
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV I N T E L I G E N T N Í C H SYSTÉMŮ

ASYNCHRONOUS TASK PROCESSING
IN THE PCS PROJECT
ASYNCHRON NI ZPRACOVANI U LO H V P ROJ E KTU PCS

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL POSPÍŠIL
AUTOR PRÁCE

SUPERVISOR doc. Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification |||||||||||||||||||||||||
2 5 1 9 2

Student: Pospíšil Michal
Programme: Information Technology
Title: Asynchronous Task Processing in PCS Project
Category: Parallel and Distributed Computing
Assignment:

1. Familiarize yourself with Python and its libraries for asynchronous processing (e.g.: asyncio,
multiprocessing, tornado).

2. Familiarize yourself with the PCS project and requirements for the tasks that it facilitates in
the cluster.

3. Design an interface for creating and managing tasks in an asynchronous environment. This
interface should enable running more PCS commands at the same time and provide
information about their status and results.

4. Implement the proposed interface in a form of a REST API (tornado library can be used).
5. Create a set of unit and integration tests for the implemented interface.
6. Demonstrate on at least two simultaneously running PCS commands that the asynchronous

processing works.
Recommended literature:

• Project PCS: https://github.com/ClusterLabs/pcs
• Tornado framework: https://www.tornadoweb.org/
• Python Asyncio library: https://docs.python.Org/3.6/library/asyncio.html
• Python Multiprocessing library: https://docs.python.Org/3.6/library/multiprocessing.html

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rogalewicz Adam, doc. Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Bachelor's Thesis Specification/25192/2021/xpospi95 Page 1/1

https://github.com/ClusterLabs/pcs
https://www.tornadoweb.org/
https://docs.python.Org/3.6/library/asyncio.html
https://docs.python.Org/3.6/library/multiprocessing.html
https://www.fit.vut.cz/study/theses/

Abstract
The PCS project is a distributed application; therefore, many actions need a way to launch
actions in remote application instances. The goal of this thesis is to implement a minimum
viable solution for executing actions through a R E S T A P I that uses the asynchronous pro
gramming model. However, actions themselves are not implemented asynchronously and
cannot be invoked directly from asynchronous code. The R E S T A P I is connected to an asyn
chronous scheduler that circumvents this limitation by launching actions in a process pool.
The scheduler hides actions behind an abstraction layer of tasks that store information
about their status and results. A l l the actions need to send real-time updates to the clients.
This is made possible via a one-way communication channel from the actions to the sched
uler that updates the tasks. The R E S T A P I provides methods for creating, getting results,
and killing tasks. Clients can periodically check the task status and show these updates
to the user. Clients can also choose to ki l l tasks that take too long to finish.

Abstrakt
Projekt P C S je distribuovaná aplikácia. Z toho vyplýva, že potrebuje spôsob ako spúšťať ak
cie vo vzdialených inštanciách P C S . Cieľom tejto práce je vyvinúť minimálne životaschopné
riešenie pre spúšťanie akcií cez R E S T A P I , ktoré je implementované metódami asynchrón
neho programovania. Tieto akcie však nie sú implementované asynchrónne, takže nemôžu
byť spustené priamo z asynchrónneho kódu. R E S T A P I je preto napojené na asynchrónny
plánovač, ktorý obchádza toto obmedzenie spúšťaním akcií v sade procesov (process pool).
Plánovač skrýva akcie za abstrakčnú vrstvu úloh, ktoré uchovávajú informácie o stave
a výsledkoch akcií. Všetky akcie potrebujú posielať aktualizácie svojho stavu klientom
v reálnom čase. Toto je dosiahnuté jednosmerným komunikačným kanálom medzi akciami
a plánovačom, ktorý správy od akcií ukladá do úloh. R E S T A P I umožňuje vytváranie,
kontrolu stavu a rušenie spracovania úloh. Klient teda môže opakovane žiadať o stav úlohy
a takto zobrazovať aktualizácie stavu z akcií. Klient tiež môže zrušiť spracovanie úloh,
ktoré bežia príliš dlho.

Keywords
cluster, high-availability cluster, PCS, Pacemaker/Corosync Configuration System, asyn
chronous programming, AsyncIO, R E S T , R E S T A P I , Tornado

Kľúčové slová
Master, klaster s vysokou dostupnosťou, PCS, Pacemaker/Corosync Configuration System,
asynchrónne programovanie, AsyncIO, R E S T , R E S T A P I , Tornado

Reference
POSPISIL, Michal. Asynchronous Task Processing in the PCS Project. Brno, 2022. Bache
lor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
doc. Mgr. Adam Rogalewicz, Ph.D.

Rozšírený abstrakt
PCS je distribuovaná aplikácia na správu klastrov s vysokou dostupnosťou. Z tohto dôvodu

potrebuje spúšťať akcie vo svojich vzdialených inštanciách. Pre tieto potreby využíva dé
mona v úlohe servera poskytujúceho R E S T A P I na spúšťanie týchto akcií.

Táto práca sa zameriava na nahradenie existujúceho R E S T A P I , ktoré umožňuje len syn
chrónne spúšťanie akcií. Keďže nie je vopred známe ako dlho akcie trvajú, toto A P I často
prekračuje časový limit na doručenie odpovede. Nové R E S T A P I sa sústreďuje na asyn
chrónne spracovanie úloh. Úlohy sú abstrakčnou vrstvou pre akcie zapúzdrujúce informácie
o priebehu a výsledkoch akcií. Cieľom tejto práce je navrhnúť a implementovat minimálne
životaschopný systém na spúšťanie akcií, ktoré nepoužívajú metódy asynchrónneho pro
gramovania, z prostredia asynchrónne implementovaného R E S T A P I .

Nové R E S T A P I poskytuje rozhranie pre vytváranie, zisťovanie stavu a rušenie prebieha
júcich úloh. Tým eliminuje problémy s vypršaním času na doručenie výsledku akcie, keďže
stav úlohy môže byť poskytnutý okamžite. Tiež zaručuje, že strata výsledku pri prenose
sieťou sa nebude prejavovať rovnako ako nedosiahnuteľnosť servera. Vedľajším efektom
je zjednotenie rozhrania pre klientov implementujúcich užívateľské rozhrania a samotného
PCS, ktoré potrebuje spúšťať akcie vo svojich vzdialených inštanciách.

Na pozadí R E S T A P I je implementovaný asynchrónny plánovač úloh, ktorý sa stará o spú
šťanie akcií v oddelených procesoch a správu úloh. Kombinuje tak časti softvéru používajúce
asynchrónny model programovania s časťami, ktoré ho nepodporujú. Plánovač navyše ob
sahuje podporu pre spracovanie správ generovaných počas behu akcií z oddelených procesov.
Na posielanie správ z oddeleného procesu je použitý zdieľaný front bezpečný pre použitie
viacerými procesmi naraz. Správy generované akciami môžu takto byť doručené klientovi
ešte počas behu akcie. Toto je odlišné od existujúcich riešení, ktoré umožňujú len prenos
samotného výsledku.

Sada jednotkových a integračných automatizovaných testov dokazuje funkčnosť implemen
tovaných rozhraní. Minimálna implementácia tenkého klienta je tiež súčasťou riešenia
a testovanie s jej pomocou ukázalo, že riešenie je funkčné v reálnom svete. Je nutné pozna
menať, že ide o minimálne riešenie, ktoré musí byť rozšírené hlavne v oblasti bezpečnosti.

Asynchronous Task Processing in the P C S Project

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Mr. Adam Rogalewicz. The supplementary information was
provided by Mr . Ondrej Mular. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

Michal Pospíšil
May 17, 2022

Acknowledgements
M y biggest thanks goes to Mr . Ondrej Mular from Red Hat Czech, s.r.o. who suggested this
project to me. I am sure that I would not be able to complete the project without his su
pervision and guidance. And of course, this extends to the whole PCS development team
that I could always turn to with any question. I have learned so much from our interactions
over the course of writing this thesis.

A close second on this list is my thesis supervisor at Brno University of Technology, Mr.
Adam Rogalewicz. He patiently answered every question that I had and always dispensed
some good advice when I needed it the most.

Of course, without the support of my family, I would not have even made it to this stage.
I want to thank my mom, dad and sister for their love, care and continuous encouragement.

Another big thanks goes to my closest friends for their moral support. A special thanks
goes to Denton Wood for trying to keep my English in check and teaching me a thing or two
about writing research papers. I will do better next time, hopefully!

Contents

1 In t roduc t ion 2

2 A b o u t the P C S Projec t 3
2.1 About High Availability Clusters 3
2.2 What is P C S 4
2.3 The Old Architecture 6
2.4 The New Architecture 8

3 Ana lys i s and Des ign 12
3.1 Goals 12
3.2 Concurrency in Python 13
3.3 The AsyncIO Library 15
3.4 Asynchronous Task Processing 17
3.5 Proof of Concept 20
3.6 Design of the Asynchronous Scheduler 22
3.7 The R E S T A P I Design 29

4 Implementa t ion and Test ing 33
4.1 Proof of Concept 33
4.2 Testing the Proof of Concept 35
4.3 The Asynchronous Scheduler 40
4.4 The R E S T A P I 45
4.5 Client 47

4.6 Testing the Asynchronous Scheduler and R E S T A P I 49

5 Conc lus ion 57

B i b l i o g r a p h y 58

A Diagrams 60
A . l Package Diagram of the Asynchronous Scheduler 60
A.2 Example of a Request Timeout in the Old Architecture 61
A.3 Sequence Diagram of the Asynchronous Scheduler 62
A . 4 Class Diagram of the Asynchronous Scheduler 63

B M a n u a l 64
B. l Proof of Concept 64
B.2 PCS with the New Asynchronous Scheduler and R E S T A P I 65

1

Chapter 1

Introduction

The P C S 1 project is a configuration tool for Pacemaker2 high availability cluster stack.
It consists of a command-line utility and a daemon that provides a web interface for cluster
management. Originally, P C S was only meant to be a command-line utility. A common
theme in software engineering is that software requirements cannot be precisely defined
at the beginning of the development process. During development and as users get their
hands on the software, new demands start to flood in. Any architectural decisions made
based on the old requirements may very well become limitations to further improvements.

As time passed, the original architecture of the P C S project started to cause more and
more headaches both for users and developers. To counteract this trend, the P C S develop
ment team had to come up with a new architecture and a plan of how to transition a fairly
large project to it. This effort has been ongoing for a few years. This thesis aims to fit into
this plan with a fundamental change to the core of the P C S project.

In very simple terms, any action done by PCS is going to be processed in a very distant
future by the P C S daemon - a process running in the background. This process needs
to be able to handle many requests at once, and it uses one of the asynchronous program
ming models to achieve this. The challenge is that this model is incompatible with the
non-asynchronous actions already implemented in PCS.

This work is structured into three main chapters. The first chapter further explains the con
cepts of high-availability clustering, introduces the PCS project and its problem areas.
The second chapter explains the concepts that this thesis deals with and are crucial for mak
ing the right design decisions backed by the analysis of problem areas. In the third chapter,
the implementation and testing of the previously designed solution is explained.

1PCS - Pacemaker/Corosync Configuration System, more at https://github.com/ClusterLabs/pcs
2Pacemaker, more at https://github.com/ClusterLabs/pacemaker

2

https://github.com/ClusterLabs/pcs
https://github.com/ClusterLabs/pacemaker

Chapter 2

About the P C S Project

The P C S project is the main area of interest in this thesis. Understanding what it does and
how it falls into the bigger picture is going to be crucial in understanding the architectural
choices described in the next chapters. But first, it is important to learn what the bigger
picture is - it is high availability clusters.

2.1 About High Availability Clusters

If someone runs a website on a bare metal server, it would generally involve maintaining
at least a web server and a database. Even though this is a very simple scenario, a failure
will eventually occur, and that website will become unavailable. A l l software has flaws and
hardware is bound by the laws of physics, so it cannot run without failure. To fix this
failure, manual intervention from an administrator is needed. But first, the administrator
needs to detect that there is a problem. Then more time passes as the fix is being applied.
In addition, any process that involves human factors adds uncertainty as to whether the fix
is going to address the issue. A l l while the website is unavailable. Although this might not
be a big problem for a personal website, there are certain applications that require high
availability. This could include air traffic control systems [15] that could cause loss of life
if they are not available. Another example would be enterprise applications where their
unavailability prevents the business from operating and causes a monetary loss.

High availability is about minimizing the time when a service is unavailable - this period
of time is called downt ime. In this example, the web server and the database are obvious
points of failure. To find others, the system needs to be looked at as a whole unit.
The server (as a machine) runs because of electricity, and a power outage or power surge
can bring it down. Going one level lower, the server is made up of components that can
each fail, and the list goes on. High availability cluster is a solution to minimize downtime
because it automates problem detection and corrective actions.

Since the high availability part is now clear, it needs to be established what a cluster is.
Cluster is a group of computers and other resources connected through a network that acts
as a single system from an outside perspective. Computers that make up the cluster are

1PCS - Pacemaker/Corosync Configuration System, more at https://github.com/ClusterLabs/pcs

3

https://github.com/ClusterLabs/pcs

called nodes. A l l nodes typically perform the same task, but this depends on the type
of cluster. Depending on the purpose, a cluster solution can be one or a blend of these:

• Storage clusters operate on a single shared file system, eliminating data redundancy,
increasing read and write speeds, simplifying backup and administration of multiple
machines.

• Load-ba lanc ing clusters distribute network service requests across cluster nodes
to balance resource use and make scaling effective.

• High-performance clusters combine the computational power of the nodes to per
form a highly demanding task in parallel to speed it up.

• High-ava i lab i l i ty clusters (sometimes called failover clusters) provide services with
minimal downtime by eliminating points of failure. [13]

How is high availability achieved in reality? It was already mentioned what is classified
as a point of failure. High-availability clusters eliminate them by redundancy. If something
happens to one node, the cluster moves the services to a different node - this is called
failover. It is essential to note here that a cluster is still just software and will not fix
the root cause of the problem. Administrators still need to examine why the original node
was deemed unsafe and fix the underlying problem. Failover is just a corrective action taken
to maintain availability and give administrators more time to find a solution. [24]

2.2 What is P C S

The name P C S is an initialism for P a c e m a k e r / C o r o s y n c Conf igura t ion System. Pace
maker and Corosync are the two main components of the Pacemaker cluster stack devel
oped by the ClusterLabs community. The Pacemaker cluster stack is a collection of open-
source projects that provide H A 2 cluster functionality on many Linux distributions. Despite
its name, P C S is a high-level configuration utility for Pacemaker3, Corosync 1, QDevice 5,
S B D 6 and Booth 7 . In the context of this thesis, it is not that important to understand
the inner workings of the Pacemaker cluster stack. However, if the readers are interested,
Clusters from Scratch 8 is a very good introduction. [2]

The P C S project was created to streamline the setup and management of high-availability
clusters based on the Pacemaker cluster stack. Using PCS, administrators can manage
their H A cluster from a command-line interface or a web interface with a smaller subset
of features. P C S hides the minute details and simplifies the most common operations, such
as cluster setup, adding resources, constraints, etc. Since each of the cluster's components
is a separate project, it is configured and used differently. PCS is one place to view, edit,

2 HA - high availability
3Pacemaker, more at https://github.com/ClusterLabs/pacemaker
4Corosync Cluster Engine, more at https://github.com/corosync/corosync
5Corosync QDevice Daemon, more at https://github.com/corosync/corosync-qdevice
6Shared-storage based death, more at https://github.com/ClusterLabs/sbd
7The Booth cluster ticket manager, more at https://github.com/ClusterLabs/booth
8Clusters From Scratch - available online at https://www.clusterlabs.Org/pacemaker/doc/2.l/

Clusters_from_Scratch/

4

https://github.com/ClusterLabs/pacemaker
https://github.com/corosync/corosync
https://github.com/corosync/corosync-qdevice
https://github.com/ClusterLabs/sbd
https://github.com/ClusterLabs/booth
https://www.clusterlabs.Org/pacemaker/doc/2.l/

and validate the configuration of the whole Pacemaker cluster stack. For some cluster
components, configuration utilities already exist and P C S makes use of them. For others,
PCS edits the configuration files and synchronizes them across all nodes if necessary.

H i s t o r y

Before Pacemaker and Corosync entered the world of open source clustering software, there
was a cluster manager called C M A N . That is where P C S development actually started,
with a utility called CCS. CCS stands for cluster configurat ion system. This tool was
used to generate and distribute the only configuration file c l u s t e r . conf. CCS was a very
simple project consisting of just a couple of Python 9 scripts. [11]

The development of P C S started in 2012, shortly after the introduction of the Pacemaker
cluster stack to Fedora 1 0 and Red Hat Enterprise L inux 1 1 . The project was started by Chris
Feist from Red Hat by transforming his CCS utility to P C S 1 2 . At the time, The C R M Shel l 1 3

was the only high-level configuration tool for Pacemaker. The differentiating factor of PCS
was that it was designed to be the all-in-one cluster configuration tool for the entire cluster
stack. Its command syntax was designed to be more action-centric, providing abstraction
over complicated Pacemaker configuration syntax and multitude of other administration
tools. [10]

Pacemaker uses an X M L 1 ' 1 file to store its configuration and cluster state, called the cluster
informat ion base (C I B) . This file could be edited with the Cibadmin tool, but the con
figuration changes needed to be written in X M L . Pacemaker also contains configuration
tools like crm_mon, crm_resource and others that provide some level of abstraction over
the CIB. PCS provides even higher level of abstraction than these tools.

Corosync has a configuration file corosync. conf that is stored on every cluster node. This
file needed to be edited and then manually copied to each node. P C S introduced support
not only for editing the file, but also for distributing it to other nodes. This was the original
purpose of the P C S daemon (P C S D) .

Red Hat has always provided a web interface for cluster management. The first web in
terface was called Conga and was running atop of Luci, Ricci and Modcluster. Wi th Red
Hat's discontinuation of C M A N in Red Hat Enterprise Linux 7, a new web interface was
needed. PCS was the natural choice, the new web interface with a REST-like back-end was
integrated into P C S D . [12, 10]

9Python programming language, more at: https://www.python.org/
1 0The Fedora Project, more at: https://getfedora.org/en/
11Red Hat Enterprise Linux operating system, more at: https://www.redhat.com/en/technologies/

1inux-piatforms/enterprise-linux
1 2The rename was finished by this commit: https://github.com/ClusterLabs/pcs/commit/

84f506ea6865b681db7e3032cb3a2ealfc4240db
1 3The CRM Shell, more at: https://crmsh.github.io/
1 4 X M L - Extensible Markup Language, more at: https://www.w3.org/XML/

5

https://www.python.org/
https://getfedora.org/en/
https://www.redhat.com/en/technologies/
https://github.com/ClusterLabs/pcs/commit/
https://crmsh.github.io/
https://www.w3.org/XML/

2.3 The Old Architecture

Since P C S originated from CCS, its architecture remained similar. P C S is built around com
mands. Command is a logical unit of actions that retrieve or change the state of the cluster.
These commands interact with the cluster stack configuration utilities or change the config
uration files directly. Commands can be run from the command line or launched by the web
interface back-end. Due to the distributed nature of PCS, components from other cluster
nodes can launch commands on remote nodes through the P C S daemon (PCSD).

daemon

PCS

web ui front-end

https

https ^ PCSD

https web ui
back-end

new process
https

old commands (cli)

cluster stack

-https-

https

-https^

USER

https
(browsers

USER
terminal

NODE B

PCS

web ui front-end

https

https | PCSD

daemon
https web ui

back-end

new process
https

old commands (cli)

cluster stack

Figure 2.1: The m a i n components of the o ld P C S archi tecture Arrows are annotated
with the request type and show the flow of requests. Particularly interesting are many
request paths through the daemon. Components may call the daemon which will then call
remote nodes or the component may choose to call all remote nodes by itself. Unrecoverable
request timeouts are marked with red. These timeouts can propagate to higher layers.

H T T P S requests are used in P C S to REST-like A P I for running commands.
H T T P S requests are also much easier to use than low-level network communication meth
ods, such as sockets. First, there were problems with P C S hanging if the target nodes were
offline.1 5 The requests were sent to P C S D , but sometimes due to network issues or the tar
get being offline, PCS would hang. This was solved by adding timeouts to the requests and
a new parameter, —request-timeout, that could override them. Timeouts usually cannot
be adjusted globally because the time it takes commands to finish cannot be predicted.
Shutting down a database server takes a lot of time and it is entirely dependent on its size
and the database used.

The little excursion through history of P C S showed that there were many changes to the non
functional requirements throughout its development. Using the term old architecture is al
most not fair since the functionality of the tool had to grow rapidly. There was not enough

1 5Bug 1292858 - pes should timeout during network requests https://bugzilla.redhat.com/
show_bug.cgi?id= 1292858

G

https://bugzilla.redhat.com/

information or time to design an architecture. The term old architecture is used to refer
to an evaluation of the resulting implementation after it was finished.

Essentially, the web interface was placed on top of the command-line interface. While this
allowed for reusing the already implemented functionality, the requirements of command
line users and the web interface back-end are vastly different, which added more complex
ity. Error messages, warnings and results from command-line programs are all printed
to the terminal. This meant that the web interface had to parse this output to provide
results to the user. In the very distant past, many layers implemented this output parsing,
not just the web interface back-end but sometimes even front-end. In some cases, the entire
standard output was just dumped into the web interface. This was obviously not an ideal
solution.

C o m m a n d s

Commands in the old architecture are implemented as standalone functions that handle
everything. Option parsing and validation are rarely handled by a function that is reused
through multiple commands. They do not have a common interface and were often ex
panded with new functionality without significant architectural changes. Many of the old
commands are also too complex to maintain at this point in time.

As shown in the architecture diagram 2.1, commands can call local P C S D to communicate
with other cluster nodes. Some of them also talk directly to P C S D on other cluster nodes.
This creates multiple execution paths that each have different problems.

T h e R u b y P C S D a e m o n

The P C S daemon is a server application that fulfills multiple roles in the P C S package:

• server for performing actions issued by remote nodes:

• configuration synchronization tool:

• web interface back-end.

P C S D is a daemon process that contains a server that handles H T T P S requests. It has
become overly complicated over time due to the variety of its uses. Unlike PCS, which
is implemented in Python, P C S D is implemented in Ruby 1 6 . This adds dependencies
to the P C S package in the form of the Ruby interpreter and Ruby gems that expose PCS
to more security threats.

Focusing on P C S D as a command running server, it is not just a simple communication
layer that executes P C S commands implemented in Python. Some functionality of PCS
is reimplemented directly in P C S D since it could not be reused from Python. This is not
ideal from a maintenance standpoint; the Ruby and Python implementations of the same
functionality can easily diverge.

16Ruby programming language, more at: https://www.ruby-lang.org

7

https://www.ruby-lang.org

Timeout problems also affect P C S D itself. There is a bug in which the web interface fails
to add a new node to the cluster. The pes node add command only needs to be performed
on one node. The web interface back-end makes requests to all nodes in the cluster until
the command is successfully executed. If the P C S command for adding a node runs longer
than the request timeout, remote P C S D 1 8 returns an error. But the command continues
to run on the remote node, and the new node is added to the cluster. The web interface
back-end tries all remaining nodes, but all return errors. The pes node add command now
fails because the new node is already in the cluster. Since the web interface back-end got
an error response on all requests, the action will be reported to the user as unsuccessful.
For a visual representation of this bug, see the sequence diagram in Figure A.2.

2.4 The New Architecture

The new architecture brings a clear separation of responsibilities between the layers of the ar
chitecture shown in Figure 2.2. The new clients are communicating with a R E S T A P I that
provides a unified way of calling the new commands from the lib package.

terminal
4-

inal—y\—|
https

(browser)

PCS

cli web ui
front-end

https https

PCSD

-https

---https

REST
API

https web ui
back-end

workers

https

lib commands

cluster stack

NODE A

-https-

-https-J

NODE B

terminal
https

(browser)

PCS

cli web ui
front-end

https https

PCSD

REST
API

https web ui
back-end

workers

https

lib commands

cluster stack

Figure 2.2: The new P C S archi tecture is a solution to problems outlined in the previous
section. Arrows are annotated with the request type and show the flow of requests.

1 7Bug 1539694 - [GUI] Adding a node may take longer than 30s and produce a timeout error https:
//bugzilla.redhat.com/show_bug.cgi?id=1539694

18Even the local node is considered a remote node in this case

8

L i b r a r y

Lib(rary) commands are more modular and use a more layered approach to implement
functionality that allows better code reuse. In the old architecture, the commands were
a 1:1 mapping to the command-line interface. In the lib package, commands represent
actions, and not all of them are necessarily command-line interface commands.

The library aims to be a Python A P I for actions that can be used more easily by clients and
other projects. This A P I standardizes the interface of all lib commands. The first argu
ment is the LibraryEnvironment object, and the subsequent arguments are the command
parameters that depend on the command. Lastly, there is an optional keyword argument
for force flags, which can override configuration and input validations.

The LibraryEnvironment object is an abstraction layer for all resources that commands
might require. It provides facilities for manipulating configuration files, running other
cluster utilities, intra-cluster communication, user permissions, the report processor, and
so on. The significance of report processors is explained later in the subsection called
Reports.

U s e o f T y p e H i n t s a n d D a t a Classes

Python, being a language with dynamic typing, allows greater flexibility when using vari
ables. On the other side, this greater flexibility can also cause run-time errors. To prevent
programming errors and improve code readability, the new architecture uses type hints
along with a third-party static type checker M y p y 1 9 . Type hints also open doors to many
quality of life improvements for the developers like code completion and autocompletion
i n l D E s 2 0 . [5]

A long-standing problem with the old architecture is the passing of data to functions in dic
tionaries. This approach was used to minimize the argument list size since many commands
work with a lot of data. The problem is that there is no guarantee on which keys are avail
able in a dictionary. The first solution to the unpredictable structure of dictionaries was
to use named tuples. This solution was quickly superseded by the use of data classes. Un
like named tuples, which are based on tuples, data classes are based on standard Python
classes. This adds all the benefits of object-oriented programming, such as inheritance and
class methods. Data classes are by default mutable but can optionally be made immutable.
This makes data classes more versatile than named tuples. For P C S releases targeting
Python 3.6+, the support is taken from the Dataclasses package 2 1, newer P C S releases
target Python 3.9+ and use the Dataclasses module from the Python standard library
introduced in Python 3.7. [25]

Another advantage of data classes comes from combination with the Dacite project [7].
Dacite is based around methods for converting the data classes to dictionaries and back.
The dictionaries can be easily serialized to JSON~~ and back with the help of the JSON

1 9The Mypy project, more at: http://mypy-lang.org/
2 0 IDE - Integrated Development Environment
21Dataclasses package in Python Package Inventory, more at https://pypi.org/project/dataclasses/
2 2JSON - JavaScript Object Notation, more at: https://tools.ietf.org/html/rfc8259

9

http://mypy-lang.org/
https://pypi.org/project/dataclasses/
https://tools.ietf.org/html/rfc8259

package from the Python standard library. Since P C S is a distributed application, it needs
to communicate over the network. The data is exchanged using data transfer objects
(DTO) which are implemented as immutable data classes. As Fowler explains, DTOs reduce
the number of network requests and allow more data to be returned in each response.
Furthermore, the Dacite project separates the logic for object serialization which is also
an advantage of using DTOs. [3]

R e p o r t s

In order to provide feedback to users, P C S uses special objects called reports. Reports
are designed to store errors, warnings, debugging data or just general information in a pre
sentation independent fashion. This solves the problem of error messages in the old ar
chitecture that were written for the command-line interface. This made them unsuitable
for use in the web interface.

The report class contains a report code that makes automated processing of reports easier.
In addition to that, it contains all the raw data used to construct the original message.
The receiver can choose to append or make its own message. One of the use cases is a report
for the command line. It appends the original report with a hint about the command that
can be used to resolve the particular error.

PCS reports are the prime example of architectural benefits of data transfer objects. Ini
tialization is handled by the data class which reduces the amount of code needed to define
a report. Type hinting support allows for static analysis with Mypy. Serialization logic
is handled by Dacite which further minimizes the amount of code for every report. Reports
are made immutable so that they cannot be manipulated during their lifetime.

When reports are created, they are put into a report processor. ReportProcessor is an ab
stract class that defines an interface for processing reports. Its main purpose is to allow
for report distribution in a separate channel from results. This simplifies automated output
processing for other components. Thanks to ReportProcessorToConsole class, the output
for a terminal user looks like before. There are more implementations for different purposes
in P C S .

Another big advantage is that reports are distributed at the time of their creation while
the command is running. This was also possible in the old architecture for command-
line users. But for the web interface, the output that is now considered reports was only
distributed to the web interface after the command finished.

The report processor also helps with error handling. Commands in the old architecture
exit after the first error. Any reports with severity of error change internal state of the re
port processor. This state can be checked by calling has_errors method which is then
used by lib(rary) commands to raise a LibraryError exception. This makes P C S print all
the errors that can be detected in a single run, which improves user experience.

2 3The JSON package in Python standard library, more at: https://docs.python.Org/3.6/library/
j son.html

10

https://docs.python.Org/3.6/library/

T h e P y t h o n P C S D a e m o n

The new daemon in P C S is implemented in Python as the rest of P C S . Its minimal im
plementation was shipped in P C S 0.10.1 and replaced the old Ruby daemon. The Ruby
daemon had to be added back in P C S 0.10.5 due to the utilization spikes caused by spawn
ing a new process for Ruby code from P y t h o n 2 4 ' 2 5 . The new daemon receives all requests
and serves as a proxy for the old Ruby daemon via a socket.

The new daemon should provide a R E S T A P I that no longer suffers from timeout issues.
The R E S T A P I is just a simple interface for running lib(rary) commands remotely. This
removes the added layer of complexity in the Ruby daemon that deals with calls to the dae
mons running on other nodes.

The remaining functionality of the old Ruby daemon, such as synchronization of config
uration files, will be ported to the new daemon. There is no set plan on how to do this
at the time of writing, so this functionality is not shown in Figure 2.2.

C u r r e n t S t a t e o f t he A r c h i t e c t u r e

As all software projects, the requirements for the P C S project have changed rapidly since
its beginning. As the project grew, the old architecture began to prevent the new goals
from being reached. However, as with any complex application, it cannot be rewritten from
scratch in a short period of time.

At the time of writing this thesis, the current version 0.11 of PCS is transitioning to the new
architecture described in the previous section. The new lib(rary) commands are slowly
replacing the old commands. Reports are already being used in the lib(rary) commands.
As discussed earlier, the new Python daemon is already part of P C S . The remaining task
is to implement the R E S T A P I and its underlying layer for task management.

Bug 1783106 - GUI: sinatra cmdline wrapper.rb causes CPU utilization spikes: https://
bugzilla.redhat.com/show_bug. cgi?id= 1783106

2 5PCS 0.10 release notes: https://github.com/ClusterLabs/pcs/blob/pcs-0.10/CHANGEL0G.md

11

http://bugzilla.redhat.com/show_bug
https://github.com/ClusterLabs/pcs/blob/pcs-0.10/CHANGEL0G.md

Chapter 3

Analysis and Design

In the previous chapter, the problems of the current PCS architecture were outlined along
with plans to address them. In this chapter, the goals of this thesis are formulated. Wi th
the goals set in stone, a description of the concepts that are crucial for understanding
the requirements and design decisions follows. Based on the analysis of requirements,
the first design decisions are made on a theoretical level. These decisions are cemented
by implementing a proof of concept. The findings discovered up to this point of the chapter
culminate in the creation of a design document for the final implementation.

3.1 Goals

Starting with the title of this thesis, Asynchronous Task Processing in the PCS project im
plies that there are some tasks that need to run in an asynchronous environment. Since the
new PCS daemon should implement a R E S T A P I for the lib(rary) commands and it is writ
ten using the Tornado library, this is the asynchronous environment. Tasks are the new
lib(rary) commands, and the problem is that they are not implemented asynchronously.
There is a good reason for this difference. Without diving into the concept too much,
it is important to understand that asynchronous programming is a form of concurrency.
The R E S T A P I is designed to handle many concurrent requests from many users (or clients,
in this case). Although multiple commands can be run at once, this does not make them a
good candidate for the asynchronous programming model. More about asynchronous pro
gramming is given in Section 3.2. Therefore, the main goal of this thesis is to resolve how
tasks can be executed from the asynchronous environment with the requirements of lib(rary)
commands.

P r o b l e m A n a l y s i s

In the previous chapter, it was demonstrated that commands can time out in many parts
of their execution path. If the commands are represented as tasks, the tasks hold all
of the command's current state and results. The new R E S T A P I should only look at
task metadata and provide responses very quickly. There is no waiting until the command
is finished, eliminating timeouts. The client (lib command or some user interface) should
poll the R E S T A P I for the status of the task until it finishes.

12

The R E S T A P I should be a fairly lightweight interface that serves only as a communication
layer. It needs to be connected to some kind of task manager. In this thesis, it will be called
asynchronous scheduler. The asynchronous scheduler handles the creation of tasks,
managing where and how they run, communication with tasks, task lifecycle management,
and storage of all important data associated with these responsibilities.

The thesis assignment suggests using the Python standard library in the form of Mult i
processing package and AsyncIO library. If a Linux package contains a dependency that
is not included in the target distribution, it needs to be included in the package. This
adds overhead in the form of checking new versions of dependencies in every P C S release.
Every time the dependency is updated, there is the risk that it will break the application.
There is no such problem with the Python standard library. Its functionality only changes
with a new Python version. P C S only changes the minimum Python version with a major
version bump when necessary. Therefore, it is advantageous to use the Python standard
library over third-party libraries if possible.

3.2 Concurrency in Python

It is clear from the goals of this thesis that concurrency in Python will be heavily used
in the implementation. Before going any further, concurrent programming flavors in Python
and their caveats need to be explained to understand the following sections.

Python is an interpreted language, and there are many Python interpreters. The original
and reference interpreter is called CPython 1 . P C S was developed with CPython in mind
since it is the most widely used Python interpreter. One of its implementation limits
is g lobal interpreter lock (G I L) . When accessing Python objects or calling Python
C A P I functions, the GIL protects access to the shared resources used by the Python
interpreter. This effectively means that the code can run only in one thread at a time
- the thread where the GIL is acquired. The execution of other threads is blocked until
the lock is released. Since Python is an object-oriented language and the Python standard
library takes advantage of it, working with Python objects is very common. Therefore,
using thread-based concurrency in Python usually does not result in performance benefits
associated with concurrency. [20, 8]

A s y n c h r o n o u s I n p u t a n d O u t p u t P r o c e s s i n g

Most of the information in this section was found in the book Using Asyncio in Python
by Caleb Hattingh. [8] One of the ways to allow concurrency that sidesteps the GIL is asyn
chronous input and output processing. Input and output operations, like reading from
a disk, are really slow in comparison to the speed of today's processors. Another and more
relevant example is network communication, where servers spend most of their time wait
ing for clients or other code that provides the content of the responses. Servers also need
to serve many clients at once, so concurrency is also necessary.

In web servers such as Apache 2, each connection is handled by a separate thread. [26]
Network communication is handled by blocking functions that stop the execution until

1CPython interpreter, more at: https://github.com/python/cpython
2The Apache HTTP server project, more at https://httpd.apache.org/

13

https://github.com/python/cpython
https://httpd.apache.org/

the result of the function is available. The operating system then handles switching be
tween threads to make the best use of the processor. Depending on the operating system
and resources available, this might be a true parallel approach when multiple threads run
on different cores of the processor. This approach has some drawbacks:

• Since the operating system switches between threads, a switch can occur at any time.
Applications must be properly designed to prevent race conditions. Race conditions
are difficult to diagnose and find since the execution path is non-deterministic.

• There is a limited number of threads that can be created. Each thread allocates
some space on the stack. This is less of a problem in modern systems with gigabytes
of operating memory. Operating systems also impose some limits on the maximum
number of threads.

• There is no way for the operating system to know when is the appropriate time
to switch between threads. There may be times when the thread is waiting for data
on a socket, and the operating system switches to it. This leads to inefficient use
of processor time.

The asynchronous input and output model does not rely on the operating system to provide
concurrency. The code is executed in a single process with a single thread. This is why
GIL in CPython is not a concern. To give a similar example, the same web server could be
implemented with Tornado in Python. It eliminates all of the drawbacks of multithreading
from the previous list:

• The functions decide when a switch to another function can occur. The execution
path is deterministic, so access to shared resources can be more easily controlled.

• There is no limit to how many coroutines can be created at once, except for the avail
able resources.

• Functions are only switched to if they can continue to execute.

To achieve concurrency, all code is executed in an event loop. Only special asynchronous
functions called coroutines can be executed by the event loop. The event loop is a special
mechanism that switches between coroutines and handles asynchronous events. A n example
of an asynchronous event is an incoming request to a server. In this model, the coroutines
need to be specially designed to return control to the event loop so that other coroutines
share the resources fairly.

Concurrency is achieved by quickly switching between coroutines. Because of that, it is im
portant that there are no coroutines that block the event loop for too long. To do that, non-
blocking functions can be utilized. Another way is to use asynchronous sleep, which forces
the event loop to switch to another coroutine for some period of time. These are the high-
level concepts, more details are implementation-specific. [9]

M u l t i p l e P roces ses

Another form of concurrency in Python uses multiple processes. The GIL does not prevent
true parallel execution because every process has its own Python interpreter. This is a very

14

different approach from asynchronous input and output suited for different kind of tasks.
In particular, tasks that require heavy computation can be finished sooner when multiple
processor cores can work on them at once. Similarly, tasks that do not need to share data
can be executed in parallel to speed up their processing.

However, there are some drawbacks to using multiple processes. Workloads that use shared
memory need to employ an interprocess communication method that consumes resources.
A l l of the dangers associated with switching threads also apply to switching processes.

3.3 The AsyncIO Library

In this section, a closer look will be taken at the AsyncIO library'^ provided in the Python
standard library since it was chosen for the implementation of the asynchronous scheduler.
There are alternatives to the AsyncIO library which will be mentioned along with the history
of AsyncIO library and why it was chosen. At last, the more implementation-specific
concepts of asynchronous input and output processing model will be further explained
based on the implementation of AsyncIO.

B r i e f H i s t o r y a n d A l t e r n a t i v e s

Long before the AsyncIO library was introduced, Twisted 4 was the go-to library for asyn
chronous programming in Python. It is a networking framework for callback-based asyn
chronous programming. It uses Deferreds - objects representing a return value that ex
ecute callbacks when the return value becomes available. Futures in AsyncIO are very
similar and many other architectural decisions were influenced by Twisted. Twisted cannot
be used because its integration was deprecated in Tornado 6.0 which is the version used
by P C S D . 5

The AsyncIO library was added to Python 3.4 as a provisional A P I . This status means that
backward-incompatible changes may occur in the next Python releases6. Python 3.5 added
some important syntax improvements in the form of async/await syntax. The release notes
for Python 3.6' remove the provisional status of AsyncIO, making it a stable A P I . Wi th
the level of support for the Python standard library and its mature status, this is the module
that was chosen to supplement Tornado. [8]

Curio 8 and Trio 9 are other well-known libraries that provide an implementation of the asyn
chronous input and output model. Curio was started as a project that would be smaller and
faster than AsyncIO. Curio is not designed to be compatible with other asynchronous l i
braries like Tornado making it not usable in P C S D . 1 0 Trio was mainly inspired by Curio, but

3AsyncIO library, more at: https://docs.python.Org/3.6/library/asyncio.html
4Twisted - event-driven networking engine, more at: https://twistedmatrix.com/trac/
5See Tornado documentation: https://www.tornadoweb.org/en/latest/twisted.html
Provisional API definition in Python documentation: https://docs.python.Org/3.6/

glossary.html#term-provisional-api
7Python 3.6 release notes: https://docs.python.Org/3.6/whatsnew/3.6.html#asyncio
8Curio on GitHub: https://github.com/dabeaz/curio
9Trio on GitHub: https://github.com/python-trio/trio

10From the Curio readme: https://github.com/dabeaz/curio/blob/master/README.rst

15

https://docs.python.Org/3.6/library/asyncio.html
https://twistedmatrix.com/trac/
https://www.tornadoweb.org/en/latest/twisted.html
https://docs.python.Org/3.6/
https://docs.python.Org/3.6/whatsnew/3.6.html%23asyncio
https://github.com/dabeaz/curio
https://github.com/python-trio/trio
https://github.com/dabeaz/curio/blob/master/README.rst

was further refined by focusing on usability and correctness. AsyncIO already provides
all of the features that will be needed in this thesis. Furthermore, Python core developers
constantly look at these libraries as an inspiration for future development of AsyncIO. 1 2

In the future, the novel concepts from these libraries could land in AsyncIO, further con
firming it good choice.

C o r o u t i n e s

Coroutines are Python functions defined with the async def keywords. Before Python
3.5, coroutines were defined with decorators Oasyncio.coroutine (when using AsyncIO)
or ©tornado.gen.coroutine (in Tornado before AsyncIO). They share a lot of code and
properties with generator functions. Generator functions are used to create iterators
in Python. They can remember their internal state and point of execution to return mul
tiple values to be iterated over. That is very similar to coroutines, which also remember
their internal state which allows for switching between them.

The switch between coroutines is achieved with the keyword await. The await keyword
suspends the currently executed coroutine and causes the event loop to execute and wait
for the result of the coroutine defined as its parameter. When that coroutine finishes,
the event loop resumes execution after the await in the calling coroutine. [8]

E v e n t L o o p

It was already briefly explained what the event loop is. The event loop not only facili
tates switching between coroutines, but also handles incoming asynchronous events. This
is the reason why Tornado is a very performant web framework. Coroutines for handling
connections are only switched to if they need to handle a connection, not when they are wait
ing for the network. Speaking about Tornado, since AsyncIO was introduced, Tornado uses
its event loop implementation, making integration of other libraries easier. That is also why
AsyncIO (or Python native) coroutines are preferred over Tornado's generator approach.

In the quick overview of asynchronous programming in section 3.2, it was mentioned
that coroutines should not block the event loop. Unfortunately, some workloads can
not be adapted to coroutines. The solution is to launch these tasks in a new thread
or process. A standard approach in AsyncIO is to use the process or thread pool from
the concurrent. futures module. [8]

F u t u r e s a n d Tasks

A Future represents the state and optionally a return value of a non-blocking function.
Its A P I allows for checking the status of the task and cancellation. Status is only binary,
the function can be completed or not completed. It is also possible to set callbacks that
are executed on the event loop when Future is completed.

11From the Trio readme: https://github.com/python-trio/trio/blob/master/README.rst
12Talk of the AsyncIO maintainer: https://youtu.be/m28fiN9y_r8

16

https://github.com/python-trio/trio/blob/master/README.rst
https://youtu.be/m28fiN9y_r8

In AsyncIO, Task is a subclass of Future. A Task is created when a coroutine is scheduled
to run on the event loop with the create_task function. For most uses, Tasks are recom
mended over Futures as a more high-level interface. [8]

C o m m u n i c a t i o n

AsyncIO provides queues similar to the ones from the Queue module of the Python standard
library. These queues are meant to be used for distribution of work between coroutines.
They are designed to work with asynchronous code but are not thread-safe. [16]

3.4 Asynchronous Task Processing

Going back to the name of this thesis, Asynchronous Task Processing in the PCS Project
mentions tasks. These tasks are not tasks from the AsyncIO library. Tasks are an ab
straction layer for status and eventual result of remote actions implemented as functions
in the l i b package of P C S . These functions can also be referred to as lib(rary) commands.
It was stated in the beginning of this chapter that lib(rary) commands are not implemented
asynchronously. Now that the concept of the event loop was explained, it can be said that
the lib(rary) functions would block the event loop. The worst kind of blocking could even
be tens of minutes long. Some lib(rary) commands accept a wait parameter that makes
the command wait until the changes are applied with a default timeout of 60 minutes.
During this time, the server would not respond to any requests, which is unacceptable.
It is clear that the tasks need to run outside the event loop. The alternative is to rewrite
lib(rary) commands to use async/await syntax. This would be a huge undertaking. Every
PCS component would need to be rewritten, and the benefits do not outweigh the costs
of this solution.

T a s k E x e c u t i o n

When describing the event loop, the concurrent .futures module was mentioned to allow
the execution of blocking functions from coroutines. From the description of concurrency
in Python, the thread pool executor can easily be disqualified due to the G I L 1 3 . A good
candidate seems to be the process pool executor from the same module.

One of the requirements of the P C S development team was that the processes that launch
the tasks should be daemonic. Daemonic workers allow for faster task processing since
incoming tasks do not need to wait until a worker process is created. The only concern with
daemonic processes is that if a library function manipulates the global state, subsequent
use of this worker may affect the later tasks. This is the reason for another requirement -
daemonic processes should be restarted after some number of processed tasks.

1 3GIL - global interpreter lock, see Section 3.2

17

When looking at the documentation of ProcessPoolExecutor, these requirements can
not be met. However, dissecting its CPython implementation reveals possible candidates
at a lower abstraction level:

• Level 4 - concurrent. futures .ProcessPoolExecutor - this is the highest level
of abstraction and the interface is designed to be used in AsyncIO.

• Level 3 - multiprocessing. Pool - this is the process pool that ProcessPoolExecutor
uses. Its setup provides options for aforementioned requirements. It is the best can
didate at this moment.

• Level 2 - multiprocessing.Process, multiprocessing.Queue - these are Python
high-level objects that represent processes, thread-safe data structures and synchro
nization primitives. If multiprocessing.Pool cannot be used, this is the lowest level
of abstraction that should be used in such a high-level language. The problem is that,
at this level of abstraction, a reimplementation of the process pool functionality would
be needed. That would cause an enormous increase in scope of this project. Especially
when the requirement of testing is considered. Even from a maintenance standpoint,
there is no reason to have such complex functionality unrelated to P C S to maintain.

• Level 1 - os.fork. . . - Python wrappers for system calls - mentioned here just
for completion

• Level 0 - the C implementation - all Python wrappers translate to the C calls made
by CPython, and this is mentioned here just for completion again.

The process pool of the Multiprocessing package has many methods to submit tasks. These
are representative of these widely recognized types of parallelism in programming languages:

• Data parallelism - the same operation is applied to independent elements of a large
data structure. Because the operations are independent, parallelism can help to obtain
results in a much shorter amount of time. These are the Pool methods that contain
the word map.

• Functional parallelism - also called task parallelism - allows one to run independent
program parts in parallel. These are the apply and apply_async methods.

Even by its name, tasks in P C S are a representation of task parallelism. Even in the old
architecture, multiple commands can be launched at once by running the utility in different
terminals. There is no need to manage which commands can be run at the same time.
They can be considered independent blocks of code since PCS or the utilities it uses safely
handle access to shared resources.

From the description of tasks, the apply_async method is the most suitable for sending
tasks to be processed in a worker process. This is an implementation of a task pool - tasks
are being put into a shared task pool where a predetermined number of processes retrieve
tasks for execution. [18, 21]

18

O b t a i n i n g R e s u l t s o f Tasks

The apply_async method returns an AsyncResult object. This object can be used to ob
tain the result of the task. The get method waits for the result and returns it. This method
cannot be used in the asynchronous scheduler since it would block the event loop. It is pos
sible to implement an asynchronous waiting mechanism using the ready method. However,
an even better approach is to have the task notify the scheduler about its completion. This
can be achieved by sending a message to the scheduler.

T a s k K i l l i n g

The mechanism for killing tasks is an optional extension of the asynchronous scheduler.
The decision to implement it was made early on since it affects the architecture very signif
icantly. Lib(rary) commands still need to be terminated from time to time. Unavailability
of cluster nodes or network instability may cause commands to never finish. Another en
tirely different use case is for users who want to stop a P C S command they launched. This
is convenient for a command that is running for too long or when a user notices a mistake
in the command.

The chosen process pool does not provide any interface for controlling worker processes.
In the same way that PCS can be terminated on the console by pressing Ctrl+C and
the terminal issuing a SIGINT signal, the scheduler can send a signal to the worker process.
The only problem is that the PID of the worker must be known to the scheduler. Before
the command is executed by a worker process, it can send a message to the scheduler with
its PID.

In te rp rocess C o m m u n i c a t i o n

In the previous subsections, sending messages to the scheduler was proposed. Another re
quirement of lib(rary) commands is the ability to send reports back to the asynchronous
scheduler so that clients can retrieve them while the command is running. These mes
sages require a form of interprocess communication, as the messages are passed between
the worker processes and the P C S D process.

The P C S D process requires an asynchronous messaging interface. The AsyncIO library
provides queues for use in coroutines, as was explained in Section 3.3 (Queues). The problem
is that these queues are not thread-safe. The queue is supposed to be a bridge into worker
processes and race conditions could occur since switching between processes is handled
similarly as switching between threads.

A very quick search on the Internet returns the Aioprocessing 1 5 library. This library uses
thread pool executors to provide asynchronous interfaces to the objects that only provide
blocking methods from the Multiprocessing package. Due to the use of threading which
adds extra overhead due to GIL, it was eliminated from the list of candidates.

Since the Multiprocessing package is already used, it is logical to look at its implementation
of interprocess communication. Documentation of the Multiprocessing package suggests

1 4PID - process identifier
15Aioprocessing library, more at: https: //github.com/dano/aioprocessing

19

using pipes or queues for message passing. Pipes allow only a single producer and consumer,
so they would need to be set up for each worker separately. Queues were chosen because
the process pool is a multi-producer environment, and the asynchronous scheduler is going
to be the sole consumer of these messages. In addition to blocking methods, the Queue
class also provides non-blocking methods put_nowait and get _nowait that can be used
in the asynchronous scheduler.

Sockets could also be used to transfer messages. Although AsyncIO can handle sockets
asynchronously, a message-passing protocol would need to be designed to exchange mes
sages. Queues provide a higher level of abstraction while providing all of the features that
are needed.

3.5 Proof of Concept

So far, many theoretical solutions have been presented. To test if they work, a proof of con
cept was implemented. The proof of concept only uses the AsyncIO library to test the
asynchronous task processing, task killing, and interprocess communication methods pro
posed up to this point. Details of its implementation and test results that demonstrate that
the chosen approach works can be found in Section 4.1. Some key details will be mentioned
here to show how they influenced the design decisions described later.

S t r u c t u r e

The scheduler .py module contains the asynchronous scheduler object. This object handles
process pool management, interprocess communication, creating tasks, and storing tasks
status. Internally, every task is represented by a Task object implemented in the task.py
module. Data types used for interprocess communication are defined in the messaging.py
module. Instead of a R E S T A P I , the tasks are generated and fed into the scheduler using
the test_scheduler .py script. Tasks that mimic the possible scenarios of real lib(rary)
commands are implemented in the module workloads .py. Lastly, the common.py module
contains common functions and structures used by other modules.

T h e S c h e d u l e r

The asynchronous scheduler is enclosed in the Scheduler class. The Scheduler class has
the update method that periodically runs in the event loop and handles all responsibilities
of the scheduler which are:

1. Scheduling tasks for execution that were submitted to the scheduler.

2. Scheduling retrieval of messages from the queue. (worker_communicator) from work
ers

20

In te rp rocess C o m m u n i c a t i o n

For simplicity of access to data fields, messages are ordinary Python classes. Ordinary
classes were also chosen because they can be easily serialized by the Pickle module used
by multiprocessing.Queue. [18, 19]

A l l messages used for interprocess communication are instances of the Message class.
Message contains only a task identifier of the receiving task and a payload. There is no need
to include a payload type since the object type is preserved by the Pickle module. The pay-
load is StatusUpdate or Report. StatusUpdate carries a new task state and a PID
of the worker. Report just a string in its message field and simulates a P C S report.
Messages are received and handled by the scheduler. The scheduler then updates task
information through their public interface.

The original intention was to use a Queue from the Multiprocessing package. Attempts
to use it in the proof of concept generated a run-time error: „Queue objects should only
be shared between processes through inheritance". The error is generated because the queue
was sent to the worker process as a parameter of apply_async call. The Pickle module
used by the multiprocessing.Queue was not able to serialize this object.

The solution is to use the multiprocessing. Manager .Queue object. This object wraps
the multiprocessing.Queue in a proxy object that can be pickled. 1 6 [18]

T a s k K i l l i n g

The task killing was tested by issuing the k i l l command from the terminal. The only
parameter this command takes is the number of the signal to be sent. From the list
of signals, three were chosen to test how the worker processes of the process pool react
to them:

• SIGKILL - killing a task is considered a last resort in the same way as the ki l l signal
is for terminating a process.

• SIGINT - usually mapped to Ctrl+C in terminal emulators, is a pretty common way
for users to terminate programs running in the terminal.

• SIGTERM - terminates a process gracefully. Default signal used by the k i l l command.
After issuing the SIGTERM signal during testing, the output showed that a new worker
was started.

The testing has shown that the SIGTERM signal is safe to use for killing a process. Right
after the signal was issued, a new worker process was spawned by the process pool. Full
findings are presented in the test report of the proof of concept in Section 4.1.

16Answer by michael (https://stackoverflow.com/users/4804903) on Stack Overflow: https://
stackoverf low. com/a/45236748

21

http://stackoverflow.com/users/4804903

3.6 Design of the Asynchronous Scheduler

With knowledge of the concepts used by the asynchronous scheduler, its components can
be designed. First, the basic principle of work was illustrated by a sequence diagram
that shows how the scheduler operates with the process pool. The design of classes was
inspired by the proof of concept and was further extended to a class diagram. When the
classes were designed, a package diagram was created to distribute them into modules and
illustrate imports. A l l of these diagrams were created using the Unified Modelling Language
(UML).[1] Because of their size, they were inserted into Appendix A . These diagrams will
be referred to throughout this section.

T h e S c h e d u l e r C o r e

The entire scheduler logic is included in the Scheduler class. Its public interface follows
the user expectations that are the same as for the R E S T API :

• Run a lib(rary) command that is represented by a task identifier.

• Check the status of a running task.

• Optionally, provide a method for cancelling a running task.

From these actions, the public interface of the scheduler that the R E S T A P I is going to use
was created:

• new_task(command_dto:CommandDto) -> str - creates a task and returns its iden
tifier.

• get_task(task_ident: str) -> TaskResultDto - returns the status of a task.

• kill_task(task_ident: str) -> None - marks a task to be killed.

The task_ident name for a task identifier was chosen as a replacement for task_id. While
task_id is an acceptable variable name, its concatenation to id is not. There is a name
collision with a built-in function id() in Python. Python interprets id as a pointer to the id
function instead of an identifier.

The following properties and methods are responsible for the process pool management,
task management, and interprocess communication:

• _proc_pool - contains reference to the pool of workers.

• _proc_pool_manager - contains the manager of shared resources for the process pool.

• _created_tasks_index - a list of task identifiers in the created state. Traversing and
querying state of all the running tasks may be quite an expensive operation. Task
identifiers that need to be sent to the worker pool can be quickly obtained here.

• _task_register - a dictionary of task objects addressed by the task identifier. Holds
all of the tasks that are known to the scheduler.

22

• _worker_message_q - queue used for sending messages from workers to the scheduler.

• _logging_q - queue used for sending log records from workers to the scheduler.

• _logger - a reference to the P C S D logger.

• perform_actions() - coroutine that performs all responsibilities of the scheduler.
This method should run periodically on the event loop.

• _receive_messages () - coroutine responsible for emptying worker_message_q that
contains messages from workers.

• _schedule_tasks() - coroutine responsible for sending tasks to the worker pool.

• _garbage_collection() - coroutine responsible for killing tasks and deleting tasks
that were either running too long or did not have their result retrieved by the client.

• terminate_nowait () - cleanly terminates the scheduler, used for resource cleanup
on daemon exit.

One crucial difference between the class diagram and this description of class attributes
can be spotted. The class diagram illustrates access restrictions to a class attribute with
a plus for public attributes and a minus for private attributes. In Python, there are no truly
private attributes with access restriction enforced during runtime. Attributes that should
be considered non-public by the callers and inheriting classes should have a leading un
derscore. That is why leading underscores are used here but not in the class diagram
in Figure A.4. [6]

The perf orm_actions is the equivalent of the update method in the proof of concept and
it schedules the schedule_tasks, receive_messages and garbage_collection methods.
The asynchronous scheduler adds a garbage collector to remove task objects past their life
time. A more detailed explanation of how these methods work can be found in the sequence
diagram in Figure A.3.

T a s k S c h e d u l i n g

When the scheduler receives a task description, the task representation is created and
the task identifier is placed in a queue for scheduling. The scheduler then runs the
schedule_tasks method to send the tasks to the worker pool. This is a familiar con
cept taken from the proof of concept.

In t e rp rocess C o m m u n i c a t i o n

The original idea used for the proof of concept was that the scheduler as the receiver
of messages should also process them. The scheduler would only manipulate tasks through
their interface. This separation of responsibilities added unnecessary interfaces to the task
class. If messages can be passed into tasks, the task can update its private parameters
without the need for a public interface.

23

Unchanged form the proof of concept, the Message object contains only the task identifier
and a payload. Adding a payload type was considered because treating an object on the ba
sis of its type is not considered good practice in Python. Duck typing is preferred, when
the object type should be treated by its content. This would be however quite impractical -
message handlers would have to be tried one by one until one of them accepts the message.
So, the decision was made to keep Message same as in the proof of concept except that
now it is a frozen data class.

Message can contain three payload types that are better suited to their purpose than those
used in the proof of concept:

• TaskExecuted - sent by the worker right before the lib(rary) command is executed.
Its only field is worker_pid to tell the scheduler in which process the task is going
to run.

• TaskFinished - sent by the worker when the lib(rary) command finishes or raises
any exception. Contains fields:

— task_f inish_type - contains more information about how the lib(rary) com
mand finished.

— result - contains a return value of the lib(rary) command, None if the command
did not finish.

• ReportItemDto - sent by the report processor in the worker. This type is imported
from PCS.

The new TaskExecuted and TaskFinished message types remedy the limited usability
of the StatusUpdate message from the proof of concept. The task state change is repre
sented by the type of the message now and every message only contains relevant information.
StatusUpdate would need to be modified to also contain the return value if it was used
in the asynchronous scheduler. The downside would be that every time this message was
sent, it would contain unnecessary information.

T a s k K i l l i n g a n d G a r b a g e C o l l e c t i o n

The concept of task killing by sending signals was taken from the proof of concept. Task
killing can be requested by garbage collection or the R E S T A P I by calling request_kill
method on the Task object. Garbage collection in a second step requests the Task object
to kil l the worker with its k i l l method. A better description is provided based on the im
plementation in Section 4.3.

There are two timeouts that determine when the task is killed by the scheduler:

• Unresponsive timeout - the only way to detect a task malfunction is to calculate
the time since the last message was delivered. Tasks that do not produce reports and
need to wait for long periods of time can be modified to send more messages. Garbage
collection is responsible for detecting this timeout and killing the task.

• Abandoned timeout - useful when the connection to a client is lost - the task becomes
abandoned. In the finished state, the timestamp of the last message always belongs

24

to the TaskFinished message, so it is indicative of the time when the task has fin
ished. To prevent abandoned tasks from piling up, the task result is available only
for this period of time before the task is deleted by the garbage collector. The task
does not need to be killed in this case.

Garbage collection is not responsible for deleting tasks that have been completed. These
tasks are deleted by the get_task method of the Scheduler class when the task state
is FINISHED. There is no reason for the client to need the result again and it makes
the garbage collector use less resources.

T a s k R e p r e s e n t a t i o n

Any lib(rary) command launched through the R E S T A P I is represented in the asynchronous
scheduler by the Task class. Its main purpose is to store information about the progress
of the task that clients can query. Its second purpose is to store information relevant to task
management. The tasks are stored in Scheduler. _task_register which is a dictionary
where the key is the task identifier and the value is the Task object.

The Task class has the following instance variables:

• _task_ident - stores the identifier used by the client and scheduler to deliver mes
sages to the right task.

• _command - stores information about the command and its parameters.

• _reports - a list of reports generated during the command runtime.

• _result - contains the return value of the command when or if it finishes.

• _state - represents the state of the task.

• _task_f inish_type - carries information about how the command finished.

• _kill_reason - signals that a kil l was requested and why.

• _last_message_at - timestamp of the when the latest message was delivered from
the worker process.

• _worker_pid - contains the PID of the worker where the command is running.

Supported methods for tasks are:

• state (new_state) - sets the task state to new_state.

• state() - returns the task state.

• task_ident() - returns the task identifier.

• _is_abandoned() - returns whether the timeout was reached for tasks that were
finished but never picked up by a client and removed from the scheduler.

• _is_defunct () - returns whether the timeout for a task that is running for too long
was reached.

25

• _is_kill_requested() - return whether the task was marked for killing

• request_kill (reason) - marks task for killing with reason.

• k i l l () - kills the worker process if needed.

• receive_message(message_payload) - distributes message_payload to following
message handlers:

— message_executed - handles TaskExecuted message.

— message_f inished - handles TaskFinished message.

— store_reports - saves reports generated by the lib(rary) command in the task.

• to_dto() - converts this Task instance into a TaskResultDto.

T a s k Sta tes a n d L i f e c y c l e

The task state is represented by one of these states during its lifecycle:

• Created - the task has been created and put in the incoming task queue of the asyn
chronous scheduler.

• Queued - the task has been applied to the process pool.

• Executed - a worker reported that task processing have started.

• Finished - a worker has completed the task.

Lifecycle of tasks and how their state changes is pretty complicated and cannot be linearly
described in text without being confusing. A better representation is a state machine
diagram that can be found in Figure 3.1.

E x t e r n a l F a c i n g D a t a S t r u c t u r e s

External facing data structures are used to pass data from and to the R E S T A P I . PCS uses
data transfer objects 1 7 for this purpose, so this was also adopted for the scheduler.

The first data structure that is encountered when dealing with the scheduler is used to send
data about the task. Its name is CommandDto and it contains these members:

• command_name: str - contains the name of the lib(rary) command

• params :Dict [str, Any] - contains the argument list and values that will be inserted
into the function. The intention is to unpack this dictionary into the function call.
The side effect of this decision is that positional arguments must be named. If a de
fault value should be used for any argument, it should be completely absent from
the dictionary.

17Significance of data transfer objects in PCS was explained in Section 2.4 (Use of Type Hints and Data
Transfer Objects)

26

Receive CommandDto object !^
Generate ID
Create Task and insert it into
taskregister and its taskident
into created tasks index

QUEUED

Select task from
taskregister with ID from
receivedtasksindex
Convert Task to
WorkerCommand and
apply to the worker pool

USER KILLS TASK 1\
• Set taskf in ishtype of Task

to USER
• scheduletasksO won't

apply task to the pool

get_taskO NOT CALLED
UNTIL TIMEOUT

garbage_collectionO deletes
the Task from task_register

gettaskO deletes the Task
from taskregister

>

Receive TaskExecuted
message

EXECUTED

USER KILLS TASK 1\
• Set taskf in ishtype of Task

to USER
• Task is killed by

garbagecollectionQ

Receive TaskFinished
message

USER/SCHEDULER KILLS TASK L

• Worker is killed with SIGTERM
• Task is marked with appropriate

task_finish_type

Figure 3.1: Task life-cycle diagram This sequence diagram shows the lifecycle of Task
objects are created and what causes them to change their state.

The TaskResultDto structure is used to return the result of the task to the client. It is cre
ated by serializing the Task object with data fields only relevant to the scheduler left out.
These are the fields that are missing:

• last_message_at - used by the scheduler to calculate timeouts, it has no relevance
to the client

• worker_pid - used by the scheduler to send kil l signals, this is useless for the client
since the PID of the worker is recorded in logs

The scheduler uses enumeration types for constant values used throughout data fields
of the Task and TaskResultDto objects:

• TaskState - represents the state of the task. Its values were already explained in Sec
tion 3.6. Used for task lifecycle management and informing clients about processing
status.

• TaskFinishType - further specifies how the lib(rary) command ended.

• TaskKillReason - used to mark the task to be killed. At the same time, it contains
information about the origin of the kil l request. Clients may find this information
useful.

27

TaskFinishType is UNFINISHED until the task enters the FINISHED state. If the com
mand finishes successfully, the finish type is SUCCESS. Lib(rary) commands fail by raising
a LibraryError exception, so in that case, the task has a FAIL finish type. In case that
a different - unhandled - exception occurs, task has an UNHANDLED_EXCEPTION finsh type.
If the task was killed, this is indicated by the KILL finish type.

The TaskKillReason is set to None initially. Only if the task is marked to be killed,
the ki l l reason is set. K i l l reason is USER if the killing was requested through the R E S T
A P I , C0MPLETI0N_TIME0UT if the task ran for too long and INTERNAL_MESSAGING_ERROR
if an unknown message was received from a worker. There is no kil l reason for an abandoned
task since the task does not need to be killed. In that case, the task can be just deleted
from the task register.

I n t e r n a l D a t a S t r u c t u r e s

Internal data structures used to communicate between the scheduler and its worker pool
were already described in Section 3.6.

Another data structure is needed to pass information about the task on to the worker.
This structure is called Worker Command and includes the CommandDto structure through
composition in its command field. The main reason for why this structure exists is that
CommandDto cannot be modified and the worker needs the task identifier to send messages
back to the scheduler. So, another field in WorkerCommand is task_ident. This data
structure is only a data class, not a data transfer object, since it is serialized by the Pickle
module.

So far, many classes were presented. To better understand their relationships, the complete
visualization of the classes can be found in a class diagram in Figure A.4.

L o g g i n g

Initially, scheduler and workers each had their own log files. This is quite impractical
for use in production. The P C S daemon already has a log file, so it was desirable to merge
worker and scheduler logs into it. The problem is that logging into a file in Python is not
supported from multiple processes. Python does not have a cross-platform implementation
of locks for multiple processes, so logging into a file from multiple processes can cause data
corruption. [23, 22]

The solution presented in the Python documentation suggests using a queue to send logs
to a logging process. Workers get a QueueHandler object that processes normal logger calls
and sends them into a queue. The P C S daemon gets a QueueListener that reads logs from
the other side of the queue. The logs are written by the logging process, so the data race
is eliminated.

S t r u c t u r e a n d P C S D I n t e g r a t i o n

The layout of the modules of the asynchronous scheduler was inspired by the proof of con
cept. The core scheduler files are integrated into P C S D as the pes.daemon.async_tasks

28

module. Some type definitions were moved into deeper layers of P C S for better reusability
and import relationships. These are the changes compared to the proof of concept:

• Code that runs in the worker processes got separated into its own module worker .py.

• Mapping definitions to lib(rary) commands is implemented in command_mapping. py
module. This serves the same purpose and fully replaces the workloads.py file.

• External facing data structures were moved into the pes. common. types module where
they can better import the data transfer object types and are more easily accessible
by external modules.

• Report processor used by the worker reimplementing the abstract ReportProcessor
class was implemented in the report_proc.py module.

• Logging functionality was implemented in the logging.py module.

The complete view of what is defined in which module and the import relationships can
be found in the package diagram in Figure A . l .

3.7 The R E S T A P I Design

The R E S T A P I is the entry point for the implementation of this thesis and its design
is analogous to the public interface of the asynchronous scheduler described in Section 3.6.

It is assumed that the concepts of R E S T APIs are well known, so in this section, only
the design aspects will be discussed. The set of rules used throughout this section comes
from the R E S T A P I Design Rulebook by Mark Masse [14].

R e s o u r c e N a m i n g

With the client expectations described, the A P I can be designed. For a quick refresher
on terminology; resource is any entity placed on the world wide web that may be addressed
by a unique identifier, such as a U R I 1 8 . R F C 3986 defines the URI syntax as:
URI = scheme „ : / / " authority „/" path [

 M
?" query] [

 M
#" fragment].

These names will be used throughout this subsection.

The first set of rules is related to the URI design. The scheme and the authority are already
determined by the implementation of the P C S daemon since this A P I integrates there.
For historical reasons, all P C S D services run on port 2224, making the scheme and authority
part of the URI: https://<node-hostname-or-ip>: 2224/.

The next part of the URI is the path. The existing paths in P C S D are:

1. /ui/* - the web interface front-end - Tornado redirects these requests to Ruby
for the old web interface (PCS 0.10) or serves the TypeScript 1 9 files of the new web
interface (PCS 0.11).

1 8URI - Uniform Resource Identifier, more at: https://www.ietf.org/rfc/rfc3986.txt
19TypeScript - strongly typed language built on JavaScript, more at: https://www.typescriptlang.org/

29

https://%3cnode-hostname-or-ip
https://www.ietf.org/rfc/rfc3986.txt
https://www.typescriptlang.org/

2. /run_pcs - running PCS commands remotely.

3. /remote/* - special remote actions that have to be handled separately.

4. /api/* - Ruby web interface back-end (since PCS 0.11).

Since this is the new A P I for asynchronous task management, async was chosen as the first
part of the path to separate it from other uses of P C S D . The next step in the hierarchy
is the task resource that groups all the task commands. Thanks to this approach, support
for other async actions or task actions can be added in the future. The last step in the hi
erarchy are the controller resources. „A controller resource models a procedural concept.
Controller resources are like executable functions, with parameters and return values; in
puts and outputs." [14] Therefore, the last part of the path is always defined as an action
or a function call. The expectations that were defined earlier can be translated pretty easily
into three A P I endpoints:

Method Endpoint Parameters Return value

POST /task/create
command,
parameters

task
identifier

GET /task/result
task

identifier
task state
structure

POST /task/kill
task

identifier none

Table 3.1: Summary of the proposed A P I

Methods in this A P I mostly follow the C R U D 2 0 equivalent H T T P methods. The methods
were chosen based on the type of action:

• create - POST was used to execute a controller resource.

• result - while the whole A P I was intended to be controllers that should use the POST
method for execution, it is better to use GET here. The intended effect is to look
at the state of a controller resource which is exactly what the GET method should
be used for.

• k i l l - again, POST was used here to execute a controller. The semantically closest
H T T P method is DELETE, but it does not fully capture what is happening in the back
ground. Calling this endpoint only sends a request to kil l a task. This is an asyn
chronous request that might not be performed immediately. Also, the task object
is not deleted with this request, so the DELETE method does not make a lot of sense
here.

For all endpoints, with the exception of result, the request body is expected in J S O N 2 1

format. These requests must contain the Content-Type header set to application/json.
For the result endpoint, the task identifier is a query parameter, since the GET request
body must be empty. [14]

2 0 CRUD - create, retrieve, update, delete
2 1 JSON - JavaScript Object Notation, more at: https://tools.ietf.org/html/rfc8259

30

https://tools.ietf.org/html/rfc8259

E r r o r R e s p o n s e s

This A P I places a strong emphasis on the verbosity of the responses when errors occur.
The common response body of an error is as follows:

{

"http_code": 415,

"http_error": "Unsupported Media Type",

"error_message": "The 'Content-Type' request header must be set to
 1

application/j son'.",

}

Listing 3.1: Example of an error response

H T T P response code and the corresponding message are included in the response to provide
a complete picture just from the response body. The error_message gives users of this A P I
a clear idea of what went wrong. Even though the only people who see this are developers,
it is much nicer to know why the code is not working. The complete list of common errors
for all endpoints is here:

http_code error_message

400 Required key '< missing-key>' is missing in request body.
400 Request body contains unexpected keys: '<key-l>', '<key-N>'.
400 Malformed request body.
400 Malformed JSON data.
415 The 'Content-Type' request header must be set to 'application/json'.

Table 3.2: Summary of common errors for all A P I endpoints

The R E S T A P I Design Rulebook [14] recommends using the most suitable H T T P error
code for all types of A P I errors. There were no codes corresponding to the malformed body
of the request, so a general client-side error code 400 was used in these cases.

To complete the list of possible errors returned by the R E S T A P I , these are endpoint-specific
errors:

Endpoints http_code error_message

status 400 U R L argument '<url-argument>' is missing.
create 404 Task with this identifier does not exist.
k i l l

Table 3.3: Summary of endpoint-specific errors

31

R e t u r n T y p e s

The rationale behind the TaskResultDto object was already described in subsection about
external facing data structures of the scheduler in Section 3.6. To complete the design of
the A P I , its JSON representation is provided here:

1 {

2 "task_ident": "aafef8cl5992413c8d27cl56671068bb",

3 "command": {

4 "command_name": "cluster status",

5 "params": {}

6 },

7 "reports": [

8 {

9 "severity": {

10 "level": "ERROR",

n "force_code": null

12 },

13 "message": {

14 "code": "CRM_M0N_ERR0R",

15 "message": "error running crm_mon, is pacemaker running?\n Could not

connect to pacemakerd: Connection refused\n crm_mon: Connection

to cluster failed: Connection refused",

16 "payload": {

17 "reason": "Could not connect to pacemakerd: Connection refused\

ncrm_mon: Connection to cluster failed: Connection refused"

18 >

19 },

20 "context": null

21 },

22] ,

23 "state": "FINISHED",

24 "task_finish_type": "FAIL",

25 "kill_reason": null,

26 "result": null

27 >

Listing 3.2: Example of the task status returned by the A P I . A serialized P C S report is
also visible in this example.

TaskldentDto is a very simple structure that only contains the task identifier. The only
reason for its existence is that it unifies the deserialization process of request bodies across
all request handlers. Here is an example of the JSON representation:

1 {

2 "task_ident": "aafef8cl5992413c8d27cl56671068bb",

3 }

Listing 3.3: Example of the task identifier used in A P I requests and responses

32

Chapter 4

Implementation and Testing

The first part of this chapter will focus on the implementation and testing of the proof of con
cept. In the following part, implementation of the asynchronous scheduler will be explained
and often compared to the proof of concept, showcasing the improvements. Implementation
of the R E S T A P I will be explored next. The last component that was developed was simple
client used for testing the R E S T A P I along with the asynchronous scheduler. This leads
into the testing section where the automated tests are described and some manual testing
of the R E S T A P I is performed.

4.1 Proof of Concept

The proof of concept was the testing ground for many concepts used for the asynchronous
scheduler. It is a much simpler version of the scheduler that allows for easier debugging.
This section gives a closer look at its most interesting parts.

T e r m i n o l o g y

In the design phase for the asynchronous scheduler, a lot of names were changed to be less
confusing. To understand the proof of concept, this is the table that maps these newer
names to the old ones:

New name O l d name

WorkerCommand TaskAs s ignment

TaskExecuted

TaskFinished
StatusUpdate

Scheduler.new_task(...) Scheduler.new_assignment(.. . .)
Task.message_executed(...)

Task.message_finished(...)
Scheduler.update_handler(.. . .)

Task.store_reports(...) Scheduler.report_handler(.. . .)

Table 4.1: Mapping of names from the implementation to the proof of concept

33

T h e S c h e d u l e r M o d u l e

The main method that periodically executes all scheduler coroutines on the event loop
is the update method. The name was chosen because it updates the state of tasks, which
in turn update the status of the scheduler.

async def update(self) -> None:

while True:

if len(self._assignment_q) > 0:

asyncio.ensure_future(self._schedule_task())

if self._receive_messages:

Unreliable number of pending messages
messages_pending = self._worker_communicator.qsize()

retrieve_limit = messages_pending i f messages_pending < 5 else 5

for i in range(retrieve_limit):

asyncio.ensure_future(self._get_worker_message())

await asyncio.sleep(0.1 * retrieve_limit)

i f messages_pending - retrieve_limit > 5:

asyncio.ensure_future(self.update())

return

await asyncio.sleep(0.2)

First optimization is using the _assignment_q, if it is empty, the task scheduling never
runs. There was also an optimization attempt for interprocess communication that would
lighten the load on the event loop. The _receive_messages and workers_idle variables
of the Scheduler class were used to stop and start checking the messages in the worker
message queue. Wi th every apply_async call, receive_messages was set to True. When
the task was executed, the workers_idle counter would decrease. When the scheduler got
a message that the task was finished, the counter was increased and if it reached the original
worker count, checking for messages was halted.

The scheduling of message retrieval is quite complicated because it tries to minimize
the number of waiting messages without taking too much time on the event loop. First,
an estimate of waiting messages is taken by using qsize (). The maximum number of mes
sages for one run is capped to five. Then the sleep with duration multiplied by number
of messages is used to switch to other coroutines - mainly to the recently scheduled mes
sage retrievals. If there are more messages in the queue, the update method immediately
reschedules itself on the loop to retrieve them, removing the pressure from the queue. If not,
the infinite loop starts the update method again after the control resumes after the sleep.

W o r k e r I m p l e m e n t a t i o n

For testing purposes, three functions were created, representing situations that can happen
in a lib(rary) command:

• „normai" - sends a StatusUpdate message and simulates work by calling the sleep
function, then exits. This is indicative of a command that finishes successfully.

34

• „exception" - immediately raises an exception. The exception is caught by the worker
and a report is sent. Tests the error callback function of the process pool.

• „hang" - after a while, the function enters an infinite loop with the sleep command.
Can be used to test signals for killing tasks.

The worker process is initialized with the worker_init function. This function only prints
that the worker started.

The functions are executed by the task_executor function that looks up the correct func
tion to execute based on the TaskMeta structure that defines command, its parameters and
task identifier. Since lib(rary) commands can raise a LibraryException, this is simulated
by handling CustomException that can be raised by the testing functions.

The notion of task numbers from the make_tasks function is not carried into a worker,
only the task identifier is available here. Any printing that needs to be done here cannot
use the

In case of an unknown exception, apply_async call has a parameter error_callback which
is set to a simple function that just prints the exception message for testing purposes.

4.2 Testing the Proof of Concept

Since the proof of concept was the testing ground for all concepts, the most important tests
that were performed are presented here. A l l logs provided here have this line format: time
since the script started | PID | message.

Tunable parameters of the proof of concept and their default values are:

• TASK_SPEC = 6 * („normal",) - an array of task types which will be applied to
the process pool. The task types were described in Section 4.1.

• SECS_BETWEEN_TASKS = 0.5 - delay between generating tasks.

• SECS_TASK_RUNNING = 2 - duration of simulated non-asynchronous activity by using
time.sleep().

• W0RKER_C0UNT = 2 - number of processes in the process pool.

• REGENERATE_WORKER_AFTER = 2 - how many tasks are processed before the worker
process is refreshed.

• UNHANDLED_EXCEPTION = False - produces an unhandled exception in „exception"
task type.

• 0PT_0N = True - toggle for messaging optimizations, False turns the optimizations
off.

Tes t 1 — P a r a l l e l E x e c u t i o n

This test uses all of the default parameters and demonstrates that the proof of concept
works. It can be seen in the output that two tasks are always running. In fact, the workers

35

are restarting after processing two tasks. Processing of six tasks that sleep for 2 seconds
must take at least 12 seconds if they are processed sequentially. Perfect linear scaling
would suggest that two workers should be able to do it in 6 seconds. Of course, the perfect
linear scaling cannot be achieved because of context switching and multitasking, the testing
system is not executing just this program. The last task was finished after 7.3 seconds which
is pretty close, even closer if the half-second until the first task was applied to the process
pool is subtracted.

0 000003 230824 Parent starting

0 001597 230826 Worker starting

0 002059 230827 Worker starting

0 008438 230824 Created a process pool.

0 008765 230824 Created the event loop.

0 008817 230824 Spinning up the event loop.

0 509567 230824 Applied 'normal task 1

0 627240 230826 Task 1 started.

0 813134 230824 Task 1 reported status EXECUTED

1 010914 230824 Applied 'normal task 2

1 131172 230827 Task 2 started.

1 318309 230824 Task 2 reported status EXECUTED

1 512310 230824 Applied 'normal task 3

2 013323 230824 Applied 'normal task 4

2 514157 230824 Applied 'normal task 5

2 632621 230826 Task 3 started.

2 825695 230824 Task 1 reported status FINISHED

2 826369 230824 Task 3 reported status EXECUTED

3 015207 230824 Applied 'normal task 6

3 140288 230827 Task 4 started.

3 226653 230824 Task 2 reported status FINISHED

3 226860 230824 Task 4 reported status EXECUTED

4 721836 230861 Worker starting

4 724630 230861 Task 5 started.

4 833383 230824 Task 3 reported status FINISHED

4 833604 230824 Task 5 reported status EXECUTED

5 221804 230873 Worker starting

5 223671 230873 Task 6 started.

5 234646 230824 Task 4 reported status FINISHED

5 234791 230824 Task 6 reported status EXECUTED

6 841831 230824 Task 5 reported status FINISHED

7 345442 230824 Task 6 reported status FINISHED

Tes t 2 — S i n g l e W o r k e r

This test really proves that tasks are running in parallel because the overall execution time
is much higher, closer to the theoretical time of tasks running sequentially.

0.000002 | 230668: Parent starting.

0.001372 | 230670: Worker starting.

36

0 007896 230668: Created a process pool.

0 008216 230668: Created the event loop.

0 008268 230668: Spinning up the event loop.

0 509378 230668: Applied 'normal task 1

0 623358 230670: Task 1 started.

0 815754 230668: Task 1 reported status EXECUTED

1 010885 230668: Applied 'normal task 2

1 511925 230668: Applied 'normal task 3

2 013692 230668: Applied 'normal task 4

2 514392 230668: Applied 'normal task 5

2 631205 230670: Task 2 started.

2 728607 230668: Task 1 reported status FINISHED

2 729386 230668: Task 2 reported status EXECUTED

3 015365 230668: Applied 'normal task 6

4 720918 230716: Worker starting

4 723719 230716: Task 3 started.

4 739835 230668: Task 2 reported status FINISHED

4 740734 230668: Task 3 reported status EXECUTED

6 733500 230716: Task 4 started.

8 832632 230733: Worker starting

8 835424 230733: Task 5 started.

10 843512 230733: Task 6 started.

12 945223 230754: Worker starting

The keen-eyed readers might have noticed that the execution time is, in fact, correct, but
why are there no messages from tasks after task 3? There is a simple explanation that also
shows why these optimizations are not part of the final implementation.

After the message that the first task finished, the only worker is idle, so scheduler stops
listening for messages. This is expected. The next call to apply_async is made and sched
uler starts to listen for messages. Then the make_tasks coroutine outpaces the processing
time of tasks in the pool and applies tasks faster than they can finish.

Yes, setting the scheduler to receive messages with every apply_async operation might
look like it guarantees that every time a new task arrives, the scheduler starts listen
ing for messages. When task 6 is applied to the process pool, this is the last time that
_receive_messages is set to True. Since the message retrieval coroutine is scheduled
ahead, message that task 3 was executed makes it through but then the scheduler starts
to think that all workers are idle. That stops checking the queue for new messages. There
is no way to wake the scheduler, so this optimization is proven to be a bug.

Tes t 3 — S i n g l e W o r k e r w i t h o u t O p t i m i z a t i o n s

After turning off the message retrieval optimization, this is what was expected in the second
test:

0.000003 I 230471: Parent starting.

0.002307 I 230473: Worker starting.

0.012417 I 230471: Created a process pool.

37

0 012985 230471: Created the event loop.

0 013072 230471: Spinning up the event loop.

0 514278 230471: Applied 'normal task 1

0 636021 230473: Task 1 started.

0 822322 230471: Task 1 reported status EXECUTED

1 015296 230471: Applied 'normal task 2

1 516323 230471: Applied 'normal task 3

2 018714 230471: Applied 'normal task 4

2 520401 230471: Applied 'normal task 5

2 640981 230473: Task 2 started.

2 738175 230471: Task 1 reported status FINISHED

2 738954 230471: Task 2 reported status EXECUTED

3 021118 230471: Applied 'normal task 6

4 715465 230503: Worker starting

4 716129 230503: Task 3 started.

4 749840 230471: Task 2 reported status FINISHED

4 750264 230471: Task 3 reported status EXECUTED

6 723414 230503: Task 4 started.

6 759004 230471: Task 3 reported status FINISHED

6 759233 230471: Task 4 reported status EXECUTED

8 770949 230471: Task 4 reported status FINISHED

8 833142 230527: Worker starting

8 835397 230527: Task 5 started.

9 073350 230471: Task 5 reported status EXECUTED

10 843285 230527: Task 6 started.

10 985839 230471: Task 5 reported status FINISHED

10 986472 230471: Task 6 reported status EXECUTED

12 945179 230545: Worker starting

12 998439 230471: Task 6 reported status FINISHED

Tes t 4 — T e s t i n g S igna l s

Testing with the SIGKILL signal has shown that the worker immediately produces an excep
tion because the internal queue used by the apply_async function is corrupted, rendering
the entire process pool unusable. This is not surprising since SIGKILL does not terminate
a program gracefully.

11.197599 I 13307: Task 5 reported status 'FINISHED'

Process ForkPoolWorker-1:

Traceback (most recent call last):

File "/usr/lib64/python3.6/multiprocessing/pool.py", line 125,

in worker

put((job, i , result))

File "/usr/lib64/python3.6/multiprocessing/queues.py", line 347,

in put

self._writer.send_bytes(obj)

File "/usr/lib64/python3.6/multiprocessing/connection.py", line 200,

in send_bytes

38

self._send_bytes(m[offset:offset + size])

File "/usr/lib64/python3.6/multiprocessing/connection.py", line 404,

in _send_bytes

self._send(header + buf)

File "/usr/lib64/python3.6/multiprocessing/connection.py", line 368,

in _send

n = write(self._handle, buf)

BrokenPipeError: [Errno 32] Broken pipe

The results for the SIGINT signal were inconsistent. Sometimes, the Keyboardlnterrupt
exception was raised and new worker was not started and sometimes the test script would
just freeze.

Process ForkPoolWorker-4:

Traceback (most recent call last):

File "/usr/lib64/python3.6/multiprocessing/process.py", line 258,

in _bootstrap

self.run()

File "/usr/lib64/python3.6/multiprocessing/process.py", line 93,

in run

self._target(*self._args, **self._kwargs)

File
 M

/usr/lib64/python3.6/multiprocessing/pool.py", line 119,

in worker

result = (True, func(*args, **kwds))

File "server.py", line 38, in workload

sleep(SECS_TASK_RUNNING)

Keyboardlnterrupt

9.7667208 I 22841: Task 5 reported status 'EXECUTED'

11.7668343 I 22841: Task 5 reported status 'FINISHED'

Testing the SIGTERM signal:

[mpospisiOmpospisi eloop_prototype]$ python3 test_scheduler.py 4

0 510530 51491 Applied 'hang' task 1.

0 618578 51493 Task 1 started.

1 011504 51491 Applied 'hang' task 2.

1 019648 51494 Task 2 started.

1 513065 51491 Applied 'exception' task 3

2 014499 51491 Applied 'exception' task 4

2 515834 51491 Applied 'normal' task 5.

3 017406 51491 Applied 'normal' task 6.

3 518455 51491 Applied 'normal' task 7.

At this point, k i l l 951493 command was issued from another terminal. A new worker
was started immediately:

16.948591 I 51580: Worker starting.

16.951204 I 51580: Task 3 started.

39

The most common problem during the testing was indicated in the traceback as „[Errno 32]
Broken pipe". The implementation of multiprocessing.Queue uses pipes to send data.
The abrupt termination of a process probably caused this error.

Tes t 5 — T e s t i n g E r r o r C a l l b a c k

This test demonstrates that the error callback function is called if tasks raise unhandled
exceptions. These exceptions are returned to the parent process where the error callback
function is executed.

0.000002 | 55949: Parent starting.

24.060806 I 56024: Worker starting.

24.061691 I 56024: Task 3 started.

24.062464 | 55949: Unhandled exception: 'Exception('this is unexpected',)
1

In all tests, closing the daemonic test script with Ctrl+C propagates the resulting SIGINT
signal to the worker processes of the process pool. This is not desirable because it produces
exceptions in the workers and prints undesired traceback to the console.

4.3 The Asynchronous Scheduler

This section focuses on the implementation of the most vital parts of the asynchronous
scheduler. Not all implementation details will be covered since the design section has
already covered a lot of detail. Parallels will be drawn to the proof of concept throughout
this section to show where improvements were made.

R u n n i n g S c h e d u l e r o n t he E v e n t L o o p

The asynchronous scheduler uses its perf orm_actions method to perform all its du
ties. This is similar to the scheduler in the proof of concept and its update method.
It was shown that optimizing the update method was not that easy and resulted in a bug.
The perf orm_actions method is much simpler. It just calls the coroutines for each sched
uler responsibility and waits for each one to complete.

The scheduling of the perform_actions method on the event loop should be handled
by the Tornado application, not by the scheduler itself. This is a more flexible approach
compared to the proof of concept. The scheduler has a single method that takes care
of all its responsibilities, and application is responsible for scheduling it according to its own
needs.

The scheduling is implemented in the run_scheduler coroutine in the daemon/run. py file.
It contains an infinite loop that awaits the perf orm_actions method and then returns
control to the event loop by calling the asynchronous sleep function. Until the event loop
is stopped, the scheduler executes this infinite loop. Asynchronous sleep is used to ensure
that the perf orm_actions method leaves enough time for other coroutines on the event loop
even when perf orm_actions runs longer than its scheduling interval. More information
on how this integrates into P C S D will be mentioned in Section 4.4 (REST A P I Integration).

40

W o r k e r I m p l e m e n t a t i o n

The worker functions used in the scheduler are not that different from the proof of concept
at first glance. One of the differences is that all worker-related code was moved to its own
module worker .py. Another difference is the method of passing queues that was presented
earlier. But the biggest difference is that the task_executor function now deals with real
lib(rary) commands.

Commands are launched from a dictionary of command names and functions imported from
the library. This dictionary is located in its own file comand_mapping.py. This was done
in preparation for integration of a large number of functions in the future. The commands
are then called by the reference from this command map. Thanks to the unified interface
of library functions, after the first argument, the LibraryEnvironment, all command pa
rameters from the CommandDto structure can be simply unpacked into the argument list.

i def task_executor(task: WorkerCommand) -> None:

2 ...

3 # TaskExecuted message
4 env = LibraryEnvironment(

s logger,

6 WorkerReportProcessor(worker_com, task.task_ident),

7)

8

9 task_retval = None

10 try:

11 # Call the command from command map and unpack the parameters
12 task_retval = command_map[task.command.command_name](

13 env, **task.command.params

)

15 except LibraryError as e:

16 for report in e.args:

17 # PCS report message
is # TaskFinished message, TaskFinishType.FAIL
19 pause_worker ()

20 return

21 except Exception:

22 # TaskFinished message, TaskFinishType.UNHANDLED_EXCEPTION
23 pause_worker ()

24 return

25 worker_com.put(

26 # TaskFinished message, TaskFinishType.SUCCESS
27)

28 pause_worker ()

Listing 1: Simplified implementation of the task_executor function that shows launching
the lib(rary) commands, exception handling and report distribution. Initialization and
logging calls were omitted.

41

The task_executor function now handles all exceptions raised by the lib(rary) commands.
The most frequent exceptions is the LibraryError exceptions raised primarily by valida
tions in the lib(rary) commands. A n earlier concept of report distribution in P C S was
that the reports were stored in the args variable of this exception. This case is handled
by inspecting the exception and sending these reports to the worker report processor.

Speaking of the worker report processor, it handles the transfer of reports through the queue
to the asynchronous scheduler, where the client can retrieve them throiught the R E S T A P I .
The worker report processor is implemented in the report_proc .py module. Its report
distribution method uses the blocking put function to send messages to the scheduler since
the worker is not an asynchronous environment.

A l l other exceptions are also handled by the task_executor function. Using the error call
back function, as the proof of concept did, had no observable benefits. On the other hand,
handling all exceptions in the worker had - all of the possible scenarios can be reported with
the TaskFinished message. This simplifies the scheduler since it does not have to provide
an interface that an error callback can use to report unhandled exceptions.

In t e rp rocess C o m m u n i c a t i o n

The only significant change from the proof of concept is how the communication queue
is passed to the worker. It was ineffective to pass the same reference with every task. A much
better solution is to pass the queue into the worker_init function. The problem is that
the task_executor function where the queue is predominantly used has its own scope.
Although global variables are almost never a good solution to any problem, an argument
can be made for this use case. This is a worker process, so even its global namespace
is isolated from the application.

Unfortunately, the integration tests showed that these assumptions were partially incorrect.
More can be found in Section 4.6 (Integration Testing).

T a s k K i l l i n g a n d G a r b a g e C o l l e c t i o n

Task killing must be implemented in two stages. The reason is that tasks in the QUEUED
state cannot be killed. When the task is submitted for processing to the process pool, there
is no way to cancel this operation.

The scheduler marks the task for killing by setting the kil l reason in the first stage. This
can be done from any place, such as the method for killing tasks when clients asks to kil l the
task. For tasks that are running too long, the garbage collector sets a kil l reason. A special
case is the timeout when the client does not pick up the task result, garbage collector just
deletes that task from the task register.

The SIGTERM signal is sent in the second stage when the garbage collector calls the k i l l

method of the task. It only sends the signal if the task is in the EXECUTED state. The method

42

is responsible for setting the finish type and changing the status to FINISHED on tasks
in any state. This is done to ensure that all tasks destroyed by the garbage collector end
up in the FINISHED state. Tasks react to being killed differently in each state:

• CREATED - the schedule_tasks method checks for kill_reason and does not apply
the task to the process pool. The garbage collector then changes state to FINISHED
by calling the kil l method of the task.

• QUEUED - the task is only marked to be killed later by the garbage collector.

• EXECUTED - the SIGTERM signal is sent to the process where the task is running and
the task state is changed to FINISHED.

• FINISHED - nothing changes.

D a t a R a c e s a n d R a c e C o n d i t i o n s

Due to the asynchronous input and output processing model, data races cannot occur
in the scheduler. Data races can only happen when two threads are working with the same
data and at least one of them is writing. [4] Only one coroutine runs on the event loop
at any given time. The scheduler therefore internally does not need any locks to function.

However, race conditions can still occur between the asynchronous code and the process
pool. There is a delay between marking the task for killing and sending the SIGTERM signal.
This can cause a race condition if the task finishes after it was marked to be killed and
before the signal is sent. In that case, the worker would receive a new task and then it would
be killed shortly. A completely different task would be killed. This is fixed by pausing
the worker process with the SIGSTOP signal when it sends the TaskFinished message.
The worker resumes with the help of a SIGCONT signal only when the TaskFinished message
handler sets the task state to FINISHED. At this point, the kil l signal would not be sent,
so the race condition is eliminated.

L o g g i n g

The starting point of the merged logs is the log.py module of the Python daemon.
The P C S D logger already integrates logs from the Ruby daemon. The merged log from
both daemons is written into /var/log/pcsd/pcsd.log.

The P C S D log format is:
<level[0]>, [<date-time> #<pcsd-group-id>] <level> - : <message>

Every line starts with the first letter of the severity level. The next part is date and time
and P C S D group ID which is out of the scope of this text and will not be needed. The level
is repeated in full and the actual log message follows.

A l l of this translates to:
I, [2022-05-14T18:43:19.762 #00000] INFO - : Binding socket for address >*

:

and port '2224'

The log records from the scheduler can be placed into this log without any problem. Even
though the modules are different, the Logger module returns references to the same logger

43

if the same name is used in one process. The Python daemon is running only in one process.
Scheduler logging is solved by importing the logger object from the log .py module.

Worker processes use the concept of passing log records through a queue described in the log
ging subsection of Section 3.6. The function that sets up logging for the worker is imple
mented in the logging.py module of the asynchronous scheduler. The queue for report
distribution is not passed between worker initializer and task executor with a global vari
able. Instead, a logger is set up in the worker initializer and is later retrieved by requesting
the logger of the same name through the Logging module.

The receiving end of the log records have to somehow integrate into the existing P C S D
logger. This is solved during scheduler initialization by this function:

def _init_worker_logging(self) -> handlers.QueueListener:

q_listener = handlers.QueueListener(

self._logging_q, *self._logger.handlers

)
q_listener.start()

return q_listener

The QueueListener class requires handlers which are responsible for writing the logs. While
this is not documented, the Logger class contains a handlers instance variable. Since there
are no leading underscores, this is interface can be considered stable. The function above
steals the handlers from the P C S D logger and uses it to write to the P C S D log. This will
not cause data corruption since the logger module is thread-safe. [17]

A n important addition to worker logs is the worker process identifier. Without it, identifying
the source of the messages would be impossible in a merged log. For this reason, all worker
logs start with: „Worker#<process-ident>: " where <process-ident> is the process
identifier.

T e r m i n a t i o n

The proof of concept produced unwanted tracebacks at exit. This was caused by the prop
agation of signals from parent process to the process pool. The tracebacks were caused
by an unhandled KeyboardException in the worker. This was solved by implementing
an empty signal handler in the worker registered to handle the SIGINT signal.

The Scheduler also implements a method for a clean exit called terminate_nowait.

It is used to free the resources used by the scheduler. Its first action is to empty the log
ging queue used by the worker so that all logs are written and it can be destroyed. Then
the process pool is terminated which kills all of the processes and destroys all of its other
resources. After that, the scheduler is correctly terminated.

44

Se t t i ngs

Just as the scheduler in the proof of concept can be configured, the same applies to the final
implementation of the asynchronous scheduler in P C S . These settings are stored in a con
figuration file settings .py. in together with the default settings for PCS:

• async_api_scheduler_interval_ms = 100 - this number specifies how often
is the Scheduler. perf orm_actions method scheduled on the event loop. The default
value is 100 ms to allow the event loop to process other coroutines and to be fairly
lightweight on resources.

• worker_count = multiprocessing. cpu_count () - number of processes in the pro
cess pool. Defaults to number of available cores to prevent lib(rary) commands com
peting for resources.

• worker_task_limit = 5 - maximum number of tasks for one worker process.

• task_unresponsive_timeout_seconds = 60 * 60 - timeout for killing an unrespon
sive task, the task will be killed if no message is delivered from the worker for 60 min
utes. Commands that need longer time to finish can be changed to send more mes
sages.

• task_abandoned_timeout_seconds = 1 * 60 - timeout for task deletion. Task is
deleted when client does not query its status for one minute after it has been com
pleted.

4.4 The R E S T A P I

The R E S T A P I has been implemented within the existing Tornado application which
is the new P C S daemon. The code that handles the creation of the H T T P S server was
already part of P C S D . Apart from server initialization, Tornado applications are just pairs
of URIs 1 and RequestHandlers that communicate with clients.

T h e R e q u e s t H a n d l e r s

The A P I consists of three request handlers that inherit some common functionality from
BaseAPIHandler. The BaseAPIHandler class implements the request body preprocessing
that deserializes the J S O N 2 request body of the requests that contain it. Deserialization
is handled by the JSON package3 from the Python standard library. The resulting dic
tionary is saved to a new instance variable json in the request. It also implements error
handling by converting any exceptions from lower layers to the APIError exception. How
that exception is processed will be described later in this section.

1 T J R I - Uniform Resource Identifier, more at: https://www.ietf.org/rfc/rfc3986.txt
2JSON - JavaScript Object Notation, more at: https://tools.ietf.org/html/rfc8259
3The JSON package in Python standard library, more at: https://docs.python.Org/3.6/library/

j son.html

45

https://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/html/rfc8259
https://docs.python.Org/3.6/library/

The three A P I endpoints defined in the design chapter, Section 3.7 are represented by these
three request handlers that implement a single method named after the H T T P request
method:

• NewTaskHandler - handles the POST /task/create R E S T A P I endpoint by calling
the new_task method of the asynchronous scheduler. The request body is a JSON rep
resentation of the CommandDto data transfer object. This object specifies the lib(rary)
command to execute and its arguments. A task identifier is returned to the client
as a TaskldentDto object serialized to JSON. The H T T P response code 201 signifies
that a task resource was created. No errors can occur during handling of this request.

• Tasklnf oHandler - handles the GET /task/result R E S T A P I endpoint by calling
the get_task method of the scheduler. Its only parameter is the task_ident string,
which is read from the query part of the U R L The TaskResultDto data transfer object
is returned to the client. The following exceptions can be raised in this handler:

— If the query argument task_ident is not present in the query section of the URI,
Tornado raises the MissingArgumentError exception.

— If the task identifier does not exist in the task register, the scheduler raises the
TaskNotFoundError exception.

. KillTaskHandler - handles the POST /task/kill R E S T A P I endpoint by call
ing the kill_task method of the asynchronous scheduler. The request body is
a JSON representation of the TaskldentDto data transfer object. Empty H T T P
response with the code 202 indicating a pending asynchronous action is returned
to the client. If the task identifier does not exist in the task register, the scheduler
raises the TaskNotFoundError exception.

E r r o r H a n d l i n g

Generally, any error in a RequestHandler class from the Tornado library is handled by rais
ing the HTTPError exception. This exception is then handled by the write_error method
of the RequestHandler class. This method creates and sends the response with the error
description and closes the connection.

To implement the error responses of this A P I , a custom APIError exception that inherits
from HTTPError was defined. This exception renames the reason field to http_error
and adds the error_msg field. These fields are used to construct the error responses
in the write_error method of the BaseAPIHandler class.

The BaseAPIHandler is where the bulk of the error handling is implemented. It handles
common errors described in Table 3.2. Various errors are being handled at various stages
of request processing. The first stage of error handling is the prepare method. This
method is only used for the POST requests since GET requests do not have a body. First,
the Content-Type H T T P header is checked if it contains the application/j son application
type. In the next step, the JSON body of the request is parsed and converted to a dictionary
by the JSON package. In case of an error, the exception from the JSON package is converted
to an APIError exception.

46

The BaseAPIHandler also implements a method for JSON deserialization with Dacite which
is an important feature of the new architecture introduced in Section 2.4 (Use of Type
Hints and Data Transfer Objects). This method is called _from_dict_exc_handled and
it converts exceptions raised by Dacite to APIError exceptions. This method accepts
a dictionary from the json instance variable of the request handler and returns a data
transfer object of a requested type if there were no conversion errors.

S e c u r i t y

The R E S T A P I and the scheduler were designed with some security in mind. The task
identifier was chosen to be UUID' 1 version 4 which is completely random. This provides some
layer of passive security against a malicious actor attempting to guess the task identifier.

Notably missing is also any authentication mechanism for the A P I . It is likely that an au
thentication mechanism used by some other service of the Python daemon will be reused.
For example, one of these methods is token-based authentication. To simplify debugging
and testing, no authorization mechanism was implemented for now.

PCS also has an authorization mechanism for commands. Not all users are authorized
to run all commands. This is missing from the asynchronous scheduler because a fully-
featured implementation was never a goal. Before the scheduler is released as part of PCS,
this functionality must be added.

P C S D I n t e g r a t i o n

P C S D initialization code is located in the pcs/daemon/run.py file. The most important
function conf igure_app creates tuples of URIs and Tornado handlers. These are used
to create a Tornado Application object that captures all the server and application con
figuration. The Scheduler instance is passed as an argument to conf igure_app so that
it can pair the R E S T A P I handlers with the public interface of the Scheduler class. These
pairings are determined by the async_api .get_routes function that further propagates
the scheduler instance to the handlers.

A Tornado application is started by creating an event loop and calling its start method.
Before the start method is called, all coroutines needed for the daemon are scheduled
to be run on the event loop. One of these coroutines is the run_scheduler coroutine
that schedules periodic execution of the scheduler responsibilities. A l l of these coroutines
are executed one-by-one once the event loop goes live.

4.5 Client

For debugging and testing purposes, a simple client was developed. This client was never
designed to become a user-facing component. Some thought process went into its architec
ture, but not to the same degree as with the scheduler or the R E S T A P I .

4UUID - Universally Unique Identifier, defined by RFC4122: https: //datatracker.ietf.org/doc/html/
rfc4122

47

http://ietf.org/doc/html/

The client is implemented in the pcs/async_client .py file. The client is built mainly with
the help of the Pycurl library, which is the Python interface for the Libcurl client-side
library for network communication. This library was chosen because P C S already uses it.

U s a g e

The client does not have the same argument parsing capabilities as P C S . The command
names are the same as for P C S but arguments and switches are handled differently. There
is no validation, apart from checking that the arguments match any supported command.
The client accepts the same arguments as the corresponding lib(rary) command function.
The argument values have to be inputted in JSON since the values may not be simple data
types. More about usage is described in the manual in Section B.2.

R u n n i n g C o m m a n d s

The client was developed to connect to the local R E S T A P I . When the command is parsed,
a POST request is created and sent to the task/new endpoint. When the task identifier
is received, the client periodically queries the task/status endpoint. Reports are saved
after every query, and new ones are printed on the standard output. When the task reaches
the FINISHED state, periodic queries are halted. A short status of the task is printed, inform
ing about the task identifier, the finish type, and kil l reason. Task identifier is particularly
useful for inspecting logs.

K i l l i n g t a sks

If a task is not completed, the client has the ability to ki l l it. This can be achieved
by pressing Ctrl+C when the command is running. The resulting SIGINT signal is handled
by a signal handler. For this reason, the reports mentioned above and the task identifier
are saved in global variables. The task identifier is saved because a request to kil l the running
task needs to be formed inside the signal handler. Additionally, the task identifier is truthy
only when the task is not finished, so it is used to produce an error when there is no task
to ki l l . Reports are saved because the client needs to remember which reports were already
printed. The reports delivered during the time it takes the scheduler to kil l the task
are printed from the signal handler.

E r r o r H a n d l i n g

A l l responses from the R E S T A P I are filtered through the _handle_api_error function.
If the H T T P response code does not indicate success, error_message in the A P I com
mon error format is printed on the output. If this message is not found in the response,
the response body is printed in full.

5Pycurl library, more at http://pycurl.io/
6Libcurl URL transfer library, more at https://curl.se/libcurl/

18

http://pycurl.io/
https://curl.se/libcurl/

4.6 Testing the Asynchronous Scheduler and R E S T A P I

The first half of this chapter is dedicated to the implementation of automated testing. First,
the P C S test suite and its limitations are introduced. Next, after a short aside on coroutine
testing, the facilities used for automated testing of the scheduler are explored. Automated
tests also presented some challenges that needed to be overcome, so, the solutions are pre
sented. The remainder of the chapter is dedicated to manual testing of the scheduler that
confirmed its usability in the real world.

A u t o m a t e d T e s t i n g

The thesis specification requires the creation of a set of unit and integration tests. These
tests were built into the P C S test suite. The P C S test suite consists of two big groups:

• Tier 0 tests - unit and integration tests built around the Unittest module 7 from
the Python standard library. These tests cannot create any processes or make any
external calls. In other words, they should be environment independent. These tests
make extensive use of mocking, often using special mock classes like EnvAssistant
that replaces the LibraryEnvironment object in tests.

• Tier 1 tests - integration tests that launch P C S and evaluate its behavior. A large
number of tests cannot be implemented here since they might require a live cluster
to work. Mocking is not possible, since PCS is executed in a separate process.

A l l unit tests are placed in the pcs_test/tierO/daemon/async_tasks folder. The excep
tion is the test_integration.py file that contains integration tests. More than 70 unit
and integration tests were implemented. No tier 1 tests were implemented, since these
tests would require a running cluster to use the library functions. Even if the daemon
was running, timeouts, for example, could not be tested. These tests require mocking
of the function calls that provide the current time.

Returning to tier 0 tests, the most interesting part is that they mostly test coroutines.
This led to the creation of the modified TestCase class from the Unittest module and
AsyncTestCase class from Tornado. Neither Asyncio nor Unittest provide built-in support
for coroutine testing. Tornado decorator tornado. testing. gen_test had to be used to test
coroutines.

The TestCase and AsyncTestCase classes were extended by the scheduler mock object
which is integral to the tier 0 tests. These classes became SchedulerBaseTestCase and
SchedulerAsyncTestCase. These base testing classes can be used in conjunction with
classes that provide mock objects for other calls or provide other extra functionality.
The mixin design pattern was utilized to reduce the boilerplate code in the form of mock
initialization in every test case. Python allows multiple inheritance, so even more than one
mixin can be used. The implemented mixin classes are:

• MockDateTimeNowMixin - mocks the calls to query the current date and time. Useful
for testing timeouts.

7Unittest module from the Python standard library, more at: https://docs.python.Org/3.6/library/
unittest.html

49

https://docs.python.Org/3.6/library/

• MockOsKillMixin - mocks the call of the os . k i l l function. It is unacceptable to let
the tests ki l l a random running processes.

• AssertTaskStatesMixin - adds the function that asserts the number of tasks in each
possible state. Good for evaluating task state changes.

S c h e d u l e r M o d i f i c a t i o n s for T e s t i n g

The aforementioned scheduler mock is in the SchedulerTestWrapper class. This is a wrap
per for all scheduler mock objects used throughout tier 0 tests. It replaces these facilities
of the Scheduler class:

• _proc_pool_manager - the manager spawns a child process that holds the shared
resources. [18] This is not acceptable in tier 0 tests. It is replaced by a mock object
configured to return patched queues.

• _worker_q - this queue has to be patched, since the process manager cannot be used.
The queue is patched with a queue from the Multiprocessing package.

• _logging_q - same as above.

• _ logger - the original logger instance has to be patched by a logger that does not
write logs to the disk.

Patching the queues is not only necessary; it also solves a unique problem that arises from
tests running in parallel. The P C S test suite supports parallelization by dividing tests into
buckets and passing each bucket to a different process. The queue for communication be
tween the workers and the scheduler is a global variable of the worker. py module. A global
variable is the only way to pass the queue from the task initializer to the task executor.
This is not a problem in a worker process, but when the module is imported for testing,
it becomes a global variable for all tests. Therefore, every test has to patch the global queue
with a unique instance. This is the most important function of the test wrapper.

I n t e g r a t i o n Tes ts

The asynchronous scheduler had to be modified to be usable in the test suite. The biggest
problem was that non-blocking methods of the queue were not reliable enough to guaran
tee delivery of all messages. Queues are also much slower than tests which call put and
get_nowait in rapid succession. Therefore, the tests would not be able to get the message
since it was still in transit. This resulted in missed messages and tests that did not work
reliably.

Message passing was not repeatable, sometimes the messages were not properly delivered.
This had to be fixed by a change to the perf orm_actions scheduler method that now
returns the number of messages received. The SchedulerForlntegrationTests class adds
an active waiting mechanism that runs the message retrieval coroutine until the expected
number of messages was received.

50

1 async def perform_actions(self, message_count):

2 received = await self.scheduler.perform_actions()

3 while received < message_count:

4 received += await self.scheduler._receive_messages()

Other modifications of the scheduler in the aforementioned class are related to simulating
actions of the worker processes. For convenience, a function for generating multiple tasks
was also added.

M a n u a l T e s t i n g

Manual testing was an important part of the development process. These tests confirm that
everything works in the real world. These tests were performed with the help of the asyn
chronous client or by calling curl from the console. The results of these tests are provided
in the following subsections.

Tes t 1 - C l u s t e r S t a t u s

This test shows that the cluster status command works the same as its P C S counterpart,
which does not use the new daemon A P I . The only addition to the output is diagnostic
information about the task created by the scheduler.

[root@fedora36 pcs]# pcs_async cluster status

Cluster name: clusterl

Cluster Summary:

* Stack: corosync

* Current DC: fedora36 (version 2.1.3-0.1.rcl.fc36-a988afd4e7) -

partition with quorum

* Last updated: Sat May 14 19:12:25 2022

* Last change: Sat May 14 19:12:07 2022 by root via cibadmin on fedora36

* 1 node configured

* 1 resource instance configured

Node List:

* Online: [fedora36]

Full List of Resources:

* dummyl (ocf::heartbeat:Dummy): Started fedora36

Daemon Status:

corosync: active/disabled

pacemaker: active/disabled

pcsd: active/enabled

Curl - command line tool for transferring data with URLs, more at: https://curl.se/

51

https://curl.se/

Task ident: 466147ac523d448cbd02e4e83adll015

Task finish type: SUCCESS

Task k i l l reason: None

This is the same output as printed by PCS:

[root@fedora36 pcs]# pes cluster status

Cluster name: clusterl

Cluster Summary:

* Stack: corosync

* Current DC: fedora36 (version 2.1.3-0.1.rcl.fc36-a988afd4e7) -

partition with quorum

* Last updated: Sat May 14 19:12:28 2022

* Last change: Sat May 14 19:12:07 2022 by root via cibadmin on fedora36

* 1 node configured

* 1 resource instance configured

Node List:

* Online: [fedora36]

Full List of Resources:

* dummyl (ocf::heartbeat:Dummy): Started fedora36

Daemon Status:

corosync: active/disabled

pacemaker: active/disabled

pesd: active/enabled

Tes t 2 — E n a b l e a R e s o u r c e a n d K i l l t he T a s k

This test demonstrates that the resource enable command works and that it can be killed
from the console. The task output shows that the task was killed by the scheduler on the ba
sis of the request from the user.

[root@fedora36 pcs]# pes resource disable dummyl

[root@fedora36 pcs]# pcs_async resource enable \

—resource_or_tag_ids='["dummyl"]' —wait=null

Waiting for the cluster to apply configuration changes...

~CTask k i l l request sent...

Task ident: 316210010b8e44bbb6eaefd08b472479

Task finish type: KILL

Task k i l l reason: USER

Just before the task information, the asynchronous client printed that the task kil l request
was sent following the ~C character sequence which indicates that Ctrl+C was pressed.

52

Before that, a report can be seen that was sent before the command was finished. This
indicates that the reports are being delivered to the client while the command is running.

Tes t 3 — P a r a l l e l E x e c u t i o n o f T w o C o m m a n d s

In this test, the two previously demonstrated commands were executed in parallel. Disabling
a resource was much faster than retrieving the status of the cluster, so the f g command
had no process to switch to. The cluster status shows that the dummyl resource is disabled,
which is correct since these commands were launched in parallel. There was no chance that
the resource enable action would finish in time to affect the cluster status.

[root@fedora36 pcs]# pes resource disable dummyl

[root@fedora36 pcs]# pcs_async resource enable \

—resource_or_tag_ids='["dummyl"]' \

& pcs_async cluster status && fg

[1] 55092

Task ident: 783fa41304654680b671d31d678ce89c

Task finish type: SUCCESS

Task k i l l reason: None

Cluster name: clusterl

Cluster Summary:

* Stack: corosync

* Current DC: fedora36 (version 2.1.3-0.1.rcl.fc36-a988afd4e7) -

partition with quorum

* Last updated: Sat May 14 19:37:46 2022

* Last change: Sat May 14 19:36:45 2022 by root via cibadmin on fedora36

* 1 node configured

* 1 resource instance configured (1 DISABLED)

Node List:

* Online: [fedora36]

Full List of Resources:

* dummyl (ocf::heartbeat:Dummy): Stopped (disabled)

Daemon Status:

corosync: active/disabled

pacemaker: active/disabled

pesd: active/enabled

Task ident: b72769cf8a3f4ad791031282f93d783b

Task finish type: SUCCESS

Task k i l l reason: None

53

[1]+ Done pcs_async resource enable —resource_or_tag_ids='["dummyl"]
1

-bash: fg: current: no such job

To see if the tasks were really executed in parallel, the P C S D log can be examined. Much
of the debug output generated by the library functions was omitted for clarity. The log
clearly shows two tasks being executed at the same time. It can be said that scheduler
is performing very well since creating the tasks and generating the UUID took less than
a millisecond.

I, [2022-05-14T19:37:46.800 #00000] INFO — : 201 POST /async/task/create

(127.0.0.1) 0.73ms

I, [2022-05-14T19:37:46.801 #00000] INFO — : 201 POST /async/task/create

(127.0.0.1) 0.58ms

I, [2022-05-14T19:37:46.809 #00000] INFO — : 200 GET /async/task/result?

task_ident=783fa41304654680b671d31d678ce89c (127.0.0.1) 0.47ms

I, [2022-05-14T19:37:46.811 #00000] INFO — : 200 GET /async/task/result?

task_ident=b72769cf8a3f4ad791031282f93d783b (127.0.0.1) 0.51ms

I, [2022-05-14T19:37:46.873 #00000] INFO — : Worker#54207:

Task b72769cf8a3f4ad791031282f93d783b executed.

I, [2022-05-14T19:37:46.873 #00000] INFO — : Worker#54797:

Task 783fa41304654680b671d31d678ce89c executed.

I, [2022-05-14T19:37:46.975 #00000] INFO — : Worker#54797:

Task 783fa41304654680b671d31d678ce89c finished.

D, [2022-05-14T19:37:46.976 #00000] DEBUG — : Worker#54797:

Pausing until the scheduler updates status of this task.

I, [2022-05-14T19:37:47.065 #00000] INFO — : Worker#54207:

Task b72769cf8a3f4ad791031282f93d783b finished.

D, [2022-05-14T19:37:47.065 #00000] DEBUG — : Worker#54207:

Pausing until the scheduler acknowledges the TaskFinished message.

I, [2022-05-14T19:37:47.095 #00000] INFO — : Worker#55122: Initialized.

I, [2022-05-14T19:37:47.125 #00000] INFO — : 200 GET /async/task/result?

task_ident=b72769cf8a3f4ad791031282f93d783b (127.0.0.1) 3.81ms

I, [2022-05-14T19:37:47.133 #00000] INFO — : 200 GET /async/task/result?

task_ident=783fa41304654680b671d31d678ce89c (127.0.0.1) 11.84ms

D, [2022-05-14T19:37:47.188 #00000] DEBUG — : Acknowledge TaskFinished

message from worker#54207. The worker can continue.

It is worth mentioning that the timestamps for log records from workers are not indicative
of when the log record was generated. The timestamps are generated by the logger in P C S D ,
so the timestamp shows when the log records were delivered through the logging queue.
The tasks did not finish at the same time, but were close enough to have the messages
picked up by the same run of the _receive_messages coroutine.

Tes t 4 - E r r o r H a n d l i n g o f t he R E S T A P I

These tests demonstrate that the A P I error handling is working as expected. The Curl
command-line utility was used to perform these improper requests. The error_message
captures the purpose of every test.

54

[root@fedora36 pcs]# curl —insecure —request GET \

https://localhost:2224/async/task/result?task_ident=not-an-identifier

{

"http_code": 404,

"http_error": "Not Found",

"error_message": "Task with this identifier does not exist."

}

[root@fedora36 pcs]# curl —insecure —request GET \

https://localhost:2224/async/task/result?id=id

{

"http_code": 400,

"http_error": "Bad Request",

"error_message": "URL argument 'task_ident' is missing."

}

[root@fedora36 pcs]# curl —insecure —request POST \

—header "Content-Type: application/json" \

—data '"command_name":"status" "params":' \

https://localhost:2224/async/task/create

{
"http_code": 400,

"http_error": "Bad Request",

"error_message": "Malformed JS0N data."

}

[root@fedora36 pcs]# curl —insecure —request POST \

—data '{"command_name":"status", "params":{}}' \

https://localhost:2224/async/task/create

{

"http_code": 415,

"http_error": "Unsupported Media Type",

"error_message": "The 'Content-Type' request header

must be set to 'application/json'."

}

[root@fedora36 pcs]# curl —insecure —request POST \

—header "Content-Type: application/json" \

—data '{"command_name":"cluster status", "params": {>, "unexpected": "">' \

https://localhost:2224/async/task/create

{
"http_code": 400,

"http_error": "Bad Request",

"error_message": "Request body contains unexpected keys: 'unexpected'."

}

55

https://localhost:2224/async/task/result?task_ident=not-an-identifier
https://localhost:2224/async/task/result?id=id
https://localhost:2224/async/task/create
https://localhost:2224/async/task/create
https://localhost:2224/async/task/create

[root@fedora36 pcs]# curl —insecure —request POST \

—header "Content-Type: application/json" —data '{}' \

https://localhost:2224/async/task/create

{

"http_code": 400,

"http_error": "Bad Request",

"error_message": "Required key 'command_name' is missing

in request body."

}

56

https://localhost:2224/async/task/create

Chapter 5

Conclusion

The main goal of this thesis was to design and implement a minimal viable solution that al
lowed launching non-asynchronous functions from the asynchronous environment of the new
R E S T A P I for task management. This goal has been achieved.

Before the design phase could start, the general concept of the asynchronous input and
output programming model were explained. These concepts were expanded on by explaining
concepts specific to the AsyncIO library 1 from the Python standard library.

Wi th these concepts in mind, the asynchronous scheduler with an interface for creating and
managing tasks was designed. Thanks to the inclusion of a processing pool, it is possible
to execute more commands at once.

The public interface of the asynchronous scheduler was then used to model the R E S T
A P I . The R E S T A P I was implemented as a part of the existing Tornado application which
is the new Python P C S daemon.

A set of more than 70 unit and integration tests was created. These tests are part of the PCS
testing suite used in continuous integration pipelines. Manual testing was also performed
with a minimal client implementation, which is part of this thesis. One of these tests
successfully demonstrated that two P C S commands were running simultaneously.

The incremental results of this thesis were shared with the PCS development team. The feed
back from the team ultimately shaped the final result. Thanks to this feedback, the results
were up to expectations, and the P C S development team is already adding authentication
and authorization capabilities to the R E S T A P I and task executor at this time.

In the near future, the author plans to look into using Futures for handling timeouts
in the scheduler. Looking into a more distant future, performance testing needs to be con
ducted that will almost certainly result in further optimization of scheduling coroutines.
A n interesting project could also be an attempt to implement multiprocess safe queues
in Python with both asynchronous and blocking interfaces. This could possibly be achieved
with sockets. Sockets have native asynchronous handling methods in AsyncIO and also sup
port traditional blocking functions.

1AsyncIO library, more at: https://docs.python.Org/3.6/library/asyncio.html

57

https://docs.python.Org/3.6/library/asyncio.html

Bibliography

[1] A R L O W , J . and N E U S T A D T , I. UML2 a unifikovaný proces vývoje aplikací 1st ed.
Brno, CZ: Computer Press, a.s., 2007. ISBN 978-80-251-1503-9.

[2] C L U S T E R L A B S M A I N T A I N E R S . ClusterLabs > Home [online]. 2011. 2022-01-31 [cit.
2022-04-26]. Available at: ht tps:/ /clusterlabs.org/ .

[3] F O W L E R , M . Data Transfer Object [online]. 2003-01 [cit. 2022-04-27]. Available at:
https: / / maxt inf owler. com/eaaCatalog/dataTransf erOb j ect .html.

[4] G R I M M , R. Race Conditions versus Data Races [online]. 2017. 2017-05-21 [cit.
2022-05-09]. Available at:
https: //www.modernescpp.com/index.php/race-condition-versus-data-race.

[5] G U I D O V A N R O S S U M , L E H T O S A L O , J . and L A N G A , L . PEP 484 - Type Hints [online].
2014. 2022-04-20 [cit. 2022-04-27]. Available at: https://peps.python.org/pep-0484/.

[6] G U I D O V A N R O S S U M , W A R S A W , B . and C O G H L A N , N . PEP 8 - Style Guide for

Python Code [online]. 2001. 2022-01-25 [cit. 2022-05-09]. Available at:
https: //peps.python.org/pep-0008/.

[7] H A L A S , K . et al. The Dacite project on GitHub [online]. 2018. 2022-04-27 [cit.
2022-04-27]. Available at: https://github.com/konradhalas/dacite.

[8] H A T T I N G H , C. Using Asyncio in Python. 1st ed. Sebastopol, C A : O'Reilly Media,
march 2020. ISBN 978-1-492-07533-2.

[9] H U N T , J . Concurrency with AsyncIO. In: M A C K I E , I., ed. Advanced Guide to Python
3 Programming. Cham: Springer International Publishing, 2019, p. 407-417.
Undergraduate Topics in Computer Science. ISBN 3030259420.

[10] K E L L Y , M . and C A U L F I E L D , C. High-Availability Clustering in the Open Source
Ecosystem [online]. 2014. 2016-05-28 [cit. 2022-04-29]. Available at: https:
//www.alteeve.com/w/High-Availability_Clustering_in_the_Open_Source_Ecosystem.

[11] L E V I N E , S. Configuring Red Hat High Availability Add-On With the ccs Command
[online]. 2010. 2017-10-18 [cit. 2022-04-27]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/
cluster_administration/ch-conf ig-ccs-ca.

[12] L E V I N E , S. Starting luci [online]. 2010. 2017-10-18 [cit. 2022-04-29]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/
c luster_adminis t ra t ion/s l -s tar t - luci-r icci-conga-ca.

58

https://clusterlabs.org/
http://www.modernescpp.com/index.php/race-condition-versus-data-race
https://peps.python.org/pep-0484/
https://github.com/konradhalas/dacite
http://www.alteeve.com/w/High-Availability_Clustering_in_the_Open_Source_Ecosystem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/

[13] L E V I N E , S. High Availability Add-On Overview [online]. 2013. 2019-08-07 [cit.
2019-11-08]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-
single/high_availability_add-on_overview/index.

[14] M A S S E , M . REST API Design Rulebook. 1st ed. Sebastopol, C A : O'Reilly Media,
October 2011. ISBN 978-1-449-31050-9.

[15] M I C R O F O C U S . DFS - Success / Micro Focus [online]. 2014. n.d. [cit. 2022-04-26].
Available at: https://web.archive.org/web/20200807153641/http:
/ / www.no ve ll.com/success/dfs.html.

[16] P Y T H O N S O F T W A R E F O U N D A T I O N . Asyncio — Asynchronous I/O, event loop,
coroutines and tasks [online]. 2016, 2021-12-29 [cit. 2022-04-25]. Available at:
https: //docs, python, org/3.6/l ibrary/asyncio. html.

[17] P Y T H O N S O F T W A R E F O U N D A T I O N . Logging — Logging facility for Python [online].
2016, 2021-12-29 [cit. 2022-05-09]. Available at:
https: //docs.python.org/3.6/library/logging.html.

[18] P Y T H O N S O F T W A R E F O U N D A T I O N . Multiprocessing — Process-based parallelism
[online]. 2016, 2021-12-29 [cit. 2022-05-06]. Available at:
https: //docs.python. org/3.6/l ibrary/mult iprocessing.html.

[19] P Y T H O N S O F T W A R E F O U N D A T I O N . Pickle — Python object serialization [online].
2016, 2021-12-29 [cit. 2022-05-09]. Available at:
https: //docs.python.org/3.6/library/pickle.html.

[20] P Y T H O N S O F T W A R E F O U N D A T I O N . Thread State and the Global Interpreter Lock
[online]. 2016, 2021-12-29 [cit. 2022-04-25]. Available at: https://docs.python.org/
3.6/c-api/init.html#thread-state-and-the-global-interpreter-lock.

[21] R A U B E R , T . and R U N G E R , G . Parallel Programming Models. In: Parallel
programming. 2nd ed. Berlin, Germany: Springer, June 2013, chap. 5. ISBN
978-3-642-37801-0.

[22] S A J I P , V . Using logging with multiprocessing [online]. 2010. 2010-09-07 [cit.
2022-05-09]. Available at: http:
//plumber jack.blogspot.com/2010/09/using-logging-with-multiprocessing.html.

[23] S A J I P , V . Logging Cookbook [online]. 2016. 2021-12-29 [cit. 2022-05-09]. Available at:
https: //docs.python. org/3.6/howto/logging- cookbook.html.

[24] S C H M I D T , K . High Availability and Disaster Recovery Concepts, Design,
Implementation. 1st ed. Berlin: Springer, Berlin, Heidelberg, 2006. 418 p. ISBN
978-3-540-34582-4.

[25] S M I T H , E . V . PEP 557 - Data Classes [online]. 2017. 2022-01-21 [cit. 2022-04-27].
Available at: https://peps.python.org/pep-0557/.

[26] T H E A P A C H E S O F T W A R E F O U N D A T I O N . Apache MPM worker [online]. 2022 [cit.
2022-05-01]. Available at:
https: //httpd. apache. org/docs/2.4/mod/worker.html#comments_sect ion.

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-
https://web.archive.org/web/20200807153641/http
http://www.no
http://ll.com/success/dfs.html
https://docs.python.org/
http://jack.blogspot.com/2010/09/using-logging-with-multiprocessing.html
https://peps.python.org/pep-0557/

Appendix A

Diagrams

A . l Package Diagram of the Asynchronous Scheduler

pcs.daemon.asyncjasks

WorkerCommand
worker_initO

pause_workerO
task_executorQ

Scheduler
TaskNotFound Error

«import» ^

task \

«im p o r t s — » ~ Task
UnknownMessageError

import;
- * «import»-^

com mand j n a p pi ng

WorkerReportProcessor

setup_worker_loggerO

messaging

Message
TaskExecuted
TaskFinished

pes.common. async_tasks

CommandDto
TaskldentDto

TaskResultDtc

types \

TaskState
TaskFinishType
TaskKi II Reason

pcs.common.reports

1 processor \

ReportProcessor

pcs.common. interface, dto

DataTransferObject
ImplementsToDto

ImplementsFromDto

pes. lib

Library
Environment LibraryError

Figure A . l : Package d iagram This diagram shows the modules and which classes or func
tions they implement. In italics are the modules or functions that were a part of P C S and
were used. A l l other modules were implemented by the author.

60

A.2 Example of a Request Timeout in the Old Architecture

NODE A
in clusterA

Web interface
back-end (pcsd.rb)

Remote runner
(remote.rb)

Command logic
and execution

(pcs.rb)

PCS command
(pcs.py) NODE B

in clusterA

Remote runner
(remote.rb)

Command logic
and execution

(pcs.rb)

PCS command
(pcs.py)

1. User wants t o L

add NODE C to
clusterA in the
web interface

Unimportant
requests were
ommited for better
readability

2. Back-end
tries to call the
command on all
cluster nodes until
it succeeds but the
request from
back-end to first
(local) node times
out

3. Back-end
tries to call the "
command on the
next cluster node
where it fails
because the
command finished
on the local node
and NODE C was
added to the
cluster even
though the request
timed out

I POST/managec/clusterA/
add_node_ to_cluster

Loop J
fries all nodes
until response
code == 200

Loop J
fries all nodes
until response
code == 200

POST/save tokens

response code = 200

AlternativeJ

token sync fails
response code = 400

token sync
succeeds

response code = 200

POST/add_node_atl

response code - 400
{'noresponse': true}

POST/add_node_< A
pes cluster node add

return code = 0

response code = 400
Error: Unable to add 'NODE

to cluster: node is already
in a cluster

c I
add_nodeQ

return code = 1

400, Failed to add new node
'NODE C into cluster 'clusterA':..

pes cluster node add

return code = 1

Figure A.2: A d d i n g a new cluster node from web interface Cluster „clusterA" contains nodes „NODE A " and „NODE B " . There
is a new node, „NODE C", that is not a member of any cluster (this is a prerequisite to add a node to a cluster). In this case, the timeout
occurs where the alert icon is located. The first call - addressed to N O D E A - to attempt to add N O D E C succeeds, but only after
the timeout is exceeded. The back-end interprets this as a failure. Therefore, the remaining nodes are tried with the same request (NODE
B in this figure). A l l these calls fail, too, because the prerequisite of no cluster membership is not met for N O D E C. The result is that
N O D E C is added but the web interface reports that the action did not succeed.

A.3 Sequence Diagram of the Asynchronous Scheduler

as

Create^ Tasks
Index

new_task(Command)
append(WorkerCommand 1)

perform_actionsQ

Methods in bold are
asynchronous, and their
activity boxes are gray

Number of calls may vary
based on implementation.

garbage_collectionO method
traverses the task register

To prevent tasks getting [\,
killed by garbage collection
too soon, long running tasks
can be modified to send
more reports.

schedule tasksQ

Worker
Communicator

Worker Process

worker_init()

popleftQ

apply_async (
task_executor,
task_registerpask ID JL].to_worker_commandO

process pool internal handoff

put(Message 1)

receive messagesQ

get_nowaitQ

Message 1

garbage col lectio n()
Alternative

datetimeO - task.last_message_at >
abandoned_timeout and task.state == FINISHED
Client never picked up the result and the Task can
be deleted from task_register.

datetimeO - task.last_message_at >
defunct_timeout and task.state == EXECUTED
Task is stuck and needs to be killed to free up
workers for waiting tasks.

Created Tasks
Index

put(Message 2)

put(Message 3)

CT
put(Message 4)

task_executorO launches
the appropriate function
based on WorkerCommand

Worker
Communicator

Worker Process

Figure A.3: Sequence diagram This diagram shows the basic principle of operation of the scheduler. The perf orm_actions method
is periodically scheduled to run on the event loop. The messages from the worker shown as not picked up by the scheduler will be picked
up in subsequent runs of receive_messages.

A.4 Class Diagram of the Asynchronous Scheduler

• proc_pool:Pool
- proc_pool_manager: Manager
- created_tasks_index:deque[str]
- task_register:Dict[str, Task]
- worker_message_q:Queue
- logging_q:Queue
- logger:Logger

+ new_task(command:CommandDto) -> identstr
+ get_task(task_ident:str) -> TaskResult
+ kill_task(task_ident:str) -> TaskResult
+ terminate_nowaitO -> None
+ perform_actions() -> None
- receive_messagesO -> None
- schedule tasks{) -> None
- garbage_col lect ion() -> None

->

TaskResultDto

+ task_ident:str
+ command: Command Dto
+ state:TaskState
+ task_finish_type:

TaskFinishType
+ kill_reason:

TaskKil I Reason
+ reports:List[Any]
+ result: Any

—>

<-

CommandDto

H command:str
t- params:dict

/ \

(from multiprocessing)
Pool

created_tasks_index is a list
task IDs that will be used as indices to
task_register for applying tasks to the

worker pool

Worker Processes

- task_ident:str
- command:CommandDto
- state TaskState
- task_finish_type TaskFinishType
- ki I l_reason TaskKi l I Reason
- reports:ListfAny]
- result:Any
- Iast_message_at:datetime
-worker_pid:int

+ is_abandonedO -> bool
+ is_defunct() -> bool
+ is_kill_requestedO -> bool
+ request_kill() -> None
+ killO -> None
+ receive_message(message_payload: Message)
- message_executed(message_payload:TaskExecuted)
- message_finished(message_payload:TaskFinished)
- store_reports(message_payload:ReportltemDto)
+ to_worker_commandO -> WorkerCommand
+ to_dtoQ -> TaskResultDto

(from pes)
ReportltemDto

TaskExecuted

H pid:int

A

WorkerCommand

+ task identstr
i- command: Command Dto

« E n u m »
TaskState

C R E A T E D
Q U E U E D
E X E C U T E D
FINISHED

« E n u m »
TaskKillReason

USER
COMPLET ION_T IMEOUT
I N T E R N A L _ M E S S A G I N G _ E R R O R

« E n u m »
TaskFinishType

UNFINISHED
S U C C E S S
FAIL
KILL
U N H A N D L E D E X C E P T I O N

y task_finish_type:TaskFinishType
n resultAny

Message

. ^> + task_ident:str
i- payload:Union[ReportltemDto,

TaskExecuted, TaskFinished]

IT

Classes in italics are external
dependencies.

Some helper methods were
omitted for clarity.

K

Figure A.4: Class d iagram This diagram shows the classes of the asynchronous scheduler and their relationships. Properties are anno
tated with their data type. The method signatures have arguments and return values annotated with their data type as well. Typing was
an integral part of the design process and it better shows relationships between objects.

Appendix B

Manual

B . l Proof of Concept

The proof of concept requires only the Python 3 . 6 + interpreter to run. The only supported
argument is a number between 1 and 6 that corresponds to the test cases in Section 4.1.
To use custom options, the constants at the top of the common.py file can be modified and
launched as the first test case.

Usage:

python3 test_scheduler.py <test-number>

Options in the common.py file:

• TASK_SPEC - a list of tasks to be processed by the scheduler, use the task types:

• SECS_BETWEEN_TASKS - seconds elapsed between generating every task:

• SECS_TASK_RUNNING - seconds spent simulating work in a task:

• W0RKER_C0UNT - number of processes executing tasks:

• REGENERATE_WORKER_AFTER - number of tasks after which worker is killed and re
placed:

• UNHANDLED_EXCEPTION - produces an unhandled exception in the „exception" task
instead of an expected exception:

• 0PT_0N - enable message listening optimization (contains bugs, scheduler may stop
receiving messages).

There are 3 types of tasks that can be scheduled in TASK_SPEC:

•
 M
normal" - task is created, sleeps for SECS_TASK_RUNNING and ends successfully:

•
 M
exception" - task is created and raises an exception:

• „hang" - task is created and enters an infinite sleep loop. To test task killing, issue
signals with the k i l l command to the worker process identifier found in the output.

64

B.2 P C S with the New Asynchronous Scheduler and R E S T
A P I

Since the final implementation is an essential part of PCS, this manual focuses on instal
lation of the modified version of P C S . For demonstration of the asynchronous scheduler
and the new R E S T A P I , a simple client that implements P C S commands pes cluster

status and pes resource enable was created. Its behavior is similar to the client pro
vided in the stable P C S package.

On the attached medium, an R P M 1 package with the modified version of PCS is included
in addition to the source codes. It is much easier to set up for demonstration purposes.

C a u t i o n ! This package is N O T S U I T A B L E for anything other than testing. It opens
a port accessible from the Internet with no security barriers in place.

E n v i r o n m e n t P r e p a r a t i o n

A Pacemaker cluster is needed for testing. The easiest cluster to install is a single-node
cluster on a virtual machine. The chosen operating system for the guest is Fedora Server
Linux 2 36 because it is the version targeted by the base PCS version where the scheduler
is integrated.

These procedures describe the fastest way to test P C S . By no means is this a guide for set
ting up clusters that guarantee high availability and are secure.

1. Download the ISO for Fedora Server 36: https://download.fedoraproject.org/

pub/fedora/linux/releases/36/Server/x86_64/iso/

2. Create a virtual machine. Minimum V M requirements: 2 processors, 8GB storage,
2GB R A M , Ethernet connection to any network.

3. Install Fedora on the virtual machine.

• In the Network & Host Name section of the installer, the host name must match
the name of the virtual machine. Configure a static IPv4 address on the Ethernet
interface. Configure the DNS servers.

• In the Root Account section of the installer, select the „Enable root account"
radio box. Set the root password and check the „Allow root SSH login with
password" check box.

• Remaining options can use the default values.

4. Install PCS, start and enable P C S D on startup:
dnf install pes

systemctl start pesd

systemctl enable pesd

lrThe RPM Package Manager - more at: https://rpm.org/
2Fedora Server, more at: https://getfedora.org/en/server/

65

https://download.fedoraproject.org/
https://rpm.org/
https://getfedora.org/en/server/

I n s t a l l a t i o n f r o m the P r o v i d e d P a c k a g e

The provided R P M package installs a modified version of P C S that contains the implemen
tation of this thesis. It installs the asynchronous client (pcs_async) alongside the stable
PCS client (pes). The package also contains the modified P C S daemon that is used by de
fault when P C S D is enabled on the system.

• Copy the P C S package (pes-async .rpm) from the attached medium to the virtual
machine.

• Install (or update installed PCS) the modified PCS package with dnf3:
dnf install ./pes-async.rpm

With these steps completed, modified P C S is ready to be used:

• P C S D contains the new R E S T A P I for the asynchronous client. Start the daemon
and enable it on startup with:
systemctl start pesd

systemctl enable pesd

• The fully featured PCS is still available as pes.

• The asynchronous client is available as pcs_async.

L a u n c h P C S f r o m Sources

To debug P C S , the asynchronous scheduler, or its R E S T A P I , the source code may need
modifications. To test them, P C S and P C S D need to be launched from the modified sources.

• Install development dependencies:
dnf install git make automake autoconf wget openssh-clients gec \

gcc-c++ libcurl-devel libcurl fence-agents-all fence-virtd \

fence-virt ruby-devel rubygem-bundler rubygem-minitest libffi-devel \

booth booth-site python3-setuptools_scm python3-wheel python3-devel \

python3-pip python3-virtualenv

• Copy the provided Git ' 1 repository to the virtual machine.

• Create a virtual environment (outside the Git repository):
python3 -m venv —system-site-packages <venv-folder-path>

• Activate the virtual environment:
. <venv-folder-path>/bin/activate

• Change directory to the P C S Git repository.

• Start the autogen script:
./autogen.sh.

3

DNF software package manager, more at: https://docs.fedoraproject.org/en-US/quick-docs/dnf/
4Git version control system, more at: https://git-scm.com/

66

https://docs.fedoraproject.org/en-US/quick-docs/dnf/
https://git-scm.com/

• Launch Autoconf 5:
./configure —enable-local-build —enable-dev-tests \

—enable-concise-tests —enable-parallel-tests \

—enable-parallel-pylint

• Launch make:
make

With these steps completed, PCS is ready to be used from the repository:

• To start the modified P C S D , use the test script that stops P C S D from the system
PCS installation and launches P C S D from the repository: ./scripts/pcsd.sh.

• To use the modified PCS, replace pes with: ./pes/pes.

• To use the modified asynchronous client, replace pcs_async with: . /pcs/async_client.

• To launch the automated scheduler tests, launch: make tests_tierO.

S e t u p a S i n g l e - N o d e C l u s t e r

A single-node cluster allows to use the pes cluster status and pes resource enable
commands.

1. Enable the ports used by the Pacemaker cluster stack in the firewall:
firewall-cmd —permanent -add-service=high-availability

firewall-cmd —reload

2. Set a password for the hacluster user,
passwd hacluster

3. Authenticate PCS to P C S D , use the hostname configured during the system instal
lation and credentials for the hacluster user when prompted:
pes host auth localhost

4. Create a single-node cluster named cluster-name consisting of this virtual machine
only and start it:
pes cluster setup <cluster-name> — s t a r t —wait localhost

5. Disable fencing (fencing is a vital part of ensuring high availability, never use an H A
cluster without fencing configured):
pes property set stonith-enabled=false

6. Add at least one dummy resource with the name resource-name: pes resource
create <resource-name> ocf:heartbeat:Dummy

5Autoconf, more at: https://www.gnu.org/software/automake/

67

https://www.gnu.org/software/automake/

S o m e U s e f u l P C S C o m m a n d s

This subsection provides some basic P C S commands that are needed to start and stop
the cluster and disable resources to use the resource enable command.

• pes cluster start [—wait[=n]]

Starts the cluster on the local node. For clusters with more than one node, the — a l l

switch can be added to start the whole cluster. The —wait option can be used to let
the command end only after the cluster has started, n can be specified for a maximum
wait time in minutes. The command does not wait for the cluster to start by default.

• pes cluster stop — a l l

Stops the cluster. Using this command without the — a l l switch produces a quorum
loss warning on a single node cluster. The warning can also be overridden by using
—force but this is a more dangerous option.

• pes resource disable <resource id | tag id>...

Stops the resource and tells the cluster to keep it stopped. This command takes more
parameters but these are not that important for the purposes of this manual, use
the —help switch to learn about them.

U s i n g the A s y n c h r o n o u s C l i e n t

The asynchronous client supports these P C S commands:

• pcs_async cluster status

Prints the cluster status on the standard output. If the cluster is not running, it gen
erates an error report that is printed on the standard error output.

• pcs_async resource enable —resource_or_tag_ids=<JSON-list> \

[—wait=<JSON-value>]

Tells the cluster to start the specified resources if the configuration allows it.
The —wait option can be used to let the command end only after the resource
has been enabled. The n controls the maximum wait time in seconds. The command
does not wait for the resource to be enabled by default.

The P C S help and manual pages specify the resource enable options differently. The rea
son for this change is the minimal argument parser used by the asynchronous client. The val
ues must be encoded in J S O N 6 to allow for lists and other composite data types without
explicit support from the argument parser. This is a translation reference for the argument
names and values:

• <resource id | tag id>... => resource_or_tag_ids

List of tag or resource identifiers.

• wait => wait

Wait is disabled if it is not specified or is set to false (without quotes). The de
fault timeout of 60 minutes is enabled with null. A positive number is interpreted
as the wait timeout in seconds.

6JSON - JavaScript Object Notation, more at: https://tools.ietf.org/html/rfc8259

68

https://tools.ietf.org/html/rfc8259

N O T E : Using JSON in the terminal can be tricky. Single quotes should be used around
the whole argument value. These single quotes will be consumed by the shell and protect
the double quotes. Double quotes must be used to delimit strings inside JSON encoded
arguments. Boolean values are true or false without the double quotes. Conversion
to the Python None type can be achieved by specifying null without double quotes. These
are some example commands demonstrating these rules:

• pcs_async resource enable —resource_or_tag_ids
=)

[
M
dummyl"]' \

—wait=null

Enables the dummy 1 resource and waits for the resource to start for a maximum
of 60 minutes before returning.

• pcs_async resource enable \

—resource_or_tag_ids
=)

[„dummyl", „tagl"]' —wait=30

Enables the dummy 1 resource and resources grouped under tagl and waits for the re
sources to start for a maximum of 30 seconds before returning.

• pcs_async resource enable —resource_or_tag_ids='[
M
dummyl"]'

Tells the cluster to enable the dummy 1 resource and immediately returns.

69

