribute types which may be used
in entries containing that class, and which of those attribute types will be required
rather than optional.

L D A P schema may provide additional elements that specify further restrictions of the data
according to the L D A P documentation [17].

• Name forms - may be used to restrict the kinds of attributes which may be used as
the naming attributes for entries of a particular type.

• DIT content rules - may be used to augment object class definitions and further
indicate the kinds of attributes that must, may, and must not appear in entries of a
particular type.

• DIT structure rules - may be used to define information about hierarchical rela
tionships that are allowed to exist in the server.

16

• Matching rule - uses may be used to impose restrictions on the kinds of attributes
with which particular matching rules may be used.

This is a snippet from core.schema.

attributetype (2.5.4.35 NAME 'userPassword'

DESC 'RFC2256/2307: password of user'

EQUALITY octetStringMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.40{128>)

attributetype (2.5.4.20 NAME 'telephoneNumber'

DESC 'RFC2256: Telephone Number'

EQUALITY telephoneNumberMatch

SUBSTR telephoneNumberSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32>)

objectClass (2.5.6.6 NAME 'person'

DESC 'RFC2256: a person'

SUP top STRUCTURAL

MUST (sn $ cn)

MAY (userPassword $ telephoneNumber $ seeAlso $ description))

3.3 Other Tools for Centra l ized Management

There are also several other somehow related tools for centralized management that are
worth mentioning. The first one is the System Security Services Daemon also known as
SSSD[]. It is a set of daemons on linux system that are providing access to data from
directory server. It abstracts directory services totally and provides sort of caching mecha
nisms. For example if SSSD is configured with L D A P , none of the client applications need
to know whether it is really L D A P and applications do not need to maintain connection
with L D A P . From the security point od view, passwords, credentials or any harmful data
are stored within SSSD and are not shared among all applications.

Active Directory (AD) [18] is very common as well. It is a group of tools and services
occupying Windows server. Many services are optional there. Big part of A D is a directory
service which stores data in similar way as any other directory service. A D can handle
quite complex network management and various functionality for centralized management.
A D is the leader in centralize management solutions for Windows.

Another linux solution from Red Hat is a FreeIPA[12]. It is an open source identity
management solution comparable with A D . It has a web user interface for user friendly
management. It can be installed as a server or as a client. Server has its directory service
which is provided by 389 Directory Server. It manages users, groups or policies for many
daemons and propagates these knowledge to clients. It manages credentials and certificates
as well. It is built upon SSSD and Kerberos. It can also work with A D as directory service
and it makes possible to have for example Unix and Windows users stored in the same place
and share them.

17

Chapter 4

Design of the U S B G u a r d
Extension

In this chapter we will sum up an acceptance criteria and take a close look at the prob
lem. The biggest issue is the USBGuard's design, therefore extension is necessary. The
USBGuard daemon was designed to handle a single RuleSet which works with the file and
it can write to or read from that file. RuleSet is a class which wraps around vector con
tainer and it is filled with Rules objects. It has several methods for inserting, deleting and
matching of Rules in vector. This approach is very naive and not extensible. We would like
to use the USBGuard with whatever source of rules we want without rewriting the whole
project. For example we would like to use L D A P as source of rules, therefore we can just
turn on L D A P support and restart the daemon. We can do the same trick with SSSD or
with files again and again. To do so, we need to provide some internal interface for RuleSet
and abstract source of Rules from the USBGuard itself.

There will be clients which will implement that interface. A simple client needs to
implement methods required by interface. A l l we need is to implement client for each
source of Rules. In this case we use a file client to work in daemon by default. That means
that without any specific settings the USBGuard will work as before without any notice.
We need also another client to support centralized management and that will be L D A P or
SSSD client. Demonstration requires at least two clients and L D A P support is preferred
here.

We described what needs to be done in the USBGuard, another part is L D A P side.
At first we need to choose a L D A P server to work with. We can define a schema for the
USBGuard data. It also includes choosing the right data types and matching rules from
L D A P point of view. After that, we will implement an interface for L D A P client. Perhaps
as administrator we would like to generate a policy straight to the L D I F . So it comes handy
to have some C L I utility for that.

4.1 T h e U S B G u a r d D a e m o n E x t e n s i o n

As was described before, The USBGuard needs to be rewritten, which is not that straight
forward. New design introduces a new modular extension for the USBGuard. First thing
that we have to resolve is to define an interface. Since this project is written in C++
we should use inheritance of classes which helps to create better models and abstractions,
resulting in better and cleaner code.

18

To make the USBGuard modular we have to distinguish mandatory and optional parts.
The mandatory part contains minimal subset of modules that are necessary for build and
it is not possible to remove anything else from there. The optional part contains various
modules that are depending on some optional libraries or they are just not mandatory. In
the USBGuard, L D A P support is optional and it has to be possible to build the USBGuard
without it. These parts are linked statically or more often dynamically. After execution of
such binary, all necessary modules are loaded into memory.

There are two possible ways how to provide optional parts of the project from decision
time point of view. The first way uses compile time decision. We can provide modularity
during compile time and choose only these optional modules or features we really need.
Wi th this approach we can reduce compile time and dependency tree of resulting binary.
In this case it does not matter how these modules will be linked.

The second way uses runtime decision and it is called plugin interface. These plugins
are linked dynamically and they loaded during run of application. We can use dlopenO
call to load some shared object into the memory of application. Plugins are represented as
dynamic shared objects also know as shared libraries. Usually these plugins are compiled
out of application tree so they need only public headers which are defining an interface.
After dlopen, plugin is loaded and application is looking for defined methods and other
important stuff. This possibility of runtime decision is very powerful and heavily used.
These plugins are often shipped separately and may have their own dependencies as well.

It seems like the first variant is preferred over the second one. The second variant's
plugins with dlopen are way too complicated than the first one. A n overhead is noticeable
and with complexity of solution there is a risk that code will be hard to maintain and buggy.

Let's take a look on figure 4.1, we can see new levels of abstraction there.

19

LDAP Server

Fetch

|Policy File

Reads

System calls

Library calls

Abstraction

Action

LDAPRuleSet

Policy

FileRuleSet MEMRuleSet

RuleSet

Added parts

The
USBGuard
Daemon

D-BUS
Daemon

D-BUS

\<~ ~ 1
X_

CLI utilities
D-BUS

3rd-party
apps

3rd-party
apps

libusbguard - USBGuard API

USB device events
USB device (de)authorization

Figure 4.1: New USBGuard internal architecture

Policy abstraction layer is supposed to be an interface for Daemon. Daemon works with
Policy object exclusively. Through this Policy, daemon can make the same query as for

20

general RuleSet. Policy should handle multiple sources at the same time in future, now it
has getter and setter methods for RuleSet and it can handle only one source.

4.1.1 RuleSet Interface

We should start by defining the RuleSet Interface. The primary goal of RuleSets is the
ability to fetch data from the source and implement the interface. Wi th implemented
interface the daemon can work with rules stored in abstract RuleSet and it does not have
to be aware of actual type of RuleSet. As we discussed before, it can be implemented as
class hierarchy based on inheritance.

We need to figure out what do we need to implement. We will have tree RuleSets here, we
need FileRuleSet, LDAPRuleSet and the last, not very obvious one, let's call it MEMRuleSet
like memory RuleSet. We need something like memory RuleSet in the USBGuard due to
its design. The USBGuard daemon creates an empty RuleSet in some configuration for
example when the rules file is not specified in daemon configuration, it will run with the
runtime policy see 2.2.2. It is not suitable to use File or L D A P RuleSet for that because it
is not clear. We have defined our interface in figure 4.2.

RuleSet
#_op_mutex: std::mutex
#_writable: bool
#_default_target: Rule::Target
#_default_action: std::string
#_id_next: Atomic<uint32_t>
#_rules: std::vector<std::shared_ptr<Rule»

+«pure virtual» load(): void
+«pure virtual» save(): void
+setDefaultTarget(...): void
+getDefaultTarget(): Rule::Target
+setDefaultAction(...): void
+appendRule(...): uint32_t
+upsertRule(...): uint32_t
+getRule(...): std::shared_ptr<Rule>
+removeRule(...): bool

+ « v i r t u a l » getFirstMatchingRule(. . .): std: :shared_ptr<Rule>
+getRules(): std::vector<std::shared_ptr<const Rule»
+assignID(): uint32_t
+setWritable(): void
+clearWritable(): void
+isWritable(): bool

Figure 4.2: RuleSet Interface

So we have a few methods and attributes here. The most fundamental part of this
interface is _rules vector, which contains shared pointers to Rule objects. These pointers
are memory safe for sharing of RuleSet or rules among the USBGuard. Methods load
and save are supposed to load initial set of rules into the vector or save runtime changes
and update the source data. We have these setters and getters for defaults which are
implemented here in RuleSet and they are also part of the interface. To fulfill the vector
we can use appendRule or upsertRule. The first one is pushing the Rule to the end of
the vector and the second one is inserting one Rule after another specific one. We can get

21

Rule by id from vector with getRule method or use a getRules to get whole vector at once
and also there is an opportunity to remove Rule by id with removeRule method. There
is also group of methods working with _writable flag like setter, getter and tester. Wi th
this flag, we can lock derived RuleSet implementation to work only in read-only mode. The
most important method is getFirstMatchingRule which implements matching algorithm,
it can be overridden occasionally.

It is defined as an abstract class so it is nice to have defined load and save as pure
virtual methods. It requires an override for these in each derived class which is very useful
and safe. On the other hand it would not be possible to create a RuleSet object because it
is an abstract class due to pure virtual methods. Wi th this approach MEMRuleSet needs
to be derived from RuleSet and it has to override these pure virtual methods with empty
implementation.

RuleSet
+«pure virtual» load(): void
+«pure virtual» save(): void
+ « v i r t u a l » getFirstMatchingRule() std::shared_ptr<Rule>

MEMRuleSet

+ « o v e r r i d e » load(): void
+ « o v e r r i d e » save(): void

FileRuleSet
-_rulesPath: std::string

+ « o v e r r i d e » load(): void
+ « o v e r r i d e » save(): void
+setRulesPath(...): void

LDAPRuleSet
-JlastUpdate: std::time_t
-_LDAP: std::shared_ptr<LDAPHandler>

+« o v e r r i d e » load(): void
+ « o v e r r i d e » save(): void
+ « o v e r r i d e » getFirstMatchingRule(): std: : shared_ptr<Rule>
+update(): void

Figure 4.3: Class Inheritance Diagram

4.1.2 Design of Classes

We have to design all classes we are going to provide. A l l necessary information about
design of these classes will be described in this section.

Name Service Switch Module

This subsystem is completely new concept in the USBGuard daemon. It was inspired by
sudo implementation design which handles various sources of rules as well. Unfortunately

22

sudo[19] was not written in C++ but in C, therefore implementation is still little bit ugly
and the USBGuard is trying to implement it in much cleaner way.

The primary goal of this implementation is actually an object which represents a name
service switch and it is created in early startup phase of the daemon. During its construction
it needs to parse name service switch configuration and determine what source of data was
set and create proper RuleSet and put it behind Policy abstraction layer. It was designed
as a Singleton[] therefore it will be only one instance in whole USBGuard. Daemon will
be responsible for creating and deleting of this instance.

NSHandler
-_parser: KeyValueParser
-_parsedOptions: std::map<std::string, std::string>
-_nsswitch_path: std::string
-_source: SourceType
-_rulesPath: std::string
-_ldap: std::shared_ptr<LDAPHandler>
-«s t a t i c » _self: NSHandler*

+setRulesPath(...): void
+getRulesPath(): std::string
+getRuleSet(): std::shared_ptr<RuleSet>
+parseNSSwitch(): void
+setNSSwitchPath(...): void
+getSourceInfo(): std::string
+getl_DAPHandler (): std: : shared_ptr<LDAPHandler>

Figure 4.4: Name Service Handler Diagram

We can see in figure 4.4 how is the NSHandler defined. It contains static pointer
to its only instance and it has a static method which is called getRef that returns a
reference to that instance. There are getter and setter for _rulesPath attribute which
can be used in case of construction of FileRuleSet. The method getRuleSet is very
important. It is the main interface for the daemon. When the daemon calls getRuleSet
over NSHandler instance it will get generic RuleSet already filled with rules. A l l necessary
logic to construct and fill the RuleSet will be behind this interface. Before this call the
daemon has to propagate necessary information about configuration to NSHandler which
is important for creation of right RuleSet. Method setNSSwitchPath is another setter but
for _nsswitch_path attribute. The parseNSSwitch method can be used for parsing of
nsswitch file. Method getSourcelnf o returns a string form of source and it is used mostly
for exceptions messages. The getLDAPHandler method returns LDAPHandler instance
which is needed by LDAPRuleSet constructor.

RuleSets Definition

As we described in 4.1.1 we need to provide these three types of RuleSet for basic function
ality. We can see how are they designed in figure 4.3.

MEMRuleSet

Class MEMRuleSet overrides these methods:

23

• load() - empty implementation

• save() - empty implementation

MEMRuleSet is a derived class straight from RuleSet. It overrides load and save. The
main reason for this class is to have some default implementation for RuleSet. Therefore
it contains almost nothing but it can be constructed.

FileRuleSet Class

Class FileRuleSet overrides these methods:

• load() - reads file and parses lines as string rules and it is creating Rule objects from
them

• save() - serializes Rule objects and write them to the file

And it also adds:

• _rulesPath - holds a path to file

• setRulesPathO - sets _rulesPath attribute

FileRuleSet is a derived class straight from RuleSet. This class overrides load and
save methods defined in RuleSet. It also introduces new class attribute that is called
_rulesPath. There is also a setter method for this attribute here and it is called a
setRulesPath.

LDAPRuleSet Class

Class LDAPRuleSet overrides these methods:

• load() - uses a query for L D A P and downloads L D A P structures that are converted
to Rule objects

• save() - empty implementation

• getFirstMatchingRule()

And it also adds:

• _LDAP - shared pointer to LDAPHandler

• _lastUpdate - time of last update

• update () - update RuleSet if needed

LDAPRuleSet is a derived class straight from RuleSet just like FileRuleSet. This
class overrides load and save methods defined in RuleSet, however, it overrides also
getFirstMatchingRule. There are two new attributes here, the first one is _LDAP. It
is a shared pointer to LDAPHandler instance, this LDAPHandler provides some abstraction
around L D A P library. The second one is called _lastUpdate. Details are described in
implementation part.

24

LDAPHandler Class

From the USBGuard point of view it was necessary to split LDAPRuleSet from L D A P
itself so LDAPHandler was created. The initial idea was to have one instance of L D A P in
the whole USBGuard daemon and these parts of the daemon which would use an L D A P
would have an reference to it. However, today's implementation requires an L D A P only
from LDAPRuleSet. Daemon configuration can be stored in L D A P in future as well. The
LDAPHandler is responsible for maintaining connection with the L D A P server and it pro
vides an interface for query. This class has to manage its own configuration file for L D A P
client configuration. It also wraps around the standard C L D A P library.

RuleSet Factory

We use simplified factory[22] design pattern. We added this factory to simplify Rule-
Set creation and to hide construction details. We can see a diagram on figure 4.5. Our
factory is called a RuleSetFactory. The main idea is to avoid using specific RuleSet.
Typical use case is that we need a RuleSet but we do not know how to create a specific
one or we do not know which one we should choose. This logic is hidden in that factory
and it is much simpler to create new RuleSet. To get RuleSet we can use one of two
static methods that this factory provides. When we just need a RuleSet as data struc
ture we can use generateDefaultRuleSet. For creation of specific RuleSet we can use
generateRuleSetBySource.

RuleSetFactory
- i n t e r f a c e _ p t r : I n t e r f a c e *
+ « s t a t i c » generateDef a u l t R u l e S e t ()
+ « s t a t i c » generateRuleSetBySource(
+ « s t a t i c » s e t l n t e r f a c e () : v o i d

std::shared_ptr<RuleSet>
.) : std::sha red_pt r<RuleSet>

RuleSet

MEMRuleSet FileRuleSet LDAPRuleSet

Figure 4.5: RuleSet Factory Diagram

4.2 L D A P Server Schema

There are many L D A P compliant servers out there and we need to choose one. The
OpenLDAP server is the most common one. It is an old, quite stable project with long
history and it has very large community which is great. It implements Lightweight Direc-

25

tory Access Protocol and that implementation is inspiration also for other similar projects.
389 Directory Server is an enterprise class server with many enterprise features. It has zero
downtime, asynchronous Multi-Master replication and it is optimized for performance. It
is also easy to deploy no matter the environment. Apache has its own L D A P server as well
but it does not fit the USBGuard requirements. These three servers are free which is a big
advantage. Microsoft has its own implementation inside of its Active Directory and Oracle
has a few servers as well. Since they are not free they are useless for us.

Since we do not need any complex enterprise features, from the USBGuard point of
view the best option is the OpenLDAP server and utilities. Large community, simplicity
and rich documentation are decisive advantages.

4.2.1 L D A P Attributes

Schema defines many things see 3.2.3. We will define structure of our data, data types and
also matching rules. We need to understand our data, their types and semantics we would
like to save. We should take a look how the rule looks like in rules syntax see 2.2.2.

The USBGuard rule contains these nine attributes: target, id, serial, name, hash,
parent-hash, via-port, with-interface, conditions. It will be necessary to map them
into L D A P attributes. Some of our rule attributes are already reserved in default schemas
that is why we need to rename them to unique ones.

Rule attribute L D A P attribute
Target RuleTarget

ID USBID
Serial USBSerial
Name USBName
Hash USBHash

Parent-Hash USBParentHash
Via-Port USBViaPort

With-Interface USBWithlnterface
Conditions RuleCondition

Table 4.1: Simple map table between Rule and L D A P attributes.

Target can be defined as follows. It has three possible values allow, block, reject. Seems
to be reasonable to have it string.

attributetype (1.3.6.1.4.1.15955.9.1.1

NAME 'RuleTarget'

DESC 'Hostname for USBGuard host'

EQUALITY caseExactIA5Match

SUBSTR caseExactIA5SubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

E Q U A L I T Y defines matching rule for equals operator e.g. RuleTarget == "some string".
S U B S T R defines matching rule for substring operator. It should be defined for string data
type. S Y N T A X means exact type of data and data always has a type. Data types in L D A P
have their own OID see 3.2.3. The first OID "1.3.6.1.4.1.15955.9.1.1" is a new id for this
attribute type. Attribute types are basically new data types. The second OID we can see

26

stands for string type. To be correct it is IA5String also called almost ASCII , it has 7-bit
character set and it does not allow extended characters e.g. e, 0 , a etc. Let's try to define
a template for each L D A P attribute as follows.

attributetype (1.3.6.1.4.1.15955.9.1.*

NAME «LDAP_ATTRIBUTE»

DESC 'some description'

EQUALITY caseExactIA5Match

SUBSTR caseExactIA5SubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Now we have all possible attributes mapped between file based rule and L D A P based rule.
Let's try to convert one rule into another. We have a rule from 2.4.

allow 1050:0010 serial "0001234567" name "Yubico Yubikey II" \

with-interface "03:01:01"

It wil l be transformed into:

RuleTarget: allow

USBID: 1050:0010

USBSerial: "0001234567"

USBName: "Yubico Yubikey II"

USBWithlnterface: "03:01:01"

4.2.2 Additional Attributes

We mapped attributes in relation 1 to 1 which is great but it is not enough, there is
another requirement we have to satisfy. We would like to make a Rule for specific host
that was not possible before at all. Another Rule attribute was introduced that is called
"USBGuardHost". This attribute is a string and it carries the hostname of specified host.
Now we can take a look how it should be defined in LDIF .

attributetype (1.3.6.1.4.1.15955.9.1.2

NAME 'USBGuardHost'

DESC 'Hostname for USBGuard host'

EQUALITY caseExactIA5Match

SUBSTR caseExactIA5SubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

It was defined very similarly as any other attribute before. The special part is, how is this
attribute handled in the USBGuard daemon. It can be specified in L D I F more than once
which is not true in case of any other attribute because last parsed attribute wins. We can
specify two hostnames in two lines and it will be alright. We can also use an asterisk symbol
for definition of any hostname which is really useful. A n d the last feature is negation, it
can be specified with exclamation mark before hostname.
Allow rule for A host.

RuleTarget: allow

USBGuardHost: A

Allow rule for A or B host.

27

RuleTarget: allow

USBGuardHost: A

USBGuardHost: B

Allow rule for all hosts.

RuleTarget: allow

USBGuardHost: *

Allow rule for all but not C host.

RuleTarget: allow

USBGuardHost: *

USBGuardHost: !C

Allow rule for no host. Negation has a priority.

RuleTarget: allow

USBGuardHost: C

USBGuardHost: !C

There is another problem we have encountered. The L D A P specification does not guarantee
order of entries. That is a pity because order of rules is mandatory for the USBGuard.
Therefore we need to add some additional logic that can reconstruct the order back, so we
added another attribute here and it is called "RuleOrder". It should be an integer that is
able to carry some value and it has to be possible to order rules by this attribute.

attributeTypes (1.3.6.1.4.1.15955.9.1.3

NAME 'RuleOrder'

DESC 'order by attribute for the USBGuard Policy entries'

EQUALITY integerMatch

ORDERING integerOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

We can see that OID of type is different. It is an integer type which is represented as
a decimal string. E Q U A L I T Y and O R D E R I N G are also different and more suitable for
integers. Thanks to this attribute the USBGuard is able to sort these rules from L D A P and
after that the order of rules is guaranteed. It does not make a sense having this attribute
more than once.

4.2.3 L D A P ObjectClass

ObjectClass defined in 3.2.1 is something like a structure or a class in some object oriented
language but in L D A P . Our objectClass will be called an „USBGuardPolicy". We need to
define what attributes will be there and also define each attribute as required or optional.
Here is the complete definition of the USBGuard policy:

objectClass (1.3.6.1.4.1.15955.9.1.1

NAME 'USBGuardPolicy'

SUP top STRUCTURAL

DESC 'USBGuard Policy'

MUST (cn $ RuleTarget $ USBGuardHost $ RuleOrder)

MAY (USBID $ USBSerial $ USBName $ USBHash \

$ USBParentHash $ USBViaPort $ USBWithlnterface \

28

$ RuleCondition $ description)

)

We have defined an USBGuardPolicy objectClass. We assigned an OID for new data type
in the same way as we did before with L D A P attributes. This objectClass is high level data
structure that defines our policy for the USBGuard.

dn: cn=Rulel,ou=USBGuard,dc=test,dc=com

objectClass: USBGuardPolicy

objectClass: top

USBGuardHost: *

RuleOrder: 1

cn: Rulel

RuleTarget: allow

USBID: 1050:0010

USBSerial: "0001234567"

USBName: "Yubico Yubikey II"

USBWithlnterface: "03:01:01"

As we can see this is the first complete definition of the USBGuard Rule in L D A P . I would
like to clarify what "cn=Rulel" actually means. In L D A P each entry has to have its own
unique common name. The USBGuard will require a common name starting with "Rule"
prefix. OpenLDAP will be indexing its data by common name by default.

29

Chapter 5

Implementation Details

In this chapter we will take a brief look on development and testing environment, tools
and other used technology. We need to describe provided changes and implementation
details. This chapter is also a guidance for reader which should be able to configure the
USBGuard with L D A P and use it. The whole project is written in C++ and it is compiled
with C++11 standard. The USBGuard is autotools based project so it has configure script
which generates all makefiles, scripts and other stuff as usual. During this thesis, the Clang
compiler was used as a primary tool for compilation. Clang is very popular today, it is
pretty comparable with G N U compiler for C++. The G N U compiler is really bad with
error output that is almost unreadable. This is the field where the Clang comes and wins.
Clang advantages are the most valuable with template errors in spite of that G N U compiler
is still used for production builds.

The USBGuard runs on Linux, it is developed on Fedora for Fedora. The primary
architecture is AMD64 or x86_64 which is actually the same. The secondary architecture is
ARM. The Fedora 26 was used as a primary development environment.

5.1 P r o v i d e d Changes

Let's take a close look to implementation details of the USBGuard extension. As was
described at the beginning in 2.1 the USBGuard can be divided into several parts. We
will take a look on library, daemon and C L I because these are affected by the changes we
provided. Generic RuleSet is placed in library as well as MEMRuleSet. They are impor
tant for library, daemon and C L I so they have to be inside of library. Implementation of
MEMRuleSet is very straightforward. It is just override pure virtual methods with empty
implementation and the result is that it is possible to create this specific RuleSet and cast
it back to the generic one.

5.1.1 Daemon Extension

There are many new classes inside of daemon and we have discussed that before in design
chapter 4. This extension is contains big scope of changes. There are derived RuleSets,
factory, NSHandler, LDAPHandler and many related changes.

30

FileRuleSet

This class introduces new attribute that is called _rulesPath. This attribute is a string
and it carries a value that should be a path to file with defined rules inside of it. In normal
configuration it can be a /etc/usbguard/rules. conf. This attribute has as default value
an empty string so it should to be set in class constructor or perhaps after via setter but it is
necessary to have it set before any call of some class method. There is also a setter method
for this attribute here and it is called a setRulesPath. It takes one argument which is path
we want to set. The load method has no argument which is defined in RuleSet Interface.
It was necessary to create another two load methods that differ in their parameters. The
first one takes an argument with path and the second one takes a stream. It basically
works in three steps approach. At first load method is called from somewhere outside of
the class. This method without arguments takes our attribute with path and it will pass
that attribute right to the second function. The second function has that attribute from
the argument and it opens a file by its path and creates a stream. If there is no problem it
carries on. It will call the third load method with stream argument, this argument takes
a generic output stream so it doesn't have to be an open file eventually. After successful
write, function ends without any thrown exception. The save method is implemented very
similarly.

LDAPRuleSet

It implements load method also in a few steps. It will take a _LDAP attribute which is
LDAPHandler and it will call the getRuleQuery method to get default or custom query
from LDAPHandler. Then it takes that query which is a string and it uses it as an argument
for query method of LDAPHandler that returns an LDAPMessage structure encapsulated in
shared pointer. It takes that structure and converts it into the vector of pairs which contain
number to order by and the string representation of Rule. Finally, it will sort rules and it
will create regular Rule objects to fill the vector in RuleSet. The save method has empty
implementation because it does not make a sense to upload something back to the L D A P
server. The getFirstMatchingRule method has a new implementation because of update
functionality. The new version of getFirstMatchingRule runs the update method asyn
chronously. After update, it also calls the old implementation of getFirstMatchingRule
from RuleSet. Multithreading for update mechanism is powered by std: :async method
from std: :future standard library. The update method calls getUpdateInterval over
_LDAP and it returns an update interval. This update interval needs to be checked whether
the update is necessary or not. Here is an example how the update method behaves:

void LDAPRuleSet::update() {

i f (std::time(nullptr) - _lastUpdate < _LDAP->getUpdateInterval()) {

USBGUARD_LOG(Trace) « "UPDATE is not needed!";

return;

>

>

This condition checks out whether the current time minus time of the last update, is still
less than an update interval. That means update is not necessary. In case of update, rules
are removed and properly destructed from the vector and load method is called again.

31

LDAPHandler Implementation

LDAPHandler is created during early start up phase of daemon in the NSSwitch but
only when the information about source was parsed and it is an L D A P . In this case, the
LDAPHandler is constructed. Its construction has several phases, the first is an initial
ization of all attributes to defaults, then we are trying to get a hostname of machine that
we will need later to build a query. Next step is to parse config file and get the L D A P
configuration details. In case of success, parsed data need to be validated and then we
can continue to the most important step here, to connect to the L D A P server. In L D A P
A P I , connection can be created within three steps. We have to start with initialization
of the L D A P structure with ldap_initialize function from library. It should not fail
and then we need to set options for L D A P connection via ldap_set_options. We are
using it for specification of L D A P protocol version to LDAP_VERSI0N3. The last step is to
call ldap_sasl_bind_s function that creates real connection to the server. The minimal
configuration is an URI, ROOTDN and ROOTPW.

The configuration file is stored in /etc/usbguard/usbguard-ldap.conf by default. It
was derived from standard L D A P system wide configuration in ldap. conf. Syntax is the
same, key-value line based configuration and separators are blank characters. Keys are case
insensitive but values are not because L D A P is case sensitive. Comments are allowed here
with but it has to be the first character of the line. This configuration supports up to
seven options for now.

This configuration file has a manual page which was created as a part of this thesis
see man usbguard-ldap. conf. It can be shown via man command when the USBGuard is
installed. Another way to show it is open it locally. After successful build it can be found
in man . /doc/man/usbguard-ldap. conf . 5 in case we are in build directory. Here are all
supported options:

• URI - address to the L D A P server

• R O O T D N - domain name of user that has access rights for L D A P data

• B A S E - standard L D A P base

• R O O T P W - password for given user

• U S B G U A R D B A S E - base of The USBGuard organizational unit

• R U L E Q U E R Y - L D A P query that will return rules

• U P D A T E I N T E R V A L - interval after which rules are not trusted anymore and they
need to be fetched again, default is 1 hour

Example of configuration:

URI ldap://127.0.0.1/

ROOTDN cn=Manager,dc=example,dc=com

BASE dc=example,dc=com

ROOTPW passme

32

NSHandler Implementation

In regular Linux, administrator is able to find a configuration of name service switch in
/etc/nsswitch. conf. It is a standard way how to set it so G N U C library and some other
specific applications like sudo or even the USBGuard can determine source of data. E.g.
standard POSIX function getpwnam which returns password entry by username given as
an argument respects name service switch and if it is set so, it is looking for user even in
L D A P .

As any other application which depends on name service switch configuration, the
USBGuard daemon has to parse /etc/nsswitch.conf. It is a plain text ASCII file and
each line represents some configuration entry. The line starts with the type of the data
followed by colon. For example passwd stands for users, group for groups and shadow for
passwords. There is a value after colon, which can be single or multi valued and there can
be some operators as well. It can be pretty complex, see the manualf]. Typically, value
can be "files", "ldap", "sss" or "systemd" and many others. The order of values tells the
application in what order it should iterate over sources when it is looking for some data
from name services.

The USBGuard daemon expects line starting with „usbguard" keyword followed by a
colon. Important fact is that it accepts only single value. It was designed like this for
the sake of simplicity, but that also means that the USBGuard has a support only for one
source of rules at the same time. In case of subsequent implementation of such feature Policy
interface is supposed to be responsible for management of multiple RuleSets generated from
name service switch.

Basically all attributes there, are private and there is no reason to do otherwise. On the
other hand, all methods there, are public. There are getter and setter for _rulesPath at
tribute which can be used in case of construction of FileRuleSet. The method getRuleSet
is very important. It is the main interface for the daemon. When the daemon calls
getRuleSet over NSHandler instance it will get generic RuleSet already filled with rules.
A l l necessary logic to construct and fill the RuleSet will be behind this interface. Before
this call the daemon has to propagate necessary information about configuration to NSHan
dler which is important for creation of right RuleSet. Method setNSSwitchPath is another
setter but for _nsswitch_path attribute. The parseNSSwitch method can be used for
parsing of nsswitch file. Method getSourcelnf o returns a string form of source and it is
used mostly for exceptions messages. The getLDAPHandler method returns LDAPHandler
instance which is needed by LDAPRuleSet constructor.

5.1.2 C L I L D A P Support

CLI utility usbguard generate-policy was enhanced as well. It supports options for
switching to L D I F format. The output of such command can be used as input for ldapadd
utility that can save it on server. One can use an option - l d i f or -L to change output
format to L D I F . These new options can be combined with old ones, there is no restriction.

> # simplest
> usbguard generate-policy — •ldif \

—usbguardbase "ou=USBGuard,dc= =example,dc=com"

> # defaults
> usbguard generate-policy — •ldif \

—usbguardbase "ou=USBGuard,dc= =example,dc=com" \

33

—objectclass "USBGuardPolicy" \

—name-prefix "Rule"

5.2 Q u i c k G u i d e

In this section we will get trough the setup of whole USBGuard and L D A P server. This
setup will take a few steps. The best thing we can do is to install a new virtual machine. We
will use the newest Fedora 27 Server as en environment. Theoretically it could be Ubuntu
but there are different package dependencies. Each command starting with here has
to be executed within root console and command starting with ">" is supposed to be for
regular user. If we have a fresh install of Fedora ready we need to install several packages
for work.

dnf update -y

dnf install -y git

Getting Sources

Another step is to clone sources of the USBGuard from github.

> git clone https://github.com/USBGuard/usbguard.git

> cd usbguard/

> git checkout feature-external-policy-sources

> mkdir build

Installing Dependencies

We need to provide all necessary dependencies so we can build everything is needed. We
do not need to specify all of them there. We can just use R P M D B for resolving these
dependencies. Fedora has its official usbguard package and it is really simple to install.
L D A P support for usbguard has totally new dependency which is "libldap". We install
official usbguard package only because it installs all necessary config files as a side effect.

dnf builddep -y usbguard

dnf install -y openldap-devel gcc-c++ usbguard

Building of the USBGuard

We are in "usbguard" directory so we need to choose a crypto library to build with.
Libgcrypt will be sufficient for this simple setup. In this case it will be better to use bundled
packages because we want to avoid compilation problems, "-with-ldap" was added here
because L D A P support is not a default.
> ./autogen.sh

> cd build/

> ../configure —disable-silent-rules —with-crypto-library=gcrypt \

—with-bundled-pegtl —with-bundled-catch —with-ldap

> make

34

https://github.com/USBGuard/usbguard.git

Preparing LDAP Server

Configuration of L D A P server is not that straightforward so we have prepared an ansible[25]
script to do hard work for us. It will install and configure OpenLDAP server almost without
any effort.

dnf install -y ansible yum libselinux-python

> cd .. #return to the root dir of project

> cd src/Tests/LDAP/ansible

> sudo Is #sudo needs to be authenticated, ansible uses sudo without passwd

> ansible-playbook - i ./hosts -u root —connection=local playbook.yml

We need to create USBGuard organizational unit in L D A P . It can be done with standard
L D A P utilities or with prepared bash script.

> cd .. # return to the LDAP dir

> ./ldap.sh setup

After that we can use that script for uploading of policy. There is example policy written
in L D I F so we can try to upload that. We can write our own new policy in L D I F and use
it.

> ./ldap.sh policy ./usbguard-policy.ldif

In case we need to clear our server we can use delete sub-command for that. It will remove
whole organizational unit recursively. When we want to upload some policy again we have
to use setup sub-command first.

> ./ldap.sh delete

Setup the USBGuard

We need to create also an /etc/usbguard/usbguard-ldap. conf that should contain such
configuration.
URI ldap://127.0.0.1/

R00TDN cn=Manager,dc=example,dc=com

BASE dc=example,dc=com

R00TPW passme

Another important step will be editing of /etc/nsswitch. conf. We need to add "usbguard:
ldap" to the and of the file and remove any other line starting with "usbguard".

Running the USBGuard

Technically we have compiled everything so let's try to run a daemon, -d is for debugging
and it is optional but without that it cannot be killed with SIGINT. It can be run with -f
instead of -d which will fork the daemon to the background. It does not make a sense to
use them both at the same time.

> cd ../../../ #back to the root

> cd build/

> sudo ./usbguard-daemon -d -c /etc/usbguard/usbguard-daemon.conf

35

Checking Policy

It seems like everything is running so let's check if our example policy is really in the
USBGuard daemon.

> sudo ./usbguard list-rules

We can see rules from L D A P there. In case we have the daemon running in debug mode
we can see in debug log how these Rules and RuleSets from L D A P were handled.

5.3 Test Suite E x t e n s i o n

The USBGuard has its own test suite as any other regular open source project. This test
suite is a collection of many tests that are covering plenty of test cases. These checks are
static or behavioral. Static checks are enforcing code style which is defined with astyle
and even more. They checks also for including of build-config as a first include in a file
and that public library headers should not depend on this build config. The behavioral
checks are something totally different. They are watching behavior of some tested unit
and checking whether they behave as expected. The USBGuard library has many types
of tests and Unit tests are the low level ones. They are testing the low level units such
as classes and methods. Another type of tests are use case ones which are testing mostly
CLI and daemon cooperation. There is another special group of tests which are called
regression tests. These tests are covering fixed bugs that should not appear again. One
can use this test suite very easily. Normally, it is possible to use check sub-command for
make utility but test suite itself requires root's permissions. To run all possible tests, option
-enable-full-test-suite has to be present as a configure option.

TODO: install dependencies

> cd build/

> ../configure —disable-silent-rules —with-crypto-library=gcrypt \

—with-bundled-pegtl —with-bundled-catch —with-ldap \

—enable-full-test-suite

make check

Test suite is designed to be running as a continuous integration also known as CI. CI de
fines a workflow that any provided change has to be checked with CI and after that it
can be discussed, enhanced or accepted. Today, this continuous integration is pretty well
integrated into many services that are taking care of version control and project or code
management. The most significant service in this area is GitHub. It is a web-based version
control management system that is used widely by developers. Another similar service can
be GitLab. Both of them are working with Git . This CI reacts on pull requests or PRs
and it runs whole test suite with proposed changes. The USBGuard is using Travisf] as a
testing environment. This environment is specified in in . travis .yml file in root of project
directory. This file contains definition of whole testing matrix and many other attributes
as well. There is a new test suite created as part of this thesis which is coming with L D A P
support too. This test suite is enabled only if -with-ldap is also present as a configure
option. It tests only the basic functionality of daemon. A l l L D A P tests are stored in
src/Tests/LDAP/ directory. These L D A P tests expect specifically configured environment
and deployed L D A P server. Our ansible playbook from src/Tests/LDAP/ansible/ can do
that for us see 5.2. Test suite itself has no specific hardware requirements and it works on

36

usual architectures but software requirements are much more complicated. Travis environ
ment is built upon LTS release of Ubuntu which is not even virtual machine only simple
container. That fact is not ideal but it works for now. If L D A P support is not enabled this
step is not necessary and L D A P tests are skipped. L D A P test suite can be divided into
two parts which is Sanity and UseCase.

There is only one sanity test here:

• ldap-nsswitch, sh - should test parsing of nsswitch.conf

There are several use case tests:

• ldap-test-1. sh - tests whether daemon starts with OpenLDAP configured and filled
with non empty RuleSet

• ldap-test-2. sh - tests whether daemon starts with OpenLDAP configured but it is
empty

• ldap-test-3. sh - tests whether daemon starts with missing USBGuard organiza
tional unit in OpenLDAP

• 1 dap-test-4. sh - tests whether daemon starts with OpenLDAP service down

• ldap-test-5. sh - tests whether daemon loads policy from OpenLDAP server

There a few other scripts in this directory. We are familiar with ldap. sh that we were
using in 5.2. Another script is nsswitch.sh, it contains functions that handle saving or
restoring of name service switch configuration and it can change or even remove „usbguard"
value which is very useful. Debugging of these tests is also simple. Test can be run in two
mods it depends on command line arguments. Usually when the test is running inside of CI
it has no arguments. It is executed from test-driver and all makefile variables are present.
We can run test locally without any test-driver it needs only one command line parameter
and actual value does not matter.

As we can see tests are passing and seem to be stable. They works in Travis and also
locally which is good. The problem is that test suite needs to be enhanced and cover more
and more test cases. Coverage of this test suite is not sufficient for production code yet but
it is a good starting point.

37

Chapter 6

Conclusion

The main goal of this thesis was to add ability to manage the USBGuard policy centrally and
enhance the internal implementation with new A P I that handles multiple policy sources.
A l l of specified goals were satisfied and they were described in this thesis.

We have successfully designed stable and extensible A P I which was completely imple
mented within the USBGuard project. We defined new OpenLDAP schema and its at
tributes on the server side. Thanks to the schema an administrator can fill an OpenLDAP
directory service with USBGuard policy. A l l provided changes were proposed to the up
stream of the USBGuard project.

Now the USBGuard supports various sources of policy such a regular file, L D A P or just
runtime policy without any source. It handles exactly one source of policy at the same time.
The number of sources of policies can be increased easily with inheriting and implementing
of public A P I . The USBGuard has a new L D A P client which implements that interface
as well as file client and runtime policy does. The L D A P support of the USBGuard is an
optional module. As a part of this work we created a new test suite which is covering added
code and it tests the most common use cases. A l l substantial changes were discussed with
project community. The resulting implementation can be used in real world environment.

The first and most important future enhancement is the T L S support for L D A P which
is very important from security point of view. The T L S support will enable the USBGuard
communicate with L D A P via encrypted channel. Extension of L D A P test suite with more
use cases and unit tests would make this project much more valuable. Another improvement
that could be done is the support of more sources of policy at the same time. The USBGuard
could have file based policy with some rules and L D A P based policy upon that, most likely
with some shared rules among many hosts. In this case when the L D A P had no proper
rule the file based policy will be used instead. Very useful feature will be an integration
with SSSD that includes implementation of SSSD client on the USBGuard side and also
necessary changes on a server side. This implementation was out of scope and it can be
done as another dedicated thesis.

38

Bibliography

[1] usbguard-daemon.conf(5) Manual Page. [Online; visited 11.2.2018].
U R L : h t t p s : //github.com/USBGuard/usbguard/blob/master/doc/man/usbguard-
daemon.conf .5.adoc

[2] netlink(7) Linux User's Manual. February 2018. version J^.12.
U R L : h t t p : //man7.org/linux/man-pages/man7/netlink.7.html

[3] nsswitch.conf(5) Linux User's Manual. February 2018. version J^.12.
U R L : h t t p : //man7.org/linux/man-pages/man5/nsswitch.conf.5.html

[4] Amoroso, E . G . : Fundamentals of computer security technology. Englewood Cliffs,
N . J . : P T R Prentice Hall , first edition. 1994. ISBN 978-0131089297.

[5] Anderson, D. : USB system architecture. Addison-Wesley Professional. 1997.

[6] Choi, J . : Countermeasures for BadUSB Vulnerability. Journal of the Korea Lnstitute
of Lnformation Security and Cryptology. vol. 25, no. 3. 2015: pp. 559-565.

[7] developers.google.com: Protocol Buffers. [Online; visited 11.2.2018].
U R L : h t t p s : / /developers .google .com/protocol -buffers /

[8] docs.oracle.com: LDAP Schema Overview. [Online; visited 11.2.2018].
U R L : h t t p s :
//docs.oracle.com/cd/E12839_01/ref erence.HH/el0035/schema_overview.htm

[9] Farwell, J . P.. Rohozinski, R.: Stuxnet and the future of cyber war. Survival, vol. 53,
no. 1. 2011: pp. 23-40.

[10] freedesktop.org: Dynamic device management. [Online; visited 11.2.2018].
U R L : h t t p s : //www.freedesktop.org/software/systemd/man/udev.html

[11] freedesktop.org: What is DBUS? [Online; visited 11.2.2018].
U R L : h t t p s : / /www.freedesktop.org/wiki/Software/dbus/

[12] FreelPA: Open Source Ldentity Management Solution. [Online; visited 6.5.2018].
U R L : h t t p s : //www.freeipa.org/page/Main_Page

[13] Gilisoft: USB Lock. [Online; visited 7.5.2018].
U R L : h t tp : / /www.gi l i sof t . com/product -usb- lock .htm

[14] Inaky Perez-Gonzalez, I. C : Authorizing (or not) your USB devices to connect to the
system. [Online; visited 19.2.2018].
U R L : h t t p s : / / www.kernel.org/doc/Document at i o n / u s b / a u t h o r i z a t i o n . t x t

39

http://developers.google.com
http://docs.oracle.com
http://oracle.com/cd/E12839_01/ref
http://erence.HH/el0035/
http://freedesktop.org
http://www.freedesktop.org/software/systemd/man/udev.html
http://freedesktop.org
http://www.freedesktop.org/wiki/Software/dbus/
http://www.freeipa.org/
http://www.gilisoft.com/product-usb-lock.htm
http://www.kernel.org/

[15] Kopecek, D. : The USB Guard project website. [Online; visited 11.2.2018].
U R L : h t t p s : / / u s b g u a r d . g i t h u b . i o /

[16] ldap.com: Lightweight Directory Access Protocol. [Online; visited 11.2.2018].
U R L : h t t p s : / / l d a p . c o m /

[17] ldap.com: Understanding LDAP Schema. [Online; visited 11.2.2018].
U R L : h t t p s : / / ldap.com/understanding-ldap-schema/

[18] Microsoft: Introduction to Active Directory. [Online; visited 6.5.2018].
U R L : h t t p s : / /docs .microsof t . com/en-us /prev ious -vers ions /windows/ i t -pro /
windows-server-2003/cc758535yo28v0/o3dws.loyo29

[19] Miller, T. C : What is Sudo? [Online; visited 7.5.2018].
U R L : https://www.sudo.ws/

[20] MyUSBOnly : MyUSBOnly. [Online; visited 11.2.2018].
U R L : ht tp : / /www.myusbonly .com/usb-securi ty-device-control /

[21] NetWrix: USB Blocker. [Online; visited 7.5.2018].
U R L : h t t p s : //www.netwrix.com/usb_blocker_freeware.html

[22] oodesign.com: Factory Pattern. [Online; visited 6.5.2018].
U R L : h t t p : //www.oodesign.com/f ac tory-pat tern .html

[23] oodesign.com: Singleton Pattern. [Online; visited 6.5.2018].
U R L : h t t p : //www.oodesign.com/singleton-pattern.html

[24] Quarterman, J . S.. Wilhelm, S.: UNIX, POSIX, and open systems. Reading, Mass.:
Addison-Wesley, first edition. 1993. ISBN 978-0201527728.

[25] Red Hat Inc.: Ansible. [Online; visited 7.5.2018].
U R L : https://www.ansible.com/

[26] Siever, E . : Linux in a nutshell. Sebastopol: O'Reilly. 6 edition. 2009. ISBN
978-0596154486.

[27] SSSD developers: SSSD - System Security Services Daemon. [Online; visited
6.5.2018].
U R L : h t t p s : //docs.pagure.org/SSSD.sssd/index.html

[28] Stroustrup, B.: The C++ programming language. Upper Saddle River:
Addison-Wesley Publishing Company, fourth edition. 2014. ISBN 978-0-321-95832-7.

[29] The Qt Company: What is QT? [Online; visited 11.2.2018].
U R L : h t t p s : / /www.qt . io /what - i s -q t /

[30] Tischer, M . . Durumeric, Z.. Foster, S.. et al.: Users really do plug in USB drives they
find. In Security and Privacy (SP), 2016 IEEE Symposium on. I E E E . 2016. pp.
306-319.

[31] travis-ci.com: At Travis CI we aim to empower people to build and ship great
software. [Online; visited 11.2.2018].
U R L : h t t p s : / / a b o u t . t r a v i s - c i . c o m /

40

https://usbguard.github.io/
http://ldap.com
https://ldap.com/
http://ldap.com
http://microsoft.com/en-us/previous-versions/windows/
https://www.sudo.ws/
http://www.myusbonly.com/usb-security-device-control/
http://www.netwrix.com/usb_blocker_freeware.html
http://oodesign.com
http://www.oodesign.com/f
http://oodesign.com
http://www.oodesign.com/singleton-pattern.html
https://www.ansible.com/
http://docs.pagure.org/SSSD.sssd/
http://www.qt.io/what-is-qt/
http://travis-ci.com
http://about.travis-ci.com/

[32] x500standard.com: The website of the X.500 Directory standard. [Online; visited
7.5.2018].
URL: http://www.x500standard.com/

41

http://x500standard.com
http://www.x500standard.com/

A p p e n d i x A

Content of Attached M e d i a

The attached medium consists these folders:

• Text - Contains Latex sources of this thesis.

• Sources - Contains sources of branched USBGuard with L D A P support.

• xsrokaOO-usbguard.pdf - Thesis itself.

42

