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INTRODUCTION 
Today functional magnetic resonance imaging or functional M R I (fMRI) is one of 

the leading methods in both neuroscience research and psychiatric practice. To 

obtain sharp images that can be reliably used for further statistical analyzes, it is 

crucial for the subject to restrain any movements and thus avoid devastating motion 

artifacts. This can especially be a problem for children or people with Parkinson's 

disease. However, even healthy adults do move due to breathing or the nature of 

the f M R I study itself. 

To overcome this problem, most laboratories use head restraints of some form, 

such as bite bars, masks, vacuum packs, padding, or taping. Unfortunately they do 

not eliminate the motion artifact completely. 

There are several ways how to cope wi th the motion artifact in the preprocessing 

of the f M R I data: either use motion regressors (that do not remove the artifact com

pletely), or perform motion scrubbing of the data, or construct special regressors 

that would except motion-affected scans from further analyzes. 

The comparison of such techniques is the objective of this thesis, along wi th their 

implementation into a M A T L A B - b a s e d application. The objective is particularly in

teresting, since very few studies, if any, have produced such a wide and thorough 

comparison using f M R I data acquired wi th different field strength intensities. 

The theoretical part of the thesis first covers a comparison of f M R I wi th differ

ent functional imaging techniques and then further elaborates on the basic physical 

principals underlying f M R I , explains how an f M R I image is produced, what artifacts 

deteriorate the image quality and what preprocessing steps need to be taken. A t the 

end of the theoretical part there is a basic explanation of the General Linear Model 

and, most importantly, a description of detecting methods of motion-affected scans, 

along wi th their removal and substitution techniques. 

The applied part of the thesis suggests two suitable methods for locating and 

eliminating motion-affected scans in the B O L D f M R I data. The methods are then 

implemented in M A T L A B environment and tested on suitable datasets provided by 

the Mul t imoda l and Functional Imaging Laboratory of C E I T E C M U . In the end the 

results are presented and evaluated along wi th a recommendation for suitable way 

of eliminating movement artifacts in the data. 

11 



1 FMRI IN RESPECT TO OTHER FUNCTIONAL 
IMAGING TECHNIQUES 

Functional magnetic resonance imaging (fMRI) is undoubtedly the leading method 

in neuroscience with tens of thousands of experiments based on this imaging tech

nique. F M R I along with P E T , E E G and M E G comprise the four most used func

tional neuroimaging methods in clinical practice. Such methods are employed to 

acquire bioelectrical signals of neural activity. However, they differ not only in their 

underlying physical principals and spatial and temporal resolutions, but also in the 

nature of the image we want to acquire. Thus each method is suitable for different 

types of tasks and has its pros and cons [7] [11]. 

The oldest of the above-mentioned methods is E E G (Electroencephalography). 

The first application of E E G dates back to 1877 when Richard Caton acquired the 

very first recording of electrical activity from exposed brains of rabbits and monkeys 

using a mirror galvanometer. It was not unt i l 1924 that Hans Berger successfully 

measured electrical activity in the human brain and paved the way for the upcoming 

golden era of the E E G that began in the 1960's [4] [11] [13]. 

E E G records electrical activity of the brain through electrodes attached to the 

scalp. Another similar technique is M E G (Magnetoencephalography) which was in

troduced later in the mid 1980's due to its arduous technological complexity. M E G 

stems from the same physiological phenomena as E E G : it non-invasively measures 

post-synaptic potentials between cortical neurons by the means of induced magnetic 

signals. Note that the generation of the signal is often erroneously contributed to 

ionic currents of propagating action potentials. Since in both methods the acquired 

signal is a sum from a larger volume of cortex and is dulled by the skull and cere

brospinal fluid. The resulting spatial resolution is relatively poor, identifying the 

approximate location of activity to within about a centimeter. O n the other hand, 

the temporal resolution is very high, showing changes within milliseconds. Whi le 

M E G achieves better results than E E G in spatial resolution, this benefit must be 

considered against the complexity and fragility of the M E G machine, along wi th its 

costs [11] [13]. 

P E T (Positron-emission tomography) emerged later, in the mid 1970's. P E T is 

based on using radioactive tracers (radiopharmaceuticals) to observe and trace the 

metabolic processes and paths in the body. The choice of radioactive tracers depends 

upon the metabolic processes we want to follow. In the functional imaging of the 

brain, the most used tracer is Fluorine-18 (F-18) Fluorodeoxyglucose ( F D G ) , which 

is essentially a radioactive isotope of glucose. This can be explained by the brain's 

12 



need for glucose, since it is the only source of energy that crosses the blood-brain 

barrier [1] [11]. 

The underlying physical principal of P E T lies in positron emission (also known 

as j3 + decay). A s the radioactive tracer decays it emits a positron, which then 

travels a distance up to one millimeter and collides wi th an electron. During this 

collision the positron and the electron (antiparticles) are annihilated and give rise 

to two photons that radiate in exactly opposite directions. Only thanks to this 

phenomenon can we localize the source of the radiation: by putt ing a patient inside 

a ring-shaped detector and detecting only those photons that were registered both 

simultaneously and in approximately opposite directions [1] [11]. 
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Fig . 1.1: Comparison of various functional imaging techniques [13] 
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2 BASIC PRINCIPLES OF (F)MRI 

In this chapter I am going to explain the basic principles of ( f )MRI. In the text the 

terms f M R I and M R I may be interchanged, since they both are based on the same 

principles. 

2.1 Nuclear Magnetism 

M R I images are usually acquired using hydrogen nuclei that are abundant in the 

human body. However, other isotopes such as 3 H e , 2 3 N a or 3 1 P are also possible 

sources. A l l those isotopes share the same quantum mechanical feature: a non

zero spin. In other words, the nuclei do not have the same number of protons and 

neutrons and, therefore, can be utilized in the nuclear magnetic resonance process. 

This magnetic imbalance of elements is referred to as the magnetic dipole moment 

and denoted as \x. To quantify the vector of the magnetic moment, imagine a 

positively charged nucleus (e.g. hydrogen) rotating on its axis. This rotation (or 

spinning) is caused by thermal energy. The magnetic dipole moment can then be 

defined by the right-hand rule as following [7] [10] 

[i = I* A (2.1) 

wi th / being a tiny current traveling around the edge of a cross sectional area 

(A). 

The next parameter of these nuclei that is worth noting is the gyromagnetic 

ratio ( 7 ) . The gyromagnetic ratio is a ratio between the charge and the mass of a 

spinning nucleus. Since only stable nuclei are used in M R I , the gyromagnetic ratio 

represents a unique constant for each isotope. [7] 

= q 

2.2 Spins within Magnetic Fields 

When there are a number of spinning nuclei wi th magnetic dipole moment, they 

orient themselves randomly and thus have no net magnetization. However, after 

a strong external magnetic field Bo is applied, nuclei t ry to reach the equilibrium 

state either by assuming parallel or antiparallel orientation with the vector of the 

external magnetic field. The parallel state has lower energy and is more stable than 

the antiparallel state and is, therefore, more frequent. This leads to the total net 

magnetization M z of the nuclei as shown in Figure 2.1 [7] [10]. 

(2.2) 
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(A) .Ft, 

Fig . 2.1: Ilustration of applying an external magnetic field to randomly orientated 

nuclei. Net magnetization vector M z points in the same direction as the vector of 

the external magnetic field Bq [7] 

2.3 Precession and Larmour Frequency 

Atomic nuclei in the low-energy state (parallel) can be tilted to the high-energy state 

(antiparallel) by providing the nuclei wi th energy that is equal to the difference of 

the energy between the two states. Conversely, nuclei in the high-energy state can 

radiate this energy and assume the low-energy state. This shifting energy can be 

supplied in the form of an electromagnetic pulse, whose frequency is described by 

the Bohr relation [7] [10] 
AE 

! = - (2.3) 

where h is the Planck constant. The equation can be rewritten after substituting 

energy E wi th equations describing the total supplied work as [7] 

t = IB" ( 2 ' 4 ) 

This frequency is referred to as the Larmor frequency. B y looking at the 

equation we can see that the frequency is defined only by the gyromagnetic ratio 

(equation 2.2) and the applied external magnetic field B 0 (usually 1.5T or 3.0T). 

Since the gyromagnetic ratio is unique for every atomic nuclei, so must be the Lar

mor frequency. Therefore, we can easily aim at different nuclei and change their 

energy states [7] [10]. 

In Figure 2.1 we have seen how applying an external magnetic field to atoms makes 

up a net magnetization. In reality, however, the nuclei are not perfectly aligned wi th 

the axis of the magnetic field. Instead, in addition to their intrinsic spins, atoms 

perform rotational movements about this axis. This rotational movement, depicted 
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in Figure 2.2, is known as precession. Remarkably, the angular frequency of pre

cession is the same as the Larmor frequency of a given nucleus. This correspondence 

is crucial for the M R signal generation [7] [10]. 

i.. hrld H., 

Fig . 2.2: Illustration of precession and intrinsic rotation of a nucleus about Z axis 

Appl icat ion of an excitational radiofrequency pulse ( R F pulse) of Larmor frequency 

of a given nuclei to a sample from a lateral direction ( X Y plane) leads to two pro

cesses: (1) half of the nuclei switches from the parallel to the antiparallel state and 

(2) all spins synchronize to the same phase. A s s consequence, the net magnetiza

tion M z begins to fade away to be increased in the X Y plane as M x y (see Figure 

2.3). This phenomenon, where small applications of energy at a particular frequency 

induce larger changes in the system, is referred to as resonance [7] [10]. 

Depending on the length we transmit the R F pulse, we can tilt the atoms to 

various angles 6 : 

These angles are known as flipping angles, of which the most frequently used 

are 90° and 180° angles. Note that by applying 90° R F pulse, the longitudinal 

magnetization M z diminishes to maximize the transverse magnetization M x y and 

thus amplify the whole signal (since we receive the M R signal in the transverse plane, 

the growth of M x y naturally leads to greater amplitude of the signal). Conversely, 

after applying 180° R F pulse, vector M x y diminishes to maximize M z and there is 

no detectable signal [7] [10]. 

[7] 

2.4 Application of a Radiofrequency Pulse 

(2.5) 
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y M 

Fig . 2.3: Spiraling change (i.e. nutation) of a net magnetization after a 90° ra-

diofrequency pulse caused by diminishing M z magnetization and growth of M x y 

magnetization [8] 

2.5 Spin Relaxation 

When the radiofrequency pulse is taken away, the system starts returning to its 

equilibrium state by radiating energy. This process is referred to as spin relaxation, 

which causes the loss of the M R signal. The relaxation can be longitudinal or 

transverse [7] [10]. 

Longitudinal relaxation is characterized by the loss of energy we provided the 

system by an R F pulse. The energy is radiated by spins going from the high-energy 

(antiparallel) states to their original low-energy (parallel) states. This leads to re-

arising M z magnetization, as there was before the R F pulse (Figure 2.3). The time at 

which 63 % of atoms return to their original parallel state is referred to as T i [7] [10]. 

Transverse relaxation starts much earlier, long before longitudinal relaxation is 

finished. The so-far coherent spins begin to dephase and as a result the net trans

verse magnetization M x y begins to diminish. There are two causes of the dephasing 

process: intrinsic and extrinsic. 

Intrinsic dephasing stems from the interactions between two spins: one altering 

the angular velocity of the other (known as T 2 decay). T 2 is then the time for the 

transverse magnetization M x y to fall to 37 % of its ini t ial value. 

Extr insic dephasing, on the other hand, arises from inhomogenities in the exter

nal magnetic field, changing the precessing frequency (see equation 2.2), which in 

turn leads to dephasing. The combination of both types of dephasing is referred to 

as T 2 * decay, which is essential for B O L D f M R I [7] [10]. 

T i and T 2 decay times are specific for each type of tissue and thus they enable us 

to magnify the contrast of the tissue we are interested in wi th regard to surrounding 

tissues. This process in known as T i or T 2 weighting, which is accomplished by 

17 



Tab. 2.1: Rough Values of T i and T 2 Times at a F ie ld Strength of 1.5 T 

Gray Matter Whi te Matter Cerebrospinal F l u i d 

T l 900 ms 600 ms 4000 ms 

T2 100 ms 80 ms 2000 ms 

changing the time at which the R F pulse is repeated (repetition time (TR)) or the 

time at which the image is acquired (echo time (TE)) , respectively [7] [10]. 

2.6 Image Acquisition 

A s the net magnetization vector is rotating in the X Y plane, it creates magnetic 

waves which are then detected in receiving coils in the form of a magnetic flux. 

Magnetic flux, governed by Faraday's law of induction, then in return creates a 

current and provides a readable signal (see Figure 2.4) [7]. 

F ig . 2.4: Illustration of T 2 and T 2 * decay after applying a radiofrequency pulse, also 

known as free induction decay(FID) [6] 

2.7 Slice Selection 
We now know how the signal from our object (e.g. brain) is obtained. However, 

how can we focus on a specific slice and not on the whole object? We can infer 

from the equation 2.2 that magnetic gradients, instead of a uniform magnetization 

throughout the sample, could be a solution: each nucleus would then have the unique 

properties of a Larmor frequency and a phase. 

18 



To obtain a 2D image from a 3D sample, we need in total 3 gradients that wi l l 

govern coding in all directions X , Y and Z. Those 3 gradients are known as Gf. 

and G s i , respectively. The slice-selection encoding gradient G s i enables us to 

select a specific slice within the sample. After applying a radiofrequency pulse of a 

frequency to the slice we want to select, only the nuclei in this slice would be excited 

and, therefore, contribute to the image formation. This process breaks down the 

problem to a 2D space. 

Shortly after turning on the G s i and a R F pulse, the phase-encoding gradient G ^ 

is applied. This gradient G ^ ensures that spins accumulate different phase offsets 

over space. 

A t last the frequency-encoding gradient Gf is applied at the same time as we turn 

on the receiving coils and detect the signal. Hence, the spin precession frequency 

changes over space [7] [10]. 

Ult imately we are alternating the phase-encoding gradient G ^ and frequency-

encoding gradient Gf, scanning the slice of the object line by line from one side to 

the other. In f M R I imaging this technique is referred to as gradient echo (gradient 

echo ( G R E ) ) imaging [7] [10]. 

2.8 K-space and Resolution of The Image 

The signal we obtain is not of the final image itself, but it is a representation of 

the image in a spatial frequency domain, known as K-space. Each line, after being 

scanned, is added to the K-space; this is known as K-space filling. From the K-space 

we can then easily convert the spatial spectrum to the final image using a Fourier 

transform [7] [10]. 

In M R I , the resolution is defined by the size of the imaging voxels. Since voxels 

are cubes, the resolution can vary in each dimension. The resolution depends on the 

K-space size, field-of-view ( F O V ) and slice thickness. K-space size is the number of 

frequency-encoding steps times phase-encoding steps, therefore, the more steps, the 

higher the resolution. Field-of-view is the size of the object we are sampling; the 

bigger it is, the smaller the resolution wi l l the resulting image. Lastly, slice thickness 

depends greatly on the strength of the G s i and on the frequency bandwidth of the 

R F pulse we apply. 

Usually the slice thickness is the weakest factor, providing resolutions such as 

1x1x3 mm. Since in f M R I imaging we want to detect time courses of brain activity, 

high temporal resolution is favorable. Given that high sampling rate, and therefore, 
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high resolution is time consuming, f M R I uses images of a smaller resolution, as 

opposed to anatomical M R I images [7] [10]. 

2.9 Echoplanar Imaging 
Echoplanar imaging (EPI) is an upgrade of G R E imaging, making it the fastest 

acquisition method available. Essentially, the concept lies in the rapid changing 

of the phase-encoding and the frequency-encoding gradients, resulting with filled 

K-space within a few tens of milliseconds, as shown in figure 2.5 [7] [10]. 

(A) 

RF 

Gf 

[B] 

- i r u i r u i r 
t I t i L 

Fig . 2.5: Illustration of an E P I pulse sequence (A) and its zig-zag trajectory in the 

K-space (B) [7] 
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3 BOLD FMRI SIGNAL 
Blood oxygenation level dependent ( B O L D ) f M R I is a method that indirectly, by 

the means of different magnetic properties and concentrations of oxyhemoglobin and 

deoxyhemoglobin, measures metabolic activity in the brain [7] [10]. 

3.1 Consequences of Neural Activity 

The processing of information in a neuron or resending the information further 

along consumes a considerable amount of energy, which then needs to be returned. 

A T P (adenosintriphosphate) molecules, that serve as small sources of energy, can 

be formed after providing glucose and oxygen from the blood to the neuron. Whi le 

glucose molecules are freely transported by blood, oxygen molecules are bound to 

hemoglobin. After the neuron is excited, it increases its incoming blood flow which 

carries these sources for creating A T P s . Glucose and the oxygenated hemoglobin 

(oxyhemoglobin) then enter the cell and the hemoglobin binds any waste carbon 

dioxide. This oxygen-free hemoglobin is referred to as deoxyhemoglobin [7] [10]. 

3.2 Magnetic Susceptibility and the Origin of the 
BOLD Signal 

In our bodies there are a lot of molecules that have either diamagnetic or para

magnetic properties that can locally change the field strength. This can lead to 

geometric disturbances of the image and local signal losses. The extent to which ei

ther diamagnetism or paramagnetism of a molecule is disturbing the signal is known 

as magnetic susceptibility. 

The detection of local changes in the concentration of oxyhemoglobin and deoxy

hemoglobin in the B O L D f M R I is based on this phenomenon. Whi le oxyhemoglobin 

is only sligthly diamagnetic, deoxyhemoglobin is strongly paramagnetic, causing 

dramatic perturbations in the local homogeneity of the magnetic field. A s a result, 

this leads to dephasing of the spins (rapid T 2 * decay) and, therefore, loss of the 

signal [7] [10]. 

3.3 Hemodynamic Response Function 

Contrary to what one might assume, the neuronal activity is not detected by the loss 

of the M R signal, but instead by the resultant increase in the signal. There are many 

theories accounting for this signal increase; the most widely accepted theory states 
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that the oxyhemoglobin displaces the deoxyhemoglobin that had been suppresing 

the signal intensity. 

A s we can see in figure 3.1 A , the bloodflow changes very slowly, causing a delayed 

increase in the B O L D signal of about 2 - 3 seconds after onset of the neuronal 

activity. Furthermore, even after the activity of the neuron ceases, the oxygenated 

blood keeps flowing to the region wi th active neurons. This superfluous perfusion 

of the oxygenated blood accounts for a prolonged signal response of about 15 -

25 seconds. The resulting change in the signal strength between the active and 

nonactive voxels is very small, only a few percent, making the detection of the brain 

activity very difficult to distinguish (figure 3.IB) [7] [10]. 

F ig . 3.1: (A) Changes in the concentrations of oxyhemoglobin and deoxyhemoglobin 

after neuronal activity and their impact on the B O L D signal (B) [7] 

In B O L D f M R I experiments we measure either the resting state activity of the brain 

or the response of the brain to presented stimuli. However, as stated in the previous 

section, brain activity induces only very small changes of about a few percentage 

points in the recorded signal and detection is thus very difficult. To overcome this 

problem stimuli are presented repeatedly and their signal responses are aggregated 

to enhance the difference between the active and non-active regions of the brain [7]. 

For the stimuli-induced experiments there are 3 main types of design: block, 

event-related and mixed. 

3.4 Experiment Setups 
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In the block design, the stimulus is presented in a block lasting about 20 seconds, 

during which the H R F (hemodynamic response function) reaches its peak in the 

signal, and is followed wi th a null-block that lasts approximately the same amount 

of time. Block designs offer good detection power, but poor estimation power (i.e. 

weak ability to describe the time course of the H R F response). 

In the event-related design the two sets of stimuli are usually presented in a 

random fashion for a very short time. Contrary to the block design, the estimation 

power is very good. The detection power depends on the number of stimuli we 

present and aggregate [7]. 

A 

St imu lus I I 

S a m p l i n g x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

B O L D s i g n a l 

1 
B 

S t imu lus U I 

S a m p l i n g x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

B O L D s i g n a l -

Fig . 3.2: Schemes of a block design (A) and an event-related (B) design. 
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4 NOISE AND ARTIFACTS 
The signal we detect is comprised of not only the utilizable signal, but also of addi

tional noise and artifacts that corrupt the quality of the signal and of the resulting 

image. In this chapter a few of the most abundant sources of such signal distortion 

are listed. 

4.1 Chemical Shift Artifact 
Chemical shift is caused by the different magnetic susceptibility of different tissues. 

Magnetic susceptibility changes the precessing frequency of nuclei and, therefore, 

they appear as if they were shifted in space (recall equation 2.2). In reality this 

means we see shadows and brightness around the edges of tissues having distinctly 

different magnetic susceptibility. In brain images the chemical shift is most signif

icant at voxels near transitions between cerebrospinal fluid and white/gray matter 

[7] [10]. 

F ig . 4.1: Chemical shift artifact: note the dark edges marked by the yellow 

4.2 Thermal Noise 
A l l functional and anatomical M R I data are to some extend affected by thermal 

noise, which is caused by the heat-related motion of electrons. The acquired signal 

travels in the form of an electric current through a series of conductors, amplifiers, 

resistors and other components of the M R I scanner. In each of the components, 

free electrons collide wi th atoms, thus exchanging energy. This collision leads to 

the distortion of the electric current and the signal. The higher the temperature 
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of the system is, the more frequent the collisions are, resulting in higher noise and 

distortion of the data. For this reason, every M R I scanner is constantly cooled down 

by liquid nitrogen to minimize the motion of the electrons [7] [10]. 

4.3 System Noise 

System noise in the M R I scanner represents discrepancies in the functioning of the 

hardware. Such discrepancies can be found in the inhomogeneity of the gradient 

magnetic fields and the static magnetic field; the latter having a particularly negative 

effect, known as scanner drift. Even though these discrepancies, or changes, in the 

static magnetic field might be very small (tenths of a part per mil l ion per day), the 

resulting impact on the resonant frequency is much greater, changing it on the scale 

of a few hertz. This can lead to changes in the signal intensity over time. Similarly, 

discrepancies in the gradient magnetic fields can lead to geometrical distortions in 

the image and changes in the slice selections over time [7] [10]. 

4.4 Physiological Noise 

Periodical cardiac pulsation and breathing also produce changes in the signal and 

small motion artifacts. Respiration causes variability in the f M R I data: as the 

lungs expand and the oxygenated blood rushes into the brain it causes a wave of 

magnetic susceptibility and alternation in the homogeneity of the magnetic field. 

Furthermore, both cardiac pulsation and respiration induce small movements of the 

subject. 

One might suppose that filtering out cardiac pulsation and breathing may be 

easy due to their periodicity. This might be true for the breathing effects, as the 

sampling rate of T R s is typically, with modern M R scanners, under 2500 ms. O n 

the other hand, however, the subject might also breath very fast, which might result 

in an undersampling of the breathing effects. Moreover, for effective sampling of 

cardiac pulsation the T R s would have to be even faster, shorter than 500 ms. Since 

in practice such rapid sampling is not achieved, the data are corrupted by the aliasing 

of the cardiac pulsation and breathing [7]. 

4.5 Motion Artifacts 

The motion of the subject represents the most frequent and drastic distortions of 

the data in two ways: it changes the locations of the voxels and alters the signal 

properties. In addition to wholebrain analysis, voxel-by-voxel statistical analysis 
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Fig . 4.2: Power spectrum of a voxel during an experiment. Cardiac pulsation and 

breathing were sampled effectively due to the fast T R of 250 ms [7] 

is often employed. Therefore the voxels have to correspond to the same locations 

during the entire experiment. Only in this way can we analyze the time courses of 

certain sets of neurons within a region of the brain. If the voxels do not correspond 

to the same location over time, in an extreme case we might find ourselves running 

statistical tests on voxels that are, for instance, alternating their locations between 

white matter and cerebrospinal fluid. Such voxel shifts can as a consequence, lead 

to false-positive and false-negative errors in statistical tests - voxels suddenly change 

their intensity as if they were in the brain's active region. 

The higher the resolution is, the smaller the voxels are and, hence, the more 

motion-susceptible the image is. In the best cases, small head motions can be 

corrected during preprocessing. However, larger movements can make the correction 

impossible, leading to the removal of a whole series of scans from the dataset. 

A s the subject moves, it not only changes the locations of the voxels in respect to 

the brain region, but it also interferes wi th the magnetic gradients and slice selection 

process. When a certain slice is excited and the subject moves his head, it might 

happen that the next slice to be selected wi l l include a section of the previous slice 

and excite it again. However, since this section did not reach full T i relaxation, the 

signal from this section wi l l be smaller and T i weighted, accentuating contrast for 

different tissues. This effect is referred to as spin-history artifact [7] [10] [15]. 

The next important implication of motion artifact is the rise of spurious vari

ance that tends to be more similar in nearby voxels. This would not be a problem 
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in task-evoked experiments, however, a considerable amount of f M R I experiments 

focus on resting state f M R I , which uses corelation analyzes for the functional con

nectivity mapping of the brain. In the past few years many research groups have 

found out that the young and the elderly exhibit underconnectivity as opposed to 

young adults. For instance, children and the elderly showed weak signal correlations 

between distant regions of the brain and stronger ones between the nearby regions. 

However, retrospectively, a lot of such observations were found to be invalid due to 

motion artifact, which increases local correlations, and the fact that children and 

the elderly are usually more susceptible to motion [17] [20]. 
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5 FMRI DATA PREPROCESSING 
Before any statistical tests are performed, the raw data first has to be preprocessed. 

Preprocessing ameliorates the data quality by diminishing artificial signal variability 

and correcting it for motion. 

Since preventing motion from occurring is much easier than subsequent analytical 

corrections, the subject is instructed to stay still before the experiment begins. 

However, this might be very difficult due to the length of the experiment, which 

can stretch up to 20 minutes or longer. For this reason, the researches provide the 

subjects wi th head restraints, such as masks, vacuum packs or bite bars, which are 

the most effective, but least favorite and bearable. However, even when using such 

restraints some motion is st i l l present. 

Usually the first preprocessing step represents realignment of the scans affected 

by motion. Next is the coregistration of the anatomical and functional images to 

obtain images which can better trace the anatomical sources of the brain activity. 

The another step that usually follows is time correction, which tries to interpolate 

the time courses of the B O L D responses within each of the slices, which were ac

quired wi th certain time lags, and adjust them as if they were acquired at the exact 

same moment. In case there is a desire to make comparisons between subjects, it 

is necessary to first transform the images of each subject to the same template, so 

that each brain more or less has the same anatomy. Spatial filtering and intensity 

normalization are other steps that are almost always performed. Lastly, if the sam

pling frequency is high enough, respiratory and cardiac pulsation artifacts can be 

removed by temporal filtering the time courses of the B O L D signal [7] [12]. 

5.1 Head Motion Correction 

To align (or coregister) the scans in a way that each voxel corresponds to the same 

brain region over time, rigid body transformation is used. Rig id body transformation 

is a spatial transformation, which supposes that the object (e.g. scans of the brain) 

to be oriented does not change its shape over time. This condition is attained by 

correcting the motion for one subject. The transformation then reorients the object 

in three translations (i.e. moving the scan in x-,y-, and z-axes) and three rotations 

(i.e. rotating the scan around x, y, and z axes; also known as pitch, roll and yaw). 

The scans are coregistered wi th a reference image, which is usually the mean image 

of the scans [7] [12]. 

The computer first calculates many sets of possible coregistrations, from which 

only the right one has to be chosen. To do this the computer calculates a math

ematical measure known as cost function for each coregistration. Ideally, the cost 
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function would be zero if the image had the same voxel intensity and was aligned 

perfectly. Therefore the right scan has the minimum cost function value [7]. 

A t the end of the coregistration process a matrix with 3+3 columns of trans-

lational and rotational parameters by N rows, where N is the number of scans, is 

obtained. The time courses of the translational and rotational parameters are known 

as motion regressors [7] [12]. 

To describe coregistration mathematically the above-mentioned process can be 

rephrased as following: assuming the image to be oriented Q(x) and the reference 

image r(x) do not change their shape over time, rigid body, six-parameter affine 

spatial transformation q(x,^) can be used. This transformation is a vector function 

of position in space x, defined by the six parameters of a rigid body transformation 

r = [ t i . . . . T 6 ] , where [5] [14] 

/ 3 - T ( x ) ^ ( g ( x , 7 ) ) (5.1) 

and (3 is a scaling constant. Assuming the images are smooth (or they can be 

filtered wi th a lowpass filter), function q(x,^) can be further expanded in terms of 

six vector functions ^^dqix,7)/'djk of x, approximating the six parameters of a rigid 

body transformation [5] 

. + £ ^ 2 ) ( 5 . 2 ) 

After substituting this derivation to equation 5.1 [5] 

f . ^ - f l ^ E ^ ) (5.3, 

If Q(x) is smooth the effects of the transformations 7fc<9g(x, 7)/<97fc wi l l not in

teract significantly. Therefore, the right side of equation 5.3 can be expanded using 

Taylor's theorem, neglecting high order terms as [5] 

p • r(x) * n ( s ) + £ 7 f c v ^ ( x ) - ^ ( x , 7 ) w n ( a ; ) + E 7 f c a n ( g ( * , 7 ) ) ( 5 . 4 ) 

This equation states that the difference between a reference and an object image 

can be expressed as the sum of the changes in the object image for each parameter 

times the amount of that parameter. The equation can be further expressed in 

matrix notation as [15] 

QttG-[lry]T, where G pa [r — d'j/d'j} (5.5) 
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7 and Q are column vectors with one element per voxel and b is an estimate 

of (3. In practice it is easy to calculate the six columns of r — dj/dj by applying 

small translations and rotations to the object image Q and measuring the changes 

in voxel values. The vector 7 of the six parameters corresponds to the estimated 

translations and rotations; it is estimated in a least square sense by [15] 

[b^Y = G-(G T- G)- 1 • G T • n (5.6) 

After these six transformation parameters are obtained, the image is re-sampled 

(spatially interpolated) onto the same grid of voxels as the reference image Q. 

The tranformation Tj is an iterative process of a series of scans, where i de

notes one individual volume Q(x) and T, coregisters this volume to the reference 

frame r(x). Each transform can then be expressed as a combination of rotation and 

translation parameters as following [15] 

0 1 
(5.7) 

Here Ri is a 3 x 3 rotation matrix and tj is a 3 x 1 column vector of displacements. 

Ri is divided into three elementary rotations: pitch, yawn and roll . Therefore, 

Ri — Ria • Riß • i ? j 7 , where [15] 

Ri, 

R 17 

1 1 0 

0 cos(q;j) — sin(öj) 

0 sin(d!j) cos(a!;) 

cos(7 j) - sin(7j) 0 

s in(Ti) cos(7i) 0 

0 0 1 

Ri 

cos(ßi) 0 sin(ßi 

0 1 0 

- sm(ßi) 0 cos(ßi 
(5. 

Note that there are more types of interpolation varying in the computational 

complexity and the quality of interpolating. The least computationally complex 

interpolation is linear interpolation, which uses information of voxel values for only 

the 4 immediate neighbours. However, this method is also relatively inaccurate 

and achieves poor results. In contrast, other methods such as sine interpolation 

achieve superb results, however, they are ruled out (in our case) because of their 

high computational complexity. The most frequently used method for re-sampling 

the image is B-spline interpolation, which represents a compromise between the 

quality of interpolation and computational complexity [7]. 
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5.2 Slice Acquisition Time Correction 
F M R I analysis assumes that the scans were obtained at one exact moment. However, 

in reality the scanning process begins, for instance, at the top slice of the brain and 

iteratively descends to the bottom part of the brain. This causes time lags between 

the slices, the most profound being between the first and the last slices. The delay 

depends on the speed of the image acquisition, wi th E P I T R being about 2 seconds 

long. A s a result, reflecting the H R F , this delay may cause dramatic differences 

between recorded signals of the individual scans [7] [12]. 

To correct these time discrepancies, the time courses of the H R F s are interpolated 

and adjusted to have the same time offsets. Though this might seem like a perfect 

solution, the longer the T R s are, the greater the interpolations are and, hence, the 

greater the chance of errors in the interpolations [7] [12]. 

(A) (B) 

Fig . 5.1: The scans of the active region in the brain (A) are acquired with a standard 

interleaved sequence (B). Because these slices are acquired at different times, the 

hemodynamic response within the slices wi l l have very different time courses. The 

actual recorded signal from the different slices is shown in (C). When plotted for 

each T R , there are different time courses for the slices acquired early in the T R and 

the slices acquired later (D). [7] 
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5.3 Spatial Normalization 
Since human brains vary remarkably in their anatomy, they have to first be trans

formed into a uniform template (or space) before any statistical tests are executed. 

This process is known as spatial normalization. In addition to rigid-body transfor

mation, normalization also allows for possible stretching, squeezing and warping of 

the images of each brain, transforming them into approximately the same anatom

ical structure. Nowadays, the most frequently used reference template is Montreal 

Neurological Institute (MNI) space, which was derived from an average of M R I 

anatomical images from hundreds of individuals [7] [12]. 

5.4 Spatial Smoothing 

Spatial Fi l ter ing is used to improve the signal to noise ratio. In addition, it also 

attenuates the interindividual variability in the brain anatomy and eliminates in

terpolation errors from the acquisition time correction process and small motion 

artifacts. O n the other hand, it lowers the effective spatial resolution and, in the 

worst case, it can cause false negative errors in the ensuing statistical analyzes. 

The smoothing is usually done with a Gaussian filter, whose value of full width 

at half maximum ( F W H M ) can be from 6 to 10 m m [7] [12]. 

5.5 Temporal Filtering 

Fil ter ing the time courses of the B O L D signals for each individual voxel can sub

stantially improve the S N R . A highpass filter is usually used to remove drifting of 

the signal. Combining it wi th a lowpass filter, a respiration artifact (12 breaths per 

minute =>- f = 0.2 Hz) can be removed: T R of E P I is about 2 seconds =>- F s a m p i i n g 

= 0.5 Hz. Therefore the Nyquist-Shannon sampling criterion is met. However, it is 

not possible to eliminate the cardiac pulsation artifact (60 beats per minute =>- f = 

1 Hz) [7] [12]. 
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6 REGRESSION ANALYSIS OF BOLD FMRI 
DATA 

After the B O L D f M R I data are preprocessed, they are statistically tested to provide 

the answer as to whether our tested hypothesis is valid or not. One of the most 

frequently used statistical methods for such tests is multiple regression analysis. The 

core idea of multiple regression analysis is that the response of the brain activity 

to presented stimuli during an experiment is predictable. The predicted model 

is then composed of several regressors, which are essentially the predictions (i.e. 

independent variables) we made about the time courses of the brain activation. 

Ideally, the sum of all the regressors should fully explain the real brain activity we 

measured in the experiment [7]. 

V = A) + Pi * Xl + $1 * X2 + ... + Pn * Xn + S (6.1) 

The regression models as shown in equation 6.1 have only one known quantity: 

the experimental data (y). The regressors (xi) might or might not contribute to the 

data, depending on the parameter weights (/?,), which reflect the scale of contribu

tions of individual regressors. (30 is a constant, which corresponds to the baseline 

signal intensity. The last parameter, (e) is residual error; a part of data that could 

not be explained by any regressor. A n example of the matrix of regressors, known 

as design matrix, is shown below in figure 6.1 [7]. 

Regressor 

Fig . 6.1: A design matrix for General Linear Model (see below). Three regressors 

are constructed for mixed block/event-related design. The first column represents a 

blocked effect, while the other two represents the event-related effects to two different 

presented stimuli. Note that the white bar on the right represents the constant value 

in the data, removing the mean signal intensity. [7] 
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6.1 General Linear Model 
The most frequently used class of statistical tests of the multiple regression analysis 

is the general linear model ( G L M ) . This method is employed either in 1 s t level 

analysis, which evaluates the data of a single subject, or in 2 n d level analysis, which 

evaluates the data across a tested group of subjects. In order to perform the 2 n d level 

analysis images need to be, in addition to preprocessing, also spatially normalized 

to a common space, such as M N I . 

In practice, the equation 6.1 above is replaced wi th a set of matrices as shown 

in figure 6.2. The f M R I data are represented as a matrix consisting of n time points 

(rows) by V voxels (columns). Note that the spatial structure of the f M R I data is 

not considered, the statistics focus only on the time courses of voxels. The design 

matrix is comprised of M regressors (columns) by n time points (rows). This design 

matrix is multiplied by a parameter matrix, which contains M parameter weights 

(columns) by V voxels (rows). Finally, the error matrix, which contains V voxels 

(columns) by n time points (rows), accounts for the unexplained error of each voxel 

[7]-

Data matrix 

Y 

fMRI data 

n rows 
[time points) by 

V" columns (voxels) 

Design matrix 
G 

h rows 
(time points) by 

M columns (repressors) 

Parameter matrix 

V rows (voxels] 
by M columns 

(parameter weights) 

Error matrix 

(time points) by 
V columns (voxels] 

Fig . 6.2: General linear model tries to explain the original data (Y) by calculating 

parameter matrix (3, which would provide the best fit for the design matrix (G) by 

minimizing the unexplained error e [7] 

From a statistical point of view all the efforts of sustaining the homogeneity 

of the magnetic field, avoiding all sorts of artifacts and preprocessing the data are 

ways of how to minimize the residual errors e in the error matrix. In addition, the 

design of the experiment plays an equally important role as to a simplification the 

construction of regressors . 

A s mentioned earlier, each voxel value can be represented as 

k 

y = J2xi + f3i + £i (6-2) 
i = i 
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where y is the signal intensity and k is the number of regressors in the design 

matrix. Subsequently, based on the time courses of the signal intensity y and corre

lated regressors, (3 values of the parameter matrix can be calculated in a least square 

sense by [14] 

A t-statistic, from which statistical parametric maps of brain activity are con

structed, can then be performed by dividing the contrast of the estimated parameters 

cT(3 by the standard error of this estimate. The standard error is based on the vari

ance of residuals (variance unexplained by the model) and the specific portion of 

the covarinace matrix. [14] 

Regressors can be divided into regressors of interest (see 6.1), which predict the 

researcher's expectations about the brain activity, and nuissance regressors, which, 

on the other hand, account for certain errors in the data. Nuissance regressors are 

mostly used for motion correction, explaining data distortions for translation and 

rotation motions. Moreover, if the motion is extreme and drastically corrupts the 

data of certain scans, the scans are to be excluded from the statistics by constructing 

single timepoint nuisance regressors (also known as scan nulling or spike regressors). 

These regressors omit such motion-affected scans from analyzes by assigning them 

non-zero values, which accounts for all the variability of that volume. The downside 

of constructing a wide range of regressors, and thus modeling a great portion of 

the signal, is the reduction of the degrees of freedom. A s a result, the statistical 

reliability of the tested hypotheses is reduced. Therefore, the number of nuissance 

regressors used is l imited [7] [9] [18] . 

Assuming the H R F is treated as a filter, task regressors can be constructed as 

a convolution of Delta functions wi th the H R F . This approach is identical to the 

Finite Impulse Response (FIR) model used in signal processing. A n example of such 

a model is shown in figure 6.3 [19]. 

(6.3) 

T (6.4) 
VS2cTx~1vx~Tc 

6.2 Regressors 
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Fig . 6.3: Model ing a task regressor using an approach identical to modeling a F I R 

filter: convoluting H R F wi th Impulse Stimulus Train [19] 
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7 DETECTION OF MOTION-DISTURBED DATA 
Subject movement is often measured wi th summary statistics, yielding data quality 

indices. Such statistics can be based on the motion parameters described above or 

on the change of intensity between the time courses across voxels ( D V A R S ) . A n 

other possibility is tracking the movement of a subject wi th a camera. However, the 

equipment has to be MR-compatible , and, therefore, this method is very expensive 

and rarely employed. In practice, the most frequently used method is the combi

nation of two indices, F D and D V A R S . These can be used to flag scans of suspect 

quality to be ignored when performing calculations upon the data and thus creating 

temporal masks of the data. A n important point to consider is the detection limits 

of these indices, as different datasets can be best fitted using different thresholds. 

This results in the disunity in the quantification of such thresholds across studies. 

A s the motion artifacts cannot be fully regressed out in G L M due to the spin-

history artifact, summary statistics is often used to describe the extent of subject 

motion and to decide whether to discard a scan showing excessive motion or not. 

Furthermore, if a subject exhibits constant movement throughout scanning, it is 

worth considering whether it would not be better to discard the entire data of that 

subject [15] [16] [7] [9]. 

7.1 Motion Regressors 

The six motion parameters obtained from rigid body transformation can be used 

for evaluating the extent of subject motion. In addition to those six parameters, 

other derivative parameters can be calculated. For instance, the difference between 

values of translational (dXi) and rotational (@h) parameters of successive voxels is 

calculated as [15] 

Adxi = d s(j_i) — d s(j), A 6 r i = 0 r ( j_i) — 0 r(j) (7.1) 

or sometimes this contrast of motion parameters is further enhanced by calculating 

the square of the difference [2] 

Ad2

xl = ( 4 ( i - i ) - dx(i))2, AQ2

ri = ( e r ( i _ i ) - 0 r W ) 2 (7.2) 

Those motion regressors, 36 in total, can be included into the G L M as nuissance 

regressors. However, as mentioned in the previous chapter, this can lead to the 

decrease of the statistical reliability. 
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Fig . 7.1: Mot ion parameters obtained from rigid body transformation 

7.2 FD 

For summarizing the extent of a movement, the motion regressors per se are a bit of 

an awkward measure. Instead, instantaneous head motion is expressed by a single 

scalar quantity, known as framewise displacement (FD) . Al though there are more 

approaches as to calculate F D , the most frequently used formula, derived by P h D . 

J . D . Power, is as follows [15]: 

FDi = \Adix\ + \Adiy\ + \Adiz\ + | A d a * | + \Ad(3iz\ + | A d 7 i | (7.3) 

where Adix = ti(j_i) x — dix and similarly for the rest of rigid body parameters 

[dix diy diZ dai d(3iZ dji}. The rotational parameters were converted from 

degrees to millimeters by calculating displacement on the surface of a sphere with a 

radius of 50 mm, which is approximately the mean distance from the cerebral cortex 

(where the activity is measured) to the center of the head (i.e. the axis of rotation). 

The formula for this conversion is [15] 

da, = (50 * - ^ - H (7-4) 
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7.3 DVARS 
D V A R S stands for derivative (D) of timecourses, root mean squared variance over 

voxels ( V A R S ) . In other words, D V A R S measures the change of a B O L D signal 

intensity from one volume to the next by calculating backward differences wi thin 

a spatial mask at every timepoint. Al though this change of intensity between two 

timepoints of a voxel is not a direct measure of motion, D V A R S is a very accurate 

motion indicator; the formula for D V A R S whole-brain mask is [15]: 

DVARS(AI)i = ^ ( [ A J , ( ^ ) ] 2 ) = ^ [ J ^ ) - / ^ ^ ) ] 2 ) , (7.5) 

where / is the intensity between two timepoints (or scans) i. 

SjDjeet 53 
Mean FD: 0 147 mm 

RMS movement: 0 319 mm 
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V j t j w 

" j ' l i = J i i L ' j . - ' i - T i " . 

Absolute [fj-nslational displai^-niT". 

Absolute rotation-a displacement 

DVg 

Volume n 

Fig . 7.2: Comparison of motion parameters, F D and D V A R S 
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8 REMOVAL AND SUBSTITUTION OF MOTION-
DISTURBED DATA 

A s previous studies have shown, motion artifact is not easily removable due to its 

nonspecific spectrum, affecting the signal on every frequency component (see figure 

8.1). O n the other hand, the effect can be attenuated by applying a narrow band 

pass filter (0.01 - 0.1 Hz instead of 0.008 - 0.1 Hz) and by including a high number 

of nuisance regressors; the greatest variance of the data was shown to be explained 

by the 36-parameter confound regression. Further analyses also showed that the 

parameters accounted only for the artifact, not for the actual H R F signals [18]. 

However, such prepocessing improvements only attenuates the motion artifact 

and does not remove it completely. To do so, the affected scans have to be omitted 

from further statistical analysis. In this thesis I wi l l focus on the motion scrubbing 

method, introduced by Power et al. (2012), and spike regression [15] [18]. 

Note that there are several important approaches for motion artifact removal 

that I wi l l not cover in this thesis, namely Independent Components Analysis ( ICA) 

and Component Based Noise Correction Method (CompCor) [18]. 

8.1 Motion Scrubbing 

A s mentioned above, this method was introduced by Power et al. in 2012. The 

core idea of motion scrubbing lies in deleting scans displaying excessive motion by 

data quality indices ( F D , D V A R S ) . It is also advisable to remove one prior and two 

past scans, since the motion artifact is associated wi th a variety of transient signal 

changes. In his study, Power further argues that such removal has not been found to 

have any deleterious effects upon functional connectivity and on task f M R I . However, 

an alternative way that his team later adopted was to replace the affected scans wi th 

interpolations based on adjacent 'good' timepoints. A s a previous study had argued 

(Carp, 2013), frequency filtering (basic preprocessing step) might spread the artifact 

into such adjacent 'good' timepoints and as a consequence motion scrubbing is done 

prior to the frequency filtering. Note that the motion scrubbing process can be 

done, along wi th re-calculating data quality checks, iteratively, possibly removing 

even more scans [16] [15] [3]. 

A n especially intriguing question for which there is no resolute answer is the 

extent of data removal that is stil l acceptable for further analysis. The threshold 

adopted by most studies is 5 minutes of a 'good', uncensored signal. If a subject 

exhibits movements throughout scanning, his or her data are usually completely 

discarded [16] [15]. 
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Fig . 8.1: A : analysis of the magnitude spectra of the matched low and high motion 

groups indicate that signal change introduced by in-scanner motion is relatively 

nonspecific in terms of its spectral characteristics. B : improved outcomes of signal 

preprocessing when applying a high number of regressors [18] 

8.2 Spike Regression 

Another way to remove (or neglect) motion-affected volumes is to construct so called 

spike regressors. These regressors, also known as nulling regressors, have null values 

throughout the time series except to the timepoints that are motion-affected; there 

the regressors have a value of one. A s a result, they account for the variability of 

that motion-affected scan and thus discard it from further analysis. There is di

vided opinion among scholars as to the number of spike regressors that should be 

used; some studies claim that only one spike regressor should be used to discard the 

motion-affected volume; others argue that one should discard also one preceeding 

and the two following scans, as is done in the motion scrubbing method. However, 

overusing spike regressors could inevitably lead to reducing degrees of freedom and 

as a result reduce the reliability of that analysis. On the other hand, the advantage 

of spike regression to the motion scrubbing method lies in preserving temporal conti

nuity and avoiding potential errors introduced by scan removal followed by temporal 

interpolation [9]. 
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9 IMPLEMENTATION OF T H E DETECTION 
AND MOTION-REMOVAL METHODS 

The script is programmed in the M A T L A B R2016a environment and uses SPM12 

toolbox, version 6906. It works with 4D data in N l f T I format. The frame of the 

algorithm was was previously developed by my supervisor, Ing. Micha l M i k l , P h . D . 

He was k ind enough to provide it to me. The frame consists of several blocks that 

preprocess given data. I implemented my extensions comprised of new lines and 

functions. 

9.1 Chosen Indicators of Movement 
For the actual script we chose F D and D V A R S as metrics of movement; F D for its 

wide use in studies and D V A R S as a complement that is also used very often. A 

comparison of F D and D V A R S motion indicators is shown in the figure 9.1. 

1 9 0 A FCIMI3 

E 
E 

M 

Threshold 
Scans to remove (20 %) 

50 100 150 200 250 

Scans 

190A FCNI3 

3CC 350 4CC 

150 200 250 

Scans 

4CC 

Fig . 9.1: Each metric yields a bit different output. Al though in this particular case 

F D flagged more scans than D V A R S , the distribution was random across the sessions 

(see supplementary materials chapter B ) . 
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A s one can see, there is some overlap between the scans flagged by F D and 

D V A R S . However, mostly there is a mismatch in both the positions of the flagged 

scans and their total number. Therefore, we decided to also use a fused combination 

of F D wi th D V A R S . 

9.2 Motion Regressor Matrices 

For Spike regression, we came up wi th two designs of regressor matrices. W i t h the 

first design regressing only the affected scan (0S-1S-0S), and wi th the second adding 

one preceding wi th and following scans to the affected scan (1S-1S-2S). The second 

design follows a study by Carp, 2013 [3]. 

DVARS_reg.value 

1 

2 

1 2 3 4 5 

1 

2 

0 D 0 0 0 1 

2 1 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 D 0 0 0 

7 0 0 0 0 0 

DVARS_reg3 .value 

1 

2 

1 2 3 4 5 

1 

2 

1 D 0 0 0 1 

2 0 1 0 0 0 

3 0 o | 1 0 0 

4 0 0 0 

0 

0 

5 0 0 0 0 0 

6 0 D 0 0 0 

7 0 0 0 0 0 

Fig . 9.2: A t the top you can see the 0S-1S-0S design and at the bottom the 1S-1S-2S 

design. The affected scan here is scan number 2 (yellow). The 1S-1S-2S design also 

includes one previous and two following adjacent scans (marked in gray). 

9.3 Motion Scrubbing 
Unlike Spike regression, Mot ion scrubbing physically deletes the affected scans and 

replaces them wi th interpolation estimates. We decided to implement both linear 

and B-spline interpolations. This process takes quite a lot of computation time as 
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is shown in C . l . 

Linear interpolation requires at least two good timepoints. The most difficult part of 

the implementation is to cover all possible cases: from extrapolating affected scans 

that are either right at the beginning or right at the end of the session to interpolating 

separately affected scans and scans whose adjacent scans are also affected. 

A s to the implementation, B-spline interpolation is similar to linear interpolation. 

It differs only in that it requires a minimum of four good timepoints. 
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10 DATA ANALYSIS 
Both structural and functional data were acquired wi th the 3T Siemens Pr isma M R 

scanner. The acquisition parameters of the functional data are shown in table 10.1. 

Anatomical Tl-weighted images were acquired using a 3D sequence (240 sagittal 

slices, resolution 224 x 224, slice thickness = 1.0 mm, T R = 2300 ms, T E = 2.34 

ms, F O V = 224 mm, flip angle = 8°). 

In this work we used datasets F C N I 1 , F C N I 3 and F C N I 5 ; each accquired wi th 

different multi-band ( M B ) factors: M B factor = 1 (without M B acceleration), 4 and 

8, respectively. A l l datasets comes from a block desing (recall 3.2) experiment wi th 

visual checkerboard stimulation during active period (A) and black screen during 

passive period (P) was used in a l l three runs. Each period lasted for 24 seconds and 

the periods were alternating as follows: P A P A P A P A P A P A P . 

Tab. 10.1: Acquisi t ion Parameteres of B O L D Data 

F C N I 1 F C N I 3 F C N I 5 

T R [s] 2.720 0.814 0.417 

T E [s] 0.0300 0.0356 0.0356 

F l ip angle [°] 81 55 41 

In-plane resolution 64x64 64x64 64x64 

F O V [mm] 194x194 194x194 194x194 

Number of axial slices 40 40 40 

Thickness of axial slices [mm] 3 3 3 

Number of scans 110 380 720 

Mul t iband factor 1 4 8 

10.1 Preprocessing of the Data 
The following preprocessing was applied to each subject's time series of f M R I scans: 

a 6 parameter rigid-body realignment and unwarp of functional scans in order to 

correct for head movement; normalization to fit into a standard anatomical space 

(MNI) , according to the anatomical image; and spatial smoothing using a Gaussian 

filter wi th a F W H M of 6 mm. The voxel size generated from these acquisition 

parameters was oversampled to 3 x 3 x 3 mm. 

The overall design of the script is illustrated in a flowchart in figure 10.1. 
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P a r a m e t r e s 

I n t e r p o l a t i o n s 

S P M 

Fig . 10.1: First the raw data enters the preprocessing block from there the 6 motion 

parameters are obtained that are the basis for the upcoming F D computation. After 

the data finishes preprocessing, the D V A R S indicator is computed, and the data 

enters interpolation computations, which follows F D , or a combination of F D wi th 

D V A R S . The desired statistical models are then created and enter analysis. 

10.2 Overview of Motion Prevalence in the Data 
Motion prevalence in the data is summarized in table 10.2, along wi th an example 

of translational and rotational motion characteristics and derived F D and D V A R S 

timecourses for subject 186A, session F C N I 3 , in figure 10.2. 
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Tab. 10.2: Overview of Mot ion Prevalence in The Data 

Subject Session F D [%] D V A R S [%] 

186 A 

F C N I 1 - -
186 A F C N I 3 - ~ 0 186 A 

F C N I 5 - -

190 A 

F C N I 1 44 44 

190 A F C N I 3 20 7 190 A 

F C N I 5 3 1 

211A 

F C N I 1 2 10 

211A F C N I 3 2 3 211A 

F C N I 5 2 1 

219 A 

F C N I 1 1 3 

219 A F C N I 3 7 3 219 A 

F C N I 5 5 1 

Translation 1&6A FCNI1 

ec 
Scans 

Rotation 186A FCNM 

ec 
Scans 

FD 1B6AFCNI1 

EC 

Scans 
DVARS 186AFCNI1 

x translation 
/translation 
z translation 

ICC I2C 

12C 

12C 

12C 

Fig . 10.2: Example of motion prevalence in 186A F C N I 1 
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10.3 Overview of Analyzed Models 
For each dataset presented in table 10.2, we constructed 9 analysis models, summa

rized in table 10.3. The first model having no motion-reducing features whatsoever, 

the second having the same parametres (i.e. 6 motion regressors) that are widely 

used in concurrent studies and the following models representing various combina

tions of the motion-reducing methods proposed formerly in this thesis. 

Tab. 10.3: Nine Created Models for Subsequent Analyzes 

Model Mot ion Reg. Spike Reg. Mot ion Scrubbing Mot ion metric 

Nono - - - -
6mr 6 - - -
6 F d S P I K E 6 0S-1S-0S - F D 

6 F d 3 S P I K E 6 1S-1S-2S - F D 

6 F D v r S P I K E 6 0S-1S-0S - F D + D V A R S 

6L inFd 6 - linear F D 

6 L i n F D v r 6 - spline F D 

6SplFd 6 - linear F D + D V A R S 

6SplFDvr 6 - spline F D + D V A R S 

Table 10.4 illustrates the extent of motion in active periods for every chosen 

metric in this thesis. 

Tab. 10.4: Mot ion Prevalence in Active Periods 

Session Metr ic 186A [%] 190A [%] 211A [%] 219A [%] 

F C N I 1 

F D 0 34.0 1.9 0.1 

F C N I 1 F D 3 0 77.4 5.7 3.8 F C N I 1 

FDvars 0 56.6 7.5 5.7 

F C N I 3 

F D 0 21.2 2.8 3.4 

F C N I 3 F D 3 0 55.3 8.4 9.0 F C N I 3 

FDvars 0 24.0 3.9 3.4 

F C N I 5 

F D 0 1.7 1.4 0.6 

F C N I 5 F D 3 0 5.8 5.2 1.4 F C N I 5 

FDvars 0 1.7 2 0.6 
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11 RESULTS 
Figure 11.1 presents the mean T-statistics for session F C N I 1 for all subjects. A s 

one might expect, for the model totally free of motion (186A), the statistics did not 

change over the analyzed models; same as for 219A. There again, all the models 

yielded worse results than the untreated data (NoNo). 

More interesting results came wi th subject 190A, which exhibited quite drastic 

motion prevalence (for some indicators almost 40 %, see 10.4). Model 6FD3Spike 

clearly reached the highest mean T-statistics, followed by the conventional 6-motion-

parameters (6mr) method. Surprisingly, the lowest mean T-statistics were found in 

both models that use spline interpolations, 6SplFd and 6Sp lFDVr . 211A displays 

the same outcome, yet wi th smaller differences. This is quite logical, 211A had 

much less motion, therefore, the differences between the models does not stand out 

so much (again, check the motion prevalence in 10.4). 

Mean T- FCNI 1 

INoNo 
l6mr 
|6FdSPIKE 
|6Fd3SPIKE 
]6FDvrSPIKE 
]6LinFd 
]6LinFDvr 
]6SplFd 
]6SplFDvr 

186A 190A 211A 219A 

Fig . 11.1: Mean T-statistics for session F C N I 1 across all subjects 

The activation brain map of T-statistics for the conventional motion-treating 

model 6mr is depicted in figure 11.2. One can see how the number and intensity 

of expectantly active voxels in the occipital lobe (recall that the task was visual) is 

diminishing wi th the level of motion: from strong activations in 186A to relatively 

weak activations in 190A. 
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FCNI1 6mr 

Fig . 11.2: Act ivat ion brain map for the model 6mr 

Figure 11.3 shows the residual mean squared error (Res M S ) . In other words, 

the unexplained signal from G L M . The sheer negative effect of spline interpolations 

in 190A is obvious upon a brief look. This is also quite logical, there are simply not 

enough good adjacent timepoints that the interpolation could satisfyingly grasp. 
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Fig . 11.3: Residual M S in F C N I 1 
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The brain map of Res M S , depicted in 11.4, explores the effect even more. 

Whereas in the motion-untreated model, the highest value of Res M S is about 140 

and the map has almost uniform values; maps of 6Sp lFD and 6 S p l F D V r are full 

of extremes, often going beyond the color scale. After a closer inspection of the 

data it turned out that the maximal values are around 5500 and 1500, respectively. 

Extremes like these consequently push up the overall average of Res M S to high 

values. O n the other hand, however, in certain parts of the brain, for instance in 

some parts of the occipital lobe in model 6Sp lFD, Res M S was effectively reduced. 

1 9 0 A F C N I 1 

F ig . 11.4: Comparison of Res M S brain maps 

Mean T-statistics and the residual mean squared error focus on the whole brain. 

Yet our goal is to look more deeply into the voxels whose activity correlated wi th 

the task, i.e. voxels wi th high T-statistics, the 'active' voxels. For this reason we 

constructed two new metrics: mean of 50 highest T-statistics (Mean T50) and the 

corresponding Res M S of those voxels (Res MS50). 
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Fig . 11.5: Mean T50 for F C N I 1 (T-statistics for 50 strongest voxels) 

The outcomes of Mean T50 are more or less the replications of the outcomes 

of the regular mean T-statistics over the whole brain, wi th the difference that the 

effects of the individual modules are more emphasized here. Interestingly, all the 

motion-treating models had negative effects for the subject 219A. This could suggest 

that the motion artifacts were not localized in the voxels of the highest T-statistics. 
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Fig . 11.6: Res MS50 for F C N I 1 
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The residual mean squared error of the 50-T-strongest voxels in figure 11.6 al

lows one to change his or her perspective on the sheer negative effects of the spline 

interpolations. This new outlook suggests the splines did quite a good job for those 

highly active voxels: in terms of the residual mean squared error, both spline in

terpolations yielded better results than the motion-untreating model 6mr. It seems 

as if the splines could not satisfyingly interpolate the regular stochastic processes 

of inactive voxels. The causes of such unstable behavior of spline interpolations are 

elaborated on more fully in the Discussion section. 

Again , one can see how well model 6 F d 3 S P I K E handled the reduction of motion by 

the litt le unexplained signal it left. 

6 F d 3 S P I K E performs very well, however, the vast number of regressors comes 

wi th the cost of a decrease of the degree of freedom, which raises the analysis thresh

old, shown in figure 11.7. 

Threshold, corrected • FCNI 1 
14 i 1 1 1 1 

12 -

10 

nnnnmnr 

| N o N o 
l 6 m r 
|6FdSPIKE 
|6Fd3SPIKE 
]6FDvrSPIKE 
j 6L inFd 
j6L inFDvr 
]6Sp lFd 
]6SplFDvr 

mi 
186A 190A 211A 219A 

Fig . 11.7: T-statistics thresholds for F C N I 1 

The question is whether this high threshold would not eliminate all voxels. Upon 

looking at figure 11.8, one can see there are still some remaining. However, the 

impact of such drastic motion disturbance is embodied in the very few resulting 

voxels. In fact, for model 6SplFd there are no voxels that would pass the threshold 

at all . 
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Fig . 11.8: Number of voxels that passed T-statistic thresholds 

The activation brain map in figure 11.9 reveals that significant parts of the active 

voxels of model 6 F d 3 S P I K E are localized outside of the occipital lobe, suggesting 

that those activated voxels are actually falsely positive. According to this brain 

map, models 6mr and 6 F d S P I K E provided much better results than one might have 

predicted from the previous charts. 
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Fig . 11.9: Act ivat ion brain maps of all the models for 190A F C N I 1 
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Our finding that model 6 F d 3 S P I K E does not perform as well as we once thought 

is only augmented after a closer inspection of the mean T-statistics for sessions 

F C N I 3 (figure 11.10) and F C N I 5 (figure 11.11). Moreover, according to figure 11.11, 

6 F d 3 S P I K E yields one of the poorest results for both subjects 190A and 219A. The 

rest of the models seem to produce comparable outcomes wi th minor differences. In 

F C N I 5 there are no radical deviations in the results across the models due to the 

small amount of motion that occurs in this session. The mean T50 charts, available 

in the supplementary materials, of both sessions provide almost similar outcomes. 

Interestingly, the highest variability is caused by the interindividual variations 

of the subjects: note how much the T-statistics vary across subjects. 

3.5 

2.5 

1.5 

0.5 

Mean T- FCNI 3 
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l6mr 
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|6Fd3SPIKE 
]6FDvrSPIKE 
]6LinFd 
]6LinFDvr 
]6SplFd 
]6SplFDvr 

Fig . 11.10: Mean T-statistics for session F C N I 3 across all subjects 

The comparison of activation brain maps in figure D.3 reveals the discrepancy in 

the outcomes of 6 F d 3 S P I K E between session F C N I 1 and session F C N I 3 . Whi le in 

F C N I 1 the model generated a variety of falsely positive voxels, in F C N I 3 it produced 

plenty of falsely negative voxels. 
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Fig . 11.11: Mean T-statistics for session F C N I 5 across all subjects 
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Fig . 11.12: Comparison of activation brain maps between session F C N I 1 and F C N I 3 

for subject 190A 
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12 DISCUSSION 
Of the models using the spike regression method, the model 6 F d 3 S P I K E , which first 

seemed like the ultimate model for reducing motion artifact, turned out to behave 

very unstably. In one case the model produced a great many of falsely positive 

results, in the other a great many of falsely negative results. It is hard to state 

whether this behavior could be attributed to the nature of the model or to the fact 

that either of the datasets is an outlier. We simply do not have enough data. The 

model 6FdSpike, that did not convincingly prove its strength in any of the statistics 

charts, however, seems to yield much better results than 6 F d 3 S P I K E when judged 

from the activation brain map in figure D.3. According to this figure, 6FdSpike did 

not produce any falsely positive nor falsely negative results. A similar model, 6 F D -

v r S P I K E , that uses a fused combination of motion indicators of F D wi th D V A R S 

did not yield any improved outcomes compared to 6FdSpike. 

Linear interpolations models, 6 L i n F D and 6 L i n F D v r , exhibited stable behavior 

across all datasets; however, none of their results turned out to be better than the 

conventional 6mr method. The same cannot be said about spline interpolation mod

els. O n the one hand, some of the results they produced were better than the results 

of the 6mr model; however, they behaved very unstably and unpredictably in every 

outcome of the analysis. It is conceivable that they could be used for data wi th 

a small amount of motion. Nonetheless, when the motion prevalence is high, they 

tend to produce unrealistic timecourses that are full of extreme values (see figure 

11.3). This might be attributed to the great number of bad timepoints that are hard 

to fit when there are only a few good timepoints, the more when there is a cluster 

of bad timepoints. The interpolation then has to reach out for distant timepoints. 

Another reason why spline interpolations yielded such poor results might be that 

bad timepoints from active periods were interpolated, using good timepoints from 

passive periods and vice versa. A s a result, it produced even worse signal time-

courses than the original untreated data had. 

From those results it is very difficult to suggest one ultimate method that would 

be best for reducing motion artifact. The study would have to have much more data 

to mitigate any interindividual variations of the subjects' brain connectivity. Thus, 

in conclusion, this thesis suggests to still use the conventional 6-motion-parameters 

method and recommends to do a much more robust study with the same models 

involved. 
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13 CONCLUSION 
This bachelor thesis deals wi th the reduction of movement artifacts in B O L D f M R I 

data using rejection of motion-corrupted scans. In total nine different models de

signed for elimination of such scans were implemented in the M A T L A B environment 

and evaluated on datasets provided by the Mul t imoda l and Functional Imaging Lab

oratory of C E I T E C M U . 

The thesis is divided into 11 sections. The first section places f M R I in respect to 

other functional imaging techniques and briefly touches on the principles of P E T , 

E E G and M E G . The second section explains the underlying phenomena of (f)MRI 

and image acquisition. The third section deals with generation of the B O L D f M R I 

signal and its properties. The fourth section describes several common artifacts and 

noises in the data. The fifth section outlines the preprocessing steps of B O L D f M R I 

data. The sixth section explains how the General Linear Model works and what role 

regressors play. The seventh section looks more deeply into the methods for locating 

motion-affected scans, while the eighth section explains methods for removing such 

scans. The ninth section introduces those methods more thoroughly and illustrates 

their outputs. The tenth section specifies chosen data and statistical models and 

illustrates the processing procedure in greater detail. The eleventh section presents 

the results and compares statistical models wi th each other. The twelfth section 

discusses the results and suggests suitable methods for removing motion artifact 

from B O L D f M R I data. 

The supplementary materials contain figures specifying motion prevalence for 

each subject and session and detailed outcomes of statistical analyzes that were not 

presented in the text. 

The results are ambiguous regarding indicating one best method that would 

conclusively stand out. For this reason, the thesis suggests to using conventional 6 

motion parameters method unti l any more robust study concludes otherwise. 
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LIST OF SYMBOLS, PHYSICAL CONSTANTS 
AND ABBREVIATIONS 

M R Magnetic resonance 

R F pulse radiofrequency pulse 

E E G Electroencephalography 

f M R I Functional magnetic resonance imaging 

M E G Magnetoencephalography 

P E T Positron-emission tomography 

F-18 Fluorine-18 

E P I echoplanar imaging 

G R E gradient echo 

F D G Fluorodeoxyglucose 

T R repetition time 

T E echo time 

H R F hemodynamic response function 

M N I Montreal Neurological Institute 

F W H M full width at half maximum 

G M S grand mean scaling 

G L M general linear model 

F D framewise displacement 

D V A R S framewise displacement 

I C A Independent Components Analysis 

CompCor Component Based Noise Correction Method 

t f M R I task-fMRI 

ResMS Residual mean squared error 
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A EXAMPLES OF SOURCE CODES 

A . l FD 
One of the reasons why F D is so widely used is its easy implementation and com

putation. The code can be shrunk into a few lines: 

Lis t ing A . l : Code for F D Computation in the M A T L A B Environment 

B=importdata([path,'\',jmeno .name]); Xparameters from RBt 

B(: ,4)=B(: , 4) . *(50*pi /180) ; Xrot. conversion 

B(: ,5)=B(: , 5) . *(50*pi/180) ; 

B(: ,6)=B(: , 6) . *(50*pi/180) ; 

FD = s u m ( a b s ( d i f f(B)) ,2) '; 

f o r i= 1:length(FD) 

i f(FD(i)>0.5) 

indexes=[indexes i ] ; %0.5 mm thresh. 

end 

end 

A. 2 DVARS 
Unlike F D , D V A R S uses data of the individual scans, not from a single matrix. The 

importation of the data is done via S P M 1 2 functions. This makes the computation 

a bit longer. 
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List ing A . 2 : Code for D V A R S Computat ion in the M A T L A B Environment 

1 filenames = spm_select('FPList',datadir,'~swu . * \ . n i i ' ) ; 

2 volumes = spm_vol(filenames); Ximport data 

3 [Y] = spm_read_vols(volumes); 

4 indexes = [] ; 

5 %% Compute 

6 for i = l : ( s i z e ( v o l u m e s , l ) - l ) 

7 dvars_sum(i) = sum(sum(sum(Y(: ,: ,: , i ) ) ) ) ; 

8 d v a r s _ d i f ( i ) = sum(sum(sum(Y(: ,: ,: , i + 1)-Y ( : ,: ,: , ( i ) ) ) ) ) ; 

9 end 

10 DVARS = 1000*sqrt((dvars_dif./dvars_sum).~2) 9 
11 for i= 1:length(DVARS) 

12 if(DVARS(i)>5) %5 % threshold 

13 indexes=[indexes i ] ; 

14 end 

15 end 
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OVERVIEW OF MOTION P R E V A L E N C E IN 
T H E DATA 
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Fig . B . l : Mot ion prevalence in 186A F C N I 3 

67 



C.5 

I 0 

Translation 186A FCM5 

x translation 
- y translation 

z translation 

0 100 200 300 400 500 600 700 300 
Scans 

Rotation186AFCNI5 

oi 0 

-C.C1 

pitch 
roll 
yaw 

_ i i _ 

0 100 200 300 400 500 600 700 300 
Scans 

FD 186AFCNI5 

1 " k ^ ^ U a V ^ r t i i W ^ v ^ ^ ^ ^ ^ 
0 100 200 300 400 500 600 700 300 

Scans 
DVARS 186A FCNI5 

O 

0 100 200 300 400 500 600 700 300 
Scans 
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Fig . B.6: Mot ion prevalence in 211A F C N I 1 
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Fig . B.10: Mot ion prevalence in 219A F C N I 3 
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C COMPUTATION TIMES OF LINEARLY IN
T E R P O L A T E D SCANS 
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Fig . C l : Computat ion times of linearly interpolated scans. Note that some scans 

were interpolated simply via M A T L A B ' s direct matrix-wise operations, which took 

a minimum amount of time, others were interpolated timepoint by timepoint using 

interpl function. 
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ADDITIONAL CHARTS AND BRAIN MAPS 
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E CONTENTS OF T H E ATTACHED CD 
The attached C D contains the thesis, figures of the brain maps and statistical charts 

along wi th scripts, programmed in the M A T L A B R2016a environment. 
.3 SPM12_prep.m The preprocessing of data, main body of the script. .3 
SPM12_stat.m A script that creates the statistical models, statistical evaluation. 

/ Directory tree of the attached C D 
Thesis.pdf 

.Results 

Brain maps Activation brain maps, RES MS 
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190AFCNI5.png 
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Flowchart .png A flowchart of the data preprocessing 

FindFirstGood.m. . A function that finds a first good timepoint for the interp. 
FindLastGood.m. . . A function that finds a last good timepoint for the interp. 

Scripts 
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AK_results_.mat.. 

dvars.m 

FD_exe.m 

A script that extracts statistical results 
The actual statistical results 

D V A R S computation 
F D computation 

Linear.m..... 

MakeChart s.m 

Spline.m 

A function for the linear interpolation 
A script for drawing charts 
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